1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/IntrinsicsAArch64.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <cstddef> 105 #include <cstring> 106 #include <iterator> 107 #include <limits> 108 #include <numeric> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 Optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 166 const SDValue *Parts, unsigned NumParts, 167 MVT PartVT, EVT ValueVT, const Value *V, 168 Optional<CallingConv::ID> CC = None, 169 Optional<ISD::NodeType> AssertOp = None) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = 191 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 201 PartVT, HalfVT, V); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 203 RoundParts / 2, PartVT, HalfVT, V); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = 228 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getPointerTy(DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp.hasValue()) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) 290 return DAG.getNode( 291 ISD::FP_ROUND, DL, ValueVT, Val, 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 293 294 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 295 } 296 297 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 298 // then truncating. 299 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 300 ValueVT.bitsLT(PartEVT)) { 301 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 305 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 306 } 307 308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 309 const Twine &ErrMsg) { 310 const Instruction *I = dyn_cast_or_null<Instruction>(V); 311 if (!V) 312 return Ctx.emitError(ErrMsg); 313 314 const char *AsmError = ", possible invalid constraint for vector type"; 315 if (const CallInst *CI = dyn_cast<CallInst>(I)) 316 if (CI->isInlineAsm()) 317 return Ctx.emitError(I, ErrMsg + AsmError); 318 319 return Ctx.emitError(I, ErrMsg); 320 } 321 322 /// getCopyFromPartsVector - Create a value that contains the specified legal 323 /// parts combined into the value they represent. If the parts combine to a 324 /// type larger than ValueVT then AssertOp can be used to specify whether the 325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 326 /// ValueVT (ISD::AssertSext). 327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 328 const SDValue *Parts, unsigned NumParts, 329 MVT PartVT, EVT ValueVT, const Value *V, 330 Optional<CallingConv::ID> CallConv) { 331 assert(ValueVT.isVector() && "Not a vector value"); 332 assert(NumParts > 0 && "No parts to assemble!"); 333 const bool IsABIRegCopy = CallConv.hasValue(); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 SDValue Val = Parts[0]; 337 338 // Handle a multi-element vector. 339 if (NumParts > 1) { 340 EVT IntermediateVT; 341 MVT RegisterVT; 342 unsigned NumIntermediates; 343 unsigned NumRegs; 344 345 if (IsABIRegCopy) { 346 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 347 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } else { 350 NumRegs = 351 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 352 NumIntermediates, RegisterVT); 353 } 354 355 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 356 NumParts = NumRegs; // Silence a compiler warning. 357 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 358 assert(RegisterVT.getSizeInBits() == 359 Parts[0].getSimpleValueType().getSizeInBits() && 360 "Part type sizes don't match!"); 361 362 // Assemble the parts into intermediate operands. 363 SmallVector<SDValue, 8> Ops(NumIntermediates); 364 if (NumIntermediates == NumParts) { 365 // If the register was not expanded, truncate or copy the value, 366 // as appropriate. 367 for (unsigned i = 0; i != NumParts; ++i) 368 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 369 PartVT, IntermediateVT, V, CallConv); 370 } else if (NumParts > 0) { 371 // If the intermediate type was expanded, build the intermediate 372 // operands from the parts. 373 assert(NumParts % NumIntermediates == 0 && 374 "Must expand into a divisible number of parts!"); 375 unsigned Factor = NumParts / NumIntermediates; 376 for (unsigned i = 0; i != NumIntermediates; ++i) 377 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 378 PartVT, IntermediateVT, V, CallConv); 379 } 380 381 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 382 // intermediate operands. 383 EVT BuiltVectorTy = 384 IntermediateVT.isVector() 385 ? EVT::getVectorVT( 386 *DAG.getContext(), IntermediateVT.getScalarType(), 387 IntermediateVT.getVectorElementCount() * NumParts) 388 : EVT::getVectorVT(*DAG.getContext(), 389 IntermediateVT.getScalarType(), 390 NumIntermediates); 391 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 392 : ISD::BUILD_VECTOR, 393 DL, BuiltVectorTy, Ops); 394 } 395 396 // There is now one part, held in Val. Correct it to match ValueVT. 397 EVT PartEVT = Val.getValueType(); 398 399 if (PartEVT == ValueVT) 400 return Val; 401 402 if (PartEVT.isVector()) { 403 // Vector/Vector bitcast. 404 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 405 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 407 // If the element type of the source/dest vectors are the same, but the 408 // parts vector has more elements than the value vector, then we have a 409 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 410 // elements we want. 411 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 412 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 413 ValueVT.getVectorElementCount().getKnownMinValue()) && 414 (PartEVT.getVectorElementCount().isScalable() == 415 ValueVT.getVectorElementCount().isScalable()) && 416 "Cannot narrow, it would be a lossy transformation"); 417 PartEVT = 418 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 419 ValueVT.getVectorElementCount()); 420 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 421 DAG.getVectorIdxConstant(0, DL)); 422 if (PartEVT == ValueVT) 423 return Val; 424 } 425 426 // Promoted vector extract 427 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 428 } 429 430 // Trivial bitcast if the types are the same size and the destination 431 // vector type is legal. 432 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 433 TLI.isTypeLegal(ValueVT)) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 if (ValueVT.getVectorNumElements() != 1) { 437 // Certain ABIs require that vectors are passed as integers. For vectors 438 // are the same size, this is an obvious bitcast. 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } else if (ValueVT.bitsLT(PartEVT)) { 442 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 443 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 444 // Drop the extra bits. 445 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 446 return DAG.getBitcast(ValueVT, Val); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 614 const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 ElementCount PartNumElts = PartVT.getVectorElementCount(); 620 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 621 622 // We only support widening vectors with equivalent element types and 623 // fixed/scalable properties. If a target needs to widen a fixed-length type 624 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 625 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 626 PartNumElts.isScalable() != ValueNumElts.isScalable() || 627 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 628 return SDValue(); 629 630 // Widening a scalable vector to another scalable vector is done by inserting 631 // the vector into a larger undef one. 632 if (PartNumElts.isScalable()) 633 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 634 Val, DAG.getVectorIdxConstant(0, DL)); 635 636 EVT ElementVT = PartVT.getVectorElementType(); 637 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 638 // undef elements. 639 SmallVector<SDValue, 16> Ops; 640 DAG.ExtractVectorElements(Val, Ops); 641 SDValue EltUndef = DAG.getUNDEF(ElementVT); 642 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 return DAG.getBuildVector(PartVT, DL, Ops); 646 } 647 648 /// getCopyToPartsVector - Create a series of nodes that contain the specified 649 /// value split into legal parts. 650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 651 SDValue Val, SDValue *Parts, unsigned NumParts, 652 MVT PartVT, const Value *V, 653 Optional<CallingConv::ID> CallConv) { 654 EVT ValueVT = Val.getValueType(); 655 assert(ValueVT.isVector() && "Not a vector"); 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 const bool IsABIRegCopy = CallConv.hasValue(); 658 659 if (NumParts == 1) { 660 EVT PartEVT = PartVT; 661 if (PartEVT == ValueVT) { 662 // Nothing to do. 663 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 664 // Bitconvert vector->vector case. 665 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 666 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 667 Val = Widened; 668 } else if (PartVT.isVector() && 669 PartEVT.getVectorElementType().bitsGE( 670 ValueVT.getVectorElementType()) && 671 PartEVT.getVectorElementCount() == 672 ValueVT.getVectorElementCount()) { 673 674 // Promoted vector extract 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } else { 677 if (ValueVT.getVectorElementCount().isScalar()) { 678 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 679 DAG.getVectorIdxConstant(0, DL)); 680 } else { 681 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 682 assert(PartVT.getFixedSizeInBits() > ValueSize && 683 "lossy conversion of vector to scalar type"); 684 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 685 Val = DAG.getBitcast(IntermediateType, Val); 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } 688 } 689 690 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 691 Parts[0] = Val; 692 return; 693 } 694 695 // Handle a multi-element vector. 696 EVT IntermediateVT; 697 MVT RegisterVT; 698 unsigned NumIntermediates; 699 unsigned NumRegs; 700 if (IsABIRegCopy) { 701 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 702 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 703 NumIntermediates, RegisterVT); 704 } else { 705 NumRegs = 706 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 707 NumIntermediates, RegisterVT); 708 } 709 710 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 711 NumParts = NumRegs; // Silence a compiler warning. 712 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 713 714 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 715 "Mixing scalable and fixed vectors when copying in parts"); 716 717 Optional<ElementCount> DestEltCnt; 718 719 if (IntermediateVT.isVector()) 720 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 721 else 722 DestEltCnt = ElementCount::getFixed(NumIntermediates); 723 724 EVT BuiltVectorTy = EVT::getVectorVT( 725 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 726 727 if (ValueVT == BuiltVectorTy) { 728 // Nothing to do. 729 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 730 // Bitconvert vector->vector case. 731 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 732 } else { 733 if (BuiltVectorTy.getVectorElementType().bitsGT( 734 ValueVT.getVectorElementType())) { 735 // Integer promotion. 736 ValueVT = EVT::getVectorVT(*DAG.getContext(), 737 BuiltVectorTy.getVectorElementType(), 738 ValueVT.getVectorElementCount()); 739 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 740 } 741 742 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 743 Val = Widened; 744 } 745 } 746 747 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 748 749 // Split the vector into intermediate operands. 750 SmallVector<SDValue, 8> Ops(NumIntermediates); 751 for (unsigned i = 0; i != NumIntermediates; ++i) { 752 if (IntermediateVT.isVector()) { 753 // This does something sensible for scalable vectors - see the 754 // definition of EXTRACT_SUBVECTOR for further details. 755 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 756 Ops[i] = 757 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 758 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 759 } else { 760 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 761 DAG.getVectorIdxConstant(i, DL)); 762 } 763 } 764 765 // Split the intermediate operands into legal parts. 766 if (NumParts == NumIntermediates) { 767 // If the register was not expanded, promote or copy the value, 768 // as appropriate. 769 for (unsigned i = 0; i != NumParts; ++i) 770 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 771 } else if (NumParts > 0) { 772 // If the intermediate type was expanded, split each the value into 773 // legal parts. 774 assert(NumIntermediates != 0 && "division by zero"); 775 assert(NumParts % NumIntermediates == 0 && 776 "Must expand into a divisible number of parts!"); 777 unsigned Factor = NumParts / NumIntermediates; 778 for (unsigned i = 0; i != NumIntermediates; ++i) 779 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 780 CallConv); 781 } 782 } 783 784 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 785 EVT valuevt, Optional<CallingConv::ID> CC) 786 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 787 RegCount(1, regs.size()), CallConv(CC) {} 788 789 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 790 const DataLayout &DL, unsigned Reg, Type *Ty, 791 Optional<CallingConv::ID> CC) { 792 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 793 794 CallConv = CC; 795 796 for (EVT ValueVT : ValueVTs) { 797 unsigned NumRegs = 798 isABIMangled() 799 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 800 : TLI.getNumRegisters(Context, ValueVT); 801 MVT RegisterVT = 802 isABIMangled() 803 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 804 : TLI.getRegisterType(Context, ValueVT); 805 for (unsigned i = 0; i != NumRegs; ++i) 806 Regs.push_back(Reg + i); 807 RegVTs.push_back(RegisterVT); 808 RegCount.push_back(NumRegs); 809 Reg += NumRegs; 810 } 811 } 812 813 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 814 FunctionLoweringInfo &FuncInfo, 815 const SDLoc &dl, SDValue &Chain, 816 SDValue *Flag, const Value *V) const { 817 // A Value with type {} or [0 x %t] needs no registers. 818 if (ValueVTs.empty()) 819 return SDValue(); 820 821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 822 823 // Assemble the legal parts into the final values. 824 SmallVector<SDValue, 4> Values(ValueVTs.size()); 825 SmallVector<SDValue, 8> Parts; 826 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 827 // Copy the legal parts from the registers. 828 EVT ValueVT = ValueVTs[Value]; 829 unsigned NumRegs = RegCount[Value]; 830 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 831 *DAG.getContext(), 832 CallConv.getValue(), RegVTs[Value]) 833 : RegVTs[Value]; 834 835 Parts.resize(NumRegs); 836 for (unsigned i = 0; i != NumRegs; ++i) { 837 SDValue P; 838 if (!Flag) { 839 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 840 } else { 841 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 842 *Flag = P.getValue(2); 843 } 844 845 Chain = P.getValue(1); 846 Parts[i] = P; 847 848 // If the source register was virtual and if we know something about it, 849 // add an assert node. 850 if (!Register::isVirtualRegister(Regs[Part + i]) || 851 !RegisterVT.isInteger()) 852 continue; 853 854 const FunctionLoweringInfo::LiveOutInfo *LOI = 855 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 856 if (!LOI) 857 continue; 858 859 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 860 unsigned NumSignBits = LOI->NumSignBits; 861 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 862 863 if (NumZeroBits == RegSize) { 864 // The current value is a zero. 865 // Explicitly express that as it would be easier for 866 // optimizations to kick in. 867 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 868 continue; 869 } 870 871 // FIXME: We capture more information than the dag can represent. For 872 // now, just use the tightest assertzext/assertsext possible. 873 bool isSExt; 874 EVT FromVT(MVT::Other); 875 if (NumZeroBits) { 876 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 877 isSExt = false; 878 } else if (NumSignBits > 1) { 879 FromVT = 880 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 881 isSExt = true; 882 } else { 883 continue; 884 } 885 // Add an assertion node. 886 assert(FromVT != MVT::Other); 887 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 888 RegisterVT, P, DAG.getValueType(FromVT)); 889 } 890 891 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 892 RegisterVT, ValueVT, V, CallConv); 893 Part += NumRegs; 894 Parts.clear(); 895 } 896 897 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 898 } 899 900 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 901 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 902 const Value *V, 903 ISD::NodeType PreferredExtendType) const { 904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 905 ISD::NodeType ExtendKind = PreferredExtendType; 906 907 // Get the list of the values's legal parts. 908 unsigned NumRegs = Regs.size(); 909 SmallVector<SDValue, 8> Parts(NumRegs); 910 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 911 unsigned NumParts = RegCount[Value]; 912 913 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 914 *DAG.getContext(), 915 CallConv.getValue(), RegVTs[Value]) 916 : RegVTs[Value]; 917 918 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 919 ExtendKind = ISD::ZERO_EXTEND; 920 921 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 922 NumParts, RegisterVT, V, CallConv, ExtendKind); 923 Part += NumParts; 924 } 925 926 // Copy the parts into the registers. 927 SmallVector<SDValue, 8> Chains(NumRegs); 928 for (unsigned i = 0; i != NumRegs; ++i) { 929 SDValue Part; 930 if (!Flag) { 931 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 932 } else { 933 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 934 *Flag = Part.getValue(1); 935 } 936 937 Chains[i] = Part.getValue(0); 938 } 939 940 if (NumRegs == 1 || Flag) 941 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 942 // flagged to it. That is the CopyToReg nodes and the user are considered 943 // a single scheduling unit. If we create a TokenFactor and return it as 944 // chain, then the TokenFactor is both a predecessor (operand) of the 945 // user as well as a successor (the TF operands are flagged to the user). 946 // c1, f1 = CopyToReg 947 // c2, f2 = CopyToReg 948 // c3 = TokenFactor c1, c2 949 // ... 950 // = op c3, ..., f2 951 Chain = Chains[NumRegs-1]; 952 else 953 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 954 } 955 956 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 957 unsigned MatchingIdx, const SDLoc &dl, 958 SelectionDAG &DAG, 959 std::vector<SDValue> &Ops) const { 960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 961 962 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 963 if (HasMatching) 964 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 965 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 966 // Put the register class of the virtual registers in the flag word. That 967 // way, later passes can recompute register class constraints for inline 968 // assembly as well as normal instructions. 969 // Don't do this for tied operands that can use the regclass information 970 // from the def. 971 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 972 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 973 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 974 } 975 976 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 977 Ops.push_back(Res); 978 979 if (Code == InlineAsm::Kind_Clobber) { 980 // Clobbers should always have a 1:1 mapping with registers, and may 981 // reference registers that have illegal (e.g. vector) types. Hence, we 982 // shouldn't try to apply any sort of splitting logic to them. 983 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 984 "No 1:1 mapping from clobbers to regs?"); 985 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 986 (void)SP; 987 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 988 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 989 assert( 990 (Regs[I] != SP || 991 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 992 "If we clobbered the stack pointer, MFI should know about it."); 993 } 994 return; 995 } 996 997 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 998 MVT RegisterVT = RegVTs[Value]; 999 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1000 RegisterVT); 1001 for (unsigned i = 0; i != NumRegs; ++i) { 1002 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1003 unsigned TheReg = Regs[Reg++]; 1004 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1005 } 1006 } 1007 } 1008 1009 SmallVector<std::pair<unsigned, TypeSize>, 4> 1010 RegsForValue::getRegsAndSizes() const { 1011 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1012 unsigned I = 0; 1013 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1014 unsigned RegCount = std::get<0>(CountAndVT); 1015 MVT RegisterVT = std::get<1>(CountAndVT); 1016 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1017 for (unsigned E = I + RegCount; I != E; ++I) 1018 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1019 } 1020 return OutVec; 1021 } 1022 1023 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1024 const TargetLibraryInfo *li) { 1025 AA = aa; 1026 GFI = gfi; 1027 LibInfo = li; 1028 DL = &DAG.getDataLayout(); 1029 Context = DAG.getContext(); 1030 LPadToCallSiteMap.clear(); 1031 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1032 } 1033 1034 void SelectionDAGBuilder::clear() { 1035 NodeMap.clear(); 1036 UnusedArgNodeMap.clear(); 1037 PendingLoads.clear(); 1038 PendingExports.clear(); 1039 PendingConstrainedFP.clear(); 1040 PendingConstrainedFPStrict.clear(); 1041 CurInst = nullptr; 1042 HasTailCall = false; 1043 SDNodeOrder = LowestSDNodeOrder; 1044 StatepointLowering.clear(); 1045 } 1046 1047 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1048 DanglingDebugInfoMap.clear(); 1049 } 1050 1051 // Update DAG root to include dependencies on Pending chains. 1052 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1053 SDValue Root = DAG.getRoot(); 1054 1055 if (Pending.empty()) 1056 return Root; 1057 1058 // Add current root to PendingChains, unless we already indirectly 1059 // depend on it. 1060 if (Root.getOpcode() != ISD::EntryToken) { 1061 unsigned i = 0, e = Pending.size(); 1062 for (; i != e; ++i) { 1063 assert(Pending[i].getNode()->getNumOperands() > 1); 1064 if (Pending[i].getNode()->getOperand(0) == Root) 1065 break; // Don't add the root if we already indirectly depend on it. 1066 } 1067 1068 if (i == e) 1069 Pending.push_back(Root); 1070 } 1071 1072 if (Pending.size() == 1) 1073 Root = Pending[0]; 1074 else 1075 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1076 1077 DAG.setRoot(Root); 1078 Pending.clear(); 1079 return Root; 1080 } 1081 1082 SDValue SelectionDAGBuilder::getMemoryRoot() { 1083 return updateRoot(PendingLoads); 1084 } 1085 1086 SDValue SelectionDAGBuilder::getRoot() { 1087 // Chain up all pending constrained intrinsics together with all 1088 // pending loads, by simply appending them to PendingLoads and 1089 // then calling getMemoryRoot(). 1090 PendingLoads.reserve(PendingLoads.size() + 1091 PendingConstrainedFP.size() + 1092 PendingConstrainedFPStrict.size()); 1093 PendingLoads.append(PendingConstrainedFP.begin(), 1094 PendingConstrainedFP.end()); 1095 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1096 PendingConstrainedFPStrict.end()); 1097 PendingConstrainedFP.clear(); 1098 PendingConstrainedFPStrict.clear(); 1099 return getMemoryRoot(); 1100 } 1101 1102 SDValue SelectionDAGBuilder::getControlRoot() { 1103 // We need to emit pending fpexcept.strict constrained intrinsics, 1104 // so append them to the PendingExports list. 1105 PendingExports.append(PendingConstrainedFPStrict.begin(), 1106 PendingConstrainedFPStrict.end()); 1107 PendingConstrainedFPStrict.clear(); 1108 return updateRoot(PendingExports); 1109 } 1110 1111 void SelectionDAGBuilder::visit(const Instruction &I) { 1112 // Set up outgoing PHI node register values before emitting the terminator. 1113 if (I.isTerminator()) { 1114 HandlePHINodesInSuccessorBlocks(I.getParent()); 1115 } 1116 1117 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1118 if (!isa<DbgInfoIntrinsic>(I)) 1119 ++SDNodeOrder; 1120 1121 CurInst = &I; 1122 1123 visit(I.getOpcode(), I); 1124 1125 if (!I.isTerminator() && !HasTailCall && 1126 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1127 CopyToExportRegsIfNeeded(&I); 1128 1129 CurInst = nullptr; 1130 } 1131 1132 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1133 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1134 } 1135 1136 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1137 // Note: this doesn't use InstVisitor, because it has to work with 1138 // ConstantExpr's in addition to instructions. 1139 switch (Opcode) { 1140 default: llvm_unreachable("Unknown instruction type encountered!"); 1141 // Build the switch statement using the Instruction.def file. 1142 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1143 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1144 #include "llvm/IR/Instruction.def" 1145 } 1146 } 1147 1148 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1149 DebugLoc DL, unsigned Order) { 1150 // We treat variadic dbg_values differently at this stage. 1151 if (DI->hasArgList()) { 1152 // For variadic dbg_values we will now insert an undef. 1153 // FIXME: We can potentially recover these! 1154 SmallVector<SDDbgOperand, 2> Locs; 1155 for (const Value *V : DI->getValues()) { 1156 auto Undef = UndefValue::get(V->getType()); 1157 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1158 } 1159 SDDbgValue *SDV = DAG.getDbgValueList( 1160 DI->getVariable(), DI->getExpression(), Locs, {}, 1161 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1162 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1163 } else { 1164 // TODO: Dangling debug info will eventually either be resolved or produce 1165 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1166 // between the original dbg.value location and its resolved DBG_VALUE, 1167 // which we should ideally fill with an extra Undef DBG_VALUE. 1168 assert(DI->getNumVariableLocationOps() == 1 && 1169 "DbgValueInst without an ArgList should have a single location " 1170 "operand."); 1171 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1172 } 1173 } 1174 1175 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1176 const DIExpression *Expr) { 1177 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1178 const DbgValueInst *DI = DDI.getDI(); 1179 DIVariable *DanglingVariable = DI->getVariable(); 1180 DIExpression *DanglingExpr = DI->getExpression(); 1181 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1182 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1183 return true; 1184 } 1185 return false; 1186 }; 1187 1188 for (auto &DDIMI : DanglingDebugInfoMap) { 1189 DanglingDebugInfoVector &DDIV = DDIMI.second; 1190 1191 // If debug info is to be dropped, run it through final checks to see 1192 // whether it can be salvaged. 1193 for (auto &DDI : DDIV) 1194 if (isMatchingDbgValue(DDI)) 1195 salvageUnresolvedDbgValue(DDI); 1196 1197 erase_if(DDIV, isMatchingDbgValue); 1198 } 1199 } 1200 1201 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1202 // generate the debug data structures now that we've seen its definition. 1203 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1204 SDValue Val) { 1205 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1206 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1207 return; 1208 1209 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1210 for (auto &DDI : DDIV) { 1211 const DbgValueInst *DI = DDI.getDI(); 1212 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1213 assert(DI && "Ill-formed DanglingDebugInfo"); 1214 DebugLoc dl = DDI.getdl(); 1215 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1216 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1217 DILocalVariable *Variable = DI->getVariable(); 1218 DIExpression *Expr = DI->getExpression(); 1219 assert(Variable->isValidLocationForIntrinsic(dl) && 1220 "Expected inlined-at fields to agree"); 1221 SDDbgValue *SDV; 1222 if (Val.getNode()) { 1223 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1224 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1225 // we couldn't resolve it directly when examining the DbgValue intrinsic 1226 // in the first place we should not be more successful here). Unless we 1227 // have some test case that prove this to be correct we should avoid 1228 // calling EmitFuncArgumentDbgValue here. 1229 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1230 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1231 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1232 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1233 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1234 // inserted after the definition of Val when emitting the instructions 1235 // after ISel. An alternative could be to teach 1236 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1237 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1238 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1239 << ValSDNodeOrder << "\n"); 1240 SDV = getDbgValue(Val, Variable, Expr, dl, 1241 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1242 DAG.AddDbgValue(SDV, false); 1243 } else 1244 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1245 << "in EmitFuncArgumentDbgValue\n"); 1246 } else { 1247 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1248 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1249 auto SDV = 1250 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1251 DAG.AddDbgValue(SDV, false); 1252 } 1253 } 1254 DDIV.clear(); 1255 } 1256 1257 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1258 // TODO: For the variadic implementation, instead of only checking the fail 1259 // state of `handleDebugValue`, we need know specifically which values were 1260 // invalid, so that we attempt to salvage only those values when processing 1261 // a DIArgList. 1262 assert(!DDI.getDI()->hasArgList() && 1263 "Not implemented for variadic dbg_values"); 1264 Value *V = DDI.getDI()->getValue(0); 1265 DILocalVariable *Var = DDI.getDI()->getVariable(); 1266 DIExpression *Expr = DDI.getDI()->getExpression(); 1267 DebugLoc DL = DDI.getdl(); 1268 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1269 unsigned SDOrder = DDI.getSDNodeOrder(); 1270 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1271 // that DW_OP_stack_value is desired. 1272 assert(isa<DbgValueInst>(DDI.getDI())); 1273 bool StackValue = true; 1274 1275 // Can this Value can be encoded without any further work? 1276 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1277 return; 1278 1279 // Attempt to salvage back through as many instructions as possible. Bail if 1280 // a non-instruction is seen, such as a constant expression or global 1281 // variable. FIXME: Further work could recover those too. 1282 while (isa<Instruction>(V)) { 1283 Instruction &VAsInst = *cast<Instruction>(V); 1284 // Temporary "0", awaiting real implementation. 1285 SmallVector<uint64_t, 16> Ops; 1286 SmallVector<Value *, 4> AdditionalValues; 1287 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1288 AdditionalValues); 1289 // If we cannot salvage any further, and haven't yet found a suitable debug 1290 // expression, bail out. 1291 if (!V) 1292 break; 1293 1294 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1295 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1296 // here for variadic dbg_values, remove that condition. 1297 if (!AdditionalValues.empty()) 1298 break; 1299 1300 // New value and expr now represent this debuginfo. 1301 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1302 1303 // Some kind of simplification occurred: check whether the operand of the 1304 // salvaged debug expression can be encoded in this DAG. 1305 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1306 /*IsVariadic=*/false)) { 1307 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1308 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1309 return; 1310 } 1311 } 1312 1313 // This was the final opportunity to salvage this debug information, and it 1314 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1315 // any earlier variable location. 1316 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1317 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1318 DAG.AddDbgValue(SDV, false); 1319 1320 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1321 << "\n"); 1322 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1323 << "\n"); 1324 } 1325 1326 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1327 DILocalVariable *Var, 1328 DIExpression *Expr, DebugLoc dl, 1329 DebugLoc InstDL, unsigned Order, 1330 bool IsVariadic) { 1331 if (Values.empty()) 1332 return true; 1333 SmallVector<SDDbgOperand> LocationOps; 1334 SmallVector<SDNode *> Dependencies; 1335 for (const Value *V : Values) { 1336 // Constant value. 1337 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1338 isa<ConstantPointerNull>(V)) { 1339 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1340 continue; 1341 } 1342 1343 // If the Value is a frame index, we can create a FrameIndex debug value 1344 // without relying on the DAG at all. 1345 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1346 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1347 if (SI != FuncInfo.StaticAllocaMap.end()) { 1348 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1349 continue; 1350 } 1351 } 1352 1353 // Do not use getValue() in here; we don't want to generate code at 1354 // this point if it hasn't been done yet. 1355 SDValue N = NodeMap[V]; 1356 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1357 N = UnusedArgNodeMap[V]; 1358 if (N.getNode()) { 1359 // Only emit func arg dbg value for non-variadic dbg.values for now. 1360 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1361 return true; 1362 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1363 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1364 // describe stack slot locations. 1365 // 1366 // Consider "int x = 0; int *px = &x;". There are two kinds of 1367 // interesting debug values here after optimization: 1368 // 1369 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1370 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1371 // 1372 // Both describe the direct values of their associated variables. 1373 Dependencies.push_back(N.getNode()); 1374 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1375 continue; 1376 } 1377 LocationOps.emplace_back( 1378 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1379 continue; 1380 } 1381 1382 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1383 // Special rules apply for the first dbg.values of parameter variables in a 1384 // function. Identify them by the fact they reference Argument Values, that 1385 // they're parameters, and they are parameters of the current function. We 1386 // need to let them dangle until they get an SDNode. 1387 bool IsParamOfFunc = 1388 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1389 if (IsParamOfFunc) 1390 return false; 1391 1392 // The value is not used in this block yet (or it would have an SDNode). 1393 // We still want the value to appear for the user if possible -- if it has 1394 // an associated VReg, we can refer to that instead. 1395 auto VMI = FuncInfo.ValueMap.find(V); 1396 if (VMI != FuncInfo.ValueMap.end()) { 1397 unsigned Reg = VMI->second; 1398 // If this is a PHI node, it may be split up into several MI PHI nodes 1399 // (in FunctionLoweringInfo::set). 1400 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1401 V->getType(), None); 1402 if (RFV.occupiesMultipleRegs()) { 1403 // FIXME: We could potentially support variadic dbg_values here. 1404 if (IsVariadic) 1405 return false; 1406 unsigned Offset = 0; 1407 unsigned BitsToDescribe = 0; 1408 if (auto VarSize = Var->getSizeInBits()) 1409 BitsToDescribe = *VarSize; 1410 if (auto Fragment = Expr->getFragmentInfo()) 1411 BitsToDescribe = Fragment->SizeInBits; 1412 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1413 // Bail out if all bits are described already. 1414 if (Offset >= BitsToDescribe) 1415 break; 1416 // TODO: handle scalable vectors. 1417 unsigned RegisterSize = RegAndSize.second; 1418 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1419 ? BitsToDescribe - Offset 1420 : RegisterSize; 1421 auto FragmentExpr = DIExpression::createFragmentExpression( 1422 Expr, Offset, FragmentSize); 1423 if (!FragmentExpr) 1424 continue; 1425 SDDbgValue *SDV = DAG.getVRegDbgValue( 1426 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1427 DAG.AddDbgValue(SDV, false); 1428 Offset += RegisterSize; 1429 } 1430 return true; 1431 } 1432 // We can use simple vreg locations for variadic dbg_values as well. 1433 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1434 continue; 1435 } 1436 // We failed to create a SDDbgOperand for V. 1437 return false; 1438 } 1439 1440 // We have created a SDDbgOperand for each Value in Values. 1441 // Should use Order instead of SDNodeOrder? 1442 assert(!LocationOps.empty()); 1443 SDDbgValue *SDV = 1444 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1445 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1446 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1447 return true; 1448 } 1449 1450 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1451 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1452 for (auto &Pair : DanglingDebugInfoMap) 1453 for (auto &DDI : Pair.second) 1454 salvageUnresolvedDbgValue(DDI); 1455 clearDanglingDebugInfo(); 1456 } 1457 1458 /// getCopyFromRegs - If there was virtual register allocated for the value V 1459 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1460 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1461 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1462 SDValue Result; 1463 1464 if (It != FuncInfo.ValueMap.end()) { 1465 Register InReg = It->second; 1466 1467 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1468 DAG.getDataLayout(), InReg, Ty, 1469 None); // This is not an ABI copy. 1470 SDValue Chain = DAG.getEntryNode(); 1471 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1472 V); 1473 resolveDanglingDebugInfo(V, Result); 1474 } 1475 1476 return Result; 1477 } 1478 1479 /// getValue - Return an SDValue for the given Value. 1480 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1481 // If we already have an SDValue for this value, use it. It's important 1482 // to do this first, so that we don't create a CopyFromReg if we already 1483 // have a regular SDValue. 1484 SDValue &N = NodeMap[V]; 1485 if (N.getNode()) return N; 1486 1487 // If there's a virtual register allocated and initialized for this 1488 // value, use it. 1489 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1490 return copyFromReg; 1491 1492 // Otherwise create a new SDValue and remember it. 1493 SDValue Val = getValueImpl(V); 1494 NodeMap[V] = Val; 1495 resolveDanglingDebugInfo(V, Val); 1496 return Val; 1497 } 1498 1499 /// getNonRegisterValue - Return an SDValue for the given Value, but 1500 /// don't look in FuncInfo.ValueMap for a virtual register. 1501 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1502 // If we already have an SDValue for this value, use it. 1503 SDValue &N = NodeMap[V]; 1504 if (N.getNode()) { 1505 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1506 // Remove the debug location from the node as the node is about to be used 1507 // in a location which may differ from the original debug location. This 1508 // is relevant to Constant and ConstantFP nodes because they can appear 1509 // as constant expressions inside PHI nodes. 1510 N->setDebugLoc(DebugLoc()); 1511 } 1512 return N; 1513 } 1514 1515 // Otherwise create a new SDValue and remember it. 1516 SDValue Val = getValueImpl(V); 1517 NodeMap[V] = Val; 1518 resolveDanglingDebugInfo(V, Val); 1519 return Val; 1520 } 1521 1522 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1523 /// Create an SDValue for the given value. 1524 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1526 1527 if (const Constant *C = dyn_cast<Constant>(V)) { 1528 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1529 1530 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1531 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1532 1533 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1534 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1535 1536 if (isa<ConstantPointerNull>(C)) { 1537 unsigned AS = V->getType()->getPointerAddressSpace(); 1538 return DAG.getConstant(0, getCurSDLoc(), 1539 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1540 } 1541 1542 if (match(C, m_VScale(DAG.getDataLayout()))) 1543 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1544 1545 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1546 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1547 1548 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1549 return DAG.getUNDEF(VT); 1550 1551 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1552 visit(CE->getOpcode(), *CE); 1553 SDValue N1 = NodeMap[V]; 1554 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1555 return N1; 1556 } 1557 1558 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1559 SmallVector<SDValue, 4> Constants; 1560 for (const Use &U : C->operands()) { 1561 SDNode *Val = getValue(U).getNode(); 1562 // If the operand is an empty aggregate, there are no values. 1563 if (!Val) continue; 1564 // Add each leaf value from the operand to the Constants list 1565 // to form a flattened list of all the values. 1566 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1567 Constants.push_back(SDValue(Val, i)); 1568 } 1569 1570 return DAG.getMergeValues(Constants, getCurSDLoc()); 1571 } 1572 1573 if (const ConstantDataSequential *CDS = 1574 dyn_cast<ConstantDataSequential>(C)) { 1575 SmallVector<SDValue, 4> Ops; 1576 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1577 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1578 // Add each leaf value from the operand to the Constants list 1579 // to form a flattened list of all the values. 1580 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1581 Ops.push_back(SDValue(Val, i)); 1582 } 1583 1584 if (isa<ArrayType>(CDS->getType())) 1585 return DAG.getMergeValues(Ops, getCurSDLoc()); 1586 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1587 } 1588 1589 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1590 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1591 "Unknown struct or array constant!"); 1592 1593 SmallVector<EVT, 4> ValueVTs; 1594 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1595 unsigned NumElts = ValueVTs.size(); 1596 if (NumElts == 0) 1597 return SDValue(); // empty struct 1598 SmallVector<SDValue, 4> Constants(NumElts); 1599 for (unsigned i = 0; i != NumElts; ++i) { 1600 EVT EltVT = ValueVTs[i]; 1601 if (isa<UndefValue>(C)) 1602 Constants[i] = DAG.getUNDEF(EltVT); 1603 else if (EltVT.isFloatingPoint()) 1604 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1605 else 1606 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1607 } 1608 1609 return DAG.getMergeValues(Constants, getCurSDLoc()); 1610 } 1611 1612 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1613 return DAG.getBlockAddress(BA, VT); 1614 1615 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1616 return getValue(Equiv->getGlobalValue()); 1617 1618 VectorType *VecTy = cast<VectorType>(V->getType()); 1619 1620 // Now that we know the number and type of the elements, get that number of 1621 // elements into the Ops array based on what kind of constant it is. 1622 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1623 SmallVector<SDValue, 16> Ops; 1624 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1625 for (unsigned i = 0; i != NumElements; ++i) 1626 Ops.push_back(getValue(CV->getOperand(i))); 1627 1628 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1629 } else if (isa<ConstantAggregateZero>(C)) { 1630 EVT EltVT = 1631 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1632 1633 SDValue Op; 1634 if (EltVT.isFloatingPoint()) 1635 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1636 else 1637 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1638 1639 if (isa<ScalableVectorType>(VecTy)) 1640 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1641 else { 1642 SmallVector<SDValue, 16> Ops; 1643 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1644 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1645 } 1646 } 1647 llvm_unreachable("Unknown vector constant"); 1648 } 1649 1650 // If this is a static alloca, generate it as the frameindex instead of 1651 // computation. 1652 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1653 DenseMap<const AllocaInst*, int>::iterator SI = 1654 FuncInfo.StaticAllocaMap.find(AI); 1655 if (SI != FuncInfo.StaticAllocaMap.end()) 1656 return DAG.getFrameIndex(SI->second, 1657 TLI.getFrameIndexTy(DAG.getDataLayout())); 1658 } 1659 1660 // If this is an instruction which fast-isel has deferred, select it now. 1661 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1662 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1663 1664 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1665 Inst->getType(), None); 1666 SDValue Chain = DAG.getEntryNode(); 1667 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1668 } 1669 1670 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1671 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1672 } 1673 llvm_unreachable("Can't get register for value!"); 1674 } 1675 1676 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1677 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1678 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1679 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1680 bool IsSEH = isAsynchronousEHPersonality(Pers); 1681 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1682 if (!IsSEH) 1683 CatchPadMBB->setIsEHScopeEntry(); 1684 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1685 if (IsMSVCCXX || IsCoreCLR) 1686 CatchPadMBB->setIsEHFuncletEntry(); 1687 } 1688 1689 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1690 // Update machine-CFG edge. 1691 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1692 FuncInfo.MBB->addSuccessor(TargetMBB); 1693 TargetMBB->setIsEHCatchretTarget(true); 1694 DAG.getMachineFunction().setHasEHCatchret(true); 1695 1696 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1697 bool IsSEH = isAsynchronousEHPersonality(Pers); 1698 if (IsSEH) { 1699 // If this is not a fall-through branch or optimizations are switched off, 1700 // emit the branch. 1701 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1702 TM.getOptLevel() == CodeGenOpt::None) 1703 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1704 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1705 return; 1706 } 1707 1708 // Figure out the funclet membership for the catchret's successor. 1709 // This will be used by the FuncletLayout pass to determine how to order the 1710 // BB's. 1711 // A 'catchret' returns to the outer scope's color. 1712 Value *ParentPad = I.getCatchSwitchParentPad(); 1713 const BasicBlock *SuccessorColor; 1714 if (isa<ConstantTokenNone>(ParentPad)) 1715 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1716 else 1717 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1718 assert(SuccessorColor && "No parent funclet for catchret!"); 1719 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1720 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1721 1722 // Create the terminator node. 1723 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1724 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1725 DAG.getBasicBlock(SuccessorColorMBB)); 1726 DAG.setRoot(Ret); 1727 } 1728 1729 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1730 // Don't emit any special code for the cleanuppad instruction. It just marks 1731 // the start of an EH scope/funclet. 1732 FuncInfo.MBB->setIsEHScopeEntry(); 1733 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1734 if (Pers != EHPersonality::Wasm_CXX) { 1735 FuncInfo.MBB->setIsEHFuncletEntry(); 1736 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1737 } 1738 } 1739 1740 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1741 // not match, it is OK to add only the first unwind destination catchpad to the 1742 // successors, because there will be at least one invoke instruction within the 1743 // catch scope that points to the next unwind destination, if one exists, so 1744 // CFGSort cannot mess up with BB sorting order. 1745 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1746 // call within them, and catchpads only consisting of 'catch (...)' have a 1747 // '__cxa_end_catch' call within them, both of which generate invokes in case 1748 // the next unwind destination exists, i.e., the next unwind destination is not 1749 // the caller.) 1750 // 1751 // Having at most one EH pad successor is also simpler and helps later 1752 // transformations. 1753 // 1754 // For example, 1755 // current: 1756 // invoke void @foo to ... unwind label %catch.dispatch 1757 // catch.dispatch: 1758 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1759 // catch.start: 1760 // ... 1761 // ... in this BB or some other child BB dominated by this BB there will be an 1762 // invoke that points to 'next' BB as an unwind destination 1763 // 1764 // next: ; We don't need to add this to 'current' BB's successor 1765 // ... 