1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 128 #define DEBUG_TYPE "isel" 129 130 /// LimitFloatPrecision - Generate low-precision inline sequences for 131 /// some float libcalls (6, 8 or 12 bits). 132 static unsigned LimitFloatPrecision; 133 134 static cl::opt<unsigned, true> 135 LimitFPPrecision("limit-float-precision", 136 cl::desc("Generate low-precision inline sequences " 137 "for some float libcalls"), 138 cl::location(LimitFloatPrecision), cl::Hidden, 139 cl::init(0)); 140 141 static cl::opt<unsigned> SwitchPeelThreshold( 142 "switch-peel-threshold", cl::Hidden, cl::init(66), 143 cl::desc("Set the case probability threshold for peeling the case from a " 144 "switch statement. A value greater than 100 will void this " 145 "optimization")); 146 147 // Limit the width of DAG chains. This is important in general to prevent 148 // DAG-based analysis from blowing up. For example, alias analysis and 149 // load clustering may not complete in reasonable time. It is difficult to 150 // recognize and avoid this situation within each individual analysis, and 151 // future analyses are likely to have the same behavior. Limiting DAG width is 152 // the safe approach and will be especially important with global DAGs. 153 // 154 // MaxParallelChains default is arbitrarily high to avoid affecting 155 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 156 // sequence over this should have been converted to llvm.memcpy by the 157 // frontend. It is easy to induce this behavior with .ll code such as: 158 // %buffer = alloca [4096 x i8] 159 // %data = load [4096 x i8]* %argPtr 160 // store [4096 x i8] %data, [4096 x i8]* %buffer 161 static const unsigned MaxParallelChains = 64; 162 163 // Return the calling convention if the Value passed requires ABI mangling as it 164 // is a parameter to a function or a return value from a function which is not 165 // an intrinsic. 166 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 167 if (auto *R = dyn_cast<ReturnInst>(V)) 168 return R->getParent()->getParent()->getCallingConv(); 169 170 if (auto *CI = dyn_cast<CallInst>(V)) { 171 const bool IsInlineAsm = CI->isInlineAsm(); 172 const bool IsIndirectFunctionCall = 173 !IsInlineAsm && !CI->getCalledFunction(); 174 175 // It is possible that the call instruction is an inline asm statement or an 176 // indirect function call in which case the return value of 177 // getCalledFunction() would be nullptr. 178 const bool IsInstrinsicCall = 179 !IsInlineAsm && !IsIndirectFunctionCall && 180 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 181 182 if (!IsInlineAsm && !IsInstrinsicCall) 183 return CI->getCallingConv(); 184 } 185 186 return None; 187 } 188 189 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 190 const SDValue *Parts, unsigned NumParts, 191 MVT PartVT, EVT ValueVT, const Value *V, 192 Optional<CallingConv::ID> CC); 193 194 /// getCopyFromParts - Create a value that contains the specified legal parts 195 /// combined into the value they represent. If the parts combine to a type 196 /// larger than ValueVT then AssertOp can be used to specify whether the extra 197 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 198 /// (ISD::AssertSext). 199 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 200 const SDValue *Parts, unsigned NumParts, 201 MVT PartVT, EVT ValueVT, const Value *V, 202 Optional<CallingConv::ID> CC = None, 203 Optional<ISD::NodeType> AssertOp = None) { 204 if (ValueVT.isVector()) 205 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 206 CC); 207 208 assert(NumParts > 0 && "No parts to assemble!"); 209 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 210 SDValue Val = Parts[0]; 211 212 if (NumParts > 1) { 213 // Assemble the value from multiple parts. 214 if (ValueVT.isInteger()) { 215 unsigned PartBits = PartVT.getSizeInBits(); 216 unsigned ValueBits = ValueVT.getSizeInBits(); 217 218 // Assemble the power of 2 part. 219 unsigned RoundParts = 220 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 221 unsigned RoundBits = PartBits * RoundParts; 222 EVT RoundVT = RoundBits == ValueBits ? 223 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 224 SDValue Lo, Hi; 225 226 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 227 228 if (RoundParts > 2) { 229 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 230 PartVT, HalfVT, V); 231 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 232 RoundParts / 2, PartVT, HalfVT, V); 233 } else { 234 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 235 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 236 } 237 238 if (DAG.getDataLayout().isBigEndian()) 239 std::swap(Lo, Hi); 240 241 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 242 243 if (RoundParts < NumParts) { 244 // Assemble the trailing non-power-of-2 part. 245 unsigned OddParts = NumParts - RoundParts; 246 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 247 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 248 OddVT, V, CC); 249 250 // Combine the round and odd parts. 251 Lo = Val; 252 if (DAG.getDataLayout().isBigEndian()) 253 std::swap(Lo, Hi); 254 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 255 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 256 Hi = 257 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 258 DAG.getConstant(Lo.getValueSizeInBits(), DL, 259 TLI.getPointerTy(DAG.getDataLayout()))); 260 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 261 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 262 } 263 } else if (PartVT.isFloatingPoint()) { 264 // FP split into multiple FP parts (for ppcf128) 265 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 266 "Unexpected split"); 267 SDValue Lo, Hi; 268 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 269 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 270 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 271 std::swap(Lo, Hi); 272 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 273 } else { 274 // FP split into integer parts (soft fp) 275 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 276 !PartVT.isVector() && "Unexpected split"); 277 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 278 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 279 } 280 } 281 282 // There is now one part, held in Val. Correct it to match ValueVT. 283 // PartEVT is the type of the register class that holds the value. 284 // ValueVT is the type of the inline asm operation. 285 EVT PartEVT = Val.getValueType(); 286 287 if (PartEVT == ValueVT) 288 return Val; 289 290 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 291 ValueVT.bitsLT(PartEVT)) { 292 // For an FP value in an integer part, we need to truncate to the right 293 // width first. 294 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 295 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 296 } 297 298 // Handle types that have the same size. 299 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 300 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 301 302 // Handle types with different sizes. 303 if (PartEVT.isInteger() && ValueVT.isInteger()) { 304 if (ValueVT.bitsLT(PartEVT)) { 305 // For a truncate, see if we have any information to 306 // indicate whether the truncated bits will always be 307 // zero or sign-extension. 308 if (AssertOp.hasValue()) 309 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 310 DAG.getValueType(ValueVT)); 311 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 312 } 313 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 314 } 315 316 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 317 // FP_ROUND's are always exact here. 318 if (ValueVT.bitsLT(Val.getValueType())) 319 return DAG.getNode( 320 ISD::FP_ROUND, DL, ValueVT, Val, 321 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 322 323 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 324 } 325 326 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 327 // then truncating. 328 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 329 ValueVT.bitsLT(PartEVT)) { 330 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 331 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 332 } 333 334 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 335 } 336 337 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 338 const Twine &ErrMsg) { 339 const Instruction *I = dyn_cast_or_null<Instruction>(V); 340 if (!V) 341 return Ctx.emitError(ErrMsg); 342 343 const char *AsmError = ", possible invalid constraint for vector type"; 344 if (const CallInst *CI = dyn_cast<CallInst>(I)) 345 if (isa<InlineAsm>(CI->getCalledValue())) 346 return Ctx.emitError(I, ErrMsg + AsmError); 347 348 return Ctx.emitError(I, ErrMsg); 349 } 350 351 /// getCopyFromPartsVector - Create a value that contains the specified legal 352 /// parts combined into the value they represent. If the parts combine to a 353 /// type larger than ValueVT then AssertOp can be used to specify whether the 354 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 355 /// ValueVT (ISD::AssertSext). 356 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 357 const SDValue *Parts, unsigned NumParts, 358 MVT PartVT, EVT ValueVT, const Value *V, 359 Optional<CallingConv::ID> CallConv) { 360 assert(ValueVT.isVector() && "Not a vector value"); 361 assert(NumParts > 0 && "No parts to assemble!"); 362 const bool IsABIRegCopy = CallConv.hasValue(); 363 364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 365 SDValue Val = Parts[0]; 366 367 // Handle a multi-element vector. 368 if (NumParts > 1) { 369 EVT IntermediateVT; 370 MVT RegisterVT; 371 unsigned NumIntermediates; 372 unsigned NumRegs; 373 374 if (IsABIRegCopy) { 375 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 376 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 377 NumIntermediates, RegisterVT); 378 } else { 379 NumRegs = 380 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 381 NumIntermediates, RegisterVT); 382 } 383 384 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 385 NumParts = NumRegs; // Silence a compiler warning. 386 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 387 assert(RegisterVT.getSizeInBits() == 388 Parts[0].getSimpleValueType().getSizeInBits() && 389 "Part type sizes don't match!"); 390 391 // Assemble the parts into intermediate operands. 392 SmallVector<SDValue, 8> Ops(NumIntermediates); 393 if (NumIntermediates == NumParts) { 394 // If the register was not expanded, truncate or copy the value, 395 // as appropriate. 396 for (unsigned i = 0; i != NumParts; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 398 PartVT, IntermediateVT, V); 399 } else if (NumParts > 0) { 400 // If the intermediate type was expanded, build the intermediate 401 // operands from the parts. 402 assert(NumParts % NumIntermediates == 0 && 403 "Must expand into a divisible number of parts!"); 404 unsigned Factor = NumParts / NumIntermediates; 405 for (unsigned i = 0; i != NumIntermediates; ++i) 406 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 407 PartVT, IntermediateVT, V); 408 } 409 410 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 411 // intermediate operands. 412 EVT BuiltVectorTy = 413 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 414 (IntermediateVT.isVector() 415 ? IntermediateVT.getVectorNumElements() * NumParts 416 : NumIntermediates)); 417 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 418 : ISD::BUILD_VECTOR, 419 DL, BuiltVectorTy, Ops); 420 } 421 422 // There is now one part, held in Val. Correct it to match ValueVT. 423 EVT PartEVT = Val.getValueType(); 424 425 if (PartEVT == ValueVT) 426 return Val; 427 428 if (PartEVT.isVector()) { 429 // If the element type of the source/dest vectors are the same, but the 430 // parts vector has more elements than the value vector, then we have a 431 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 432 // elements we want. 433 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 434 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 435 "Cannot narrow, it would be a lossy transformation"); 436 return DAG.getNode( 437 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 438 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 439 } 440 441 // Vector/Vector bitcast. 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 445 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 446 "Cannot handle this kind of promotion"); 447 // Promoted vector extract 448 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 449 450 } 451 452 // Trivial bitcast if the types are the same size and the destination 453 // vector type is legal. 454 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 455 TLI.isTypeLegal(ValueVT)) 456 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 457 458 if (ValueVT.getVectorNumElements() != 1) { 459 // Certain ABIs require that vectors are passed as integers. For vectors 460 // are the same size, this is an obvious bitcast. 461 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 462 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 463 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 464 // Bitcast Val back the original type and extract the corresponding 465 // vector we want. 466 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 467 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 468 ValueVT.getVectorElementType(), Elts); 469 Val = DAG.getBitcast(WiderVecType, Val); 470 return DAG.getNode( 471 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 472 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 473 } 474 475 diagnosePossiblyInvalidConstraint( 476 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 477 return DAG.getUNDEF(ValueVT); 478 } 479 480 // Handle cases such as i8 -> <1 x i1> 481 EVT ValueSVT = ValueVT.getVectorElementType(); 482 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 483 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 484 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 485 486 return DAG.getBuildVector(ValueVT, DL, Val); 487 } 488 489 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 490 SDValue Val, SDValue *Parts, unsigned NumParts, 491 MVT PartVT, const Value *V, 492 Optional<CallingConv::ID> CallConv); 493 494 /// getCopyToParts - Create a series of nodes that contain the specified value 495 /// split into legal parts. If the parts contain more bits than Val, then, for 496 /// integers, ExtendKind can be used to specify how to generate the extra bits. 497 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 498 SDValue *Parts, unsigned NumParts, MVT PartVT, 499 const Value *V, 500 Optional<CallingConv::ID> CallConv = None, 501 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 502 EVT ValueVT = Val.getValueType(); 503 504 // Handle the vector case separately. 505 if (ValueVT.isVector()) 506 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 507 CallConv); 508 509 unsigned PartBits = PartVT.getSizeInBits(); 510 unsigned OrigNumParts = NumParts; 511 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 512 "Copying to an illegal type!"); 513 514 if (NumParts == 0) 515 return; 516 517 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 518 EVT PartEVT = PartVT; 519 if (PartEVT == ValueVT) { 520 assert(NumParts == 1 && "No-op copy with multiple parts!"); 521 Parts[0] = Val; 522 return; 523 } 524 525 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 526 // If the parts cover more bits than the value has, promote the value. 527 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 528 assert(NumParts == 1 && "Do not know what to promote to!"); 529 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 530 } else { 531 if (ValueVT.isFloatingPoint()) { 532 // FP values need to be bitcast, then extended if they are being put 533 // into a larger container. 534 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 535 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 536 } 537 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 538 ValueVT.isInteger() && 539 "Unknown mismatch!"); 540 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 541 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 542 if (PartVT == MVT::x86mmx) 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } 545 } else if (PartBits == ValueVT.getSizeInBits()) { 546 // Different types of the same size. 547 assert(NumParts == 1 && PartEVT != ValueVT); 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 550 // If the parts cover less bits than value has, truncate the value. 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 560 // The value may have changed - recompute ValueVT. 561 ValueVT = Val.getValueType(); 562 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 563 "Failed to tile the value with PartVT!"); 564 565 if (NumParts == 1) { 566 if (PartEVT != ValueVT) { 567 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 568 "scalar-to-vector conversion failed"); 569 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 570 } 571 572 Parts[0] = Val; 573 return; 574 } 575 576 // Expand the value into multiple parts. 577 if (NumParts & (NumParts - 1)) { 578 // The number of parts is not a power of 2. Split off and copy the tail. 579 assert(PartVT.isInteger() && ValueVT.isInteger() && 580 "Do not know what to expand to!"); 581 unsigned RoundParts = 1 << Log2_32(NumParts); 582 unsigned RoundBits = RoundParts * PartBits; 583 unsigned OddParts = NumParts - RoundParts; 584 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 585 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 586 587 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 588 CallConv); 589 590 if (DAG.getDataLayout().isBigEndian()) 591 // The odd parts were reversed by getCopyToParts - unreverse them. 592 std::reverse(Parts + RoundParts, Parts + NumParts); 593 594 NumParts = RoundParts; 595 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 596 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 597 } 598 599 // The number of parts is a power of 2. Repeatedly bisect the value using 600 // EXTRACT_ELEMENT. 601 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 602 EVT::getIntegerVT(*DAG.getContext(), 603 ValueVT.getSizeInBits()), 604 Val); 605 606 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 607 for (unsigned i = 0; i < NumParts; i += StepSize) { 608 unsigned ThisBits = StepSize * PartBits / 2; 609 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 610 SDValue &Part0 = Parts[i]; 611 SDValue &Part1 = Parts[i+StepSize/2]; 612 613 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 614 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 615 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 616 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 617 618 if (ThisBits == PartBits && ThisVT != PartVT) { 619 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 620 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 621 } 622 } 623 } 624 625 if (DAG.getDataLayout().isBigEndian()) 626 std::reverse(Parts, Parts + OrigNumParts); 627 } 628 629 static SDValue widenVectorToPartType(SelectionDAG &DAG, 630 SDValue Val, const SDLoc &DL, EVT PartVT) { 631 if (!PartVT.isVector()) 632 return SDValue(); 633 634 EVT ValueVT = Val.getValueType(); 635 unsigned PartNumElts = PartVT.getVectorNumElements(); 636 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 637 if (PartNumElts > ValueNumElts && 638 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 639 EVT ElementVT = PartVT.getVectorElementType(); 640 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 641 // undef elements. 642 SmallVector<SDValue, 16> Ops; 643 DAG.ExtractVectorElements(Val, Ops); 644 SDValue EltUndef = DAG.getUNDEF(ElementVT); 645 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 646 Ops.push_back(EltUndef); 647 648 // FIXME: Use CONCAT for 2x -> 4x. 649 return DAG.getBuildVector(PartVT, DL, Ops); 650 } 651 652 return SDValue(); 653 } 654 655 /// getCopyToPartsVector - Create a series of nodes that contain the specified 656 /// value split into legal parts. 657 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 658 SDValue Val, SDValue *Parts, unsigned NumParts, 659 MVT PartVT, const Value *V, 660 Optional<CallingConv::ID> CallConv) { 661 EVT ValueVT = Val.getValueType(); 662 assert(ValueVT.isVector() && "Not a vector"); 663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 664 const bool IsABIRegCopy = CallConv.hasValue(); 665 666 if (NumParts == 1) { 667 EVT PartEVT = PartVT; 668 if (PartEVT == ValueVT) { 669 // Nothing to do. 670 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 671 // Bitconvert vector->vector case. 672 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 673 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 674 Val = Widened; 675 } else if (PartVT.isVector() && 676 PartEVT.getVectorElementType().bitsGE( 677 ValueVT.getVectorElementType()) && 678 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 679 680 // Promoted vector extract 681 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 682 } else { 683 if (ValueVT.getVectorNumElements() == 1) { 684 Val = DAG.getNode( 685 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 686 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 687 } else { 688 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 689 "lossy conversion of vector to scalar type"); 690 EVT IntermediateType = 691 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 692 Val = DAG.getBitcast(IntermediateType, Val); 693 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 694 } 695 } 696 697 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 698 Parts[0] = Val; 699 return; 700 } 701 702 // Handle a multi-element vector. 703 EVT IntermediateVT; 704 MVT RegisterVT; 705 unsigned NumIntermediates; 706 unsigned NumRegs; 707 if (IsABIRegCopy) { 708 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 709 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 710 NumIntermediates, RegisterVT); 711 } else { 712 NumRegs = 713 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 714 NumIntermediates, RegisterVT); 715 } 716 717 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 718 NumParts = NumRegs; // Silence a compiler warning. 719 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 720 721 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 722 IntermediateVT.getVectorNumElements() : 1; 723 724 // Convert the vector to the appropiate type if necessary. 725 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 726 727 EVT BuiltVectorTy = EVT::getVectorVT( 728 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 729 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 730 if (ValueVT != BuiltVectorTy) { 731 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 732 Val = Widened; 733 734 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 735 } 736 737 // Split the vector into intermediate operands. 738 SmallVector<SDValue, 8> Ops(NumIntermediates); 739 for (unsigned i = 0; i != NumIntermediates; ++i) { 740 if (IntermediateVT.isVector()) { 741 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 742 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 743 } else { 744 Ops[i] = DAG.getNode( 745 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 746 DAG.getConstant(i, DL, IdxVT)); 747 } 748 } 749 750 // Split the intermediate operands into legal parts. 751 if (NumParts == NumIntermediates) { 752 // If the register was not expanded, promote or copy the value, 753 // as appropriate. 754 for (unsigned i = 0; i != NumParts; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 756 } else if (NumParts > 0) { 757 // If the intermediate type was expanded, split each the value into 758 // legal parts. 759 assert(NumIntermediates != 0 && "division by zero"); 760 assert(NumParts % NumIntermediates == 0 && 761 "Must expand into a divisible number of parts!"); 762 unsigned Factor = NumParts / NumIntermediates; 763 for (unsigned i = 0; i != NumIntermediates; ++i) 764 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 765 CallConv); 766 } 767 } 768 769 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 770 EVT valuevt, Optional<CallingConv::ID> CC) 771 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 772 RegCount(1, regs.size()), CallConv(CC) {} 773 774 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 775 const DataLayout &DL, unsigned Reg, Type *Ty, 776 Optional<CallingConv::ID> CC) { 777 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 778 779 CallConv = CC; 780 781 for (EVT ValueVT : ValueVTs) { 782 unsigned NumRegs = 783 isABIMangled() 784 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 785 : TLI.getNumRegisters(Context, ValueVT); 786 MVT RegisterVT = 787 isABIMangled() 788 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 789 : TLI.getRegisterType(Context, ValueVT); 790 for (unsigned i = 0; i != NumRegs; ++i) 791 Regs.push_back(Reg + i); 792 RegVTs.push_back(RegisterVT); 793 RegCount.push_back(NumRegs); 794 Reg += NumRegs; 795 } 796 } 797 798 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 799 FunctionLoweringInfo &FuncInfo, 800 const SDLoc &dl, SDValue &Chain, 801 SDValue *Flag, const Value *V) const { 802 // A Value with type {} or [0 x %t] needs no registers. 803 if (ValueVTs.empty()) 804 return SDValue(); 805 806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 807 808 // Assemble the legal parts into the final values. 809 SmallVector<SDValue, 4> Values(ValueVTs.size()); 810 SmallVector<SDValue, 8> Parts; 811 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 812 // Copy the legal parts from the registers. 813 EVT ValueVT = ValueVTs[Value]; 814 unsigned NumRegs = RegCount[Value]; 815 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 816 *DAG.getContext(), 817 CallConv.getValue(), RegVTs[Value]) 818 : RegVTs[Value]; 819 820 Parts.resize(NumRegs); 821 for (unsigned i = 0; i != NumRegs; ++i) { 822 SDValue P; 823 if (!Flag) { 824 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 825 } else { 826 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 827 *Flag = P.getValue(2); 828 } 829 830 Chain = P.getValue(1); 831 Parts[i] = P; 832 833 // If the source register was virtual and if we know something about it, 834 // add an assert node. 835 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 836 !RegisterVT.isInteger()) 837 continue; 838 839 const FunctionLoweringInfo::LiveOutInfo *LOI = 840 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 841 if (!LOI) 842 continue; 843 844 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 845 unsigned NumSignBits = LOI->NumSignBits; 846 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 847 848 if (NumZeroBits == RegSize) { 849 // The current value is a zero. 850 // Explicitly express that as it would be easier for 851 // optimizations to kick in. 852 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 853 continue; 854 } 855 856 // FIXME: We capture more information than the dag can represent. For 857 // now, just use the tightest assertzext/assertsext possible. 858 bool isSExt; 859 EVT FromVT(MVT::Other); 860 if (NumZeroBits) { 861 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 862 isSExt = false; 863 } else if (NumSignBits > 1) { 864 FromVT = 865 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 866 isSExt = true; 867 } else { 868 continue; 869 } 870 // Add an assertion node. 871 assert(FromVT != MVT::Other); 872 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 873 RegisterVT, P, DAG.getValueType(FromVT)); 874 } 875 876 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 877 RegisterVT, ValueVT, V, CallConv); 878 Part += NumRegs; 879 Parts.clear(); 880 } 881 882 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 883 } 884 885 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 886 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 887 const Value *V, 888 ISD::NodeType PreferredExtendType) const { 889 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 890 ISD::NodeType ExtendKind = PreferredExtendType; 891 892 // Get the list of the values's legal parts. 893 unsigned NumRegs = Regs.size(); 894 SmallVector<SDValue, 8> Parts(NumRegs); 895 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 896 unsigned NumParts = RegCount[Value]; 897 898 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 899 *DAG.getContext(), 900 CallConv.getValue(), RegVTs[Value]) 901 : RegVTs[Value]; 902 903 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 904 ExtendKind = ISD::ZERO_EXTEND; 905 906 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 907 NumParts, RegisterVT, V, CallConv, ExtendKind); 908 Part += NumParts; 909 } 910 911 // Copy the parts into the registers. 912 SmallVector<SDValue, 8> Chains(NumRegs); 913 for (unsigned i = 0; i != NumRegs; ++i) { 914 SDValue Part; 915 if (!Flag) { 916 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 917 } else { 918 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 919 *Flag = Part.getValue(1); 920 } 921 922 Chains[i] = Part.getValue(0); 923 } 924 925 if (NumRegs == 1 || Flag) 926 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 927 // flagged to it. That is the CopyToReg nodes and the user are considered 928 // a single scheduling unit. If we create a TokenFactor and return it as 929 // chain, then the TokenFactor is both a predecessor (operand) of the 930 // user as well as a successor (the TF operands are flagged to the user). 931 // c1, f1 = CopyToReg 932 // c2, f2 = CopyToReg 933 // c3 = TokenFactor c1, c2 934 // ... 935 // = op c3, ..., f2 936 Chain = Chains[NumRegs-1]; 937 else 938 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 939 } 940 941 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 942 unsigned MatchingIdx, const SDLoc &dl, 943 SelectionDAG &DAG, 944 std::vector<SDValue> &Ops) const { 945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 946 947 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 948 if (HasMatching) 949 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 950 else if (!Regs.empty() && 951 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 952 // Put the register class of the virtual registers in the flag word. That 953 // way, later passes can recompute register class constraints for inline 954 // assembly as well as normal instructions. 955 // Don't do this for tied operands that can use the regclass information 956 // from the def. 957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 960 } 961 962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 963 Ops.push_back(Res); 964 965 if (Code == InlineAsm::Kind_Clobber) { 966 // Clobbers should always have a 1:1 mapping with registers, and may 967 // reference registers that have illegal (e.g. vector) types. Hence, we 968 // shouldn't try to apply any sort of splitting logic to them. 969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 970 "No 1:1 mapping from clobbers to regs?"); 971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 972 (void)SP; 973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 975 assert( 976 (Regs[I] != SP || 977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 978 "If we clobbered the stack pointer, MFI should know about it."); 979 } 980 return; 981 } 982 983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 985 MVT RegisterVT = RegVTs[Value]; 986 for (unsigned i = 0; i != NumRegs; ++i) { 987 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 988 unsigned TheReg = Regs[Reg++]; 989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 990 } 991 } 992 } 993 994 SmallVector<std::pair<unsigned, unsigned>, 4> 995 RegsForValue::getRegsAndSizes() const { 996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 997 unsigned I = 0; 998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 999 unsigned RegCount = std::get<0>(CountAndVT); 1000 MVT RegisterVT = std::get<1>(CountAndVT); 1001 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1002 for (unsigned E = I + RegCount; I != E; ++I) 1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1004 } 1005 return OutVec; 1006 } 1007 1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1009 const TargetLibraryInfo *li) { 1010 AA = aa; 1011 GFI = gfi; 1012 LibInfo = li; 1013 DL = &DAG.getDataLayout(); 1014 Context = DAG.getContext(); 1015 LPadToCallSiteMap.clear(); 1016 } 1017 1018 void SelectionDAGBuilder::clear() { 1019 NodeMap.clear(); 1020 UnusedArgNodeMap.clear(); 1021 PendingLoads.clear(); 1022 PendingExports.clear(); 1023 CurInst = nullptr; 1024 HasTailCall = false; 1025 SDNodeOrder = LowestSDNodeOrder; 1026 StatepointLowering.clear(); 1027 } 1028 1029 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1030 DanglingDebugInfoMap.clear(); 1031 } 1032 1033 SDValue SelectionDAGBuilder::getRoot() { 1034 if (PendingLoads.empty()) 1035 return DAG.getRoot(); 1036 1037 if (PendingLoads.size() == 1) { 1038 SDValue Root = PendingLoads[0]; 1039 DAG.setRoot(Root); 1040 PendingLoads.clear(); 1041 return Root; 1042 } 1043 1044 // Otherwise, we have to make a token factor node. 1045 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1046 PendingLoads.clear(); 1047 DAG.setRoot(Root); 1048 return Root; 1049 } 1050 1051 SDValue SelectionDAGBuilder::getControlRoot() { 1052 SDValue Root = DAG.getRoot(); 1053 1054 if (PendingExports.empty()) 1055 return Root; 1056 1057 // Turn all of the CopyToReg chains into one factored node. 1058 if (Root.getOpcode() != ISD::EntryToken) { 1059 unsigned i = 0, e = PendingExports.size(); 1060 for (; i != e; ++i) { 1061 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1062 if (PendingExports[i].getNode()->getOperand(0) == Root) 1063 break; // Don't add the root if we already indirectly depend on it. 1064 } 1065 1066 if (i == e) 1067 PendingExports.push_back(Root); 1068 } 1069 1070 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1071 PendingExports); 1072 PendingExports.clear(); 1073 DAG.setRoot(Root); 1074 return Root; 1075 } 1076 1077 void SelectionDAGBuilder::visit(const Instruction &I) { 1078 // Set up outgoing PHI node register values before emitting the terminator. 1079 if (I.isTerminator()) { 1080 HandlePHINodesInSuccessorBlocks(I.getParent()); 1081 } 1082 1083 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1084 if (!isa<DbgInfoIntrinsic>(I)) 1085 ++SDNodeOrder; 1086 1087 CurInst = &I; 1088 1089 visit(I.getOpcode(), I); 1090 1091 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1092 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1093 // maps to this instruction. 1094 // TODO: We could handle all flags (nsw, etc) here. 1095 // TODO: If an IR instruction maps to >1 node, only the final node will have 1096 // flags set. 1097 if (SDNode *Node = getNodeForIRValue(&I)) { 1098 SDNodeFlags IncomingFlags; 1099 IncomingFlags.copyFMF(*FPMO); 1100 if (!Node->getFlags().isDefined()) 1101 Node->setFlags(IncomingFlags); 1102 else 1103 Node->intersectFlagsWith(IncomingFlags); 1104 } 1105 } 1106 1107 if (!I.isTerminator() && !HasTailCall && 1108 !isStatepoint(&I)) // statepoints handle their exports internally 1109 CopyToExportRegsIfNeeded(&I); 1110 1111 CurInst = nullptr; 1112 } 1113 1114 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1115 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1116 } 1117 1118 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1119 // Note: this doesn't use InstVisitor, because it has to work with 1120 // ConstantExpr's in addition to instructions. 1121 switch (Opcode) { 1122 default: llvm_unreachable("Unknown instruction type encountered!"); 1123 // Build the switch statement using the Instruction.def file. 1124 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1125 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1126 #include "llvm/IR/Instruction.def" 1127 } 1128 } 1129 1130 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1131 const DIExpression *Expr) { 1132 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1133 const DbgValueInst *DI = DDI.getDI(); 1134 DIVariable *DanglingVariable = DI->getVariable(); 1135 DIExpression *DanglingExpr = DI->getExpression(); 1136 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1137 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1138 return true; 1139 } 1140 return false; 1141 }; 1142 1143 for (auto &DDIMI : DanglingDebugInfoMap) { 1144 DanglingDebugInfoVector &DDIV = DDIMI.second; 1145 1146 // If debug info is to be dropped, run it through final checks to see 1147 // whether it can be salvaged. 1148 for (auto &DDI : DDIV) 1149 if (isMatchingDbgValue(DDI)) 1150 salvageUnresolvedDbgValue(DDI); 1151 1152 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1153 } 1154 } 1155 1156 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1157 // generate the debug data structures now that we've seen its definition. 1158 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1159 SDValue Val) { 1160 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1161 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1162 return; 1163 1164 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1165 for (auto &DDI : DDIV) { 1166 const DbgValueInst *DI = DDI.getDI(); 1167 assert(DI && "Ill-formed DanglingDebugInfo"); 1168 DebugLoc dl = DDI.getdl(); 1169 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1170 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1171 DILocalVariable *Variable = DI->getVariable(); 1172 DIExpression *Expr = DI->getExpression(); 1173 assert(Variable->isValidLocationForIntrinsic(dl) && 1174 "Expected inlined-at fields to agree"); 1175 SDDbgValue *SDV; 1176 if (Val.getNode()) { 1177 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1178 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1179 // we couldn't resolve it directly when examining the DbgValue intrinsic 1180 // in the first place we should not be more successful here). Unless we 1181 // have some test case that prove this to be correct we should avoid 1182 // calling EmitFuncArgumentDbgValue here. 1183 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1184 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1185 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1186 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1187 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1188 // inserted after the definition of Val when emitting the instructions 1189 // after ISel. An alternative could be to teach 1190 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1191 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1192 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1193 << ValSDNodeOrder << "\n"); 1194 SDV = getDbgValue(Val, Variable, Expr, dl, 1195 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1196 DAG.AddDbgValue(SDV, Val.getNode(), false); 1197 } else 1198 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1199 << "in EmitFuncArgumentDbgValue\n"); 1200 } else { 1201 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1202 auto Undef = 1203 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1204 auto SDV = 1205 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1206 DAG.AddDbgValue(SDV, nullptr, false); 1207 } 1208 } 1209 DDIV.clear(); 1210 } 1211 1212 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1213 Value *V = DDI.getDI()->getValue(); 1214 DILocalVariable *Var = DDI.getDI()->getVariable(); 1215 DIExpression *Expr = DDI.getDI()->getExpression(); 1216 DebugLoc DL = DDI.getdl(); 1217 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1218 unsigned SDOrder = DDI.getSDNodeOrder(); 1219 1220 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1221 // that DW_OP_stack_value is desired. 1222 assert(isa<DbgValueInst>(DDI.getDI())); 1223 bool StackValue = true; 1224 1225 // Can this Value can be encoded without any further work? 1226 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1227 return; 1228 1229 // Attempt to salvage back through as many instructions as possible. Bail if 1230 // a non-instruction is seen, such as a constant expression or global 1231 // variable. FIXME: Further work could recover those too. 1232 while (isa<Instruction>(V)) { 1233 Instruction &VAsInst = *cast<Instruction>(V); 1234 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1235 1236 // If we cannot salvage any further, and haven't yet found a suitable debug 1237 // expression, bail out. 1238 if (!NewExpr) 1239 break; 1240 1241 // New value and expr now represent this debuginfo. 1242 V = VAsInst.getOperand(0); 1243 Expr = NewExpr; 1244 1245 // Some kind of simplification occurred: check whether the operand of the 1246 // salvaged debug expression can be encoded in this DAG. 1247 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1248 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1249 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1250 return; 1251 } 1252 } 1253 1254 // This was the final opportunity to salvage this debug information, and it 1255 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1256 // any earlier variable location. 1257 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1258 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1259 DAG.AddDbgValue(SDV, nullptr, false); 1260 1261 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1262 << "\n"); 1263 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1264 << "\n"); 1265 } 1266 1267 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1268 DIExpression *Expr, DebugLoc dl, 1269 DebugLoc InstDL, unsigned Order) { 1270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1271 SDDbgValue *SDV; 1272 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1273 isa<ConstantPointerNull>(V)) { 1274 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1275 DAG.AddDbgValue(SDV, nullptr, false); 1276 return true; 1277 } 1278 1279 // If the Value is a frame index, we can create a FrameIndex debug value 1280 // without relying on the DAG at all. 1281 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1282 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1283 if (SI != FuncInfo.StaticAllocaMap.end()) { 1284 auto SDV = 1285 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1286 /*IsIndirect*/ false, dl, SDNodeOrder); 1287 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1288 // is still available even if the SDNode gets optimized out. 1289 DAG.AddDbgValue(SDV, nullptr, false); 1290 return true; 1291 } 1292 } 1293 1294 // Do not use getValue() in here; we don't want to generate code at 1295 // this point if it hasn't been done yet. 1296 SDValue N = NodeMap[V]; 1297 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1298 N = UnusedArgNodeMap[V]; 1299 if (N.getNode()) { 1300 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1301 return true; 1302 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1303 DAG.AddDbgValue(SDV, N.getNode(), false); 1304 return true; 1305 } 1306 1307 // Special rules apply for the first dbg.values of parameter variables in a 1308 // function. Identify them by the fact they reference Argument Values, that 1309 // they're parameters, and they are parameters of the current function. We 1310 // need to let them dangle until they get an SDNode. 1311 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1312 !InstDL.getInlinedAt(); 1313 if (!IsParamOfFunc) { 1314 // The value is not used in this block yet (or it would have an SDNode). 1315 // We still want the value to appear for the user if possible -- if it has 1316 // an associated VReg, we can refer to that instead. 1317 auto VMI = FuncInfo.ValueMap.find(V); 1318 if (VMI != FuncInfo.ValueMap.end()) { 1319 unsigned Reg = VMI->second; 1320 // If this is a PHI node, it may be split up into several MI PHI nodes 1321 // (in FunctionLoweringInfo::set). 1322 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1323 V->getType(), None); 1324 if (RFV.occupiesMultipleRegs()) { 1325 unsigned Offset = 0; 1326 unsigned BitsToDescribe = 0; 1327 if (auto VarSize = Var->getSizeInBits()) 1328 BitsToDescribe = *VarSize; 1329 if (auto Fragment = Expr->getFragmentInfo()) 1330 BitsToDescribe = Fragment->SizeInBits; 1331 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1332 unsigned RegisterSize = RegAndSize.second; 1333 // Bail out if all bits are described already. 1334 if (Offset >= BitsToDescribe) 1335 break; 1336 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1337 ? BitsToDescribe - Offset 1338 : RegisterSize; 1339 auto FragmentExpr = DIExpression::createFragmentExpression( 1340 Expr, Offset, FragmentSize); 1341 if (!FragmentExpr) 1342 continue; 1343 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1344 false, dl, SDNodeOrder); 1345 DAG.AddDbgValue(SDV, nullptr, false); 1346 Offset += RegisterSize; 1347 } 1348 } else { 1349 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1350 DAG.AddDbgValue(SDV, nullptr, false); 1351 } 1352 return true; 1353 } 1354 } 1355 1356 return false; 1357 } 1358 1359 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1360 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1361 for (auto &Pair : DanglingDebugInfoMap) 1362 for (auto &DDI : Pair.second) 1363 salvageUnresolvedDbgValue(DDI); 1364 clearDanglingDebugInfo(); 1365 } 1366 1367 /// getCopyFromRegs - If there was virtual register allocated for the value V 1368 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1369 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1370 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1371 SDValue Result; 1372 1373 if (It != FuncInfo.ValueMap.end()) { 1374 unsigned InReg = It->second; 1375 1376 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1377 DAG.getDataLayout(), InReg, Ty, 1378 None); // This is not an ABI copy. 1379 SDValue Chain = DAG.getEntryNode(); 1380 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1381 V); 1382 resolveDanglingDebugInfo(V, Result); 1383 } 1384 1385 return Result; 1386 } 1387 1388 /// getValue - Return an SDValue for the given Value. 1389 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1390 // If we already have an SDValue for this value, use it. It's important 1391 // to do this first, so that we don't create a CopyFromReg if we already 1392 // have a regular SDValue. 1393 SDValue &N = NodeMap[V]; 1394 if (N.getNode()) return N; 1395 1396 // If there's a virtual register allocated and initialized for this 1397 // value, use it. 1398 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1399 return copyFromReg; 1400 1401 // Otherwise create a new SDValue and remember it. 1402 SDValue Val = getValueImpl(V); 1403 NodeMap[V] = Val; 1404 resolveDanglingDebugInfo(V, Val); 1405 return Val; 1406 } 1407 1408 // Return true if SDValue exists for the given Value 1409 bool SelectionDAGBuilder::findValue(const Value *V) const { 1410 return (NodeMap.find(V) != NodeMap.end()) || 1411 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1412 } 1413 1414 /// getNonRegisterValue - Return an SDValue for the given Value, but 1415 /// don't look in FuncInfo.ValueMap for a virtual register. 1416 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1417 // If we already have an SDValue for this value, use it. 1418 SDValue &N = NodeMap[V]; 1419 if (N.getNode()) { 1420 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1421 // Remove the debug location from the node as the node is about to be used 1422 // in a location which may differ from the original debug location. This 1423 // is relevant to Constant and ConstantFP nodes because they can appear 1424 // as constant expressions inside PHI nodes. 1425 N->setDebugLoc(DebugLoc()); 1426 } 1427 return N; 1428 } 1429 1430 // Otherwise create a new SDValue and remember it. 1431 SDValue Val = getValueImpl(V); 1432 NodeMap[V] = Val; 1433 resolveDanglingDebugInfo(V, Val); 1434 return Val; 1435 } 1436 1437 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1438 /// Create an SDValue for the given value. 1439 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1441 1442 if (const Constant *C = dyn_cast<Constant>(V)) { 1443 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1444 1445 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1446 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1447 1448 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1449 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1450 1451 if (isa<ConstantPointerNull>(C)) { 1452 unsigned AS = V->getType()->getPointerAddressSpace(); 1453 return DAG.getConstant(0, getCurSDLoc(), 1454 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1455 } 1456 1457 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1458 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1459 1460 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1461 return DAG.getUNDEF(VT); 1462 1463 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1464 visit(CE->getOpcode(), *CE); 1465 SDValue N1 = NodeMap[V]; 1466 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1467 return N1; 1468 } 1469 1470 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1471 SmallVector<SDValue, 4> Constants; 1472 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1473 OI != OE; ++OI) { 1474 SDNode *Val = getValue(*OI).getNode(); 1475 // If the operand is an empty aggregate, there are no values. 1476 if (!Val) continue; 1477 // Add each leaf value from the operand to the Constants list 1478 // to form a flattened list of all the values. 1479 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1480 Constants.push_back(SDValue(Val, i)); 1481 } 1482 1483 return DAG.getMergeValues(Constants, getCurSDLoc()); 1484 } 1485 1486 if (const ConstantDataSequential *CDS = 1487 dyn_cast<ConstantDataSequential>(C)) { 1488 SmallVector<SDValue, 4> Ops; 1489 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1490 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1491 // Add each leaf value from the operand to the Constants list 1492 // to form a flattened list of all the values. 1493 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1494 Ops.push_back(SDValue(Val, i)); 1495 } 1496 1497 if (isa<ArrayType>(CDS->getType())) 1498 return DAG.getMergeValues(Ops, getCurSDLoc()); 1499 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1500 } 1501 1502 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1503 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1504 "Unknown struct or array constant!"); 1505 1506 SmallVector<EVT, 4> ValueVTs; 1507 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1508 unsigned NumElts = ValueVTs.size(); 1509 if (NumElts == 0) 1510 return SDValue(); // empty struct 1511 SmallVector<SDValue, 4> Constants(NumElts); 1512 for (unsigned i = 0; i != NumElts; ++i) { 1513 EVT EltVT = ValueVTs[i]; 1514 if (isa<UndefValue>(C)) 1515 Constants[i] = DAG.getUNDEF(EltVT); 1516 else if (EltVT.isFloatingPoint()) 1517 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1518 else 1519 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1520 } 1521 1522 return DAG.getMergeValues(Constants, getCurSDLoc()); 1523 } 1524 1525 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1526 return DAG.getBlockAddress(BA, VT); 1527 1528 VectorType *VecTy = cast<VectorType>(V->getType()); 1529 unsigned NumElements = VecTy->getNumElements(); 1530 1531 // Now that we know the number and type of the elements, get that number of 1532 // elements into the Ops array based on what kind of constant it is. 1533 SmallVector<SDValue, 16> Ops; 1534 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1535 for (unsigned i = 0; i != NumElements; ++i) 1536 Ops.push_back(getValue(CV->getOperand(i))); 1537 } else { 1538 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1539 EVT EltVT = 1540 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1541 1542 SDValue Op; 1543 if (EltVT.isFloatingPoint()) 1544 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1545 else 1546 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1547 Ops.assign(NumElements, Op); 1548 } 1549 1550 // Create a BUILD_VECTOR node. 1551 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1552 } 1553 1554 // If this is a static alloca, generate it as the frameindex instead of 1555 // computation. 1556 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1557 DenseMap<const AllocaInst*, int>::iterator SI = 1558 FuncInfo.StaticAllocaMap.find(AI); 1559 if (SI != FuncInfo.StaticAllocaMap.end()) 1560 return DAG.getFrameIndex(SI->second, 1561 TLI.getFrameIndexTy(DAG.getDataLayout())); 1562 } 1563 1564 // If this is an instruction which fast-isel has deferred, select it now. 1565 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1566 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1567 1568 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1569 Inst->getType(), getABIRegCopyCC(V)); 1570 SDValue Chain = DAG.getEntryNode(); 1571 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1572 } 1573 1574 llvm_unreachable("Can't get register for value!"); 1575 } 1576 1577 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1578 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1579 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1580 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1581 bool IsSEH = isAsynchronousEHPersonality(Pers); 1582 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1583 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1584 if (!IsSEH) 1585 CatchPadMBB->setIsEHScopeEntry(); 1586 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1587 if (IsMSVCCXX || IsCoreCLR) 1588 CatchPadMBB->setIsEHFuncletEntry(); 1589 // Wasm does not need catchpads anymore 1590 if (!IsWasmCXX) 1591 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1592 getControlRoot())); 1593 } 1594 1595 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1596 // Update machine-CFG edge. 1597 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1598 FuncInfo.MBB->addSuccessor(TargetMBB); 1599 1600 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1601 bool IsSEH = isAsynchronousEHPersonality(Pers); 1602 if (IsSEH) { 1603 // If this is not a fall-through branch or optimizations are switched off, 1604 // emit the branch. 1605 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1606 TM.getOptLevel() == CodeGenOpt::None) 1607 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1608 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1609 return; 1610 } 1611 1612 // Figure out the funclet membership for the catchret's successor. 1613 // This will be used by the FuncletLayout pass to determine how to order the 1614 // BB's. 1615 // A 'catchret' returns to the outer scope's color. 1616 Value *ParentPad = I.getCatchSwitchParentPad(); 1617 const BasicBlock *SuccessorColor; 1618 if (isa<ConstantTokenNone>(ParentPad)) 1619 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1620 else 1621 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1622 assert(SuccessorColor && "No parent funclet for catchret!"); 1623 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1624 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1625 1626 // Create the terminator node. 1627 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1628 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1629 DAG.getBasicBlock(SuccessorColorMBB)); 1630 DAG.setRoot(Ret); 1631 } 1632 1633 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1634 // Don't emit any special code for the cleanuppad instruction. It just marks 1635 // the start of an EH scope/funclet. 1636 FuncInfo.MBB->setIsEHScopeEntry(); 1637 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1638 if (Pers != EHPersonality::Wasm_CXX) { 1639 FuncInfo.MBB->setIsEHFuncletEntry(); 1640 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1641 } 1642 } 1643 1644 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1645 // the control flow always stops at the single catch pad, as it does for a 1646 // cleanup pad. In case the exception caught is not of the types the catch pad 1647 // catches, it will be rethrown by a rethrow. 1648 static void findWasmUnwindDestinations( 1649 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1650 BranchProbability Prob, 1651 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1652 &UnwindDests) { 1653 while (EHPadBB) { 1654 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1655 if (isa<CleanupPadInst>(Pad)) { 1656 // Stop on cleanup pads. 1657 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1658 UnwindDests.back().first->setIsEHScopeEntry(); 1659 break; 1660 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1661 // Add the catchpad handlers to the possible destinations. We don't 1662 // continue to the unwind destination of the catchswitch for wasm. 1663 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1664 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1665 UnwindDests.back().first->setIsEHScopeEntry(); 1666 } 1667 break; 1668 } else { 1669 continue; 1670 } 1671 } 1672 } 1673 1674 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1675 /// many places it could ultimately go. In the IR, we have a single unwind 1676 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1677 /// This function skips over imaginary basic blocks that hold catchswitch 1678 /// instructions, and finds all the "real" machine 1679 /// basic block destinations. As those destinations may not be successors of 1680 /// EHPadBB, here we also calculate the edge probability to those destinations. 1681 /// The passed-in Prob is the edge probability to EHPadBB. 1682 static void findUnwindDestinations( 1683 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1684 BranchProbability Prob, 1685 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1686 &UnwindDests) { 1687 EHPersonality Personality = 1688 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1689 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1690 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1691 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1692 bool IsSEH = isAsynchronousEHPersonality(Personality); 1693 1694 if (IsWasmCXX) { 1695 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1696 assert(UnwindDests.size() <= 1 && 1697 "There should be at most one unwind destination for wasm"); 1698 return; 1699 } 1700 1701 while (EHPadBB) { 1702 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1703 BasicBlock *NewEHPadBB = nullptr; 1704 if (isa<LandingPadInst>(Pad)) { 1705 // Stop on landingpads. They are not funclets. 1706 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1707 break; 1708 } else if (isa<CleanupPadInst>(Pad)) { 1709 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1710 // personalities. 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1712 UnwindDests.back().first->setIsEHScopeEntry(); 1713 UnwindDests.back().first->setIsEHFuncletEntry(); 1714 break; 1715 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1716 // Add the catchpad handlers to the possible destinations. 1717 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1718 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1719 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1720 if (IsMSVCCXX || IsCoreCLR) 1721 UnwindDests.back().first->setIsEHFuncletEntry(); 1722 if (!IsSEH) 1723 UnwindDests.back().first->setIsEHScopeEntry(); 1724 } 1725 NewEHPadBB = CatchSwitch->getUnwindDest(); 1726 } else { 1727 continue; 1728 } 1729 1730 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1731 if (BPI && NewEHPadBB) 1732 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1733 EHPadBB = NewEHPadBB; 1734 } 1735 } 1736 1737 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1738 // Update successor info. 1739 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1740 auto UnwindDest = I.getUnwindDest(); 1741 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1742 BranchProbability UnwindDestProb = 1743 (BPI && UnwindDest) 1744 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1745 : BranchProbability::getZero(); 1746 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1747 for (auto &UnwindDest : UnwindDests) { 1748 UnwindDest.first->setIsEHPad(); 1749 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1750 } 1751 FuncInfo.MBB->normalizeSuccProbs(); 1752 1753 // Create the terminator node. 1754 SDValue Ret = 1755 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1756 DAG.setRoot(Ret); 1757 } 1758 1759 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1760 report_fatal_error("visitCatchSwitch not yet implemented!"); 1761 } 1762 1763 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1765 auto &DL = DAG.getDataLayout(); 1766 SDValue Chain = getControlRoot(); 1767 SmallVector<ISD::OutputArg, 8> Outs; 1768 SmallVector<SDValue, 8> OutVals; 1769 1770 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1771 // lower 1772 // 1773 // %val = call <ty> @llvm.experimental.deoptimize() 1774 // ret <ty> %val 1775 // 1776 // differently. 1777 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1778 LowerDeoptimizingReturn(); 1779 return; 1780 } 1781 1782 if (!FuncInfo.CanLowerReturn) { 1783 unsigned DemoteReg = FuncInfo.DemoteRegister; 1784 const Function *F = I.getParent()->getParent(); 1785 1786 // Emit a store of the return value through the virtual register. 1787 // Leave Outs empty so that LowerReturn won't try to load return 1788 // registers the usual way. 1789 SmallVector<EVT, 1> PtrValueVTs; 1790 ComputeValueVTs(TLI, DL, 1791 F->getReturnType()->getPointerTo( 1792 DAG.getDataLayout().getAllocaAddrSpace()), 1793 PtrValueVTs); 1794 1795 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1796 DemoteReg, PtrValueVTs[0]); 1797 SDValue RetOp = getValue(I.getOperand(0)); 1798 1799 SmallVector<EVT, 4> ValueVTs, MemVTs; 1800 SmallVector<uint64_t, 4> Offsets; 1801 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1802 &Offsets); 1803 unsigned NumValues = ValueVTs.size(); 1804 1805 SmallVector<SDValue, 4> Chains(NumValues); 1806 for (unsigned i = 0; i != NumValues; ++i) { 1807 // An aggregate return value cannot wrap around the address space, so 1808 // offsets to its parts don't wrap either. 1809 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1810 1811 SDValue Val = RetOp.getValue(i); 1812 if (MemVTs[i] != ValueVTs[i]) 1813 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1814 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1815 // FIXME: better loc info would be nice. 1816 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1817 } 1818 1819 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1820 MVT::Other, Chains); 1821 } else if (I.getNumOperands() != 0) { 1822 SmallVector<EVT, 4> ValueVTs; 1823 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1824 unsigned NumValues = ValueVTs.size(); 1825 if (NumValues) { 1826 SDValue RetOp = getValue(I.getOperand(0)); 1827 1828 const Function *F = I.getParent()->getParent(); 1829 1830 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1831 I.getOperand(0)->getType(), F->getCallingConv(), 1832 /*IsVarArg*/ false); 1833 1834 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1835 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1836 Attribute::SExt)) 1837 ExtendKind = ISD::SIGN_EXTEND; 1838 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1839 Attribute::ZExt)) 1840 ExtendKind = ISD::ZERO_EXTEND; 1841 1842 LLVMContext &Context = F->getContext(); 1843 bool RetInReg = F->getAttributes().hasAttribute( 1844 AttributeList::ReturnIndex, Attribute::InReg); 1845 1846 for (unsigned j = 0; j != NumValues; ++j) { 1847 EVT VT = ValueVTs[j]; 1848 1849 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1850 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1851 1852 CallingConv::ID CC = F->getCallingConv(); 1853 1854 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1855 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1856 SmallVector<SDValue, 4> Parts(NumParts); 1857 getCopyToParts(DAG, getCurSDLoc(), 1858 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1859 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1860 1861 // 'inreg' on function refers to return value 1862 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1863 if (RetInReg) 1864 Flags.setInReg(); 1865 1866 if (I.getOperand(0)->getType()->isPointerTy()) { 1867 Flags.setPointer(); 1868 Flags.setPointerAddrSpace( 1869 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1870 } 1871 1872 if (NeedsRegBlock) { 1873 Flags.setInConsecutiveRegs(); 1874 if (j == NumValues - 1) 1875 Flags.setInConsecutiveRegsLast(); 1876 } 1877 1878 // Propagate extension type if any 1879 if (ExtendKind == ISD::SIGN_EXTEND) 1880 Flags.setSExt(); 1881 else if (ExtendKind == ISD::ZERO_EXTEND) 1882 Flags.setZExt(); 1883 1884 for (unsigned i = 0; i < NumParts; ++i) { 1885 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1886 VT, /*isfixed=*/true, 0, 0)); 1887 OutVals.push_back(Parts[i]); 1888 } 1889 } 1890 } 1891 } 1892 1893 // Push in swifterror virtual register as the last element of Outs. This makes 1894 // sure swifterror virtual register will be returned in the swifterror 1895 // physical register. 1896 const Function *F = I.getParent()->getParent(); 1897 if (TLI.supportSwiftError() && 1898 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1899 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1900 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1901 Flags.setSwiftError(); 1902 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1903 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1904 true /*isfixed*/, 1 /*origidx*/, 1905 0 /*partOffs*/)); 1906 // Create SDNode for the swifterror virtual register. 1907 OutVals.push_back( 1908 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1909 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1910 EVT(TLI.getPointerTy(DL)))); 1911 } 1912 1913 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1914 CallingConv::ID CallConv = 1915 DAG.getMachineFunction().getFunction().getCallingConv(); 1916 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1917 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1918 1919 // Verify that the target's LowerReturn behaved as expected. 1920 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1921 "LowerReturn didn't return a valid chain!"); 1922 1923 // Update the DAG with the new chain value resulting from return lowering. 1924 DAG.setRoot(Chain); 1925 } 1926 1927 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1928 /// created for it, emit nodes to copy the value into the virtual 1929 /// registers. 1930 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1931 // Skip empty types 1932 if (V->getType()->isEmptyTy()) 1933 return; 1934 1935 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1936 if (VMI != FuncInfo.ValueMap.end()) { 1937 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1938 CopyValueToVirtualRegister(V, VMI->second); 1939 } 1940 } 1941 1942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1943 /// the current basic block, add it to ValueMap now so that we'll get a 1944 /// CopyTo/FromReg. 1945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1946 // No need to export constants. 1947 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1948 1949 // Already exported? 1950 if (FuncInfo.isExportedInst(V)) return; 1951 1952 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1953 CopyValueToVirtualRegister(V, Reg); 1954 } 1955 1956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1957 const BasicBlock *FromBB) { 1958 // The operands of the setcc have to be in this block. We don't know 1959 // how to export them from some other block. 1960 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1961 // Can export from current BB. 1962 if (VI->getParent() == FromBB) 1963 return true; 1964 1965 // Is already exported, noop. 1966 return FuncInfo.isExportedInst(V); 1967 } 1968 1969 // If this is an argument, we can export it if the BB is the entry block or 1970 // if it is already exported. 1971 if (isa<Argument>(V)) { 1972 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1973 return true; 1974 1975 // Otherwise, can only export this if it is already exported. 1976 return FuncInfo.isExportedInst(V); 1977 } 1978 1979 // Otherwise, constants can always be exported. 1980 return true; 1981 } 1982 1983 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1984 BranchProbability 1985 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1986 const MachineBasicBlock *Dst) const { 1987 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1988 const BasicBlock *SrcBB = Src->getBasicBlock(); 1989 const BasicBlock *DstBB = Dst->getBasicBlock(); 1990 if (!BPI) { 1991 // If BPI is not available, set the default probability as 1 / N, where N is 1992 // the number of successors. 1993 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1994 return BranchProbability(1, SuccSize); 1995 } 1996 return BPI->getEdgeProbability(SrcBB, DstBB); 1997 } 1998 1999 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2000 MachineBasicBlock *Dst, 2001 BranchProbability Prob) { 2002 if (!FuncInfo.BPI) 2003 Src->addSuccessorWithoutProb(Dst); 2004 else { 2005 if (Prob.isUnknown()) 2006 Prob = getEdgeProbability(Src, Dst); 2007 Src->addSuccessor(Dst, Prob); 2008 } 2009 } 2010 2011 static bool InBlock(const Value *V, const BasicBlock *BB) { 2012 if (const Instruction *I = dyn_cast<Instruction>(V)) 2013 return I->getParent() == BB; 2014 return true; 2015 } 2016 2017 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2018 /// This function emits a branch and is used at the leaves of an OR or an 2019 /// AND operator tree. 2020 void 2021 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2022 MachineBasicBlock *TBB, 2023 MachineBasicBlock *FBB, 2024 MachineBasicBlock *CurBB, 2025 MachineBasicBlock *SwitchBB, 2026 BranchProbability TProb, 2027 BranchProbability FProb, 2028 bool InvertCond) { 2029 const BasicBlock *BB = CurBB->getBasicBlock(); 2030 2031 // If the leaf of the tree is a comparison, merge the condition into 2032 // the caseblock. 2033 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2034 // The operands of the cmp have to be in this block. We don't know 2035 // how to export them from some other block. If this is the first block 2036 // of the sequence, no exporting is needed. 2037 if (CurBB == SwitchBB || 2038 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2039 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2040 ISD::CondCode Condition; 2041 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2042 ICmpInst::Predicate Pred = 2043 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2044 Condition = getICmpCondCode(Pred); 2045 } else { 2046 const FCmpInst *FC = cast<FCmpInst>(Cond); 2047 FCmpInst::Predicate Pred = 2048 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2049 Condition = getFCmpCondCode(Pred); 2050 if (TM.Options.NoNaNsFPMath) 2051 Condition = getFCmpCodeWithoutNaN(Condition); 2052 } 2053 2054 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2055 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2056 SwitchCases.push_back(CB); 2057 return; 2058 } 2059 } 2060 2061 // Create a CaseBlock record representing this branch. 2062 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2063 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2064 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2065 SwitchCases.push_back(CB); 2066 } 2067 2068 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2069 MachineBasicBlock *TBB, 2070 MachineBasicBlock *FBB, 2071 MachineBasicBlock *CurBB, 2072 MachineBasicBlock *SwitchBB, 2073 Instruction::BinaryOps Opc, 2074 BranchProbability TProb, 2075 BranchProbability FProb, 2076 bool InvertCond) { 2077 // Skip over not part of the tree and remember to invert op and operands at 2078 // next level. 2079 Value *NotCond; 2080 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2081 InBlock(NotCond, CurBB->getBasicBlock())) { 2082 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2083 !InvertCond); 2084 return; 2085 } 2086 2087 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2088 // Compute the effective opcode for Cond, taking into account whether it needs 2089 // to be inverted, e.g. 2090 // and (not (or A, B)), C 2091 // gets lowered as 2092 // and (and (not A, not B), C) 2093 unsigned BOpc = 0; 2094 if (BOp) { 2095 BOpc = BOp->getOpcode(); 2096 if (InvertCond) { 2097 if (BOpc == Instruction::And) 2098 BOpc = Instruction::Or; 2099 else if (BOpc == Instruction::Or) 2100 BOpc = Instruction::And; 2101 } 2102 } 2103 2104 // If this node is not part of the or/and tree, emit it as a branch. 2105 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2106 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2107 BOp->getParent() != CurBB->getBasicBlock() || 2108 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2109 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2110 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2111 TProb, FProb, InvertCond); 2112 return; 2113 } 2114 2115 // Create TmpBB after CurBB. 2116 MachineFunction::iterator BBI(CurBB); 2117 MachineFunction &MF = DAG.getMachineFunction(); 2118 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2119 CurBB->getParent()->insert(++BBI, TmpBB); 2120 2121 if (Opc == Instruction::Or) { 2122 // Codegen X | Y as: 2123 // BB1: 2124 // jmp_if_X TBB 2125 // jmp TmpBB 2126 // TmpBB: 2127 // jmp_if_Y TBB 2128 // jmp FBB 2129 // 2130 2131 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2132 // The requirement is that 2133 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2134 // = TrueProb for original BB. 2135 // Assuming the original probabilities are A and B, one choice is to set 2136 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2137 // A/(1+B) and 2B/(1+B). This choice assumes that 2138 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2139 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2140 // TmpBB, but the math is more complicated. 2141 2142 auto NewTrueProb = TProb / 2; 2143 auto NewFalseProb = TProb / 2 + FProb; 2144 // Emit the LHS condition. 2145 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2146 NewTrueProb, NewFalseProb, InvertCond); 2147 2148 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2149 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2150 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2151 // Emit the RHS condition into TmpBB. 2152 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2153 Probs[0], Probs[1], InvertCond); 2154 } else { 2155 assert(Opc == Instruction::And && "Unknown merge op!"); 2156 // Codegen X & Y as: 2157 // BB1: 2158 // jmp_if_X TmpBB 2159 // jmp FBB 2160 // TmpBB: 2161 // jmp_if_Y TBB 2162 // jmp FBB 2163 // 2164 // This requires creation of TmpBB after CurBB. 2165 2166 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2167 // The requirement is that 2168 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2169 // = FalseProb for original BB. 2170 // Assuming the original probabilities are A and B, one choice is to set 2171 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2172 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2173 // TrueProb for BB1 * FalseProb for TmpBB. 2174 2175 auto NewTrueProb = TProb + FProb / 2; 2176 auto NewFalseProb = FProb / 2; 2177 // Emit the LHS condition. 2178 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2179 NewTrueProb, NewFalseProb, InvertCond); 2180 2181 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2182 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2183 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2184 // Emit the RHS condition into TmpBB. 2185 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2186 Probs[0], Probs[1], InvertCond); 2187 } 2188 } 2189 2190 /// If the set of cases should be emitted as a series of branches, return true. 2191 /// If we should emit this as a bunch of and/or'd together conditions, return 2192 /// false. 2193 bool 2194 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2195 if (Cases.size() != 2) return true; 2196 2197 // If this is two comparisons of the same values or'd or and'd together, they 2198 // will get folded into a single comparison, so don't emit two blocks. 2199 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2200 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2201 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2202 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2203 return false; 2204 } 2205 2206 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2207 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2208 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2209 Cases[0].CC == Cases[1].CC && 2210 isa<Constant>(Cases[0].CmpRHS) && 2211 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2212 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2213 return false; 2214 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2215 return false; 2216 } 2217 2218 return true; 2219 } 2220 2221 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2222 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2223 2224 // Update machine-CFG edges. 2225 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2226 2227 if (I.isUnconditional()) { 2228 // Update machine-CFG edges. 2229 BrMBB->addSuccessor(Succ0MBB); 2230 2231 // If this is not a fall-through branch or optimizations are switched off, 2232 // emit the branch. 2233 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2234 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2235 MVT::Other, getControlRoot(), 2236 DAG.getBasicBlock(Succ0MBB))); 2237 2238 return; 2239 } 2240 2241 // If this condition is one of the special cases we handle, do special stuff 2242 // now. 2243 const Value *CondVal = I.getCondition(); 2244 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2245 2246 // If this is a series of conditions that are or'd or and'd together, emit 2247 // this as a sequence of branches instead of setcc's with and/or operations. 2248 // As long as jumps are not expensive, this should improve performance. 2249 // For example, instead of something like: 2250 // cmp A, B 2251 // C = seteq 2252 // cmp D, E 2253 // F = setle 2254 // or C, F 2255 // jnz foo 2256 // Emit: 2257 // cmp A, B 2258 // je foo 2259 // cmp D, E 2260 // jle foo 2261 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2262 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2263 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2264 !I.getMetadata(LLVMContext::MD_unpredictable) && 2265 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2266 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2267 Opcode, 2268 getEdgeProbability(BrMBB, Succ0MBB), 2269 getEdgeProbability(BrMBB, Succ1MBB), 2270 /*InvertCond=*/false); 2271 // If the compares in later blocks need to use values not currently 2272 // exported from this block, export them now. This block should always 2273 // be the first entry. 2274 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2275 2276 // Allow some cases to be rejected. 2277 if (ShouldEmitAsBranches(SwitchCases)) { 2278 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2279 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2280 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2281 } 2282 2283 // Emit the branch for this block. 2284 visitSwitchCase(SwitchCases[0], BrMBB); 2285 SwitchCases.erase(SwitchCases.begin()); 2286 return; 2287 } 2288 2289 // Okay, we decided not to do this, remove any inserted MBB's and clear 2290 // SwitchCases. 2291 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2292 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2293 2294 SwitchCases.clear(); 2295 } 2296 } 2297 2298 // Create a CaseBlock record representing this branch. 2299 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2300 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2301 2302 // Use visitSwitchCase to actually insert the fast branch sequence for this 2303 // cond branch. 2304 visitSwitchCase(CB, BrMBB); 2305 } 2306 2307 /// visitSwitchCase - Emits the necessary code to represent a single node in 2308 /// the binary search tree resulting from lowering a switch instruction. 2309 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2310 MachineBasicBlock *SwitchBB) { 2311 SDValue Cond; 2312 SDValue CondLHS = getValue(CB.CmpLHS); 2313 SDLoc dl = CB.DL; 2314 2315 if (CB.CC == ISD::SETTRUE) { 2316 // Branch or fall through to TrueBB. 2317 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2318 SwitchBB->normalizeSuccProbs(); 2319 if (CB.TrueBB != NextBlock(SwitchBB)) { 2320 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2321 DAG.getBasicBlock(CB.TrueBB))); 2322 } 2323 return; 2324 } 2325 2326 auto &TLI = DAG.getTargetLoweringInfo(); 2327 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2328 2329 // Build the setcc now. 2330 if (!CB.CmpMHS) { 2331 // Fold "(X == true)" to X and "(X == false)" to !X to 2332 // handle common cases produced by branch lowering. 2333 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2334 CB.CC == ISD::SETEQ) 2335 Cond = CondLHS; 2336 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2337 CB.CC == ISD::SETEQ) { 2338 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2339 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2340 } else { 2341 SDValue CondRHS = getValue(CB.CmpRHS); 2342 2343 // If a pointer's DAG type is larger than its memory type then the DAG 2344 // values are zero-extended. This breaks signed comparisons so truncate 2345 // back to the underlying type before doing the compare. 