1766 static void findWasmUnwindDestinations( 1767 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1768 BranchProbability Prob, 1769 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1770 &UnwindDests) { 1771 while (EHPadBB) { 1772 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1773 if (isa<CleanupPadInst>(Pad)) { 1774 // Stop on cleanup pads. 1775 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1776 UnwindDests.back().first->setIsEHScopeEntry(); 1777 break; 1778 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1779 // Add the catchpad handlers to the possible destinations. We don't 1780 // continue to the unwind destination of the catchswitch for wasm. 1781 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1782 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1783 UnwindDests.back().first->setIsEHScopeEntry(); 1784 } 1785 break; 1786 } else { 1787 continue; 1788 } 1789 } 1790 } 1791 1792 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1793 /// many places it could ultimately go. In the IR, we have a single unwind 1794 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1795 /// This function skips over imaginary basic blocks that hold catchswitch 1796 /// instructions, and finds all the "real" machine 1797 /// basic block destinations. As those destinations may not be successors of 1798 /// EHPadBB, here we also calculate the edge probability to those destinations. 1799 /// The passed-in Prob is the edge probability to EHPadBB. 1800 static void findUnwindDestinations( 1801 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1802 BranchProbability Prob, 1803 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1804 &UnwindDests) { 1805 EHPersonality Personality = 1806 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1807 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1808 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1809 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1810 bool IsSEH = isAsynchronousEHPersonality(Personality); 1811 1812 if (IsWasmCXX) { 1813 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1814 assert(UnwindDests.size() <= 1 && 1815 "There should be at most one unwind destination for wasm"); 1816 return; 1817 } 1818 1819 while (EHPadBB) { 1820 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1821 BasicBlock *NewEHPadBB = nullptr; 1822 if (isa<LandingPadInst>(Pad)) { 1823 // Stop on landingpads. They are not funclets. 1824 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1825 break; 1826 } else if (isa<CleanupPadInst>(Pad)) { 1827 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1828 // personalities. 1829 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1830 UnwindDests.back().first->setIsEHScopeEntry(); 1831 UnwindDests.back().first->setIsEHFuncletEntry(); 1832 break; 1833 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1834 // Add the catchpad handlers to the possible destinations. 1835 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1836 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1837 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1838 if (IsMSVCCXX || IsCoreCLR) 1839 UnwindDests.back().first->setIsEHFuncletEntry(); 1840 if (!IsSEH) 1841 UnwindDests.back().first->setIsEHScopeEntry(); 1842 } 1843 NewEHPadBB = CatchSwitch->getUnwindDest(); 1844 } else { 1845 continue; 1846 } 1847 1848 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1849 if (BPI && NewEHPadBB) 1850 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1851 EHPadBB = NewEHPadBB; 1852 } 1853 } 1854 1855 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1856 // Update successor info. 1857 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1858 auto UnwindDest = I.getUnwindDest(); 1859 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1860 BranchProbability UnwindDestProb = 1861 (BPI && UnwindDest) 1862 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1863 : BranchProbability::getZero(); 1864 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1865 for (auto &UnwindDest : UnwindDests) { 1866 UnwindDest.first->setIsEHPad(); 1867 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1868 } 1869 FuncInfo.MBB->normalizeSuccProbs(); 1870 1871 // Create the terminator node. 1872 SDValue Ret = 1873 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1874 DAG.setRoot(Ret); 1875 } 1876 1877 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1878 report_fatal_error("visitCatchSwitch not yet implemented!"); 1879 } 1880 1881 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1882 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1883 auto &DL = DAG.getDataLayout(); 1884 SDValue Chain = getControlRoot(); 1885 SmallVector<ISD::OutputArg, 8> Outs; 1886 SmallVector<SDValue, 8> OutVals; 1887 1888 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1889 // lower 1890 // 1891 // %val = call <ty> @llvm.experimental.deoptimize() 1892 // ret <ty> %val 1893 // 1894 // differently. 1895 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1896 LowerDeoptimizingReturn(); 1897 return; 1898 } 1899 1900 if (!FuncInfo.CanLowerReturn) { 1901 unsigned DemoteReg = FuncInfo.DemoteRegister; 1902 const Function *F = I.getParent()->getParent(); 1903 1904 // Emit a store of the return value through the virtual register. 1905 // Leave Outs empty so that LowerReturn won't try to load return 1906 // registers the usual way. 1907 SmallVector<EVT, 1> PtrValueVTs; 1908 ComputeValueVTs(TLI, DL, 1909 F->getReturnType()->getPointerTo( 1910 DAG.getDataLayout().getAllocaAddrSpace()), 1911 PtrValueVTs); 1912 1913 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1914 DemoteReg, PtrValueVTs[0]); 1915 SDValue RetOp = getValue(I.getOperand(0)); 1916 1917 SmallVector<EVT, 4> ValueVTs, MemVTs; 1918 SmallVector<uint64_t, 4> Offsets; 1919 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1920 &Offsets); 1921 unsigned NumValues = ValueVTs.size(); 1922 1923 SmallVector<SDValue, 4> Chains(NumValues); 1924 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1925 for (unsigned i = 0; i != NumValues; ++i) { 1926 // An aggregate return value cannot wrap around the address space, so 1927 // offsets to its parts don't wrap either. 1928 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1929 TypeSize::Fixed(Offsets[i])); 1930 1931 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1932 if (MemVTs[i] != ValueVTs[i]) 1933 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1934 Chains[i] = DAG.getStore( 1935 Chain, getCurSDLoc(), Val, 1936 // FIXME: better loc info would be nice. 1937 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1938 commonAlignment(BaseAlign, Offsets[i])); 1939 } 1940 1941 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1942 MVT::Other, Chains); 1943 } else if (I.getNumOperands() != 0) { 1944 SmallVector<EVT, 4> ValueVTs; 1945 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1946 unsigned NumValues = ValueVTs.size(); 1947 if (NumValues) { 1948 SDValue RetOp = getValue(I.getOperand(0)); 1949 1950 const Function *F = I.getParent()->getParent(); 1951 1952 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1953 I.getOperand(0)->getType(), F->getCallingConv(), 1954 /*IsVarArg*/ false, DL); 1955 1956 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1957 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1958 ExtendKind = ISD::SIGN_EXTEND; 1959 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1960 ExtendKind = ISD::ZERO_EXTEND; 1961 1962 LLVMContext &Context = F->getContext(); 1963 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1964 1965 for (unsigned j = 0; j != NumValues; ++j) { 1966 EVT VT = ValueVTs[j]; 1967 1968 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1969 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1970 1971 CallingConv::ID CC = F->getCallingConv(); 1972 1973 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1974 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1975 SmallVector<SDValue, 4> Parts(NumParts); 1976 getCopyToParts(DAG, getCurSDLoc(), 1977 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1978 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1979 1980 // 'inreg' on function refers to return value 1981 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1982 if (RetInReg) 1983 Flags.setInReg(); 1984 1985 if (I.getOperand(0)->getType()->isPointerTy()) { 1986 Flags.setPointer(); 1987 Flags.setPointerAddrSpace( 1988 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1989 } 1990 1991 if (NeedsRegBlock) { 1992 Flags.setInConsecutiveRegs(); 1993 if (j == NumValues - 1) 1994 Flags.setInConsecutiveRegsLast(); 1995 } 1996 1997 // Propagate extension type if any 1998 if (ExtendKind == ISD::SIGN_EXTEND) 1999 Flags.setSExt(); 2000 else if (ExtendKind == ISD::ZERO_EXTEND) 2001 Flags.setZExt(); 2002 2003 for (unsigned i = 0; i < NumParts; ++i) { 2004 Outs.push_back(ISD::OutputArg(Flags, 2005 Parts[i].getValueType().getSimpleVT(), 2006 VT, /*isfixed=*/true, 0, 0)); 2007 OutVals.push_back(Parts[i]); 2008 } 2009 } 2010 } 2011 } 2012 2013 // Push in swifterror virtual register as the last element of Outs. This makes 2014 // sure swifterror virtual register will be returned in the swifterror 2015 // physical register. 2016 const Function *F = I.getParent()->getParent(); 2017 if (TLI.supportSwiftError() && 2018 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2019 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2020 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2021 Flags.setSwiftError(); 2022 Outs.push_back(ISD::OutputArg( 2023 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2024 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2025 // Create SDNode for the swifterror virtual register. 2026 OutVals.push_back( 2027 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2028 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2029 EVT(TLI.getPointerTy(DL)))); 2030 } 2031 2032 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2033 CallingConv::ID CallConv = 2034 DAG.getMachineFunction().getFunction().getCallingConv(); 2035 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2036 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2037 2038 // Verify that the target's LowerReturn behaved as expected. 2039 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2040 "LowerReturn didn't return a valid chain!"); 2041 2042 // Update the DAG with the new chain value resulting from return lowering. 2043 DAG.setRoot(Chain); 2044 } 2045 2046 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2047 /// created for it, emit nodes to copy the value into the virtual 2048 /// registers. 2049 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2050 // Skip empty types 2051 if (V->getType()->isEmptyTy()) 2052 return; 2053 2054 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2055 if (VMI != FuncInfo.ValueMap.end()) { 2056 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2057 CopyValueToVirtualRegister(V, VMI->second); 2058 } 2059 } 2060 2061 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2062 /// the current basic block, add it to ValueMap now so that we'll get a 2063 /// CopyTo/FromReg. 2064 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2065 // No need to export constants. 2066 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2067 2068 // Already exported? 2069 if (FuncInfo.isExportedInst(V)) return; 2070 2071 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2072 CopyValueToVirtualRegister(V, Reg); 2073 } 2074 2075 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2076 const BasicBlock *FromBB) { 2077 // The operands of the setcc have to be in this block. We don't know 2078 // how to export them from some other block. 2079 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2080 // Can export from current BB. 2081 if (VI->getParent() == FromBB) 2082 return true; 2083 2084 // Is already exported, noop. 2085 return FuncInfo.isExportedInst(V); 2086 } 2087 2088 // If this is an argument, we can export it if the BB is the entry block or 2089 // if it is already exported. 2090 if (isa<Argument>(V)) { 2091 if (FromBB->isEntryBlock()) 2092 return true; 2093 2094 // Otherwise, can only export this if it is already exported. 2095 return FuncInfo.isExportedInst(V); 2096 } 2097 2098 // Otherwise, constants can always be exported. 2099 return true; 2100 } 2101 2102 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2103 BranchProbability 2104 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2105 const MachineBasicBlock *Dst) const { 2106 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2107 const BasicBlock *SrcBB = Src->getBasicBlock(); 2108 const BasicBlock *DstBB = Dst->getBasicBlock(); 2109 if (!BPI) { 2110 // If BPI is not available, set the default probability as 1 / N, where N is 2111 // the number of successors. 2112 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2113 return BranchProbability(1, SuccSize); 2114 } 2115 return BPI->getEdgeProbability(SrcBB, DstBB); 2116 } 2117 2118 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2119 MachineBasicBlock *Dst, 2120 BranchProbability Prob) { 2121 if (!FuncInfo.BPI) 2122 Src->addSuccessorWithoutProb(Dst); 2123 else { 2124 if (Prob.isUnknown()) 2125 Prob = getEdgeProbability(Src, Dst); 2126 Src->addSuccessor(Dst, Prob); 2127 } 2128 } 2129 2130 static bool InBlock(const Value *V, const BasicBlock *BB) { 2131 if (const Instruction *I = dyn_cast<Instruction>(V)) 2132 return I->getParent() == BB; 2133 return true; 2134 } 2135 2136 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2137 /// This function emits a branch and is used at the leaves of an OR or an 2138 /// AND operator tree. 2139 void 2140 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2141 MachineBasicBlock *TBB, 2142 MachineBasicBlock *FBB, 2143 MachineBasicBlock *CurBB, 2144 MachineBasicBlock *SwitchBB, 2145 BranchProbability TProb, 2146 BranchProbability FProb, 2147 bool InvertCond) { 2148 const BasicBlock *BB = CurBB->getBasicBlock(); 2149 2150 // If the leaf of the tree is a comparison, merge the condition into 2151 // the caseblock. 2152 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2153 // The operands of the cmp have to be in this block. We don't know 2154 // how to export them from some other block. If this is the first block 2155 // of the sequence, no exporting is needed. 2156 if (CurBB == SwitchBB || 2157 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2158 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2159 ISD::CondCode Condition; 2160 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2161 ICmpInst::Predicate Pred = 2162 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2163 Condition = getICmpCondCode(Pred); 2164 } else { 2165 const FCmpInst *FC = cast<FCmpInst>(Cond); 2166 FCmpInst::Predicate Pred = 2167 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2168 Condition = getFCmpCondCode(Pred); 2169 if (TM.Options.NoNaNsFPMath) 2170 Condition = getFCmpCodeWithoutNaN(Condition); 2171 } 2172 2173 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2174 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2175 SL->SwitchCases.push_back(CB); 2176 return; 2177 } 2178 } 2179 2180 // Create a CaseBlock record representing this branch. 2181 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2182 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2183 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2184 SL->SwitchCases.push_back(CB); 2185 } 2186 2187 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2188 MachineBasicBlock *TBB, 2189 MachineBasicBlock *FBB, 2190 MachineBasicBlock *CurBB, 2191 MachineBasicBlock *SwitchBB, 2192 Instruction::BinaryOps Opc, 2193 BranchProbability TProb, 2194 BranchProbability FProb, 2195 bool InvertCond) { 2196 // Skip over not part of the tree and remember to invert op and operands at 2197 // next level. 2198 Value *NotCond; 2199 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2200 InBlock(NotCond, CurBB->getBasicBlock())) { 2201 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2202 !InvertCond); 2203 return; 2204 } 2205 2206 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2207 const Value *BOpOp0, *BOpOp1; 2208 // Compute the effective opcode for Cond, taking into account whether it needs 2209 // to be inverted, e.g. 2210 // and (not (or A, B)), C 2211 // gets lowered as 2212 // and (and (not A, not B), C) 2213 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2214 if (BOp) { 2215 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2216 ? Instruction::And 2217 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2218 ? Instruction::Or 2219 : (Instruction::BinaryOps)0); 2220 if (InvertCond) { 2221 if (BOpc == Instruction::And) 2222 BOpc = Instruction::Or; 2223 else if (BOpc == Instruction::Or) 2224 BOpc = Instruction::And; 2225 } 2226 } 2227 2228 // If this node is not part of the or/and tree, emit it as a branch. 2229 // Note that all nodes in the tree should have same opcode. 2230 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2231 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2232 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2233 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2234 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2235 TProb, FProb, InvertCond); 2236 return; 2237 } 2238 2239 // Create TmpBB after CurBB. 2240 MachineFunction::iterator BBI(CurBB); 2241 MachineFunction &MF = DAG.getMachineFunction(); 2242 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2243 CurBB->getParent()->insert(++BBI, TmpBB); 2244 2245 if (Opc == Instruction::Or) { 2246 // Codegen X | Y as: 2247 // BB1: 2248 // jmp_if_X TBB 2249 // jmp TmpBB 2250 // TmpBB: 2251 // jmp_if_Y TBB 2252 // jmp FBB 2253 // 2254 2255 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2256 // The requirement is that 2257 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2258 // = TrueProb for original BB. 2259 // Assuming the original probabilities are A and B, one choice is to set 2260 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2261 // A/(1+B) and 2B/(1+B). This choice assumes that 2262 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2263 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2264 // TmpBB, but the math is more complicated. 2265 2266 auto NewTrueProb = TProb / 2; 2267 auto NewFalseProb = TProb / 2 + FProb; 2268 // Emit the LHS condition. 2269 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2270 NewFalseProb, InvertCond); 2271 2272 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2273 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2274 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2275 // Emit the RHS condition into TmpBB. 2276 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2277 Probs[1], InvertCond); 2278 } else { 2279 assert(Opc == Instruction::And && "Unknown merge op!"); 2280 // Codegen X & Y as: 2281 // BB1: 2282 // jmp_if_X TmpBB 2283 // jmp FBB 2284 // TmpBB: 2285 // jmp_if_Y TBB 2286 // jmp FBB 2287 // 2288 // This requires creation of TmpBB after CurBB. 2289 2290 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2291 // The requirement is that 2292 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2293 // = FalseProb for original BB. 2294 // Assuming the original probabilities are A and B, one choice is to set 2295 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2296 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2297 // TrueProb for BB1 * FalseProb for TmpBB. 2298 2299 auto NewTrueProb = TProb + FProb / 2; 2300 auto NewFalseProb = FProb / 2; 2301 // Emit the LHS condition. 2302 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2303 NewFalseProb, InvertCond); 2304 2305 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2306 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2307 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2308 // Emit the RHS condition into TmpBB. 2309 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2310 Probs[1], InvertCond); 2311 } 2312 } 2313 2314 /// If the set of cases should be emitted as a series of branches, return true. 2315 /// If we should emit this as a bunch of and/or'd together conditions, return 2316 /// false. 2317 bool 2318 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2319 if (Cases.size() != 2) return true; 2320 2321 // If this is two comparisons of the same values or'd or and'd together, they 2322 // will get folded into a single comparison, so don't emit two blocks. 2323 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2324 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2325 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2326 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2327 return false; 2328 } 2329 2330 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2331 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2332 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2333 Cases[0].CC == Cases[1].CC && 2334 isa<Constant>(Cases[0].CmpRHS) && 2335 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2336 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2337 return false; 2338 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2339 return false; 2340 } 2341 2342 return true; 2343 } 2344 2345 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2346 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2347 2348 // Update machine-CFG edges. 2349 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2350 2351 if (I.isUnconditional()) { 2352 // Update machine-CFG edges. 2353 BrMBB->addSuccessor(Succ0MBB); 2354 2355 // If this is not a fall-through branch or optimizations are switched off, 2356 // emit the branch. 2357 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2358 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2359 MVT::Other, getControlRoot(), 2360 DAG.getBasicBlock(Succ0MBB))); 2361 2362 return; 2363 } 2364 2365 // If this condition is one of the special cases we handle, do special stuff 2366 // now. 2367 const Value *CondVal = I.getCondition(); 2368 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2369 2370 // If this is a series of conditions that are or'd or and'd together, emit 2371 // this as a sequence of branches instead of setcc's with and/or operations. 2372 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2373 // unpredictable branches, and vector extracts because those jumps are likely 2374 // expensive for any target), this should improve performance. 2375 // For example, instead of something like: 2376 // cmp A, B 2377 // C = seteq 2378 // cmp D, E 2379 // F = setle 2380 // or C, F 2381 // jnz foo 2382 // Emit: 2383 // cmp A, B 2384 // je foo 2385 // cmp D, E 2386 // jle foo 2387 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2388 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2389 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2390 Value *Vec; 2391 const Value *BOp0, *BOp1; 2392 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2393 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2394 Opcode = Instruction::And; 2395 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2396 Opcode = Instruction::Or; 2397 2398 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2399 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2400 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2401 getEdgeProbability(BrMBB, Succ0MBB), 2402 getEdgeProbability(BrMBB, Succ1MBB), 2403 /*InvertCond=*/false); 2404 // If the compares in later blocks need to use values not currently 2405 // exported from this block, export them now. This block should always 2406 // be the first entry. 2407 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2408 2409 // Allow some cases to be rejected. 2410 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2411 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2412 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2413 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2414 } 2415 2416 // Emit the branch for this block. 2417 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2418 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2419 return; 2420 } 2421 2422 // Okay, we decided not to do this, remove any inserted MBB's and clear 2423 // SwitchCases. 2424 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2425 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2426 2427 SL->SwitchCases.clear(); 2428 } 2429 } 2430 2431 // Create a CaseBlock record representing this branch. 2432 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2433 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2434 2435 // Use visitSwitchCase to actually insert the fast branch sequence for this 2436 // cond branch. 2437 visitSwitchCase(CB, BrMBB); 2438 } 2439 2440 /// visitSwitchCase - Emits the necessary code to represent a single node in 2441 /// the binary search tree resulting from lowering a switch instruction. 2442 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2443 MachineBasicBlock *SwitchBB) { 2444 SDValue Cond; 2445 SDValue CondLHS = getValue(CB.CmpLHS); 2446 SDLoc dl = CB.DL; 2447 2448 if (CB.CC == ISD::SETTRUE) { 2449 // Branch or fall through to TrueBB. 2450 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2451 SwitchBB->normalizeSuccProbs(); 2452 if (CB.TrueBB != NextBlock(SwitchBB)) { 2453 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2454 DAG.getBasicBlock(CB.TrueBB))); 2455 } 2456 return; 2457 } 2458 2459 auto &TLI = DAG.getTargetLoweringInfo(); 2460 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2461 2462 // Build the setcc now. 2463 if (!CB.CmpMHS) { 2464 // Fold "(X == true)" to X and "(X == false)" to !X to 2465 // handle common cases produced by branch lowering. 2466 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2467 CB.CC == ISD::SETEQ) 2468 Cond = CondLHS; 2469 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2470 CB.CC == ISD::SETEQ) { 2471 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2472 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2473 } else { 2474 SDValue CondRHS = getValue(CB.CmpRHS); 2475 2476 // If a pointer's DAG type is larger than its memory type then the DAG 2477 // values are zero-extended. This breaks signed comparisons so truncate 2478 // back to the underlying type before doing the compare. 2479 if (CondLHS.getValueType() != MemVT) { 2480 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2481 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2482 } 2483 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2484 } 2485 } else { 2486 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2487 2488 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2489 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2490 2491 SDValue CmpOp = getValue(CB.CmpMHS); 2492 EVT VT = CmpOp.getValueType(); 2493 2494 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2495 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2496 ISD::SETLE); 2497 } else { 2498 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2499 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2500 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2501 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2502 } 2503 } 2504 2505 // Update successor info 2506 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2507 // TrueBB and FalseBB are always different unless the incoming IR is 2508 // degenerate. This only happens when running llc on weird IR. 2509 if (CB.TrueBB != CB.FalseBB) 2510 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2511 SwitchBB->normalizeSuccProbs(); 2512 2513 // If the lhs block is the next block, invert the condition so that we can 2514 // fall through to the lhs instead of the rhs block. 2515 if (CB.TrueBB == NextBlock(SwitchBB)) { 2516 std::swap(CB.TrueBB, CB.FalseBB); 2517 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2518 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2519 } 2520 2521 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2522 MVT::Other, getControlRoot(), Cond, 2523 DAG.getBasicBlock(CB.TrueBB)); 2524 2525 // Insert the false branch. Do this even if it's a fall through branch, 2526 // this makes it easier to do DAG optimizations which require inverting 2527 // the branch condition. 2528 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2529 DAG.getBasicBlock(CB.FalseBB)); 2530 2531 DAG.setRoot(BrCond); 2532 } 2533 2534 /// visitJumpTable - Emit JumpTable node in the current MBB 2535 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2536 // Emit the code for the jump table 2537 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2538 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2539 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2540 JT.Reg, PTy); 2541 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2542 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2543 MVT::Other, Index.getValue(1), 2544 Table, Index); 2545 DAG.setRoot(BrJumpTable); 2546 } 2547 2548 /// visitJumpTableHeader - This function emits necessary code to produce index 2549 /// in the JumpTable from switch case. 2550 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2551 JumpTableHeader &JTH, 2552 MachineBasicBlock *SwitchBB) { 2553 SDLoc dl = getCurSDLoc(); 2554 2555 // Subtract the lowest switch case value from the value being switched on. 2556 SDValue SwitchOp = getValue(JTH.SValue); 2557 EVT VT = SwitchOp.getValueType(); 2558 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2559 DAG.getConstant(JTH.First, dl, VT)); 2560 2561 // The SDNode we just created, which holds the value being switched on minus 2562 // the smallest case value, needs to be copied to a virtual register so it 2563 // can be used as an index into the jump table in a subsequent basic block. 2564 // This value may be smaller or larger than the target's pointer type, and 2565 // therefore require extension or truncating. 2566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2567 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2568 2569 unsigned JumpTableReg = 2570 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2571 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2572 JumpTableReg, SwitchOp); 2573 JT.Reg = JumpTableReg; 2574 2575 if (!JTH.FallthroughUnreachable) { 2576 // Emit the range check for the jump table, and branch to the default block 2577 // for the switch statement if the value being switched on exceeds the 2578 // largest case in the switch. 2579 SDValue CMP = DAG.getSetCC( 2580 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2581 Sub.getValueType()), 2582 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2583 2584 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2585 MVT::Other, CopyTo, CMP, 2586 DAG.getBasicBlock(JT.Default)); 2587 2588 // Avoid emitting unnecessary branches to the next block. 2589 if (JT.MBB != NextBlock(SwitchBB)) 2590 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2591 DAG.getBasicBlock(JT.MBB)); 2592 2593 DAG.setRoot(BrCond); 2594 } else { 2595 // Avoid emitting unnecessary branches to the next block. 2596 if (JT.MBB != NextBlock(SwitchBB)) 2597 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2598 DAG.getBasicBlock(JT.MBB))); 2599 else 2600 DAG.setRoot(CopyTo); 2601 } 2602 } 2603 2604 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2605 /// variable if there exists one. 2606 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2607 SDValue &Chain) { 2608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2609 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2610 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2611 MachineFunction &MF = DAG.getMachineFunction(); 2612 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2613 MachineSDNode *Node = 2614 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2615 if (Global) { 2616 MachinePointerInfo MPInfo(Global); 2617 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2618 MachineMemOperand::MODereferenceable; 2619 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2620 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2621 DAG.setNodeMemRefs(Node, {MemRef}); 2622 } 2623 if (PtrTy != PtrMemTy) 2624 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2625 return SDValue(Node, 0); 2626 } 2627 2628 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2629 /// tail spliced into a stack protector check success bb. 2630 /// 2631 /// For a high level explanation of how this fits into the stack protector 2632 /// generation see the comment on the declaration of class 2633 /// StackProtectorDescriptor. 2634 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2635 MachineBasicBlock *ParentBB) { 2636 2637 // First create the loads to the guard/stack slot for the comparison. 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2640 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2641 2642 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2643 int FI = MFI.getStackProtectorIndex(); 2644 2645 SDValue Guard; 2646 SDLoc dl = getCurSDLoc(); 2647 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2648 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2649 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2650 2651 // Generate code to load the content of the guard slot. 2652 SDValue GuardVal = DAG.getLoad( 2653 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2654 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2655 MachineMemOperand::MOVolatile); 2656 2657 if (TLI.useStackGuardXorFP()) 2658 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2659 2660 // Retrieve guard check function, nullptr if instrumentation is inlined. 2661 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2662 // The target provides a guard check function to validate the guard value. 2663 // Generate a call to that function with the content of the guard slot as 2664 // argument. 2665 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2666 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2667 2668 TargetLowering::ArgListTy Args; 2669 TargetLowering::ArgListEntry Entry; 2670 Entry.Node = GuardVal; 2671 Entry.Ty = FnTy->getParamType(0); 2672 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2673 Entry.IsInReg = true; 2674 Args.push_back(Entry); 2675 2676 TargetLowering::CallLoweringInfo CLI(DAG); 2677 CLI.setDebugLoc(getCurSDLoc()) 2678 .setChain(DAG.getEntryNode()) 2679 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2680 getValue(GuardCheckFn), std::move(Args)); 2681 2682 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2683 DAG.setRoot(Result.second); 2684 return; 2685 } 2686 2687 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2688 // Otherwise, emit a volatile load to retrieve the stack guard value. 2689 SDValue Chain = DAG.getEntryNode(); 2690 if (TLI.useLoadStackGuardNode()) { 2691 Guard = getLoadStackGuard(DAG, dl, Chain); 2692 } else { 2693 const Value *IRGuard = TLI.getSDagStackGuard(M); 2694 SDValue GuardPtr = getValue(IRGuard); 2695 2696 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2697 MachinePointerInfo(IRGuard, 0), Align, 2698 MachineMemOperand::MOVolatile); 2699 } 2700 2701 // Perform the comparison via a getsetcc. 2702 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2703 *DAG.getContext(), 2704 Guard.getValueType()), 2705 Guard, GuardVal, ISD::SETNE); 2706 2707 // If the guard/stackslot do not equal, branch to failure MBB. 2708 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2709 MVT::Other, GuardVal.getOperand(0), 2710 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2711 // Otherwise branch to success MBB. 2712 SDValue Br = DAG.getNode(ISD::BR, dl, 2713 MVT::Other, BrCond, 2714 DAG.getBasicBlock(SPD.getSuccessMBB())); 2715 2716 DAG.setRoot(Br); 2717 } 2718 2719 /// Codegen the failure basic block for a stack protector check. 2720 /// 2721 /// A failure stack protector machine basic block consists simply of a call to 2722 /// __stack_chk_fail(). 2723 /// 2724 /// For a high level explanation of how this fits into the stack protector 2725 /// generation see the comment on the declaration of class 2726 /// StackProtectorDescriptor. 2727 void 2728 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2729 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2730 TargetLowering::MakeLibCallOptions CallOptions; 2731 CallOptions.setDiscardResult(true); 2732 SDValue Chain = 2733 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2734 None, CallOptions, getCurSDLoc()).second; 2735 // On PS4, the "return address" must still be within the calling function, 2736 // even if it's at the very end, so emit an explicit TRAP here. 2737 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2738 if (TM.getTargetTriple().isPS4CPU()) 2739 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2740 // WebAssembly needs an unreachable instruction after a non-returning call, 2741 // because the function return type can be different from __stack_chk_fail's 2742 // return type (void). 2743 if (TM.getTargetTriple().isWasm()) 2744 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2745 2746 DAG.setRoot(Chain); 2747 } 2748 2749 /// visitBitTestHeader - This function emits necessary code to produce value 2750 /// suitable for "bit tests" 2751 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2752 MachineBasicBlock *SwitchBB) { 2753 SDLoc dl = getCurSDLoc(); 2754 2755 // Subtract the minimum value. 2756 SDValue SwitchOp = getValue(B.SValue); 2757 EVT VT = SwitchOp.getValueType(); 2758 SDValue RangeSub = 2759 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2760 2761 // Determine the type of the test operands. 2762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2763 bool UsePtrType = false; 2764 if (!TLI.isTypeLegal(VT)) { 2765 UsePtrType = true; 2766 } else { 2767 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2768 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2769 // Switch table case range are encoded into series of masks. 2770 // Just use pointer type, it's guaranteed to fit. 2771 UsePtrType = true; 2772 break; 2773 } 2774 } 2775 SDValue Sub = RangeSub; 2776 if (UsePtrType) { 2777 VT = TLI.getPointerTy(DAG.getDataLayout()); 2778 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2779 } 2780 2781 B.RegVT = VT.getSimpleVT(); 2782 B.Reg = FuncInfo.CreateReg(B.RegVT); 2783 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2784 2785 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2786 2787 if (!B.FallthroughUnreachable) 2788 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2789 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2790 SwitchBB->normalizeSuccProbs(); 2791 2792 SDValue Root = CopyTo; 2793 if (!B.FallthroughUnreachable) { 2794 // Conditional branch to the default block. 2795 SDValue RangeCmp = DAG.getSetCC(dl, 2796 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2797 RangeSub.getValueType()), 2798 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2799 ISD::SETUGT); 2800 2801 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2802 DAG.getBasicBlock(B.Default)); 2803 } 2804 2805 // Avoid emitting unnecessary branches to the next block. 2806 if (MBB != NextBlock(SwitchBB)) 2807 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2808 2809 DAG.setRoot(Root); 2810 } 2811 2812 /// visitBitTestCase - this function produces one "bit test" 2813 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2814 MachineBasicBlock* NextMBB, 2815 BranchProbability BranchProbToNext, 2816 unsigned Reg, 2817 BitTestCase &B, 2818 MachineBasicBlock *SwitchBB) { 2819 SDLoc dl = getCurSDLoc(); 2820 MVT VT = BB.RegVT; 2821 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2822 SDValue Cmp; 2823 unsigned PopCount = countPopulation(B.Mask); 2824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2825 if (PopCount == 1) { 2826 // Testing for a single bit; just compare the shift count with what it 2827 // would need to be to shift a 1 bit in that position. 2828 Cmp = DAG.getSetCC( 2829 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2830 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2831 ISD::SETEQ); 2832 } else if (PopCount == BB.Range) { 2833 // There is only one zero bit in the range, test for it directly. 2834 Cmp = DAG.getSetCC( 2835 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2836 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2837 ISD::SETNE); 2838 } else { 2839 // Make desired shift 2840 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2841 DAG.getConstant(1, dl, VT), ShiftOp); 2842 2843 // Emit bit tests and jumps 2844 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2845 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2846 Cmp = DAG.getSetCC( 2847 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2848 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2849 } 2850 2851 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2852 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2853 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2854 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2855 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2856 // one as they are relative probabilities (and thus work more like weights), 2857 // and hence we need to normalize them to let the sum of them become one. 2858 SwitchBB->normalizeSuccProbs(); 2859 2860 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2861 MVT::Other, getControlRoot(), 2862 Cmp, DAG.getBasicBlock(B.TargetBB)); 2863 2864 // Avoid emitting unnecessary branches to the next block. 2865 if (NextMBB != NextBlock(SwitchBB)) 2866 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2867 DAG.getBasicBlock(NextMBB)); 2868 2869 DAG.setRoot(BrAnd); 2870 } 2871 2872 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2873 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2874 2875 // Retrieve successors. Look through artificial IR level blocks like 2876 // catchswitch for successors. 2877 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2878 const BasicBlock *EHPadBB = I.getSuccessor(1); 2879 2880 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2881 // have to do anything here to lower funclet bundles. 2882 assert(!I.hasOperandBundlesOtherThan( 2883 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2884 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2885 LLVMContext::OB_cfguardtarget, 2886 LLVMContext::OB_clang_arc_attachedcall}) && 2887 "Cannot lower invokes with arbitrary operand bundles yet!"); 2888 2889 const Value *Callee(I.getCalledOperand()); 2890 const Function *Fn = dyn_cast<Function>(Callee); 2891 if (isa<InlineAsm>(Callee)) 2892 visitInlineAsm(I, EHPadBB); 2893 else if (Fn && Fn->isIntrinsic()) { 2894 switch (Fn->getIntrinsicID()) { 2895 default: 2896 llvm_unreachable("Cannot invoke this intrinsic"); 2897 case Intrinsic::donothing: 2898 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2899 case Intrinsic::seh_try_begin: 2900 case Intrinsic::seh_scope_begin: 2901 case Intrinsic::seh_try_end: 2902 case Intrinsic::seh_scope_end: 2903 break; 2904 case Intrinsic::experimental_patchpoint_void: 2905 case Intrinsic::experimental_patchpoint_i64: 2906 visitPatchpoint(I, EHPadBB); 2907 break; 2908 case Intrinsic::experimental_gc_statepoint: 2909 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2910 break; 2911 case Intrinsic::wasm_rethrow: { 2912 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2913 // special because it can be invoked, so we manually lower it to a DAG 2914 // node here. 2915 SmallVector<SDValue, 8> Ops; 2916 Ops.push_back(getRoot()); // inchain 2917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2918 Ops.push_back( 2919 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2920 TLI.getPointerTy(DAG.getDataLayout()))); 2921 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2922 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2923 break; 2924 } 2925 } 2926 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2927 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2928 // Eventually we will support lowering the @llvm.experimental.deoptimize 2929 // intrinsic, and right now there are no plans to support other intrinsics 2930 // with deopt state. 2931 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2932 } else { 2933 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2934 } 2935 2936 // If the value of the invoke is used outside of its defining block, make it 2937 // available as a virtual register. 2938 // We already took care of the exported value for the statepoint instruction 2939 // during call to the LowerStatepoint. 2940 if (!isa<GCStatepointInst>(I)) { 2941 CopyToExportRegsIfNeeded(&I); 2942 } 2943 2944 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2945 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2946 BranchProbability EHPadBBProb = 2947 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2948 : BranchProbability::getZero(); 2949 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2950 2951 // Update successor info. 2952 addSuccessorWithProb(InvokeMBB, Return); 2953 for (auto &UnwindDest : UnwindDests) { 2954 UnwindDest.first->setIsEHPad(); 2955 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2956 } 2957 InvokeMBB->normalizeSuccProbs(); 2958 2959 // Drop into normal successor. 2960 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2961 DAG.getBasicBlock(Return))); 2962 } 2963 2964 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2965 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2966 2967 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2968 // have to do anything here to lower funclet bundles. 2969 assert(!I.hasOperandBundlesOtherThan( 2970 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2971 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2972 2973 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2974 visitInlineAsm(I); 2975 CopyToExportRegsIfNeeded(&I); 2976 2977 // Retrieve successors. 2978 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2979 2980 // Update successor info. 2981 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2982 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2983 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2984 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2985 Target->setIsInlineAsmBrIndirectTarget(); 2986 } 2987 CallBrMBB->normalizeSuccProbs(); 2988 2989 // Drop into default successor. 2990 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2991 MVT::Other, getControlRoot(), 2992 DAG.getBasicBlock(Return))); 2993 } 2994 2995 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2996 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2997 } 2998 2999 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3000 assert(FuncInfo.MBB->isEHPad() && 3001 "Call to landingpad not in landing pad!"); 3002 3003 // If there aren't registers to copy the values into (e.g., during SjLj 3004 // exceptions), then don't bother to create these DAG nodes. 3005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3006 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3007 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3008 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3009 return; 3010 3011 // If landingpad's return type is token type, we don't create DAG nodes 3012 // for its exception pointer and selector value. The extraction of exception 3013 // pointer or selector value from token type landingpads is not currently 3014 // supported. 3015 if (LP.getType()->isTokenTy()) 3016 return; 3017 3018 SmallVector<EVT, 2> ValueVTs; 3019 SDLoc dl = getCurSDLoc(); 3020 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3021 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3022 3023 // Get the two live-in registers as SDValues. The physregs have already been 3024 // copied into virtual registers. 3025 SDValue Ops[2]; 3026 if (FuncInfo.ExceptionPointerVirtReg) { 3027 Ops[0] = DAG.getZExtOrTrunc( 3028 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3029 FuncInfo.ExceptionPointerVirtReg, 3030 TLI.getPointerTy(DAG.getDataLayout())), 3031 dl, ValueVTs[0]); 3032 } else { 3033 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3034 } 3035 Ops[1] = DAG.getZExtOrTrunc( 3036 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3037 FuncInfo.ExceptionSelectorVirtReg, 3038 TLI.getPointerTy(DAG.getDataLayout())), 3039 dl, ValueVTs[1]); 3040 3041 // Merge into one. 3042 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3043 DAG.getVTList(ValueVTs), Ops); 3044 setValue(&LP, Res); 3045 } 3046 3047 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3048 MachineBasicBlock *Last) { 3049 // Update JTCases. 3050 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 3051 if (SL->JTCases[i].first.HeaderBB == First) 3052 SL->JTCases[i].first.HeaderBB = Last; 3053 3054 // Update BitTestCases. 3055 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 3056 if (SL->BitTestCases[i].Parent == First) 3057 SL->BitTestCases[i].Parent = Last; 3058 } 3059 3060 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3061 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3062 3063 // Update machine-CFG edges with unique successors. 3064 SmallSet<BasicBlock*, 32> Done; 3065 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3066 BasicBlock *BB = I.getSuccessor(i); 3067 bool Inserted = Done.insert(BB).second; 3068 if (!Inserted) 3069 continue; 3070 3071 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3072 addSuccessorWithProb(IndirectBrMBB, Succ); 3073 } 3074 IndirectBrMBB->normalizeSuccProbs(); 3075 3076 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3077 MVT::Other, getControlRoot(), 3078 getValue(I.getAddress()))); 3079 } 3080 3081 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3082 if (!DAG.getTarget().Options.TrapUnreachable) 3083 return; 3084 3085 // We may be able to ignore unreachable behind a noreturn call. 3086 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3087 const BasicBlock &BB = *I.getParent(); 3088 if (&I != &BB.front()) { 3089 BasicBlock::const_iterator PredI = 3090 std::prev(BasicBlock::const_iterator(&I)); 3091 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3092 if (Call->doesNotReturn()) 3093 return; 3094 } 3095 } 3096 } 3097 3098 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3099 } 3100 3101 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3102 SDNodeFlags Flags; 3103 3104 SDValue Op = getValue(I.getOperand(0)); 3105 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3106 Op, Flags); 3107 setValue(&I, UnNodeValue); 3108 } 3109 3110 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3111 SDNodeFlags Flags; 3112 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3113 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3114 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3115 } 3116 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3117 Flags.setExact(ExactOp->isExact()); 3118 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3119 Flags.copyFMF(*FPOp); 3120 3121 SDValue Op1 = getValue(I.getOperand(0)); 3122 SDValue Op2 = getValue(I.getOperand(1)); 3123 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3124 Op1, Op2, Flags); 3125 setValue(&I, BinNodeValue); 3126 } 3127 3128 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3129 SDValue Op1 = getValue(I.getOperand(0)); 3130 SDValue Op2 = getValue(I.getOperand(1)); 3131 3132 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3133 Op1.getValueType(), DAG.getDataLayout()); 3134 3135 // Coerce the shift amount to the right type if we can. 3136 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3137 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3138 unsigned Op2Size = Op2.getValueSizeInBits(); 3139 SDLoc DL = getCurSDLoc(); 3140 3141 // If the operand is smaller than the shift count type, promote it. 3142 if (ShiftSize > Op2Size) 3143 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3144 3145 // If the operand is larger than the shift count type but the shift 3146 // count type has enough bits to represent any shift value, truncate 3147 // it now. This is a common case and it exposes the truncate to 3148 // optimization early. 3149 else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits())) 3150 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3151 // Otherwise we'll need to temporarily settle for some other convenient 3152 // type. Type legalization will make adjustments once the shiftee is split. 3153 else 3154 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3155 } 3156 3157 bool nuw = false; 3158 bool nsw = false; 3159 bool exact = false; 3160 3161 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3162 3163 if (const OverflowingBinaryOperator *OFBinOp = 3164 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3165 nuw = OFBinOp->hasNoUnsignedWrap(); 3166 nsw = OFBinOp->hasNoSignedWrap(); 3167 } 3168 if (const PossiblyExactOperator *ExactOp = 3169 dyn_cast<const PossiblyExactOperator>(&I)) 3170 exact = ExactOp->isExact(); 3171 } 3172 SDNodeFlags Flags; 3173 Flags.setExact(exact); 3174 Flags.setNoSignedWrap(nsw); 3175 Flags.setNoUnsignedWrap(nuw); 3176 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3177 Flags); 3178 setValue(&I, Res); 3179 } 3180 3181 void SelectionDAGBuilder::visitSDiv(const User &I) { 3182 SDValue Op1 = getValue(I.getOperand(0)); 3183 SDValue Op2 = getValue(I.getOperand(1)); 3184 3185 SDNodeFlags Flags; 3186 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3187 cast<PossiblyExactOperator>(&I)->isExact()); 3188 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3189 Op2, Flags)); 3190 } 3191 3192 void SelectionDAGBuilder::visitICmp(const User &I) { 3193 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3194 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3195 predicate = IC->getPredicate(); 3196 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3197 predicate = ICmpInst::Predicate(IC->getPredicate()); 3198 SDValue Op1 = getValue(I.getOperand(0)); 3199 SDValue Op2 = getValue(I.getOperand(1)); 3200 ISD::CondCode Opcode = getICmpCondCode(predicate); 3201 3202 auto &TLI = DAG.getTargetLoweringInfo(); 3203 EVT MemVT = 3204 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3205 3206 // If a pointer's DAG type is larger than its memory type then the DAG values 3207 // are zero-extended. This breaks signed comparisons so truncate back to the 3208 // underlying type before doing the compare. 3209 if (Op1.getValueType() != MemVT) { 3210 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3211 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3212 } 3213 3214 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3215 I.getType()); 3216 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3217 } 3218 3219 void SelectionDAGBuilder::visitFCmp(const User &I) { 3220 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3221 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3222 predicate = FC->getPredicate(); 3223 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3224 predicate = FCmpInst::Predicate(FC->getPredicate()); 3225 SDValue Op1 = getValue(I.getOperand(0)); 3226 SDValue Op2 = getValue(I.getOperand(1)); 3227 3228 ISD::CondCode Condition = getFCmpCondCode(predicate); 3229 auto *FPMO = cast<FPMathOperator>(&I); 3230 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3231 Condition = getFCmpCodeWithoutNaN(Condition); 3232 3233 SDNodeFlags Flags; 3234 Flags.copyFMF(*FPMO); 3235 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3236 3237 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3238 I.getType()); 3239 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3240 } 3241 3242 // Check if the condition of the select has one use or two users that are both 3243 // selects with the same condition. 3244 static bool hasOnlySelectUsers(const Value *Cond) { 3245 return llvm::all_of(Cond->users(), [](const Value *V) { 3246 return isa<SelectInst>(V); 3247 }); 3248 } 3249 3250 void SelectionDAGBuilder::visitSelect(const User &I) { 3251 SmallVector<EVT, 4> ValueVTs; 3252 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3253 ValueVTs); 3254 unsigned NumValues = ValueVTs.size(); 3255 if (NumValues == 0) return; 3256 3257 SmallVector<SDValue, 4> Values(NumValues); 3258 SDValue Cond = getValue(I.getOperand(0)); 3259 SDValue LHSVal = getValue(I.getOperand(1)); 3260 SDValue RHSVal = getValue(I.getOperand(2)); 3261 SmallVector<SDValue, 1> BaseOps(1, Cond); 3262 ISD::NodeType OpCode = 3263 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3264 3265 bool IsUnaryAbs = false; 3266 bool Negate = false; 3267 3268 SDNodeFlags Flags; 3269 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3270 Flags.copyFMF(*FPOp); 3271 3272 // Min/max matching is only viable if all output VTs are the same. 3273 if (is_splat(ValueVTs)) { 3274 EVT VT = ValueVTs[0]; 3275 LLVMContext &Ctx = *DAG.getContext(); 3276 auto &TLI = DAG.getTargetLoweringInfo(); 3277 3278 // We care about the legality of the operation after it has been type 3279 // legalized. 3280 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3281 VT = TLI.getTypeToTransformTo(Ctx, VT); 3282 3283 // If the vselect is legal, assume we want to leave this as a vector setcc + 3284 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3285 // min/max is legal on the scalar type. 3286 bool UseScalarMinMax = VT.isVector() && 3287 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3288 3289 Value *LHS, *RHS; 3290 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3291 ISD::NodeType Opc = ISD::DELETED_NODE; 3292 switch (SPR.Flavor) { 3293 case SPF_UMAX: Opc = ISD::UMAX; break; 3294 case SPF_UMIN: Opc = ISD::UMIN; break; 3295 case SPF_SMAX: Opc = ISD::SMAX; break; 3296 case SPF_SMIN: Opc = ISD::SMIN; break; 3297 case SPF_FMINNUM: 3298 switch (SPR.NaNBehavior) { 3299 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3300 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3301 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3302 case SPNB_RETURNS_ANY: { 3303 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3304 Opc = ISD::FMINNUM; 3305 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3306 Opc = ISD::FMINIMUM; 3307 else if (UseScalarMinMax) 3308 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3309 ISD::FMINNUM : ISD::FMINIMUM; 3310 break; 3311 } 3312 } 3313 break; 3314 case SPF_FMAXNUM: 3315 switch (SPR.NaNBehavior) { 3316 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3317 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3318 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3319 case SPNB_RETURNS_ANY: 3320 3321 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3322 Opc = ISD::FMAXNUM; 3323 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3324 Opc = ISD::FMAXIMUM; 3325 else if (UseScalarMinMax) 3326 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3327 ISD::FMAXNUM : ISD::FMAXIMUM; 3328 break; 3329 } 3330 break; 3331 case SPF_NABS: 3332 Negate = true; 3333 LLVM_FALLTHROUGH; 3334 case SPF_ABS: 3335 IsUnaryAbs = true; 3336 Opc = ISD::ABS; 3337 break; 3338 default: break; 3339 } 3340 3341 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3342 (TLI.isOperationLegalOrCustom(Opc, VT) || 3343 (UseScalarMinMax && 3344 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3345 // If the underlying comparison instruction is used by any other 3346 // instruction, the consumed instructions won't be destroyed, so it is 3347 // not profitable to convert to a min/max. 3348 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3349 OpCode = Opc; 3350 LHSVal = getValue(LHS); 3351 RHSVal = getValue(RHS); 3352 BaseOps.clear(); 3353 } 3354 3355 if (IsUnaryAbs) { 3356 OpCode = Opc; 3357 LHSVal = getValue(LHS); 3358 BaseOps.clear(); 3359 } 3360 } 3361 3362 if (IsUnaryAbs) { 3363 for (unsigned i = 0; i != NumValues; ++i) { 3364 SDLoc dl = getCurSDLoc(); 3365 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3366 Values[i] = 3367 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3368 if (Negate) 3369 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3370 Values[i]); 3371 } 3372 } else { 3373 for (unsigned i = 0; i != NumValues; ++i) { 3374 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3375 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3376 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3377 Values[i] = DAG.getNode( 3378 OpCode, getCurSDLoc(), 3379 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3380 } 3381 } 3382 3383 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3384 DAG.getVTList(ValueVTs), Values)); 3385 } 3386 3387 void SelectionDAGBuilder::visitTrunc(const User &I) { 3388 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3389 SDValue N = getValue(I.getOperand(0)); 3390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3391 I.getType()); 3392 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3393 } 3394 3395 void SelectionDAGBuilder::visitZExt(const User &I) { 3396 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3397 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3398 SDValue N = getValue(I.getOperand(0)); 3399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3400 I.getType()); 3401 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3402 } 3403 3404 void SelectionDAGBuilder::visitSExt(const User &I) { 3405 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3406 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3407 SDValue N = getValue(I.getOperand(0)); 3408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3409 I.getType()); 3410 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3411 } 3412 3413 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3414 // FPTrunc is never a no-op cast, no need to check 3415 SDValue N = getValue(I.getOperand(0)); 3416 SDLoc dl = getCurSDLoc(); 3417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3418 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3419 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3420 DAG.getTargetConstant( 3421 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3422 } 3423 3424 void SelectionDAGBuilder::visitFPExt(const User &I) { 3425 // FPExt is never a no-op cast, no need to check 3426 SDValue N = getValue(I.getOperand(0)); 3427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3428 I.getType()); 3429 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3430 } 3431 3432 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3433 // FPToUI is never a no-op cast, no need to check 3434 SDValue N = getValue(I.getOperand(0)); 3435 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3436 I.getType()); 3437 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3438 } 3439 3440 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3441 // FPToSI is never a no-op cast, no need to check 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3449 // UIToFP is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3457 // SIToFP is never a no-op cast, no need to check 3458 SDValue N = getValue(I.getOperand(0)); 3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3460 I.getType()); 3461 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3462 } 3463 3464 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3465 // What to do depends on the size of the integer and the size of the pointer. 3466 // We can either truncate, zero extend, or no-op, accordingly. 3467 SDValue N = getValue(I.getOperand(0)); 3468 auto &TLI = DAG.getTargetLoweringInfo(); 3469 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3470 I.getType()); 3471 EVT PtrMemVT = 3472 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3473 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3474 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3475 setValue(&I, N); 3476 } 3477 3478 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3479 // What to do depends on the size of the integer and the size of the pointer. 3480 // We can either truncate, zero extend, or no-op, accordingly. 3481 SDValue N = getValue(I.getOperand(0)); 3482 auto &TLI = DAG.getTargetLoweringInfo(); 3483 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3484 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3485 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3486 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3487 setValue(&I, N); 3488 } 3489 3490 void SelectionDAGBuilder::visitBitCast(const User &I) { 3491 SDValue N = getValue(I.getOperand(0)); 3492 SDLoc dl = getCurSDLoc(); 3493 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3494 I.getType()); 3495 3496 // BitCast assures us that source and destination are the same size so this is 3497 // either a BITCAST or a no-op. 3498 if (DestVT != N.getValueType()) 3499 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3500 DestVT, N)); // convert types. 3501 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3502 // might fold any kind of constant expression to an integer constant and that 3503 // is not what we are looking for. Only recognize a bitcast of a genuine 3504 // constant integer as an opaque constant. 3505 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3506 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3507 /*isOpaque*/true)); 3508 else 3509 setValue(&I, N); // noop cast. 3510 } 3511 3512 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3514 const Value *SV = I.getOperand(0); 3515 SDValue N = getValue(SV); 3516 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3517 3518 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3519 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3520 3521 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3522 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3523 3524 setValue(&I, N); 3525 } 3526 3527 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3529 SDValue InVec = getValue(I.getOperand(0)); 3530 SDValue InVal = getValue(I.getOperand(1)); 3531 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3532 TLI.getVectorIdxTy(DAG.getDataLayout())); 3533 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3534 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3535 InVec, InVal, InIdx)); 3536 } 3537 3538 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3540 SDValue InVec = getValue(I.getOperand(0)); 3541 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3542 TLI.getVectorIdxTy(DAG.getDataLayout())); 3543 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3544 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3545 InVec, InIdx)); 3546 } 3547 3548 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3549 SDValue Src1 = getValue(I.getOperand(0)); 3550 SDValue Src2 = getValue(I.getOperand(1)); 3551 ArrayRef<int> Mask; 3552 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3553 Mask = SVI->getShuffleMask(); 3554 else 3555 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3556 SDLoc DL = getCurSDLoc(); 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3559 EVT SrcVT = Src1.getValueType(); 3560 3561 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3562 VT.isScalableVector()) { 3563 // Canonical splat form of first element of first input vector. 3564 SDValue FirstElt = 3565 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3566 DAG.getVectorIdxConstant(0, DL)); 3567 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3568 return; 3569 } 3570 3571 // For now, we only handle splats for scalable vectors. 3572 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3573 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3574 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3575 3576 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3577 unsigned MaskNumElts = Mask.size(); 3578 3579 if (SrcNumElts == MaskNumElts) { 3580 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3581 return; 3582 } 3583 3584 // Normalize the shuffle vector since mask and vector length don't match. 3585 if (SrcNumElts < MaskNumElts) { 3586 // Mask is longer than the source vectors. We can use concatenate vector to 3587 // make the mask and vectors lengths match. 3588 3589 if (MaskNumElts % SrcNumElts == 0) { 3590 // Mask length is a multiple of the source vector length. 3591 // Check if the shuffle is some kind of concatenation of the input 3592 // vectors. 3593 unsigned NumConcat = MaskNumElts / SrcNumElts; 3594 bool IsConcat = true; 3595 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3596 for (unsigned i = 0; i != MaskNumElts; ++i) { 3597 int Idx = Mask[i]; 3598 if (Idx < 0) 3599 continue; 3600 // Ensure the indices in each SrcVT sized piece are sequential and that 3601 // the same source is used for the whole piece. 3602 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3603 (ConcatSrcs[i / SrcNumElts] >= 0 && 3604 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3605 IsConcat = false; 3606 break; 3607 } 3608 // Remember which source this index came from. 3609 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3610 } 3611 3612 // The shuffle is concatenating multiple vectors together. Just emit 3613 // a CONCAT_VECTORS operation. 3614 if (IsConcat) { 3615 SmallVector<SDValue, 8> ConcatOps; 3616 for (auto Src : ConcatSrcs) { 3617 if (Src < 0) 3618 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3619 else if (Src == 0) 3620 ConcatOps.push_back(Src1); 3621 else 3622 ConcatOps.push_back(Src2); 3623 } 3624 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3625 return; 3626 } 3627 } 3628 3629 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3630 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3631 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3632 PaddedMaskNumElts); 3633 3634 // Pad both vectors with undefs to make them the same length as the mask. 3635 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3636 3637 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3638 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3639 MOps1[0] = Src1; 3640 MOps2[0] = Src2; 3641 3642 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3643 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3644 3645 // Readjust mask for new input vector length. 3646 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3647 for (unsigned i = 0; i != MaskNumElts; ++i) { 3648 int Idx = Mask[i]; 3649 if (Idx >= (int)SrcNumElts) 3650 Idx -= SrcNumElts - PaddedMaskNumElts; 3651 MappedOps[i] = Idx; 3652 } 3653 3654 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3655 3656 // If the concatenated vector was padded, extract a subvector with the 3657 // correct number of elements. 3658 if (MaskNumElts != PaddedMaskNumElts) 3659 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3660 DAG.getVectorIdxConstant(0, DL)); 3661 3662 setValue(&I, Result); 3663 return; 3664 } 3665 3666 if (SrcNumElts > MaskNumElts) { 3667 // Analyze the access pattern of the vector to see if we can extract 3668 // two subvectors and do the shuffle. 3669 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3670 bool CanExtract = true; 3671 for (int Idx : Mask) { 3672 unsigned Input = 0; 3673 if (Idx < 0) 3674 continue; 3675 3676 if (Idx >= (int)SrcNumElts) { 3677 Input = 1; 3678 Idx -= SrcNumElts; 3679 } 3680 3681 // If all the indices come from the same MaskNumElts sized portion of 3682 // the sources we can use extract. Also make sure the extract wouldn't 3683 // extract past the end of the source. 3684 int NewStartIdx = alignDown(Idx, MaskNumElts); 3685 if (NewStartIdx + MaskNumElts > SrcNumElts || 3686 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3687 CanExtract = false; 3688 // Make sure we always update StartIdx as we use it to track if all 3689 // elements are undef. 3690 StartIdx[Input] = NewStartIdx; 3691 } 3692 3693 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3694 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3695 return; 3696 } 3697 if (CanExtract) { 3698 // Extract appropriate subvector and generate a vector shuffle 3699 for (unsigned Input = 0; Input < 2; ++Input) { 3700 SDValue &Src = Input == 0 ? Src1 : Src2; 3701 if (StartIdx[Input] < 0) 3702 Src = DAG.getUNDEF(VT); 3703 else { 3704 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3705 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3706 } 3707 } 3708 3709 // Calculate new mask. 3710 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3711 for (int &Idx : MappedOps) { 3712 if (Idx >= (int)SrcNumElts) 3713 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3714 else if (Idx >= 0) 3715 Idx -= StartIdx[0]; 3716 } 3717 3718 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3719 return; 3720 } 3721 } 3722 3723 // We can't use either concat vectors or extract subvectors so fall back to 3724 // replacing the shuffle with extract and build vector. 3725 // to insert and build vector. 3726 EVT EltVT = VT.getVectorElementType(); 3727 SmallVector<SDValue,8> Ops; 3728 for (int Idx : Mask) { 3729 SDValue Res; 3730 3731 if (Idx < 0) { 3732 Res = DAG.getUNDEF(EltVT); 3733 } else { 3734 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3735 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3736 3737 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3738 DAG.getVectorIdxConstant(Idx, DL)); 3739 } 3740 3741 Ops.push_back(Res); 3742 } 3743 3744 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3745 } 3746 3747 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3748 ArrayRef<unsigned> Indices; 3749 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3750 Indices = IV->getIndices(); 3751 else 3752 Indices = cast<ConstantExpr>(&I)->getIndices(); 3753 3754 const Value *Op0 = I.getOperand(0); 3755 const Value *Op1 = I.getOperand(1); 3756 Type *AggTy = I.getType(); 3757 Type *ValTy = Op1->getType(); 3758 bool IntoUndef = isa<UndefValue>(Op0); 3759 bool FromUndef = isa<UndefValue>(Op1); 3760 3761 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3762 3763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3764 SmallVector<EVT, 4> AggValueVTs; 3765 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3766 SmallVector<EVT, 4> ValValueVTs; 3767 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3768 3769 unsigned NumAggValues = AggValueVTs.size(); 3770 unsigned NumValValues = ValValueVTs.size(); 3771 SmallVector<SDValue, 4> Values(NumAggValues); 3772 3773 // Ignore an insertvalue that produces an empty object 3774 if (!NumAggValues) { 3775 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3776 return; 3777 } 3778 3779 SDValue Agg = getValue(Op0); 3780 unsigned i = 0; 3781 // Copy the beginning value(s) from the original aggregate. 3782 for (; i != LinearIndex; ++i) 3783 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3784 SDValue(Agg.getNode(), Agg.getResNo() + i); 3785 // Copy values from the inserted value(s). 3786 if (NumValValues) { 3787 SDValue Val = getValue(Op1); 3788 for (; i != LinearIndex + NumValValues; ++i) 3789 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3790 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3791 } 3792 // Copy remaining value(s) from the original aggregate. 3793 for (; i != NumAggValues; ++i) 3794 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3795 SDValue(Agg.getNode(), Agg.getResNo() + i); 3796 3797 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3798 DAG.getVTList(AggValueVTs), Values)); 3799 } 3800 3801 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3802 ArrayRef<unsigned> Indices; 3803 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3804 Indices = EV->getIndices(); 3805 else 3806 Indices = cast<ConstantExpr>(&I)->getIndices(); 3807 3808 const Value *Op0 = I.getOperand(0); 3809 Type *AggTy = Op0->getType(); 3810 Type *ValTy = I.getType(); 3811 bool OutOfUndef = isa<UndefValue>(Op0); 3812 3813 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3814 3815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3816 SmallVector<EVT, 4> ValValueVTs; 3817 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3818 3819 unsigned NumValValues = ValValueVTs.size(); 3820 3821 // Ignore a extractvalue that produces an empty object 3822 if (!NumValValues) { 3823 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3824 return; 3825 } 3826 3827 SmallVector<SDValue, 4> Values(NumValValues); 3828 3829 SDValue Agg = getValue(Op0); 3830 // Copy out the selected value(s). 3831 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3832 Values[i - LinearIndex] = 3833 OutOfUndef ? 3834 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3835 SDValue(Agg.getNode(), Agg.getResNo() + i); 3836 3837 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3838 DAG.getVTList(ValValueVTs), Values)); 3839 } 3840 3841 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3842 Value *Op0 = I.getOperand(0); 3843 // Note that the pointer operand may be a vector of pointers. Take the scalar 3844 // element which holds a pointer. 3845 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3846 SDValue N = getValue(Op0); 3847 SDLoc dl = getCurSDLoc(); 3848 auto &TLI = DAG.getTargetLoweringInfo(); 3849 3850 // Normalize Vector GEP - all scalar operands should be converted to the 3851 // splat vector. 3852 bool IsVectorGEP = I.getType()->isVectorTy(); 3853 ElementCount VectorElementCount = 3854 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3855 : ElementCount::getFixed(0); 3856 3857 if (IsVectorGEP && !N.getValueType().isVector()) { 3858 LLVMContext &Context = *DAG.getContext(); 3859 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3860 if (VectorElementCount.isScalable()) 3861 N = DAG.getSplatVector(VT, dl, N); 3862 else 3863 N = DAG.getSplatBuildVector(VT, dl, N); 3864 } 3865 3866 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3867 GTI != E; ++GTI) { 3868 const Value *Idx = GTI.getOperand(); 3869 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3870 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3871 if (Field) { 3872 // N = N + Offset 3873 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3882 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3883 } 3884 } else { 3885 // IdxSize is the width of the arithmetic according to IR semantics. 3886 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3887 // (and fix up the result later). 3888 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3889 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3890 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3891 // We intentionally mask away the high bits here; ElementSize may not 3892 // fit in IdxTy. 3893 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3894 bool ElementScalable = ElementSize.isScalable(); 3895 3896 // If this is a scalar constant or a splat vector of constants, 3897 // handle it quickly. 3898 const auto *C = dyn_cast<Constant>(Idx); 3899 if (C && isa<VectorType>(C->getType())) 3900 C = C->getSplatValue(); 3901 3902 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3903 if (CI && CI->isZero()) 3904 continue; 3905 if (CI && !ElementScalable) { 3906 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3907 LLVMContext &Context = *DAG.getContext(); 3908 SDValue OffsVal; 3909 if (IsVectorGEP) 3910 OffsVal = DAG.getConstant( 3911 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3912 else 3913 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3914 3915 // In an inbounds GEP with an offset that is nonnegative even when 3916 // interpreted as signed, assume there is no unsigned overflow. 3917 SDNodeFlags Flags; 3918 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3919 Flags.setNoUnsignedWrap(true); 3920 3921 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3922 3923 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3924 continue; 3925 } 3926 3927 // N = N + Idx * ElementMul; 3928 SDValue IdxN = getValue(Idx); 3929 3930 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3931 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3932 VectorElementCount); 3933 if (VectorElementCount.isScalable()) 3934 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3935 else 3936 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3937 } 3938 3939 // If the index is smaller or larger than intptr_t, truncate or extend 3940 // it. 3941 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3942 3943 if (ElementScalable) { 3944 EVT VScaleTy = N.getValueType().getScalarType(); 3945 SDValue VScale = DAG.getNode( 3946 ISD::VSCALE, dl, VScaleTy, 3947 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3948 if (IsVectorGEP) 3949 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3950 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3951 } else { 3952 // If this is a multiply by a power of two, turn it into a shl 3953 // immediately. This is a very common case. 3954 if (ElementMul != 1) { 3955 if (ElementMul.isPowerOf2()) { 3956 unsigned Amt = ElementMul.logBase2(); 3957 IdxN = DAG.getNode(ISD::SHL, dl, 3958 N.getValueType(), IdxN, 3959 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3960 } else { 3961 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3962 IdxN.getValueType()); 3963 IdxN = DAG.getNode(ISD::MUL, dl, 3964 N.getValueType(), IdxN, Scale); 3965 } 3966 } 3967 } 3968 3969 N = DAG.getNode(ISD::ADD, dl, 3970 N.getValueType(), N, IdxN); 3971 } 3972 } 3973 3974 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3975 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3976 if (IsVectorGEP) { 3977 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3978 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3979 } 3980 3981 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3982 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3983 3984 setValue(&I, N); 3985 } 3986 3987 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3988 // If this is a fixed sized alloca in the entry block of the function, 3989 // allocate it statically on the stack. 3990 if (FuncInfo.StaticAllocaMap.count(&I)) 3991 return; // getValue will auto-populate this. 3992 3993 SDLoc dl = getCurSDLoc(); 3994 Type *Ty = I.getAllocatedType(); 3995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3996 auto &DL = DAG.getDataLayout(); 3997 uint64_t TySize = DL.getTypeAllocSize(Ty); 3998 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3999 4000 SDValue AllocSize = getValue(I.getArraySize()); 4001 4002 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4003 if (AllocSize.getValueType() != IntPtr) 4004 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4005 4006 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4007 AllocSize, 4008 DAG.getConstant(TySize, dl, IntPtr)); 4009 4010 // Handle alignment. If the requested alignment is less than or equal to 4011 // the stack alignment, ignore it. If the size is greater than or equal to 4012 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4013 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4014 if (*Alignment <= StackAlign) 4015 Alignment = None; 4016 4017 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4018 // Round the size of the allocation up to the stack alignment size 4019 // by add SA-1 to the size. This doesn't overflow because we're computing 4020 // an address inside an alloca. 4021 SDNodeFlags Flags; 4022 Flags.setNoUnsignedWrap(true); 4023 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4024 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4025 4026 // Mask out the low bits for alignment purposes. 4027 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4028 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4029 4030 SDValue Ops[] = { 4031 getRoot(), AllocSize, 4032 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4033 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4034 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4035 setValue(&I, DSA); 4036 DAG.setRoot(DSA.getValue(1)); 4037 4038 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4039 } 4040 4041 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4042 if (I.isAtomic()) 4043 return visitAtomicLoad(I); 4044 4045 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4046 const Value *SV = I.getOperand(0); 4047 if (TLI.supportSwiftError()) { 4048 // Swifterror values can come from either a function parameter with 4049 // swifterror attribute or an alloca with swifterror attribute. 4050 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4051 if (Arg->hasSwiftErrorAttr()) 4052 return visitLoadFromSwiftError(I); 4053 } 4054 4055 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4056 if (Alloca->isSwiftError()) 4057 return visitLoadFromSwiftError(I); 4058 } 4059 } 4060 4061 SDValue Ptr = getValue(SV); 4062 4063 Type *Ty = I.getType(); 4064 Align Alignment = I.getAlign(); 4065 4066 AAMDNodes AAInfo = I.getAAMetadata(); 4067 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4068 4069 SmallVector<EVT, 4> ValueVTs, MemVTs; 4070 SmallVector<uint64_t, 4> Offsets; 4071 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4072 unsigned NumValues = ValueVTs.size(); 4073 if (NumValues == 0) 4074 return; 4075 4076 bool isVolatile = I.isVolatile(); 4077 4078 SDValue Root; 4079 bool ConstantMemory = false; 4080 if (isVolatile) 4081 // Serialize volatile loads with other side effects. 4082 Root = getRoot(); 4083 else if (NumValues > MaxParallelChains) 4084 Root = getMemoryRoot(); 4085 else if (AA && 4086 AA->pointsToConstantMemory(MemoryLocation( 4087 SV, 4088 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4089 AAInfo))) { 4090 // Do not serialize (non-volatile) loads of constant memory with anything. 4091 Root = DAG.getEntryNode(); 4092 ConstantMemory = true; 4093 } else { 4094 // Do not serialize non-volatile loads against each other. 4095 Root = DAG.getRoot(); 4096 } 4097 4098 SDLoc dl = getCurSDLoc(); 4099 4100 if (isVolatile) 4101 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4102 4103 // An aggregate load cannot wrap around the address space, so offsets to its 4104 // parts don't wrap either. 4105 SDNodeFlags Flags; 4106 Flags.setNoUnsignedWrap(true); 4107 4108 SmallVector<SDValue, 4> Values(NumValues); 4109 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4110 EVT PtrVT = Ptr.getValueType(); 4111 4112 MachineMemOperand::Flags MMOFlags 4113 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4114 4115 unsigned ChainI = 0; 4116 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4117 // Serializing loads here may result in excessive register pressure, and 4118 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4119 // could recover a bit by hoisting nodes upward in the chain by recognizing 4120 // they are side-effect free or do not alias. The optimizer should really 4121 // avoid this case by converting large object/array copies to llvm.memcpy 4122 // (MaxParallelChains should always remain as failsafe). 4123 if (ChainI == MaxParallelChains) { 4124 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4125 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4126 makeArrayRef(Chains.data(), ChainI)); 4127 Root = Chain; 4128 ChainI = 0; 4129 } 4130 SDValue A = DAG.getNode(ISD::ADD, dl, 4131 PtrVT, Ptr, 4132 DAG.getConstant(Offsets[i], dl, PtrVT), 4133 Flags); 4134 4135 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4136 MachinePointerInfo(SV, Offsets[i]), Alignment, 4137 MMOFlags, AAInfo, Ranges); 4138 Chains[ChainI] = L.getValue(1); 4139 4140 if (MemVTs[i] != ValueVTs[i]) 4141 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4142 4143 Values[i] = L; 4144 } 4145 4146 if (!ConstantMemory) { 4147 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4148 makeArrayRef(Chains.data(), ChainI)); 4149 if (isVolatile) 4150 DAG.setRoot(Chain); 4151 else 4152 PendingLoads.push_back(Chain); 4153 } 4154 4155 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4156 DAG.getVTList(ValueVTs), Values)); 4157 } 4158 4159 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4160 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4161 "call visitStoreToSwiftError when backend supports swifterror"); 4162 4163 SmallVector<EVT, 4> ValueVTs; 4164 SmallVector<uint64_t, 4> Offsets; 4165 const Value *SrcV = I.getOperand(0); 4166 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4167 SrcV->getType(), ValueVTs, &Offsets); 4168 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4169 "expect a single EVT for swifterror"); 4170 4171 SDValue Src = getValue(SrcV); 4172 // Create a virtual register, then update the virtual register. 4173 Register VReg = 4174 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4175 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4176 // Chain can be getRoot or getControlRoot. 4177 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4178 SDValue(Src.getNode(), Src.getResNo())); 4179 DAG.setRoot(CopyNode); 4180 } 4181 4182 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4183 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4184 "call visitLoadFromSwiftError when backend supports swifterror"); 4185 4186 assert(!I.isVolatile() && 4187 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4188 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4189 "Support volatile, non temporal, invariant for load_from_swift_error"); 4190 4191 const Value *SV = I.getOperand(0); 4192 Type *Ty = I.getType(); 4193 assert( 4194 (!AA || 4195 !AA->pointsToConstantMemory(MemoryLocation( 4196 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4197 I.getAAMetadata()))) && 4198 "load_from_swift_error should not be constant memory"); 4199 4200 SmallVector<EVT, 4> ValueVTs; 4201 SmallVector<uint64_t, 4> Offsets; 4202 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4203 ValueVTs, &Offsets); 4204 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4205 "expect a single EVT for swifterror"); 4206 4207 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4208 SDValue L = DAG.getCopyFromReg( 4209 getRoot(), getCurSDLoc(), 4210 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4211 4212 setValue(&I, L); 4213 } 4214 4215 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4216 if (I.isAtomic()) 4217 return visitAtomicStore(I); 4218 4219 const Value *SrcV = I.getOperand(0); 4220 const Value *PtrV = I.getOperand(1); 4221 4222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4223 if (TLI.supportSwiftError()) { 4224 // Swifterror values can come from either a function parameter with 4225 // swifterror attribute or an alloca with swifterror attribute. 4226 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4227 if (Arg->hasSwiftErrorAttr()) 4228 return visitStoreToSwiftError(I); 4229 } 4230 4231 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4232 if (Alloca->isSwiftError()) 4233 return visitStoreToSwiftError(I); 4234 } 4235 } 4236 4237 SmallVector<EVT, 4> ValueVTs, MemVTs; 4238 SmallVector<uint64_t, 4> Offsets; 4239 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4240 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4241 unsigned NumValues = ValueVTs.size(); 4242 if (NumValues == 0) 4243 return; 4244 4245 // Get the lowered operands. Note that we do this after 4246 // checking if NumResults is zero, because with zero results 4247 // the operands won't have values in the map. 4248 SDValue Src = getValue(SrcV); 4249 SDValue Ptr = getValue(PtrV); 4250 4251 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4252 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4253 SDLoc dl = getCurSDLoc(); 4254 Align Alignment = I.getAlign(); 4255 AAMDNodes AAInfo = I.getAAMetadata(); 4256 4257 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4258 4259 // An aggregate load cannot wrap around the address space, so offsets to its 4260 // parts don't wrap either. 4261 SDNodeFlags Flags; 4262 Flags.setNoUnsignedWrap(true); 4263 4264 unsigned ChainI = 0; 4265 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4266 // See visitLoad comments. 4267 if (ChainI == MaxParallelChains) { 4268 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4269 makeArrayRef(Chains.data(), ChainI)); 4270 Root = Chain; 4271 ChainI = 0; 4272 } 4273 SDValue Add = 4274 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4275 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4276 if (MemVTs[i] != ValueVTs[i]) 4277 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4278 SDValue St = 4279 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4280 Alignment, MMOFlags, AAInfo); 4281 Chains[ChainI] = St; 4282 } 4283 4284 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4285 makeArrayRef(Chains.data(), ChainI)); 4286 DAG.setRoot(StoreNode); 4287 } 4288 4289 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4290 bool IsCompressing) { 4291 SDLoc sdl = getCurSDLoc(); 4292 4293 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4294 MaybeAlign &Alignment) { 4295 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4296 Src0 = I.getArgOperand(0); 4297 Ptr = I.getArgOperand(1); 4298 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4299 Mask = I.getArgOperand(3); 4300 }; 4301 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4302 MaybeAlign &Alignment) { 4303 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4304 Src0 = I.getArgOperand(0); 4305 Ptr = I.getArgOperand(1); 4306 Mask = I.getArgOperand(2); 4307 Alignment = None; 4308 }; 4309 4310 Value *PtrOperand, *MaskOperand, *Src0Operand; 4311 MaybeAlign Alignment; 4312 if (IsCompressing) 4313 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4314 else 4315 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4316 4317 SDValue Ptr = getValue(PtrOperand); 4318 SDValue Src0 = getValue(Src0Operand); 4319 SDValue Mask = getValue(MaskOperand); 4320 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4321 4322 EVT VT = Src0.getValueType(); 4323 if (!Alignment) 4324 Alignment = DAG.getEVTAlign(VT); 4325 4326 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4327 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4328 // TODO: Make MachineMemOperands aware of scalable 4329 // vectors. 4330 VT.getStoreSize().getKnownMinSize(), *Alignment, I.getAAMetadata()); 4331 SDValue StoreNode = 4332 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4333 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4334 DAG.setRoot(StoreNode); 4335 setValue(&I, StoreNode); 4336 } 4337 4338 // Get a uniform base for the Gather/Scatter intrinsic. 4339 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4340 // We try to represent it as a base pointer + vector of indices. 4341 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4342 // The first operand of the GEP may be a single pointer or a vector of pointers 4343 // Example: 4344 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4345 // or 4346 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4347 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4348 // 4349 // When the first GEP operand is a single pointer - it is the uniform base we 4350 // are looking for. If first operand of the GEP is a splat vector - we 4351 // extract the splat value and use it as a uniform base. 4352 // In all other cases the function returns 'false'. 4353 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4354 ISD::MemIndexType &IndexType, SDValue &Scale, 4355 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4356 SelectionDAG& DAG = SDB->DAG; 4357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4358 const DataLayout &DL = DAG.getDataLayout(); 4359 4360 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4361 4362 // Handle splat constant pointer. 4363 if (auto *C = dyn_cast<Constant>(Ptr)) { 4364 C = C->getSplatValue(); 4365 if (!C) 4366 return false; 4367 4368 Base = SDB->getValue(C); 4369 4370 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4371 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4372 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4373 IndexType = ISD::SIGNED_SCALED; 4374 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4375 return true; 4376 } 4377 4378 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4379 if (!GEP || GEP->getParent() != CurBB) 4380 return false; 4381 4382 if (GEP->getNumOperands() != 2) 4383 return false; 4384 4385 const Value *BasePtr = GEP->getPointerOperand(); 4386 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4387 4388 // Make sure the base is scalar and the index is a vector. 4389 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4390 return false; 4391 4392 Base = SDB->getValue(BasePtr); 4393 Index = SDB->getValue(IndexVal); 4394 IndexType = ISD::SIGNED_SCALED; 4395 Scale = DAG.getTargetConstant( 4396 DL.getTypeAllocSize(GEP->getResultElementType()), 4397 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4398 return true; 4399 } 4400 4401 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4402 SDLoc sdl = getCurSDLoc(); 4403 4404 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4405 const Value *Ptr = I.getArgOperand(1); 4406 SDValue Src0 = getValue(I.getArgOperand(0)); 4407 SDValue Mask = getValue(I.getArgOperand(3)); 4408 EVT VT = Src0.getValueType(); 4409 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4410 ->getMaybeAlignValue() 4411 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4413 4414 SDValue Base; 4415 SDValue Index; 4416 ISD::MemIndexType IndexType; 4417 SDValue Scale; 4418 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4419 I.getParent()); 4420 4421 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4422 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4423 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4424 // TODO: Make MachineMemOperands aware of scalable 4425 // vectors. 4426 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4427 if (!UniformBase) { 4428 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4429 Index = getValue(Ptr); 4430 IndexType = ISD::SIGNED_UNSCALED; 4431 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4432 } 4433 4434 EVT IdxVT = Index.getValueType(); 4435 EVT EltTy = IdxVT.getVectorElementType(); 4436 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4437 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4438 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4439 } 4440 4441 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4442 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4443 Ops, MMO, IndexType, false); 4444 DAG.setRoot(Scatter); 4445 setValue(&I, Scatter); 4446 } 4447 4448 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4449 SDLoc sdl = getCurSDLoc(); 4450 4451 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4452 MaybeAlign &Alignment) { 4453 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4454 Ptr = I.getArgOperand(0); 4455 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4456 Mask = I.getArgOperand(2); 4457 Src0 = I.getArgOperand(3); 4458 }; 4459 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4460 MaybeAlign &Alignment) { 4461 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4462 Ptr = I.getArgOperand(0); 4463 Alignment = None; 4464 Mask = I.getArgOperand(1); 4465 Src0 = I.getArgOperand(2); 4466 }; 4467 4468 Value *PtrOperand, *MaskOperand, *Src0Operand; 4469 MaybeAlign Alignment; 4470 if (IsExpanding) 4471 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4472 else 4473 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4474 4475 SDValue Ptr = getValue(PtrOperand); 4476 SDValue Src0 = getValue(Src0Operand); 4477 SDValue Mask = getValue(MaskOperand); 4478 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4479 4480 EVT VT = Src0.getValueType(); 4481 if (!Alignment) 4482 Alignment = DAG.getEVTAlign(VT); 4483 4484 AAMDNodes AAInfo = I.getAAMetadata(); 4485 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4486 4487 // Do not serialize masked loads of constant memory with anything. 4488 MemoryLocation ML; 4489 if (VT.isScalableVector()) 4490 ML = MemoryLocation::getAfter(PtrOperand); 4491 else 4492 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4493 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4494 AAInfo); 4495 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4496 4497 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4498 4499 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4500 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4501 // TODO: Make MachineMemOperands aware of scalable 4502 // vectors. 4503 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4504 4505 SDValue Load = 4506 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4507 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4508 if (AddToChain) 4509 PendingLoads.push_back(Load.getValue(1)); 4510 setValue(&I, Load); 4511 } 4512 4513 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4514 SDLoc sdl = getCurSDLoc(); 4515 4516 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4517 const Value *Ptr = I.getArgOperand(0); 4518 SDValue Src0 = getValue(I.getArgOperand(3)); 4519 SDValue Mask = getValue(I.getArgOperand(2)); 4520 4521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4522 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4523 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4524 ->getMaybeAlignValue() 4525 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4526 4527 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4528 4529 SDValue Root = DAG.getRoot(); 4530 SDValue Base; 4531 SDValue Index; 4532 ISD::MemIndexType IndexType; 4533 SDValue Scale; 4534 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4535 I.getParent()); 4536 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4537 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4538 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4539 // TODO: Make MachineMemOperands aware of scalable 4540 // vectors. 