2346 if (CondLHS.getValueType() != MemVT) { 2347 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2348 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2349 } 2350 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2351 } 2352 } else { 2353 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2354 2355 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2356 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2357 2358 SDValue CmpOp = getValue(CB.CmpMHS); 2359 EVT VT = CmpOp.getValueType(); 2360 2361 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2362 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2363 ISD::SETLE); 2364 } else { 2365 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2366 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2367 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2368 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2369 } 2370 } 2371 2372 // Update successor info 2373 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2374 // TrueBB and FalseBB are always different unless the incoming IR is 2375 // degenerate. This only happens when running llc on weird IR. 2376 if (CB.TrueBB != CB.FalseBB) 2377 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2378 SwitchBB->normalizeSuccProbs(); 2379 2380 // If the lhs block is the next block, invert the condition so that we can 2381 // fall through to the lhs instead of the rhs block. 2382 if (CB.TrueBB == NextBlock(SwitchBB)) { 2383 std::swap(CB.TrueBB, CB.FalseBB); 2384 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2385 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2386 } 2387 2388 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2389 MVT::Other, getControlRoot(), Cond, 2390 DAG.getBasicBlock(CB.TrueBB)); 2391 2392 // Insert the false branch. Do this even if it's a fall through branch, 2393 // this makes it easier to do DAG optimizations which require inverting 2394 // the branch condition. 2395 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2396 DAG.getBasicBlock(CB.FalseBB)); 2397 2398 DAG.setRoot(BrCond); 2399 } 2400 2401 /// visitJumpTable - Emit JumpTable node in the current MBB 2402 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2403 // Emit the code for the jump table 2404 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2405 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2406 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2407 JT.Reg, PTy); 2408 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2409 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2410 MVT::Other, Index.getValue(1), 2411 Table, Index); 2412 DAG.setRoot(BrJumpTable); 2413 } 2414 2415 /// visitJumpTableHeader - This function emits necessary code to produce index 2416 /// in the JumpTable from switch case. 2417 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2418 JumpTableHeader &JTH, 2419 MachineBasicBlock *SwitchBB) { 2420 SDLoc dl = getCurSDLoc(); 2421 2422 // Subtract the lowest switch case value from the value being switched on. 2423 SDValue SwitchOp = getValue(JTH.SValue); 2424 EVT VT = SwitchOp.getValueType(); 2425 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2426 DAG.getConstant(JTH.First, dl, VT)); 2427 2428 // The SDNode we just created, which holds the value being switched on minus 2429 // the smallest case value, needs to be copied to a virtual register so it 2430 // can be used as an index into the jump table in a subsequent basic block. 2431 // This value may be smaller or larger than the target's pointer type, and 2432 // therefore require extension or truncating. 2433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2434 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2435 2436 unsigned JumpTableReg = 2437 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2438 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2439 JumpTableReg, SwitchOp); 2440 JT.Reg = JumpTableReg; 2441 2442 if (!JTH.OmitRangeCheck) { 2443 // Emit the range check for the jump table, and branch to the default block 2444 // for the switch statement if the value being switched on exceeds the 2445 // largest case in the switch. 2446 SDValue CMP = DAG.getSetCC( 2447 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2448 Sub.getValueType()), 2449 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2450 2451 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2452 MVT::Other, CopyTo, CMP, 2453 DAG.getBasicBlock(JT.Default)); 2454 2455 // Avoid emitting unnecessary branches to the next block. 2456 if (JT.MBB != NextBlock(SwitchBB)) 2457 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2458 DAG.getBasicBlock(JT.MBB)); 2459 2460 DAG.setRoot(BrCond); 2461 } else { 2462 // Avoid emitting unnecessary branches to the next block. 2463 if (JT.MBB != NextBlock(SwitchBB)) 2464 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2465 DAG.getBasicBlock(JT.MBB))); 2466 else 2467 DAG.setRoot(CopyTo); 2468 } 2469 } 2470 2471 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2472 /// variable if there exists one. 2473 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2474 SDValue &Chain) { 2475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2476 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2477 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2478 MachineFunction &MF = DAG.getMachineFunction(); 2479 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2480 MachineSDNode *Node = 2481 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2482 if (Global) { 2483 MachinePointerInfo MPInfo(Global); 2484 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2485 MachineMemOperand::MODereferenceable; 2486 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2487 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2488 DAG.setNodeMemRefs(Node, {MemRef}); 2489 } 2490 if (PtrTy != PtrMemTy) 2491 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2492 return SDValue(Node, 0); 2493 } 2494 2495 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2496 /// tail spliced into a stack protector check success bb. 2497 /// 2498 /// For a high level explanation of how this fits into the stack protector 2499 /// generation see the comment on the declaration of class 2500 /// StackProtectorDescriptor. 2501 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2502 MachineBasicBlock *ParentBB) { 2503 2504 // First create the loads to the guard/stack slot for the comparison. 2505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2506 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2507 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2508 2509 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2510 int FI = MFI.getStackProtectorIndex(); 2511 2512 SDValue Guard; 2513 SDLoc dl = getCurSDLoc(); 2514 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2515 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2516 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2517 2518 // Generate code to load the content of the guard slot. 2519 SDValue GuardVal = DAG.getLoad( 2520 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2521 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2522 MachineMemOperand::MOVolatile); 2523 2524 if (TLI.useStackGuardXorFP()) 2525 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2526 2527 // Retrieve guard check function, nullptr if instrumentation is inlined. 2528 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2529 // The target provides a guard check function to validate the guard value. 2530 // Generate a call to that function with the content of the guard slot as 2531 // argument. 2532 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2533 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2534 2535 TargetLowering::ArgListTy Args; 2536 TargetLowering::ArgListEntry Entry; 2537 Entry.Node = GuardVal; 2538 Entry.Ty = FnTy->getParamType(0); 2539 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2540 Entry.IsInReg = true; 2541 Args.push_back(Entry); 2542 2543 TargetLowering::CallLoweringInfo CLI(DAG); 2544 CLI.setDebugLoc(getCurSDLoc()) 2545 .setChain(DAG.getEntryNode()) 2546 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2547 getValue(GuardCheckFn), std::move(Args)); 2548 2549 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2550 DAG.setRoot(Result.second); 2551 return; 2552 } 2553 2554 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2555 // Otherwise, emit a volatile load to retrieve the stack guard value. 2556 SDValue Chain = DAG.getEntryNode(); 2557 if (TLI.useLoadStackGuardNode()) { 2558 Guard = getLoadStackGuard(DAG, dl, Chain); 2559 } else { 2560 const Value *IRGuard = TLI.getSDagStackGuard(M); 2561 SDValue GuardPtr = getValue(IRGuard); 2562 2563 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2564 MachinePointerInfo(IRGuard, 0), Align, 2565 MachineMemOperand::MOVolatile); 2566 } 2567 2568 // Perform the comparison via a subtract/getsetcc. 2569 EVT VT = Guard.getValueType(); 2570 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2571 2572 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2573 *DAG.getContext(), 2574 Sub.getValueType()), 2575 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2576 2577 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2578 // branch to failure MBB. 2579 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2580 MVT::Other, GuardVal.getOperand(0), 2581 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2582 // Otherwise branch to success MBB. 2583 SDValue Br = DAG.getNode(ISD::BR, dl, 2584 MVT::Other, BrCond, 2585 DAG.getBasicBlock(SPD.getSuccessMBB())); 2586 2587 DAG.setRoot(Br); 2588 } 2589 2590 /// Codegen the failure basic block for a stack protector check. 2591 /// 2592 /// A failure stack protector machine basic block consists simply of a call to 2593 /// __stack_chk_fail(). 2594 /// 2595 /// For a high level explanation of how this fits into the stack protector 2596 /// generation see the comment on the declaration of class 2597 /// StackProtectorDescriptor. 2598 void 2599 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2601 SDValue Chain = 2602 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2603 None, false, getCurSDLoc(), false, false).second; 2604 // On PS4, the "return address" must still be within the calling function, 2605 // even if it's at the very end, so emit an explicit TRAP here. 2606 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2607 if (TM.getTargetTriple().isPS4CPU()) 2608 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2609 2610 DAG.setRoot(Chain); 2611 } 2612 2613 /// visitBitTestHeader - This function emits necessary code to produce value 2614 /// suitable for "bit tests" 2615 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2616 MachineBasicBlock *SwitchBB) { 2617 SDLoc dl = getCurSDLoc(); 2618 2619 // Subtract the minimum value 2620 SDValue SwitchOp = getValue(B.SValue); 2621 EVT VT = SwitchOp.getValueType(); 2622 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2623 DAG.getConstant(B.First, dl, VT)); 2624 2625 // Check range 2626 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2627 SDValue RangeCmp = DAG.getSetCC( 2628 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2629 Sub.getValueType()), 2630 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2631 2632 // Determine the type of the test operands. 2633 bool UsePtrType = false; 2634 if (!TLI.isTypeLegal(VT)) 2635 UsePtrType = true; 2636 else { 2637 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2638 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2639 // Switch table case range are encoded into series of masks. 2640 // Just use pointer type, it's guaranteed to fit. 2641 UsePtrType = true; 2642 break; 2643 } 2644 } 2645 if (UsePtrType) { 2646 VT = TLI.getPointerTy(DAG.getDataLayout()); 2647 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2648 } 2649 2650 B.RegVT = VT.getSimpleVT(); 2651 B.Reg = FuncInfo.CreateReg(B.RegVT); 2652 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2653 2654 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2655 2656 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2657 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2658 SwitchBB->normalizeSuccProbs(); 2659 2660 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2661 MVT::Other, CopyTo, RangeCmp, 2662 DAG.getBasicBlock(B.Default)); 2663 2664 // Avoid emitting unnecessary branches to the next block. 2665 if (MBB != NextBlock(SwitchBB)) 2666 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2667 DAG.getBasicBlock(MBB)); 2668 2669 DAG.setRoot(BrRange); 2670 } 2671 2672 /// visitBitTestCase - this function produces one "bit test" 2673 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2674 MachineBasicBlock* NextMBB, 2675 BranchProbability BranchProbToNext, 2676 unsigned Reg, 2677 BitTestCase &B, 2678 MachineBasicBlock *SwitchBB) { 2679 SDLoc dl = getCurSDLoc(); 2680 MVT VT = BB.RegVT; 2681 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2682 SDValue Cmp; 2683 unsigned PopCount = countPopulation(B.Mask); 2684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2685 if (PopCount == 1) { 2686 // Testing for a single bit; just compare the shift count with what it 2687 // would need to be to shift a 1 bit in that position. 2688 Cmp = DAG.getSetCC( 2689 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2690 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2691 ISD::SETEQ); 2692 } else if (PopCount == BB.Range) { 2693 // There is only one zero bit in the range, test for it directly. 2694 Cmp = DAG.getSetCC( 2695 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2696 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2697 ISD::SETNE); 2698 } else { 2699 // Make desired shift 2700 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2701 DAG.getConstant(1, dl, VT), ShiftOp); 2702 2703 // Emit bit tests and jumps 2704 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2705 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2706 Cmp = DAG.getSetCC( 2707 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2708 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2709 } 2710 2711 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2712 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2713 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2714 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2715 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2716 // one as they are relative probabilities (and thus work more like weights), 2717 // and hence we need to normalize them to let the sum of them become one. 2718 SwitchBB->normalizeSuccProbs(); 2719 2720 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2721 MVT::Other, getControlRoot(), 2722 Cmp, DAG.getBasicBlock(B.TargetBB)); 2723 2724 // Avoid emitting unnecessary branches to the next block. 2725 if (NextMBB != NextBlock(SwitchBB)) 2726 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2727 DAG.getBasicBlock(NextMBB)); 2728 2729 DAG.setRoot(BrAnd); 2730 } 2731 2732 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2733 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2734 2735 // Retrieve successors. Look through artificial IR level blocks like 2736 // catchswitch for successors. 2737 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2738 const BasicBlock *EHPadBB = I.getSuccessor(1); 2739 2740 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2741 // have to do anything here to lower funclet bundles. 2742 assert(!I.hasOperandBundlesOtherThan( 2743 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2744 "Cannot lower invokes with arbitrary operand bundles yet!"); 2745 2746 const Value *Callee(I.getCalledValue()); 2747 const Function *Fn = dyn_cast<Function>(Callee); 2748 if (isa<InlineAsm>(Callee)) 2749 visitInlineAsm(&I); 2750 else if (Fn && Fn->isIntrinsic()) { 2751 switch (Fn->getIntrinsicID()) { 2752 default: 2753 llvm_unreachable("Cannot invoke this intrinsic"); 2754 case Intrinsic::donothing: 2755 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2756 break; 2757 case Intrinsic::experimental_patchpoint_void: 2758 case Intrinsic::experimental_patchpoint_i64: 2759 visitPatchpoint(&I, EHPadBB); 2760 break; 2761 case Intrinsic::experimental_gc_statepoint: 2762 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2763 break; 2764 case Intrinsic::wasm_rethrow_in_catch: { 2765 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2766 // special because it can be invoked, so we manually lower it to a DAG 2767 // node here. 2768 SmallVector<SDValue, 8> Ops; 2769 Ops.push_back(getRoot()); // inchain 2770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2771 Ops.push_back( 2772 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2773 TLI.getPointerTy(DAG.getDataLayout()))); 2774 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2775 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2776 break; 2777 } 2778 } 2779 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2780 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2781 // Eventually we will support lowering the @llvm.experimental.deoptimize 2782 // intrinsic, and right now there are no plans to support other intrinsics 2783 // with deopt state. 2784 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2785 } else { 2786 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2787 } 2788 2789 // If the value of the invoke is used outside of its defining block, make it 2790 // available as a virtual register. 2791 // We already took care of the exported value for the statepoint instruction 2792 // during call to the LowerStatepoint. 2793 if (!isStatepoint(I)) { 2794 CopyToExportRegsIfNeeded(&I); 2795 } 2796 2797 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2798 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2799 BranchProbability EHPadBBProb = 2800 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2801 : BranchProbability::getZero(); 2802 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2803 2804 // Update successor info. 2805 addSuccessorWithProb(InvokeMBB, Return); 2806 for (auto &UnwindDest : UnwindDests) { 2807 UnwindDest.first->setIsEHPad(); 2808 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2809 } 2810 InvokeMBB->normalizeSuccProbs(); 2811 2812 // Drop into normal successor. 2813 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2814 DAG.getBasicBlock(Return))); 2815 } 2816 2817 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2818 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2819 2820 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2821 // have to do anything here to lower funclet bundles. 2822 assert(!I.hasOperandBundlesOtherThan( 2823 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2824 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2825 2826 assert(isa<InlineAsm>(I.getCalledValue()) && 2827 "Only know how to handle inlineasm callbr"); 2828 visitInlineAsm(&I); 2829 2830 // Retrieve successors. 2831 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2832 2833 // Update successor info. 2834 addSuccessorWithProb(CallBrMBB, Return); 2835 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2836 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2837 addSuccessorWithProb(CallBrMBB, Target); 2838 } 2839 CallBrMBB->normalizeSuccProbs(); 2840 2841 // Drop into default successor. 2842 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2843 MVT::Other, getControlRoot(), 2844 DAG.getBasicBlock(Return))); 2845 } 2846 2847 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2848 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2849 } 2850 2851 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2852 assert(FuncInfo.MBB->isEHPad() && 2853 "Call to landingpad not in landing pad!"); 2854 2855 // If there aren't registers to copy the values into (e.g., during SjLj 2856 // exceptions), then don't bother to create these DAG nodes. 2857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2858 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2859 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2860 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2861 return; 2862 2863 // If landingpad's return type is token type, we don't create DAG nodes 2864 // for its exception pointer and selector value. The extraction of exception 2865 // pointer or selector value from token type landingpads is not currently 2866 // supported. 2867 if (LP.getType()->isTokenTy()) 2868 return; 2869 2870 SmallVector<EVT, 2> ValueVTs; 2871 SDLoc dl = getCurSDLoc(); 2872 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2873 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2874 2875 // Get the two live-in registers as SDValues. The physregs have already been 2876 // copied into virtual registers. 2877 SDValue Ops[2]; 2878 if (FuncInfo.ExceptionPointerVirtReg) { 2879 Ops[0] = DAG.getZExtOrTrunc( 2880 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2881 FuncInfo.ExceptionPointerVirtReg, 2882 TLI.getPointerTy(DAG.getDataLayout())), 2883 dl, ValueVTs[0]); 2884 } else { 2885 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2886 } 2887 Ops[1] = DAG.getZExtOrTrunc( 2888 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2889 FuncInfo.ExceptionSelectorVirtReg, 2890 TLI.getPointerTy(DAG.getDataLayout())), 2891 dl, ValueVTs[1]); 2892 2893 // Merge into one. 2894 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2895 DAG.getVTList(ValueVTs), Ops); 2896 setValue(&LP, Res); 2897 } 2898 2899 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2900 #ifndef NDEBUG 2901 for (const CaseCluster &CC : Clusters) 2902 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2903 #endif 2904 2905 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2906 return a.Low->getValue().slt(b.Low->getValue()); 2907 }); 2908 2909 // Merge adjacent clusters with the same destination. 2910 const unsigned N = Clusters.size(); 2911 unsigned DstIndex = 0; 2912 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2913 CaseCluster &CC = Clusters[SrcIndex]; 2914 const ConstantInt *CaseVal = CC.Low; 2915 MachineBasicBlock *Succ = CC.MBB; 2916 2917 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2918 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2919 // If this case has the same successor and is a neighbour, merge it into 2920 // the previous cluster. 2921 Clusters[DstIndex - 1].High = CaseVal; 2922 Clusters[DstIndex - 1].Prob += CC.Prob; 2923 } else { 2924 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2925 sizeof(Clusters[SrcIndex])); 2926 } 2927 } 2928 Clusters.resize(DstIndex); 2929 } 2930 2931 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2932 MachineBasicBlock *Last) { 2933 // Update JTCases. 2934 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2935 if (JTCases[i].first.HeaderBB == First) 2936 JTCases[i].first.HeaderBB = Last; 2937 2938 // Update BitTestCases. 2939 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2940 if (BitTestCases[i].Parent == First) 2941 BitTestCases[i].Parent = Last; 2942 } 2943 2944 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2945 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2946 2947 // Update machine-CFG edges with unique successors. 2948 SmallSet<BasicBlock*, 32> Done; 2949 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2950 BasicBlock *BB = I.getSuccessor(i); 2951 bool Inserted = Done.insert(BB).second; 2952 if (!Inserted) 2953 continue; 2954 2955 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2956 addSuccessorWithProb(IndirectBrMBB, Succ); 2957 } 2958 IndirectBrMBB->normalizeSuccProbs(); 2959 2960 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2961 MVT::Other, getControlRoot(), 2962 getValue(I.getAddress()))); 2963 } 2964 2965 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2966 if (!DAG.getTarget().Options.TrapUnreachable) 2967 return; 2968 2969 // We may be able to ignore unreachable behind a noreturn call. 2970 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2971 const BasicBlock &BB = *I.getParent(); 2972 if (&I != &BB.front()) { 2973 BasicBlock::const_iterator PredI = 2974 std::prev(BasicBlock::const_iterator(&I)); 2975 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2976 if (Call->doesNotReturn()) 2977 return; 2978 } 2979 } 2980 } 2981 2982 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2983 } 2984 2985 void SelectionDAGBuilder::visitFSub(const User &I) { 2986 // -0.0 - X --> fneg 2987 Type *Ty = I.getType(); 2988 if (isa<Constant>(I.getOperand(0)) && 2989 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2990 SDValue Op2 = getValue(I.getOperand(1)); 2991 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2992 Op2.getValueType(), Op2)); 2993 return; 2994 } 2995 2996 visitBinary(I, ISD::FSUB); 2997 } 2998 2999 /// Checks if the given instruction performs a vector reduction, in which case 3000 /// we have the freedom to alter the elements in the result as long as the 3001 /// reduction of them stays unchanged. 3002 static bool isVectorReductionOp(const User *I) { 3003 const Instruction *Inst = dyn_cast<Instruction>(I); 3004 if (!Inst || !Inst->getType()->isVectorTy()) 3005 return false; 3006 3007 auto OpCode = Inst->getOpcode(); 3008 switch (OpCode) { 3009 case Instruction::Add: 3010 case Instruction::Mul: 3011 case Instruction::And: 3012 case Instruction::Or: 3013 case Instruction::Xor: 3014 break; 3015 case Instruction::FAdd: 3016 case Instruction::FMul: 3017 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3018 if (FPOp->getFastMathFlags().isFast()) 3019 break; 3020 LLVM_FALLTHROUGH; 3021 default: 3022 return false; 3023 } 3024 3025 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3026 // Ensure the reduction size is a power of 2. 3027 if (!isPowerOf2_32(ElemNum)) 3028 return false; 3029 3030 unsigned ElemNumToReduce = ElemNum; 3031 3032 // Do DFS search on the def-use chain from the given instruction. We only 3033 // allow four kinds of operations during the search until we reach the 3034 // instruction that extracts the first element from the vector: 3035 // 3036 // 1. The reduction operation of the same opcode as the given instruction. 3037 // 3038 // 2. PHI node. 3039 // 3040 // 3. ShuffleVector instruction together with a reduction operation that 3041 // does a partial reduction. 3042 // 3043 // 4. ExtractElement that extracts the first element from the vector, and we 3044 // stop searching the def-use chain here. 3045 // 3046 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3047 // from 1-3 to the stack to continue the DFS. The given instruction is not 3048 // a reduction operation if we meet any other instructions other than those 3049 // listed above. 3050 3051 SmallVector<const User *, 16> UsersToVisit{Inst}; 3052 SmallPtrSet<const User *, 16> Visited; 3053 bool ReduxExtracted = false; 3054 3055 while (!UsersToVisit.empty()) { 3056 auto User = UsersToVisit.back(); 3057 UsersToVisit.pop_back(); 3058 if (!Visited.insert(User).second) 3059 continue; 3060 3061 for (const auto &U : User->users()) { 3062 auto Inst = dyn_cast<Instruction>(U); 3063 if (!Inst) 3064 return false; 3065 3066 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3067 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3068 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3069 return false; 3070 UsersToVisit.push_back(U); 3071 } else if (const ShuffleVectorInst *ShufInst = 3072 dyn_cast<ShuffleVectorInst>(U)) { 3073 // Detect the following pattern: A ShuffleVector instruction together 3074 // with a reduction that do partial reduction on the first and second 3075 // ElemNumToReduce / 2 elements, and store the result in 3076 // ElemNumToReduce / 2 elements in another vector. 3077 3078 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3079 if (ResultElements < ElemNum) 3080 return false; 3081 3082 if (ElemNumToReduce == 1) 3083 return false; 3084 if (!isa<UndefValue>(U->getOperand(1))) 3085 return false; 3086 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3087 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3088 return false; 3089 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3090 if (ShufInst->getMaskValue(i) != -1) 3091 return false; 3092 3093 // There is only one user of this ShuffleVector instruction, which 3094 // must be a reduction operation. 3095 if (!U->hasOneUse()) 3096 return false; 3097 3098 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3099 if (!U2 || U2->getOpcode() != OpCode) 3100 return false; 3101 3102 // Check operands of the reduction operation. 3103 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3104 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3105 UsersToVisit.push_back(U2); 3106 ElemNumToReduce /= 2; 3107 } else 3108 return false; 3109 } else if (isa<ExtractElementInst>(U)) { 3110 // At this moment we should have reduced all elements in the vector. 3111 if (ElemNumToReduce != 1) 3112 return false; 3113 3114 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3115 if (!Val || !Val->isZero()) 3116 return false; 3117 3118 ReduxExtracted = true; 3119 } else 3120 return false; 3121 } 3122 } 3123 return ReduxExtracted; 3124 } 3125 3126 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3127 SDNodeFlags Flags; 3128 3129 SDValue Op = getValue(I.getOperand(0)); 3130 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3131 Op, Flags); 3132 setValue(&I, UnNodeValue); 3133 } 3134 3135 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3136 SDNodeFlags Flags; 3137 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3138 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3139 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3140 } 3141 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3142 Flags.setExact(ExactOp->isExact()); 3143 } 3144 if (isVectorReductionOp(&I)) { 3145 Flags.setVectorReduction(true); 3146 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3147 } 3148 3149 SDValue Op1 = getValue(I.getOperand(0)); 3150 SDValue Op2 = getValue(I.getOperand(1)); 3151 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3152 Op1, Op2, Flags); 3153 setValue(&I, BinNodeValue); 3154 } 3155 3156 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3157 SDValue Op1 = getValue(I.getOperand(0)); 3158 SDValue Op2 = getValue(I.getOperand(1)); 3159 3160 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3161 Op1.getValueType(), DAG.getDataLayout()); 3162 3163 // Coerce the shift amount to the right type if we can. 3164 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3165 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3166 unsigned Op2Size = Op2.getValueSizeInBits(); 3167 SDLoc DL = getCurSDLoc(); 3168 3169 // If the operand is smaller than the shift count type, promote it. 3170 if (ShiftSize > Op2Size) 3171 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3172 3173 // If the operand is larger than the shift count type but the shift 3174 // count type has enough bits to represent any shift value, truncate 3175 // it now. This is a common case and it exposes the truncate to 3176 // optimization early. 3177 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3178 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3179 // Otherwise we'll need to temporarily settle for some other convenient 3180 // type. Type legalization will make adjustments once the shiftee is split. 3181 else 3182 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3183 } 3184 3185 bool nuw = false; 3186 bool nsw = false; 3187 bool exact = false; 3188 3189 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3190 3191 if (const OverflowingBinaryOperator *OFBinOp = 3192 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3193 nuw = OFBinOp->hasNoUnsignedWrap(); 3194 nsw = OFBinOp->hasNoSignedWrap(); 3195 } 3196 if (const PossiblyExactOperator *ExactOp = 3197 dyn_cast<const PossiblyExactOperator>(&I)) 3198 exact = ExactOp->isExact(); 3199 } 3200 SDNodeFlags Flags; 3201 Flags.setExact(exact); 3202 Flags.setNoSignedWrap(nsw); 3203 Flags.setNoUnsignedWrap(nuw); 3204 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3205 Flags); 3206 setValue(&I, Res); 3207 } 3208 3209 void SelectionDAGBuilder::visitSDiv(const User &I) { 3210 SDValue Op1 = getValue(I.getOperand(0)); 3211 SDValue Op2 = getValue(I.getOperand(1)); 3212 3213 SDNodeFlags Flags; 3214 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3215 cast<PossiblyExactOperator>(&I)->isExact()); 3216 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3217 Op2, Flags)); 3218 } 3219 3220 void SelectionDAGBuilder::visitICmp(const User &I) { 3221 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3222 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3223 predicate = IC->getPredicate(); 3224 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3225 predicate = ICmpInst::Predicate(IC->getPredicate()); 3226 SDValue Op1 = getValue(I.getOperand(0)); 3227 SDValue Op2 = getValue(I.getOperand(1)); 3228 ISD::CondCode Opcode = getICmpCondCode(predicate); 3229 3230 auto &TLI = DAG.getTargetLoweringInfo(); 3231 EVT MemVT = 3232 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3233 3234 // If a pointer's DAG type is larger than its memory type then the DAG values 3235 // are zero-extended. This breaks signed comparisons so truncate back to the 3236 // underlying type before doing the compare. 3237 if (Op1.getValueType() != MemVT) { 3238 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3239 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3240 } 3241 3242 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3243 I.getType()); 3244 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3245 } 3246 3247 void SelectionDAGBuilder::visitFCmp(const User &I) { 3248 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3249 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3250 predicate = FC->getPredicate(); 3251 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3252 predicate = FCmpInst::Predicate(FC->getPredicate()); 3253 SDValue Op1 = getValue(I.getOperand(0)); 3254 SDValue Op2 = getValue(I.getOperand(1)); 3255 3256 ISD::CondCode Condition = getFCmpCondCode(predicate); 3257 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3258 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3259 Condition = getFCmpCodeWithoutNaN(Condition); 3260 3261 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3262 I.getType()); 3263 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3264 } 3265 3266 // Check if the condition of the select has one use or two users that are both 3267 // selects with the same condition. 3268 static bool hasOnlySelectUsers(const Value *Cond) { 3269 return llvm::all_of(Cond->users(), [](const Value *V) { 3270 return isa<SelectInst>(V); 3271 }); 3272 } 3273 3274 void SelectionDAGBuilder::visitSelect(const User &I) { 3275 SmallVector<EVT, 4> ValueVTs; 3276 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3277 ValueVTs); 3278 unsigned NumValues = ValueVTs.size(); 3279 if (NumValues == 0) return; 3280 3281 SmallVector<SDValue, 4> Values(NumValues); 3282 SDValue Cond = getValue(I.getOperand(0)); 3283 SDValue LHSVal = getValue(I.getOperand(1)); 3284 SDValue RHSVal = getValue(I.getOperand(2)); 3285 auto BaseOps = {Cond}; 3286 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3287 ISD::VSELECT : ISD::SELECT; 3288 3289 bool IsUnaryAbs = false; 3290 3291 // Min/max matching is only viable if all output VTs are the same. 3292 if (is_splat(ValueVTs)) { 3293 EVT VT = ValueVTs[0]; 3294 LLVMContext &Ctx = *DAG.getContext(); 3295 auto &TLI = DAG.getTargetLoweringInfo(); 3296 3297 // We care about the legality of the operation after it has been type 3298 // legalized. 3299 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3300 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3301 VT = TLI.getTypeToTransformTo(Ctx, VT); 3302 3303 // If the vselect is legal, assume we want to leave this as a vector setcc + 3304 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3305 // min/max is legal on the scalar type. 3306 bool UseScalarMinMax = VT.isVector() && 3307 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3308 3309 Value *LHS, *RHS; 3310 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3311 ISD::NodeType Opc = ISD::DELETED_NODE; 3312 switch (SPR.Flavor) { 3313 case SPF_UMAX: Opc = ISD::UMAX; break; 3314 case SPF_UMIN: Opc = ISD::UMIN; break; 3315 case SPF_SMAX: Opc = ISD::SMAX; break; 3316 case SPF_SMIN: Opc = ISD::SMIN; break; 3317 case SPF_FMINNUM: 3318 switch (SPR.NaNBehavior) { 3319 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3320 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3321 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3322 case SPNB_RETURNS_ANY: { 3323 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3324 Opc = ISD::FMINNUM; 3325 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3326 Opc = ISD::FMINIMUM; 3327 else if (UseScalarMinMax) 3328 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3329 ISD::FMINNUM : ISD::FMINIMUM; 3330 break; 3331 } 3332 } 3333 break; 3334 case SPF_FMAXNUM: 3335 switch (SPR.NaNBehavior) { 3336 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3337 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3338 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3339 case SPNB_RETURNS_ANY: 3340 3341 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3342 Opc = ISD::FMAXNUM; 3343 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3344 Opc = ISD::FMAXIMUM; 3345 else if (UseScalarMinMax) 3346 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3347 ISD::FMAXNUM : ISD::FMAXIMUM; 3348 break; 3349 } 3350 break; 3351 case SPF_ABS: 3352 IsUnaryAbs = true; 3353 Opc = ISD::ABS; 3354 break; 3355 case SPF_NABS: 3356 // TODO: we need to produce sub(0, abs(X)). 3357 default: break; 3358 } 3359 3360 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3361 (TLI.isOperationLegalOrCustom(Opc, VT) || 3362 (UseScalarMinMax && 3363 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3364 // If the underlying comparison instruction is used by any other 3365 // instruction, the consumed instructions won't be destroyed, so it is 3366 // not profitable to convert to a min/max. 3367 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3368 OpCode = Opc; 3369 LHSVal = getValue(LHS); 3370 RHSVal = getValue(RHS); 3371 BaseOps = {}; 3372 } 3373 3374 if (IsUnaryAbs) { 3375 OpCode = Opc; 3376 LHSVal = getValue(LHS); 3377 BaseOps = {}; 3378 } 3379 } 3380 3381 if (IsUnaryAbs) { 3382 for (unsigned i = 0; i != NumValues; ++i) { 3383 Values[i] = 3384 DAG.getNode(OpCode, getCurSDLoc(), 3385 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3386 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3387 } 3388 } else { 3389 for (unsigned i = 0; i != NumValues; ++i) { 3390 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3391 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3392 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3393 Values[i] = DAG.getNode( 3394 OpCode, getCurSDLoc(), 3395 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3396 } 3397 } 3398 3399 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3400 DAG.getVTList(ValueVTs), Values)); 3401 } 3402 3403 void SelectionDAGBuilder::visitTrunc(const User &I) { 3404 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3405 SDValue N = getValue(I.getOperand(0)); 3406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3407 I.getType()); 3408 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3409 } 3410 3411 void SelectionDAGBuilder::visitZExt(const User &I) { 3412 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3413 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3414 SDValue N = getValue(I.getOperand(0)); 3415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3416 I.getType()); 3417 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3418 } 3419 3420 void SelectionDAGBuilder::visitSExt(const User &I) { 3421 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3422 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3423 SDValue N = getValue(I.getOperand(0)); 3424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3425 I.getType()); 3426 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3427 } 3428 3429 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3430 // FPTrunc is never a no-op cast, no need to check 3431 SDValue N = getValue(I.getOperand(0)); 3432 SDLoc dl = getCurSDLoc(); 3433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3434 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3435 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3436 DAG.getTargetConstant( 3437 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3438 } 3439 3440 void SelectionDAGBuilder::visitFPExt(const User &I) { 3441 // FPExt is never a no-op cast, no need to check 3442 SDValue N = getValue(I.getOperand(0)); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3446 } 3447 3448 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3449 // FPToUI is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3457 // FPToSI is never a no-op cast, no need to check 3458 SDValue N = getValue(I.getOperand(0)); 3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3460 I.getType()); 3461 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3462 } 3463 3464 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3465 // UIToFP is never a no-op cast, no need to check 3466 SDValue N = getValue(I.getOperand(0)); 3467 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3468 I.getType()); 3469 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3470 } 3471 3472 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3473 // SIToFP is never a no-op cast, no need to check 3474 SDValue N = getValue(I.getOperand(0)); 3475 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3476 I.getType()); 3477 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3478 } 3479 3480 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3481 // What to do depends on the size of the integer and the size of the pointer. 