4541 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4542 4543 if (!UniformBase) { 4544 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4545 Index = getValue(Ptr); 4546 IndexType = ISD::SIGNED_UNSCALED; 4547 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4548 } 4549 4550 EVT IdxVT = Index.getValueType(); 4551 EVT EltTy = IdxVT.getVectorElementType(); 4552 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4553 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4554 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4555 } 4556 4557 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4558 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4559 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4560 4561 PendingLoads.push_back(Gather.getValue(1)); 4562 setValue(&I, Gather); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4568 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4569 SyncScope::ID SSID = I.getSyncScopeID(); 4570 4571 SDValue InChain = getRoot(); 4572 4573 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4574 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4575 4576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4577 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4578 4579 MachineFunction &MF = DAG.getMachineFunction(); 4580 MachineMemOperand *MMO = MF.getMachineMemOperand( 4581 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4582 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4583 FailureOrdering); 4584 4585 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4586 dl, MemVT, VTs, InChain, 4587 getValue(I.getPointerOperand()), 4588 getValue(I.getCompareOperand()), 4589 getValue(I.getNewValOperand()), MMO); 4590 4591 SDValue OutChain = L.getValue(2); 4592 4593 setValue(&I, L); 4594 DAG.setRoot(OutChain); 4595 } 4596 4597 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4598 SDLoc dl = getCurSDLoc(); 4599 ISD::NodeType NT; 4600 switch (I.getOperation()) { 4601 default: llvm_unreachable("Unknown atomicrmw operation"); 4602 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4603 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4604 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4605 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4606 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4607 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4608 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4609 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4610 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4611 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4612 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4613 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4614 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4615 } 4616 AtomicOrdering Ordering = I.getOrdering(); 4617 SyncScope::ID SSID = I.getSyncScopeID(); 4618 4619 SDValue InChain = getRoot(); 4620 4621 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4623 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4624 4625 MachineFunction &MF = DAG.getMachineFunction(); 4626 MachineMemOperand *MMO = MF.getMachineMemOperand( 4627 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4628 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4629 4630 SDValue L = 4631 DAG.getAtomic(NT, dl, MemVT, InChain, 4632 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4633 MMO); 4634 4635 SDValue OutChain = L.getValue(1); 4636 4637 setValue(&I, L); 4638 DAG.setRoot(OutChain); 4639 } 4640 4641 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4642 SDLoc dl = getCurSDLoc(); 4643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4644 SDValue Ops[3]; 4645 Ops[0] = getRoot(); 4646 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4647 TLI.getFenceOperandTy(DAG.getDataLayout())); 4648 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4649 TLI.getFenceOperandTy(DAG.getDataLayout())); 4650 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4651 } 4652 4653 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4654 SDLoc dl = getCurSDLoc(); 4655 AtomicOrdering Order = I.getOrdering(); 4656 SyncScope::ID SSID = I.getSyncScopeID(); 4657 4658 SDValue InChain = getRoot(); 4659 4660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4661 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4662 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4663 4664 if (!TLI.supportsUnalignedAtomics() && 4665 I.getAlignment() < MemVT.getSizeInBits() / 8) 4666 report_fatal_error("Cannot generate unaligned atomic load"); 4667 4668 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4669 4670 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4671 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4672 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4673 4674 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4675 4676 SDValue Ptr = getValue(I.getPointerOperand()); 4677 4678 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4679 // TODO: Once this is better exercised by tests, it should be merged with 4680 // the normal path for loads to prevent future divergence. 4681 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4682 if (MemVT != VT) 4683 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4684 4685 setValue(&I, L); 4686 SDValue OutChain = L.getValue(1); 4687 if (!I.isUnordered()) 4688 DAG.setRoot(OutChain); 4689 else 4690 PendingLoads.push_back(OutChain); 4691 return; 4692 } 4693 4694 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4695 Ptr, MMO); 4696 4697 SDValue OutChain = L.getValue(1); 4698 if (MemVT != VT) 4699 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4700 4701 setValue(&I, L); 4702 DAG.setRoot(OutChain); 4703 } 4704 4705 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4706 SDLoc dl = getCurSDLoc(); 4707 4708 AtomicOrdering Ordering = I.getOrdering(); 4709 SyncScope::ID SSID = I.getSyncScopeID(); 4710 4711 SDValue InChain = getRoot(); 4712 4713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4714 EVT MemVT = 4715 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4716 4717 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4718 report_fatal_error("Cannot generate unaligned atomic store"); 4719 4720 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4721 4722 MachineFunction &MF = DAG.getMachineFunction(); 4723 MachineMemOperand *MMO = MF.getMachineMemOperand( 4724 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4725 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4726 4727 SDValue Val = getValue(I.getValueOperand()); 4728 if (Val.getValueType() != MemVT) 4729 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4730 SDValue Ptr = getValue(I.getPointerOperand()); 4731 4732 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4733 // TODO: Once this is better exercised by tests, it should be merged with 4734 // the normal path for stores to prevent future divergence. 4735 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4736 DAG.setRoot(S); 4737 return; 4738 } 4739 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4740 Ptr, Val, MMO); 4741 4742 4743 DAG.setRoot(OutChain); 4744 } 4745 4746 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4747 /// node. 4748 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4749 unsigned Intrinsic) { 4750 // Ignore the callsite's attributes. A specific call site may be marked with 4751 // readnone, but the lowering code will expect the chain based on the 4752 // definition. 4753 const Function *F = I.getCalledFunction(); 4754 bool HasChain = !F->doesNotAccessMemory(); 4755 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4756 4757 // Build the operand list. 4758 SmallVector<SDValue, 8> Ops; 4759 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4760 if (OnlyLoad) { 4761 // We don't need to serialize loads against other loads. 4762 Ops.push_back(DAG.getRoot()); 4763 } else { 4764 Ops.push_back(getRoot()); 4765 } 4766 } 4767 4768 // Info is set by getTgtMemInstrinsic 4769 TargetLowering::IntrinsicInfo Info; 4770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4771 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4772 DAG.getMachineFunction(), 4773 Intrinsic); 4774 4775 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4776 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4777 Info.opc == ISD::INTRINSIC_W_CHAIN) 4778 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4779 TLI.getPointerTy(DAG.getDataLayout()))); 4780 4781 // Add all operands of the call to the operand list. 4782 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4783 const Value *Arg = I.getArgOperand(i); 4784 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4785 Ops.push_back(getValue(Arg)); 4786 continue; 4787 } 4788 4789 // Use TargetConstant instead of a regular constant for immarg. 4790 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4791 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4792 assert(CI->getBitWidth() <= 64 && 4793 "large intrinsic immediates not handled"); 4794 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4795 } else { 4796 Ops.push_back( 4797 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4798 } 4799 } 4800 4801 SmallVector<EVT, 4> ValueVTs; 4802 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4803 4804 if (HasChain) 4805 ValueVTs.push_back(MVT::Other); 4806 4807 SDVTList VTs = DAG.getVTList(ValueVTs); 4808 4809 // Propagate fast-math-flags from IR to node(s). 4810 SDNodeFlags Flags; 4811 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4812 Flags.copyFMF(*FPMO); 4813 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4814 4815 // Create the node. 4816 SDValue Result; 4817 if (IsTgtIntrinsic) { 4818 // This is target intrinsic that touches memory 4819 Result = 4820 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4821 MachinePointerInfo(Info.ptrVal, Info.offset), 4822 Info.align, Info.flags, Info.size, 4823 I.getAAMetadata()); 4824 } else if (!HasChain) { 4825 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4826 } else if (!I.getType()->isVoidTy()) { 4827 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4828 } else { 4829 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4830 } 4831 4832 if (HasChain) { 4833 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4834 if (OnlyLoad) 4835 PendingLoads.push_back(Chain); 4836 else 4837 DAG.setRoot(Chain); 4838 } 4839 4840 if (!I.getType()->isVoidTy()) { 4841 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4842 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4843 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4844 } else 4845 Result = lowerRangeToAssertZExt(DAG, I, Result); 4846 4847 MaybeAlign Alignment = I.getRetAlign(); 4848 if (!Alignment) 4849 Alignment = F->getAttributes().getRetAlignment(); 4850 // Insert `assertalign` node if there's an alignment. 4851 if (InsertAssertAlign && Alignment) { 4852 Result = 4853 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4854 } 4855 4856 setValue(&I, Result); 4857 } 4858 } 4859 4860 /// GetSignificand - Get the significand and build it into a floating-point 4861 /// number with exponent of 1: 4862 /// 4863 /// Op = (Op & 0x007fffff) | 0x3f800000; 4864 /// 4865 /// where Op is the hexadecimal representation of floating point value. 4866 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4867 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4868 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4869 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4870 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4871 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4872 } 4873 4874 /// GetExponent - Get the exponent: 4875 /// 4876 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4877 /// 4878 /// where Op is the hexadecimal representation of floating point value. 4879 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4880 const TargetLowering &TLI, const SDLoc &dl) { 4881 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4882 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4883 SDValue t1 = DAG.getNode( 4884 ISD::SRL, dl, MVT::i32, t0, 4885 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4886 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4887 DAG.getConstant(127, dl, MVT::i32)); 4888 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4889 } 4890 4891 /// getF32Constant - Get 32-bit floating point constant. 4892 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4893 const SDLoc &dl) { 4894 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4895 MVT::f32); 4896 } 4897 4898 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4899 SelectionDAG &DAG) { 4900 // TODO: What fast-math-flags should be set on the floating-point nodes? 4901 4902 // IntegerPartOfX = ((int32_t)(t0); 4903 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4904 4905 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4906 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4907 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4908 4909 // IntegerPartOfX <<= 23; 4910 IntegerPartOfX = DAG.getNode( 4911 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4912 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4913 DAG.getDataLayout()))); 4914 4915 SDValue TwoToFractionalPartOfX; 4916 if (LimitFloatPrecision <= 6) { 4917 // For floating-point precision of 6: 4918 // 4919 // TwoToFractionalPartOfX = 4920 // 0.997535578f + 4921 // (0.735607626f + 0.252464424f * x) * x; 4922 // 4923 // error 0.0144103317, which is 6 bits 4924 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4925 getF32Constant(DAG, 0x3e814304, dl)); 4926 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4927 getF32Constant(DAG, 0x3f3c50c8, dl)); 4928 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4929 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4930 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4931 } else if (LimitFloatPrecision <= 12) { 4932 // For floating-point precision of 12: 4933 // 4934 // TwoToFractionalPartOfX = 4935 // 0.999892986f + 4936 // (0.696457318f + 4937 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4938 // 4939 // error 0.000107046256, which is 13 to 14 bits 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4941 getF32Constant(DAG, 0x3da235e3, dl)); 4942 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4943 getF32Constant(DAG, 0x3e65b8f3, dl)); 4944 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4945 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4946 getF32Constant(DAG, 0x3f324b07, dl)); 4947 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4948 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4949 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4950 } else { // LimitFloatPrecision <= 18 4951 // For floating-point precision of 18: 4952 // 4953 // TwoToFractionalPartOfX = 4954 // 0.999999982f + 4955 // (0.693148872f + 4956 // (0.240227044f + 4957 // (0.554906021e-1f + 4958 // (0.961591928e-2f + 4959 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4960 // error 2.47208000*10^(-7), which is better than 18 bits 4961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4962 getF32Constant(DAG, 0x3924b03e, dl)); 4963 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4964 getF32Constant(DAG, 0x3ab24b87, dl)); 4965 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4966 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4967 getF32Constant(DAG, 0x3c1d8c17, dl)); 4968 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4969 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4970 getF32Constant(DAG, 0x3d634a1d, dl)); 4971 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4972 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4973 getF32Constant(DAG, 0x3e75fe14, dl)); 4974 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4975 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4976 getF32Constant(DAG, 0x3f317234, dl)); 4977 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4978 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4979 getF32Constant(DAG, 0x3f800000, dl)); 4980 } 4981 4982 // Add the exponent into the result in integer domain. 4983 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4984 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4985 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4986 } 4987 4988 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4989 /// limited-precision mode. 4990 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4991 const TargetLowering &TLI, SDNodeFlags Flags) { 4992 if (Op.getValueType() == MVT::f32 && 4993 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4994 4995 // Put the exponent in the right bit position for later addition to the 4996 // final result: 4997 // 4998 // t0 = Op * log2(e) 4999 5000 // TODO: What fast-math-flags should be set here? 5001 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5002 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5003 return getLimitedPrecisionExp2(t0, dl, DAG); 5004 } 5005 5006 // No special expansion. 5007 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5008 } 5009 5010 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5011 /// limited-precision mode. 5012 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5013 const TargetLowering &TLI, SDNodeFlags Flags) { 5014 // TODO: What fast-math-flags should be set on the floating-point nodes? 5015 5016 if (Op.getValueType() == MVT::f32 && 5017 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5018 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5019 5020 // Scale the exponent by log(2). 5021 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5022 SDValue LogOfExponent = 5023 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5024 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5025 5026 // Get the significand and build it into a floating-point number with 5027 // exponent of 1. 5028 SDValue X = GetSignificand(DAG, Op1, dl); 5029 5030 SDValue LogOfMantissa; 5031 if (LimitFloatPrecision <= 6) { 5032 // For floating-point precision of 6: 5033 // 5034 // LogofMantissa = 5035 // -1.1609546f + 5036 // (1.4034025f - 0.23903021f * x) * x; 5037 // 5038 // error 0.0034276066, which is better than 8 bits 5039 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5040 getF32Constant(DAG, 0xbe74c456, dl)); 5041 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5042 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5043 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5044 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5045 getF32Constant(DAG, 0x3f949a29, dl)); 5046 } else if (LimitFloatPrecision <= 12) { 5047 // For floating-point precision of 12: 5048 // 5049 // LogOfMantissa = 5050 // -1.7417939f + 5051 // (2.8212026f + 5052 // (-1.4699568f + 5053 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5054 // 5055 // error 0.000061011436, which is 14 bits 5056 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5057 getF32Constant(DAG, 0xbd67b6d6, dl)); 5058 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5059 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5060 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5061 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5062 getF32Constant(DAG, 0x3fbc278b, dl)); 5063 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5064 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5065 getF32Constant(DAG, 0x40348e95, dl)); 5066 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5067 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5068 getF32Constant(DAG, 0x3fdef31a, dl)); 5069 } else { // LimitFloatPrecision <= 18 5070 // For floating-point precision of 18: 5071 // 5072 // LogOfMantissa = 5073 // -2.1072184f + 5074 // (4.2372794f + 5075 // (-3.7029485f + 5076 // (2.2781945f + 5077 // (-0.87823314f + 5078 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5079 // 5080 // error 0.0000023660568, which is better than 18 bits 5081 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5082 getF32Constant(DAG, 0xbc91e5ac, dl)); 5083 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5084 getF32Constant(DAG, 0x3e4350aa, dl)); 5085 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5086 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5087 getF32Constant(DAG, 0x3f60d3e3, dl)); 5088 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5089 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5090 getF32Constant(DAG, 0x4011cdf0, dl)); 5091 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5092 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5093 getF32Constant(DAG, 0x406cfd1c, dl)); 5094 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5095 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5096 getF32Constant(DAG, 0x408797cb, dl)); 5097 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5098 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5099 getF32Constant(DAG, 0x4006dcab, dl)); 5100 } 5101 5102 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5103 } 5104 5105 // No special expansion. 5106 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5107 } 5108 5109 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5110 /// limited-precision mode. 5111 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5112 const TargetLowering &TLI, SDNodeFlags Flags) { 5113 // TODO: What fast-math-flags should be set on the floating-point nodes? 5114 5115 if (Op.getValueType() == MVT::f32 && 5116 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5117 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5118 5119 // Get the exponent. 5120 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5121 5122 // Get the significand and build it into a floating-point number with 5123 // exponent of 1. 5124 SDValue X = GetSignificand(DAG, Op1, dl); 5125 5126 // Different possible minimax approximations of significand in 5127 // floating-point for various degrees of accuracy over [1,2]. 5128 SDValue Log2ofMantissa; 5129 if (LimitFloatPrecision <= 6) { 5130 // For floating-point precision of 6: 5131 // 5132 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5133 // 5134 // error 0.0049451742, which is more than 7 bits 5135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5136 getF32Constant(DAG, 0xbeb08fe0, dl)); 5137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5138 getF32Constant(DAG, 0x40019463, dl)); 5139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5140 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5141 getF32Constant(DAG, 0x3fd6633d, dl)); 5142 } else if (LimitFloatPrecision <= 12) { 5143 // For floating-point precision of 12: 5144 // 5145 // Log2ofMantissa = 5146 // -2.51285454f + 5147 // (4.07009056f + 5148 // (-2.12067489f + 5149 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5150 // 5151 // error 0.0000876136000, which is better than 13 bits 5152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5153 getF32Constant(DAG, 0xbda7262e, dl)); 5154 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5155 getF32Constant(DAG, 0x3f25280b, dl)); 5156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5157 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5158 getF32Constant(DAG, 0x4007b923, dl)); 5159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5160 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5161 getF32Constant(DAG, 0x40823e2f, dl)); 5162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5163 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5164 getF32Constant(DAG, 0x4020d29c, dl)); 5165 } else { // LimitFloatPrecision <= 18 5166 // For floating-point precision of 18: 5167 // 5168 // Log2ofMantissa = 5169 // -3.0400495f + 5170 // (6.1129976f + 5171 // (-5.3420409f + 5172 // (3.2865683f + 5173 // (-1.2669343f + 5174 // (0.27515199f - 5175 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5176 // 5177 // error 0.0000018516, which is better than 18 bits 5178 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5179 getF32Constant(DAG, 0xbcd2769e, dl)); 5180 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5181 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5182 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5183 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5184 getF32Constant(DAG, 0x3fa22ae7, dl)); 5185 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5186 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5187 getF32Constant(DAG, 0x40525723, dl)); 5188 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5189 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5190 getF32Constant(DAG, 0x40aaf200, dl)); 5191 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5192 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5193 getF32Constant(DAG, 0x40c39dad, dl)); 5194 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5195 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5196 getF32Constant(DAG, 0x4042902c, dl)); 5197 } 5198 5199 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5200 } 5201 5202 // No special expansion. 5203 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5204 } 5205 5206 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5207 /// limited-precision mode. 5208 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5209 const TargetLowering &TLI, SDNodeFlags Flags) { 5210 // TODO: What fast-math-flags should be set on the floating-point nodes? 5211 5212 if (Op.getValueType() == MVT::f32 && 5213 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5214 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5215 5216 // Scale the exponent by log10(2) [0.30102999f]. 5217 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5218 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5219 getF32Constant(DAG, 0x3e9a209a, dl)); 5220 5221 // Get the significand and build it into a floating-point number with 5222 // exponent of 1. 5223 SDValue X = GetSignificand(DAG, Op1, dl); 5224 5225 SDValue Log10ofMantissa; 5226 if (LimitFloatPrecision <= 6) { 5227 // For floating-point precision of 6: 5228 // 5229 // Log10ofMantissa = 5230 // -0.50419619f + 5231 // (0.60948995f - 0.10380950f * x) * x; 5232 // 5233 // error 0.0014886165, which is 6 bits 5234 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5235 getF32Constant(DAG, 0xbdd49a13, dl)); 5236 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5237 getF32Constant(DAG, 0x3f1c0789, dl)); 5238 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5239 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5240 getF32Constant(DAG, 0x3f011300, dl)); 5241 } else if (LimitFloatPrecision <= 12) { 5242 // For floating-point precision of 12: 5243 // 5244 // Log10ofMantissa = 5245 // -0.64831180f + 5246 // (0.91751397f + 5247 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5248 // 5249 // error 0.00019228036, which is better than 12 bits 5250 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5251 getF32Constant(DAG, 0x3d431f31, dl)); 5252 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5253 getF32Constant(DAG, 0x3ea21fb2, dl)); 5254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5255 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5256 getF32Constant(DAG, 0x3f6ae232, dl)); 5257 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5258 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5259 getF32Constant(DAG, 0x3f25f7c3, dl)); 5260 } else { // LimitFloatPrecision <= 18 5261 // For floating-point precision of 18: 5262 // 5263 // Log10ofMantissa = 5264 // -0.84299375f + 5265 // (1.5327582f + 5266 // (-1.0688956f + 5267 // (0.49102474f + 5268 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5269 // 5270 // error 0.0000037995730, which is better than 18 bits 5271 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5272 getF32Constant(DAG, 0x3c5d51ce, dl)); 5273 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5274 getF32Constant(DAG, 0x3e00685a, dl)); 5275 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5276 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5277 getF32Constant(DAG, 0x3efb6798, dl)); 5278 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5279 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5280 getF32Constant(DAG, 0x3f88d192, dl)); 5281 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5282 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5283 getF32Constant(DAG, 0x3fc4316c, dl)); 5284 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5285 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5286 getF32Constant(DAG, 0x3f57ce70, dl)); 5287 } 5288 5289 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5290 } 5291 5292 // No special expansion. 5293 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5294 } 5295 5296 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5297 /// limited-precision mode. 5298 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5299 const TargetLowering &TLI, SDNodeFlags Flags) { 5300 if (Op.getValueType() == MVT::f32 && 5301 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5302 return getLimitedPrecisionExp2(Op, dl, DAG); 5303 5304 // No special expansion. 5305 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5306 } 5307 5308 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5309 /// limited-precision mode with x == 10.0f. 5310 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5311 SelectionDAG &DAG, const TargetLowering &TLI, 5312 SDNodeFlags Flags) { 5313 bool IsExp10 = false; 5314 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5315 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5316 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5317 APFloat Ten(10.0f); 5318 IsExp10 = LHSC->isExactlyValue(Ten); 5319 } 5320 } 5321 5322 // TODO: What fast-math-flags should be set on the FMUL node? 5323 if (IsExp10) { 5324 // Put the exponent in the right bit position for later addition to the 5325 // final result: 5326 // 5327 // #define LOG2OF10 3.3219281f 5328 // t0 = Op * LOG2OF10; 5329 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5330 getF32Constant(DAG, 0x40549a78, dl)); 5331 return getLimitedPrecisionExp2(t0, dl, DAG); 5332 } 5333 5334 // No special expansion. 5335 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5336 } 5337 5338 /// ExpandPowI - Expand a llvm.powi intrinsic. 5339 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5340 SelectionDAG &DAG) { 5341 // If RHS is a constant, we can expand this out to a multiplication tree, 5342 // otherwise we end up lowering to a call to __powidf2 (for example). When 5343 // optimizing for size, we only want to do this if the expansion would produce 5344 // a small number of multiplies, otherwise we do the full expansion. 5345 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5346 // Get the exponent as a positive value. 5347 unsigned Val = RHSC->getSExtValue(); 5348 if ((int)Val < 0) Val = -Val; 5349 5350 // powi(x, 0) -> 1.0 5351 if (Val == 0) 5352 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5353 5354 bool OptForSize = DAG.shouldOptForSize(); 5355 if (!OptForSize || 5356 // If optimizing for size, don't insert too many multiplies. 5357 // This inserts up to 5 multiplies. 5358 countPopulation(Val) + Log2_32(Val) < 7) { 5359 // We use the simple binary decomposition method to generate the multiply 5360 // sequence. There are more optimal ways to do this (for example, 5361 // powi(x,15) generates one more multiply than it should), but this has 5362 // the benefit of being both really simple and much better than a libcall. 5363 SDValue Res; // Logically starts equal to 1.0 5364 SDValue CurSquare = LHS; 5365 // TODO: Intrinsics should have fast-math-flags that propagate to these 5366 // nodes. 5367 while (Val) { 5368 if (Val & 1) { 5369 if (Res.getNode()) 5370 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5371 else 5372 Res = CurSquare; // 1.0*CurSquare. 5373 } 5374 5375 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5376 CurSquare, CurSquare); 5377 Val >>= 1; 5378 } 5379 5380 // If the original was negative, invert the result, producing 1/(x*x*x). 5381 if (RHSC->getSExtValue() < 0) 5382 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5383 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5384 return Res; 5385 } 5386 } 5387 5388 // Otherwise, expand to a libcall. 5389 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5390 } 5391 5392 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5393 SDValue LHS, SDValue RHS, SDValue Scale, 5394 SelectionDAG &DAG, const TargetLowering &TLI) { 5395 EVT VT = LHS.getValueType(); 5396 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5397 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5398 LLVMContext &Ctx = *DAG.getContext(); 5399 5400 // If the type is legal but the operation isn't, this node might survive all 5401 // the way to operation legalization. If we end up there and we do not have 5402 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5403 // node. 5404 5405 // Coax the legalizer into expanding the node during type legalization instead 5406 // by bumping the size by one bit. This will force it to Promote, enabling the 5407 // early expansion and avoiding the need to expand later. 5408 5409 // We don't have to do this if Scale is 0; that can always be expanded, unless 5410 // it's a saturating signed operation. Those can experience true integer 5411 // division overflow, a case which we must avoid. 5412 5413 // FIXME: We wouldn't have to do this (or any of the early 5414 // expansion/promotion) if it was possible to expand a libcall of an 5415 // illegal type during operation legalization. But it's not, so things 5416 // get a bit hacky. 5417 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5418 if ((ScaleInt > 0 || (Saturating && Signed)) && 5419 (TLI.isTypeLegal(VT) || 5420 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5421 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5422 Opcode, VT, ScaleInt); 5423 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5424 EVT PromVT; 5425 if (VT.isScalarInteger()) 5426 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5427 else if (VT.isVector()) { 5428 PromVT = VT.getVectorElementType(); 5429 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5430 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5431 } else 5432 llvm_unreachable("Wrong VT for DIVFIX?"); 5433 if (Signed) { 5434 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5435 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5436 } else { 5437 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5438 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5439 } 5440 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5441 // For saturating operations, we need to shift up the LHS to get the 5442 // proper saturation width, and then shift down again afterwards. 5443 if (Saturating) 5444 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5445 DAG.getConstant(1, DL, ShiftTy)); 5446 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5447 if (Saturating) 5448 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5449 DAG.getConstant(1, DL, ShiftTy)); 5450 return DAG.getZExtOrTrunc(Res, DL, VT); 5451 } 5452 } 5453 5454 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5455 } 5456 5457 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5458 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5459 static void 5460 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5461 const SDValue &N) { 5462 switch (N.getOpcode()) { 5463 case ISD::CopyFromReg: { 5464 SDValue Op = N.getOperand(1); 5465 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5466 Op.getValueType().getSizeInBits()); 5467 return; 5468 } 5469 case ISD::BITCAST: 5470 case ISD::AssertZext: 5471 case ISD::AssertSext: 5472 case ISD::TRUNCATE: 5473 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5474 return; 5475 case ISD::BUILD_PAIR: 5476 case ISD::BUILD_VECTOR: 5477 case ISD::CONCAT_VECTORS: 5478 for (SDValue Op : N->op_values()) 5479 getUnderlyingArgRegs(Regs, Op); 5480 return; 5481 default: 5482 return; 5483 } 5484 } 5485 5486 /// If the DbgValueInst is a dbg_value of a function argument, create the 5487 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5488 /// instruction selection, they will be inserted to the entry BB. 5489 /// We don't currently support this for variadic dbg_values, as they shouldn't 5490 /// appear for function arguments or in the prologue. 5491 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5492 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5493 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5494 const Argument *Arg = dyn_cast<Argument>(V); 5495 if (!Arg) 5496 return false; 5497 5498 MachineFunction &MF = DAG.getMachineFunction(); 5499 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5500 5501 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5502 // we've been asked to pursue. 5503 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5504 bool Indirect) { 5505 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5506 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5507 // pointing at the VReg, which will be patched up later. 5508 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5509 auto MIB = BuildMI(MF, DL, Inst); 5510 MIB.addReg(Reg, RegState::Debug); 5511 MIB.addImm(0); 5512 MIB.addMetadata(Variable); 5513 auto *NewDIExpr = FragExpr; 5514 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5515 // the DIExpression. 5516 if (Indirect) 5517 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5518 MIB.addMetadata(NewDIExpr); 5519 return MIB; 5520 } else { 5521 // Create a completely standard DBG_VALUE. 5522 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5523 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5524 } 5525 }; 5526 5527 if (!IsDbgDeclare) { 5528 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5529 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5530 // the entry block. 5531 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5532 if (!IsInEntryBlock) 5533 return false; 5534 5535 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5536 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5537 // variable that also is a param. 5538 // 5539 // Although, if we are at the top of the entry block already, we can still 5540 // emit using ArgDbgValue. This might catch some situations when the 5541 // dbg.value refers to an argument that isn't used in the entry block, so 5542 // any CopyToReg node would be optimized out and the only way to express 5543 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5544 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5545 // we should only emit as ArgDbgValue if the Variable is an argument to the 5546 // current function, and the dbg.value intrinsic is found in the entry 5547 // block. 5548 bool VariableIsFunctionInputArg = Variable->isParameter() && 5549 !DL->getInlinedAt(); 5550 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5551 if (!IsInPrologue && !VariableIsFunctionInputArg) 5552 return false; 5553 5554 // Here we assume that a function argument on IR level only can be used to 5555 // describe one input parameter on source level. If we for example have 5556 // source code like this 5557 // 5558 // struct A { long x, y; }; 5559 // void foo(struct A a, long b) { 5560 // ... 5561 // b = a.x; 5562 // ... 5563 // } 5564 // 5565 // and IR like this 5566 // 5567 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5568 // entry: 5569 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5570 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5571 // call void @llvm.dbg.value(metadata i32 %b, "b", 5572 // ... 5573 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5574 // ... 5575 // 5576 // then the last dbg.value is describing a parameter "b" using a value that 5577 // is an argument. But since we already has used %a1 to describe a parameter 5578 // we should not handle that last dbg.value here (that would result in an 5579 // incorrect hoisting of the DBG_VALUE to the function entry). 5580 // Notice that we allow one dbg.value per IR level argument, to accommodate 5581 // for the situation with fragments above. 5582 if (VariableIsFunctionInputArg) { 5583 unsigned ArgNo = Arg->getArgNo(); 5584 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5585 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5586 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5587 return false; 5588 FuncInfo.DescribedArgs.set(ArgNo); 5589 } 5590 } 5591 5592 bool IsIndirect = false; 5593 Optional<MachineOperand> Op; 5594 // Some arguments' frame index is recorded during argument lowering. 5595 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5596 if (FI != std::numeric_limits<int>::max()) 5597 Op = MachineOperand::CreateFI(FI); 5598 5599 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5600 if (!Op && N.getNode()) { 5601 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5602 Register Reg; 5603 if (ArgRegsAndSizes.size() == 1) 5604 Reg = ArgRegsAndSizes.front().first; 5605 5606 if (Reg && Reg.isVirtual()) { 5607 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5608 Register PR = RegInfo.getLiveInPhysReg(Reg); 5609 if (PR) 5610 Reg = PR; 5611 } 5612 if (Reg) { 5613 Op = MachineOperand::CreateReg(Reg, false); 5614 IsIndirect = IsDbgDeclare; 5615 } 5616 } 5617 5618 if (!Op && N.getNode()) { 5619 // Check if frame index is available. 5620 SDValue LCandidate = peekThroughBitcasts(N); 5621 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5622 if (FrameIndexSDNode *FINode = 5623 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5624 Op = MachineOperand::CreateFI(FINode->getIndex()); 5625 } 5626 5627 if (!Op) { 5628 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5629 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5630 SplitRegs) { 5631 unsigned Offset = 0; 5632 for (const auto &RegAndSize : SplitRegs) { 5633 // If the expression is already a fragment, the current register 5634 // offset+size might extend beyond the fragment. In this case, only 5635 // the register bits that are inside the fragment are relevant. 5636 int RegFragmentSizeInBits = RegAndSize.second; 5637 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5638 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5639 // The register is entirely outside the expression fragment, 5640 // so is irrelevant for debug info. 5641 if (Offset >= ExprFragmentSizeInBits) 5642 break; 5643 // The register is partially outside the expression fragment, only 5644 // the low bits within the fragment are relevant for debug info. 5645 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5646 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5647 } 5648 } 5649 5650 auto FragmentExpr = DIExpression::createFragmentExpression( 5651 Expr, Offset, RegFragmentSizeInBits); 5652 Offset += RegAndSize.second; 5653 // If a valid fragment expression cannot be created, the variable's 5654 // correct value cannot be determined and so it is set as Undef. 5655 if (!FragmentExpr) { 5656 SDDbgValue *SDV = DAG.getConstantDbgValue( 5657 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5658 DAG.AddDbgValue(SDV, false); 5659 continue; 5660 } 5661 MachineInstr *NewMI = 5662 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5663 FuncInfo.ArgDbgValues.push_back(NewMI); 5664 } 5665 }; 5666 5667 // Check if ValueMap has reg number. 5668 DenseMap<const Value *, Register>::const_iterator 5669 VMI = FuncInfo.ValueMap.find(V); 5670 if (VMI != FuncInfo.ValueMap.end()) { 5671 const auto &TLI = DAG.getTargetLoweringInfo(); 5672 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5673 V->getType(), None); 5674 if (RFV.occupiesMultipleRegs()) { 5675 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5676 return true; 5677 } 5678 5679 Op = MachineOperand::CreateReg(VMI->second, false); 5680 IsIndirect = IsDbgDeclare; 5681 } else if (ArgRegsAndSizes.size() > 1) { 5682 // This was split due to the calling convention, and no virtual register 5683 // mapping exists for the value. 5684 splitMultiRegDbgValue(ArgRegsAndSizes); 5685 return true; 5686 } 5687 } 5688 5689 if (!Op) 5690 return false; 5691 5692 assert(Variable->isValidLocationForIntrinsic(DL) && 5693 "Expected inlined-at fields to agree"); 5694 MachineInstr *NewMI = nullptr; 5695 5696 if (Op->isReg()) 5697 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5698 else 5699 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5700 Variable, Expr); 5701 5702 FuncInfo.ArgDbgValues.push_back(NewMI); 5703 return true; 5704 } 5705 5706 /// Return the appropriate SDDbgValue based on N. 5707 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5708 DILocalVariable *Variable, 5709 DIExpression *Expr, 5710 const DebugLoc &dl, 5711 unsigned DbgSDNodeOrder) { 5712 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5713 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5714 // stack slot locations. 5715 // 5716 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5717 // debug values here after optimization: 5718 // 5719 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5720 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5721 // 5722 // Both describe the direct values of their associated variables. 5723 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5724 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5725 } 5726 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5727 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5728 } 5729 5730 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5731 switch (Intrinsic) { 5732 case Intrinsic::smul_fix: 5733 return ISD::SMULFIX; 5734 case Intrinsic::umul_fix: 5735 return ISD::UMULFIX; 5736 case Intrinsic::smul_fix_sat: 5737 return ISD::SMULFIXSAT; 5738 case Intrinsic::umul_fix_sat: 5739 return ISD::UMULFIXSAT; 5740 case Intrinsic::sdiv_fix: 5741 return ISD::SDIVFIX; 5742 case Intrinsic::udiv_fix: 5743 return ISD::UDIVFIX; 5744 case Intrinsic::sdiv_fix_sat: 5745 return ISD::SDIVFIXSAT; 5746 case Intrinsic::udiv_fix_sat: 5747 return ISD::UDIVFIXSAT; 5748 default: 5749 llvm_unreachable("Unhandled fixed point intrinsic"); 5750 } 5751 } 5752 5753 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5754 const char *FunctionName) { 5755 assert(FunctionName && "FunctionName must not be nullptr"); 5756 SDValue Callee = DAG.getExternalSymbol( 5757 FunctionName, 5758 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5759 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5760 } 5761 5762 /// Given a @llvm.call.preallocated.setup, return the corresponding 5763 /// preallocated call. 5764 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5765 assert(cast<CallBase>(PreallocatedSetup) 5766 ->getCalledFunction() 5767 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5768 "expected call_preallocated_setup Value"); 5769 for (auto *U : PreallocatedSetup->users()) { 5770 auto *UseCall = cast<CallBase>(U); 5771 const Function *Fn = UseCall->getCalledFunction(); 5772 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5773 return UseCall; 5774 } 5775 } 5776 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5777 } 5778 5779 /// Lower the call to the specified intrinsic function. 5780 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5781 unsigned Intrinsic) { 5782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5783 SDLoc sdl = getCurSDLoc(); 5784 DebugLoc dl = getCurDebugLoc(); 5785 SDValue Res; 5786 5787 SDNodeFlags Flags; 5788 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5789 Flags.copyFMF(*FPOp); 5790 5791 switch (Intrinsic) { 5792 default: 5793 // By default, turn this into a target intrinsic node. 5794 visitTargetIntrinsic(I, Intrinsic); 5795 return; 5796 case Intrinsic::vscale: { 5797 match(&I, m_VScale(DAG.getDataLayout())); 5798 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5799 setValue(&I, 5800 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5801 return; 5802 } 5803 case Intrinsic::vastart: visitVAStart(I); return; 5804 case Intrinsic::vaend: visitVAEnd(I); return; 5805 case Intrinsic::vacopy: visitVACopy(I); return; 5806 case Intrinsic::returnaddress: 5807 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5808 TLI.getPointerTy(DAG.getDataLayout()), 5809 getValue(I.getArgOperand(0)))); 5810 return; 5811 case Intrinsic::addressofreturnaddress: 5812 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5813 TLI.getPointerTy(DAG.getDataLayout()))); 5814 return; 5815 case Intrinsic::sponentry: 5816 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5817 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5818 return; 5819 case Intrinsic::frameaddress: 5820 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5821 TLI.getFrameIndexTy(DAG.getDataLayout()), 5822 getValue(I.getArgOperand(0)))); 5823 return; 5824 case Intrinsic::read_volatile_register: 5825 case Intrinsic::read_register: { 5826 Value *Reg = I.getArgOperand(0); 5827 SDValue Chain = getRoot(); 5828 SDValue RegName = 5829 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5830 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5831 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5832 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5833 setValue(&I, Res); 5834 DAG.setRoot(Res.getValue(1)); 5835 return; 5836 } 5837 case Intrinsic::write_register: { 5838 Value *Reg = I.getArgOperand(0); 5839 Value *RegValue = I.getArgOperand(1); 5840 SDValue Chain = getRoot(); 5841 SDValue RegName = 5842 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5843 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5844 RegName, getValue(RegValue))); 5845 return; 5846 } 5847 case Intrinsic::memcpy: { 5848 const auto &MCI = cast<MemCpyInst>(I); 5849 SDValue Op1 = getValue(I.getArgOperand(0)); 5850 SDValue Op2 = getValue(I.getArgOperand(1)); 5851 SDValue Op3 = getValue(I.getArgOperand(2)); 5852 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5853 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5854 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5855 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5856 bool isVol = MCI.isVolatile(); 5857 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5858 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5859 // node. 5860 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5861 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5862 /* AlwaysInline */ false, isTC, 5863 MachinePointerInfo(I.getArgOperand(0)), 5864 MachinePointerInfo(I.getArgOperand(1)), 5865 I.getAAMetadata()); 5866 updateDAGForMaybeTailCall(MC); 5867 return; 5868 } 5869 case Intrinsic::memcpy_inline: { 5870 const auto &MCI = cast<MemCpyInlineInst>(I); 5871 SDValue Dst = getValue(I.getArgOperand(0)); 5872 SDValue Src = getValue(I.getArgOperand(1)); 5873 SDValue Size = getValue(I.getArgOperand(2)); 5874 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5875 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5876 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5877 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5878 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5879 bool isVol = MCI.isVolatile(); 5880 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5881 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5882 // node. 5883 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5884 /* AlwaysInline */ true, isTC, 5885 MachinePointerInfo(I.getArgOperand(0)), 5886 MachinePointerInfo(I.getArgOperand(1)), 5887 I.getAAMetadata()); 5888 updateDAGForMaybeTailCall(MC); 5889 return; 5890 } 5891 case Intrinsic::memset: { 5892 const auto &MSI = cast<MemSetInst>(I); 5893 SDValue Op1 = getValue(I.getArgOperand(0)); 5894 SDValue Op2 = getValue(I.getArgOperand(1)); 5895 SDValue Op3 = getValue(I.getArgOperand(2)); 5896 // @llvm.memset defines 0 and 1 to both mean no alignment. 5897 Align Alignment = MSI.getDestAlign().valueOrOne(); 5898 bool isVol = MSI.isVolatile(); 5899 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5900 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5901 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5902 MachinePointerInfo(I.getArgOperand(0)), 5903 I.getAAMetadata()); 5904 updateDAGForMaybeTailCall(MS); 5905 return; 5906 } 5907 case Intrinsic::memmove: { 5908 const auto &MMI = cast<MemMoveInst>(I); 5909 SDValue Op1 = getValue(I.getArgOperand(0)); 5910 SDValue Op2 = getValue(I.getArgOperand(1)); 5911 SDValue Op3 = getValue(I.getArgOperand(2)); 5912 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5913 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5914 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5915 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5916 bool isVol = MMI.isVolatile(); 5917 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5918 // FIXME: Support passing different dest/src alignments to the memmove DAG 5919 // node. 5920 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5921 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5922 isTC, MachinePointerInfo(I.getArgOperand(0)), 5923 MachinePointerInfo(I.getArgOperand(1)), 5924 I.getAAMetadata()); 5925 updateDAGForMaybeTailCall(MM); 5926 return; 5927 } 5928 case Intrinsic::memcpy_element_unordered_atomic: { 5929 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5930 SDValue Dst = getValue(MI.getRawDest()); 5931 SDValue Src = getValue(MI.getRawSource()); 5932 SDValue Length = getValue(MI.getLength()); 5933 5934 unsigned DstAlign = MI.getDestAlignment(); 5935 unsigned SrcAlign = MI.getSourceAlignment(); 5936 Type *LengthTy = MI.getLength()->getType(); 5937 unsigned ElemSz = MI.getElementSizeInBytes(); 5938 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5939 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5940 SrcAlign, Length, LengthTy, ElemSz, isTC, 5941 MachinePointerInfo(MI.getRawDest()), 5942 MachinePointerInfo(MI.getRawSource())); 5943 updateDAGForMaybeTailCall(MC); 5944 return; 5945 } 5946 case Intrinsic::memmove_element_unordered_atomic: { 5947 auto &MI = cast<AtomicMemMoveInst>(I); 5948 SDValue Dst = getValue(MI.getRawDest()); 5949 SDValue Src = getValue(MI.getRawSource()); 5950 SDValue Length = getValue(MI.getLength()); 5951 5952 unsigned DstAlign = MI.getDestAlignment(); 5953 unsigned SrcAlign = MI.getSourceAlignment(); 5954 Type *LengthTy = MI.getLength()->getType(); 5955 unsigned ElemSz = MI.getElementSizeInBytes(); 5956 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5957 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5958 SrcAlign, Length, LengthTy, ElemSz, isTC, 5959 MachinePointerInfo(MI.getRawDest()), 5960 MachinePointerInfo(MI.getRawSource())); 5961 updateDAGForMaybeTailCall(MC); 5962 return; 5963 } 5964 case Intrinsic::memset_element_unordered_atomic: { 5965 auto &MI = cast<AtomicMemSetInst>(I); 5966 SDValue Dst = getValue(MI.getRawDest()); 5967 SDValue Val = getValue(MI.getValue()); 5968 SDValue Length = getValue(MI.getLength()); 5969 5970 unsigned DstAlign = MI.getDestAlignment(); 5971 Type *LengthTy = MI.getLength()->getType(); 5972 unsigned ElemSz = MI.getElementSizeInBytes(); 5973 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5974 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5975 LengthTy, ElemSz, isTC, 5976 MachinePointerInfo(MI.getRawDest())); 5977 updateDAGForMaybeTailCall(MC); 5978 return; 5979 } 5980 case Intrinsic::call_preallocated_setup: { 5981 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5982 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5983 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5984 getRoot(), SrcValue); 5985 setValue(&I, Res); 5986 DAG.setRoot(Res); 5987 return; 5988 } 5989 case Intrinsic::call_preallocated_arg: { 5990 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5991 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5992 SDValue Ops[3]; 5993 Ops[0] = getRoot(); 5994 Ops[1] = SrcValue; 5995 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5996 MVT::i32); // arg index 5997 SDValue Res = DAG.getNode( 5998 ISD::PREALLOCATED_ARG, sdl, 5999 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6000 setValue(&I, Res); 6001 DAG.setRoot(Res.getValue(1)); 6002 return; 6003 } 6004 case Intrinsic::dbg_addr: 6005 case Intrinsic::dbg_declare: { 6006 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6007 // they are non-variadic. 6008 const auto &DI = cast<DbgVariableIntrinsic>(I); 6009 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6010 DILocalVariable *Variable = DI.getVariable(); 6011 DIExpression *Expression = DI.getExpression(); 6012 dropDanglingDebugInfo(Variable, Expression); 6013 assert(Variable && "Missing variable"); 6014 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6015 << "\n"); 6016 // Check if address has undef value. 6017 const Value *Address = DI.getVariableLocationOp(0); 6018 if (!Address || isa<UndefValue>(Address) || 6019 (Address->use_empty() && !isa<Argument>(Address))) { 6020 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6021 << " (bad/undef/unused-arg address)\n"); 6022 return; 6023 } 6024 6025 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6026 6027 // Check if this variable can be described by a frame index, typically 6028 // either as a static alloca or a byval parameter. 6029 int FI = std::numeric_limits<int>::max(); 6030 if (const auto *AI = 6031 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6032 if (AI->isStaticAlloca()) { 6033 auto I = FuncInfo.StaticAllocaMap.find(AI); 6034 if (I != FuncInfo.StaticAllocaMap.end()) 6035 FI = I->second; 6036 } 6037 } else if (const auto *Arg = dyn_cast<Argument>( 6038 Address->stripInBoundsConstantOffsets())) { 6039 FI = FuncInfo.getArgumentFrameIndex(Arg); 6040 } 6041 6042 // llvm.dbg.addr is control dependent and always generates indirect 6043 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6044 // the MachineFunction variable table. 6045 if (FI != std::numeric_limits<int>::max()) { 6046 if (Intrinsic == Intrinsic::dbg_addr) { 6047 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6048 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6049 dl, SDNodeOrder); 6050 DAG.AddDbgValue(SDV, isParameter); 6051 } else { 6052 LLVM_DEBUG(dbgs() << "Skipping " << DI 6053 << " (variable info stashed in MF side table)\n"); 6054 } 6055 return; 6056 } 6057 6058 SDValue &N = NodeMap[Address]; 6059 if (!N.getNode() && isa<Argument>(Address)) 6060 // Check unused arguments map. 6061 N = UnusedArgNodeMap[Address]; 6062 SDDbgValue *SDV; 6063 if (N.getNode()) { 6064 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6065 Address = BCI->getOperand(0); 6066 // Parameters are handled specially. 6067 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6068 if (isParameter && FINode) { 6069 // Byval parameter. We have a frame index at this point. 6070 SDV = 6071 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6072 /*IsIndirect*/ true, dl, SDNodeOrder); 6073 } else if (isa<Argument>(Address)) { 6074 // Address is an argument, so try to emit its dbg value using 6075 // virtual register info from the FuncInfo.ValueMap. 6076 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6077 return; 6078 } else { 6079 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6080 true, dl, SDNodeOrder); 6081 } 6082 DAG.AddDbgValue(SDV, isParameter); 6083 } else { 6084 // If Address is an argument then try to emit its dbg value using 6085 // virtual register info from the FuncInfo.ValueMap. 6086 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6087 N)) { 6088 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6089 << " (could not emit func-arg dbg_value)\n"); 6090 } 6091 } 6092 return; 6093 } 6094 case Intrinsic::dbg_label: { 6095 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6096 DILabel *Label = DI.getLabel(); 6097 assert(Label && "Missing label"); 6098 6099 SDDbgLabel *SDV; 6100 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6101 DAG.AddDbgLabel(SDV); 6102 return; 6103 } 6104 case Intrinsic::dbg_value: { 6105 const DbgValueInst &DI = cast<DbgValueInst>(I); 6106 assert(DI.getVariable() && "Missing variable"); 6107 6108 DILocalVariable *Variable = DI.getVariable(); 6109 DIExpression *Expression = DI.getExpression(); 6110 dropDanglingDebugInfo(Variable, Expression); 6111 SmallVector<Value *, 4> Values(DI.getValues()); 6112 if (Values.empty()) 6113 return; 6114 6115 if (std::count(Values.begin(), Values.end(), nullptr)) 6116 return; 6117 6118 bool IsVariadic = DI.hasArgList(); 6119 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6120 SDNodeOrder, IsVariadic)) 6121 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6122 return; 6123 } 6124 6125 case Intrinsic::eh_typeid_for: { 6126 // Find the type id for the given typeinfo. 6127 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6128 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6129 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6130 setValue(&I, Res); 6131 return; 6132 } 6133 6134 case Intrinsic::eh_return_i32: 6135 case Intrinsic::eh_return_i64: 6136 DAG.getMachineFunction().setCallsEHReturn(true); 6137 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6138 MVT::Other, 6139 getControlRoot(), 6140 getValue(I.getArgOperand(0)), 6141 getValue(I.getArgOperand(1)))); 6142 return; 6143 case Intrinsic::eh_unwind_init: 6144 DAG.getMachineFunction().setCallsUnwindInit(true); 6145 return; 6146 case Intrinsic::eh_dwarf_cfa: 6147 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6148 TLI.getPointerTy(DAG.getDataLayout()), 6149 getValue(I.getArgOperand(0)))); 6150 return; 6151 case Intrinsic::eh_sjlj_callsite: { 6152 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6153 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6154 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6155 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6156 6157 MMI.setCurrentCallSite(CI->getZExtValue()); 6158 return; 6159 } 6160 case Intrinsic::eh_sjlj_functioncontext: { 6161 // Get and store the index of the function context. 6162 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6163 AllocaInst *FnCtx = 6164 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6165 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6166 MFI.setFunctionContextIndex(FI); 6167 return; 6168 } 6169 case Intrinsic::eh_sjlj_setjmp: { 6170 SDValue Ops[2]; 6171 Ops[0] = getRoot(); 6172 Ops[1] = getValue(I.getArgOperand(0)); 6173 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6174 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6175 setValue(&I, Op.getValue(0)); 6176 DAG.setRoot(Op.getValue(1)); 6177 return; 6178 } 6179 case Intrinsic::eh_sjlj_longjmp: 6180 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6181 getRoot(), getValue(I.getArgOperand(0)))); 6182 return; 6183 case Intrinsic::eh_sjlj_setup_dispatch: 6184 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6185 getRoot())); 6186 return; 6187 case Intrinsic::masked_gather: 6188 visitMaskedGather(I); 6189 return; 6190 case Intrinsic::masked_load: 6191 visitMaskedLoad(I); 6192 return; 6193 case Intrinsic::masked_scatter: 6194 visitMaskedScatter(I); 6195 return; 6196 case Intrinsic::masked_store: 6197 visitMaskedStore(I); 6198 return; 6199 case Intrinsic::masked_expandload: 6200 visitMaskedLoad(I, true /* IsExpanding */); 6201 return; 6202 case Intrinsic::masked_compressstore: 6203 visitMaskedStore(I, true /* IsCompressing */); 6204 return; 6205 case Intrinsic::powi: 6206 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6207 getValue(I.getArgOperand(1)), DAG)); 6208 return; 6209 case Intrinsic::log: 6210 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6211 return; 6212 case Intrinsic::log2: 6213 setValue(&I, 6214 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6215 return; 6216 case Intrinsic::log10: 6217 setValue(&I, 6218 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6219 return; 6220 case Intrinsic::exp: 6221 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6222 return; 6223 case Intrinsic::exp2: 6224 setValue(&I, 6225 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6226 return; 6227 case Intrinsic::pow: 6228 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6229 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6230 return; 6231 case Intrinsic::sqrt: 6232 case Intrinsic::fabs: 6233 case Intrinsic::sin: 6234 case Intrinsic::cos: 6235 case Intrinsic::floor: 6236 case Intrinsic::ceil: 6237 case Intrinsic::trunc: 6238 case Intrinsic::rint: 6239 case Intrinsic::nearbyint: 6240 case Intrinsic::round: 6241 case Intrinsic::roundeven: 6242 case Intrinsic::canonicalize: { 6243 unsigned Opcode; 6244 switch (Intrinsic) { 6245 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6246 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6247 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6248 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6249 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6250 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6251 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6252 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6253 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6254 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6255 case Intrinsic::round: Opcode = ISD::FROUND; break; 6256 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6257 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6258 } 6259 6260 setValue(&I, DAG.getNode(Opcode, sdl, 6261 getValue(I.getArgOperand(0)).getValueType(), 6262 getValue(I.getArgOperand(0)), Flags)); 6263 return; 6264 } 6265 case Intrinsic::lround: 6266 case Intrinsic::llround: 6267 case Intrinsic::lrint: 6268 case Intrinsic::llrint: { 6269 unsigned Opcode; 6270 switch (Intrinsic) { 6271 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6272 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6273 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6274 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6275 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6276 } 6277 6278 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6279 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6280 getValue(I.getArgOperand(0)))); 6281 return; 6282 } 6283 case Intrinsic::minnum: 6284 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6285 getValue(I.getArgOperand(0)).getValueType(), 6286 getValue(I.getArgOperand(0)), 6287 getValue(I.getArgOperand(1)), Flags)); 6288 return; 6289 case Intrinsic::maxnum: 6290 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6291 getValue(I.getArgOperand(0)).getValueType(), 6292 getValue(I.getArgOperand(0)), 6293 getValue(I.getArgOperand(1)), Flags)); 6294 return; 6295 case Intrinsic::minimum: 6296 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6297 getValue(I.getArgOperand(0)).getValueType(), 6298 getValue(I.getArgOperand(0)), 6299 getValue(I.getArgOperand(1)), Flags)); 6300 return; 6301 case Intrinsic::maximum: 6302 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6303 getValue(I.getArgOperand(0)).getValueType(), 6304 getValue(I.getArgOperand(0)), 6305 getValue(I.getArgOperand(1)), Flags)); 6306 return; 6307 case Intrinsic::copysign: 6308 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6309 getValue(I.getArgOperand(0)).getValueType(), 6310 getValue(I.getArgOperand(0)), 6311 getValue(I.getArgOperand(1)), Flags)); 6312 return; 6313 case Intrinsic::arithmetic_fence: { 6314 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6315 getValue(I.getArgOperand(0)).getValueType(), 6316 getValue(I.getArgOperand(0)), Flags)); 6317 return; 6318 } 6319 case Intrinsic::fma: 6320 setValue(&I, DAG.getNode( 6321 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6322 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6323 getValue(I.getArgOperand(2)), Flags)); 6324 return; 6325 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6326 case Intrinsic::INTRINSIC: 6327 #include "llvm/IR/ConstrainedOps.def" 6328 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6329 return; 6330 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6331 #include "llvm/IR/VPIntrinsics.def" 6332 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6333 return; 6334 case Intrinsic::fmuladd: { 6335 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6336 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6337 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6338 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6339 getValue(I.getArgOperand(0)).getValueType(), 6340 getValue(I.getArgOperand(0)), 6341 getValue(I.getArgOperand(1)), 6342 getValue(I.getArgOperand(2)), Flags)); 6343 } else { 6344 // TODO: Intrinsic calls should have fast-math-flags. 6345 SDValue Mul = DAG.getNode( 6346 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6347 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6348 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6349 getValue(I.getArgOperand(0)).getValueType(), 6350 Mul, getValue(I.getArgOperand(2)), Flags); 6351 setValue(&I, Add); 6352 } 6353 return; 6354 } 6355 case Intrinsic::convert_to_fp16: 6356 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6357 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6358 getValue(I.getArgOperand(0)), 6359 DAG.getTargetConstant(0, sdl, 6360 MVT::i32)))); 6361 return; 6362 case Intrinsic::convert_from_fp16: 6363 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6364 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6365 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6366 getValue(I.getArgOperand(0))))); 6367 return; 6368 case Intrinsic::fptosi_sat: { 6369 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6370 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6371 getValue(I.getArgOperand(0)), 6372 DAG.getValueType(VT.getScalarType()))); 6373 return; 6374 } 6375 case Intrinsic::fptoui_sat: { 6376 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6377 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6378 getValue(I.getArgOperand(0)), 6379 DAG.getValueType(VT.getScalarType()))); 6380 return; 6381 } 6382 case Intrinsic::set_rounding: 6383 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6384 {getRoot(), getValue(I.getArgOperand(0))}); 6385 setValue(&I, Res); 6386 DAG.setRoot(Res.getValue(0)); 6387 return; 6388 case Intrinsic::pcmarker: { 6389 SDValue Tmp = getValue(I.getArgOperand(0)); 6390 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6391 return; 6392 } 6393 case Intrinsic::readcyclecounter: { 6394 SDValue Op = getRoot(); 6395 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6396 DAG.getVTList(MVT::i64, MVT::Other), Op); 6397 setValue(&I, Res); 6398 DAG.setRoot(Res.getValue(1)); 6399 return; 6400 } 6401 case Intrinsic::bitreverse: 6402 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6403 getValue(I.getArgOperand(0)).getValueType(), 6404 getValue(I.getArgOperand(0)))); 6405 return; 6406 case Intrinsic::bswap: 6407 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6408 getValue(I.getArgOperand(0)).getValueType(), 6409 getValue(I.getArgOperand(0)))); 6410 return; 6411 case Intrinsic::cttz: { 6412 SDValue Arg = getValue(I.getArgOperand(0)); 6413 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6414 EVT Ty = Arg.getValueType(); 6415 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6416 sdl, Ty, Arg)); 6417 return; 6418 } 6419 case Intrinsic::ctlz: { 6420 SDValue Arg = getValue(I.getArgOperand(0)); 6421 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6422 EVT Ty = Arg.getValueType(); 6423 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6424 sdl, Ty, Arg)); 6425 return; 6426 } 6427 case Intrinsic::ctpop: { 6428 SDValue Arg = getValue(I.getArgOperand(0)); 6429 EVT Ty = Arg.getValueType(); 6430 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6431 return; 6432 } 6433 case Intrinsic::fshl: 6434 case Intrinsic::fshr: { 6435 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6436 SDValue X = getValue(I.getArgOperand(0)); 6437 SDValue Y = getValue(I.getArgOperand(1)); 6438 SDValue Z = getValue(I.getArgOperand(2)); 6439 EVT VT = X.getValueType(); 6440 6441 if (X == Y) { 6442 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6443 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6444 } else { 6445 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6446 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6447 } 6448 return; 6449 } 6450 case Intrinsic::sadd_sat: { 6451 SDValue Op1 = getValue(I.getArgOperand(0)); 6452 SDValue Op2 = getValue(I.getArgOperand(1)); 6453 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6454 return; 6455 } 6456 case Intrinsic::uadd_sat: { 6457 SDValue Op1 = getValue(I.getArgOperand(0)); 6458 SDValue Op2 = getValue(I.getArgOperand(1)); 6459 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6460 return; 6461 } 6462 case Intrinsic::ssub_sat: { 6463 SDValue Op1 = getValue(I.getArgOperand(0)); 6464 SDValue Op2 = getValue(I.getArgOperand(1)); 6465 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6466 return; 6467 } 6468 case Intrinsic::usub_sat: { 6469 SDValue Op1 = getValue(I.getArgOperand(0)); 6470 SDValue Op2 = getValue(I.getArgOperand(1)); 6471 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6472 return; 6473 } 6474 case Intrinsic::sshl_sat: { 6475 SDValue Op1 = getValue(I.getArgOperand(0)); 6476 SDValue Op2 = getValue(I.getArgOperand(1)); 6477 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6478 return; 6479 } 6480 case Intrinsic::ushl_sat: { 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6484 return; 6485 } 6486 case Intrinsic::smul_fix: 6487 case Intrinsic::umul_fix: 6488 case Intrinsic::smul_fix_sat: 6489 case Intrinsic::umul_fix_sat: { 6490 SDValue Op1 = getValue(I.getArgOperand(0)); 6491 SDValue Op2 = getValue(I.getArgOperand(1)); 6492 SDValue Op3 = getValue(I.getArgOperand(2)); 6493 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6494 Op1.getValueType(), Op1, Op2, Op3)); 6495 return; 6496 } 6497 case Intrinsic::sdiv_fix: 6498 case Intrinsic::udiv_fix: 6499 case Intrinsic::sdiv_fix_sat: 6500 case Intrinsic::udiv_fix_sat: { 6501 SDValue Op1 = getValue(I.getArgOperand(0)); 6502 SDValue Op2 = getValue(I.getArgOperand(1)); 6503 SDValue Op3 = getValue(I.getArgOperand(2)); 6504 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6505 Op1, Op2, Op3, DAG, TLI)); 6506 return; 6507 } 6508 case Intrinsic::smax: { 6509 SDValue Op1 = getValue(I.getArgOperand(0)); 6510 SDValue Op2 = getValue(I.getArgOperand(1)); 6511 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6512 return; 6513 } 6514 case Intrinsic::smin: { 6515 SDValue Op1 = getValue(I.getArgOperand(0)); 6516 SDValue Op2 = getValue(I.getArgOperand(1)); 6517 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6518 return; 6519 } 6520 case Intrinsic::umax: { 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6524 return; 6525 } 6526 case Intrinsic::umin: { 6527 SDValue Op1 = getValue(I.getArgOperand(0)); 6528 SDValue Op2 = getValue(I.getArgOperand(1)); 6529 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6530 return; 6531 } 6532 case Intrinsic::abs: { 6533 // TODO: Preserve "int min is poison" arg in SDAG? 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6536 return; 6537 } 6538 case Intrinsic::stacksave: { 6539 SDValue Op = getRoot(); 6540 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6541 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6542 setValue(&I, Res); 6543 DAG.setRoot(Res.getValue(1)); 6544 return; 6545 } 6546 case Intrinsic::stackrestore: 6547 Res = getValue(I.getArgOperand(0)); 6548 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6549 return; 6550 case Intrinsic::get_dynamic_area_offset: { 6551 SDValue Op = getRoot(); 6552 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6553 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6554 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6555 // target. 6556 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6557 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6558 " intrinsic!"); 6559 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6560 Op); 6561 DAG.setRoot(Op); 6562 setValue(&I, Res); 6563 return; 6564 } 6565 case Intrinsic::stackguard: { 6566 MachineFunction &MF = DAG.getMachineFunction(); 6567 const Module &M = *MF.getFunction().getParent(); 6568 SDValue Chain = getRoot(); 6569 if (TLI.useLoadStackGuardNode()) { 6570 Res = getLoadStackGuard(DAG, sdl, Chain); 6571 } else { 6572 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6573 const Value *Global = TLI.getSDagStackGuard(M); 6574 Align Align = DL->getPrefTypeAlign(Global->getType()); 6575 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6576 MachinePointerInfo(Global, 0), Align, 6577 MachineMemOperand::MOVolatile); 6578 } 6579 if (TLI.useStackGuardXorFP()) 6580 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6581 DAG.setRoot(Chain); 6582 setValue(&I, Res); 6583 return; 6584 } 6585 case Intrinsic::stackprotector: { 6586 // Emit code into the DAG to store the stack guard onto the stack. 6587 MachineFunction &MF = DAG.getMachineFunction(); 6588 MachineFrameInfo &MFI = MF.getFrameInfo(); 6589 SDValue Src, Chain = getRoot(); 6590 6591 if (TLI.useLoadStackGuardNode()) 6592 Src = getLoadStackGuard(DAG, sdl, Chain); 6593 else 6594 Src = getValue(I.getArgOperand(0)); // The guard's value. 6595 6596 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6597 6598 int FI = FuncInfo.StaticAllocaMap[Slot]; 6599 MFI.setStackProtectorIndex(FI); 6600 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6601 6602 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6603 6604 // Store the stack protector onto the stack. 6605 Res = DAG.getStore( 6606 Chain, sdl, Src, FIN, 6607 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6608 MaybeAlign(), MachineMemOperand::MOVolatile); 6609 setValue(&I, Res); 6610 DAG.setRoot(Res); 6611 return; 6612 } 6613 case Intrinsic::objectsize: 6614 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6615 6616 case Intrinsic::is_constant: 6617 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6618 6619 case Intrinsic::annotation: 6620 case Intrinsic::ptr_annotation: 6621 case Intrinsic::launder_invariant_group: 6622 case Intrinsic::strip_invariant_group: 6623 // Drop the intrinsic, but forward the value 6624 setValue(&I, getValue(I.getOperand(0))); 6625 return; 6626 6627 case Intrinsic::assume: 6628 case Intrinsic::experimental_noalias_scope_decl: 6629 case Intrinsic::var_annotation: 6630 case Intrinsic::sideeffect: 6631 // Discard annotate attributes, noalias scope declarations, assumptions, and 6632 // artificial side-effects. 6633 return; 6634 6635 case Intrinsic::codeview_annotation: { 6636 // Emit a label associated with this metadata. 6637 MachineFunction &MF = DAG.getMachineFunction(); 6638 MCSymbol *Label = 6639 MF.getMMI().getContext().createTempSymbol("annotation", true); 6640 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6641 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6642 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6643 DAG.setRoot(Res); 6644 return; 6645 } 6646 6647 case Intrinsic::init_trampoline: { 6648 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6649 6650 SDValue Ops[6]; 6651 Ops[0] = getRoot(); 6652 Ops[1] = getValue(I.getArgOperand(0)); 6653 Ops[2] = getValue(I.getArgOperand(1)); 6654 Ops[3] = getValue(I.getArgOperand(2)); 6655 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6656 Ops[5] = DAG.getSrcValue(F); 6657 6658 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6659 6660 DAG.setRoot(Res); 6661 return; 6662 } 6663 case Intrinsic::adjust_trampoline: 6664 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6665 TLI.getPointerTy(DAG.getDataLayout()), 6666 getValue(I.getArgOperand(0)))); 6667 return; 6668 case Intrinsic::gcroot: { 6669 assert(DAG.getMachineFunction().getFunction().hasGC() && 6670 "only valid in functions with gc specified, enforced by Verifier"); 6671 assert(GFI && "implied by previous"); 6672 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6673 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6674 6675 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6676 GFI->addStackRoot(FI->getIndex(), TypeMap); 6677 return; 6678 } 6679 case Intrinsic::gcread: 6680 case Intrinsic::gcwrite: 6681 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6682 case Intrinsic::flt_rounds: 6683 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6684 setValue(&I, Res); 6685 DAG.setRoot(Res.getValue(1)); 6686 return; 6687 6688 case Intrinsic::expect: 6689 // Just replace __builtin_expect(exp, c) with EXP. 6690 setValue(&I, getValue(I.getArgOperand(0))); 6691 return; 6692 6693 case Intrinsic::ubsantrap: 6694 case Intrinsic::debugtrap: 6695 case Intrinsic::trap: { 6696 StringRef TrapFuncName = 6697 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6698 if (TrapFuncName.empty()) { 6699 switch (Intrinsic) { 6700 case Intrinsic::trap: 6701 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6702 break; 6703 case Intrinsic::debugtrap: 6704 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6705 break; 6706 case Intrinsic::ubsantrap: 6707 DAG.setRoot(DAG.getNode( 6708 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6709 DAG.getTargetConstant( 6710 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6711 MVT::i32))); 6712 break; 6713 default: llvm_unreachable("unknown trap intrinsic"); 6714 } 6715 return; 6716 } 6717 TargetLowering::ArgListTy Args; 6718 if (Intrinsic == Intrinsic::ubsantrap) { 6719 Args.push_back(TargetLoweringBase::ArgListEntry()); 6720 Args[0].Val = I.getArgOperand(0); 6721 Args[0].Node = getValue(Args[0].Val); 6722 Args[0].Ty = Args[0].Val->getType(); 6723 } 6724 6725 TargetLowering::CallLoweringInfo CLI(DAG); 6726 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6727 CallingConv::C, I.getType(), 6728 DAG.getExternalSymbol(TrapFuncName.data(), 6729 TLI.getPointerTy(DAG.getDataLayout())), 6730 std::move(Args)); 6731 6732 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6733 DAG.setRoot(Result.second); 6734 return; 6735 } 6736 6737 case Intrinsic::uadd_with_overflow: 6738 case Intrinsic::sadd_with_overflow: 6739 case Intrinsic::usub_with_overflow: 6740 case Intrinsic::ssub_with_overflow: 6741 case Intrinsic::umul_with_overflow: 6742 case Intrinsic::smul_with_overflow: { 6743 ISD::NodeType Op; 6744 switch (Intrinsic) { 6745 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6746 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6747 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6748 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6749 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6750 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6751 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6752 } 6753 SDValue Op1 = getValue(I.getArgOperand(0)); 6754 SDValue Op2 = getValue(I.getArgOperand(1)); 6755 6756 EVT ResultVT = Op1.getValueType(); 6757 EVT OverflowVT = MVT::i1; 6758 if (ResultVT.isVector()) 6759 OverflowVT = EVT::getVectorVT( 6760 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6761 6762 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6763 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6764 return; 6765 } 6766 case Intrinsic::prefetch: { 6767 SDValue Ops[5]; 6768 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6769 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6770 Ops[0] = DAG.getRoot(); 6771 Ops[1] = getValue(I.getArgOperand(0)); 6772 Ops[2] = getValue(I.getArgOperand(1)); 6773 Ops[3] = getValue(I.getArgOperand(2)); 6774 Ops[4] = getValue(I.getArgOperand(3)); 6775 SDValue Result = DAG.getMemIntrinsicNode( 6776 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6777 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6778 /* align */ None, Flags); 6779 6780 // Chain the prefetch in parallell with any pending loads, to stay out of 6781 // the way of later optimizations. 6782 PendingLoads.push_back(Result); 6783 Result = getRoot(); 6784 DAG.setRoot(Result); 6785 return; 6786 } 6787 case Intrinsic::lifetime_start: 6788 case Intrinsic::lifetime_end: { 6789 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6790 // Stack coloring is not enabled in O0, discard region information. 6791 if (TM.getOptLevel() == CodeGenOpt::None) 6792 return; 6793 6794 const int64_t ObjectSize = 6795 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6796 Value *const ObjectPtr = I.getArgOperand(1); 6797 SmallVector<const Value *, 4> Allocas; 6798 getUnderlyingObjects(ObjectPtr, Allocas); 6799 6800 for (const Value *Alloca : Allocas) { 6801 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6802 6803 // Could not find an Alloca. 6804 if (!LifetimeObject) 6805 continue; 6806 6807 // First check that the Alloca is static, otherwise it won't have a 6808 // valid frame index. 6809 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6810 if (SI == FuncInfo.StaticAllocaMap.end()) 6811 return; 6812 6813 const int FrameIndex = SI->second; 6814 int64_t Offset; 6815 if (GetPointerBaseWithConstantOffset( 6816 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6817 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6818 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6819 Offset); 6820 DAG.setRoot(Res); 6821 } 6822 return; 6823 } 6824 case Intrinsic::pseudoprobe: { 6825 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6826 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6827 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6828 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6829 DAG.setRoot(Res); 6830 return; 6831 } 6832 case Intrinsic::invariant_start: 6833 // Discard region information. 6834 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6835 return; 6836 case Intrinsic::invariant_end: 6837 // Discard region information. 6838 return; 6839 case Intrinsic::clear_cache: 6840 /// FunctionName may be null. 6841 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6842 lowerCallToExternalSymbol(I, FunctionName); 6843 return; 6844 case Intrinsic::donothing: 6845 case Intrinsic::seh_try_begin: 6846 case Intrinsic::seh_scope_begin: 6847 case Intrinsic::seh_try_end: 6848 case Intrinsic::seh_scope_end: 6849 // ignore 6850 return; 6851 case Intrinsic::experimental_stackmap: 6852 visitStackmap(I); 6853 return; 6854 case Intrinsic::experimental_patchpoint_void: 6855 case Intrinsic::experimental_patchpoint_i64: 6856 visitPatchpoint(I); 6857 return; 6858 case Intrinsic::experimental_gc_statepoint: 6859 LowerStatepoint(cast<GCStatepointInst>(I)); 6860 return; 6861 case Intrinsic::experimental_gc_result: 6862 visitGCResult(cast<GCResultInst>(I)); 6863 return; 6864 case Intrinsic::experimental_gc_relocate: 6865 visitGCRelocate(cast<GCRelocateInst>(I)); 6866 return; 6867 case Intrinsic::instrprof_increment: 6868 llvm_unreachable("instrprof failed to lower an increment"); 6869 case Intrinsic::instrprof_value_profile: 6870 llvm_unreachable("instrprof failed to lower a value profiling call"); 6871 case Intrinsic::localescape: { 6872 MachineFunction &MF = DAG.getMachineFunction(); 6873 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6874 6875 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6876 // is the same on all targets. 6877 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6878 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6879 if (isa<ConstantPointerNull>(Arg)) 6880 continue; // Skip null pointers. They represent a hole in index space. 6881 AllocaInst *Slot = cast<AllocaInst>(Arg); 6882 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6883 "can only escape static allocas"); 6884 int FI = FuncInfo.StaticAllocaMap[Slot]; 6885 MCSymbol *FrameAllocSym = 6886 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6887 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6888 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6889 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6890 .addSym(FrameAllocSym) 6891 .addFrameIndex(FI); 6892 } 6893 6894 return; 6895 } 6896 6897 case Intrinsic::localrecover: { 6898 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6899 MachineFunction &MF = DAG.getMachineFunction(); 6900 6901 // Get the symbol that defines the frame offset. 6902 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6903 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6904 unsigned IdxVal = 6905 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6906 MCSymbol *FrameAllocSym = 6907 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6908 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6909 6910 Value *FP = I.getArgOperand(1); 6911 SDValue FPVal = getValue(FP); 6912 EVT PtrVT = FPVal.getValueType(); 6913 6914 // Create a MCSymbol for the label to avoid any target lowering 6915 // that would make this PC relative. 6916 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6917 SDValue OffsetVal = 6918 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6919 6920 // Add the offset to the FP. 6921 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6922 setValue(&I, Add); 6923 6924 return; 6925 } 6926 6927 case Intrinsic::eh_exceptionpointer: 6928 case Intrinsic::eh_exceptioncode: { 6929 // Get the exception pointer vreg, copy from it, and resize it to fit. 6930 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6931 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6932 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6933 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6934 SDValue N = 6935 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6936 if (Intrinsic == Intrinsic::eh_exceptioncode) 6937 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6938 setValue(&I, N); 6939 return; 6940 } 6941 case Intrinsic::xray_customevent: { 6942 // Here we want to make sure that the intrinsic behaves as if it has a 6943 // specific calling convention, and only for x86_64. 6944 // FIXME: Support other platforms later. 6945 const auto &Triple = DAG.getTarget().getTargetTriple(); 6946 if (Triple.getArch() != Triple::x86_64) 6947 return; 6948 6949 SDLoc DL = getCurSDLoc(); 6950 SmallVector<SDValue, 8> Ops; 6951 6952 // We want to say that we always want the arguments in registers. 6953 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6954 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6955 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6956 SDValue Chain = getRoot(); 6957 Ops.push_back(LogEntryVal); 6958 Ops.push_back(StrSizeVal); 6959 Ops.push_back(Chain); 6960 6961 // We need to enforce the calling convention for the callsite, so that 6962 // argument ordering is enforced correctly, and that register allocation can 6963 // see that some registers may be assumed clobbered and have to preserve 6964 // them across calls to the intrinsic. 6965 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6966 DL, NodeTys, Ops); 6967 SDValue patchableNode = SDValue(MN, 0); 6968 DAG.setRoot(patchableNode); 6969 setValue(&I, patchableNode); 6970 return; 6971 } 6972 case Intrinsic::xray_typedevent: { 6973 // Here we want to make sure that the intrinsic behaves as if it has a 6974 // specific calling convention, and only for x86_64. 6975 // FIXME: Support other platforms later. 6976 const auto &Triple = DAG.getTarget().getTargetTriple(); 6977 if (Triple.getArch() != Triple::x86_64) 6978 return; 6979 6980 SDLoc DL = getCurSDLoc(); 6981 SmallVector<SDValue, 8> Ops; 6982 6983 // We want to say that we always want the arguments in registers. 6984 // It's unclear to me how manipulating the selection DAG here forces callers 6985 // to provide arguments in registers instead of on the stack. 6986 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6987 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6988 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6989 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6990 SDValue Chain = getRoot(); 6991 Ops.push_back(LogTypeId); 6992 Ops.push_back(LogEntryVal); 6993 Ops.push_back(StrSizeVal); 6994 Ops.push_back(Chain); 6995 6996 // We need to enforce the calling convention for the callsite, so that 6997 // argument ordering is enforced correctly, and that register allocation can 6998 // see that some registers may be assumed clobbered and have to preserve 6999 // them across calls to the intrinsic. 7000 MachineSDNode *MN = DAG.getMachineNode( 7001 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 7002 SDValue patchableNode = SDValue(MN, 0); 7003 DAG.setRoot(patchableNode); 7004 setValue(&I, patchableNode); 7005 return; 7006 } 7007 case Intrinsic::experimental_deoptimize: 7008 LowerDeoptimizeCall(&I); 7009 return; 7010 case Intrinsic::experimental_stepvector: 7011 visitStepVector(I); 7012 return; 7013 case Intrinsic::vector_reduce_fadd: 7014 case Intrinsic::vector_reduce_fmul: 7015 case Intrinsic::vector_reduce_add: 7016 case Intrinsic::vector_reduce_mul: 7017 case Intrinsic::vector_reduce_and: 7018 case Intrinsic::vector_reduce_or: 7019 case Intrinsic::vector_reduce_xor: 7020 case Intrinsic::vector_reduce_smax: 7021 case Intrinsic::vector_reduce_smin: 7022 case Intrinsic::vector_reduce_umax: 7023 case Intrinsic::vector_reduce_umin: 7024 case Intrinsic::vector_reduce_fmax: 7025 case Intrinsic::vector_reduce_fmin: 7026 visitVectorReduce(I, Intrinsic); 7027 return; 7028 7029 case Intrinsic::icall_branch_funnel: { 7030 SmallVector<SDValue, 16> Ops; 7031 Ops.push_back(getValue(I.getArgOperand(0))); 7032 7033 int64_t Offset; 7034 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7035 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7036 if (!Base) 7037 report_fatal_error( 7038 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7039 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 7040 7041 struct BranchFunnelTarget { 7042 int64_t Offset; 7043 SDValue Target; 7044 }; 7045 SmallVector<BranchFunnelTarget, 8> Targets; 7046 7047 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 7048 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7049 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7050 if (ElemBase != Base) 7051 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7052 "to the same GlobalValue"); 7053 7054 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7055 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7056 if (!GA) 7057 report_fatal_error( 7058 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7059 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7060 GA->getGlobal(), getCurSDLoc(), 7061 Val.getValueType(), GA->getOffset())}); 7062 } 7063 llvm::sort(Targets, 7064 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7065 return T1.Offset < T2.Offset; 7066 }); 7067 7068 for (auto &T : Targets) { 7069 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 7070 Ops.push_back(T.Target); 7071 } 7072 7073 Ops.push_back(DAG.getRoot()); // Chain 7074 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 7075 getCurSDLoc(), MVT::Other, Ops), 7076 0); 7077 DAG.setRoot(N); 7078 setValue(&I, N); 7079 HasTailCall = true; 7080 return; 7081 } 7082 7083 case Intrinsic::wasm_landingpad_index: 7084 // Information this intrinsic contained has been transferred to 7085 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7086 // delete it now. 7087 return; 7088 7089 case Intrinsic::aarch64_settag: 7090 case Intrinsic::aarch64_settag_zero: { 7091 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7092 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7093 SDValue Val = TSI.EmitTargetCodeForSetTag( 7094 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 7095 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7096 ZeroMemory); 7097 DAG.setRoot(Val); 7098 setValue(&I, Val); 7099 return; 7100 } 7101 case Intrinsic::ptrmask: { 7102 SDValue Ptr = getValue(I.getOperand(0)); 7103 SDValue Const = getValue(I.getOperand(1)); 7104 7105 EVT PtrVT = Ptr.getValueType(); 7106 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 7107 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 7108 return; 7109 } 7110 case Intrinsic::get_active_lane_mask: { 7111 auto DL = getCurSDLoc(); 7112 SDValue Index = getValue(I.getOperand(0)); 7113 SDValue TripCount = getValue(I.getOperand(1)); 7114 Type *ElementTy = I.getOperand(0)->getType(); 7115 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7116 unsigned VecWidth = VT.getVectorNumElements(); 7117 7118 SmallVector<SDValue, 16> OpsTripCount; 7119 SmallVector<SDValue, 16> OpsIndex; 7120 SmallVector<SDValue, 16> OpsStepConstants; 7121 for (unsigned i = 0; i < VecWidth; i++) { 7122 OpsTripCount.push_back(TripCount); 7123 OpsIndex.push_back(Index); 7124 OpsStepConstants.push_back( 7125 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 7126 } 7127 7128 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 7129 7130 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 7131 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 7132 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 7133 SDValue VectorInduction = DAG.getNode( 7134 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 7135 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 7136 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7137 VectorTripCount, ISD::CondCode::SETULT); 7138 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7139 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7140 SetCC)); 7141 return; 7142 } 7143 case Intrinsic::experimental_vector_insert: { 7144 auto DL = getCurSDLoc(); 7145 7146 SDValue Vec = getValue(I.getOperand(0)); 7147 SDValue SubVec = getValue(I.getOperand(1)); 7148 SDValue Index = getValue(I.getOperand(2)); 7149 7150 // The intrinsic's index type is i64, but the SDNode requires an index type 7151 // suitable for the target. Convert the index as required. 7152 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7153 if (Index.getValueType() != VectorIdxTy) 7154 Index = DAG.getVectorIdxConstant( 7155 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7156 7157 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7158 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7159 Index)); 7160 return; 7161 } 7162 case Intrinsic::experimental_vector_extract: { 7163 auto DL = getCurSDLoc(); 7164 7165 SDValue Vec = getValue(I.getOperand(0)); 7166 SDValue Index = getValue(I.getOperand(1)); 7167 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7168 7169 // The intrinsic's index type is i64, but the SDNode requires an index type 7170 // suitable for the target. Convert the index as required. 7171 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7172 if (Index.getValueType() != VectorIdxTy) 7173 Index = DAG.getVectorIdxConstant( 7174 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7175 7176 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7177 return; 7178 } 7179 case Intrinsic::experimental_vector_reverse: 7180 visitVectorReverse(I); 7181 return; 7182 case Intrinsic::experimental_vector_splice: 7183 visitVectorSplice(I); 7184 return; 7185 } 7186 } 7187 7188 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7189 const ConstrainedFPIntrinsic &FPI) { 7190 SDLoc sdl = getCurSDLoc(); 7191 7192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7193 SmallVector<EVT, 4> ValueVTs; 7194 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7195 ValueVTs.push_back(MVT::Other); // Out chain 7196 7197 // We do not need to serialize constrained FP intrinsics against 7198 // each other or against (nonvolatile) loads, so they can be 7199 // chained like loads. 7200 SDValue Chain = DAG.getRoot(); 7201 SmallVector<SDValue, 4> Opers; 7202 Opers.push_back(Chain); 7203 if (FPI.isUnaryOp()) { 7204 Opers.push_back(getValue(FPI.getArgOperand(0))); 7205 } else if (FPI.isTernaryOp()) { 7206 Opers.push_back(getValue(FPI.getArgOperand(0))); 7207 Opers.push_back(getValue(FPI.getArgOperand(1))); 7208 Opers.push_back(getValue(FPI.getArgOperand(2))); 7209 } else { 7210 Opers.push_back(getValue(FPI.getArgOperand(0))); 7211 Opers.push_back(getValue(FPI.getArgOperand(1))); 7212 } 7213 7214 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7215 assert(Result.getNode()->getNumValues() == 2); 7216 7217 // Push node to the appropriate list so that future instructions can be 7218 // chained up correctly. 7219 SDValue OutChain = Result.getValue(1); 7220 switch (EB) { 7221 case fp::ExceptionBehavior::ebIgnore: 7222 // The only reason why ebIgnore nodes still need to be chained is that 7223 // they might depend on the current rounding mode, and therefore must 7224 // not be moved across instruction that may change that mode. 7225 LLVM_FALLTHROUGH; 7226 case fp::ExceptionBehavior::ebMayTrap: 7227 // These must not be moved across calls or instructions that may change 7228 // floating-point exception masks. 