3482 // We can either truncate, zero extend, or no-op, accordingly. 3483 SDValue N = getValue(I.getOperand(0)); 3484 auto &TLI = DAG.getTargetLoweringInfo(); 3485 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3486 I.getType()); 3487 EVT PtrMemVT = 3488 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3489 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3490 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3491 setValue(&I, N); 3492 } 3493 3494 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3495 // What to do depends on the size of the integer and the size of the pointer. 3496 // We can either truncate, zero extend, or no-op, accordingly. 3497 SDValue N = getValue(I.getOperand(0)); 3498 auto &TLI = DAG.getTargetLoweringInfo(); 3499 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3500 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3501 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3502 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3503 setValue(&I, N); 3504 } 3505 3506 void SelectionDAGBuilder::visitBitCast(const User &I) { 3507 SDValue N = getValue(I.getOperand(0)); 3508 SDLoc dl = getCurSDLoc(); 3509 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3510 I.getType()); 3511 3512 // BitCast assures us that source and destination are the same size so this is 3513 // either a BITCAST or a no-op. 3514 if (DestVT != N.getValueType()) 3515 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3516 DestVT, N)); // convert types. 3517 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3518 // might fold any kind of constant expression to an integer constant and that 3519 // is not what we are looking for. Only recognize a bitcast of a genuine 3520 // constant integer as an opaque constant. 3521 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3522 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3523 /*isOpaque*/true)); 3524 else 3525 setValue(&I, N); // noop cast. 3526 } 3527 3528 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3530 const Value *SV = I.getOperand(0); 3531 SDValue N = getValue(SV); 3532 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3533 3534 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3535 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3536 3537 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3538 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3539 3540 setValue(&I, N); 3541 } 3542 3543 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 SDValue InVec = getValue(I.getOperand(0)); 3546 SDValue InVal = getValue(I.getOperand(1)); 3547 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3548 TLI.getVectorIdxTy(DAG.getDataLayout())); 3549 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3550 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3551 InVec, InVal, InIdx)); 3552 } 3553 3554 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3556 SDValue InVec = getValue(I.getOperand(0)); 3557 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3558 TLI.getVectorIdxTy(DAG.getDataLayout())); 3559 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3560 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3561 InVec, InIdx)); 3562 } 3563 3564 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3565 SDValue Src1 = getValue(I.getOperand(0)); 3566 SDValue Src2 = getValue(I.getOperand(1)); 3567 SDLoc DL = getCurSDLoc(); 3568 3569 SmallVector<int, 8> Mask; 3570 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3571 unsigned MaskNumElts = Mask.size(); 3572 3573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3574 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3575 EVT SrcVT = Src1.getValueType(); 3576 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3577 3578 if (SrcNumElts == MaskNumElts) { 3579 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3580 return; 3581 } 3582 3583 // Normalize the shuffle vector since mask and vector length don't match. 3584 if (SrcNumElts < MaskNumElts) { 3585 // Mask is longer than the source vectors. We can use concatenate vector to 3586 // make the mask and vectors lengths match. 3587 3588 if (MaskNumElts % SrcNumElts == 0) { 3589 // Mask length is a multiple of the source vector length. 3590 // Check if the shuffle is some kind of concatenation of the input 3591 // vectors. 3592 unsigned NumConcat = MaskNumElts / SrcNumElts; 3593 bool IsConcat = true; 3594 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3595 for (unsigned i = 0; i != MaskNumElts; ++i) { 3596 int Idx = Mask[i]; 3597 if (Idx < 0) 3598 continue; 3599 // Ensure the indices in each SrcVT sized piece are sequential and that 3600 // the same source is used for the whole piece. 3601 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3602 (ConcatSrcs[i / SrcNumElts] >= 0 && 3603 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3604 IsConcat = false; 3605 break; 3606 } 3607 // Remember which source this index came from. 3608 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3609 } 3610 3611 // The shuffle is concatenating multiple vectors together. Just emit 3612 // a CONCAT_VECTORS operation. 3613 if (IsConcat) { 3614 SmallVector<SDValue, 8> ConcatOps; 3615 for (auto Src : ConcatSrcs) { 3616 if (Src < 0) 3617 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3618 else if (Src == 0) 3619 ConcatOps.push_back(Src1); 3620 else 3621 ConcatOps.push_back(Src2); 3622 } 3623 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3624 return; 3625 } 3626 } 3627 3628 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3629 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3630 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3631 PaddedMaskNumElts); 3632 3633 // Pad both vectors with undefs to make them the same length as the mask. 3634 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3635 3636 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3637 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3638 MOps1[0] = Src1; 3639 MOps2[0] = Src2; 3640 3641 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3642 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3643 3644 // Readjust mask for new input vector length. 3645 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3646 for (unsigned i = 0; i != MaskNumElts; ++i) { 3647 int Idx = Mask[i]; 3648 if (Idx >= (int)SrcNumElts) 3649 Idx -= SrcNumElts - PaddedMaskNumElts; 3650 MappedOps[i] = Idx; 3651 } 3652 3653 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3654 3655 // If the concatenated vector was padded, extract a subvector with the 3656 // correct number of elements. 3657 if (MaskNumElts != PaddedMaskNumElts) 3658 Result = DAG.getNode( 3659 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3660 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3661 3662 setValue(&I, Result); 3663 return; 3664 } 3665 3666 if (SrcNumElts > MaskNumElts) { 3667 // Analyze the access pattern of the vector to see if we can extract 3668 // two subvectors and do the shuffle. 3669 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3670 bool CanExtract = true; 3671 for (int Idx : Mask) { 3672 unsigned Input = 0; 3673 if (Idx < 0) 3674 continue; 3675 3676 if (Idx >= (int)SrcNumElts) { 3677 Input = 1; 3678 Idx -= SrcNumElts; 3679 } 3680 3681 // If all the indices come from the same MaskNumElts sized portion of 3682 // the sources we can use extract. Also make sure the extract wouldn't 3683 // extract past the end of the source. 3684 int NewStartIdx = alignDown(Idx, MaskNumElts); 3685 if (NewStartIdx + MaskNumElts > SrcNumElts || 3686 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3687 CanExtract = false; 3688 // Make sure we always update StartIdx as we use it to track if all 3689 // elements are undef. 3690 StartIdx[Input] = NewStartIdx; 3691 } 3692 3693 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3694 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3695 return; 3696 } 3697 if (CanExtract) { 3698 // Extract appropriate subvector and generate a vector shuffle 3699 for (unsigned Input = 0; Input < 2; ++Input) { 3700 SDValue &Src = Input == 0 ? Src1 : Src2; 3701 if (StartIdx[Input] < 0) 3702 Src = DAG.getUNDEF(VT); 3703 else { 3704 Src = DAG.getNode( 3705 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3706 DAG.getConstant(StartIdx[Input], DL, 3707 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3708 } 3709 } 3710 3711 // Calculate new mask. 3712 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3713 for (int &Idx : MappedOps) { 3714 if (Idx >= (int)SrcNumElts) 3715 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3716 else if (Idx >= 0) 3717 Idx -= StartIdx[0]; 3718 } 3719 3720 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3721 return; 3722 } 3723 } 3724 3725 // We can't use either concat vectors or extract subvectors so fall back to 3726 // replacing the shuffle with extract and build vector. 3727 // to insert and build vector. 3728 EVT EltVT = VT.getVectorElementType(); 3729 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3730 SmallVector<SDValue,8> Ops; 3731 for (int Idx : Mask) { 3732 SDValue Res; 3733 3734 if (Idx < 0) { 3735 Res = DAG.getUNDEF(EltVT); 3736 } else { 3737 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3738 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3739 3740 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3741 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3742 } 3743 3744 Ops.push_back(Res); 3745 } 3746 3747 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3748 } 3749 3750 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3751 ArrayRef<unsigned> Indices; 3752 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3753 Indices = IV->getIndices(); 3754 else 3755 Indices = cast<ConstantExpr>(&I)->getIndices(); 3756 3757 const Value *Op0 = I.getOperand(0); 3758 const Value *Op1 = I.getOperand(1); 3759 Type *AggTy = I.getType(); 3760 Type *ValTy = Op1->getType(); 3761 bool IntoUndef = isa<UndefValue>(Op0); 3762 bool FromUndef = isa<UndefValue>(Op1); 3763 3764 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3765 3766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3767 SmallVector<EVT, 4> AggValueVTs; 3768 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3769 SmallVector<EVT, 4> ValValueVTs; 3770 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3771 3772 unsigned NumAggValues = AggValueVTs.size(); 3773 unsigned NumValValues = ValValueVTs.size(); 3774 SmallVector<SDValue, 4> Values(NumAggValues); 3775 3776 // Ignore an insertvalue that produces an empty object 3777 if (!NumAggValues) { 3778 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3779 return; 3780 } 3781 3782 SDValue Agg = getValue(Op0); 3783 unsigned i = 0; 3784 // Copy the beginning value(s) from the original aggregate. 3785 for (; i != LinearIndex; ++i) 3786 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3787 SDValue(Agg.getNode(), Agg.getResNo() + i); 3788 // Copy values from the inserted value(s). 3789 if (NumValValues) { 3790 SDValue Val = getValue(Op1); 3791 for (; i != LinearIndex + NumValValues; ++i) 3792 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3793 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3794 } 3795 // Copy remaining value(s) from the original aggregate. 3796 for (; i != NumAggValues; ++i) 3797 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3798 SDValue(Agg.getNode(), Agg.getResNo() + i); 3799 3800 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3801 DAG.getVTList(AggValueVTs), Values)); 3802 } 3803 3804 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3805 ArrayRef<unsigned> Indices; 3806 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3807 Indices = EV->getIndices(); 3808 else 3809 Indices = cast<ConstantExpr>(&I)->getIndices(); 3810 3811 const Value *Op0 = I.getOperand(0); 3812 Type *AggTy = Op0->getType(); 3813 Type *ValTy = I.getType(); 3814 bool OutOfUndef = isa<UndefValue>(Op0); 3815 3816 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3817 3818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3819 SmallVector<EVT, 4> ValValueVTs; 3820 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3821 3822 unsigned NumValValues = ValValueVTs.size(); 3823 3824 // Ignore a extractvalue that produces an empty object 3825 if (!NumValValues) { 3826 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3827 return; 3828 } 3829 3830 SmallVector<SDValue, 4> Values(NumValValues); 3831 3832 SDValue Agg = getValue(Op0); 3833 // Copy out the selected value(s). 3834 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3835 Values[i - LinearIndex] = 3836 OutOfUndef ? 3837 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3838 SDValue(Agg.getNode(), Agg.getResNo() + i); 3839 3840 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3841 DAG.getVTList(ValValueVTs), Values)); 3842 } 3843 3844 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3845 Value *Op0 = I.getOperand(0); 3846 // Note that the pointer operand may be a vector of pointers. Take the scalar 3847 // element which holds a pointer. 3848 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3849 SDValue N = getValue(Op0); 3850 SDLoc dl = getCurSDLoc(); 3851 auto &TLI = DAG.getTargetLoweringInfo(); 3852 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3853 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3854 3855 // Normalize Vector GEP - all scalar operands should be converted to the 3856 // splat vector. 3857 unsigned VectorWidth = I.getType()->isVectorTy() ? 3858 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3859 3860 if (VectorWidth && !N.getValueType().isVector()) { 3861 LLVMContext &Context = *DAG.getContext(); 3862 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3863 N = DAG.getSplatBuildVector(VT, dl, N); 3864 } 3865 3866 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3867 GTI != E; ++GTI) { 3868 const Value *Idx = GTI.getOperand(); 3869 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3870 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3871 if (Field) { 3872 // N = N + Offset 3873 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3882 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3883 } 3884 } else { 3885 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3886 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3887 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3888 3889 // If this is a scalar constant or a splat vector of constants, 3890 // handle it quickly. 3891 const auto *CI = dyn_cast<ConstantInt>(Idx); 3892 if (!CI && isa<ConstantDataVector>(Idx) && 3893 cast<ConstantDataVector>(Idx)->getSplatValue()) 3894 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3895 3896 if (CI) { 3897 if (CI->isZero()) 3898 continue; 3899 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3900 LLVMContext &Context = *DAG.getContext(); 3901 SDValue OffsVal = VectorWidth ? 3902 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3903 DAG.getConstant(Offs, dl, IdxTy); 3904 3905 // In an inbouds GEP with an offset that is nonnegative even when 3906 // interpreted as signed, assume there is no unsigned overflow. 3907 SDNodeFlags Flags; 3908 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3909 Flags.setNoUnsignedWrap(true); 3910 3911 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3912 3913 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3914 continue; 3915 } 3916 3917 // N = N + Idx * ElementSize; 3918 SDValue IdxN = getValue(Idx); 3919 3920 if (!IdxN.getValueType().isVector() && VectorWidth) { 3921 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3922 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3923 } 3924 3925 // If the index is smaller or larger than intptr_t, truncate or extend 3926 // it. 3927 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3928 3929 // If this is a multiply by a power of two, turn it into a shl 3930 // immediately. This is a very common case. 3931 if (ElementSize != 1) { 3932 if (ElementSize.isPowerOf2()) { 3933 unsigned Amt = ElementSize.logBase2(); 3934 IdxN = DAG.getNode(ISD::SHL, dl, 3935 N.getValueType(), IdxN, 3936 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3937 } else { 3938 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3939 IdxN.getValueType()); 3940 IdxN = DAG.getNode(ISD::MUL, dl, 3941 N.getValueType(), IdxN, Scale); 3942 } 3943 } 3944 3945 N = DAG.getNode(ISD::ADD, dl, 3946 N.getValueType(), N, IdxN); 3947 } 3948 } 3949 3950 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3951 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3952 3953 setValue(&I, N); 3954 } 3955 3956 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3957 // If this is a fixed sized alloca in the entry block of the function, 3958 // allocate it statically on the stack. 3959 if (FuncInfo.StaticAllocaMap.count(&I)) 3960 return; // getValue will auto-populate this. 3961 3962 SDLoc dl = getCurSDLoc(); 3963 Type *Ty = I.getAllocatedType(); 3964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3965 auto &DL = DAG.getDataLayout(); 3966 uint64_t TySize = DL.getTypeAllocSize(Ty); 3967 unsigned Align = 3968 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3969 3970 SDValue AllocSize = getValue(I.getArraySize()); 3971 3972 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3973 if (AllocSize.getValueType() != IntPtr) 3974 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3975 3976 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3977 AllocSize, 3978 DAG.getConstant(TySize, dl, IntPtr)); 3979 3980 // Handle alignment. If the requested alignment is less than or equal to 3981 // the stack alignment, ignore it. If the size is greater than or equal to 3982 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3983 unsigned StackAlign = 3984 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3985 if (Align <= StackAlign) 3986 Align = 0; 3987 3988 // Round the size of the allocation up to the stack alignment size 3989 // by add SA-1 to the size. This doesn't overflow because we're computing 3990 // an address inside an alloca. 3991 SDNodeFlags Flags; 3992 Flags.setNoUnsignedWrap(true); 3993 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3994 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3995 3996 // Mask out the low bits for alignment purposes. 3997 AllocSize = 3998 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3999 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4000 4001 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4002 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4003 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4004 setValue(&I, DSA); 4005 DAG.setRoot(DSA.getValue(1)); 4006 4007 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4008 } 4009 4010 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4011 if (I.isAtomic()) 4012 return visitAtomicLoad(I); 4013 4014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4015 const Value *SV = I.getOperand(0); 4016 if (TLI.supportSwiftError()) { 4017 // Swifterror values can come from either a function parameter with 4018 // swifterror attribute or an alloca with swifterror attribute. 4019 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4020 if (Arg->hasSwiftErrorAttr()) 4021 return visitLoadFromSwiftError(I); 4022 } 4023 4024 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4025 if (Alloca->isSwiftError()) 4026 return visitLoadFromSwiftError(I); 4027 } 4028 } 4029 4030 SDValue Ptr = getValue(SV); 4031 4032 Type *Ty = I.getType(); 4033 4034 bool isVolatile = I.isVolatile(); 4035 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4036 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4037 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 4038 unsigned Alignment = I.getAlignment(); 4039 4040 AAMDNodes AAInfo; 4041 I.getAAMetadata(AAInfo); 4042 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4043 4044 SmallVector<EVT, 4> ValueVTs, MemVTs; 4045 SmallVector<uint64_t, 4> Offsets; 4046 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4047 unsigned NumValues = ValueVTs.size(); 4048 if (NumValues == 0) 4049 return; 4050 4051 SDValue Root; 4052 bool ConstantMemory = false; 4053 if (isVolatile || NumValues > MaxParallelChains) 4054 // Serialize volatile loads with other side effects. 4055 Root = getRoot(); 4056 else if (AA && 4057 AA->pointsToConstantMemory(MemoryLocation( 4058 SV, 4059 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4060 AAInfo))) { 4061 // Do not serialize (non-volatile) loads of constant memory with anything. 4062 Root = DAG.getEntryNode(); 4063 ConstantMemory = true; 4064 } else { 4065 // Do not serialize non-volatile loads against each other. 4066 Root = DAG.getRoot(); 4067 } 4068 4069 SDLoc dl = getCurSDLoc(); 4070 4071 if (isVolatile) 4072 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4073 4074 // An aggregate load cannot wrap around the address space, so offsets to its 4075 // parts don't wrap either. 4076 SDNodeFlags Flags; 4077 Flags.setNoUnsignedWrap(true); 4078 4079 SmallVector<SDValue, 4> Values(NumValues); 4080 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4081 EVT PtrVT = Ptr.getValueType(); 4082 unsigned ChainI = 0; 4083 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4084 // Serializing loads here may result in excessive register pressure, and 4085 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4086 // could recover a bit by hoisting nodes upward in the chain by recognizing 4087 // they are side-effect free or do not alias. The optimizer should really 4088 // avoid this case by converting large object/array copies to llvm.memcpy 4089 // (MaxParallelChains should always remain as failsafe). 4090 if (ChainI == MaxParallelChains) { 4091 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4092 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4093 makeArrayRef(Chains.data(), ChainI)); 4094 Root = Chain; 4095 ChainI = 0; 4096 } 4097 SDValue A = DAG.getNode(ISD::ADD, dl, 4098 PtrVT, Ptr, 4099 DAG.getConstant(Offsets[i], dl, PtrVT), 4100 Flags); 4101 auto MMOFlags = MachineMemOperand::MONone; 4102 if (isVolatile) 4103 MMOFlags |= MachineMemOperand::MOVolatile; 4104 if (isNonTemporal) 4105 MMOFlags |= MachineMemOperand::MONonTemporal; 4106 if (isInvariant) 4107 MMOFlags |= MachineMemOperand::MOInvariant; 4108 if (isDereferenceable) 4109 MMOFlags |= MachineMemOperand::MODereferenceable; 4110 MMOFlags |= TLI.getMMOFlags(I); 4111 4112 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4113 MachinePointerInfo(SV, Offsets[i]), Alignment, 4114 MMOFlags, AAInfo, Ranges); 4115 Chains[ChainI] = L.getValue(1); 4116 4117 if (MemVTs[i] != ValueVTs[i]) 4118 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4119 4120 Values[i] = L; 4121 } 4122 4123 if (!ConstantMemory) { 4124 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4125 makeArrayRef(Chains.data(), ChainI)); 4126 if (isVolatile) 4127 DAG.setRoot(Chain); 4128 else 4129 PendingLoads.push_back(Chain); 4130 } 4131 4132 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4133 DAG.getVTList(ValueVTs), Values)); 4134 } 4135 4136 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4137 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4138 "call visitStoreToSwiftError when backend supports swifterror"); 4139 4140 SmallVector<EVT, 4> ValueVTs; 4141 SmallVector<uint64_t, 4> Offsets; 4142 const Value *SrcV = I.getOperand(0); 4143 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4144 SrcV->getType(), ValueVTs, &Offsets); 4145 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4146 "expect a single EVT for swifterror"); 4147 4148 SDValue Src = getValue(SrcV); 4149 // Create a virtual register, then update the virtual register. 4150 unsigned VReg = 4151 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4152 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4153 // Chain can be getRoot or getControlRoot. 4154 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4155 SDValue(Src.getNode(), Src.getResNo())); 4156 DAG.setRoot(CopyNode); 4157 } 4158 4159 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4160 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4161 "call visitLoadFromSwiftError when backend supports swifterror"); 4162 4163 assert(!I.isVolatile() && 4164 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4165 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4166 "Support volatile, non temporal, invariant for load_from_swift_error"); 4167 4168 const Value *SV = I.getOperand(0); 4169 Type *Ty = I.getType(); 4170 AAMDNodes AAInfo; 4171 I.getAAMetadata(AAInfo); 4172 assert( 4173 (!AA || 4174 !AA->pointsToConstantMemory(MemoryLocation( 4175 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4176 AAInfo))) && 4177 "load_from_swift_error should not be constant memory"); 4178 4179 SmallVector<EVT, 4> ValueVTs; 4180 SmallVector<uint64_t, 4> Offsets; 4181 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4182 ValueVTs, &Offsets); 4183 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4184 "expect a single EVT for swifterror"); 4185 4186 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4187 SDValue L = DAG.getCopyFromReg( 4188 getRoot(), getCurSDLoc(), 4189 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4190 4191 setValue(&I, L); 4192 } 4193 4194 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4195 if (I.isAtomic()) 4196 return visitAtomicStore(I); 4197 4198 const Value *SrcV = I.getOperand(0); 4199 const Value *PtrV = I.getOperand(1); 4200 4201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4202 if (TLI.supportSwiftError()) { 4203 // Swifterror values can come from either a function parameter with 4204 // swifterror attribute or an alloca with swifterror attribute. 4205 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4206 if (Arg->hasSwiftErrorAttr()) 4207 return visitStoreToSwiftError(I); 4208 } 4209 4210 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4211 if (Alloca->isSwiftError()) 4212 return visitStoreToSwiftError(I); 4213 } 4214 } 4215 4216 SmallVector<EVT, 4> ValueVTs, MemVTs; 4217 SmallVector<uint64_t, 4> Offsets; 4218 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4219 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4220 unsigned NumValues = ValueVTs.size(); 4221 if (NumValues == 0) 4222 return; 4223 4224 // Get the lowered operands. Note that we do this after 4225 // checking if NumResults is zero, because with zero results 4226 // the operands won't have values in the map. 4227 SDValue Src = getValue(SrcV); 4228 SDValue Ptr = getValue(PtrV); 4229 4230 SDValue Root = getRoot(); 4231 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4232 SDLoc dl = getCurSDLoc(); 4233 EVT PtrVT = Ptr.getValueType(); 4234 unsigned Alignment = I.getAlignment(); 4235 AAMDNodes AAInfo; 4236 I.getAAMetadata(AAInfo); 4237 4238 auto MMOFlags = MachineMemOperand::MONone; 4239 if (I.isVolatile()) 4240 MMOFlags |= MachineMemOperand::MOVolatile; 4241 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4242 MMOFlags |= MachineMemOperand::MONonTemporal; 4243 MMOFlags |= TLI.getMMOFlags(I); 4244 4245 // An aggregate load cannot wrap around the address space, so offsets to its 4246 // parts don't wrap either. 4247 SDNodeFlags Flags; 4248 Flags.setNoUnsignedWrap(true); 4249 4250 unsigned ChainI = 0; 4251 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4252 // See visitLoad comments. 4253 if (ChainI == MaxParallelChains) { 4254 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4255 makeArrayRef(Chains.data(), ChainI)); 4256 Root = Chain; 4257 ChainI = 0; 4258 } 4259 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4260 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4261 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4262 if (MemVTs[i] != ValueVTs[i]) 4263 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4264 SDValue St = 4265 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4266 Alignment, MMOFlags, AAInfo); 4267 Chains[ChainI] = St; 4268 } 4269 4270 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4271 makeArrayRef(Chains.data(), ChainI)); 4272 DAG.setRoot(StoreNode); 4273 } 4274 4275 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4276 bool IsCompressing) { 4277 SDLoc sdl = getCurSDLoc(); 4278 4279 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4280 unsigned& Alignment) { 4281 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4282 Src0 = I.getArgOperand(0); 4283 Ptr = I.getArgOperand(1); 4284 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4285 Mask = I.getArgOperand(3); 4286 }; 4287 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4288 unsigned& Alignment) { 4289 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4290 Src0 = I.getArgOperand(0); 4291 Ptr = I.getArgOperand(1); 4292 Mask = I.getArgOperand(2); 4293 Alignment = 0; 4294 }; 4295 4296 Value *PtrOperand, *MaskOperand, *Src0Operand; 4297 unsigned Alignment; 4298 if (IsCompressing) 4299 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4300 else 4301 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4302 4303 SDValue Ptr = getValue(PtrOperand); 4304 SDValue Src0 = getValue(Src0Operand); 4305 SDValue Mask = getValue(MaskOperand); 4306 4307 EVT VT = Src0.getValueType(); 4308 if (!Alignment) 4309 Alignment = DAG.getEVTAlignment(VT); 4310 4311 AAMDNodes AAInfo; 4312 I.getAAMetadata(AAInfo); 4313 4314 MachineMemOperand *MMO = 4315 DAG.getMachineFunction(). 4316 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4317 MachineMemOperand::MOStore, VT.getStoreSize(), 4318 Alignment, AAInfo); 4319 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4320 MMO, false /* Truncating */, 4321 IsCompressing); 4322 DAG.setRoot(StoreNode); 4323 setValue(&I, StoreNode); 4324 } 4325 4326 // Get a uniform base for the Gather/Scatter intrinsic. 4327 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4328 // We try to represent it as a base pointer + vector of indices. 4329 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4330 // The first operand of the GEP may be a single pointer or a vector of pointers 4331 // Example: 4332 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4333 // or 4334 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4335 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4336 // 4337 // When the first GEP operand is a single pointer - it is the uniform base we 4338 // are looking for. If first operand of the GEP is a splat vector - we 4339 // extract the splat value and use it as a uniform base. 4340 // In all other cases the function returns 'false'. 4341 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4342 SDValue &Scale, SelectionDAGBuilder* SDB) { 4343 SelectionDAG& DAG = SDB->DAG; 4344 LLVMContext &Context = *DAG.getContext(); 4345 4346 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4347 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4348 if (!GEP) 4349 return false; 4350 4351 const Value *GEPPtr = GEP->getPointerOperand(); 4352 if (!GEPPtr->getType()->isVectorTy()) 4353 Ptr = GEPPtr; 4354 else if (!(Ptr = getSplatValue(GEPPtr))) 4355 return false; 4356 4357 unsigned FinalIndex = GEP->getNumOperands() - 1; 4358 Value *IndexVal = GEP->getOperand(FinalIndex); 4359 4360 // Ensure all the other indices are 0. 4361 for (unsigned i = 1; i < FinalIndex; ++i) { 4362 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4363 if (!C || !C->isZero()) 4364 return false; 4365 } 4366 4367 // The operands of the GEP may be defined in another basic block. 4368 // In this case we'll not find nodes for the operands. 4369 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4370 return false; 4371 4372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4373 const DataLayout &DL = DAG.getDataLayout(); 4374 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4375 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4376 Base = SDB->getValue(Ptr); 4377 Index = SDB->getValue(IndexVal); 4378 4379 if (!Index.getValueType().isVector()) { 4380 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4381 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4382 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4383 } 4384 return true; 4385 } 4386 4387 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4388 SDLoc sdl = getCurSDLoc(); 4389 4390 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4391 const Value *Ptr = I.getArgOperand(1); 4392 SDValue Src0 = getValue(I.getArgOperand(0)); 4393 SDValue Mask = getValue(I.getArgOperand(3)); 4394 EVT VT = Src0.getValueType(); 4395 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4396 if (!Alignment) 4397 Alignment = DAG.getEVTAlignment(VT); 4398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4399 4400 AAMDNodes AAInfo; 4401 I.getAAMetadata(AAInfo); 4402 4403 SDValue Base; 4404 SDValue Index; 4405 SDValue Scale; 4406 const Value *BasePtr = Ptr; 4407 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4408 4409 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4410 MachineMemOperand *MMO = DAG.getMachineFunction(). 4411 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4412 MachineMemOperand::MOStore, VT.getStoreSize(), 4413 Alignment, AAInfo); 4414 if (!UniformBase) { 4415 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4416 Index = getValue(Ptr); 4417 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4418 } 4419 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4420 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4421 Ops, MMO); 4422 DAG.setRoot(Scatter); 4423 setValue(&I, Scatter); 4424 } 4425 4426 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4427 SDLoc sdl = getCurSDLoc(); 4428 4429 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4430 unsigned& Alignment) { 4431 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4432 Ptr = I.getArgOperand(0); 4433 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4434 Mask = I.getArgOperand(2); 4435 Src0 = I.getArgOperand(3); 4436 }; 4437 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4438 unsigned& Alignment) { 4439 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4440 Ptr = I.getArgOperand(0); 4441 Alignment = 0; 4442 Mask = I.getArgOperand(1); 4443 Src0 = I.getArgOperand(2); 4444 }; 4445 4446 Value *PtrOperand, *MaskOperand, *Src0Operand; 4447 unsigned Alignment; 4448 if (IsExpanding) 4449 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4450 else 4451 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4452 4453 SDValue Ptr = getValue(PtrOperand); 4454 SDValue Src0 = getValue(Src0Operand); 4455 SDValue Mask = getValue(MaskOperand); 4456 4457 EVT VT = Src0.getValueType(); 4458 if (!Alignment) 4459 Alignment = DAG.getEVTAlignment(VT); 4460 4461 AAMDNodes AAInfo; 4462 I.getAAMetadata(AAInfo); 4463 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4464 4465 // Do not serialize masked loads of constant memory with anything. 4466 bool AddToChain = 4467 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4468 PtrOperand, 4469 LocationSize::precise( 4470 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4471 AAInfo)); 4472 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4473 4474 MachineMemOperand *MMO = 4475 DAG.getMachineFunction(). 4476 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4477 MachineMemOperand::MOLoad, VT.getStoreSize(), 4478 Alignment, AAInfo, Ranges); 4479 4480 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4481 ISD::NON_EXTLOAD, IsExpanding); 4482 if (AddToChain) 4483 PendingLoads.push_back(Load.getValue(1)); 4484 setValue(&I, Load); 4485 } 4486 4487 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4488 SDLoc sdl = getCurSDLoc(); 4489 4490 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4491 const Value *Ptr = I.getArgOperand(0); 4492 SDValue Src0 = getValue(I.getArgOperand(3)); 4493 SDValue Mask = getValue(I.getArgOperand(2)); 4494 4495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4496 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4497 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4498 if (!Alignment) 4499 Alignment = DAG.getEVTAlignment(VT); 4500 4501 AAMDNodes AAInfo; 4502 I.getAAMetadata(AAInfo); 4503 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4504 4505 SDValue Root = DAG.getRoot(); 4506 SDValue Base; 4507 SDValue Index; 4508 SDValue Scale; 4509 const Value *BasePtr = Ptr; 4510 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4511 bool ConstantMemory = false; 4512 if (UniformBase && AA && 4513 AA->pointsToConstantMemory( 4514 MemoryLocation(BasePtr, 4515 LocationSize::precise( 4516 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4517 AAInfo))) { 4518 // Do not serialize (non-volatile) loads of constant memory with anything. 4519 Root = DAG.getEntryNode(); 4520 ConstantMemory = true; 4521 } 4522 4523 MachineMemOperand *MMO = 4524 DAG.getMachineFunction(). 4525 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4526 MachineMemOperand::MOLoad, VT.getStoreSize(), 4527 Alignment, AAInfo, Ranges); 4528 4529 if (!UniformBase) { 4530 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4531 Index = getValue(Ptr); 4532 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4533 } 4534 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4535 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4536 Ops, MMO); 4537 4538 SDValue OutChain = Gather.getValue(1); 4539 if (!ConstantMemory) 4540 PendingLoads.push_back(OutChain); 4541 setValue(&I, Gather); 4542 } 4543 4544 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4545 SDLoc dl = getCurSDLoc(); 4546 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4547 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4548 SyncScope::ID SSID = I.getSyncScopeID(); 4549 4550 SDValue InChain = getRoot(); 4551 4552 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4553 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4554 4555 auto Alignment = DAG.getEVTAlignment(MemVT); 4556 4557 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4558 if (I.isVolatile()) 4559 Flags |= MachineMemOperand::MOVolatile; 4560 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4561 4562 MachineFunction &MF = DAG.getMachineFunction(); 4563 MachineMemOperand *MMO = 4564 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4565 Flags, MemVT.getStoreSize(), Alignment, 4566 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4567 FailureOrdering); 4568 4569 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4570 dl, MemVT, VTs, InChain, 4571 getValue(I.getPointerOperand()), 4572 getValue(I.getCompareOperand()), 4573 getValue(I.getNewValOperand()), MMO); 4574 4575 SDValue OutChain = L.getValue(2); 4576 4577 setValue(&I, L); 4578 DAG.setRoot(OutChain); 4579 } 4580 4581 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4582 SDLoc dl = getCurSDLoc(); 4583 ISD::NodeType NT; 4584 switch (I.getOperation()) { 4585 default: llvm_unreachable("Unknown atomicrmw operation"); 4586 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4587 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4588 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4589 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4590 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4591 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4592 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4593 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4594 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4595 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4596 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4597 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4598 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4599 } 4600 AtomicOrdering Ordering = I.getOrdering(); 4601 SyncScope::ID SSID = I.getSyncScopeID(); 4602 4603 SDValue InChain = getRoot(); 4604 4605 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4606 auto Alignment = DAG.getEVTAlignment(MemVT); 4607 4608 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4609 if (I.isVolatile()) 4610 Flags |= MachineMemOperand::MOVolatile; 4611 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4612 4613 MachineFunction &MF = DAG.getMachineFunction(); 4614 MachineMemOperand *MMO = 4615 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4616 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4617 nullptr, SSID, Ordering); 4618 4619 SDValue L = 4620 DAG.getAtomic(NT, dl, MemVT, InChain, 4621 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4622 MMO); 4623 4624 SDValue OutChain = L.getValue(1); 4625 4626 setValue(&I, L); 4627 DAG.setRoot(OutChain); 4628 } 4629 4630 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4631 SDLoc dl = getCurSDLoc(); 4632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4633 SDValue Ops[3]; 4634 Ops[0] = getRoot(); 4635 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4636 TLI.getFenceOperandTy(DAG.getDataLayout())); 4637 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4638 TLI.getFenceOperandTy(DAG.getDataLayout())); 4639 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4640 } 4641 4642 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4643 SDLoc dl = getCurSDLoc(); 4644 AtomicOrdering Order = I.getOrdering(); 4645 SyncScope::ID SSID = I.getSyncScopeID(); 4646 4647 SDValue InChain = getRoot(); 4648 4649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4650 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4651 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4652 4653 if (!TLI.supportsUnalignedAtomics() && 4654 I.getAlignment() < MemVT.getSizeInBits() / 8) 4655 report_fatal_error("Cannot generate unaligned atomic load"); 4656 4657 auto Flags = MachineMemOperand::MOLoad; 4658 if (I.isVolatile()) 4659 Flags |= MachineMemOperand::MOVolatile; 4660 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4661 Flags |= MachineMemOperand::MOInvariant; 4662 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout())) 4663 Flags |= MachineMemOperand::MODereferenceable; 4664 4665 Flags |= TLI.getMMOFlags(I); 4666 4667 MachineMemOperand *MMO = 4668 DAG.getMachineFunction(). 