7229 PendingConstrainedFP.push_back(OutChain); 7230 break; 7231 case fp::ExceptionBehavior::ebStrict: 7232 // These must not be moved across calls or instructions that may change 7233 // floating-point exception masks or read floating-point exception flags. 7234 // In addition, they cannot be optimized out even if unused. 7235 PendingConstrainedFPStrict.push_back(OutChain); 7236 break; 7237 } 7238 }; 7239 7240 SDVTList VTs = DAG.getVTList(ValueVTs); 7241 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7242 7243 SDNodeFlags Flags; 7244 if (EB == fp::ExceptionBehavior::ebIgnore) 7245 Flags.setNoFPExcept(true); 7246 7247 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7248 Flags.copyFMF(*FPOp); 7249 7250 unsigned Opcode; 7251 switch (FPI.getIntrinsicID()) { 7252 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7253 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7254 case Intrinsic::INTRINSIC: \ 7255 Opcode = ISD::STRICT_##DAGN; \ 7256 break; 7257 #include "llvm/IR/ConstrainedOps.def" 7258 case Intrinsic::experimental_constrained_fmuladd: { 7259 Opcode = ISD::STRICT_FMA; 7260 // Break fmuladd into fmul and fadd. 7261 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7262 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7263 ValueVTs[0])) { 7264 Opers.pop_back(); 7265 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7266 pushOutChain(Mul, EB); 7267 Opcode = ISD::STRICT_FADD; 7268 Opers.clear(); 7269 Opers.push_back(Mul.getValue(1)); 7270 Opers.push_back(Mul.getValue(0)); 7271 Opers.push_back(getValue(FPI.getArgOperand(2))); 7272 } 7273 break; 7274 } 7275 } 7276 7277 // A few strict DAG nodes carry additional operands that are not 7278 // set up by the default code above. 7279 switch (Opcode) { 7280 default: break; 7281 case ISD::STRICT_FP_ROUND: 7282 Opers.push_back( 7283 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7284 break; 7285 case ISD::STRICT_FSETCC: 7286 case ISD::STRICT_FSETCCS: { 7287 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7288 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7289 if (TM.Options.NoNaNsFPMath) 7290 Condition = getFCmpCodeWithoutNaN(Condition); 7291 Opers.push_back(DAG.getCondCode(Condition)); 7292 break; 7293 } 7294 } 7295 7296 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7297 pushOutChain(Result, EB); 7298 7299 SDValue FPResult = Result.getValue(0); 7300 setValue(&FPI, FPResult); 7301 } 7302 7303 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7304 Optional<unsigned> ResOPC; 7305 switch (VPIntrin.getIntrinsicID()) { 7306 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7307 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7308 #define END_REGISTER_VP_INTRINSIC(...) break; 7309 #include "llvm/IR/VPIntrinsics.def" 7310 } 7311 7312 if (!ResOPC.hasValue()) 7313 llvm_unreachable( 7314 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7315 7316 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7317 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7318 if (VPIntrin.getFastMathFlags().allowReassoc()) 7319 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7320 : ISD::VP_REDUCE_FMUL; 7321 } 7322 7323 return ResOPC.getValue(); 7324 } 7325 7326 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7327 SmallVector<SDValue, 7> &OpValues, 7328 bool isGather) { 7329 SDLoc DL = getCurSDLoc(); 7330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7331 Value *PtrOperand = VPIntrin.getArgOperand(0); 7332 MaybeAlign Alignment = DAG.getEVTAlign(VT); 7333 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7334 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7335 SDValue LD; 7336 bool AddToChain = true; 7337 if (!isGather) { 7338 // Do not serialize variable-length loads of constant memory with 7339 // anything. 7340 MemoryLocation ML; 7341 if (VT.isScalableVector()) 7342 ML = MemoryLocation::getAfter(PtrOperand); 7343 else 7344 ML = MemoryLocation( 7345 PtrOperand, 7346 LocationSize::precise( 7347 DAG.getDataLayout().getTypeStoreSize(VPIntrin.getType())), 7348 AAInfo); 7349 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7350 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7351 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7352 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7353 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 7354 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7355 MMO, false /*IsExpanding */); 7356 } else { 7357 unsigned AS = 7358 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7359 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7360 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7361 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7362 SDValue Base, Index, Scale; 7363 ISD::MemIndexType IndexType; 7364 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7365 this, VPIntrin.getParent()); 7366 if (!UniformBase) { 7367 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7368 Index = getValue(PtrOperand); 7369 IndexType = ISD::SIGNED_UNSCALED; 7370 Scale = 7371 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7372 } 7373 EVT IdxVT = Index.getValueType(); 7374 EVT EltTy = IdxVT.getVectorElementType(); 7375 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7376 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7377 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7378 } 7379 LD = DAG.getGatherVP( 7380 DAG.getVTList(VT, MVT::Other), VT, DL, 7381 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7382 IndexType); 7383 } 7384 if (AddToChain) 7385 PendingLoads.push_back(LD.getValue(1)); 7386 setValue(&VPIntrin, LD); 7387 } 7388 7389 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7390 SmallVector<SDValue, 7> &OpValues, 7391 bool isScatter) { 7392 SDLoc DL = getCurSDLoc(); 7393 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7394 Value *PtrOperand = VPIntrin.getArgOperand(1); 7395 EVT VT = OpValues[0].getValueType(); 7396 MaybeAlign Alignment = DAG.getEVTAlign(VT); 7397 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7398 SDValue ST; 7399 if (!isScatter) { 7400 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7401 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7402 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 7403 ST = 7404 DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], OpValues[1], 7405 OpValues[2], OpValues[3], MMO, false /* IsTruncating */); 7406 } else { 7407 unsigned AS = 7408 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7409 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7410 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7411 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7412 SDValue Base, Index, Scale; 7413 ISD::MemIndexType IndexType; 7414 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7415 this, VPIntrin.getParent()); 7416 if (!UniformBase) { 7417 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7418 Index = getValue(PtrOperand); 7419 IndexType = ISD::SIGNED_UNSCALED; 7420 Scale = 7421 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7422 } 7423 EVT IdxVT = Index.getValueType(); 7424 EVT EltTy = IdxVT.getVectorElementType(); 7425 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7426 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7427 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7428 } 7429 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7430 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7431 OpValues[2], OpValues[3]}, 7432 MMO, IndexType); 7433 } 7434 DAG.setRoot(ST); 7435 setValue(&VPIntrin, ST); 7436 } 7437 7438 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7439 const VPIntrinsic &VPIntrin) { 7440 SDLoc DL = getCurSDLoc(); 7441 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7442 7443 SmallVector<EVT, 4> ValueVTs; 7444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7445 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7446 SDVTList VTs = DAG.getVTList(ValueVTs); 7447 7448 auto EVLParamPos = 7449 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7450 7451 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7452 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7453 "Unexpected target EVL type"); 7454 7455 // Request operands. 7456 SmallVector<SDValue, 7> OpValues; 7457 for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) { 7458 auto Op = getValue(VPIntrin.getArgOperand(I)); 7459 if (I == EVLParamPos) 7460 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7461 OpValues.push_back(Op); 7462 } 7463 7464 switch (Opcode) { 7465 default: { 7466 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7467 setValue(&VPIntrin, Result); 7468 break; 7469 } 7470 case ISD::VP_LOAD: 7471 case ISD::VP_GATHER: 7472 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7473 Opcode == ISD::VP_GATHER); 7474 break; 7475 case ISD::VP_STORE: 7476 case ISD::VP_SCATTER: 7477 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7478 break; 7479 } 7480 } 7481 7482 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7483 const BasicBlock *EHPadBB, 7484 MCSymbol *&BeginLabel) { 7485 MachineFunction &MF = DAG.getMachineFunction(); 7486 MachineModuleInfo &MMI = MF.getMMI(); 7487 7488 // Insert a label before the invoke call to mark the try range. This can be 7489 // used to detect deletion of the invoke via the MachineModuleInfo. 7490 BeginLabel = MMI.getContext().createTempSymbol(); 7491 7492 // For SjLj, keep track of which landing pads go with which invokes 7493 // so as to maintain the ordering of pads in the LSDA. 7494 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7495 if (CallSiteIndex) { 7496 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7497 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7498 7499 // Now that the call site is handled, stop tracking it. 7500 MMI.setCurrentCallSite(0); 7501 } 7502 7503 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7504 } 7505 7506 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7507 const BasicBlock *EHPadBB, 7508 MCSymbol *BeginLabel) { 7509 assert(BeginLabel && "BeginLabel should've been set"); 7510 7511 MachineFunction &MF = DAG.getMachineFunction(); 7512 MachineModuleInfo &MMI = MF.getMMI(); 7513 7514 // Insert a label at the end of the invoke call to mark the try range. This 7515 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7516 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7517 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7518 7519 // Inform MachineModuleInfo of range. 7520 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7521 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7522 // actually use outlined funclets and their LSDA info style. 7523 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7524 assert(II && "II should've been set"); 7525 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7526 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7527 } else if (!isScopedEHPersonality(Pers)) { 7528 assert(EHPadBB); 7529 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7530 } 7531 7532 return Chain; 7533 } 7534 7535 std::pair<SDValue, SDValue> 7536 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7537 const BasicBlock *EHPadBB) { 7538 MCSymbol *BeginLabel = nullptr; 7539 7540 if (EHPadBB) { 7541 // Both PendingLoads and PendingExports must be flushed here; 7542 // this call might not return. 7543 (void)getRoot(); 7544 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7545 CLI.setChain(getRoot()); 7546 } 7547 7548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7549 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7550 7551 assert((CLI.IsTailCall || Result.second.getNode()) && 7552 "Non-null chain expected with non-tail call!"); 7553 assert((Result.second.getNode() || !Result.first.getNode()) && 7554 "Null value expected with tail call!"); 7555 7556 if (!Result.second.getNode()) { 7557 // As a special case, a null chain means that a tail call has been emitted 7558 // and the DAG root is already updated. 7559 HasTailCall = true; 7560 7561 // Since there's no actual continuation from this block, nothing can be 7562 // relying on us setting vregs for them. 7563 PendingExports.clear(); 7564 } else { 7565 DAG.setRoot(Result.second); 7566 } 7567 7568 if (EHPadBB) { 7569 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7570 BeginLabel)); 7571 } 7572 7573 return Result; 7574 } 7575 7576 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7577 bool isTailCall, 7578 bool isMustTailCall, 7579 const BasicBlock *EHPadBB) { 7580 auto &DL = DAG.getDataLayout(); 7581 FunctionType *FTy = CB.getFunctionType(); 7582 Type *RetTy = CB.getType(); 7583 7584 TargetLowering::ArgListTy Args; 7585 Args.reserve(CB.arg_size()); 7586 7587 const Value *SwiftErrorVal = nullptr; 7588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7589 7590 if (isTailCall) { 7591 // Avoid emitting tail calls in functions with the disable-tail-calls 7592 // attribute. 7593 auto *Caller = CB.getParent()->getParent(); 7594 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7595 "true" && !isMustTailCall) 7596 isTailCall = false; 7597 7598 // We can't tail call inside a function with a swifterror argument. Lowering 7599 // does not support this yet. It would have to move into the swifterror 7600 // register before the call. 7601 if (TLI.supportSwiftError() && 7602 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7603 isTailCall = false; 7604 } 7605 7606 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7607 TargetLowering::ArgListEntry Entry; 7608 const Value *V = *I; 7609 7610 // Skip empty types 7611 if (V->getType()->isEmptyTy()) 7612 continue; 7613 7614 SDValue ArgNode = getValue(V); 7615 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7616 7617 Entry.setAttributes(&CB, I - CB.arg_begin()); 7618 7619 // Use swifterror virtual register as input to the call. 7620 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7621 SwiftErrorVal = V; 7622 // We find the virtual register for the actual swifterror argument. 7623 // Instead of using the Value, we use the virtual register instead. 7624 Entry.Node = 7625 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7626 EVT(TLI.getPointerTy(DL))); 7627 } 7628 7629 Args.push_back(Entry); 7630 7631 // If we have an explicit sret argument that is an Instruction, (i.e., it 7632 // might point to function-local memory), we can't meaningfully tail-call. 7633 if (Entry.IsSRet && isa<Instruction>(V)) 7634 isTailCall = false; 7635 } 7636 7637 // If call site has a cfguardtarget operand bundle, create and add an 7638 // additional ArgListEntry. 7639 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7640 TargetLowering::ArgListEntry Entry; 7641 Value *V = Bundle->Inputs[0]; 7642 SDValue ArgNode = getValue(V); 7643 Entry.Node = ArgNode; 7644 Entry.Ty = V->getType(); 7645 Entry.IsCFGuardTarget = true; 7646 Args.push_back(Entry); 7647 } 7648 7649 // Check if target-independent constraints permit a tail call here. 7650 // Target-dependent constraints are checked within TLI->LowerCallTo. 7651 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7652 isTailCall = false; 7653 7654 // Disable tail calls if there is an swifterror argument. Targets have not 7655 // been updated to support tail calls. 7656 if (TLI.supportSwiftError() && SwiftErrorVal) 7657 isTailCall = false; 7658 7659 TargetLowering::CallLoweringInfo CLI(DAG); 7660 CLI.setDebugLoc(getCurSDLoc()) 7661 .setChain(getRoot()) 7662 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7663 .setTailCall(isTailCall) 7664 .setConvergent(CB.isConvergent()) 7665 .setIsPreallocated( 7666 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7667 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7668 7669 if (Result.first.getNode()) { 7670 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7671 setValue(&CB, Result.first); 7672 } 7673 7674 // The last element of CLI.InVals has the SDValue for swifterror return. 7675 // Here we copy it to a virtual register and update SwiftErrorMap for 7676 // book-keeping. 7677 if (SwiftErrorVal && TLI.supportSwiftError()) { 7678 // Get the last element of InVals. 7679 SDValue Src = CLI.InVals.back(); 7680 Register VReg = 7681 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7682 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7683 DAG.setRoot(CopyNode); 7684 } 7685 } 7686 7687 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7688 SelectionDAGBuilder &Builder) { 7689 // Check to see if this load can be trivially constant folded, e.g. if the 7690 // input is from a string literal. 7691 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7692 // Cast pointer to the type we really want to load. 7693 Type *LoadTy = 7694 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7695 if (LoadVT.isVector()) 7696 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7697 7698 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7699 PointerType::getUnqual(LoadTy)); 7700 7701 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7702 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7703 return Builder.getValue(LoadCst); 7704 } 7705 7706 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7707 // still constant memory, the input chain can be the entry node. 7708 SDValue Root; 7709 bool ConstantMemory = false; 7710 7711 // Do not serialize (non-volatile) loads of constant memory with anything. 7712 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7713 Root = Builder.DAG.getEntryNode(); 7714 ConstantMemory = true; 7715 } else { 7716 // Do not serialize non-volatile loads against each other. 7717 Root = Builder.DAG.getRoot(); 7718 } 7719 7720 SDValue Ptr = Builder.getValue(PtrVal); 7721 SDValue LoadVal = 7722 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7723 MachinePointerInfo(PtrVal), Align(1)); 7724 7725 if (!ConstantMemory) 7726 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7727 return LoadVal; 7728 } 7729 7730 /// Record the value for an instruction that produces an integer result, 7731 /// converting the type where necessary. 7732 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7733 SDValue Value, 7734 bool IsSigned) { 7735 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7736 I.getType(), true); 7737 if (IsSigned) 7738 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7739 else 7740 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7741 setValue(&I, Value); 7742 } 7743 7744 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7745 /// true and lower it. Otherwise return false, and it will be lowered like a 7746 /// normal call. 7747 /// The caller already checked that \p I calls the appropriate LibFunc with a 7748 /// correct prototype. 7749 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7750 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7751 const Value *Size = I.getArgOperand(2); 7752 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7753 if (CSize && CSize->getZExtValue() == 0) { 7754 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7755 I.getType(), true); 7756 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7757 return true; 7758 } 7759 7760 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7761 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7762 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7763 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7764 if (Res.first.getNode()) { 7765 processIntegerCallValue(I, Res.first, true); 7766 PendingLoads.push_back(Res.second); 7767 return true; 7768 } 7769 7770 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7771 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7772 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7773 return false; 7774 7775 // If the target has a fast compare for the given size, it will return a 7776 // preferred load type for that size. Require that the load VT is legal and 7777 // that the target supports unaligned loads of that type. Otherwise, return 7778 // INVALID. 7779 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7781 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7782 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7783 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7784 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7785 // TODO: Check alignment of src and dest ptrs. 7786 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7787 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7788 if (!TLI.isTypeLegal(LVT) || 7789 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7790 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7791 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7792 } 7793 7794 return LVT; 7795 }; 7796 7797 // This turns into unaligned loads. We only do this if the target natively 7798 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7799 // we'll only produce a small number of byte loads. 7800 MVT LoadVT; 7801 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7802 switch (NumBitsToCompare) { 7803 default: 7804 return false; 7805 case 16: 7806 LoadVT = MVT::i16; 7807 break; 7808 case 32: 7809 LoadVT = MVT::i32; 7810 break; 7811 case 64: 7812 case 128: 7813 case 256: 7814 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7815 break; 7816 } 7817 7818 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7819 return false; 7820 7821 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7822 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7823 7824 // Bitcast to a wide integer type if the loads are vectors. 7825 if (LoadVT.isVector()) { 7826 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7827 LoadL = DAG.getBitcast(CmpVT, LoadL); 7828 LoadR = DAG.getBitcast(CmpVT, LoadR); 7829 } 7830 7831 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7832 processIntegerCallValue(I, Cmp, false); 7833 return true; 7834 } 7835 7836 /// See if we can lower a memchr call into an optimized form. If so, return 7837 /// true and lower it. Otherwise return false, and it will be lowered like a 7838 /// normal call. 7839 /// The caller already checked that \p I calls the appropriate LibFunc with a 7840 /// correct prototype. 7841 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7842 const Value *Src = I.getArgOperand(0); 7843 const Value *Char = I.getArgOperand(1); 7844 const Value *Length = I.getArgOperand(2); 7845 7846 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7847 std::pair<SDValue, SDValue> Res = 7848 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7849 getValue(Src), getValue(Char), getValue(Length), 7850 MachinePointerInfo(Src)); 7851 if (Res.first.getNode()) { 7852 setValue(&I, Res.first); 7853 PendingLoads.push_back(Res.second); 7854 return true; 7855 } 7856 7857 return false; 7858 } 7859 7860 /// See if we can lower a mempcpy call into an optimized form. If so, return 7861 /// true and lower it. Otherwise return false, and it will be lowered like a 7862 /// normal call. 7863 /// The caller already checked that \p I calls the appropriate LibFunc with a 7864 /// correct prototype. 7865 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7866 SDValue Dst = getValue(I.getArgOperand(0)); 7867 SDValue Src = getValue(I.getArgOperand(1)); 7868 SDValue Size = getValue(I.getArgOperand(2)); 7869 7870 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7871 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7872 // DAG::getMemcpy needs Alignment to be defined. 7873 Align Alignment = std::min(DstAlign, SrcAlign); 7874 7875 bool isVol = false; 7876 SDLoc sdl = getCurSDLoc(); 7877 7878 // In the mempcpy context we need to pass in a false value for isTailCall 7879 // because the return pointer needs to be adjusted by the size of 7880 // the copied memory. 7881 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7882 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7883 /*isTailCall=*/false, 7884 MachinePointerInfo(I.getArgOperand(0)), 7885 MachinePointerInfo(I.getArgOperand(1)), 7886 I.getAAMetadata()); 7887 assert(MC.getNode() != nullptr && 7888 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7889 DAG.setRoot(MC); 7890 7891 // Check if Size needs to be truncated or extended. 7892 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7893 7894 // Adjust return pointer to point just past the last dst byte. 7895 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7896 Dst, Size); 7897 setValue(&I, DstPlusSize); 7898 return true; 7899 } 7900 7901 /// See if we can lower a strcpy call into an optimized form. If so, return 7902 /// true and lower it, otherwise return false and it will be lowered like a 7903 /// normal call. 7904 /// The caller already checked that \p I calls the appropriate LibFunc with a 7905 /// correct prototype. 7906 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7907 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7908 7909 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7910 std::pair<SDValue, SDValue> Res = 7911 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7912 getValue(Arg0), getValue(Arg1), 7913 MachinePointerInfo(Arg0), 7914 MachinePointerInfo(Arg1), isStpcpy); 7915 if (Res.first.getNode()) { 7916 setValue(&I, Res.first); 7917 DAG.setRoot(Res.second); 7918 return true; 7919 } 7920 7921 return false; 7922 } 7923 7924 /// See if we can lower a strcmp call into an optimized form. If so, return 7925 /// true and lower it, otherwise return false and it will be lowered like a 7926 /// normal call. 7927 /// The caller already checked that \p I calls the appropriate LibFunc with a 7928 /// correct prototype. 7929 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7930 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7931 7932 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7933 std::pair<SDValue, SDValue> Res = 7934 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7935 getValue(Arg0), getValue(Arg1), 7936 MachinePointerInfo(Arg0), 7937 MachinePointerInfo(Arg1)); 7938 if (Res.first.getNode()) { 7939 processIntegerCallValue(I, Res.first, true); 7940 PendingLoads.push_back(Res.second); 7941 return true; 7942 } 7943 7944 return false; 7945 } 7946 7947 /// See if we can lower a strlen call into an optimized form. If so, return 7948 /// true and lower it, otherwise return false and it will be lowered like a 7949 /// normal call. 7950 /// The caller already checked that \p I calls the appropriate LibFunc with a 7951 /// correct prototype. 7952 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7953 const Value *Arg0 = I.getArgOperand(0); 7954 7955 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7956 std::pair<SDValue, SDValue> Res = 7957 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7958 getValue(Arg0), MachinePointerInfo(Arg0)); 7959 if (Res.first.getNode()) { 7960 processIntegerCallValue(I, Res.first, false); 7961 PendingLoads.push_back(Res.second); 7962 return true; 7963 } 7964 7965 return false; 7966 } 7967 7968 /// See if we can lower a strnlen call into an optimized form. If so, return 7969 /// true and lower it, otherwise return false and it will be lowered like a 7970 /// normal call. 7971 /// The caller already checked that \p I calls the appropriate LibFunc with a 7972 /// correct prototype. 7973 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7974 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7975 7976 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7977 std::pair<SDValue, SDValue> Res = 7978 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7979 getValue(Arg0), getValue(Arg1), 7980 MachinePointerInfo(Arg0)); 7981 if (Res.first.getNode()) { 7982 processIntegerCallValue(I, Res.first, false); 7983 PendingLoads.push_back(Res.second); 7984 return true; 7985 } 7986 7987 return false; 7988 } 7989 7990 /// See if we can lower a unary floating-point operation into an SDNode with 7991 /// the specified Opcode. If so, return true and lower it, otherwise return 7992 /// false and it will be lowered like a normal call. 7993 /// The caller already checked that \p I calls the appropriate LibFunc with a 7994 /// correct prototype. 7995 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7996 unsigned Opcode) { 7997 // We already checked this call's prototype; verify it doesn't modify errno. 7998 if (!I.onlyReadsMemory()) 7999 return false; 8000 8001 SDNodeFlags Flags; 8002 Flags.copyFMF(cast<FPMathOperator>(I)); 8003 8004 SDValue Tmp = getValue(I.getArgOperand(0)); 8005 setValue(&I, 8006 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8007 return true; 8008 } 8009 8010 /// See if we can lower a binary floating-point operation into an SDNode with 8011 /// the specified Opcode. If so, return true and lower it. Otherwise return 8012 /// false, and it will be lowered like a normal call. 8013 /// The caller already checked that \p I calls the appropriate LibFunc with a 8014 /// correct prototype. 8015 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8016 unsigned Opcode) { 8017 // We already checked this call's prototype; verify it doesn't modify errno. 8018 if (!I.onlyReadsMemory()) 8019 return false; 8020 8021 SDNodeFlags Flags; 8022 Flags.copyFMF(cast<FPMathOperator>(I)); 8023 8024 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8025 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8026 EVT VT = Tmp0.getValueType(); 8027 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8028 return true; 8029 } 8030 8031 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8032 // Handle inline assembly differently. 8033 if (I.isInlineAsm()) { 8034 visitInlineAsm(I); 8035 return; 8036 } 8037 8038 if (Function *F = I.getCalledFunction()) { 8039 diagnoseDontCall(I); 8040 8041 if (F->isDeclaration()) { 8042 // Is this an LLVM intrinsic or a target-specific intrinsic? 8043 unsigned IID = F->getIntrinsicID(); 8044 if (!IID) 8045 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8046 IID = II->getIntrinsicID(F); 8047 8048 if (IID) { 8049 visitIntrinsicCall(I, IID); 8050 return; 8051 } 8052 } 8053 8054 // Check for well-known libc/libm calls. If the function is internal, it 8055 // can't be a library call. Don't do the check if marked as nobuiltin for 8056 // some reason or the call site requires strict floating point semantics. 8057 LibFunc Func; 8058 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8059 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8060 LibInfo->hasOptimizedCodeGen(Func)) { 8061 switch (Func) { 8062 default: break; 8063 case LibFunc_bcmp: 8064 if (visitMemCmpBCmpCall(I)) 8065 return; 8066 break; 8067 case LibFunc_copysign: 8068 case LibFunc_copysignf: 8069 case LibFunc_copysignl: 8070 // We already checked this call's prototype; verify it doesn't modify 8071 // errno. 8072 if (I.onlyReadsMemory()) { 8073 SDValue LHS = getValue(I.getArgOperand(0)); 8074 SDValue RHS = getValue(I.getArgOperand(1)); 8075 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8076 LHS.getValueType(), LHS, RHS)); 8077 return; 8078 } 8079 break; 8080 case LibFunc_fabs: 8081 case LibFunc_fabsf: 8082 case LibFunc_fabsl: 8083 if (visitUnaryFloatCall(I, ISD::FABS)) 8084 return; 8085 break; 8086 case LibFunc_fmin: 8087 case LibFunc_fminf: 8088 case LibFunc_fminl: 8089 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8090 return; 8091 break; 8092 case LibFunc_fmax: 8093 case LibFunc_fmaxf: 8094 case LibFunc_fmaxl: 8095 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8096 return; 8097 break; 8098 case LibFunc_sin: 8099 case LibFunc_sinf: 8100 case LibFunc_sinl: 8101 if (visitUnaryFloatCall(I, ISD::FSIN)) 8102 return; 8103 break; 8104 case LibFunc_cos: 8105 case LibFunc_cosf: 8106 case LibFunc_cosl: 8107 if (visitUnaryFloatCall(I, ISD::FCOS)) 8108 return; 8109 break; 8110 case LibFunc_sqrt: 8111 case LibFunc_sqrtf: 8112 case LibFunc_sqrtl: 8113 case LibFunc_sqrt_finite: 8114 case LibFunc_sqrtf_finite: 8115 case LibFunc_sqrtl_finite: 8116 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8117 return; 8118 break; 8119 case LibFunc_floor: 8120 case LibFunc_floorf: 8121 case LibFunc_floorl: 8122 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8123 return; 8124 break; 8125 case LibFunc_nearbyint: 8126 case LibFunc_nearbyintf: 8127 case LibFunc_nearbyintl: 8128 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8129 return; 8130 break; 8131 case LibFunc_ceil: 8132 case LibFunc_ceilf: 8133 case LibFunc_ceill: 8134 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8135 return; 8136 break; 8137 case LibFunc_rint: 8138 case LibFunc_rintf: 8139 case LibFunc_rintl: 8140 if (visitUnaryFloatCall(I, ISD::FRINT)) 8141 return; 8142 break; 8143 case LibFunc_round: 8144 case LibFunc_roundf: 8145 case LibFunc_roundl: 8146 if (visitUnaryFloatCall(I, ISD::FROUND)) 8147 return; 8148 break; 8149 case LibFunc_trunc: 8150 case LibFunc_truncf: 8151 case LibFunc_truncl: 8152 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8153 return; 8154 break; 8155 case LibFunc_log2: 8156 case LibFunc_log2f: 8157 case LibFunc_log2l: 8158 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8159 return; 8160 break; 8161 case LibFunc_exp2: 8162 case LibFunc_exp2f: 8163 case LibFunc_exp2l: 8164 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8165 return; 8166 break; 8167 case LibFunc_memcmp: 8168 if (visitMemCmpBCmpCall(I)) 8169 return; 8170 break; 8171 case LibFunc_mempcpy: 8172 if (visitMemPCpyCall(I)) 8173 return; 8174 break; 8175 case LibFunc_memchr: 8176 if (visitMemChrCall(I)) 8177 return; 8178 break; 8179 case LibFunc_strcpy: 8180 if (visitStrCpyCall(I, false)) 8181 return; 8182 break; 8183 case LibFunc_stpcpy: 8184 if (visitStrCpyCall(I, true)) 8185 return; 8186 break; 8187 case LibFunc_strcmp: 8188 if (visitStrCmpCall(I)) 8189 return; 8190 break; 8191 case LibFunc_strlen: 8192 if (visitStrLenCall(I)) 8193 return; 8194 break; 8195 case LibFunc_strnlen: 8196 if (visitStrNLenCall(I)) 8197 return; 8198 break; 8199 } 8200 } 8201 } 8202 8203 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8204 // have to do anything here to lower funclet bundles. 8205 // CFGuardTarget bundles are lowered in LowerCallTo. 8206 assert(!I.hasOperandBundlesOtherThan( 8207 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8208 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8209 LLVMContext::OB_clang_arc_attachedcall}) && 8210 "Cannot lower calls with arbitrary operand bundles!"); 8211 8212 SDValue Callee = getValue(I.getCalledOperand()); 8213 8214 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8215 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8216 else 8217 // Check if we can potentially perform a tail call. More detailed checking 8218 // is be done within LowerCallTo, after more information about the call is 8219 // known. 8220 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8221 } 8222 8223 namespace { 8224 8225 /// AsmOperandInfo - This contains information for each constraint that we are 8226 /// lowering. 8227 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8228 public: 8229 /// CallOperand - If this is the result output operand or a clobber 8230 /// this is null, otherwise it is the incoming operand to the CallInst. 8231 /// This gets modified as the asm is processed. 8232 SDValue CallOperand; 8233 8234 /// AssignedRegs - If this is a register or register class operand, this 8235 /// contains the set of register corresponding to the operand. 8236 RegsForValue AssignedRegs; 8237 8238 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8239 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8240 } 8241 8242 /// Whether or not this operand accesses memory 8243 bool hasMemory(const TargetLowering &TLI) const { 8244 // Indirect operand accesses access memory. 8245 if (isIndirect) 8246 return true; 8247 8248 for (const auto &Code : Codes) 8249 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8250 return true; 8251 8252 return false; 8253 } 8254 8255 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8256 /// corresponds to. If there is no Value* for this operand, it returns 8257 /// MVT::Other. 8258 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8259 const DataLayout &DL) const { 8260 if (!CallOperandVal) return MVT::Other; 8261 8262 if (isa<BasicBlock>(CallOperandVal)) 8263 return TLI.getProgramPointerTy(DL); 8264 8265 llvm::Type *OpTy = CallOperandVal->getType(); 8266 8267 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8268 // If this is an indirect operand, the operand is a pointer to the 8269 // accessed type. 8270 if (isIndirect) { 8271 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8272 if (!PtrTy) 8273 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8274 OpTy = PtrTy->getElementType(); 8275 } 8276 8277 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8278 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8279 if (STy->getNumElements() == 1) 8280 OpTy = STy->getElementType(0); 8281 8282 // If OpTy is not a single value, it may be a struct/union that we 8283 // can tile with integers. 8284 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8285 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8286 switch (BitSize) { 8287 default: break; 8288 case 1: 8289 case 8: 8290 case 16: 8291 case 32: 8292 case 64: 8293 case 128: 8294 OpTy = IntegerType::get(Context, BitSize); 8295 break; 8296 } 8297 } 8298 8299 return TLI.getAsmOperandValueType(DL, OpTy, true); 8300 } 8301 }; 8302 8303 8304 } // end anonymous namespace 8305 8306 /// Make sure that the output operand \p OpInfo and its corresponding input 8307 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8308 /// out). 8309 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8310 SDISelAsmOperandInfo &MatchingOpInfo, 8311 SelectionDAG &DAG) { 8312 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8313 return; 8314 8315 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8316 const auto &TLI = DAG.getTargetLoweringInfo(); 8317 8318 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8319 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8320 OpInfo.ConstraintVT); 8321 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8322 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8323 MatchingOpInfo.ConstraintVT); 8324 if ((OpInfo.ConstraintVT.isInteger() != 8325 MatchingOpInfo.ConstraintVT.isInteger()) || 8326 (MatchRC.second != InputRC.second)) { 8327 // FIXME: error out in a more elegant fashion 8328 report_fatal_error("Unsupported asm: input constraint" 8329 " with a matching output constraint of" 8330 " incompatible type!"); 8331 } 8332 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8333 } 8334 8335 /// Get a direct memory input to behave well as an indirect operand. 8336 /// This may introduce stores, hence the need for a \p Chain. 8337 /// \return The (possibly updated) chain. 8338 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8339 SDISelAsmOperandInfo &OpInfo, 8340 SelectionDAG &DAG) { 8341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8342 8343 // If we don't have an indirect input, put it in the constpool if we can, 8344 // otherwise spill it to a stack slot. 8345 // TODO: This isn't quite right. We need to handle these according to 8346 // the addressing mode that the constraint wants. Also, this may take 8347 // an additional register for the computation and we don't want that 8348 // either. 8349 8350 // If the operand is a float, integer, or vector constant, spill to a 8351 // constant pool entry to get its address. 8352 const Value *OpVal = OpInfo.CallOperandVal; 8353 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8354 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8355 OpInfo.CallOperand = DAG.getConstantPool( 8356 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8357 return Chain; 8358 } 8359 8360 // Otherwise, create a stack slot and emit a store to it before the asm. 8361 Type *Ty = OpVal->getType(); 8362 auto &DL = DAG.getDataLayout(); 8363 uint64_t TySize = DL.getTypeAllocSize(Ty); 8364 MachineFunction &MF = DAG.getMachineFunction(); 8365 int SSFI = MF.getFrameInfo().CreateStackObject( 8366 TySize, DL.getPrefTypeAlign(Ty), false); 8367 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8368 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8369 MachinePointerInfo::getFixedStack(MF, SSFI), 8370 TLI.getMemValueType(DL, Ty)); 8371 OpInfo.CallOperand = StackSlot; 8372 8373 return Chain; 8374 } 8375 8376 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8377 /// specified operand. We prefer to assign virtual registers, to allow the 8378 /// register allocator to handle the assignment process. However, if the asm 8379 /// uses features that we can't model on machineinstrs, we have SDISel do the 8380 /// allocation. This produces generally horrible, but correct, code. 8381 /// 8382 /// OpInfo describes the operand 8383 /// RefOpInfo describes the matching operand if any, the operand otherwise 8384 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8385 SDISelAsmOperandInfo &OpInfo, 8386 SDISelAsmOperandInfo &RefOpInfo) { 8387 LLVMContext &Context = *DAG.getContext(); 8388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8389 8390 MachineFunction &MF = DAG.getMachineFunction(); 8391 SmallVector<unsigned, 4> Regs; 8392 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8393 8394 // No work to do for memory operations. 8395 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8396 return; 8397 8398 // If this is a constraint for a single physreg, or a constraint for a 8399 // register class, find it. 8400 unsigned AssignedReg; 8401 const TargetRegisterClass *RC; 8402 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8403 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8404 // RC is unset only on failure. Return immediately. 8405 if (!RC) 8406 return; 8407 8408 // Get the actual register value type. This is important, because the user 8409 // may have asked for (e.g.) the AX register in i32 type. We need to 8410 // remember that AX is actually i16 to get the right extension. 8411 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8412 8413 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8414 // If this is an FP operand in an integer register (or visa versa), or more 8415 // generally if the operand value disagrees with the register class we plan 8416 // to stick it in, fix the operand type. 8417 // 8418 // If this is an input value, the bitcast to the new type is done now. 8419 // Bitcast for output value is done at the end of visitInlineAsm(). 8420 if ((OpInfo.Type == InlineAsm::isOutput || 8421 OpInfo.Type == InlineAsm::isInput) && 8422 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8423 // Try to convert to the first EVT that the reg class contains. If the 8424 // types are identical size, use a bitcast to convert (e.g. two differing 8425 // vector types). Note: output bitcast is done at the end of 8426 // visitInlineAsm(). 8427 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8428 // Exclude indirect inputs while they are unsupported because the code 8429 // to perform the load is missing and thus OpInfo.CallOperand still 8430 // refers to the input address rather than the pointed-to value. 8431 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8432 OpInfo.CallOperand = 8433 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8434 OpInfo.ConstraintVT = RegVT; 8435 // If the operand is an FP value and we want it in integer registers, 8436 // use the corresponding integer type. This turns an f64 value into 8437 // i64, which can be passed with two i32 values on a 32-bit machine. 8438 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8439 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8440 if (OpInfo.Type == InlineAsm::isInput) 8441 OpInfo.CallOperand = 8442 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8443 OpInfo.ConstraintVT = VT; 8444 } 8445 } 8446 } 8447 8448 // No need to allocate a matching input constraint since the constraint it's 8449 // matching to has already been allocated. 8450 if (OpInfo.isMatchingInputConstraint()) 8451 return; 8452 8453 EVT ValueVT = OpInfo.ConstraintVT; 8454 if (OpInfo.ConstraintVT == MVT::Other) 8455 ValueVT = RegVT; 8456 8457 // Initialize NumRegs. 8458 unsigned NumRegs = 1; 8459 if (OpInfo.ConstraintVT != MVT::Other) 8460 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8461 8462 // If this is a constraint for a specific physical register, like {r17}, 8463 // assign it now. 8464 8465 // If this associated to a specific register, initialize iterator to correct 8466 // place. If virtual, make sure we have enough registers 8467 8468 // Initialize iterator if necessary 8469 TargetRegisterClass::iterator I = RC->begin(); 8470 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8471 8472 // Do not check for single registers. 8473 if (AssignedReg) { 8474 for (; *I != AssignedReg; ++I) 8475 assert(I != RC->end() && "AssignedReg should be member of RC"); 8476 } 8477 8478 for (; NumRegs; --NumRegs, ++I) { 8479 assert(I != RC->end() && "Ran out of registers to allocate!"); 8480 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8481 Regs.push_back(R); 8482 } 8483 8484 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8485 } 8486 8487 static unsigned 8488 findMatchingInlineAsmOperand(unsigned OperandNo, 8489 const std::vector<SDValue> &AsmNodeOperands) { 8490 // Scan until we find the definition we already emitted of this operand. 8491 unsigned CurOp = InlineAsm::Op_FirstOperand; 8492 for (; OperandNo; --OperandNo) { 8493 // Advance to the next operand. 8494 unsigned OpFlag = 8495 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8496 assert((InlineAsm::isRegDefKind(OpFlag) || 8497 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8498 InlineAsm::isMemKind(OpFlag)) && 8499 "Skipped past definitions?"); 8500 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8501 } 8502 return CurOp; 8503 } 8504 8505 namespace { 8506 8507 class ExtraFlags { 8508 unsigned Flags = 0; 8509 8510 public: 8511 explicit ExtraFlags(const CallBase &Call) { 8512 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8513 if (IA->hasSideEffects()) 8514 Flags |= InlineAsm::Extra_HasSideEffects; 8515 if (IA->isAlignStack()) 8516 Flags |= InlineAsm::Extra_IsAlignStack; 8517 if (Call.isConvergent()) 8518 Flags |= InlineAsm::Extra_IsConvergent; 8519 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8520 } 8521 8522 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8523 // Ideally, we would only check against memory constraints. However, the 8524 // meaning of an Other constraint can be target-specific and we can't easily 8525 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8526 // for Other constraints as well. 8527 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8528 OpInfo.ConstraintType == TargetLowering::C_Other) { 8529 if (OpInfo.Type == InlineAsm::isInput) 8530 Flags |= InlineAsm::Extra_MayLoad; 8531 else if (OpInfo.Type == InlineAsm::isOutput) 8532 Flags |= InlineAsm::Extra_MayStore; 8533 else if (OpInfo.Type == InlineAsm::isClobber) 8534 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8535 } 8536 } 8537 8538 unsigned get() const { return Flags; } 8539 }; 8540 8541 } // end anonymous namespace 8542 8543 /// visitInlineAsm - Handle a call to an InlineAsm object. 8544 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8545 const BasicBlock *EHPadBB) { 8546 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8547 8548 /// ConstraintOperands - Information about all of the constraints. 8549 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8550 8551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8552 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8553 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8554 8555 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8556 // AsmDialect, MayLoad, MayStore). 8557 bool HasSideEffect = IA->hasSideEffects(); 8558 ExtraFlags ExtraInfo(Call); 8559 8560 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8561 unsigned ResNo = 0; // ResNo - The result number of the next output. 8562 unsigned NumMatchingOps = 0; 8563 for (auto &T : TargetConstraints) { 8564 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8565 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8566 8567 // Compute the value type for each operand. 8568 if (OpInfo.Type == InlineAsm::isInput || 8569 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8570 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8571 8572 // Process the call argument. BasicBlocks are labels, currently appearing 8573 // only in asm's. 8574 if (isa<CallBrInst>(Call) && 8575 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8576 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8577 NumMatchingOps) && 8578 (NumMatchingOps == 0 || 8579 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8580 NumMatchingOps))) { 8581 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8582 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8583 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8584 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8585 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8586 } else { 8587 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8588 } 8589 8590 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8591 DAG.getDataLayout()); 8592 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8593 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8594 // The return value of the call is this value. As such, there is no 8595 // corresponding argument. 8596 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8597 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8598 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8599 DAG.getDataLayout(), STy->getElementType(ResNo)); 8600 } else { 8601 assert(ResNo == 0 && "Asm only has one result!"); 8602 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8603 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8604 } 8605 ++ResNo; 8606 } else { 8607 OpInfo.ConstraintVT = MVT::Other; 8608 } 8609 8610 if (OpInfo.hasMatchingInput()) 8611 ++NumMatchingOps; 8612 8613 if (!HasSideEffect) 8614 HasSideEffect = OpInfo.hasMemory(TLI); 8615 8616 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8617 // FIXME: Could we compute this on OpInfo rather than T? 8618 8619 // Compute the constraint code and ConstraintType to use. 8620 TLI.ComputeConstraintToUse(T, SDValue()); 8621 8622 if (T.ConstraintType == TargetLowering::C_Immediate && 8623 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8624 // We've delayed emitting a diagnostic like the "n" constraint because 8625 // inlining could cause an integer showing up. 8626 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8627 "' expects an integer constant " 8628 "expression"); 8629 8630 ExtraInfo.update(T); 8631 } 8632 8633 // We won't need to flush pending loads if this asm doesn't touch 8634 // memory and is nonvolatile. 8635 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8636 8637 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8638 if (EmitEHLabels) { 8639 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8640 } 8641 bool IsCallBr = isa<CallBrInst>(Call); 8642 8643 if (IsCallBr || EmitEHLabels) { 8644 // If this is a callbr or invoke we need to flush pending exports since 8645 // inlineasm_br and invoke are terminators. 8646 // We need to do this before nodes are glued to the inlineasm_br node. 8647 Chain = getControlRoot(); 8648 } 8649 8650 MCSymbol *BeginLabel = nullptr; 8651 if (EmitEHLabels) { 8652 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8653 } 8654 8655 // Second pass over the constraints: compute which constraint option to use. 8656 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8657 // If this is an output operand with a matching input operand, look up the 8658 // matching input. If their types mismatch, e.g. one is an integer, the 8659 // other is floating point, or their sizes are different, flag it as an 8660 // error. 8661 if (OpInfo.hasMatchingInput()) { 8662 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8663 patchMatchingInput(OpInfo, Input, DAG); 8664 } 8665 8666 // Compute the constraint code and ConstraintType to use. 8667 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8668 8669 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8670 OpInfo.Type == InlineAsm::isClobber) 8671 continue; 8672 8673 // If this is a memory input, and if the operand is not indirect, do what we 8674 // need to provide an address for the memory input. 8675 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8676 !OpInfo.isIndirect) { 8677 assert((OpInfo.isMultipleAlternative || 8678 (OpInfo.Type == InlineAsm::isInput)) && 8679 "Can only indirectify direct input operands!"); 8680 8681 // Memory operands really want the address of the value. 8682 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8683 8684 // There is no longer a Value* corresponding to this operand. 8685 OpInfo.CallOperandVal = nullptr; 8686 8687 // It is now an indirect operand. 8688 OpInfo.isIndirect = true; 8689 } 8690 8691 } 8692 8693 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8694 std::vector<SDValue> AsmNodeOperands; 8695 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8696 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8697 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8698 8699 // If we have a !srcloc metadata node associated with it, we want to attach 8700 // this to the ultimately generated inline asm machineinstr. To do this, we 8701 // pass in the third operand as this (potentially null) inline asm MDNode. 8702 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8703 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8704 8705 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8706 // bits as operand 3. 8707 AsmNodeOperands.push_back(DAG.getTargetConstant( 8708 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8709 8710 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8711 // this, assign virtual and physical registers for inputs and otput. 8712 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8713 // Assign Registers. 8714 SDISelAsmOperandInfo &RefOpInfo = 8715 OpInfo.isMatchingInputConstraint() 8716 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8717 : OpInfo; 8718 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8719 8720 auto DetectWriteToReservedRegister = [&]() { 8721 const MachineFunction &MF = DAG.getMachineFunction(); 8722 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8723 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8724 if (Register::isPhysicalRegister(Reg) && 8725 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8726 const char *RegName = TRI.getName(Reg); 8727 emitInlineAsmError(Call, "write to reserved register '" + 8728 Twine(RegName) + "'"); 8729 return true; 8730 } 8731 } 8732 return false; 8733 }; 8734 8735 switch (OpInfo.Type) { 8736 case InlineAsm::isOutput: 8737 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8738 unsigned ConstraintID = 8739 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8740 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8741 "Failed to convert memory constraint code to constraint id."); 8742 8743 // Add information to the INLINEASM node to know about this output. 8744 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8745 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8746 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8747 MVT::i32)); 8748 AsmNodeOperands.push_back(OpInfo.CallOperand); 8749 } else { 8750 // Otherwise, this outputs to a register (directly for C_Register / 8751 // C_RegisterClass, and a target-defined fashion for 8752 // C_Immediate/C_Other). Find a register that we can use. 8753 if (OpInfo.AssignedRegs.Regs.empty()) { 8754 emitInlineAsmError( 8755 Call, "couldn't allocate output register for constraint '" + 8756 Twine(OpInfo.ConstraintCode) + "'"); 8757 return; 8758 } 8759 8760 if (DetectWriteToReservedRegister()) 8761 return; 8762 8763 // Add information to the INLINEASM node to know that this register is 8764 // set. 8765 OpInfo.AssignedRegs.AddInlineAsmOperands( 8766 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8767 : InlineAsm::Kind_RegDef, 8768 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8769 } 8770 break; 8771 8772 case InlineAsm::isInput: { 8773 SDValue InOperandVal = OpInfo.CallOperand; 8774 8775 if (OpInfo.isMatchingInputConstraint()) { 8776 // If this is required to match an output register we have already set, 8777 // just use its register. 8778 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8779 AsmNodeOperands); 8780 unsigned OpFlag = 8781 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8782 if (InlineAsm::isRegDefKind(OpFlag) || 8783 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8784 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8785 if (OpInfo.isIndirect) { 8786 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8787 emitInlineAsmError(Call, "inline asm not supported yet: " 8788 "don't know how to handle tied " 8789 "indirect register inputs"); 8790 return; 8791 } 8792 8793 SmallVector<unsigned, 4> Regs; 8794 MachineFunction &MF = DAG.getMachineFunction(); 8795 MachineRegisterInfo &MRI = MF.getRegInfo(); 8796 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8797 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8798 Register TiedReg = R->getReg(); 8799 MVT RegVT = R->getSimpleValueType(0); 8800 const TargetRegisterClass *RC = 8801 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8802 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8803 : TRI.getMinimalPhysRegClass(TiedReg); 8804 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8805 for (unsigned i = 0; i != NumRegs; ++i) 8806 Regs.push_back(MRI.createVirtualRegister(RC)); 8807 8808 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8809 8810 SDLoc dl = getCurSDLoc(); 8811 // Use the produced MatchedRegs object to 8812 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8813 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8814 true, OpInfo.getMatchedOperand(), dl, 8815 DAG, AsmNodeOperands); 8816 break; 8817 } 8818 8819 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8820 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8821 "Unexpected number of operands"); 8822 // Add information to the INLINEASM node to know about this input. 8823 // See InlineAsm.h isUseOperandTiedToDef. 8824 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8825 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8826 OpInfo.getMatchedOperand()); 8827 AsmNodeOperands.push_back(DAG.getTargetConstant( 8828 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8829 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8830 break; 8831 } 8832 8833 // Treat indirect 'X' constraint as memory. 8834 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8835 OpInfo.isIndirect) 8836 OpInfo.ConstraintType = TargetLowering::C_Memory; 8837 8838 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8839 OpInfo.ConstraintType == TargetLowering::C_Other) { 8840 std::vector<SDValue> Ops; 8841 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8842 Ops, DAG); 8843 if (Ops.empty()) { 8844 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8845 if (isa<ConstantSDNode>(InOperandVal)) { 8846 emitInlineAsmError(Call, "value out of range for constraint '" + 8847 Twine(OpInfo.ConstraintCode) + "'"); 8848 return; 8849 } 8850 8851 emitInlineAsmError(Call, 8852 "invalid operand for inline asm constraint '" + 8853 Twine(OpInfo.ConstraintCode) + "'"); 8854 return; 8855 } 8856 8857 // Add information to the INLINEASM node to know about this input. 8858 unsigned ResOpType = 8859 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8860 AsmNodeOperands.push_back(DAG.getTargetConstant( 8861 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8862 llvm::append_range(AsmNodeOperands, Ops); 8863 break; 8864 } 8865 8866 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8867 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8868 assert(InOperandVal.getValueType() == 8869 TLI.getPointerTy(DAG.getDataLayout()) && 8870 "Memory operands expect pointer values"); 8871 8872 unsigned ConstraintID = 8873 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8874 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8875 "Failed to convert memory constraint code to constraint id."); 8876 8877 // Add information to the INLINEASM node to know about this input. 8878 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8879 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8880 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8881 getCurSDLoc(), 8882 MVT::i32)); 8883 AsmNodeOperands.push_back(InOperandVal); 8884 break; 8885 } 8886 8887 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8888 OpInfo.ConstraintType == TargetLowering::C_Register) && 8889 "Unknown constraint type!"); 8890 8891 // TODO: Support this. 8892 if (OpInfo.isIndirect) { 8893 emitInlineAsmError( 8894 Call, "Don't know how to handle indirect register inputs yet " 8895 "for constraint '" + 8896 Twine(OpInfo.ConstraintCode) + "'"); 8897 return; 8898 } 8899 8900 // Copy the input into the appropriate registers. 8901 if (OpInfo.AssignedRegs.Regs.empty()) { 8902 emitInlineAsmError(Call, 8903 "couldn't allocate input reg for constraint '" + 8904 Twine(OpInfo.ConstraintCode) + "'"); 8905 return; 8906 } 8907 8908 if (DetectWriteToReservedRegister()) 8909 return; 8910 8911 SDLoc dl = getCurSDLoc(); 8912 8913 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8914 &Call); 8915 8916 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8917 dl, DAG, AsmNodeOperands); 8918 break; 8919 } 8920 case InlineAsm::isClobber: 8921 // Add the clobbered value to the operand list, so that the register 8922 // allocator is aware that the physreg got clobbered. 8923 if (!OpInfo.AssignedRegs.Regs.empty()) 8924 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8925 false, 0, getCurSDLoc(), DAG, 8926 AsmNodeOperands); 8927 break; 8928 } 8929 } 8930 8931 // Finish up input operands. Set the input chain and add the flag last. 8932 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8933 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8934 8935 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8936 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8937 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8938 Flag = Chain.getValue(1); 8939 8940 // Do additional work to generate outputs. 8941 8942 SmallVector<EVT, 1> ResultVTs; 8943 SmallVector<SDValue, 1> ResultValues; 8944 SmallVector<SDValue, 8> OutChains; 8945 8946 llvm::Type *CallResultType = Call.getType(); 8947 ArrayRef<Type *> ResultTypes; 8948 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8949 ResultTypes = StructResult->elements(); 8950 else if (!CallResultType->isVoidTy()) 8951 ResultTypes = makeArrayRef(CallResultType); 8952 8953 auto CurResultType = ResultTypes.begin(); 8954 auto handleRegAssign = [&](SDValue V) { 8955 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8956 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8957 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8958 ++CurResultType; 8959 // If the type of the inline asm call site return value is different but has 8960 // same size as the type of the asm output bitcast it. One example of this 8961 // is for vectors with different width / number of elements. This can 8962 // happen for register classes that can contain multiple different value 8963 // types. The preg or vreg allocated may not have the same VT as was 8964 // expected. 8965 // 8966 // This can also happen for a return value that disagrees with the register 8967 // class it is put in, eg. a double in a general-purpose register on a 8968 // 32-bit machine. 8969 if (ResultVT != V.getValueType() && 8970 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8971 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8972 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8973 V.getValueType().isInteger()) { 8974 // If a result value was tied to an input value, the computed result 8975 // may have a wider width than the expected result. Extract the 8976 // relevant portion. 8977 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8978 } 8979 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8980 ResultVTs.push_back(ResultVT); 8981 ResultValues.push_back(V); 8982 }; 8983 8984 // Deal with output operands. 8985 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8986 if (OpInfo.Type == InlineAsm::isOutput) { 8987 SDValue Val; 8988 // Skip trivial output operands. 8989 if (OpInfo.AssignedRegs.Regs.empty()) 8990 continue; 8991 8992 switch (OpInfo.ConstraintType) { 8993 case TargetLowering::C_Register: 8994 case TargetLowering::C_RegisterClass: 8995 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8996 Chain, &Flag, &Call); 8997 break; 8998 case TargetLowering::C_Immediate: 8999 case TargetLowering::C_Other: 9000 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9001 OpInfo, DAG); 9002 break; 9003 case TargetLowering::C_Memory: 9004 break; // Already handled. 9005 case TargetLowering::C_Unknown: 9006 assert(false && "Unexpected unknown constraint"); 9007 } 9008 9009 // Indirect output manifest as stores. Record output chains. 9010 if (OpInfo.isIndirect) { 9011 const Value *Ptr = OpInfo.CallOperandVal; 9012 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9013 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9014 MachinePointerInfo(Ptr)); 9015 OutChains.push_back(Store); 9016 } else { 9017 // generate CopyFromRegs to associated registers. 9018 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9019 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9020 for (const SDValue &V : Val->op_values()) 9021 handleRegAssign(V); 9022 } else 9023 handleRegAssign(Val); 9024 } 9025 } 9026 } 9027 9028 // Set results. 9029 if (!ResultValues.empty()) { 9030 assert(CurResultType == ResultTypes.end() && 9031 "Mismatch in number of ResultTypes"); 9032 assert(ResultValues.size() == ResultTypes.size() && 9033 "Mismatch in number of output operands in asm result"); 9034 9035 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9036 DAG.getVTList(ResultVTs), ResultValues); 9037 setValue(&Call, V); 9038 } 9039 9040 // Collect store chains. 9041 if (!OutChains.empty()) 9042 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9043 9044 if (EmitEHLabels) { 9045 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9046 } 9047 9048 // Only Update Root if inline assembly has a memory effect. 9049 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9050 EmitEHLabels) 9051 DAG.setRoot(Chain); 9052 } 9053 9054 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9055 const Twine &Message) { 9056 LLVMContext &Ctx = *DAG.getContext(); 9057 Ctx.emitError(&Call, Message); 9058 9059 // Make sure we leave the DAG in a valid state 9060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9061 SmallVector<EVT, 1> ValueVTs; 9062 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9063 9064 if (ValueVTs.empty()) 9065 return; 9066 9067 SmallVector<SDValue, 1> Ops; 9068 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9069 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9070 9071 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9072 } 9073 9074 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9075 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9076 MVT::Other, getRoot(), 9077 getValue(I.getArgOperand(0)), 9078 DAG.getSrcValue(I.getArgOperand(0)))); 9079 } 9080 9081 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9083 const DataLayout &DL = DAG.getDataLayout(); 9084 SDValue V = DAG.getVAArg( 9085 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9086 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9087 DL.getABITypeAlign(I.getType()).value()); 9088 DAG.setRoot(V.getValue(1)); 9089 9090 if (I.getType()->isPointerTy()) 9091 V = DAG.getPtrExtOrTrunc( 9092 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9093 setValue(&I, V); 9094 } 9095 9096 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9097 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9098 MVT::Other, getRoot(), 9099 getValue(I.getArgOperand(0)), 9100 DAG.getSrcValue(I.getArgOperand(0)))); 9101 } 9102 9103 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9104 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9105 MVT::Other, getRoot(), 9106 getValue(I.getArgOperand(0)), 9107 getValue(I.getArgOperand(1)), 9108 DAG.getSrcValue(I.getArgOperand(0)), 9109 DAG.getSrcValue(I.getArgOperand(1)))); 9110 } 9111 9112 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9113 const Instruction &I, 9114 SDValue Op) { 9115 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9116 if (!Range) 9117 return Op; 9118 9119 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9120 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9121 return Op; 9122 9123 APInt Lo = CR.getUnsignedMin(); 9124 if (!Lo.isMinValue()) 9125 return Op; 9126 9127 APInt Hi = CR.getUnsignedMax(); 9128 unsigned Bits = std::max(Hi.getActiveBits(), 9129 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9130 9131 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9132 9133 SDLoc SL = getCurSDLoc(); 9134 9135 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9136 DAG.getValueType(SmallVT)); 9137 unsigned NumVals = Op.getNode()->getNumValues(); 9138 if (NumVals == 1) 9139 return ZExt; 9140 9141 SmallVector<SDValue, 4> Ops; 9142 9143 Ops.push_back(ZExt); 9144 for (unsigned I = 1; I != NumVals; ++I) 9145 Ops.push_back(Op.getValue(I)); 9146 9147 return DAG.getMergeValues(Ops, SL); 9148 } 9149 9150 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9151 /// the call being lowered. 9152 /// 9153 /// This is a helper for lowering intrinsics that follow a target calling 9154 /// convention or require stack pointer adjustment. Only a subset of the 9155 /// intrinsic's operands need to participate in the calling convention. 9156 void SelectionDAGBuilder::populateCallLoweringInfo( 9157 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9158 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9159 bool IsPatchPoint) { 9160 TargetLowering::ArgListTy Args; 9161 Args.reserve(NumArgs); 9162 9163 // Populate the argument list. 9164 // Attributes for args start at offset 1, after the return attribute. 9165 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9166 ArgI != ArgE; ++ArgI) { 9167 const Value *V = Call->getOperand(ArgI); 9168 9169 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9170 9171 TargetLowering::ArgListEntry Entry; 9172 Entry.Node = getValue(V); 9173 Entry.Ty = V->getType(); 9174 Entry.setAttributes(Call, ArgI); 9175 Args.push_back(Entry); 9176 } 9177 9178 CLI.setDebugLoc(getCurSDLoc()) 9179 .setChain(getRoot()) 9180 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9181 .setDiscardResult(Call->use_empty()) 9182 .setIsPatchPoint(IsPatchPoint) 9183 .setIsPreallocated( 9184 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9185 } 9186 9187 /// Add a stack map intrinsic call's live variable operands to a stackmap 9188 /// or patchpoint target node's operand list. 9189 /// 9190 /// Constants are converted to TargetConstants purely as an optimization to 9191 /// avoid constant materialization and register allocation. 9192 /// 9193 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9194 /// generate addess computation nodes, and so FinalizeISel can convert the 9195 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9196 /// address materialization and register allocation, but may also be required 9197 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9198 /// alloca in the entry block, then the runtime may assume that the alloca's 9199 /// StackMap location can be read immediately after compilation and that the 9200 /// location is valid at any point during execution (this is similar to the 9201 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9202 /// only available in a register, then the runtime would need to trap when 9203 /// execution reaches the StackMap in order to read the alloca's location. 9204 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9205 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9206 SelectionDAGBuilder &Builder) { 9207 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9208 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9209 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9210 Ops.push_back( 9211 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9212 Ops.push_back( 9213 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9214 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9215 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9216 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9217 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9218 } else 9219 Ops.push_back(OpVal); 9220 } 9221 } 9222 9223 /// Lower llvm.experimental.stackmap directly to its target opcode. 9224 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9225 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9226 // [live variables...]) 9227 9228 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9229 9230 SDValue Chain, InFlag, Callee, NullPtr; 9231 SmallVector<SDValue, 32> Ops; 9232 9233 SDLoc DL = getCurSDLoc(); 9234 Callee = getValue(CI.getCalledOperand()); 9235 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9236 9237 // The stackmap intrinsic only records the live variables (the arguments 9238 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9239 // intrinsic, this won't be lowered to a function call. This means we don't 9240 // have to worry about calling conventions and target specific lowering code. 9241 // Instead we perform the call lowering right here. 9242 // 9243 // chain, flag = CALLSEQ_START(chain, 0, 0) 9244 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9245 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9246 // 9247 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9248 InFlag = Chain.getValue(1); 9249 9250 // Add the <id> and <numBytes> constants. 9251 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9252 Ops.push_back(DAG.getTargetConstant( 9253 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9254 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9255 Ops.push_back(DAG.getTargetConstant( 9256 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9257 MVT::i32)); 9258 9259 // Push live variables for the stack map. 9260 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9261 9262 // We are not pushing any register mask info here on the operands list, 9263 // because the stackmap doesn't clobber anything. 9264 9265 // Push the chain and the glue flag. 9266 Ops.push_back(Chain); 9267 Ops.push_back(InFlag); 9268 9269 // Create the STACKMAP node. 9270 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9271 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9272 Chain = SDValue(SM, 0); 9273 InFlag = Chain.getValue(1); 9274 9275 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9276 9277 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9278 9279 // Set the root to the target-lowered call chain. 9280 DAG.setRoot(Chain); 9281 9282 // Inform the Frame Information that we have a stackmap in this function. 9283 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9284 } 9285 9286 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9287 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9288 const BasicBlock *EHPadBB) { 9289 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9290 // i32 <numBytes>, 9291 // i8* <target>, 9292 // i32 <numArgs>, 9293 // [Args...], 9294 // [live variables...]) 9295 9296 CallingConv::ID CC = CB.getCallingConv(); 9297 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9298 bool HasDef = !CB.getType()->isVoidTy(); 9299 SDLoc dl = getCurSDLoc(); 9300 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9301 9302 // Handle immediate and symbolic callees. 9303 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9304 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9305 /*isTarget=*/true); 9306 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9307 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9308 SDLoc(SymbolicCallee), 9309 SymbolicCallee->getValueType(0)); 9310 9311 // Get the real number of arguments participating in the call <numArgs> 9312 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9313 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9314 9315 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9316 // Intrinsics include all meta-operands up to but not including CC. 9317 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9318 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9319 "Not enough arguments provided to the patchpoint intrinsic"); 9320 9321 // For AnyRegCC the arguments are lowered later on manually. 9322 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9323 Type *ReturnTy = 9324 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9325 9326 TargetLowering::CallLoweringInfo CLI(DAG); 9327 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9328 ReturnTy, true); 9329 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9330 9331 SDNode *CallEnd = Result.second.getNode(); 9332 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9333 CallEnd = CallEnd->getOperand(0).getNode(); 9334 9335 /// Get a call instruction from the call sequence chain. 9336 /// Tail calls are not allowed. 9337 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9338 "Expected a callseq node."); 9339 SDNode *Call = CallEnd->getOperand(0).getNode(); 9340 bool HasGlue = Call->getGluedNode(); 9341 9342 // Replace the target specific call node with the patchable intrinsic. 9343 SmallVector<SDValue, 8> Ops; 9344 9345 // Add the <id> and <numBytes> constants. 9346 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9347 Ops.push_back(DAG.getTargetConstant( 9348 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9349 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9350 Ops.push_back(DAG.getTargetConstant( 9351 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9352 MVT::i32)); 9353 9354 // Add the callee. 9355 Ops.push_back(Callee); 9356 9357 // Adjust <numArgs> to account for any arguments that have been passed on the 9358 // stack instead. 9359 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9360 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9361 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9362 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9363 9364 // Add the calling convention 9365 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9366 9367 // Add the arguments we omitted previously. The register allocator should 9368 // place these in any free register. 9369 if (IsAnyRegCC) 9370 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9371 Ops.push_back(getValue(CB.getArgOperand(i))); 9372 9373 // Push the arguments from the call instruction up to the register mask. 9374 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9375 Ops.append(Call->op_begin() + 2, e); 9376 9377 // Push live variables for the stack map. 9378 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9379 9380 // Push the register mask info. 9381 if (HasGlue) 9382 Ops.push_back(*(Call->op_end()-2)); 9383 else 9384 Ops.push_back(*(Call->op_end()-1)); 9385 9386 // Push the chain (this is originally the first operand of the call, but 9387 // becomes now the last or second to last operand). 9388 Ops.push_back(*(Call->op_begin())); 9389 9390 // Push the glue flag (last operand). 9391 if (HasGlue) 9392 Ops.push_back(*(Call->op_end()-1)); 9393 9394 SDVTList NodeTys; 9395 if (IsAnyRegCC && HasDef) { 9396 // Create the return types based on the intrinsic definition 9397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9398 SmallVector<EVT, 3> ValueVTs; 9399 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9400 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9401 9402 // There is always a chain and a glue type at the end 9403 ValueVTs.push_back(MVT::Other); 9404 ValueVTs.push_back(MVT::Glue); 9405 NodeTys = DAG.getVTList(ValueVTs); 9406 } else 9407 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9408 9409 // Replace the target specific call node with a PATCHPOINT node. 9410 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9411 dl, NodeTys, Ops); 9412 9413 // Update the NodeMap. 9414 if (HasDef) { 9415 if (IsAnyRegCC) 9416 setValue(&CB, SDValue(MN, 0)); 9417 else 9418 setValue(&CB, Result.first); 9419 } 9420 9421 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9422 // call sequence. Furthermore the location of the chain and glue can change 9423 // when the AnyReg calling convention is used and the intrinsic returns a 9424 // value. 9425 if (IsAnyRegCC && HasDef) { 9426 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9427 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9428 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9429 } else 9430 DAG.ReplaceAllUsesWith(Call, MN); 9431 DAG.DeleteNode(Call); 9432 9433 // Inform the Frame Information that we have a patchpoint in this function. 9434 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9435 } 9436 9437 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9438 unsigned Intrinsic) { 9439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9440 SDValue Op1 = getValue(I.getArgOperand(0)); 9441 SDValue Op2; 9442 if (I.getNumArgOperands() > 1) 9443 Op2 = getValue(I.getArgOperand(1)); 9444 SDLoc dl = getCurSDLoc(); 9445 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9446 SDValue Res; 9447 SDNodeFlags SDFlags; 9448 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9449 SDFlags.copyFMF(*FPMO); 9450 9451 switch (Intrinsic) { 9452 case Intrinsic::vector_reduce_fadd: 9453 if (SDFlags.hasAllowReassociation()) 9454 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9455 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9456 SDFlags); 9457 else 9458 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9459 break; 9460 case Intrinsic::vector_reduce_fmul: 9461 if (SDFlags.hasAllowReassociation()) 9462 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9463 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9464 SDFlags); 9465 else 9466 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9467 break; 9468 case Intrinsic::vector_reduce_add: 9469 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9470 break; 9471 case Intrinsic::vector_reduce_mul: 9472 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9473 break; 9474 case Intrinsic::vector_reduce_and: 9475 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9476 break; 9477 case Intrinsic::vector_reduce_or: 9478 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9479 break; 9480 case Intrinsic::vector_reduce_xor: 9481 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9482 break; 9483 case Intrinsic::vector_reduce_smax: 9484 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9485 break; 9486 case Intrinsic::vector_reduce_smin: 9487 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9488 break; 9489 case Intrinsic::vector_reduce_umax: 9490 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9491 break; 9492 case Intrinsic::vector_reduce_umin: 9493 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9494 break; 9495 case Intrinsic::vector_reduce_fmax: 9496 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9497 break; 9498 case Intrinsic::vector_reduce_fmin: 9499 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9500 break; 9501 default: 9502 llvm_unreachable("Unhandled vector reduce intrinsic"); 9503 } 9504 setValue(&I, Res); 9505 } 9506 9507 /// Returns an AttributeList representing the attributes applied to the return 9508 /// value of the given call. 9509 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9510 SmallVector<Attribute::AttrKind, 2> Attrs; 9511 if (CLI.RetSExt) 9512 Attrs.push_back(Attribute::SExt); 9513 if (CLI.RetZExt) 9514 Attrs.push_back(Attribute::ZExt); 9515 if (CLI.IsInReg) 9516 Attrs.push_back(Attribute::InReg); 9517 9518 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9519 Attrs); 9520 } 9521 9522 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9523 /// implementation, which just calls LowerCall. 9524 /// FIXME: When all targets are 9525 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9526 std::pair<SDValue, SDValue> 9527 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9528 // Handle the incoming return values from the call. 9529 CLI.Ins.clear(); 9530 Type *OrigRetTy = CLI.RetTy; 9531 SmallVector<EVT, 4> RetTys; 9532 SmallVector<uint64_t, 4> Offsets; 9533 auto &DL = CLI.DAG.getDataLayout(); 9534 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9535 9536 if (CLI.IsPostTypeLegalization) { 9537 // If we are lowering a libcall after legalization, split the return type. 9538 SmallVector<EVT, 4> OldRetTys; 9539 SmallVector<uint64_t, 4> OldOffsets; 9540 RetTys.swap(OldRetTys); 9541 Offsets.swap(OldOffsets); 9542 9543 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9544 EVT RetVT = OldRetTys[i]; 9545 uint64_t Offset = OldOffsets[i]; 9546 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9547 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9548 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9549 RetTys.append(NumRegs, RegisterVT); 9550 for (unsigned j = 0; j != NumRegs; ++j) 9551 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9552 } 9553 } 9554 9555 SmallVector<ISD::OutputArg, 4> Outs; 9556 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9557 9558 bool CanLowerReturn = 9559 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9560 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9561 9562 SDValue DemoteStackSlot; 9563 int DemoteStackIdx = -100; 9564 if (!CanLowerReturn) { 9565 // FIXME: equivalent assert? 9566 // assert(!CS.hasInAllocaArgument() && 9567 // "sret demotion is incompatible with inalloca"); 9568 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9569 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9570 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9571 DemoteStackIdx = 9572 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9573 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9574 DL.getAllocaAddrSpace()); 9575 9576 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9577 ArgListEntry Entry; 9578 Entry.Node = DemoteStackSlot; 9579 Entry.Ty = StackSlotPtrType; 9580 Entry.IsSExt = false; 9581 Entry.IsZExt = false; 9582 Entry.IsInReg = false; 9583 Entry.IsSRet = true; 9584 Entry.IsNest = false; 9585 Entry.IsByVal = false; 9586 Entry.IsByRef = false; 9587 Entry.IsReturned = false; 9588 Entry.IsSwiftSelf = false; 9589 Entry.IsSwiftAsync = false; 9590 Entry.IsSwiftError = false; 9591 Entry.IsCFGuardTarget = false; 9592 Entry.Alignment = Alignment; 9593 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9594 CLI.NumFixedArgs += 1; 9595 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9596 9597 // sret demotion isn't compatible with tail-calls, since the sret argument 9598 // points into the callers stack frame. 9599 CLI.IsTailCall = false; 9600 } else { 9601 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9602 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9603 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9604 ISD::ArgFlagsTy Flags; 9605 if (NeedsRegBlock) { 9606 Flags.setInConsecutiveRegs(); 9607 if (I == RetTys.size() - 1) 9608 Flags.setInConsecutiveRegsLast(); 9609 } 9610 EVT VT = RetTys[I]; 9611 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9612 CLI.CallConv, VT); 9613 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9614 CLI.CallConv, VT); 9615 for (unsigned i = 0; i != NumRegs; ++i) { 9616 ISD::InputArg MyFlags; 9617 MyFlags.Flags = Flags; 9618 MyFlags.VT = RegisterVT; 9619 MyFlags.ArgVT = VT; 9620 MyFlags.Used = CLI.IsReturnValueUsed; 9621 if (CLI.RetTy->isPointerTy()) { 9622 MyFlags.Flags.setPointer(); 9623 MyFlags.Flags.setPointerAddrSpace( 9624 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9625 } 9626 if (CLI.RetSExt) 9627 MyFlags.Flags.setSExt(); 9628 if (CLI.RetZExt) 9629 MyFlags.Flags.setZExt(); 9630 if (CLI.IsInReg) 9631 MyFlags.Flags.setInReg(); 9632 CLI.Ins.push_back(MyFlags); 9633 } 9634 } 9635 } 9636 9637 // We push in swifterror return as the last element of CLI.Ins. 9638 ArgListTy &Args = CLI.getArgs(); 9639 if (supportSwiftError()) { 9640 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9641 if (Args[i].IsSwiftError) { 9642 ISD::InputArg MyFlags; 9643 MyFlags.VT = getPointerTy(DL); 9644 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9645 MyFlags.Flags.setSwiftError(); 9646 CLI.Ins.push_back(MyFlags); 9647 } 9648 } 9649 } 9650 9651 // Handle all of the outgoing arguments. 9652 CLI.Outs.clear(); 9653 CLI.OutVals.clear(); 9654 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9655 SmallVector<EVT, 4> ValueVTs; 9656 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9657 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9658 Type *FinalType = Args[i].Ty; 9659 if (Args[i].IsByVal) 9660 FinalType = Args[i].IndirectType; 9661 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9662 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9663 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9664 ++Value) { 9665 EVT VT = ValueVTs[Value]; 9666 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9667 SDValue Op = SDValue(Args[i].Node.getNode(), 9668 Args[i].Node.getResNo() + Value); 9669 ISD::ArgFlagsTy Flags; 9670 9671 // Certain targets (such as MIPS), may have a different ABI alignment 9672 // for a type depending on the context. Give the target a chance to 9673 // specify the alignment it wants. 9674 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9675 Flags.setOrigAlign(OriginalAlignment); 9676 9677 if (Args[i].Ty->isPointerTy()) { 9678 Flags.setPointer(); 9679 Flags.setPointerAddrSpace( 9680 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9681 } 9682 if (Args[i].IsZExt) 9683 Flags.setZExt(); 9684 if (Args[i].IsSExt) 9685 Flags.setSExt(); 9686 if (Args[i].IsInReg) { 9687 // If we are using vectorcall calling convention, a structure that is 9688 // passed InReg - is surely an HVA 9689 if (CLI.CallConv == CallingConv::X86_VectorCall && 9690 isa<StructType>(FinalType)) { 9691 // The first value of a structure is marked 9692 if (0 == Value) 9693 Flags.setHvaStart(); 9694 Flags.setHva(); 9695 } 9696 // Set InReg Flag 9697 Flags.setInReg(); 9698 } 9699 if (Args[i].IsSRet) 9700 Flags.setSRet(); 9701 if (Args[i].IsSwiftSelf) 9702 Flags.setSwiftSelf(); 9703 if (Args[i].IsSwiftAsync) 9704 Flags.setSwiftAsync(); 9705 if (Args[i].IsSwiftError) 9706 Flags.setSwiftError(); 9707 if (Args[i].IsCFGuardTarget) 9708 Flags.setCFGuardTarget(); 9709 if (Args[i].IsByVal) 9710 Flags.setByVal(); 9711 if (Args[i].IsByRef) 9712 Flags.setByRef(); 9713 if (Args[i].IsPreallocated) { 9714 Flags.setPreallocated(); 9715 // Set the byval flag for CCAssignFn callbacks that don't know about 9716 // preallocated. This way we can know how many bytes we should've 9717 // allocated and how many bytes a callee cleanup function will pop. If 9718 // we port preallocated to more targets, we'll have to add custom 9719 // preallocated handling in the various CC lowering callbacks. 9720 Flags.setByVal(); 9721 } 9722 if (Args[i].IsInAlloca) { 9723 Flags.setInAlloca(); 9724 // Set the byval flag for CCAssignFn callbacks that don't know about 9725 // inalloca. This way we can know how many bytes we should've allocated 9726 // and how many bytes a callee cleanup function will pop. If we port 9727 // inalloca to more targets, we'll have to add custom inalloca handling 9728 // in the various CC lowering callbacks. 9729 Flags.setByVal(); 9730 } 9731 Align MemAlign; 9732 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9733 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9734 Flags.setByValSize(FrameSize); 9735 9736 // info is not there but there are cases it cannot get right. 9737 if (auto MA = Args[i].Alignment) 9738 MemAlign = *MA; 9739 else 9740 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9741 } else if (auto MA = Args[i].Alignment) { 9742 MemAlign = *MA; 9743 } else { 9744 MemAlign = OriginalAlignment; 9745 } 9746 Flags.setMemAlign(MemAlign); 9747 if (Args[i].IsNest) 9748 Flags.setNest(); 9749 if (NeedsRegBlock) 9750 Flags.setInConsecutiveRegs(); 9751 9752 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9753 CLI.CallConv, VT); 9754 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9755 CLI.CallConv, VT); 9756 SmallVector<SDValue, 4> Parts(NumParts); 9757 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9758 9759 if (Args[i].IsSExt) 9760 ExtendKind = ISD::SIGN_EXTEND; 9761 else if (Args[i].IsZExt) 9762 ExtendKind = ISD::ZERO_EXTEND; 9763 9764 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9765 // for now. 9766 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9767 CanLowerReturn) { 9768 assert((CLI.RetTy == Args[i].Ty || 9769 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9770 CLI.RetTy->getPointerAddressSpace() == 9771 Args[i].Ty->getPointerAddressSpace())) && 9772 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9773 // Before passing 'returned' to the target lowering code, ensure that 9774 // either the register MVT and the actual EVT are the same size or that 9775 // the return value and argument are extended in the same way; in these 9776 // cases it's safe to pass the argument register value unchanged as the 9777 // return register value (although it's at the target's option whether 9778 // to do so) 9779 // TODO: allow code generation to take advantage of partially preserved 9780 // registers rather than clobbering the entire register when the 9781 // parameter extension method is not compatible with the return 9782 // extension method 9783 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9784 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9785 CLI.RetZExt == Args[i].IsZExt)) 9786 Flags.setReturned(); 9787 } 9788 9789 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9790 CLI.CallConv, ExtendKind); 9791 9792 for (unsigned j = 0; j != NumParts; ++j) { 9793 // if it isn't first piece, alignment must be 1 9794 // For scalable vectors the scalable part is currently handled 9795 // by individual targets, so we just use the known minimum size here. 9796 ISD::OutputArg MyFlags( 9797 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9798 i < CLI.NumFixedArgs, i, 9799 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9800 if (NumParts > 1 && j == 0) 9801 MyFlags.Flags.setSplit(); 9802 else if (j != 0) { 9803 MyFlags.Flags.setOrigAlign(Align(1)); 9804 if (j == NumParts - 1) 9805 MyFlags.Flags.setSplitEnd(); 9806 } 9807 9808 CLI.Outs.push_back(MyFlags); 9809 CLI.OutVals.push_back(Parts[j]); 9810 } 9811 9812 if (NeedsRegBlock && Value == NumValues - 1) 9813 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9814 } 9815 } 9816 9817 SmallVector<SDValue, 4> InVals; 9818 CLI.Chain = LowerCall(CLI, InVals); 9819 9820 // Update CLI.InVals to use outside of this function. 9821 CLI.InVals = InVals; 9822 9823 // Verify that the target's LowerCall behaved as expected. 9824 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9825 "LowerCall didn't return a valid chain!"); 9826 assert((!CLI.IsTailCall || InVals.empty()) && 9827 "LowerCall emitted a return value for a tail call!"); 9828 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9829 "LowerCall didn't emit the correct number of values!"); 9830 9831 // For a tail call, the return value is merely live-out and there aren't 9832 // any nodes in the DAG representing it. Return a special value to 9833 // indicate that a tail call has been emitted and no more Instructions 9834 // should be processed in the current block. 9835 if (CLI.IsTailCall) { 9836 CLI.DAG.setRoot(CLI.Chain); 9837 return std::make_pair(SDValue(), SDValue()); 9838 } 9839 9840 #ifndef NDEBUG 9841 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9842 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9843 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9844 "LowerCall emitted a value with the wrong type!"); 9845 } 9846 #endif 9847 9848 SmallVector<SDValue, 4> ReturnValues; 9849 if (!CanLowerReturn) { 9850 // The instruction result is the result of loading from the 9851 // hidden sret parameter. 9852 SmallVector<EVT, 1> PVTs; 9853 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9854 9855 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9856 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9857 EVT PtrVT = PVTs[0]; 9858 9859 unsigned NumValues = RetTys.size(); 9860 ReturnValues.resize(NumValues); 9861 SmallVector<SDValue, 4> Chains(NumValues); 9862 9863 // An aggregate return value cannot wrap around the address space, so 9864 // offsets to its parts don't wrap either. 9865 SDNodeFlags Flags; 9866 Flags.setNoUnsignedWrap(true); 9867 9868 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9869 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9870 for (unsigned i = 0; i < NumValues; ++i) { 9871 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9872 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9873 PtrVT), Flags); 9874 SDValue L = CLI.DAG.getLoad( 9875 RetTys[i], CLI.DL, CLI.Chain, Add, 9876 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9877 DemoteStackIdx, Offsets[i]), 9878 HiddenSRetAlign); 9879 ReturnValues[i] = L; 9880 Chains[i] = L.getValue(1); 9881 } 9882 9883 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9884 } else { 9885 // Collect the legal value parts into potentially illegal values 9886 // that correspond to the original function's return values. 9887 Optional<ISD::NodeType> AssertOp; 9888 if (CLI.RetSExt) 9889 AssertOp = ISD::AssertSext; 9890 else if (CLI.RetZExt) 9891 AssertOp = ISD::AssertZext; 9892 unsigned CurReg = 0; 9893 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9894 EVT VT = RetTys[I]; 9895 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9896 CLI.CallConv, VT); 9897 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9898 CLI.CallConv, VT); 9899 9900 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9901 NumRegs, RegisterVT, VT, nullptr, 9902 CLI.CallConv, AssertOp)); 9903 CurReg += NumRegs; 9904 } 9905 9906 // For a function returning void, there is no return value. We can't create 9907 // such a node, so we just return a null return value in that case. In 9908 // that case, nothing will actually look at the value. 9909 if (ReturnValues.empty()) 9910 return std::make_pair(SDValue(), CLI.Chain); 9911 } 9912 9913 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9914 CLI.DAG.getVTList(RetTys), ReturnValues); 9915 return std::make_pair(Res, CLI.Chain); 9916 } 9917 9918 /// Places new result values for the node in Results (their number 9919 /// and types must exactly match those of the original return values of 9920 /// the node), or leaves Results empty, which indicates that the node is not 9921 /// to be custom lowered after all. 9922 void TargetLowering::LowerOperationWrapper(SDNode *N, 9923 SmallVectorImpl<SDValue> &Results, 9924 SelectionDAG &DAG) const { 9925 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9926 9927 if (!Res.getNode()) 9928 return; 9929 9930 // If the original node has one result, take the return value from 9931 // LowerOperation as is. It might not be result number 0. 9932 if (N->getNumValues() == 1) { 9933 Results.push_back(Res); 9934 return; 9935 } 9936 9937 // If the original node has multiple results, then the return node should 9938 // have the same number of results. 9939 assert((N->getNumValues() == Res->getNumValues()) && 9940 "Lowering returned the wrong number of results!"); 9941 9942 // Places new result values base on N result number. 