4669 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4670 Flags, MemVT.getStoreSize(), 4671 I.getAlignment() ? I.getAlignment() : 4672 DAG.getEVTAlignment(MemVT), 4673 AAMDNodes(), nullptr, SSID, Order); 4674 4675 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4676 SDValue L = 4677 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4678 getValue(I.getPointerOperand()), MMO); 4679 4680 SDValue OutChain = L.getValue(1); 4681 if (MemVT != VT) 4682 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4683 4684 setValue(&I, L); 4685 DAG.setRoot(OutChain); 4686 } 4687 4688 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4689 SDLoc dl = getCurSDLoc(); 4690 4691 AtomicOrdering Ordering = I.getOrdering(); 4692 SyncScope::ID SSID = I.getSyncScopeID(); 4693 4694 SDValue InChain = getRoot(); 4695 4696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4697 EVT MemVT = 4698 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4699 4700 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4701 report_fatal_error("Cannot generate unaligned atomic store"); 4702 4703 auto Flags = MachineMemOperand::MOStore; 4704 if (I.isVolatile()) 4705 Flags |= MachineMemOperand::MOVolatile; 4706 Flags |= TLI.getMMOFlags(I); 4707 4708 MachineFunction &MF = DAG.getMachineFunction(); 4709 MachineMemOperand *MMO = 4710 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4711 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4712 nullptr, SSID, Ordering); 4713 4714 SDValue Val = getValue(I.getValueOperand()); 4715 if (Val.getValueType() != MemVT) 4716 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4717 4718 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4719 getValue(I.getPointerOperand()), Val, MMO); 4720 4721 4722 DAG.setRoot(OutChain); 4723 } 4724 4725 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4726 /// node. 4727 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4728 unsigned Intrinsic) { 4729 // Ignore the callsite's attributes. A specific call site may be marked with 4730 // readnone, but the lowering code will expect the chain based on the 4731 // definition. 4732 const Function *F = I.getCalledFunction(); 4733 bool HasChain = !F->doesNotAccessMemory(); 4734 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4735 4736 // Build the operand list. 4737 SmallVector<SDValue, 8> Ops; 4738 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4739 if (OnlyLoad) { 4740 // We don't need to serialize loads against other loads. 4741 Ops.push_back(DAG.getRoot()); 4742 } else { 4743 Ops.push_back(getRoot()); 4744 } 4745 } 4746 4747 // Info is set by getTgtMemInstrinsic 4748 TargetLowering::IntrinsicInfo Info; 4749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4750 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4751 DAG.getMachineFunction(), 4752 Intrinsic); 4753 4754 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4755 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4756 Info.opc == ISD::INTRINSIC_W_CHAIN) 4757 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4758 TLI.getPointerTy(DAG.getDataLayout()))); 4759 4760 // Add all operands of the call to the operand list. 4761 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4762 SDValue Op = getValue(I.getArgOperand(i)); 4763 Ops.push_back(Op); 4764 } 4765 4766 SmallVector<EVT, 4> ValueVTs; 4767 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4768 4769 if (HasChain) 4770 ValueVTs.push_back(MVT::Other); 4771 4772 SDVTList VTs = DAG.getVTList(ValueVTs); 4773 4774 // Create the node. 4775 SDValue Result; 4776 if (IsTgtIntrinsic) { 4777 // This is target intrinsic that touches memory 4778 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4779 Ops, Info.memVT, 4780 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4781 Info.flags, Info.size); 4782 } else if (!HasChain) { 4783 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4784 } else if (!I.getType()->isVoidTy()) { 4785 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4786 } else { 4787 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4788 } 4789 4790 if (HasChain) { 4791 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4792 if (OnlyLoad) 4793 PendingLoads.push_back(Chain); 4794 else 4795 DAG.setRoot(Chain); 4796 } 4797 4798 if (!I.getType()->isVoidTy()) { 4799 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4800 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4801 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4802 } else 4803 Result = lowerRangeToAssertZExt(DAG, I, Result); 4804 4805 setValue(&I, Result); 4806 } 4807 } 4808 4809 /// GetSignificand - Get the significand and build it into a floating-point 4810 /// number with exponent of 1: 4811 /// 4812 /// Op = (Op & 0x007fffff) | 0x3f800000; 4813 /// 4814 /// where Op is the hexadecimal representation of floating point value. 4815 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4816 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4817 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4818 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4819 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4820 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4821 } 4822 4823 /// GetExponent - Get the exponent: 4824 /// 4825 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4826 /// 4827 /// where Op is the hexadecimal representation of floating point value. 4828 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4829 const TargetLowering &TLI, const SDLoc &dl) { 4830 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4831 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4832 SDValue t1 = DAG.getNode( 4833 ISD::SRL, dl, MVT::i32, t0, 4834 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4835 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4836 DAG.getConstant(127, dl, MVT::i32)); 4837 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4838 } 4839 4840 /// getF32Constant - Get 32-bit floating point constant. 4841 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4842 const SDLoc &dl) { 4843 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4844 MVT::f32); 4845 } 4846 4847 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4848 SelectionDAG &DAG) { 4849 // TODO: What fast-math-flags should be set on the floating-point nodes? 4850 4851 // IntegerPartOfX = ((int32_t)(t0); 4852 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4853 4854 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4855 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4856 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4857 4858 // IntegerPartOfX <<= 23; 4859 IntegerPartOfX = DAG.getNode( 4860 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4861 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4862 DAG.getDataLayout()))); 4863 4864 SDValue TwoToFractionalPartOfX; 4865 if (LimitFloatPrecision <= 6) { 4866 // For floating-point precision of 6: 4867 // 4868 // TwoToFractionalPartOfX = 4869 // 0.997535578f + 4870 // (0.735607626f + 0.252464424f * x) * x; 4871 // 4872 // error 0.0144103317, which is 6 bits 4873 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4874 getF32Constant(DAG, 0x3e814304, dl)); 4875 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4876 getF32Constant(DAG, 0x3f3c50c8, dl)); 4877 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4878 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4879 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4880 } else if (LimitFloatPrecision <= 12) { 4881 // For floating-point precision of 12: 4882 // 4883 // TwoToFractionalPartOfX = 4884 // 0.999892986f + 4885 // (0.696457318f + 4886 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4887 // 4888 // error 0.000107046256, which is 13 to 14 bits 4889 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4890 getF32Constant(DAG, 0x3da235e3, dl)); 4891 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4892 getF32Constant(DAG, 0x3e65b8f3, dl)); 4893 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4894 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4895 getF32Constant(DAG, 0x3f324b07, dl)); 4896 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4897 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4898 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4899 } else { // LimitFloatPrecision <= 18 4900 // For floating-point precision of 18: 4901 // 4902 // TwoToFractionalPartOfX = 4903 // 0.999999982f + 4904 // (0.693148872f + 4905 // (0.240227044f + 4906 // (0.554906021e-1f + 4907 // (0.961591928e-2f + 4908 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4909 // error 2.47208000*10^(-7), which is better than 18 bits 4910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4911 getF32Constant(DAG, 0x3924b03e, dl)); 4912 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4913 getF32Constant(DAG, 0x3ab24b87, dl)); 4914 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4915 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4916 getF32Constant(DAG, 0x3c1d8c17, dl)); 4917 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4918 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4919 getF32Constant(DAG, 0x3d634a1d, dl)); 4920 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4921 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4922 getF32Constant(DAG, 0x3e75fe14, dl)); 4923 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4924 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4925 getF32Constant(DAG, 0x3f317234, dl)); 4926 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4927 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4928 getF32Constant(DAG, 0x3f800000, dl)); 4929 } 4930 4931 // Add the exponent into the result in integer domain. 4932 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4933 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4934 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4935 } 4936 4937 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4938 /// limited-precision mode. 4939 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4940 const TargetLowering &TLI) { 4941 if (Op.getValueType() == MVT::f32 && 4942 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4943 4944 // Put the exponent in the right bit position for later addition to the 4945 // final result: 4946 // 4947 // #define LOG2OFe 1.4426950f 4948 // t0 = Op * LOG2OFe 4949 4950 // TODO: What fast-math-flags should be set here? 4951 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4952 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4953 return getLimitedPrecisionExp2(t0, dl, DAG); 4954 } 4955 4956 // No special expansion. 4957 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4958 } 4959 4960 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4961 /// limited-precision mode. 4962 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4963 const TargetLowering &TLI) { 4964 // TODO: What fast-math-flags should be set on the floating-point nodes? 4965 4966 if (Op.getValueType() == MVT::f32 && 4967 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4968 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4969 4970 // Scale the exponent by log(2) [0.69314718f]. 4971 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4972 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4973 getF32Constant(DAG, 0x3f317218, dl)); 4974 4975 // Get the significand and build it into a floating-point number with 4976 // exponent of 1. 4977 SDValue X = GetSignificand(DAG, Op1, dl); 4978 4979 SDValue LogOfMantissa; 4980 if (LimitFloatPrecision <= 6) { 4981 // For floating-point precision of 6: 4982 // 4983 // LogofMantissa = 4984 // -1.1609546f + 4985 // (1.4034025f - 0.23903021f * x) * x; 4986 // 4987 // error 0.0034276066, which is better than 8 bits 4988 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4989 getF32Constant(DAG, 0xbe74c456, dl)); 4990 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4991 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4993 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4994 getF32Constant(DAG, 0x3f949a29, dl)); 4995 } else if (LimitFloatPrecision <= 12) { 4996 // For floating-point precision of 12: 4997 // 4998 // LogOfMantissa = 4999 // -1.7417939f + 5000 // (2.8212026f + 5001 // (-1.4699568f + 5002 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5003 // 5004 // error 0.000061011436, which is 14 bits 5005 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5006 getF32Constant(DAG, 0xbd67b6d6, dl)); 5007 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5008 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5010 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5011 getF32Constant(DAG, 0x3fbc278b, dl)); 5012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5013 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5014 getF32Constant(DAG, 0x40348e95, dl)); 5015 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5016 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5017 getF32Constant(DAG, 0x3fdef31a, dl)); 5018 } else { // LimitFloatPrecision <= 18 5019 // For floating-point precision of 18: 5020 // 5021 // LogOfMantissa = 5022 // -2.1072184f + 5023 // (4.2372794f + 5024 // (-3.7029485f + 5025 // (2.2781945f + 5026 // (-0.87823314f + 5027 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5028 // 5029 // error 0.0000023660568, which is better than 18 bits 5030 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5031 getF32Constant(DAG, 0xbc91e5ac, dl)); 5032 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5033 getF32Constant(DAG, 0x3e4350aa, dl)); 5034 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5035 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5036 getF32Constant(DAG, 0x3f60d3e3, dl)); 5037 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5038 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5039 getF32Constant(DAG, 0x4011cdf0, dl)); 5040 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5041 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5042 getF32Constant(DAG, 0x406cfd1c, dl)); 5043 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5044 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5045 getF32Constant(DAG, 0x408797cb, dl)); 5046 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5047 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5048 getF32Constant(DAG, 0x4006dcab, dl)); 5049 } 5050 5051 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5052 } 5053 5054 // No special expansion. 5055 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5056 } 5057 5058 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5059 /// limited-precision mode. 5060 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5061 const TargetLowering &TLI) { 5062 // TODO: What fast-math-flags should be set on the floating-point nodes? 5063 5064 if (Op.getValueType() == MVT::f32 && 5065 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5066 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5067 5068 // Get the exponent. 5069 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5070 5071 // Get the significand and build it into a floating-point number with 5072 // exponent of 1. 5073 SDValue X = GetSignificand(DAG, Op1, dl); 5074 5075 // Different possible minimax approximations of significand in 5076 // floating-point for various degrees of accuracy over [1,2]. 5077 SDValue Log2ofMantissa; 5078 if (LimitFloatPrecision <= 6) { 5079 // For floating-point precision of 6: 5080 // 5081 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5082 // 5083 // error 0.0049451742, which is more than 7 bits 5084 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5085 getF32Constant(DAG, 0xbeb08fe0, dl)); 5086 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5087 getF32Constant(DAG, 0x40019463, dl)); 5088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5089 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5090 getF32Constant(DAG, 0x3fd6633d, dl)); 5091 } else if (LimitFloatPrecision <= 12) { 5092 // For floating-point precision of 12: 5093 // 5094 // Log2ofMantissa = 5095 // -2.51285454f + 5096 // (4.07009056f + 5097 // (-2.12067489f + 5098 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5099 // 5100 // error 0.0000876136000, which is better than 13 bits 5101 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5102 getF32Constant(DAG, 0xbda7262e, dl)); 5103 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5104 getF32Constant(DAG, 0x3f25280b, dl)); 5105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5106 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5107 getF32Constant(DAG, 0x4007b923, dl)); 5108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5109 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5110 getF32Constant(DAG, 0x40823e2f, dl)); 5111 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5112 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5113 getF32Constant(DAG, 0x4020d29c, dl)); 5114 } else { // LimitFloatPrecision <= 18 5115 // For floating-point precision of 18: 5116 // 5117 // Log2ofMantissa = 5118 // -3.0400495f + 5119 // (6.1129976f + 5120 // (-5.3420409f + 5121 // (3.2865683f + 5122 // (-1.2669343f + 5123 // (0.27515199f - 5124 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5125 // 5126 // error 0.0000018516, which is better than 18 bits 5127 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5128 getF32Constant(DAG, 0xbcd2769e, dl)); 5129 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5130 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5131 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5132 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5133 getF32Constant(DAG, 0x3fa22ae7, dl)); 5134 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5135 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5136 getF32Constant(DAG, 0x40525723, dl)); 5137 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5138 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5139 getF32Constant(DAG, 0x40aaf200, dl)); 5140 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5141 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5142 getF32Constant(DAG, 0x40c39dad, dl)); 5143 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5144 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5145 getF32Constant(DAG, 0x4042902c, dl)); 5146 } 5147 5148 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5149 } 5150 5151 // No special expansion. 5152 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5153 } 5154 5155 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5156 /// limited-precision mode. 5157 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5158 const TargetLowering &TLI) { 5159 // TODO: What fast-math-flags should be set on the floating-point nodes? 5160 5161 if (Op.getValueType() == MVT::f32 && 5162 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5163 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5164 5165 // Scale the exponent by log10(2) [0.30102999f]. 5166 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5167 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5168 getF32Constant(DAG, 0x3e9a209a, dl)); 5169 5170 // Get the significand and build it into a floating-point number with 5171 // exponent of 1. 5172 SDValue X = GetSignificand(DAG, Op1, dl); 5173 5174 SDValue Log10ofMantissa; 5175 if (LimitFloatPrecision <= 6) { 5176 // For floating-point precision of 6: 5177 // 5178 // Log10ofMantissa = 5179 // -0.50419619f + 5180 // (0.60948995f - 0.10380950f * x) * x; 5181 // 5182 // error 0.0014886165, which is 6 bits 5183 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5184 getF32Constant(DAG, 0xbdd49a13, dl)); 5185 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5186 getF32Constant(DAG, 0x3f1c0789, dl)); 5187 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5188 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5189 getF32Constant(DAG, 0x3f011300, dl)); 5190 } else if (LimitFloatPrecision <= 12) { 5191 // For floating-point precision of 12: 5192 // 5193 // Log10ofMantissa = 5194 // -0.64831180f + 5195 // (0.91751397f + 5196 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5197 // 5198 // error 0.00019228036, which is better than 12 bits 5199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5200 getF32Constant(DAG, 0x3d431f31, dl)); 5201 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5202 getF32Constant(DAG, 0x3ea21fb2, dl)); 5203 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5204 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5205 getF32Constant(DAG, 0x3f6ae232, dl)); 5206 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5207 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5208 getF32Constant(DAG, 0x3f25f7c3, dl)); 5209 } else { // LimitFloatPrecision <= 18 5210 // For floating-point precision of 18: 5211 // 5212 // Log10ofMantissa = 5213 // -0.84299375f + 5214 // (1.5327582f + 5215 // (-1.0688956f + 5216 // (0.49102474f + 5217 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5218 // 5219 // error 0.0000037995730, which is better than 18 bits 5220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5221 getF32Constant(DAG, 0x3c5d51ce, dl)); 5222 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5223 getF32Constant(DAG, 0x3e00685a, dl)); 5224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5225 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5226 getF32Constant(DAG, 0x3efb6798, dl)); 5227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5228 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5229 getF32Constant(DAG, 0x3f88d192, dl)); 5230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5231 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5232 getF32Constant(DAG, 0x3fc4316c, dl)); 5233 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5234 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5235 getF32Constant(DAG, 0x3f57ce70, dl)); 5236 } 5237 5238 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5239 } 5240 5241 // No special expansion. 5242 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5243 } 5244 5245 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5246 /// limited-precision mode. 5247 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5248 const TargetLowering &TLI) { 5249 if (Op.getValueType() == MVT::f32 && 5250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5251 return getLimitedPrecisionExp2(Op, dl, DAG); 5252 5253 // No special expansion. 5254 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5255 } 5256 5257 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5258 /// limited-precision mode with x == 10.0f. 5259 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5260 SelectionDAG &DAG, const TargetLowering &TLI) { 5261 bool IsExp10 = false; 5262 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5263 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5264 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5265 APFloat Ten(10.0f); 5266 IsExp10 = LHSC->isExactlyValue(Ten); 5267 } 5268 } 5269 5270 // TODO: What fast-math-flags should be set on the FMUL node? 5271 if (IsExp10) { 5272 // Put the exponent in the right bit position for later addition to the 5273 // final result: 5274 // 5275 // #define LOG2OF10 3.3219281f 5276 // t0 = Op * LOG2OF10; 5277 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5278 getF32Constant(DAG, 0x40549a78, dl)); 5279 return getLimitedPrecisionExp2(t0, dl, DAG); 5280 } 5281 5282 // No special expansion. 5283 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5284 } 5285 5286 /// ExpandPowI - Expand a llvm.powi intrinsic. 5287 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5288 SelectionDAG &DAG) { 5289 // If RHS is a constant, we can expand this out to a multiplication tree, 5290 // otherwise we end up lowering to a call to __powidf2 (for example). When 5291 // optimizing for size, we only want to do this if the expansion would produce 5292 // a small number of multiplies, otherwise we do the full expansion. 5293 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5294 // Get the exponent as a positive value. 5295 unsigned Val = RHSC->getSExtValue(); 5296 if ((int)Val < 0) Val = -Val; 5297 5298 // powi(x, 0) -> 1.0 5299 if (Val == 0) 5300 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5301 5302 const Function &F = DAG.getMachineFunction().getFunction(); 5303 if (!F.hasOptSize() || 5304 // If optimizing for size, don't insert too many multiplies. 5305 // This inserts up to 5 multiplies. 5306 countPopulation(Val) + Log2_32(Val) < 7) { 5307 // We use the simple binary decomposition method to generate the multiply 5308 // sequence. There are more optimal ways to do this (for example, 5309 // powi(x,15) generates one more multiply than it should), but this has 5310 // the benefit of being both really simple and much better than a libcall. 5311 SDValue Res; // Logically starts equal to 1.0 5312 SDValue CurSquare = LHS; 5313 // TODO: Intrinsics should have fast-math-flags that propagate to these 5314 // nodes. 5315 while (Val) { 5316 if (Val & 1) { 5317 if (Res.getNode()) 5318 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5319 else 5320 Res = CurSquare; // 1.0*CurSquare. 5321 } 5322 5323 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5324 CurSquare, CurSquare); 5325 Val >>= 1; 5326 } 5327 5328 // If the original was negative, invert the result, producing 1/(x*x*x). 5329 if (RHSC->getSExtValue() < 0) 5330 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5331 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5332 return Res; 5333 } 5334 } 5335 5336 // Otherwise, expand to a libcall. 5337 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5338 } 5339 5340 // getUnderlyingArgReg - Find underlying register used for a truncated or 5341 // bitcasted argument. 5342 static unsigned getUnderlyingArgReg(const SDValue &N) { 5343 switch (N.getOpcode()) { 5344 case ISD::CopyFromReg: 5345 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5346 case ISD::BITCAST: 5347 case ISD::AssertZext: 5348 case ISD::AssertSext: 5349 case ISD::TRUNCATE: 5350 return getUnderlyingArgReg(N.getOperand(0)); 5351 default: 5352 return 0; 5353 } 5354 } 5355 5356 /// If the DbgValueInst is a dbg_value of a function argument, create the 5357 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5358 /// instruction selection, they will be inserted to the entry BB. 5359 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5360 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5361 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5362 const Argument *Arg = dyn_cast<Argument>(V); 5363 if (!Arg) 5364 return false; 5365 5366 if (!IsDbgDeclare) { 5367 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5368 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5369 // the entry block. 5370 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5371 if (!IsInEntryBlock) 5372 return false; 5373 5374 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5375 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5376 // variable that also is a param. 5377 // 5378 // Although, if we are at the top of the entry block already, we can still 5379 // emit using ArgDbgValue. This might catch some situations when the 5380 // dbg.value refers to an argument that isn't used in the entry block, so 5381 // any CopyToReg node would be optimized out and the only way to express 5382 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5383 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5384 // we should only emit as ArgDbgValue if the Variable is an argument to the 5385 // current function, and the dbg.value intrinsic is found in the entry 5386 // block. 5387 bool VariableIsFunctionInputArg = Variable->isParameter() && 5388 !DL->getInlinedAt(); 5389 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5390 if (!IsInPrologue && !VariableIsFunctionInputArg) 5391 return false; 5392 5393 // Here we assume that a function argument on IR level only can be used to 5394 // describe one input parameter on source level. If we for example have 5395 // source code like this 5396 // 5397 // struct A { long x, y; }; 5398 // void foo(struct A a, long b) { 5399 // ... 5400 // b = a.x; 5401 // ... 5402 // } 5403 // 5404 // and IR like this 5405 // 5406 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5407 // entry: 5408 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5409 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5410 // call void @llvm.dbg.value(metadata i32 %b, "b", 5411 // ... 5412 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5413 // ... 5414 // 5415 // then the last dbg.value is describing a parameter "b" using a value that 5416 // is an argument. But since we already has used %a1 to describe a parameter 5417 // we should not handle that last dbg.value here (that would result in an 5418 // incorrect hoisting of the DBG_VALUE to the function entry). 5419 // Notice that we allow one dbg.value per IR level argument, to accomodate 5420 // for the situation with fragments above. 5421 if (VariableIsFunctionInputArg) { 5422 unsigned ArgNo = Arg->getArgNo(); 5423 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5424 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5425 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5426 return false; 5427 FuncInfo.DescribedArgs.set(ArgNo); 5428 } 5429 } 5430 5431 MachineFunction &MF = DAG.getMachineFunction(); 5432 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5433 5434 bool IsIndirect = false; 5435 Optional<MachineOperand> Op; 5436 // Some arguments' frame index is recorded during argument lowering. 5437 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5438 if (FI != std::numeric_limits<int>::max()) 5439 Op = MachineOperand::CreateFI(FI); 5440 5441 if (!Op && N.getNode()) { 5442 unsigned Reg = getUnderlyingArgReg(N); 5443 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5444 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5445 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5446 if (PR) 5447 Reg = PR; 5448 } 5449 if (Reg) { 5450 Op = MachineOperand::CreateReg(Reg, false); 5451 IsIndirect = IsDbgDeclare; 5452 } 5453 } 5454 5455 if (!Op && N.getNode()) { 5456 // Check if frame index is available. 5457 SDValue LCandidate = peekThroughBitcasts(N); 5458 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5459 if (FrameIndexSDNode *FINode = 5460 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5461 Op = MachineOperand::CreateFI(FINode->getIndex()); 5462 } 5463 5464 if (!Op) { 5465 // Check if ValueMap has reg number. 5466 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5467 if (VMI != FuncInfo.ValueMap.end()) { 5468 const auto &TLI = DAG.getTargetLoweringInfo(); 5469 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5470 V->getType(), getABIRegCopyCC(V)); 5471 if (RFV.occupiesMultipleRegs()) { 5472 unsigned Offset = 0; 5473 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5474 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5475 auto FragmentExpr = DIExpression::createFragmentExpression( 5476 Expr, Offset, RegAndSize.second); 5477 if (!FragmentExpr) 5478 continue; 5479 FuncInfo.ArgDbgValues.push_back( 5480 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5481 Op->getReg(), Variable, *FragmentExpr)); 5482 Offset += RegAndSize.second; 5483 } 5484 return true; 5485 } 5486 Op = MachineOperand::CreateReg(VMI->second, false); 5487 IsIndirect = IsDbgDeclare; 5488 } 5489 } 5490 5491 if (!Op) 5492 return false; 5493 5494 assert(Variable->isValidLocationForIntrinsic(DL) && 5495 "Expected inlined-at fields to agree"); 5496 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5497 FuncInfo.ArgDbgValues.push_back( 5498 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5499 *Op, Variable, Expr)); 5500 5501 return true; 5502 } 5503 5504 /// Return the appropriate SDDbgValue based on N. 5505 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5506 DILocalVariable *Variable, 5507 DIExpression *Expr, 5508 const DebugLoc &dl, 5509 unsigned DbgSDNodeOrder) { 5510 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5511 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5512 // stack slot locations. 5513 // 5514 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5515 // debug values here after optimization: 5516 // 5517 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5518 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5519 // 5520 // Both describe the direct values of their associated variables. 5521 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5522 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5523 } 5524 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5525 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5526 } 5527 5528 // VisualStudio defines setjmp as _setjmp 5529 #if defined(_MSC_VER) && defined(setjmp) && \ 5530 !defined(setjmp_undefined_for_msvc) 5531 # pragma push_macro("setjmp") 5532 # undef setjmp 5533 # define setjmp_undefined_for_msvc 5534 #endif 5535 5536 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5537 switch (Intrinsic) { 5538 case Intrinsic::smul_fix: 5539 return ISD::SMULFIX; 5540 case Intrinsic::umul_fix: 5541 return ISD::UMULFIX; 5542 default: 5543 llvm_unreachable("Unhandled fixed point intrinsic"); 5544 } 5545 } 5546 5547 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5548 const char *FunctionName) { 5549 assert(FunctionName && "FunctionName must not be nullptr"); 5550 SDValue Callee = DAG.getExternalSymbol( 5551 FunctionName, 5552 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5553 LowerCallTo(&I, Callee, I.isTailCall()); 5554 } 5555 5556 /// Lower the call to the specified intrinsic function. 5557 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5558 unsigned Intrinsic) { 5559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5560 SDLoc sdl = getCurSDLoc(); 5561 DebugLoc dl = getCurDebugLoc(); 5562 SDValue Res; 5563 5564 switch (Intrinsic) { 5565 default: 5566 // By default, turn this into a target intrinsic node. 5567 visitTargetIntrinsic(I, Intrinsic); 5568 return; 5569 case Intrinsic::vastart: visitVAStart(I); return; 5570 case Intrinsic::vaend: visitVAEnd(I); return; 5571 case Intrinsic::vacopy: visitVACopy(I); return; 5572 case Intrinsic::returnaddress: 5573 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5574 TLI.getPointerTy(DAG.getDataLayout()), 5575 getValue(I.getArgOperand(0)))); 5576 return; 5577 case Intrinsic::addressofreturnaddress: 5578 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5579 TLI.getPointerTy(DAG.getDataLayout()))); 5580 return; 5581 case Intrinsic::sponentry: 5582 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5583 TLI.getPointerTy(DAG.getDataLayout()))); 5584 return; 5585 case Intrinsic::frameaddress: 5586 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5587 TLI.getPointerTy(DAG.getDataLayout()), 5588 getValue(I.getArgOperand(0)))); 5589 return; 5590 case Intrinsic::read_register: { 5591 Value *Reg = I.getArgOperand(0); 5592 SDValue Chain = getRoot(); 5593 SDValue RegName = 5594 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5595 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5596 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5597 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5598 setValue(&I, Res); 5599 DAG.setRoot(Res.getValue(1)); 5600 return; 5601 } 5602 case Intrinsic::write_register: { 5603 Value *Reg = I.getArgOperand(0); 5604 Value *RegValue = I.getArgOperand(1); 5605 SDValue Chain = getRoot(); 5606 SDValue RegName = 5607 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5608 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5609 RegName, getValue(RegValue))); 5610 return; 5611 } 5612 case Intrinsic::setjmp: 5613 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5614 return; 5615 case Intrinsic::longjmp: 5616 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5617 return; 5618 case Intrinsic::memcpy: { 5619 const auto &MCI = cast<MemCpyInst>(I); 5620 SDValue Op1 = getValue(I.getArgOperand(0)); 5621 SDValue Op2 = getValue(I.getArgOperand(1)); 5622 SDValue Op3 = getValue(I.getArgOperand(2)); 5623 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5624 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5625 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5626 unsigned Align = MinAlign(DstAlign, SrcAlign); 5627 bool isVol = MCI.isVolatile(); 5628 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5629 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5630 // node. 5631 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5632 false, isTC, 5633 MachinePointerInfo(I.getArgOperand(0)), 5634 MachinePointerInfo(I.getArgOperand(1))); 5635 updateDAGForMaybeTailCall(MC); 5636 return; 5637 } 5638 case Intrinsic::memset: { 5639 const auto &MSI = cast<MemSetInst>(I); 5640 SDValue Op1 = getValue(I.getArgOperand(0)); 5641 SDValue Op2 = getValue(I.getArgOperand(1)); 5642 SDValue Op3 = getValue(I.getArgOperand(2)); 5643 // @llvm.memset defines 0 and 1 to both mean no alignment. 