9943 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9944 Results.push_back(Res.getValue(I)); 9945 } 9946 9947 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9948 llvm_unreachable("LowerOperation not implemented for this target!"); 9949 } 9950 9951 void 9952 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9953 SDValue Op = getNonRegisterValue(V); 9954 assert((Op.getOpcode() != ISD::CopyFromReg || 9955 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9956 "Copy from a reg to the same reg!"); 9957 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9958 9959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9960 // If this is an InlineAsm we have to match the registers required, not the 9961 // notional registers required by the type. 9962 9963 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9964 None); // This is not an ABI copy. 9965 SDValue Chain = DAG.getEntryNode(); 9966 9967 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 9968 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 9969 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 9970 ExtendType = PreferredExtendIt->second; 9971 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9972 PendingExports.push_back(Chain); 9973 } 9974 9975 #include "llvm/CodeGen/SelectionDAGISel.h" 9976 9977 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9978 /// entry block, return true. This includes arguments used by switches, since 9979 /// the switch may expand into multiple basic blocks. 9980 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9981 // With FastISel active, we may be splitting blocks, so force creation 9982 // of virtual registers for all non-dead arguments. 9983 if (FastISel) 9984 return A->use_empty(); 9985 9986 const BasicBlock &Entry = A->getParent()->front(); 9987 for (const User *U : A->users()) 9988 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9989 return false; // Use not in entry block. 9990 9991 return true; 9992 } 9993 9994 using ArgCopyElisionMapTy = 9995 DenseMap<const Argument *, 9996 std::pair<const AllocaInst *, const StoreInst *>>; 9997 9998 /// Scan the entry block of the function in FuncInfo for arguments that look 9999 /// like copies into a local alloca. Record any copied arguments in 10000 /// ArgCopyElisionCandidates. 10001 static void 10002 findArgumentCopyElisionCandidates(const DataLayout &DL, 10003 FunctionLoweringInfo *FuncInfo, 10004 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10005 // Record the state of every static alloca used in the entry block. Argument 10006 // allocas are all used in the entry block, so we need approximately as many 10007 // entries as we have arguments. 10008 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10009 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10010 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10011 StaticAllocas.reserve(NumArgs * 2); 10012 10013 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10014 if (!V) 10015 return nullptr; 10016 V = V->stripPointerCasts(); 10017 const auto *AI = dyn_cast<AllocaInst>(V); 10018 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10019 return nullptr; 10020 auto Iter = StaticAllocas.insert({AI, Unknown}); 10021 return &Iter.first->second; 10022 }; 10023 10024 // Look for stores of arguments to static allocas. Look through bitcasts and 10025 // GEPs to handle type coercions, as long as the alloca is fully initialized 10026 // by the store. Any non-store use of an alloca escapes it and any subsequent 10027 // unanalyzed store might write it. 10028 // FIXME: Handle structs initialized with multiple stores. 10029 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10030 // Look for stores, and handle non-store uses conservatively. 10031 const auto *SI = dyn_cast<StoreInst>(&I); 10032 if (!SI) { 10033 // We will look through cast uses, so ignore them completely. 10034 if (I.isCast()) 10035 continue; 10036 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10037 // to allocas. 10038 if (I.isDebugOrPseudoInst()) 10039 continue; 10040 // This is an unknown instruction. Assume it escapes or writes to all 10041 // static alloca operands. 10042 for (const Use &U : I.operands()) { 10043 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10044 *Info = StaticAllocaInfo::Clobbered; 10045 } 10046 continue; 10047 } 10048 10049 // If the stored value is a static alloca, mark it as escaped. 10050 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10051 *Info = StaticAllocaInfo::Clobbered; 10052 10053 // Check if the destination is a static alloca. 10054 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10055 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10056 if (!Info) 10057 continue; 10058 const AllocaInst *AI = cast<AllocaInst>(Dst); 10059 10060 // Skip allocas that have been initialized or clobbered. 10061 if (*Info != StaticAllocaInfo::Unknown) 10062 continue; 10063 10064 // Check if the stored value is an argument, and that this store fully 10065 // initializes the alloca. 10066 // If the argument type has padding bits we can't directly forward a pointer 10067 // as the upper bits may contain garbage. 10068 // Don't elide copies from the same argument twice. 10069 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10070 const auto *Arg = dyn_cast<Argument>(Val); 10071 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10072 Arg->getType()->isEmptyTy() || 10073 DL.getTypeStoreSize(Arg->getType()) != 10074 DL.getTypeAllocSize(AI->getAllocatedType()) || 10075 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10076 ArgCopyElisionCandidates.count(Arg)) { 10077 *Info = StaticAllocaInfo::Clobbered; 10078 continue; 10079 } 10080 10081 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10082 << '\n'); 10083 10084 // Mark this alloca and store for argument copy elision. 10085 *Info = StaticAllocaInfo::Elidable; 10086 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10087 10088 // Stop scanning if we've seen all arguments. This will happen early in -O0 10089 // builds, which is useful, because -O0 builds have large entry blocks and 10090 // many allocas. 10091 if (ArgCopyElisionCandidates.size() == NumArgs) 10092 break; 10093 } 10094 } 10095 10096 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10097 /// ArgVal is a load from a suitable fixed stack object. 10098 static void tryToElideArgumentCopy( 10099 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10100 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10101 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10102 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10103 SDValue ArgVal, bool &ArgHasUses) { 10104 // Check if this is a load from a fixed stack object. 10105 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10106 if (!LNode) 10107 return; 10108 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10109 if (!FINode) 10110 return; 10111 10112 // Check that the fixed stack object is the right size and alignment. 10113 // Look at the alignment that the user wrote on the alloca instead of looking 10114 // at the stack object. 10115 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10116 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10117 const AllocaInst *AI = ArgCopyIter->second.first; 10118 int FixedIndex = FINode->getIndex(); 10119 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10120 int OldIndex = AllocaIndex; 10121 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10122 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10123 LLVM_DEBUG( 10124 dbgs() << " argument copy elision failed due to bad fixed stack " 10125 "object size\n"); 10126 return; 10127 } 10128 Align RequiredAlignment = AI->getAlign(); 10129 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10130 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10131 "greater than stack argument alignment (" 10132 << DebugStr(RequiredAlignment) << " vs " 10133 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10134 return; 10135 } 10136 10137 // Perform the elision. Delete the old stack object and replace its only use 10138 // in the variable info map. Mark the stack object as mutable. 10139 LLVM_DEBUG({ 10140 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10141 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10142 << '\n'; 10143 }); 10144 MFI.RemoveStackObject(OldIndex); 10145 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10146 AllocaIndex = FixedIndex; 10147 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10148 Chains.push_back(ArgVal.getValue(1)); 10149 10150 // Avoid emitting code for the store implementing the copy. 10151 const StoreInst *SI = ArgCopyIter->second.second; 10152 ElidedArgCopyInstrs.insert(SI); 10153 10154 // Check for uses of the argument again so that we can avoid exporting ArgVal 10155 // if it is't used by anything other than the store. 10156 for (const Value *U : Arg.users()) { 10157 if (U != SI) { 10158 ArgHasUses = true; 10159 break; 10160 } 10161 } 10162 } 10163 10164 void SelectionDAGISel::LowerArguments(const Function &F) { 10165 SelectionDAG &DAG = SDB->DAG; 10166 SDLoc dl = SDB->getCurSDLoc(); 10167 const DataLayout &DL = DAG.getDataLayout(); 10168 SmallVector<ISD::InputArg, 16> Ins; 10169 10170 // In Naked functions we aren't going to save any registers. 10171 if (F.hasFnAttribute(Attribute::Naked)) 10172 return; 10173 10174 if (!FuncInfo->CanLowerReturn) { 10175 // Put in an sret pointer parameter before all the other parameters. 10176 SmallVector<EVT, 1> ValueVTs; 10177 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10178 F.getReturnType()->getPointerTo( 10179 DAG.getDataLayout().getAllocaAddrSpace()), 10180 ValueVTs); 10181 10182 // NOTE: Assuming that a pointer will never break down to more than one VT 10183 // or one register. 10184 ISD::ArgFlagsTy Flags; 10185 Flags.setSRet(); 10186 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10187 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10188 ISD::InputArg::NoArgIndex, 0); 10189 Ins.push_back(RetArg); 10190 } 10191 10192 // Look for stores of arguments to static allocas. Mark such arguments with a 10193 // flag to ask the target to give us the memory location of that argument if 10194 // available. 10195 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10196 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10197 ArgCopyElisionCandidates); 10198 10199 // Set up the incoming argument description vector. 10200 for (const Argument &Arg : F.args()) { 10201 unsigned ArgNo = Arg.getArgNo(); 10202 SmallVector<EVT, 4> ValueVTs; 10203 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10204 bool isArgValueUsed = !Arg.use_empty(); 10205 unsigned PartBase = 0; 10206 Type *FinalType = Arg.getType(); 10207 if (Arg.hasAttribute(Attribute::ByVal)) 10208 FinalType = Arg.getParamByValType(); 10209 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10210 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10211 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10212 Value != NumValues; ++Value) { 10213 EVT VT = ValueVTs[Value]; 10214 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10215 ISD::ArgFlagsTy Flags; 10216 10217 10218 if (Arg.getType()->isPointerTy()) { 10219 Flags.setPointer(); 10220 Flags.setPointerAddrSpace( 10221 cast<PointerType>(Arg.getType())->getAddressSpace()); 10222 } 10223 if (Arg.hasAttribute(Attribute::ZExt)) 10224 Flags.setZExt(); 10225 if (Arg.hasAttribute(Attribute::SExt)) 10226 Flags.setSExt(); 10227 if (Arg.hasAttribute(Attribute::InReg)) { 10228 // If we are using vectorcall calling convention, a structure that is 10229 // passed InReg - is surely an HVA 10230 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10231 isa<StructType>(Arg.getType())) { 10232 // The first value of a structure is marked 10233 if (0 == Value) 10234 Flags.setHvaStart(); 10235 Flags.setHva(); 10236 } 10237 // Set InReg Flag 10238 Flags.setInReg(); 10239 } 10240 if (Arg.hasAttribute(Attribute::StructRet)) 10241 Flags.setSRet(); 10242 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10243 Flags.setSwiftSelf(); 10244 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10245 Flags.setSwiftAsync(); 10246 if (Arg.hasAttribute(Attribute::SwiftError)) 10247 Flags.setSwiftError(); 10248 if (Arg.hasAttribute(Attribute::ByVal)) 10249 Flags.setByVal(); 10250 if (Arg.hasAttribute(Attribute::ByRef)) 10251 Flags.setByRef(); 10252 if (Arg.hasAttribute(Attribute::InAlloca)) { 10253 Flags.setInAlloca(); 10254 // Set the byval flag for CCAssignFn callbacks that don't know about 10255 // inalloca. This way we can know how many bytes we should've allocated 10256 // and how many bytes a callee cleanup function will pop. If we port 10257 // inalloca to more targets, we'll have to add custom inalloca handling 10258 // in the various CC lowering callbacks. 10259 Flags.setByVal(); 10260 } 10261 if (Arg.hasAttribute(Attribute::Preallocated)) { 10262 Flags.setPreallocated(); 10263 // Set the byval flag for CCAssignFn callbacks that don't know about 10264 // preallocated. This way we can know how many bytes we should've 10265 // allocated and how many bytes a callee cleanup function will pop. If 10266 // we port preallocated to more targets, we'll have to add custom 10267 // preallocated handling in the various CC lowering callbacks. 10268 Flags.setByVal(); 10269 } 10270 10271 // Certain targets (such as MIPS), may have a different ABI alignment 10272 // for a type depending on the context. Give the target a chance to 10273 // specify the alignment it wants. 10274 const Align OriginalAlignment( 10275 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10276 Flags.setOrigAlign(OriginalAlignment); 10277 10278 Align MemAlign; 10279 Type *ArgMemTy = nullptr; 10280 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10281 Flags.isByRef()) { 10282 if (!ArgMemTy) 10283 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10284 10285 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10286 10287 // For in-memory arguments, size and alignment should be passed from FE. 10288 // BE will guess if this info is not there but there are cases it cannot 10289 // get right. 10290 if (auto ParamAlign = Arg.getParamStackAlign()) 10291 MemAlign = *ParamAlign; 10292 else if ((ParamAlign = Arg.getParamAlign())) 10293 MemAlign = *ParamAlign; 10294 else 10295 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10296 if (Flags.isByRef()) 10297 Flags.setByRefSize(MemSize); 10298 else 10299 Flags.setByValSize(MemSize); 10300 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10301 MemAlign = *ParamAlign; 10302 } else { 10303 MemAlign = OriginalAlignment; 10304 } 10305 Flags.setMemAlign(MemAlign); 10306 10307 if (Arg.hasAttribute(Attribute::Nest)) 10308 Flags.setNest(); 10309 if (NeedsRegBlock) 10310 Flags.setInConsecutiveRegs(); 10311 if (ArgCopyElisionCandidates.count(&Arg)) 10312 Flags.setCopyElisionCandidate(); 10313 if (Arg.hasAttribute(Attribute::Returned)) 10314 Flags.setReturned(); 10315 10316 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10317 *CurDAG->getContext(), F.getCallingConv(), VT); 10318 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10319 *CurDAG->getContext(), F.getCallingConv(), VT); 10320 for (unsigned i = 0; i != NumRegs; ++i) { 10321 // For scalable vectors, use the minimum size; individual targets 10322 // are responsible for handling scalable vector arguments and 10323 // return values. 10324 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10325 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10326 if (NumRegs > 1 && i == 0) 10327 MyFlags.Flags.setSplit(); 10328 // if it isn't first piece, alignment must be 1 10329 else if (i > 0) { 10330 MyFlags.Flags.setOrigAlign(Align(1)); 10331 if (i == NumRegs - 1) 10332 MyFlags.Flags.setSplitEnd(); 10333 } 10334 Ins.push_back(MyFlags); 10335 } 10336 if (NeedsRegBlock && Value == NumValues - 1) 10337 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10338 PartBase += VT.getStoreSize().getKnownMinSize(); 10339 } 10340 } 10341 10342 // Call the target to set up the argument values. 10343 SmallVector<SDValue, 8> InVals; 10344 SDValue NewRoot = TLI->LowerFormalArguments( 10345 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10346 10347 // Verify that the target's LowerFormalArguments behaved as expected. 10348 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10349 "LowerFormalArguments didn't return a valid chain!"); 10350 assert(InVals.size() == Ins.size() && 10351 "LowerFormalArguments didn't emit the correct number of values!"); 10352 LLVM_DEBUG({ 10353 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10354 assert(InVals[i].getNode() && 10355 "LowerFormalArguments emitted a null value!"); 10356 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10357 "LowerFormalArguments emitted a value with the wrong type!"); 10358 } 10359 }); 10360 10361 // Update the DAG with the new chain value resulting from argument lowering. 10362 DAG.setRoot(NewRoot); 10363 10364 // Set up the argument values. 10365 unsigned i = 0; 10366 if (!FuncInfo->CanLowerReturn) { 10367 // Create a virtual register for the sret pointer, and put in a copy 10368 // from the sret argument into it. 10369 SmallVector<EVT, 1> ValueVTs; 10370 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10371 F.getReturnType()->getPointerTo( 10372 DAG.getDataLayout().getAllocaAddrSpace()), 10373 ValueVTs); 10374 MVT VT = ValueVTs[0].getSimpleVT(); 10375 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10376 Optional<ISD::NodeType> AssertOp = None; 10377 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10378 nullptr, F.getCallingConv(), AssertOp); 10379 10380 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10381 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10382 Register SRetReg = 10383 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10384 FuncInfo->DemoteRegister = SRetReg; 10385 NewRoot = 10386 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10387 DAG.setRoot(NewRoot); 10388 10389 // i indexes lowered arguments. Bump it past the hidden sret argument. 10390 ++i; 10391 } 10392 10393 SmallVector<SDValue, 4> Chains; 10394 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10395 for (const Argument &Arg : F.args()) { 10396 SmallVector<SDValue, 4> ArgValues; 10397 SmallVector<EVT, 4> ValueVTs; 10398 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10399 unsigned NumValues = ValueVTs.size(); 10400 if (NumValues == 0) 10401 continue; 10402 10403 bool ArgHasUses = !Arg.use_empty(); 10404 10405 // Elide the copying store if the target loaded this argument from a 10406 // suitable fixed stack object. 10407 if (Ins[i].Flags.isCopyElisionCandidate()) { 10408 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10409 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10410 InVals[i], ArgHasUses); 10411 } 10412 10413 // If this argument is unused then remember its value. It is used to generate 10414 // debugging information. 10415 bool isSwiftErrorArg = 10416 TLI->supportSwiftError() && 10417 Arg.hasAttribute(Attribute::SwiftError); 10418 if (!ArgHasUses && !isSwiftErrorArg) { 10419 SDB->setUnusedArgValue(&Arg, InVals[i]); 10420 10421 // Also remember any frame index for use in FastISel. 10422 if (FrameIndexSDNode *FI = 10423 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10424 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10425 } 10426 10427 for (unsigned Val = 0; Val != NumValues; ++Val) { 10428 EVT VT = ValueVTs[Val]; 10429 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10430 F.getCallingConv(), VT); 10431 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10432 *CurDAG->getContext(), F.getCallingConv(), VT); 10433 10434 // Even an apparent 'unused' swifterror argument needs to be returned. So 10435 // we do generate a copy for it that can be used on return from the 10436 // function. 10437 if (ArgHasUses || isSwiftErrorArg) { 10438 Optional<ISD::NodeType> AssertOp; 10439 if (Arg.hasAttribute(Attribute::SExt)) 10440 AssertOp = ISD::AssertSext; 10441 else if (Arg.hasAttribute(Attribute::ZExt)) 10442 AssertOp = ISD::AssertZext; 10443 10444 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10445 PartVT, VT, nullptr, 10446 F.getCallingConv(), AssertOp)); 10447 } 10448 10449 i += NumParts; 10450 } 10451 10452 // We don't need to do anything else for unused arguments. 10453 if (ArgValues.empty()) 10454 continue; 10455 10456 // Note down frame index. 10457 if (FrameIndexSDNode *FI = 10458 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10459 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10460 10461 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10462 SDB->getCurSDLoc()); 10463 10464 SDB->setValue(&Arg, Res); 10465 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10466 // We want to associate the argument with the frame index, among 10467 // involved operands, that correspond to the lowest address. The 10468 // getCopyFromParts function, called earlier, is swapping the order of 10469 // the operands to BUILD_PAIR depending on endianness. The result of 10470 // that swapping is that the least significant bits of the argument will 10471 // be in the first operand of the BUILD_PAIR node, and the most 10472 // significant bits will be in the second operand. 10473 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10474 if (LoadSDNode *LNode = 10475 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10476 if (FrameIndexSDNode *FI = 10477 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10478 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10479 } 10480 10481 // Analyses past this point are naive and don't expect an assertion. 10482 if (Res.getOpcode() == ISD::AssertZext) 10483 Res = Res.getOperand(0); 10484 10485 // Update the SwiftErrorVRegDefMap. 10486 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10487 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10488 if (Register::isVirtualRegister(Reg)) 10489 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10490 Reg); 10491 } 10492 10493 // If this argument is live outside of the entry block, insert a copy from 10494 // wherever we got it to the vreg that other BB's will reference it as. 10495 if (Res.getOpcode() == ISD::CopyFromReg) { 10496 // If we can, though, try to skip creating an unnecessary vreg. 10497 // FIXME: This isn't very clean... it would be nice to make this more 10498 // general. 10499 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10500 if (Register::isVirtualRegister(Reg)) { 10501 FuncInfo->ValueMap[&Arg] = Reg; 10502 continue; 10503 } 10504 } 10505 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10506 FuncInfo->InitializeRegForValue(&Arg); 10507 SDB->CopyToExportRegsIfNeeded(&Arg); 10508 } 10509 } 10510 10511 if (!Chains.empty()) { 10512 Chains.push_back(NewRoot); 10513 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10514 } 10515 10516 DAG.setRoot(NewRoot); 10517 10518 assert(i == InVals.size() && "Argument register count mismatch!"); 10519 10520 // If any argument copy elisions occurred and we have debug info, update the 10521 // stale frame indices used in the dbg.declare variable info table. 10522 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10523 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10524 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10525 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10526 if (I != ArgCopyElisionFrameIndexMap.end()) 10527 VI.Slot = I->second; 10528 } 10529 } 10530 10531 // Finally, if the target has anything special to do, allow it to do so. 10532 emitFunctionEntryCode(); 10533 } 10534 10535 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10536 /// ensure constants are generated when needed. Remember the virtual registers 10537 /// that need to be added to the Machine PHI nodes as input. We cannot just 10538 /// directly add them, because expansion might result in multiple MBB's for one 10539 /// BB. As such, the start of the BB might correspond to a different MBB than 10540 /// the end. 10541 void 10542 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10543 const Instruction *TI = LLVMBB->getTerminator(); 10544 10545 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10546 10547 // Check PHI nodes in successors that expect a value to be available from this 10548 // block. 10549 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10550 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10551 if (!isa<PHINode>(SuccBB->begin())) continue; 10552 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10553 10554 // If this terminator has multiple identical successors (common for 10555 // switches), only handle each succ once. 10556 if (!SuccsHandled.insert(SuccMBB).second) 10557 continue; 10558 10559 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10560 10561 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10562 // nodes and Machine PHI nodes, but the incoming operands have not been 10563 // emitted yet. 10564 for (const PHINode &PN : SuccBB->phis()) { 10565 // Ignore dead phi's. 10566 if (PN.use_empty()) 10567 continue; 10568 10569 // Skip empty types 10570 if (PN.getType()->isEmptyTy()) 10571 continue; 10572 10573 unsigned Reg; 10574 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10575 10576 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10577 unsigned &RegOut = ConstantsOut[C]; 10578 if (RegOut == 0) { 10579 RegOut = FuncInfo.CreateRegs(C); 10580 CopyValueToVirtualRegister(C, RegOut); 10581 } 10582 Reg = RegOut; 10583 } else { 10584 DenseMap<const Value *, Register>::iterator I = 10585 FuncInfo.ValueMap.find(PHIOp); 10586 if (I != FuncInfo.ValueMap.end()) 10587 Reg = I->second; 10588 else { 10589 assert(isa<AllocaInst>(PHIOp) && 10590 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10591 "Didn't codegen value into a register!??"); 10592 Reg = FuncInfo.CreateRegs(PHIOp); 10593 CopyValueToVirtualRegister(PHIOp, Reg); 10594 } 10595 } 10596 10597 // Remember that this register needs to added to the machine PHI node as 10598 // the input for this MBB. 10599 SmallVector<EVT, 4> ValueVTs; 10600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10601 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10602 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10603 EVT VT = ValueVTs[vti]; 10604 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10605 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10606 FuncInfo.PHINodesToUpdate.push_back( 10607 std::make_pair(&*MBBI++, Reg + i)); 10608 Reg += NumRegisters; 10609 } 10610 } 10611 } 10612 10613 ConstantsOut.clear(); 10614 } 10615 10616 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10617 /// is 0. 10618 MachineBasicBlock * 10619 SelectionDAGBuilder::StackProtectorDescriptor:: 10620 AddSuccessorMBB(const BasicBlock *BB, 10621 MachineBasicBlock *ParentMBB, 10622 bool IsLikely, 10623 MachineBasicBlock *SuccMBB) { 10624 // If SuccBB has not been created yet, create it. 10625 if (!SuccMBB) { 10626 MachineFunction *MF = ParentMBB->getParent(); 10627 MachineFunction::iterator BBI(ParentMBB); 10628 SuccMBB = MF->CreateMachineBasicBlock(BB); 10629 MF->insert(++BBI, SuccMBB); 10630 } 10631 // Add it as a successor of ParentMBB. 10632 ParentMBB->addSuccessor( 10633 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10634 return SuccMBB; 10635 } 10636 10637 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10638 MachineFunction::iterator I(MBB); 10639 if (++I == FuncInfo.MF->end()) 10640 return nullptr; 10641 return &*I; 10642 } 10643 10644 /// During lowering new call nodes can be created (such as memset, etc.). 10645 /// Those will become new roots of the current DAG, but complications arise 10646 /// when they are tail calls. In such cases, the call lowering will update 10647 /// the root, but the builder still needs to know that a tail call has been 10648 /// lowered in order to avoid generating an additional return. 10649 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10650 // If the node is null, we do have a tail call. 10651 if (MaybeTC.getNode() != nullptr) 10652 DAG.setRoot(MaybeTC); 10653 else 10654 HasTailCall = true; 10655 } 10656 10657 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10658 MachineBasicBlock *SwitchMBB, 10659 MachineBasicBlock *DefaultMBB) { 10660 MachineFunction *CurMF = FuncInfo.MF; 10661 MachineBasicBlock *NextMBB = nullptr; 10662 MachineFunction::iterator BBI(W.MBB); 10663 if (++BBI != FuncInfo.MF->end()) 10664 NextMBB = &*BBI; 10665 10666 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10667 10668 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10669 10670 if (Size == 2 && W.MBB == SwitchMBB) { 10671 // If any two of the cases has the same destination, and if one value 10672 // is the same as the other, but has one bit unset that the other has set, 10673 // use bit manipulation to do two compares at once. For example: 10674 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10675 // TODO: This could be extended to merge any 2 cases in switches with 3 10676 // cases. 10677 // TODO: Handle cases where W.CaseBB != SwitchBB. 10678 CaseCluster &Small = *W.FirstCluster; 10679 CaseCluster &Big = *W.LastCluster; 10680 10681 if (Small.Low == Small.High && Big.Low == Big.High && 10682 Small.MBB == Big.MBB) { 10683 const APInt &SmallValue = Small.Low->getValue(); 10684 const APInt &BigValue = Big.Low->getValue(); 10685 10686 // Check that there is only one bit different. 10687 APInt CommonBit = BigValue ^ SmallValue; 10688 if (CommonBit.isPowerOf2()) { 10689 SDValue CondLHS = getValue(Cond); 10690 EVT VT = CondLHS.getValueType(); 10691 SDLoc DL = getCurSDLoc(); 10692 10693 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10694 DAG.getConstant(CommonBit, DL, VT)); 10695 SDValue Cond = DAG.getSetCC( 10696 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10697 ISD::SETEQ); 10698 10699 // Update successor info. 10700 // Both Small and Big will jump to Small.BB, so we sum up the 10701 // probabilities. 10702 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10703 if (BPI) 10704 addSuccessorWithProb( 10705 SwitchMBB, DefaultMBB, 10706 // The default destination is the first successor in IR. 10707 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10708 else 10709 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10710 10711 // Insert the true branch. 10712 SDValue BrCond = 10713 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10714 DAG.getBasicBlock(Small.MBB)); 10715 // Insert the false branch. 10716 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10717 DAG.getBasicBlock(DefaultMBB)); 10718 10719 DAG.setRoot(BrCond); 10720 return; 10721 } 10722 } 10723 } 10724 10725 if (TM.getOptLevel() != CodeGenOpt::None) { 10726 // Here, we order cases by probability so the most likely case will be 10727 // checked first. However, two clusters can have the same probability in 10728 // which case their relative ordering is non-deterministic. So we use Low 10729 // as a tie-breaker as clusters are guaranteed to never overlap. 10730 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10731 [](const CaseCluster &a, const CaseCluster &b) { 10732 return a.Prob != b.Prob ? 10733 a.Prob > b.Prob : 10734 a.Low->getValue().slt(b.Low->getValue()); 10735 }); 10736 10737 // Rearrange the case blocks so that the last one falls through if possible 10738 // without changing the order of probabilities. 10739 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10740 --I; 10741 if (I->Prob > W.LastCluster->Prob) 10742 break; 10743 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10744 std::swap(*I, *W.LastCluster); 10745 break; 10746 } 10747 } 10748 } 10749 10750 // Compute total probability. 10751 BranchProbability DefaultProb = W.DefaultProb; 10752 BranchProbability UnhandledProbs = DefaultProb; 10753 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10754 UnhandledProbs += I->Prob; 10755 10756 MachineBasicBlock *CurMBB = W.MBB; 10757 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10758 bool FallthroughUnreachable = false; 10759 MachineBasicBlock *Fallthrough; 10760 if (I == W.LastCluster) { 10761 // For the last cluster, fall through to the default destination. 10762 Fallthrough = DefaultMBB; 10763 FallthroughUnreachable = isa<UnreachableInst>( 10764 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10765 } else { 10766 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10767 CurMF->insert(BBI, Fallthrough); 10768 // Put Cond in a virtual register to make it available from the new blocks. 10769 ExportFromCurrentBlock(Cond); 10770 } 10771 UnhandledProbs -= I->Prob; 10772 10773 switch (I->Kind) { 10774 case CC_JumpTable: { 10775 // FIXME: Optimize away range check based on pivot comparisons. 10776 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10777 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10778 10779 // The jump block hasn't been inserted yet; insert it here. 10780 MachineBasicBlock *JumpMBB = JT->MBB; 10781 CurMF->insert(BBI, JumpMBB); 10782 10783 auto JumpProb = I->Prob; 10784 auto FallthroughProb = UnhandledProbs; 10785 10786 // If the default statement is a target of the jump table, we evenly 10787 // distribute the default probability to successors of CurMBB. Also 10788 // update the probability on the edge from JumpMBB to Fallthrough. 10789 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10790 SE = JumpMBB->succ_end(); 10791 SI != SE; ++SI) { 10792 if (*SI == DefaultMBB) { 10793 JumpProb += DefaultProb / 2; 10794 FallthroughProb -= DefaultProb / 2; 10795 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10796 JumpMBB->normalizeSuccProbs(); 10797 break; 10798 } 10799 } 10800 10801 if (FallthroughUnreachable) 10802 JTH->FallthroughUnreachable = true; 10803 10804 if (!JTH->FallthroughUnreachable) 10805 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10806 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10807 CurMBB->normalizeSuccProbs(); 10808 10809 // The jump table header will be inserted in our current block, do the 10810 // range check, and fall through to our fallthrough block. 10811 JTH->HeaderBB = CurMBB; 10812 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10813 10814 // If we're in the right place, emit the jump table header right now. 10815 if (CurMBB == SwitchMBB) { 10816 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10817 JTH->Emitted = true; 10818 } 10819 break; 10820 } 10821 case CC_BitTests: { 10822 // FIXME: Optimize away range check based on pivot comparisons. 10823 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10824 10825 // The bit test blocks haven't been inserted yet; insert them here. 10826 for (BitTestCase &BTC : BTB->Cases) 10827 CurMF->insert(BBI, BTC.ThisBB); 10828 10829 // Fill in fields of the BitTestBlock. 10830 BTB->Parent = CurMBB; 10831 BTB->Default = Fallthrough; 10832 10833 BTB->DefaultProb = UnhandledProbs; 10834 // If the cases in bit test don't form a contiguous range, we evenly 10835 // distribute the probability on the edge to Fallthrough to two 10836 // successors of CurMBB. 10837 if (!BTB->ContiguousRange) { 10838 BTB->Prob += DefaultProb / 2; 10839 BTB->DefaultProb -= DefaultProb / 2; 10840 } 10841 10842 if (FallthroughUnreachable) 10843 BTB->FallthroughUnreachable = true; 10844 10845 // If we're in the right place, emit the bit test header right now. 10846 if (CurMBB == SwitchMBB) { 10847 visitBitTestHeader(*BTB, SwitchMBB); 10848 BTB->Emitted = true; 10849 } 10850 break; 10851 } 10852 case CC_Range: { 10853 const Value *RHS, *LHS, *MHS; 10854 ISD::CondCode CC; 10855 if (I->Low == I->High) { 10856 // Check Cond == I->Low. 10857 CC = ISD::SETEQ; 10858 LHS = Cond; 10859 RHS=I->Low; 10860 MHS = nullptr; 10861 } else { 10862 // Check I->Low <= Cond <= I->High. 10863 CC = ISD::SETLE; 10864 LHS = I->Low; 10865 MHS = Cond; 10866 RHS = I->High; 10867 } 10868 10869 // If Fallthrough is unreachable, fold away the comparison. 10870 if (FallthroughUnreachable) 10871 CC = ISD::SETTRUE; 10872 10873 // The false probability is the sum of all unhandled cases. 10874 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10875 getCurSDLoc(), I->Prob, UnhandledProbs); 10876 10877 if (CurMBB == SwitchMBB) 10878 visitSwitchCase(CB, SwitchMBB); 10879 else 10880 SL->SwitchCases.push_back(CB); 10881 10882 break; 10883 } 10884 } 10885 CurMBB = Fallthrough; 10886 } 10887 } 10888 10889 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10890 CaseClusterIt First, 10891 CaseClusterIt Last) { 10892 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10893 if (X.Prob != CC.Prob) 10894 return X.Prob > CC.Prob; 10895 10896 // Ties are broken by comparing the case value. 10897 return X.Low->getValue().slt(CC.Low->getValue()); 10898 }); 10899 } 10900 10901 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10902 const SwitchWorkListItem &W, 10903 Value *Cond, 10904 MachineBasicBlock *SwitchMBB) { 10905 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10906 "Clusters not sorted?"); 10907 10908 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10909 10910 // Balance the tree based on branch probabilities to create a near-optimal (in 10911 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10912 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10913 CaseClusterIt LastLeft = W.FirstCluster; 10914 CaseClusterIt FirstRight = W.LastCluster; 10915 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10916 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10917 10918 // Move LastLeft and FirstRight towards each other from opposite directions to 10919 // find a partitioning of the clusters which balances the probability on both 10920 // sides. If LeftProb and RightProb are equal, alternate which side is 10921 // taken to ensure 0-probability nodes are distributed evenly. 10922 unsigned I = 0; 10923 while (LastLeft + 1 < FirstRight) { 10924 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10925 LeftProb += (++LastLeft)->Prob; 10926 else 10927 RightProb += (--FirstRight)->Prob; 10928 I++; 10929 } 10930 10931 while (true) { 10932 // Our binary search tree differs from a typical BST in that ours can have up 10933 // to three values in each leaf. The pivot selection above doesn't take that 10934 // into account, which means the tree might require more nodes and be less 10935 // efficient. We compensate for this here. 10936 10937 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10938 unsigned NumRight = W.LastCluster - FirstRight + 1; 10939 10940 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10941 // If one side has less than 3 clusters, and the other has more than 3, 10942 // consider taking a cluster from the other side. 10943 10944 if (NumLeft < NumRight) { 10945 // Consider moving the first cluster on the right to the left side. 10946 CaseCluster &CC = *FirstRight; 10947 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10948 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10949 if (LeftSideRank <= RightSideRank) { 10950 // Moving the cluster to the left does not demote it. 10951 ++LastLeft; 10952 ++FirstRight; 10953 continue; 10954 } 10955 } else { 10956 assert(NumRight < NumLeft); 10957 // Consider moving the last element on the left to the right side. 10958 CaseCluster &CC = *LastLeft; 10959 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10960 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10961 if (RightSideRank <= LeftSideRank) { 10962 // Moving the cluster to the right does not demot it. 10963 --LastLeft; 10964 --FirstRight; 10965 continue; 10966 } 10967 } 10968 } 10969 break; 10970 } 10971 10972 assert(LastLeft + 1 == FirstRight); 10973 assert(LastLeft >= W.FirstCluster); 10974 assert(FirstRight <= W.LastCluster); 10975 10976 // Use the first element on the right as pivot since we will make less-than 10977 // comparisons against it. 10978 CaseClusterIt PivotCluster = FirstRight; 10979 assert(PivotCluster > W.FirstCluster); 10980 assert(PivotCluster <= W.LastCluster); 10981 10982 CaseClusterIt FirstLeft = W.FirstCluster; 10983 CaseClusterIt LastRight = W.LastCluster; 10984 10985 const ConstantInt *Pivot = PivotCluster->Low; 10986 10987 // New blocks will be inserted immediately after the current one. 10988 MachineFunction::iterator BBI(W.MBB); 10989 ++BBI; 10990 10991 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10992 // we can branch to its destination directly if it's squeezed exactly in 10993 // between the known lower bound and Pivot - 1. 10994 MachineBasicBlock *LeftMBB; 10995 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10996 FirstLeft->Low == W.GE && 10997 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10998 LeftMBB = FirstLeft->MBB; 10999 } else { 11000 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11001 FuncInfo.MF->insert(BBI, LeftMBB); 11002 WorkList.push_back( 11003 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11004 // Put Cond in a virtual register to make it available from the new blocks. 11005 ExportFromCurrentBlock(Cond); 11006 } 11007 11008 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11009 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11010 // directly if RHS.High equals the current upper bound. 11011 MachineBasicBlock *RightMBB; 11012 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11013 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11014 RightMBB = FirstRight->MBB; 11015 } else { 11016 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11017 FuncInfo.MF->insert(BBI, RightMBB); 11018 WorkList.push_back( 11019 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11020 // Put Cond in a virtual register to make it available from the new blocks. 11021 ExportFromCurrentBlock(Cond); 11022 } 11023 11024 // Create the CaseBlock record that will be used to lower the branch. 11025 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11026 getCurSDLoc(), LeftProb, RightProb); 11027 11028 if (W.MBB == SwitchMBB) 11029 visitSwitchCase(CB, SwitchMBB); 11030 else 11031 SL->SwitchCases.push_back(CB); 11032 } 11033 11034 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11035 // from the swith statement. 11036 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11037 BranchProbability PeeledCaseProb) { 11038 if (PeeledCaseProb == BranchProbability::getOne()) 11039 return BranchProbability::getZero(); 11040 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11041 11042 uint32_t Numerator = CaseProb.getNumerator(); 11043 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11044 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11045 } 11046 11047 // Try to peel the top probability case if it exceeds the threshold. 11048 // Return current MachineBasicBlock for the switch statement if the peeling 11049 // does not occur. 11050 // If the peeling is performed, return the newly created MachineBasicBlock 11051 // for the peeled switch statement. Also update Clusters to remove the peeled 11052 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11053 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11054 const SwitchInst &SI, CaseClusterVector &Clusters, 11055 BranchProbability &PeeledCaseProb) { 11056 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11057 // Don't perform if there is only one cluster or optimizing for size. 11058 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11059 TM.getOptLevel() == CodeGenOpt::None || 11060 SwitchMBB->getParent()->getFunction().hasMinSize()) 11061 return SwitchMBB; 11062 11063 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11064 unsigned PeeledCaseIndex = 0; 11065 bool SwitchPeeled = false; 11066 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11067 CaseCluster &CC = Clusters[Index]; 11068 if (CC.Prob < TopCaseProb) 11069 continue; 11070 TopCaseProb = CC.Prob; 11071 PeeledCaseIndex = Index; 11072 SwitchPeeled = true; 11073 } 11074 if (!SwitchPeeled) 11075 return SwitchMBB; 11076 11077 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11078 << TopCaseProb << "\n"); 11079 11080 // Record the MBB for the peeled switch statement. 11081 MachineFunction::iterator BBI(SwitchMBB); 11082 ++BBI; 11083 MachineBasicBlock *PeeledSwitchMBB = 11084 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11085 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11086 11087 ExportFromCurrentBlock(SI.getCondition()); 11088 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11089 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11090 nullptr, nullptr, TopCaseProb.getCompl()}; 11091 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11092 11093 Clusters.erase(PeeledCaseIt); 11094 for (CaseCluster &CC : Clusters) { 11095 LLVM_DEBUG( 11096 dbgs() << "Scale the probablity for one cluster, before scaling: " 11097 << CC.Prob << "\n"); 11098 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11099 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11100 } 11101 PeeledCaseProb = TopCaseProb; 11102 return PeeledSwitchMBB; 11103 } 11104 11105 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11106 // Extract cases from the switch. 11107 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11108 CaseClusterVector Clusters; 11109 Clusters.reserve(SI.getNumCases()); 11110 for (auto I : SI.cases()) { 11111 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11112 const ConstantInt *CaseVal = I.getCaseValue(); 11113 BranchProbability Prob = 11114 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11115 : BranchProbability(1, SI.getNumCases() + 1); 11116 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11117 } 11118 11119 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11120 11121 // Cluster adjacent cases with the same destination. We do this at all 11122 // optimization levels because it's cheap to do and will make codegen faster 11123 // if there are many clusters. 11124 sortAndRangeify(Clusters); 11125 11126 // The branch probablity of the peeled case. 11127 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11128 MachineBasicBlock *PeeledSwitchMBB = 11129 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11130 11131 // If there is only the default destination, jump there directly. 11132 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11133 if (Clusters.empty()) { 11134 assert(PeeledSwitchMBB == SwitchMBB); 11135 SwitchMBB->addSuccessor(DefaultMBB); 11136 if (DefaultMBB != NextBlock(SwitchMBB)) { 11137 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11138 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11139 } 11140 return; 11141 } 11142 11143 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11144 SL->findBitTestClusters(Clusters, &SI); 11145 11146 LLVM_DEBUG({ 11147 dbgs() << "Case clusters: "; 11148 for (const CaseCluster &C : Clusters) { 11149 if (C.Kind == CC_JumpTable) 11150 dbgs() << "JT:"; 11151 if (C.Kind == CC_BitTests) 11152 dbgs() << "BT:"; 11153 11154 C.Low->getValue().print(dbgs(), true); 11155 if (C.Low != C.High) { 11156 dbgs() << '-'; 11157 C.High->getValue().print(dbgs(), true); 11158 } 11159 dbgs() << ' '; 11160 } 11161 dbgs() << '\n'; 11162 }); 11163 11164 assert(!Clusters.empty()); 11165 SwitchWorkList WorkList; 11166 CaseClusterIt First = Clusters.begin(); 11167 CaseClusterIt Last = Clusters.end() - 1; 11168 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11169 // Scale the branchprobability for DefaultMBB if the peel occurs and 11170 // DefaultMBB is not replaced. 11171 if (PeeledCaseProb != BranchProbability::getZero() && 11172 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11173 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11174 WorkList.push_back( 11175 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11176 11177 while (!WorkList.empty()) { 11178 SwitchWorkListItem W = WorkList.pop_back_val(); 11179 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11180 11181 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11182 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11183 // For optimized builds, lower large range as a balanced binary tree. 11184 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11185 continue; 11186 } 11187 11188 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11189 } 11190 } 11191 11192 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11194 auto DL = getCurSDLoc(); 11195 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11196 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11197 } 11198 11199 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11201 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11202 11203 SDLoc DL = getCurSDLoc(); 11204 SDValue V = getValue(I.getOperand(0)); 11205 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11206 11207 if (VT.isScalableVector()) { 11208 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11209 return; 11210 } 11211 11212 // Use VECTOR_SHUFFLE for the fixed-length vector 11213 // to maintain existing behavior. 11214 SmallVector<int, 8> Mask; 11215 unsigned NumElts = VT.getVectorMinNumElements(); 11216 for (unsigned i = 0; i != NumElts; ++i) 11217 Mask.push_back(NumElts - 1 - i); 11218 11219 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11220 } 11221 11222 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11223 SmallVector<EVT, 4> ValueVTs; 11224 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11225 ValueVTs); 11226 unsigned NumValues = ValueVTs.size(); 11227 if (NumValues == 0) return; 11228 11229 SmallVector<SDValue, 4> Values(NumValues); 11230 SDValue Op = getValue(I.getOperand(0)); 11231 11232 for (unsigned i = 0; i != NumValues; ++i) 11233 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11234 SDValue(Op.getNode(), Op.getResNo() + i)); 11235 11236 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11237 DAG.getVTList(ValueVTs), Values)); 11238 } 11239 11240 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11242 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11243 11244 SDLoc DL = getCurSDLoc(); 11245 SDValue V1 = getValue(I.getOperand(0)); 11246 SDValue V2 = getValue(I.getOperand(1)); 11247 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11248 11249 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11250 if (VT.isScalableVector()) { 11251 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11252 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11253 DAG.getConstant(Imm, DL, IdxVT))); 11254 return; 11255 } 11256 11257 unsigned NumElts = VT.getVectorNumElements(); 11258 11259 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11260 // Result is undefined if immediate is out-of-bounds. 11261 setValue(&I, DAG.getUNDEF(VT)); 11262 return; 11263 } 11264 11265 uint64_t Idx = (NumElts + Imm) % NumElts; 11266 11267 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11268 SmallVector<int, 8> Mask; 11269 for (unsigned i = 0; i < NumElts; ++i) 11270 Mask.push_back(Idx + i); 11271 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11272 } 11273