5644 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5645 bool isVol = MSI.isVolatile(); 5646 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5647 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5648 isTC, MachinePointerInfo(I.getArgOperand(0))); 5649 updateDAGForMaybeTailCall(MS); 5650 return; 5651 } 5652 case Intrinsic::memmove: { 5653 const auto &MMI = cast<MemMoveInst>(I); 5654 SDValue Op1 = getValue(I.getArgOperand(0)); 5655 SDValue Op2 = getValue(I.getArgOperand(1)); 5656 SDValue Op3 = getValue(I.getArgOperand(2)); 5657 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5658 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5659 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5660 unsigned Align = MinAlign(DstAlign, SrcAlign); 5661 bool isVol = MMI.isVolatile(); 5662 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5663 // FIXME: Support passing different dest/src alignments to the memmove DAG 5664 // node. 5665 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5666 isTC, MachinePointerInfo(I.getArgOperand(0)), 5667 MachinePointerInfo(I.getArgOperand(1))); 5668 updateDAGForMaybeTailCall(MM); 5669 return; 5670 } 5671 case Intrinsic::memcpy_element_unordered_atomic: { 5672 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5673 SDValue Dst = getValue(MI.getRawDest()); 5674 SDValue Src = getValue(MI.getRawSource()); 5675 SDValue Length = getValue(MI.getLength()); 5676 5677 unsigned DstAlign = MI.getDestAlignment(); 5678 unsigned SrcAlign = MI.getSourceAlignment(); 5679 Type *LengthTy = MI.getLength()->getType(); 5680 unsigned ElemSz = MI.getElementSizeInBytes(); 5681 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5682 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5683 SrcAlign, Length, LengthTy, ElemSz, isTC, 5684 MachinePointerInfo(MI.getRawDest()), 5685 MachinePointerInfo(MI.getRawSource())); 5686 updateDAGForMaybeTailCall(MC); 5687 return; 5688 } 5689 case Intrinsic::memmove_element_unordered_atomic: { 5690 auto &MI = cast<AtomicMemMoveInst>(I); 5691 SDValue Dst = getValue(MI.getRawDest()); 5692 SDValue Src = getValue(MI.getRawSource()); 5693 SDValue Length = getValue(MI.getLength()); 5694 5695 unsigned DstAlign = MI.getDestAlignment(); 5696 unsigned SrcAlign = MI.getSourceAlignment(); 5697 Type *LengthTy = MI.getLength()->getType(); 5698 unsigned ElemSz = MI.getElementSizeInBytes(); 5699 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5700 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5701 SrcAlign, Length, LengthTy, ElemSz, isTC, 5702 MachinePointerInfo(MI.getRawDest()), 5703 MachinePointerInfo(MI.getRawSource())); 5704 updateDAGForMaybeTailCall(MC); 5705 return; 5706 } 5707 case Intrinsic::memset_element_unordered_atomic: { 5708 auto &MI = cast<AtomicMemSetInst>(I); 5709 SDValue Dst = getValue(MI.getRawDest()); 5710 SDValue Val = getValue(MI.getValue()); 5711 SDValue Length = getValue(MI.getLength()); 5712 5713 unsigned DstAlign = MI.getDestAlignment(); 5714 Type *LengthTy = MI.getLength()->getType(); 5715 unsigned ElemSz = MI.getElementSizeInBytes(); 5716 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5717 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5718 LengthTy, ElemSz, isTC, 5719 MachinePointerInfo(MI.getRawDest())); 5720 updateDAGForMaybeTailCall(MC); 5721 return; 5722 } 5723 case Intrinsic::dbg_addr: 5724 case Intrinsic::dbg_declare: { 5725 const auto &DI = cast<DbgVariableIntrinsic>(I); 5726 DILocalVariable *Variable = DI.getVariable(); 5727 DIExpression *Expression = DI.getExpression(); 5728 dropDanglingDebugInfo(Variable, Expression); 5729 assert(Variable && "Missing variable"); 5730 5731 // Check if address has undef value. 5732 const Value *Address = DI.getVariableLocation(); 5733 if (!Address || isa<UndefValue>(Address) || 5734 (Address->use_empty() && !isa<Argument>(Address))) { 5735 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5736 return; 5737 } 5738 5739 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5740 5741 // Check if this variable can be described by a frame index, typically 5742 // either as a static alloca or a byval parameter. 5743 int FI = std::numeric_limits<int>::max(); 5744 if (const auto *AI = 5745 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5746 if (AI->isStaticAlloca()) { 5747 auto I = FuncInfo.StaticAllocaMap.find(AI); 5748 if (I != FuncInfo.StaticAllocaMap.end()) 5749 FI = I->second; 5750 } 5751 } else if (const auto *Arg = dyn_cast<Argument>( 5752 Address->stripInBoundsConstantOffsets())) { 5753 FI = FuncInfo.getArgumentFrameIndex(Arg); 5754 } 5755 5756 // llvm.dbg.addr is control dependent and always generates indirect 5757 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5758 // the MachineFunction variable table. 5759 if (FI != std::numeric_limits<int>::max()) { 5760 if (Intrinsic == Intrinsic::dbg_addr) { 5761 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5762 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5763 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5764 } 5765 return; 5766 } 5767 5768 SDValue &N = NodeMap[Address]; 5769 if (!N.getNode() && isa<Argument>(Address)) 5770 // Check unused arguments map. 5771 N = UnusedArgNodeMap[Address]; 5772 SDDbgValue *SDV; 5773 if (N.getNode()) { 5774 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5775 Address = BCI->getOperand(0); 5776 // Parameters are handled specially. 5777 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5778 if (isParameter && FINode) { 5779 // Byval parameter. We have a frame index at this point. 5780 SDV = 5781 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5782 /*IsIndirect*/ true, dl, SDNodeOrder); 5783 } else if (isa<Argument>(Address)) { 5784 // Address is an argument, so try to emit its dbg value using 5785 // virtual register info from the FuncInfo.ValueMap. 5786 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5787 return; 5788 } else { 5789 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5790 true, dl, SDNodeOrder); 5791 } 5792 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5793 } else { 5794 // If Address is an argument then try to emit its dbg value using 5795 // virtual register info from the FuncInfo.ValueMap. 5796 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5797 N)) { 5798 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5799 } 5800 } 5801 return; 5802 } 5803 case Intrinsic::dbg_label: { 5804 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5805 DILabel *Label = DI.getLabel(); 5806 assert(Label && "Missing label"); 5807 5808 SDDbgLabel *SDV; 5809 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5810 DAG.AddDbgLabel(SDV); 5811 return; 5812 } 5813 case Intrinsic::dbg_value: { 5814 const DbgValueInst &DI = cast<DbgValueInst>(I); 5815 assert(DI.getVariable() && "Missing variable"); 5816 5817 DILocalVariable *Variable = DI.getVariable(); 5818 DIExpression *Expression = DI.getExpression(); 5819 dropDanglingDebugInfo(Variable, Expression); 5820 const Value *V = DI.getValue(); 5821 if (!V) 5822 return; 5823 5824 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5825 SDNodeOrder)) 5826 return; 5827 5828 // TODO: Dangling debug info will eventually either be resolved or produce 5829 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5830 // between the original dbg.value location and its resolved DBG_VALUE, which 5831 // we should ideally fill with an extra Undef DBG_VALUE. 5832 5833 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5834 return; 5835 } 5836 5837 case Intrinsic::eh_typeid_for: { 5838 // Find the type id for the given typeinfo. 5839 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5840 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5841 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5842 setValue(&I, Res); 5843 return; 5844 } 5845 5846 case Intrinsic::eh_return_i32: 5847 case Intrinsic::eh_return_i64: 5848 DAG.getMachineFunction().setCallsEHReturn(true); 5849 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5850 MVT::Other, 5851 getControlRoot(), 5852 getValue(I.getArgOperand(0)), 5853 getValue(I.getArgOperand(1)))); 5854 return; 5855 case Intrinsic::eh_unwind_init: 5856 DAG.getMachineFunction().setCallsUnwindInit(true); 5857 return; 5858 case Intrinsic::eh_dwarf_cfa: 5859 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5860 TLI.getPointerTy(DAG.getDataLayout()), 5861 getValue(I.getArgOperand(0)))); 5862 return; 5863 case Intrinsic::eh_sjlj_callsite: { 5864 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5865 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5866 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5867 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5868 5869 MMI.setCurrentCallSite(CI->getZExtValue()); 5870 return; 5871 } 5872 case Intrinsic::eh_sjlj_functioncontext: { 5873 // Get and store the index of the function context. 5874 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5875 AllocaInst *FnCtx = 5876 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5877 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5878 MFI.setFunctionContextIndex(FI); 5879 return; 5880 } 5881 case Intrinsic::eh_sjlj_setjmp: { 5882 SDValue Ops[2]; 5883 Ops[0] = getRoot(); 5884 Ops[1] = getValue(I.getArgOperand(0)); 5885 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5886 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5887 setValue(&I, Op.getValue(0)); 5888 DAG.setRoot(Op.getValue(1)); 5889 return; 5890 } 5891 case Intrinsic::eh_sjlj_longjmp: 5892 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5893 getRoot(), getValue(I.getArgOperand(0)))); 5894 return; 5895 case Intrinsic::eh_sjlj_setup_dispatch: 5896 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5897 getRoot())); 5898 return; 5899 case Intrinsic::masked_gather: 5900 visitMaskedGather(I); 5901 return; 5902 case Intrinsic::masked_load: 5903 visitMaskedLoad(I); 5904 return; 5905 case Intrinsic::masked_scatter: 5906 visitMaskedScatter(I); 5907 return; 5908 case Intrinsic::masked_store: 5909 visitMaskedStore(I); 5910 return; 5911 case Intrinsic::masked_expandload: 5912 visitMaskedLoad(I, true /* IsExpanding */); 5913 return; 5914 case Intrinsic::masked_compressstore: 5915 visitMaskedStore(I, true /* IsCompressing */); 5916 return; 5917 case Intrinsic::x86_mmx_pslli_w: 5918 case Intrinsic::x86_mmx_pslli_d: 5919 case Intrinsic::x86_mmx_pslli_q: 5920 case Intrinsic::x86_mmx_psrli_w: 5921 case Intrinsic::x86_mmx_psrli_d: 5922 case Intrinsic::x86_mmx_psrli_q: 5923 case Intrinsic::x86_mmx_psrai_w: 5924 case Intrinsic::x86_mmx_psrai_d: { 5925 SDValue ShAmt = getValue(I.getArgOperand(1)); 5926 if (isa<ConstantSDNode>(ShAmt)) { 5927 visitTargetIntrinsic(I, Intrinsic); 5928 return; 5929 } 5930 unsigned NewIntrinsic = 0; 5931 EVT ShAmtVT = MVT::v2i32; 5932 switch (Intrinsic) { 5933 case Intrinsic::x86_mmx_pslli_w: 5934 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5935 break; 5936 case Intrinsic::x86_mmx_pslli_d: 5937 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5938 break; 5939 case Intrinsic::x86_mmx_pslli_q: 5940 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5941 break; 5942 case Intrinsic::x86_mmx_psrli_w: 5943 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5944 break; 5945 case Intrinsic::x86_mmx_psrli_d: 5946 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5947 break; 5948 case Intrinsic::x86_mmx_psrli_q: 5949 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5950 break; 5951 case Intrinsic::x86_mmx_psrai_w: 5952 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5953 break; 5954 case Intrinsic::x86_mmx_psrai_d: 5955 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5956 break; 5957 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5958 } 5959 5960 // The vector shift intrinsics with scalars uses 32b shift amounts but 5961 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5962 // to be zero. 5963 // We must do this early because v2i32 is not a legal type. 5964 SDValue ShOps[2]; 5965 ShOps[0] = ShAmt; 5966 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5967 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5968 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5969 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5970 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5971 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5972 getValue(I.getArgOperand(0)), ShAmt); 5973 setValue(&I, Res); 5974 return; 5975 } 5976 case Intrinsic::powi: 5977 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5978 getValue(I.getArgOperand(1)), DAG)); 5979 return; 5980 case Intrinsic::log: 5981 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5982 return; 5983 case Intrinsic::log2: 5984 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5985 return; 5986 case Intrinsic::log10: 5987 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5988 return; 5989 case Intrinsic::exp: 5990 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5991 return; 5992 case Intrinsic::exp2: 5993 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5994 return; 5995 case Intrinsic::pow: 5996 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5997 getValue(I.getArgOperand(1)), DAG, TLI)); 5998 return; 5999 case Intrinsic::sqrt: 6000 case Intrinsic::fabs: 6001 case Intrinsic::sin: 6002 case Intrinsic::cos: 6003 case Intrinsic::floor: 6004 case Intrinsic::ceil: 6005 case Intrinsic::trunc: 6006 case Intrinsic::rint: 6007 case Intrinsic::nearbyint: 6008 case Intrinsic::round: 6009 case Intrinsic::canonicalize: { 6010 unsigned Opcode; 6011 switch (Intrinsic) { 6012 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6013 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6014 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6015 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6016 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6017 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6018 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6019 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6020 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6021 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6022 case Intrinsic::round: Opcode = ISD::FROUND; break; 6023 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6024 } 6025 6026 setValue(&I, DAG.getNode(Opcode, sdl, 6027 getValue(I.getArgOperand(0)).getValueType(), 6028 getValue(I.getArgOperand(0)))); 6029 return; 6030 } 6031 case Intrinsic::lround: 6032 case Intrinsic::llround: 6033 case Intrinsic::lrint: 6034 case Intrinsic::llrint: { 6035 unsigned Opcode; 6036 switch (Intrinsic) { 6037 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6038 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6039 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6040 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6041 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6042 } 6043 6044 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6045 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6046 getValue(I.getArgOperand(0)))); 6047 return; 6048 } 6049 case Intrinsic::minnum: { 6050 auto VT = getValue(I.getArgOperand(0)).getValueType(); 6051 unsigned Opc = 6052 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 6053 ? ISD::FMINIMUM 6054 : ISD::FMINNUM; 6055 setValue(&I, DAG.getNode(Opc, sdl, VT, 6056 getValue(I.getArgOperand(0)), 6057 getValue(I.getArgOperand(1)))); 6058 return; 6059 } 6060 case Intrinsic::maxnum: { 6061 auto VT = getValue(I.getArgOperand(0)).getValueType(); 6062 unsigned Opc = 6063 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 6064 ? ISD::FMAXIMUM 6065 : ISD::FMAXNUM; 6066 setValue(&I, DAG.getNode(Opc, sdl, VT, 6067 getValue(I.getArgOperand(0)), 6068 getValue(I.getArgOperand(1)))); 6069 return; 6070 } 6071 case Intrinsic::minimum: 6072 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6073 getValue(I.getArgOperand(0)).getValueType(), 6074 getValue(I.getArgOperand(0)), 6075 getValue(I.getArgOperand(1)))); 6076 return; 6077 case Intrinsic::maximum: 6078 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6079 getValue(I.getArgOperand(0)).getValueType(), 6080 getValue(I.getArgOperand(0)), 6081 getValue(I.getArgOperand(1)))); 6082 return; 6083 case Intrinsic::copysign: 6084 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6085 getValue(I.getArgOperand(0)).getValueType(), 6086 getValue(I.getArgOperand(0)), 6087 getValue(I.getArgOperand(1)))); 6088 return; 6089 case Intrinsic::fma: 6090 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6091 getValue(I.getArgOperand(0)).getValueType(), 6092 getValue(I.getArgOperand(0)), 6093 getValue(I.getArgOperand(1)), 6094 getValue(I.getArgOperand(2)))); 6095 return; 6096 case Intrinsic::experimental_constrained_fadd: 6097 case Intrinsic::experimental_constrained_fsub: 6098 case Intrinsic::experimental_constrained_fmul: 6099 case Intrinsic::experimental_constrained_fdiv: 6100 case Intrinsic::experimental_constrained_frem: 6101 case Intrinsic::experimental_constrained_fma: 6102 case Intrinsic::experimental_constrained_fptrunc: 6103 case Intrinsic::experimental_constrained_fpext: 6104 case Intrinsic::experimental_constrained_sqrt: 6105 case Intrinsic::experimental_constrained_pow: 6106 case Intrinsic::experimental_constrained_powi: 6107 case Intrinsic::experimental_constrained_sin: 6108 case Intrinsic::experimental_constrained_cos: 6109 case Intrinsic::experimental_constrained_exp: 6110 case Intrinsic::experimental_constrained_exp2: 6111 case Intrinsic::experimental_constrained_log: 6112 case Intrinsic::experimental_constrained_log10: 6113 case Intrinsic::experimental_constrained_log2: 6114 case Intrinsic::experimental_constrained_rint: 6115 case Intrinsic::experimental_constrained_nearbyint: 6116 case Intrinsic::experimental_constrained_maxnum: 6117 case Intrinsic::experimental_constrained_minnum: 6118 case Intrinsic::experimental_constrained_ceil: 6119 case Intrinsic::experimental_constrained_floor: 6120 case Intrinsic::experimental_constrained_round: 6121 case Intrinsic::experimental_constrained_trunc: 6122 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6123 return; 6124 case Intrinsic::fmuladd: { 6125 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6126 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6127 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6128 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6129 getValue(I.getArgOperand(0)).getValueType(), 6130 getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1)), 6132 getValue(I.getArgOperand(2)))); 6133 } else { 6134 // TODO: Intrinsic calls should have fast-math-flags. 6135 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6136 getValue(I.getArgOperand(0)).getValueType(), 6137 getValue(I.getArgOperand(0)), 6138 getValue(I.getArgOperand(1))); 6139 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6140 getValue(I.getArgOperand(0)).getValueType(), 6141 Mul, 6142 getValue(I.getArgOperand(2))); 6143 setValue(&I, Add); 6144 } 6145 return; 6146 } 6147 case Intrinsic::convert_to_fp16: 6148 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6149 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6150 getValue(I.getArgOperand(0)), 6151 DAG.getTargetConstant(0, sdl, 6152 MVT::i32)))); 6153 return; 6154 case Intrinsic::convert_from_fp16: 6155 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6156 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6157 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6158 getValue(I.getArgOperand(0))))); 6159 return; 6160 case Intrinsic::pcmarker: { 6161 SDValue Tmp = getValue(I.getArgOperand(0)); 6162 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6163 return; 6164 } 6165 case Intrinsic::readcyclecounter: { 6166 SDValue Op = getRoot(); 6167 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6168 DAG.getVTList(MVT::i64, MVT::Other), Op); 6169 setValue(&I, Res); 6170 DAG.setRoot(Res.getValue(1)); 6171 return; 6172 } 6173 case Intrinsic::bitreverse: 6174 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6175 getValue(I.getArgOperand(0)).getValueType(), 6176 getValue(I.getArgOperand(0)))); 6177 return; 6178 case Intrinsic::bswap: 6179 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6180 getValue(I.getArgOperand(0)).getValueType(), 6181 getValue(I.getArgOperand(0)))); 6182 return; 6183 case Intrinsic::cttz: { 6184 SDValue Arg = getValue(I.getArgOperand(0)); 6185 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6186 EVT Ty = Arg.getValueType(); 6187 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6188 sdl, Ty, Arg)); 6189 return; 6190 } 6191 case Intrinsic::ctlz: { 6192 SDValue Arg = getValue(I.getArgOperand(0)); 6193 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6194 EVT Ty = Arg.getValueType(); 6195 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6196 sdl, Ty, Arg)); 6197 return; 6198 } 6199 case Intrinsic::ctpop: { 6200 SDValue Arg = getValue(I.getArgOperand(0)); 6201 EVT Ty = Arg.getValueType(); 6202 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6203 return; 6204 } 6205 case Intrinsic::fshl: 6206 case Intrinsic::fshr: { 6207 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6208 SDValue X = getValue(I.getArgOperand(0)); 6209 SDValue Y = getValue(I.getArgOperand(1)); 6210 SDValue Z = getValue(I.getArgOperand(2)); 6211 EVT VT = X.getValueType(); 6212 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6213 SDValue Zero = DAG.getConstant(0, sdl, VT); 6214 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6215 6216 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6217 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6218 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6219 return; 6220 } 6221 6222 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6223 // avoid the select that is necessary in the general case to filter out 6224 // the 0-shift possibility that leads to UB. 6225 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6226 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6227 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6228 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6229 return; 6230 } 6231 6232 // Some targets only rotate one way. Try the opposite direction. 6233 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6234 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6235 // Negate the shift amount because it is safe to ignore the high bits. 6236 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6238 return; 6239 } 6240 6241 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6242 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6243 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6244 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6245 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6246 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6247 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6248 return; 6249 } 6250 6251 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6252 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6253 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6254 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6255 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6256 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6257 6258 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6259 // and that is undefined. We must compare and select to avoid UB. 6260 EVT CCVT = MVT::i1; 6261 if (VT.isVector()) 6262 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6263 6264 // For fshl, 0-shift returns the 1st arg (X). 6265 // For fshr, 0-shift returns the 2nd arg (Y). 6266 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6267 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6268 return; 6269 } 6270 case Intrinsic::sadd_sat: { 6271 SDValue Op1 = getValue(I.getArgOperand(0)); 6272 SDValue Op2 = getValue(I.getArgOperand(1)); 6273 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6274 return; 6275 } 6276 case Intrinsic::uadd_sat: { 6277 SDValue Op1 = getValue(I.getArgOperand(0)); 6278 SDValue Op2 = getValue(I.getArgOperand(1)); 6279 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6280 return; 6281 } 6282 case Intrinsic::ssub_sat: { 6283 SDValue Op1 = getValue(I.getArgOperand(0)); 6284 SDValue Op2 = getValue(I.getArgOperand(1)); 6285 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6286 return; 6287 } 6288 case Intrinsic::usub_sat: { 6289 SDValue Op1 = getValue(I.getArgOperand(0)); 6290 SDValue Op2 = getValue(I.getArgOperand(1)); 6291 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6292 return; 6293 } 6294 case Intrinsic::smul_fix: 6295 case Intrinsic::umul_fix: { 6296 SDValue Op1 = getValue(I.getArgOperand(0)); 6297 SDValue Op2 = getValue(I.getArgOperand(1)); 6298 SDValue Op3 = getValue(I.getArgOperand(2)); 6299 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6300 Op1.getValueType(), Op1, Op2, Op3)); 6301 return; 6302 } 6303 case Intrinsic::smul_fix_sat: { 6304 SDValue Op1 = getValue(I.getArgOperand(0)); 6305 SDValue Op2 = getValue(I.getArgOperand(1)); 6306 SDValue Op3 = getValue(I.getArgOperand(2)); 6307 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6308 Op3)); 6309 return; 6310 } 6311 case Intrinsic::stacksave: { 6312 SDValue Op = getRoot(); 6313 Res = DAG.getNode( 6314 ISD::STACKSAVE, sdl, 6315 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6316 setValue(&I, Res); 6317 DAG.setRoot(Res.getValue(1)); 6318 return; 6319 } 6320 case Intrinsic::stackrestore: 6321 Res = getValue(I.getArgOperand(0)); 6322 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6323 return; 6324 case Intrinsic::get_dynamic_area_offset: { 6325 SDValue Op = getRoot(); 6326 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6327 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6328 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6329 // target. 6330 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6331 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6332 " intrinsic!"); 6333 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6334 Op); 6335 DAG.setRoot(Op); 6336 setValue(&I, Res); 6337 return; 6338 } 6339 case Intrinsic::stackguard: { 6340 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6341 MachineFunction &MF = DAG.getMachineFunction(); 6342 const Module &M = *MF.getFunction().getParent(); 6343 SDValue Chain = getRoot(); 6344 if (TLI.useLoadStackGuardNode()) { 6345 Res = getLoadStackGuard(DAG, sdl, Chain); 6346 } else { 6347 const Value *Global = TLI.getSDagStackGuard(M); 6348 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6349 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6350 MachinePointerInfo(Global, 0), Align, 6351 MachineMemOperand::MOVolatile); 6352 } 6353 if (TLI.useStackGuardXorFP()) 6354 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6355 DAG.setRoot(Chain); 6356 setValue(&I, Res); 6357 return; 6358 } 6359 case Intrinsic::stackprotector: { 6360 // Emit code into the DAG to store the stack guard onto the stack. 6361 MachineFunction &MF = DAG.getMachineFunction(); 6362 MachineFrameInfo &MFI = MF.getFrameInfo(); 6363 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6364 SDValue Src, Chain = getRoot(); 6365 6366 if (TLI.useLoadStackGuardNode()) 6367 Src = getLoadStackGuard(DAG, sdl, Chain); 6368 else 6369 Src = getValue(I.getArgOperand(0)); // The guard's value. 6370 6371 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6372 6373 int FI = FuncInfo.StaticAllocaMap[Slot]; 6374 MFI.setStackProtectorIndex(FI); 6375 6376 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6377 6378 // Store the stack protector onto the stack. 6379 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6380 DAG.getMachineFunction(), FI), 6381 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6382 setValue(&I, Res); 6383 DAG.setRoot(Res); 6384 return; 6385 } 6386 case Intrinsic::objectsize: { 6387 // If we don't know by now, we're never going to know. 6388 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6389 6390 assert(CI && "Non-constant type in __builtin_object_size?"); 6391 6392 SDValue Arg = getValue(I.getCalledValue()); 6393 EVT Ty = Arg.getValueType(); 6394 6395 if (CI->isZero()) 6396 Res = DAG.getConstant(-1ULL, sdl, Ty); 6397 else 6398 Res = DAG.getConstant(0, sdl, Ty); 6399 6400 setValue(&I, Res); 6401 return; 6402 } 6403 6404 case Intrinsic::is_constant: 6405 // If this wasn't constant-folded away by now, then it's not a 6406 // constant. 6407 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6408 return; 6409 6410 case Intrinsic::annotation: 6411 case Intrinsic::ptr_annotation: 6412 case Intrinsic::launder_invariant_group: 6413 case Intrinsic::strip_invariant_group: 6414 // Drop the intrinsic, but forward the value 6415 setValue(&I, getValue(I.getOperand(0))); 6416 return; 6417 case Intrinsic::assume: 6418 case Intrinsic::var_annotation: 6419 case Intrinsic::sideeffect: 6420 // Discard annotate attributes, assumptions, and artificial side-effects. 6421 return; 6422 6423 case Intrinsic::codeview_annotation: { 6424 // Emit a label associated with this metadata. 6425 MachineFunction &MF = DAG.getMachineFunction(); 6426 MCSymbol *Label = 6427 MF.getMMI().getContext().createTempSymbol("annotation", true); 6428 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6429 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6430 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6431 DAG.setRoot(Res); 6432 return; 6433 } 6434 6435 case Intrinsic::init_trampoline: { 6436 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6437 6438 SDValue Ops[6]; 6439 Ops[0] = getRoot(); 6440 Ops[1] = getValue(I.getArgOperand(0)); 6441 Ops[2] = getValue(I.getArgOperand(1)); 6442 Ops[3] = getValue(I.getArgOperand(2)); 6443 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6444 Ops[5] = DAG.getSrcValue(F); 6445 6446 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6447 6448 DAG.setRoot(Res); 6449 return; 6450 } 6451 case Intrinsic::adjust_trampoline: 6452 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6453 TLI.getPointerTy(DAG.getDataLayout()), 6454 getValue(I.getArgOperand(0)))); 6455 return; 6456 case Intrinsic::gcroot: { 6457 assert(DAG.getMachineFunction().getFunction().hasGC() && 6458 "only valid in functions with gc specified, enforced by Verifier"); 6459 assert(GFI && "implied by previous"); 6460 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6461 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6462 6463 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6464 GFI->addStackRoot(FI->getIndex(), TypeMap); 6465 return; 6466 } 6467 case Intrinsic::gcread: 6468 case Intrinsic::gcwrite: 6469 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6470 case Intrinsic::flt_rounds: 6471 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6472 return; 6473 6474 case Intrinsic::expect: 6475 // Just replace __builtin_expect(exp, c) with EXP. 6476 setValue(&I, getValue(I.getArgOperand(0))); 6477 return; 6478 6479 case Intrinsic::debugtrap: 6480 case Intrinsic::trap: { 6481 StringRef TrapFuncName = 6482 I.getAttributes() 6483 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6484 .getValueAsString(); 6485 if (TrapFuncName.empty()) { 6486 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6487 ISD::TRAP : ISD::DEBUGTRAP; 6488 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6489 return; 6490 } 6491 TargetLowering::ArgListTy Args; 6492 6493 TargetLowering::CallLoweringInfo CLI(DAG); 6494 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6495 CallingConv::C, I.getType(), 6496 DAG.getExternalSymbol(TrapFuncName.data(), 6497 TLI.getPointerTy(DAG.getDataLayout())), 6498 std::move(Args)); 6499 6500 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6501 DAG.setRoot(Result.second); 6502 return; 6503 } 6504 6505 case Intrinsic::uadd_with_overflow: 6506 case Intrinsic::sadd_with_overflow: 6507 case Intrinsic::usub_with_overflow: 6508 case Intrinsic::ssub_with_overflow: 6509 case Intrinsic::umul_with_overflow: 6510 case Intrinsic::smul_with_overflow: { 6511 ISD::NodeType Op; 6512 switch (Intrinsic) { 6513 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6514 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6515 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6516 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6517 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6518 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6519 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6520 } 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 6524 EVT ResultVT = Op1.getValueType(); 6525 EVT OverflowVT = MVT::i1; 6526 if (ResultVT.isVector()) 6527 OverflowVT = EVT::getVectorVT( 6528 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6529 6530 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6531 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6532 return; 6533 } 6534 case Intrinsic::prefetch: { 6535 SDValue Ops[5]; 6536 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6537 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6538 Ops[0] = DAG.getRoot(); 6539 Ops[1] = getValue(I.getArgOperand(0)); 6540 Ops[2] = getValue(I.getArgOperand(1)); 6541 Ops[3] = getValue(I.getArgOperand(2)); 6542 Ops[4] = getValue(I.getArgOperand(3)); 6543 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6544 DAG.getVTList(MVT::Other), Ops, 6545 EVT::getIntegerVT(*Context, 8), 6546 MachinePointerInfo(I.getArgOperand(0)), 6547 0, /* align */ 6548 Flags); 6549 6550 // Chain the prefetch in parallell with any pending loads, to stay out of 6551 // the way of later optimizations. 6552 PendingLoads.push_back(Result); 6553 Result = getRoot(); 6554 DAG.setRoot(Result); 6555 return; 6556 } 6557 case Intrinsic::lifetime_start: 6558 case Intrinsic::lifetime_end: { 6559 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6560 // Stack coloring is not enabled in O0, discard region information. 6561 if (TM.getOptLevel() == CodeGenOpt::None) 6562 return; 6563 6564 const int64_t ObjectSize = 6565 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6566 Value *const ObjectPtr = I.getArgOperand(1); 6567 SmallVector<const Value *, 4> Allocas; 6568 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6569 6570 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6571 E = Allocas.end(); Object != E; ++Object) { 6572 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6573 6574 // Could not find an Alloca. 6575 if (!LifetimeObject) 6576 continue; 6577 6578 // First check that the Alloca is static, otherwise it won't have a 6579 // valid frame index. 6580 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6581 if (SI == FuncInfo.StaticAllocaMap.end()) 6582 return; 6583 6584 const int FrameIndex = SI->second; 6585 int64_t Offset; 6586 if (GetPointerBaseWithConstantOffset( 6587 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6588 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6589 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6590 Offset); 6591 DAG.setRoot(Res); 6592 } 6593 return; 6594 } 6595 case Intrinsic::invariant_start: 6596 // Discard region information. 6597 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6598 return; 6599 case Intrinsic::invariant_end: 6600 // Discard region information. 6601 return; 6602 case Intrinsic::clear_cache: 6603 /// FunctionName may be null. 6604 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6605 lowerCallToExternalSymbol(I, FunctionName); 6606 return; 6607 case Intrinsic::donothing: 6608 // ignore 6609 return; 6610 case Intrinsic::experimental_stackmap: 6611 visitStackmap(I); 6612 return; 6613 case Intrinsic::experimental_patchpoint_void: 6614 case Intrinsic::experimental_patchpoint_i64: 6615 visitPatchpoint(&I); 6616 return; 6617 case Intrinsic::experimental_gc_statepoint: 6618 LowerStatepoint(ImmutableStatepoint(&I)); 6619 return; 6620 case Intrinsic::experimental_gc_result: 6621 visitGCResult(cast<GCResultInst>(I)); 6622 return; 6623 case Intrinsic::experimental_gc_relocate: 6624 visitGCRelocate(cast<GCRelocateInst>(I)); 6625 return; 6626 case Intrinsic::instrprof_increment: 6627 llvm_unreachable("instrprof failed to lower an increment"); 6628 case Intrinsic::instrprof_value_profile: 6629 llvm_unreachable("instrprof failed to lower a value profiling call"); 6630 case Intrinsic::localescape: { 6631 MachineFunction &MF = DAG.getMachineFunction(); 6632 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6633 6634 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6635 // is the same on all targets. 6636 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6637 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6638 if (isa<ConstantPointerNull>(Arg)) 6639 continue; // Skip null pointers. They represent a hole in index space. 6640 AllocaInst *Slot = cast<AllocaInst>(Arg); 6641 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6642 "can only escape static allocas"); 6643 int FI = FuncInfo.StaticAllocaMap[Slot]; 6644 MCSymbol *FrameAllocSym = 6645 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6646 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6648 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6649 .addSym(FrameAllocSym) 6650 .addFrameIndex(FI); 6651 } 6652 6653 return; 6654 } 6655 6656 case Intrinsic::localrecover: { 6657 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6658 MachineFunction &MF = DAG.getMachineFunction(); 6659 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6660 6661 // Get the symbol that defines the frame offset. 6662 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6663 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6664 unsigned IdxVal = 6665 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6666 MCSymbol *FrameAllocSym = 6667 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6668 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6669 6670 // Create a MCSymbol for the label to avoid any target lowering 6671 // that would make this PC relative. 6672 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6673 SDValue OffsetVal = 6674 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6675 6676 // Add the offset to the FP. 6677 Value *FP = I.getArgOperand(1); 6678 SDValue FPVal = getValue(FP); 6679 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6680 setValue(&I, Add); 6681 6682 return; 6683 } 6684 6685 case Intrinsic::eh_exceptionpointer: 6686 case Intrinsic::eh_exceptioncode: { 6687 // Get the exception pointer vreg, copy from it, and resize it to fit. 6688 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6689 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6690 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6691 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6692 SDValue N = 6693 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6694 if (Intrinsic == Intrinsic::eh_exceptioncode) 6695 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6696 setValue(&I, N); 6697 return; 6698 } 6699 case Intrinsic::xray_customevent: { 6700 // Here we want to make sure that the intrinsic behaves as if it has a 6701 // specific calling convention, and only for x86_64. 6702 // FIXME: Support other platforms later. 6703 const auto &Triple = DAG.getTarget().getTargetTriple(); 6704 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6705 return; 6706 6707 SDLoc DL = getCurSDLoc(); 6708 SmallVector<SDValue, 8> Ops; 6709 6710 // We want to say that we always want the arguments in registers. 6711 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6712 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6713 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6714 SDValue Chain = getRoot(); 6715 Ops.push_back(LogEntryVal); 6716 Ops.push_back(StrSizeVal); 6717 Ops.push_back(Chain); 6718 6719 // We need to enforce the calling convention for the callsite, so that 6720 // argument ordering is enforced correctly, and that register allocation can 6721 // see that some registers may be assumed clobbered and have to preserve 6722 // them across calls to the intrinsic. 6723 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6724 DL, NodeTys, Ops); 6725 SDValue patchableNode = SDValue(MN, 0); 6726 DAG.setRoot(patchableNode); 6727 setValue(&I, patchableNode); 6728 return; 6729 } 6730 case Intrinsic::xray_typedevent: { 6731 // Here we want to make sure that the intrinsic behaves as if it has a 6732 // specific calling convention, and only for x86_64. 6733 // FIXME: Support other platforms later. 6734 const auto &Triple = DAG.getTarget().getTargetTriple(); 6735 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6736 return; 6737 6738 SDLoc DL = getCurSDLoc(); 6739 SmallVector<SDValue, 8> Ops; 6740 6741 // We want to say that we always want the arguments in registers. 6742 // It's unclear to me how manipulating the selection DAG here forces callers 6743 // to provide arguments in registers instead of on the stack. 6744 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6745 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6746 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6747 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6748 SDValue Chain = getRoot(); 6749 Ops.push_back(LogTypeId); 6750 Ops.push_back(LogEntryVal); 6751 Ops.push_back(StrSizeVal); 6752 Ops.push_back(Chain); 6753 6754 // We need to enforce the calling convention for the callsite, so that 6755 // argument ordering is enforced correctly, and that register allocation can 6756 // see that some registers may be assumed clobbered and have to preserve 6757 // them across calls to the intrinsic. 6758 MachineSDNode *MN = DAG.getMachineNode( 6759 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6760 SDValue patchableNode = SDValue(MN, 0); 6761 DAG.setRoot(patchableNode); 6762 setValue(&I, patchableNode); 6763 return; 6764 } 6765 case Intrinsic::experimental_deoptimize: 6766 LowerDeoptimizeCall(&I); 6767 return; 6768 6769 case Intrinsic::experimental_vector_reduce_fadd: 6770 case Intrinsic::experimental_vector_reduce_fmul: 6771 case Intrinsic::experimental_vector_reduce_add: 6772 case Intrinsic::experimental_vector_reduce_mul: 6773 case Intrinsic::experimental_vector_reduce_and: 6774 case Intrinsic::experimental_vector_reduce_or: 6775 case Intrinsic::experimental_vector_reduce_xor: 6776 case Intrinsic::experimental_vector_reduce_smax: 6777 case Intrinsic::experimental_vector_reduce_smin: 6778 case Intrinsic::experimental_vector_reduce_umax: 6779 case Intrinsic::experimental_vector_reduce_umin: 6780 case Intrinsic::experimental_vector_reduce_fmax: 6781 case Intrinsic::experimental_vector_reduce_fmin: 6782 visitVectorReduce(I, Intrinsic); 6783 return; 6784 6785 case Intrinsic::icall_branch_funnel: { 6786 SmallVector<SDValue, 16> Ops; 6787 Ops.push_back(DAG.getRoot()); 6788 Ops.push_back(getValue(I.getArgOperand(0))); 6789 6790 int64_t Offset; 6791 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6792 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6793 if (!Base) 6794 report_fatal_error( 6795 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6796 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6797 6798 struct BranchFunnelTarget { 6799 int64_t Offset; 6800 SDValue Target; 6801 }; 6802 SmallVector<BranchFunnelTarget, 8> Targets; 6803 6804 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6805 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6806 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6807 if (ElemBase != Base) 6808 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6809 "to the same GlobalValue"); 6810 6811 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6812 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6813 if (!GA) 6814 report_fatal_error( 6815 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6816 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6817 GA->getGlobal(), getCurSDLoc(), 6818 Val.getValueType(), GA->getOffset())}); 6819 } 6820 llvm::sort(Targets, 6821 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6822 return T1.Offset < T2.Offset; 6823 }); 6824 6825 for (auto &T : Targets) { 6826 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6827 Ops.push_back(T.Target); 6828 } 6829 6830 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6831 getCurSDLoc(), MVT::Other, Ops), 6832 0); 6833 DAG.setRoot(N); 6834 setValue(&I, N); 6835 HasTailCall = true; 6836 return; 6837 } 6838 6839 case Intrinsic::wasm_landingpad_index: 6840 // Information this intrinsic contained has been transferred to 6841 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6842 // delete it now. 6843 return; 6844 } 6845 } 6846 6847 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6848 const ConstrainedFPIntrinsic &FPI) { 6849 SDLoc sdl = getCurSDLoc(); 6850 unsigned Opcode; 6851 switch (FPI.getIntrinsicID()) { 6852 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6853 case Intrinsic::experimental_constrained_fadd: 6854 Opcode = ISD::STRICT_FADD; 6855 break; 6856 case Intrinsic::experimental_constrained_fsub: 6857 Opcode = ISD::STRICT_FSUB; 6858 break; 6859 case Intrinsic::experimental_constrained_fmul: 6860 Opcode = ISD::STRICT_FMUL; 6861 break; 6862 case Intrinsic::experimental_constrained_fdiv: 6863 Opcode = ISD::STRICT_FDIV; 6864 break; 6865 case Intrinsic::experimental_constrained_frem: 6866 Opcode = ISD::STRICT_FREM; 6867 break; 6868 case Intrinsic::experimental_constrained_fma: 6869 Opcode = ISD::STRICT_FMA; 6870 break; 6871 case Intrinsic::experimental_constrained_fptrunc: 6872 Opcode = ISD::STRICT_FP_ROUND; 6873 break; 6874 case Intrinsic::experimental_constrained_fpext: 6875 Opcode = ISD::STRICT_FP_EXTEND; 6876 break; 6877 case Intrinsic::experimental_constrained_sqrt: 6878 Opcode = ISD::STRICT_FSQRT; 6879 break; 6880 case Intrinsic::experimental_constrained_pow: 6881 Opcode = ISD::STRICT_FPOW; 6882 break; 6883 case Intrinsic::experimental_constrained_powi: 6884 Opcode = ISD::STRICT_FPOWI; 6885 break; 6886 case Intrinsic::experimental_constrained_sin: 6887 Opcode = ISD::STRICT_FSIN; 6888 break; 6889 case Intrinsic::experimental_constrained_cos: 6890 Opcode = ISD::STRICT_FCOS; 6891 break; 6892 case Intrinsic::experimental_constrained_exp: 6893 Opcode = ISD::STRICT_FEXP; 6894 break; 6895 case Intrinsic::experimental_constrained_exp2: 6896 Opcode = ISD::STRICT_FEXP2; 6897 break; 6898 case Intrinsic::experimental_constrained_log: 6899 Opcode = ISD::STRICT_FLOG; 6900 break; 6901 case Intrinsic::experimental_constrained_log10: 6902 Opcode = ISD::STRICT_FLOG10; 6903 break; 6904 case Intrinsic::experimental_constrained_log2: 6905 Opcode = ISD::STRICT_FLOG2; 6906 break; 6907 case Intrinsic::experimental_constrained_rint: 6908 Opcode = ISD::STRICT_FRINT; 6909 break; 6910 case Intrinsic::experimental_constrained_nearbyint: 6911 Opcode = ISD::STRICT_FNEARBYINT; 6912 break; 6913 case Intrinsic::experimental_constrained_maxnum: 6914 Opcode = ISD::STRICT_FMAXNUM; 6915 break; 6916 case Intrinsic::experimental_constrained_minnum: 6917 Opcode = ISD::STRICT_FMINNUM; 6918 break; 6919 case Intrinsic::experimental_constrained_ceil: 6920 Opcode = ISD::STRICT_FCEIL; 6921 break; 6922 case Intrinsic::experimental_constrained_floor: 6923 Opcode = ISD::STRICT_FFLOOR; 6924 break; 6925 case Intrinsic::experimental_constrained_round: 6926 Opcode = ISD::STRICT_FROUND; 6927 break; 6928 case Intrinsic::experimental_constrained_trunc: 6929 Opcode = ISD::STRICT_FTRUNC; 6930 break; 6931 } 6932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6933 SDValue Chain = getRoot(); 6934 SmallVector<EVT, 4> ValueVTs; 6935 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6936 ValueVTs.push_back(MVT::Other); // Out chain 6937 6938 SDVTList VTs = DAG.getVTList(ValueVTs); 6939 SDValue Result; 6940 if (Opcode == ISD::STRICT_FP_ROUND) 6941 Result = DAG.getNode(Opcode, sdl, VTs, 6942 { Chain, getValue(FPI.getArgOperand(0)), 6943 DAG.getTargetConstant(0, sdl, 6944 TLI.getPointerTy(DAG.getDataLayout())) }); 6945 else if (FPI.isUnaryOp()) 6946 Result = DAG.getNode(Opcode, sdl, VTs, 6947 { Chain, getValue(FPI.getArgOperand(0)) }); 6948 else if (FPI.isTernaryOp()) 6949 Result = DAG.getNode(Opcode, sdl, VTs, 6950 { Chain, getValue(FPI.getArgOperand(0)), 6951 getValue(FPI.getArgOperand(1)), 6952 getValue(FPI.getArgOperand(2)) }); 6953 else 6954 Result = DAG.getNode(Opcode, sdl, VTs, 6955 { Chain, getValue(FPI.getArgOperand(0)), 6956 getValue(FPI.getArgOperand(1)) }); 6957 6958 assert(Result.getNode()->getNumValues() == 2); 6959 SDValue OutChain = Result.getValue(1); 6960 DAG.setRoot(OutChain); 6961 SDValue FPResult = Result.getValue(0); 6962 setValue(&FPI, FPResult); 6963 } 6964 6965 std::pair<SDValue, SDValue> 6966 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6967 const BasicBlock *EHPadBB) { 6968 MachineFunction &MF = DAG.getMachineFunction(); 6969 MachineModuleInfo &MMI = MF.getMMI(); 6970 MCSymbol *BeginLabel = nullptr; 6971 6972 if (EHPadBB) { 6973 // Insert a label before the invoke call to mark the try range. This can be 6974 // used to detect deletion of the invoke via the MachineModuleInfo. 6975 BeginLabel = MMI.getContext().createTempSymbol(); 6976 6977 // For SjLj, keep track of which landing pads go with which invokes 6978 // so as to maintain the ordering of pads in the LSDA. 6979 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6980 if (CallSiteIndex) { 6981 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6982 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6983 6984 // Now that the call site is handled, stop tracking it. 6985 MMI.setCurrentCallSite(0); 6986 } 6987 6988 // Both PendingLoads and PendingExports must be flushed here; 6989 // this call might not return. 6990 (void)getRoot(); 6991 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6992 6993 CLI.setChain(getRoot()); 6994 } 6995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6996 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6997 6998 assert((CLI.IsTailCall || Result.second.getNode()) && 6999 "Non-null chain expected with non-tail call!"); 7000 assert((Result.second.getNode() || !Result.first.getNode()) && 7001 "Null value expected with tail call!"); 7002 7003 if (!Result.second.getNode()) { 7004 // As a special case, a null chain means that a tail call has been emitted 7005 // and the DAG root is already updated. 7006 HasTailCall = true; 7007 7008 // Since there's no actual continuation from this block, nothing can be 7009 // relying on us setting vregs for them. 7010 PendingExports.clear(); 7011 } else { 7012 DAG.setRoot(Result.second); 7013 } 7014 7015 if (EHPadBB) { 7016 // Insert a label at the end of the invoke call to mark the try range. This 7017 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7018 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7019 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7020 7021 // Inform MachineModuleInfo of range. 7022 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7023 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7024 // actually use outlined funclets and their LSDA info style. 7025 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7026 assert(CLI.CS); 7027 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7028 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7029 BeginLabel, EndLabel); 7030 } else if (!isScopedEHPersonality(Pers)) { 7031 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7032 } 7033 } 7034 7035 return Result; 7036 } 7037 7038 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7039 bool isTailCall, 7040 const BasicBlock *EHPadBB) { 7041 auto &DL = DAG.getDataLayout(); 7042 FunctionType *FTy = CS.getFunctionType(); 7043 Type *RetTy = CS.getType(); 7044 7045 TargetLowering::ArgListTy Args; 7046 Args.reserve(CS.arg_size()); 7047 7048 const Value *SwiftErrorVal = nullptr; 7049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7050 7051 // We can't tail call inside a function with a swifterror argument. Lowering 7052 // does not support this yet. It would have to move into the swifterror 7053 // register before the call. 7054 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7055 if (TLI.supportSwiftError() && 7056 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7057 isTailCall = false; 7058 7059 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7060 i != e; ++i) { 7061 TargetLowering::ArgListEntry Entry; 7062 const Value *V = *i; 7063 7064 // Skip empty types 7065 if (V->getType()->isEmptyTy()) 7066 continue; 7067 7068 SDValue ArgNode = getValue(V); 7069 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7070 7071 Entry.setAttributes(&CS, i - CS.arg_begin()); 7072 7073 // Use swifterror virtual register as input to the call. 7074 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7075 SwiftErrorVal = V; 7076 // We find the virtual register for the actual swifterror argument. 7077 // Instead of using the Value, we use the virtual register instead. 7078 Entry.Node = DAG.getRegister( 7079 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7080 EVT(TLI.getPointerTy(DL))); 7081 } 7082 7083 Args.push_back(Entry); 7084 7085 // If we have an explicit sret argument that is an Instruction, (i.e., it 7086 // might point to function-local memory), we can't meaningfully tail-call. 7087 if (Entry.IsSRet && isa<Instruction>(V)) 7088 isTailCall = false; 7089 } 7090 7091 // Check if target-independent constraints permit a tail call here. 7092 // Target-dependent constraints are checked within TLI->LowerCallTo. 7093 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7094 isTailCall = false; 7095 7096 // Disable tail calls if there is an swifterror argument. Targets have not 7097 // been updated to support tail calls. 7098 if (TLI.supportSwiftError() && SwiftErrorVal) 7099 isTailCall = false; 7100 7101 TargetLowering::CallLoweringInfo CLI(DAG); 7102 CLI.setDebugLoc(getCurSDLoc()) 7103 .setChain(getRoot()) 7104 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7105 .setTailCall(isTailCall) 7106 .setConvergent(CS.isConvergent()); 7107 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7108 7109 if (Result.first.getNode()) { 7110 const Instruction *Inst = CS.getInstruction(); 7111 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7112 setValue(Inst, Result.first); 7113 } 7114 7115 // The last element of CLI.InVals has the SDValue for swifterror return. 7116 // Here we copy it to a virtual register and update SwiftErrorMap for 7117 // book-keeping. 7118 if (SwiftErrorVal && TLI.supportSwiftError()) { 7119 // Get the last element of InVals. 7120 SDValue Src = CLI.InVals.back(); 7121 unsigned VReg = SwiftError.getOrCreateVRegDefAt( 7122 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7123 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7124 DAG.setRoot(CopyNode); 7125 } 7126 } 7127 7128 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7129 SelectionDAGBuilder &Builder) { 7130 // Check to see if this load can be trivially constant folded, e.g. if the 7131 // input is from a string literal. 7132 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7133 // Cast pointer to the type we really want to load. 7134 Type *LoadTy = 7135 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7136 if (LoadVT.isVector()) 7137 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7138 7139 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7140 PointerType::getUnqual(LoadTy)); 7141 7142 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7143 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7144 return Builder.getValue(LoadCst); 7145 } 7146 7147 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7148 // still constant memory, the input chain can be the entry node. 7149 SDValue Root; 7150 bool ConstantMemory = false; 7151 7152 // Do not serialize (non-volatile) loads of constant memory with anything. 7153 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7154 Root = Builder.DAG.getEntryNode(); 7155 ConstantMemory = true; 7156 } else { 7157 // Do not serialize non-volatile loads against each other. 7158 Root = Builder.DAG.getRoot(); 7159 } 7160 7161 SDValue Ptr = Builder.getValue(PtrVal); 7162 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7163 Ptr, MachinePointerInfo(PtrVal), 7164 /* Alignment = */ 1); 7165 7166 if (!ConstantMemory) 7167 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7168 return LoadVal; 7169 } 7170 7171 /// Record the value for an instruction that produces an integer result, 7172 /// converting the type where necessary. 7173 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7174 SDValue Value, 7175 bool IsSigned) { 7176 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7177 I.getType(), true); 7178 if (IsSigned) 7179 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7180 else 7181 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7182 setValue(&I, Value); 7183 } 7184 7185 /// See if we can lower a memcmp call into an optimized form. If so, return 7186 /// true and lower it. Otherwise return false, and it will be lowered like a 7187 /// normal call. 7188 /// The caller already checked that \p I calls the appropriate LibFunc with a 7189 /// correct prototype. 7190 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7191 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7192 const Value *Size = I.getArgOperand(2); 7193 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7194 if (CSize && CSize->getZExtValue() == 0) { 7195 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7196 I.getType(), true); 7197 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7198 return true; 7199 } 7200 7201 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7202 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7203 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7204 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7205 if (Res.first.getNode()) { 7206 processIntegerCallValue(I, Res.first, true); 7207 PendingLoads.push_back(Res.second); 7208 return true; 7209 } 7210 7211 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7212 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7213 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7214 return false; 7215 7216 // If the target has a fast compare for the given size, it will return a 7217 // preferred load type for that size. Require that the load VT is legal and 7218 // that the target supports unaligned loads of that type. Otherwise, return 7219 // INVALID. 7220 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7222 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7223 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7224 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7225 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7226 // TODO: Check alignment of src and dest ptrs. 7227 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7228 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7229 if (!TLI.isTypeLegal(LVT) || 7230 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7231 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7232 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7233 } 7234 7235 return LVT; 7236 }; 7237 7238 // This turns into unaligned loads. We only do this if the target natively 7239 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7240 // we'll only produce a small number of byte loads. 7241 MVT LoadVT; 7242 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7243 switch (NumBitsToCompare) { 7244 default: 7245 return false; 7246 case 16: 7247 LoadVT = MVT::i16; 7248 break; 7249 case 32: 7250 LoadVT = MVT::i32; 7251 break; 7252 case 64: 7253 case 128: 7254 case 256: 7255 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7256 break; 7257 } 7258 7259 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7260 return false; 7261 7262 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7263 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7264 7265 // Bitcast to a wide integer type if the loads are vectors. 7266 if (LoadVT.isVector()) { 7267 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7268 LoadL = DAG.getBitcast(CmpVT, LoadL); 7269 LoadR = DAG.getBitcast(CmpVT, LoadR); 7270 } 7271 7272 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7273 processIntegerCallValue(I, Cmp, false); 7274 return true; 7275 } 7276 7277 /// See if we can lower a memchr call into an optimized form. If so, return 7278 /// true and lower it. Otherwise return false, and it will be lowered like a 7279 /// normal call. 7280 /// The caller already checked that \p I calls the appropriate LibFunc with a 7281 /// correct prototype. 7282 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7283 const Value *Src = I.getArgOperand(0); 7284 const Value *Char = I.getArgOperand(1); 7285 const Value *Length = I.getArgOperand(2); 7286 7287 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7288 std::pair<SDValue, SDValue> Res = 7289 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7290 getValue(Src), getValue(Char), getValue(Length), 7291 MachinePointerInfo(Src)); 7292 if (Res.first.getNode()) { 7293 setValue(&I, Res.first); 7294 PendingLoads.push_back(Res.second); 7295 return true; 7296 } 7297 7298 return false; 7299 } 7300 7301 /// See if we can lower a mempcpy call into an optimized form. If so, return 7302 /// true and lower it. Otherwise return false, and it will be lowered like a 7303 /// normal call. 7304 /// The caller already checked that \p I calls the appropriate LibFunc with a 7305 /// correct prototype. 7306 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7307 SDValue Dst = getValue(I.getArgOperand(0)); 7308 SDValue Src = getValue(I.getArgOperand(1)); 7309 SDValue Size = getValue(I.getArgOperand(2)); 7310 7311 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7312 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7313 unsigned Align = std::min(DstAlign, SrcAlign); 7314 if (Align == 0) // Alignment of one or both could not be inferred. 7315 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7316 7317 bool isVol = false; 7318 SDLoc sdl = getCurSDLoc(); 7319 7320 // In the mempcpy context we need to pass in a false value for isTailCall 7321 // because the return pointer needs to be adjusted by the size of 7322 // the copied memory. 7323 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7324 false, /*isTailCall=*/false, 7325 MachinePointerInfo(I.getArgOperand(0)), 7326 MachinePointerInfo(I.getArgOperand(1))); 7327 assert(MC.getNode() != nullptr && 7328 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7329 DAG.setRoot(MC); 7330 7331 // Check if Size needs to be truncated or extended. 7332 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7333 7334 // Adjust return pointer to point just past the last dst byte. 7335 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7336 Dst, Size); 7337 setValue(&I, DstPlusSize); 7338 return true; 7339 } 7340 7341 /// See if we can lower a strcpy call into an optimized form. If so, return 7342 /// true and lower it, otherwise return false and it will be lowered like a 7343 /// normal call. 7344 /// The caller already checked that \p I calls the appropriate LibFunc with a 7345 /// correct prototype. 7346 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7347 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7348 7349 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7350 std::pair<SDValue, SDValue> Res = 7351 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7352 getValue(Arg0), getValue(Arg1), 7353 MachinePointerInfo(Arg0), 7354 MachinePointerInfo(Arg1), isStpcpy); 7355 if (Res.first.getNode()) { 7356 setValue(&I, Res.first); 7357 DAG.setRoot(Res.second); 7358 return true; 7359 } 7360 7361 return false; 7362 } 7363 7364 /// See if we can lower a strcmp call into an optimized form. If so, return 7365 /// true and lower it, otherwise return false and it will be lowered like a 7366 /// normal call. 7367 /// The caller already checked that \p I calls the appropriate LibFunc with a 7368 /// correct prototype. 7369 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7370 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7371 7372 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7373 std::pair<SDValue, SDValue> Res = 7374 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7375 getValue(Arg0), getValue(Arg1), 7376 MachinePointerInfo(Arg0), 7377 MachinePointerInfo(Arg1)); 7378 if (Res.first.getNode()) { 7379 processIntegerCallValue(I, Res.first, true); 7380 PendingLoads.push_back(Res.second); 7381 return true; 7382 } 7383 7384 return false; 7385 } 7386 7387 /// See if we can lower a strlen call into an optimized form. If so, return 7388 /// true and lower it, otherwise return false and it will be lowered like a 7389 /// normal call. 7390 /// The caller already checked that \p I calls the appropriate LibFunc with a 7391 /// correct prototype. 7392 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7393 const Value *Arg0 = I.getArgOperand(0); 7394 7395 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7396 std::pair<SDValue, SDValue> Res = 7397 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7398 getValue(Arg0), MachinePointerInfo(Arg0)); 7399 if (Res.first.getNode()) { 7400 processIntegerCallValue(I, Res.first, false); 7401 PendingLoads.push_back(Res.second); 7402 return true; 7403 } 7404 7405 return false; 7406 } 7407 7408 /// See if we can lower a strnlen call into an optimized form. If so, return 7409 /// true and lower it, otherwise return false and it will be lowered like a 7410 /// normal call. 7411 /// The caller already checked that \p I calls the appropriate LibFunc with a 7412 /// correct prototype. 7413 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7414 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7415 7416 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7417 std::pair<SDValue, SDValue> Res = 7418 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7419 getValue(Arg0), getValue(Arg1), 7420 MachinePointerInfo(Arg0)); 7421 if (Res.first.getNode()) { 7422 processIntegerCallValue(I, Res.first, false); 7423 PendingLoads.push_back(Res.second); 7424 return true; 7425 } 7426 7427 return false; 7428 } 7429 7430 /// See if we can lower a unary floating-point operation into an SDNode with 7431 /// the specified Opcode. If so, return true and lower it, otherwise return 7432 /// false and it will be lowered like a normal call. 7433 /// The caller already checked that \p I calls the appropriate LibFunc with a 7434 /// correct prototype. 7435 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7436 unsigned Opcode) { 7437 // We already checked this call's prototype; verify it doesn't modify errno. 7438 if (!I.onlyReadsMemory()) 7439 return false; 7440 7441 SDValue Tmp = getValue(I.getArgOperand(0)); 7442 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7443 return true; 7444 } 7445 7446 /// See if we can lower a binary floating-point operation into an SDNode with 7447 /// the specified Opcode. If so, return true and lower it. Otherwise return 7448 /// false, and it will be lowered like a normal call. 7449 /// The caller already checked that \p I calls the appropriate LibFunc with a 7450 /// correct prototype. 7451 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7452 unsigned Opcode) { 7453 // We already checked this call's prototype; verify it doesn't modify errno. 7454 if (!I.onlyReadsMemory()) 7455 return false; 7456 7457 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7458 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7459 EVT VT = Tmp0.getValueType(); 7460 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7461 return true; 7462 } 7463 7464 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7465 // Handle inline assembly differently. 7466 if (isa<InlineAsm>(I.getCalledValue())) { 7467 visitInlineAsm(&I); 7468 return; 7469 } 7470 7471 if (Function *F = I.getCalledFunction()) { 7472 if (F->isDeclaration()) { 7473 // Is this an LLVM intrinsic or a target-specific intrinsic? 7474 unsigned IID = F->getIntrinsicID(); 7475 if (!IID) 7476 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7477 IID = II->getIntrinsicID(F); 7478 7479 if (IID) { 7480 visitIntrinsicCall(I, IID); 7481 return; 7482 } 7483 } 7484 7485 // Check for well-known libc/libm calls. If the function is internal, it 7486 // can't be a library call. Don't do the check if marked as nobuiltin for 7487 // some reason or the call site requires strict floating point semantics. 7488 LibFunc Func; 7489 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7490 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7491 LibInfo->hasOptimizedCodeGen(Func)) { 7492 switch (Func) { 7493 default: break; 7494 case LibFunc_copysign: 7495 case LibFunc_copysignf: 7496 case LibFunc_copysignl: 7497 // We already checked this call's prototype; verify it doesn't modify 7498 // errno. 7499 if (I.onlyReadsMemory()) { 7500 SDValue LHS = getValue(I.getArgOperand(0)); 7501 SDValue RHS = getValue(I.getArgOperand(1)); 7502 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7503 LHS.getValueType(), LHS, RHS)); 7504 return; 7505 } 7506 break; 7507 case LibFunc_fabs: 7508 case LibFunc_fabsf: 7509 case LibFunc_fabsl: 7510 if (visitUnaryFloatCall(I, ISD::FABS)) 7511 return; 7512 break; 7513 case LibFunc_fmin: 7514 case LibFunc_fminf: 7515 case LibFunc_fminl: 7516 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7517 return; 7518 break; 7519 case LibFunc_fmax: 7520 case LibFunc_fmaxf: 7521 case LibFunc_fmaxl: 7522 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7523 return; 7524 break; 7525 case LibFunc_sin: 7526 case LibFunc_sinf: 7527 case LibFunc_sinl: 7528 if (visitUnaryFloatCall(I, ISD::FSIN)) 7529 return; 7530 break; 7531 case LibFunc_cos: 7532 case LibFunc_cosf: 7533 case LibFunc_cosl: 7534 if (visitUnaryFloatCall(I, ISD::FCOS)) 7535 return; 7536 break; 7537 case LibFunc_sqrt: 7538 case LibFunc_sqrtf: 7539 case LibFunc_sqrtl: 7540 case LibFunc_sqrt_finite: 7541 case LibFunc_sqrtf_finite: 7542 case LibFunc_sqrtl_finite: 7543 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7544 return; 7545 break; 7546 case LibFunc_floor: 7547 case LibFunc_floorf: 7548 case LibFunc_floorl: 7549 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7550 return; 7551 break; 7552 case LibFunc_nearbyint: 7553 case LibFunc_nearbyintf: 7554 case LibFunc_nearbyintl: 7555 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7556 return; 7557 break; 7558 case LibFunc_ceil: 7559 case LibFunc_ceilf: 7560 case LibFunc_ceill: 7561 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7562 return; 7563 break; 7564 case LibFunc_rint: 7565 case LibFunc_rintf: 7566 case LibFunc_rintl: 7567 if (visitUnaryFloatCall(I, ISD::FRINT)) 7568 return; 7569 break; 7570 case LibFunc_round: 7571 case LibFunc_roundf: 7572 case LibFunc_roundl: 7573 if (visitUnaryFloatCall(I, ISD::FROUND)) 7574 return; 7575 break; 7576 case LibFunc_trunc: 7577 case LibFunc_truncf: 7578 case LibFunc_truncl: 7579 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7580 return; 7581 break; 7582 case LibFunc_log2: 7583 case LibFunc_log2f: 7584 case LibFunc_log2l: 7585 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7586 return; 7587 break; 7588 case LibFunc_exp2: 7589 case LibFunc_exp2f: 7590 case LibFunc_exp2l: 7591 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7592 return; 7593 break; 7594 case LibFunc_memcmp: 7595 if (visitMemCmpCall(I)) 7596 return; 7597 break; 7598 case LibFunc_mempcpy: 7599 if (visitMemPCpyCall(I)) 7600 return; 7601 break; 7602 case LibFunc_memchr: 7603 if (visitMemChrCall(I)) 7604 return; 7605 break; 7606 case LibFunc_strcpy: 7607 if (visitStrCpyCall(I, false)) 7608 return; 7609 break; 7610 case LibFunc_stpcpy: 7611 if (visitStrCpyCall(I, true)) 7612 return; 7613 break; 7614 case LibFunc_strcmp: 7615 if (visitStrCmpCall(I)) 7616 return; 7617 break; 7618 case LibFunc_strlen: 7619 if (visitStrLenCall(I)) 7620 return; 7621 break; 7622 case LibFunc_strnlen: 7623 if (visitStrNLenCall(I)) 7624 return; 7625 break; 7626 } 7627 } 7628 } 7629 7630 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7631 // have to do anything here to lower funclet bundles. 7632 assert(!I.hasOperandBundlesOtherThan( 7633 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7634 "Cannot lower calls with arbitrary operand bundles!"); 7635 7636 SDValue Callee = getValue(I.getCalledValue()); 7637 7638 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7639 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7640 else 7641 // Check if we can potentially perform a tail call. More detailed checking 7642 // is be done within LowerCallTo, after more information about the call is 7643 // known. 7644 LowerCallTo(&I, Callee, I.isTailCall()); 7645 } 7646 7647 namespace { 7648 7649 /// AsmOperandInfo - This contains information for each constraint that we are 7650 /// lowering. 7651 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7652 public: 7653 /// CallOperand - If this is the result output operand or a clobber 7654 /// this is null, otherwise it is the incoming operand to the CallInst. 7655 /// This gets modified as the asm is processed. 7656 SDValue CallOperand; 7657 7658 /// AssignedRegs - If this is a register or register class operand, this 7659 /// contains the set of register corresponding to the operand. 7660 RegsForValue AssignedRegs; 7661 7662 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7663 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7664 } 7665 7666 /// Whether or not this operand accesses memory 7667 bool hasMemory(const TargetLowering &TLI) const { 7668 // Indirect operand accesses access memory. 7669 if (isIndirect) 7670 return true; 7671 7672 for (const auto &Code : Codes) 7673 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7674 return true; 7675 7676 return false; 7677 } 7678 7679 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7680 /// corresponds to. If there is no Value* for this operand, it returns 7681 /// MVT::Other. 7682 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7683 const DataLayout &DL) const { 7684 if (!CallOperandVal) return MVT::Other; 7685 7686 if (isa<BasicBlock>(CallOperandVal)) 7687 return TLI.getPointerTy(DL); 7688 7689 llvm::Type *OpTy = CallOperandVal->getType(); 7690 7691 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7692 // If this is an indirect operand, the operand is a pointer to the 7693 // accessed type. 7694 if (isIndirect) { 7695 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7696 if (!PtrTy) 7697 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7698 OpTy = PtrTy->getElementType(); 7699 } 7700 7701 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7702 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7703 if (STy->getNumElements() == 1) 7704 OpTy = STy->getElementType(0); 7705 7706 // If OpTy is not a single value, it may be a struct/union that we 7707 // can tile with integers. 7708 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7709 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7710 switch (BitSize) { 7711 default: break; 7712 case 1: 7713 case 8: 7714 case 16: 7715 case 32: 7716 case 64: 7717 case 128: 7718 OpTy = IntegerType::get(Context, BitSize); 7719 break; 7720 } 7721 } 7722 7723 return TLI.getValueType(DL, OpTy, true); 7724 } 7725 }; 7726 7727 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7728 7729 } // end anonymous namespace 7730 7731 /// Make sure that the output operand \p OpInfo and its corresponding input 7732 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7733 /// out). 7734 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7735 SDISelAsmOperandInfo &MatchingOpInfo, 7736 SelectionDAG &DAG) { 7737 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7738 return; 7739 7740 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7741 const auto &TLI = DAG.getTargetLoweringInfo(); 7742 7743 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7744 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7745 OpInfo.ConstraintVT); 7746 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7747 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7748 MatchingOpInfo.ConstraintVT); 7749 if ((OpInfo.ConstraintVT.isInteger() != 7750 MatchingOpInfo.ConstraintVT.isInteger()) || 7751 (MatchRC.second != InputRC.second)) { 7752 // FIXME: error out in a more elegant fashion 7753 report_fatal_error("Unsupported asm: input constraint" 7754 " with a matching output constraint of" 7755 " incompatible type!"); 7756 } 7757 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7758 } 7759 7760 /// Get a direct memory input to behave well as an indirect operand. 7761 /// This may introduce stores, hence the need for a \p Chain. 7762 /// \return The (possibly updated) chain. 7763 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7764 SDISelAsmOperandInfo &OpInfo, 7765 SelectionDAG &DAG) { 7766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7767 7768 // If we don't have an indirect input, put it in the constpool if we can, 7769 // otherwise spill it to a stack slot. 7770 // TODO: This isn't quite right. We need to handle these according to 7771 // the addressing mode that the constraint wants. Also, this may take 7772 // an additional register for the computation and we don't want that 7773 // either. 7774 7775 // If the operand is a float, integer, or vector constant, spill to a 7776 // constant pool entry to get its address. 7777 const Value *OpVal = OpInfo.CallOperandVal; 7778 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7779 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7780 OpInfo.CallOperand = DAG.getConstantPool( 7781 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7782 return Chain; 7783 } 7784 7785 // Otherwise, create a stack slot and emit a store to it before the asm. 7786 Type *Ty = OpVal->getType(); 7787 auto &DL = DAG.getDataLayout(); 7788 uint64_t TySize = DL.getTypeAllocSize(Ty); 7789 unsigned Align = DL.getPrefTypeAlignment(Ty); 7790 MachineFunction &MF = DAG.getMachineFunction(); 7791 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7792 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7793 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7794 MachinePointerInfo::getFixedStack(MF, SSFI), 7795 TLI.getMemValueType(DL, Ty)); 7796 OpInfo.CallOperand = StackSlot; 7797 7798 return Chain; 7799 } 7800 7801 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7802 /// specified operand. We prefer to assign virtual registers, to allow the 7803 /// register allocator to handle the assignment process. However, if the asm 7804 /// uses features that we can't model on machineinstrs, we have SDISel do the 7805 /// allocation. This produces generally horrible, but correct, code. 7806 /// 7807 /// OpInfo describes the operand 7808 /// RefOpInfo describes the matching operand if any, the operand otherwise 7809 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7810 SDISelAsmOperandInfo &OpInfo, 7811 SDISelAsmOperandInfo &RefOpInfo) { 7812 LLVMContext &Context = *DAG.getContext(); 7813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7814 7815 MachineFunction &MF = DAG.getMachineFunction(); 7816 SmallVector<unsigned, 4> Regs; 7817 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7818 7819 // No work to do for memory operations. 7820 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7821 return; 7822 7823 // If this is a constraint for a single physreg, or a constraint for a 7824 // register class, find it. 7825 unsigned AssignedReg; 7826 const TargetRegisterClass *RC; 7827 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7828 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7829 // RC is unset only on failure. Return immediately. 7830 if (!RC) 7831 return; 7832 7833 // Get the actual register value type. This is important, because the user 7834 // may have asked for (e.g.) the AX register in i32 type. We need to 7835 // remember that AX is actually i16 to get the right extension. 7836 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7837 7838 if (OpInfo.ConstraintVT != MVT::Other) { 7839 // If this is an FP operand in an integer register (or visa versa), or more 7840 // generally if the operand value disagrees with the register class we plan 7841 // to stick it in, fix the operand type. 7842 // 7843 // If this is an input value, the bitcast to the new type is done now. 7844 // Bitcast for output value is done at the end of visitInlineAsm(). 7845 if ((OpInfo.Type == InlineAsm::isOutput || 7846 OpInfo.Type == InlineAsm::isInput) && 7847 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7848 // Try to convert to the first EVT that the reg class contains. If the 7849 // types are identical size, use a bitcast to convert (e.g. two differing 7850 // vector types). Note: output bitcast is done at the end of 7851 // visitInlineAsm(). 7852 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7853 // Exclude indirect inputs while they are unsupported because the code 7854 // to perform the load is missing and thus OpInfo.CallOperand still 7855 // refers to the input address rather than the pointed-to value. 7856 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7857 OpInfo.CallOperand = 7858 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7859 OpInfo.ConstraintVT = RegVT; 7860 // If the operand is an FP value and we want it in integer registers, 7861 // use the corresponding integer type. This turns an f64 value into 7862 // i64, which can be passed with two i32 values on a 32-bit machine. 7863 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7864 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7865 if (OpInfo.Type == InlineAsm::isInput) 7866 OpInfo.CallOperand = 7867 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7868 OpInfo.ConstraintVT = VT; 7869 } 7870 } 7871 } 7872 7873 // No need to allocate a matching input constraint since the constraint it's 7874 // matching to has already been allocated. 7875 if (OpInfo.isMatchingInputConstraint()) 7876 return; 7877 7878 EVT ValueVT = OpInfo.ConstraintVT; 7879 if (OpInfo.ConstraintVT == MVT::Other) 7880 ValueVT = RegVT; 7881 7882 // Initialize NumRegs. 7883 unsigned NumRegs = 1; 7884 if (OpInfo.ConstraintVT != MVT::Other) 7885 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7886 7887 // If this is a constraint for a specific physical register, like {r17}, 7888 // assign it now. 7889 7890 // If this associated to a specific register, initialize iterator to correct 7891 // place. If virtual, make sure we have enough registers 7892 7893 // Initialize iterator if necessary 7894 TargetRegisterClass::iterator I = RC->begin(); 7895 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7896 7897 // Do not check for single registers. 7898 if (AssignedReg) { 7899 for (; *I != AssignedReg; ++I) 7900 assert(I != RC->end() && "AssignedReg should be member of RC"); 7901 } 7902 7903 for (; NumRegs; --NumRegs, ++I) { 7904 assert(I != RC->end() && "Ran out of registers to allocate!"); 7905 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7906 Regs.push_back(R); 7907 } 7908 7909 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7910 } 7911 7912 static unsigned 7913 findMatchingInlineAsmOperand(unsigned OperandNo, 7914 const std::vector<SDValue> &AsmNodeOperands) { 7915 // Scan until we find the definition we already emitted of this operand. 7916 unsigned CurOp = InlineAsm::Op_FirstOperand; 7917 for (; OperandNo; --OperandNo) { 7918 // Advance to the next operand. 7919 unsigned OpFlag = 7920 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7921 assert((InlineAsm::isRegDefKind(OpFlag) || 7922 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7923 InlineAsm::isMemKind(OpFlag)) && 7924 "Skipped past definitions?"); 7925 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7926 } 7927 return CurOp; 7928 } 7929 7930 namespace { 7931 7932 class ExtraFlags { 7933 unsigned Flags = 0; 7934 7935 public: 7936 explicit ExtraFlags(ImmutableCallSite CS) { 7937 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7938 if (IA->hasSideEffects()) 7939 Flags |= InlineAsm::Extra_HasSideEffects; 7940 if (IA->isAlignStack()) 7941 Flags |= InlineAsm::Extra_IsAlignStack; 7942 if (CS.isConvergent()) 7943 Flags |= InlineAsm::Extra_IsConvergent; 7944 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7945 } 7946 7947 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7948 // Ideally, we would only check against memory constraints. However, the 7949 // meaning of an Other constraint can be target-specific and we can't easily 7950 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7951 // for Other constraints as well. 7952 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7953 OpInfo.ConstraintType == TargetLowering::C_Other) { 7954 if (OpInfo.Type == InlineAsm::isInput) 7955 Flags |= InlineAsm::Extra_MayLoad; 7956 else if (OpInfo.Type == InlineAsm::isOutput) 7957 Flags |= InlineAsm::Extra_MayStore; 7958 else if (OpInfo.Type == InlineAsm::isClobber) 7959 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7960 } 7961 } 7962 7963 unsigned get() const { return Flags; } 7964 }; 7965 7966 } // end anonymous namespace 7967 7968 /// visitInlineAsm - Handle a call to an InlineAsm object. 7969 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7970 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7971 7972 /// ConstraintOperands - Information about all of the constraints. 7973 SDISelAsmOperandInfoVector ConstraintOperands; 7974 7975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7976 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7977 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7978 7979 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7980 // AsmDialect, MayLoad, MayStore). 7981 bool HasSideEffect = IA->hasSideEffects(); 7982 ExtraFlags ExtraInfo(CS); 7983 7984 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7985 unsigned ResNo = 0; // ResNo - The result number of the next output. 7986 for (auto &T : TargetConstraints) { 7987 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7988 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7989 7990 // Compute the value type for each operand. 7991 if (OpInfo.Type == InlineAsm::isInput || 7992 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7993 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7994 7995 // Process the call argument. BasicBlocks are labels, currently appearing 7996 // only in asm's. 7997 const Instruction *I = CS.getInstruction(); 7998 if (isa<CallBrInst>(I) && 7999 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8000 cast<CallBrInst>(I)->getNumIndirectDests())) { 8001 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8002 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8003 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8004 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8005 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8006 } else { 8007 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8008 } 8009 8010 OpInfo.ConstraintVT = 8011 OpInfo 8012 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8013 .getSimpleVT(); 8014 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8015 // The return value of the call is this value. As such, there is no 8016 // corresponding argument. 8017 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8018 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8019 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8020 DAG.getDataLayout(), STy->getElementType(ResNo)); 8021 } else { 8022 assert(ResNo == 0 && "Asm only has one result!"); 8023 OpInfo.ConstraintVT = 8024 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8025 } 8026 ++ResNo; 8027 } else { 8028 OpInfo.ConstraintVT = MVT::Other; 8029 } 8030 8031 if (!HasSideEffect) 8032 HasSideEffect = OpInfo.hasMemory(TLI); 8033 8034 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8035 // FIXME: Could we compute this on OpInfo rather than T? 8036 8037 // Compute the constraint code and ConstraintType to use. 8038 TLI.ComputeConstraintToUse(T, SDValue()); 8039 8040 ExtraInfo.update(T); 8041 } 8042 8043 8044 // We won't need to flush pending loads if this asm doesn't touch 8045 // memory and is nonvolatile. 8046 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8047 8048 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8049 if (IsCallBr) { 8050 // If this is a callbr we need to flush pending exports since inlineasm_br 8051 // is a terminator. We need to do this before nodes are glued to 8052 // the inlineasm_br node. 8053 Chain = getControlRoot(); 8054 } 8055 8056 // Second pass over the constraints: compute which constraint option to use. 8057 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8058 // If this is an output operand with a matching input operand, look up the 8059 // matching input. If their types mismatch, e.g. one is an integer, the 8060 // other is floating point, or their sizes are different, flag it as an 8061 // error. 8062 if (OpInfo.hasMatchingInput()) { 8063 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8064 patchMatchingInput(OpInfo, Input, DAG); 8065 } 8066 8067 // Compute the constraint code and ConstraintType to use. 8068 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8069 8070 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8071 OpInfo.Type == InlineAsm::isClobber) 8072 continue; 8073 8074 // If this is a memory input, and if the operand is not indirect, do what we 8075 // need to provide an address for the memory input. 8076 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8077 !OpInfo.isIndirect) { 8078 assert((OpInfo.isMultipleAlternative || 8079 (OpInfo.Type == InlineAsm::isInput)) && 8080 "Can only indirectify direct input operands!"); 8081 8082 // Memory operands really want the address of the value. 8083 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8084 8085 // There is no longer a Value* corresponding to this operand. 8086 OpInfo.CallOperandVal = nullptr; 8087 8088 // It is now an indirect operand. 8089 OpInfo.isIndirect = true; 8090 } 8091 8092 } 8093 8094 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8095 std::vector<SDValue> AsmNodeOperands; 8096 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8097 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8098 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8099 8100 // If we have a !srcloc metadata node associated with it, we want to attach 8101 // this to the ultimately generated inline asm machineinstr. To do this, we 8102 // pass in the third operand as this (potentially null) inline asm MDNode. 8103 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8104 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8105 8106 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8107 // bits as operand 3. 8108 AsmNodeOperands.push_back(DAG.getTargetConstant( 8109 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8110 8111 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8112 // this, assign virtual and physical registers for inputs and otput. 8113 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8114 // Assign Registers. 8115 SDISelAsmOperandInfo &RefOpInfo = 8116 OpInfo.isMatchingInputConstraint() 8117 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8118 : OpInfo; 8119 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8120 8121 switch (OpInfo.Type) { 8122 case InlineAsm::isOutput: 8123 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8124 (OpInfo.ConstraintType == TargetLowering::C_Other && 8125 OpInfo.isIndirect)) { 8126 unsigned ConstraintID = 8127 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8128 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8129 "Failed to convert memory constraint code to constraint id."); 8130 8131 // Add information to the INLINEASM node to know about this output. 8132 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8133 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8134 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8135 MVT::i32)); 8136 AsmNodeOperands.push_back(OpInfo.CallOperand); 8137 break; 8138 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8139 !OpInfo.isIndirect) || 8140 OpInfo.ConstraintType == TargetLowering::C_Register || 8141 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8142 // Otherwise, this outputs to a register (directly for C_Register / 8143 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8144 // register that we can use. 8145 if (OpInfo.AssignedRegs.Regs.empty()) { 8146 emitInlineAsmError( 8147 CS, "couldn't allocate output register for constraint '" + 8148 Twine(OpInfo.ConstraintCode) + "'"); 8149 return; 8150 } 8151 8152 // Add information to the INLINEASM node to know that this register is 8153 // set. 8154 OpInfo.AssignedRegs.AddInlineAsmOperands( 8155 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8156 : InlineAsm::Kind_RegDef, 8157 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8158 } 8159 break; 8160 8161 case InlineAsm::isInput: { 8162 SDValue InOperandVal = OpInfo.CallOperand; 8163 8164 if (OpInfo.isMatchingInputConstraint()) { 8165 // If this is required to match an output register we have already set, 8166 // just use its register. 8167 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8168 AsmNodeOperands); 8169 unsigned OpFlag = 8170 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8171 if (InlineAsm::isRegDefKind(OpFlag) || 8172 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8173 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8174 if (OpInfo.isIndirect) { 8175 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8176 emitInlineAsmError(CS, "inline asm not supported yet:" 8177 " don't know how to handle tied " 8178 "indirect register inputs"); 8179 return; 8180 } 8181 8182 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8183 SmallVector<unsigned, 4> Regs; 8184 8185 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8186 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8187 MachineRegisterInfo &RegInfo = 8188 DAG.getMachineFunction().getRegInfo(); 8189 for (unsigned i = 0; i != NumRegs; ++i) 8190 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8191 } else { 8192 emitInlineAsmError(CS, "inline asm error: This value type register " 8193 "class is not natively supported!"); 8194 return; 8195 } 8196 8197 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8198 8199 SDLoc dl = getCurSDLoc(); 8200 // Use the produced MatchedRegs object to 8201 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8202 CS.getInstruction()); 8203 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8204 true, OpInfo.getMatchedOperand(), dl, 8205 DAG, AsmNodeOperands); 8206 break; 8207 } 8208 8209 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8210 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8211 "Unexpected number of operands"); 8212 // Add information to the INLINEASM node to know about this input. 8213 // See InlineAsm.h isUseOperandTiedToDef. 8214 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8215 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8216 OpInfo.getMatchedOperand()); 8217 AsmNodeOperands.push_back(DAG.getTargetConstant( 8218 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8219 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8220 break; 8221 } 8222 8223 // Treat indirect 'X' constraint as memory. 8224 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8225 OpInfo.isIndirect) 8226 OpInfo.ConstraintType = TargetLowering::C_Memory; 8227 8228 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8229 std::vector<SDValue> Ops; 8230 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8231 Ops, DAG); 8232 if (Ops.empty()) { 8233 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8234 Twine(OpInfo.ConstraintCode) + "'"); 8235 return; 8236 } 8237 8238 // Add information to the INLINEASM node to know about this input. 8239 unsigned ResOpType = 8240 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8241 AsmNodeOperands.push_back(DAG.getTargetConstant( 8242 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8243 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8244 break; 8245 } 8246 8247 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8248 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8249 assert(InOperandVal.getValueType() == 8250 TLI.getPointerTy(DAG.getDataLayout()) && 8251 "Memory operands expect pointer values"); 8252 8253 unsigned ConstraintID = 8254 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8255 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8256 "Failed to convert memory constraint code to constraint id."); 8257 8258 // Add information to the INLINEASM node to know about this input. 8259 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8260 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8261 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8262 getCurSDLoc(), 8263 MVT::i32)); 8264 AsmNodeOperands.push_back(InOperandVal); 8265 break; 8266 } 8267 8268 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8269 OpInfo.ConstraintType == TargetLowering::C_Register) && 8270 "Unknown constraint type!"); 8271 8272 // TODO: Support this. 8273 if (OpInfo.isIndirect) { 8274 emitInlineAsmError( 8275 CS, "Don't know how to handle indirect register inputs yet " 8276 "for constraint '" + 8277 Twine(OpInfo.ConstraintCode) + "'"); 8278 return; 8279 } 8280 8281 // Copy the input into the appropriate registers. 8282 if (OpInfo.AssignedRegs.Regs.empty()) { 8283 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8284 Twine(OpInfo.ConstraintCode) + "'"); 8285 return; 8286 } 8287 8288 SDLoc dl = getCurSDLoc(); 8289 8290 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8291 Chain, &Flag, CS.getInstruction()); 8292 8293 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8294 dl, DAG, AsmNodeOperands); 8295 break; 8296 } 8297 case InlineAsm::isClobber: 8298 // Add the clobbered value to the operand list, so that the register 8299 // allocator is aware that the physreg got clobbered. 8300 if (!OpInfo.AssignedRegs.Regs.empty()) 8301 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8302 false, 0, getCurSDLoc(), DAG, 8303 AsmNodeOperands); 8304 break; 8305 } 8306 } 8307 8308 // Finish up input operands. Set the input chain and add the flag last. 8309 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8310 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8311 8312 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8313 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8314 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8315 Flag = Chain.getValue(1); 8316 8317 // Do additional work to generate outputs. 8318 8319 SmallVector<EVT, 1> ResultVTs; 8320 SmallVector<SDValue, 1> ResultValues; 8321 SmallVector<SDValue, 8> OutChains; 8322 8323 llvm::Type *CSResultType = CS.getType(); 8324 ArrayRef<Type *> ResultTypes; 8325 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8326 ResultTypes = StructResult->elements(); 8327 else if (!CSResultType->isVoidTy()) 8328 ResultTypes = makeArrayRef(CSResultType); 8329 8330 auto CurResultType = ResultTypes.begin(); 8331 auto handleRegAssign = [&](SDValue V) { 8332 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8333 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8334 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8335 ++CurResultType; 8336 // If the type of the inline asm call site return value is different but has 8337 // same size as the type of the asm output bitcast it. One example of this 8338 // is for vectors with different width / number of elements. This can 8339 // happen for register classes that can contain multiple different value 8340 // types. The preg or vreg allocated may not have the same VT as was 8341 // expected. 8342 // 8343 // This can also happen for a return value that disagrees with the register 8344 // class it is put in, eg. a double in a general-purpose register on a 8345 // 32-bit machine. 8346 if (ResultVT != V.getValueType() && 8347 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8348 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8349 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8350 V.getValueType().isInteger()) { 8351 // If a result value was tied to an input value, the computed result 8352 // may have a wider width than the expected result. Extract the 8353 // relevant portion. 8354 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8355 } 8356 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8357 ResultVTs.push_back(ResultVT); 8358 ResultValues.push_back(V); 8359 }; 8360 8361 // Deal with output operands. 8362 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8363 if (OpInfo.Type == InlineAsm::isOutput) { 8364 SDValue Val; 8365 // Skip trivial output operands. 8366 if (OpInfo.AssignedRegs.Regs.empty()) 8367 continue; 8368 8369 switch (OpInfo.ConstraintType) { 8370 case TargetLowering::C_Register: 8371 case TargetLowering::C_RegisterClass: 8372 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8373 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8374 break; 8375 case TargetLowering::C_Other: 8376 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8377 OpInfo, DAG); 8378 break; 8379 case TargetLowering::C_Memory: 8380 break; // Already handled. 8381 case TargetLowering::C_Unknown: 8382 assert(false && "Unexpected unknown constraint"); 8383 } 8384 8385 // Indirect output manifest as stores. Record output chains. 8386 if (OpInfo.isIndirect) { 8387 const Value *Ptr = OpInfo.CallOperandVal; 8388 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8389 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8390 MachinePointerInfo(Ptr)); 8391 OutChains.push_back(Store); 8392 } else { 8393 // generate CopyFromRegs to associated registers. 8394 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8395 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8396 for (const SDValue &V : Val->op_values()) 8397 handleRegAssign(V); 8398 } else 8399 handleRegAssign(Val); 8400 } 8401 } 8402 } 8403 8404 // Set results. 8405 if (!ResultValues.empty()) { 8406 assert(CurResultType == ResultTypes.end() && 8407 "Mismatch in number of ResultTypes"); 8408 assert(ResultValues.size() == ResultTypes.size() && 8409 "Mismatch in number of output operands in asm result"); 8410 8411 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8412 DAG.getVTList(ResultVTs), ResultValues); 8413 setValue(CS.getInstruction(), V); 8414 } 8415 8416 // Collect store chains. 8417 if (!OutChains.empty()) 8418 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8419 8420 // Only Update Root if inline assembly has a memory effect. 8421 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8422 DAG.setRoot(Chain); 8423 } 8424 8425 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8426 const Twine &Message) { 8427 LLVMContext &Ctx = *DAG.getContext(); 8428 Ctx.emitError(CS.getInstruction(), Message); 8429 8430 // Make sure we leave the DAG in a valid state 8431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8432 SmallVector<EVT, 1> ValueVTs; 8433 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8434 8435 if (ValueVTs.empty()) 8436 return; 8437 8438 SmallVector<SDValue, 1> Ops; 8439 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8440 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8441 8442 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8443 } 8444 8445 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8446 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8447 MVT::Other, getRoot(), 8448 getValue(I.getArgOperand(0)), 8449 DAG.getSrcValue(I.getArgOperand(0)))); 8450 } 8451 8452 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8454 const DataLayout &DL = DAG.getDataLayout(); 8455 SDValue V = DAG.getVAArg( 8456 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8457 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8458 DL.getABITypeAlignment(I.getType())); 8459 DAG.setRoot(V.getValue(1)); 8460 8461 if (I.getType()->isPointerTy()) 8462 V = DAG.getPtrExtOrTrunc( 8463 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8464 setValue(&I, V); 8465 } 8466 8467 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8468 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8469 MVT::Other, getRoot(), 8470 getValue(I.getArgOperand(0)), 8471 DAG.getSrcValue(I.getArgOperand(0)))); 8472 } 8473 8474 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8475 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8476 MVT::Other, getRoot(), 8477 getValue(I.getArgOperand(0)), 8478 getValue(I.getArgOperand(1)), 8479 DAG.getSrcValue(I.getArgOperand(0)), 8480 DAG.getSrcValue(I.getArgOperand(1)))); 8481 } 8482 8483 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8484 const Instruction &I, 8485 SDValue Op) { 8486 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8487 if (!Range) 8488 return Op; 8489 8490 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8491 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8492 return Op; 8493 8494 APInt Lo = CR.getUnsignedMin(); 8495 if (!Lo.isMinValue()) 8496 return Op; 8497 8498 APInt Hi = CR.getUnsignedMax(); 8499 unsigned Bits = std::max(Hi.getActiveBits(), 8500 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8501 8502 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8503 8504 SDLoc SL = getCurSDLoc(); 8505 8506 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8507 DAG.getValueType(SmallVT)); 8508 unsigned NumVals = Op.getNode()->getNumValues(); 8509 if (NumVals == 1) 8510 return ZExt; 8511 8512 SmallVector<SDValue, 4> Ops; 8513 8514 Ops.push_back(ZExt); 8515 for (unsigned I = 1; I != NumVals; ++I) 8516 Ops.push_back(Op.getValue(I)); 8517 8518 return DAG.getMergeValues(Ops, SL); 8519 } 8520 8521 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8522 /// the call being lowered. 8523 /// 8524 /// This is a helper for lowering intrinsics that follow a target calling 8525 /// convention or require stack pointer adjustment. Only a subset of the 8526 /// intrinsic's operands need to participate in the calling convention. 8527 void SelectionDAGBuilder::populateCallLoweringInfo( 8528 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8529 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8530 bool IsPatchPoint) { 8531 TargetLowering::ArgListTy Args; 8532 Args.reserve(NumArgs); 8533 8534 // Populate the argument list. 8535 // Attributes for args start at offset 1, after the return attribute. 8536 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8537 ArgI != ArgE; ++ArgI) { 8538 const Value *V = Call->getOperand(ArgI); 8539 8540 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8541 8542 TargetLowering::ArgListEntry Entry; 8543 Entry.Node = getValue(V); 8544 Entry.Ty = V->getType(); 8545 Entry.setAttributes(Call, ArgI); 8546 Args.push_back(Entry); 8547 } 8548 8549 CLI.setDebugLoc(getCurSDLoc()) 8550 .setChain(getRoot()) 8551 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8552 .setDiscardResult(Call->use_empty()) 8553 .setIsPatchPoint(IsPatchPoint); 8554 } 8555 8556 /// Add a stack map intrinsic call's live variable operands to a stackmap 8557 /// or patchpoint target node's operand list. 8558 /// 8559 /// Constants are converted to TargetConstants purely as an optimization to 8560 /// avoid constant materialization and register allocation. 8561 /// 8562 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8563 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8564 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8565 /// address materialization and register allocation, but may also be required 8566 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8567 /// alloca in the entry block, then the runtime may assume that the alloca's 8568 /// StackMap location can be read immediately after compilation and that the 8569 /// location is valid at any point during execution (this is similar to the 8570 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8571 /// only available in a register, then the runtime would need to trap when 8572 /// execution reaches the StackMap in order to read the alloca's location. 8573 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8574 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8575 SelectionDAGBuilder &Builder) { 8576 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8577 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8578 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8579 Ops.push_back( 8580 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8581 Ops.push_back( 8582 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8583 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8584 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8585 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8586 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8587 } else 8588 Ops.push_back(OpVal); 8589 } 8590 } 8591 8592 /// Lower llvm.experimental.stackmap directly to its target opcode. 8593 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8594 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8595 // [live variables...]) 8596 8597 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8598 8599 SDValue Chain, InFlag, Callee, NullPtr; 8600 SmallVector<SDValue, 32> Ops; 8601 8602 SDLoc DL = getCurSDLoc(); 8603 Callee = getValue(CI.getCalledValue()); 8604 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8605 8606 // The stackmap intrinsic only records the live variables (the arguemnts 8607 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8608 // intrinsic, this won't be lowered to a function call. This means we don't 8609 // have to worry about calling conventions and target specific lowering code. 8610 // Instead we perform the call lowering right here. 8611 // 8612 // chain, flag = CALLSEQ_START(chain, 0, 0) 8613 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8614 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8615 // 8616 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8617 InFlag = Chain.getValue(1); 8618 8619 // Add the <id> and <numBytes> constants. 8620 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8621 Ops.push_back(DAG.getTargetConstant( 8622 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8623 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8624 Ops.push_back(DAG.getTargetConstant( 8625 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8626 MVT::i32)); 8627 8628 // Push live variables for the stack map. 8629 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8630 8631 // We are not pushing any register mask info here on the operands list, 8632 // because the stackmap doesn't clobber anything. 8633 8634 // Push the chain and the glue flag. 8635 Ops.push_back(Chain); 8636 Ops.push_back(InFlag); 8637 8638 // Create the STACKMAP node. 8639 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8640 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8641 Chain = SDValue(SM, 0); 8642 InFlag = Chain.getValue(1); 8643 8644 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8645 8646 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8647 8648 // Set the root to the target-lowered call chain. 8649 DAG.setRoot(Chain); 8650 8651 // Inform the Frame Information that we have a stackmap in this function. 8652 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8653 } 8654 8655 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8656 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8657 const BasicBlock *EHPadBB) { 8658 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8659 // i32 <numBytes>, 8660 // i8* <target>, 8661 // i32 <numArgs>, 8662 // [Args...], 8663 // [live variables...]) 8664 8665 CallingConv::ID CC = CS.getCallingConv(); 8666 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8667 bool HasDef = !CS->getType()->isVoidTy(); 8668 SDLoc dl = getCurSDLoc(); 8669 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8670 8671 // Handle immediate and symbolic callees. 8672 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8673 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8674 /*isTarget=*/true); 8675 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8676 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8677 SDLoc(SymbolicCallee), 8678 SymbolicCallee->getValueType(0)); 8679 8680 // Get the real number of arguments participating in the call <numArgs> 8681 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8682 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8683 8684 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8685 // Intrinsics include all meta-operands up to but not including CC. 8686 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8687 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8688 "Not enough arguments provided to the patchpoint intrinsic"); 8689 8690 // For AnyRegCC the arguments are lowered later on manually. 8691 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8692 Type *ReturnTy = 8693 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8694 8695 TargetLowering::CallLoweringInfo CLI(DAG); 8696 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8697 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8698 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8699 8700 SDNode *CallEnd = Result.second.getNode(); 8701 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8702 CallEnd = CallEnd->getOperand(0).getNode(); 8703 8704 /// Get a call instruction from the call sequence chain. 8705 /// Tail calls are not allowed. 8706 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8707 "Expected a callseq node."); 8708 SDNode *Call = CallEnd->getOperand(0).getNode(); 8709 bool HasGlue = Call->getGluedNode(); 8710 8711 // Replace the target specific call node with the patchable intrinsic. 8712 SmallVector<SDValue, 8> Ops; 8713 8714 // Add the <id> and <numBytes> constants. 8715 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8716 Ops.push_back(DAG.getTargetConstant( 8717 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8718 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8719 Ops.push_back(DAG.getTargetConstant( 8720 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8721 MVT::i32)); 8722 8723 // Add the callee. 8724 Ops.push_back(Callee); 8725 8726 // Adjust <numArgs> to account for any arguments that have been passed on the 8727 // stack instead. 8728 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8729 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8730 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8731 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8732 8733 // Add the calling convention 8734 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8735 8736 // Add the arguments we omitted previously. The register allocator should 8737 // place these in any free register. 8738 if (IsAnyRegCC) 8739 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8740 Ops.push_back(getValue(CS.getArgument(i))); 8741 8742 // Push the arguments from the call instruction up to the register mask. 8743 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8744 Ops.append(Call->op_begin() + 2, e); 8745 8746 // Push live variables for the stack map. 8747 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8748 8749 // Push the register mask info. 8750 if (HasGlue) 8751 Ops.push_back(*(Call->op_end()-2)); 8752 else 8753 Ops.push_back(*(Call->op_end()-1)); 8754 8755 // Push the chain (this is originally the first operand of the call, but 8756 // becomes now the last or second to last operand). 8757 Ops.push_back(*(Call->op_begin())); 8758 8759 // Push the glue flag (last operand). 8760 if (HasGlue) 8761 Ops.push_back(*(Call->op_end()-1)); 8762 8763 SDVTList NodeTys; 8764 if (IsAnyRegCC && HasDef) { 8765 // Create the return types based on the intrinsic definition 8766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8767 SmallVector<EVT, 3> ValueVTs; 8768 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8769 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8770 8771 // There is always a chain and a glue type at the end 8772 ValueVTs.push_back(MVT::Other); 8773 ValueVTs.push_back(MVT::Glue); 8774 NodeTys = DAG.getVTList(ValueVTs); 8775 } else 8776 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8777 8778 // Replace the target specific call node with a PATCHPOINT node. 8779 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8780 dl, NodeTys, Ops); 8781 8782 // Update the NodeMap. 8783 if (HasDef) { 8784 if (IsAnyRegCC) 8785 setValue(CS.getInstruction(), SDValue(MN, 0)); 8786 else 8787 setValue(CS.getInstruction(), Result.first); 8788 } 8789 8790 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8791 // call sequence. Furthermore the location of the chain and glue can change 8792 // when the AnyReg calling convention is used and the intrinsic returns a 8793 // value. 8794 if (IsAnyRegCC && HasDef) { 8795 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8796 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8797 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8798 } else 8799 DAG.ReplaceAllUsesWith(Call, MN); 8800 DAG.DeleteNode(Call); 8801 8802 // Inform the Frame Information that we have a patchpoint in this function. 8803 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8804 } 8805 8806 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8807 unsigned Intrinsic) { 8808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8809 SDValue Op1 = getValue(I.getArgOperand(0)); 8810 SDValue Op2; 8811 if (I.getNumArgOperands() > 1) 8812 Op2 = getValue(I.getArgOperand(1)); 8813 SDLoc dl = getCurSDLoc(); 8814 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8815 SDValue Res; 8816 FastMathFlags FMF; 8817 if (isa<FPMathOperator>(I)) 8818 FMF = I.getFastMathFlags(); 8819 8820 switch (Intrinsic) { 8821 case Intrinsic::experimental_vector_reduce_fadd: 8822 if (FMF.isFast()) 8823 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8824 else 8825 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8826 break; 8827 case Intrinsic::experimental_vector_reduce_fmul: 8828 if (FMF.isFast()) 8829 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8830 else 8831 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8832 break; 8833 case Intrinsic::experimental_vector_reduce_add: 8834 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8835 break; 8836 case Intrinsic::experimental_vector_reduce_mul: 8837 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8838 break; 8839 case Intrinsic::experimental_vector_reduce_and: 8840 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8841 break; 8842 case Intrinsic::experimental_vector_reduce_or: 8843 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8844 break; 8845 case Intrinsic::experimental_vector_reduce_xor: 8846 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8847 break; 8848 case Intrinsic::experimental_vector_reduce_smax: 8849 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8850 break; 8851 case Intrinsic::experimental_vector_reduce_smin: 8852 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8853 break; 8854 case Intrinsic::experimental_vector_reduce_umax: 8855 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8856 break; 8857 case Intrinsic::experimental_vector_reduce_umin: 8858 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8859 break; 8860 case Intrinsic::experimental_vector_reduce_fmax: 8861 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8862 break; 8863 case Intrinsic::experimental_vector_reduce_fmin: 8864 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8865 break; 8866 default: 8867 llvm_unreachable("Unhandled vector reduce intrinsic"); 8868 } 8869 setValue(&I, Res); 8870 } 8871 8872 /// Returns an AttributeList representing the attributes applied to the return 8873 /// value of the given call. 8874 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8875 SmallVector<Attribute::AttrKind, 2> Attrs; 8876 if (CLI.RetSExt) 8877 Attrs.push_back(Attribute::SExt); 8878 if (CLI.RetZExt) 8879 Attrs.push_back(Attribute::ZExt); 8880 if (CLI.IsInReg) 8881 Attrs.push_back(Attribute::InReg); 8882 8883 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8884 Attrs); 8885 } 8886 8887 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8888 /// implementation, which just calls LowerCall. 8889 /// FIXME: When all targets are 8890 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8891 std::pair<SDValue, SDValue> 8892 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8893 // Handle the incoming return values from the call. 8894 CLI.Ins.clear(); 8895 Type *OrigRetTy = CLI.RetTy; 8896 SmallVector<EVT, 4> RetTys; 8897 SmallVector<uint64_t, 4> Offsets; 8898 auto &DL = CLI.DAG.getDataLayout(); 8899 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8900 8901 if (CLI.IsPostTypeLegalization) { 8902 // If we are lowering a libcall after legalization, split the return type. 8903 SmallVector<EVT, 4> OldRetTys; 8904 SmallVector<uint64_t, 4> OldOffsets; 8905 RetTys.swap(OldRetTys); 8906 Offsets.swap(OldOffsets); 8907 8908 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8909 EVT RetVT = OldRetTys[i]; 8910 uint64_t Offset = OldOffsets[i]; 8911 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8912 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8913 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8914 RetTys.append(NumRegs, RegisterVT); 8915 for (unsigned j = 0; j != NumRegs; ++j) 8916 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8917 } 8918 } 8919 8920 SmallVector<ISD::OutputArg, 4> Outs; 8921 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8922 8923 bool CanLowerReturn = 8924 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8925 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8926 8927 SDValue DemoteStackSlot; 8928 int DemoteStackIdx = -100; 8929 if (!CanLowerReturn) { 8930 // FIXME: equivalent assert? 8931 // assert(!CS.hasInAllocaArgument() && 8932 // "sret demotion is incompatible with inalloca"); 8933 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8934 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8935 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8936 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8937 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8938 DL.getAllocaAddrSpace()); 8939 8940 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8941 ArgListEntry Entry; 8942 Entry.Node = DemoteStackSlot; 8943 Entry.Ty = StackSlotPtrType; 8944 Entry.IsSExt = false; 8945 Entry.IsZExt = false; 8946 Entry.IsInReg = false; 8947 Entry.IsSRet = true; 8948 Entry.IsNest = false; 8949 Entry.IsByVal = false; 8950 Entry.IsReturned = false; 8951 Entry.IsSwiftSelf = false; 8952 Entry.IsSwiftError = false; 8953 Entry.Alignment = Align; 8954 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8955 CLI.NumFixedArgs += 1; 8956 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8957 8958 // sret demotion isn't compatible with tail-calls, since the sret argument 8959 // points into the callers stack frame. 8960 CLI.IsTailCall = false; 8961 } else { 8962 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8963 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 8964 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8965 ISD::ArgFlagsTy Flags; 8966 if (NeedsRegBlock) { 8967 Flags.setInConsecutiveRegs(); 8968 if (I == RetTys.size() - 1) 8969 Flags.setInConsecutiveRegsLast(); 8970 } 8971 EVT VT = RetTys[I]; 8972 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8973 CLI.CallConv, VT); 8974 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8975 CLI.CallConv, VT); 8976 for (unsigned i = 0; i != NumRegs; ++i) { 8977 ISD::InputArg MyFlags; 8978 MyFlags.Flags = Flags; 8979 MyFlags.VT = RegisterVT; 8980 MyFlags.ArgVT = VT; 8981 MyFlags.Used = CLI.IsReturnValueUsed; 8982 if (CLI.RetTy->isPointerTy()) { 8983 MyFlags.Flags.setPointer(); 8984 MyFlags.Flags.setPointerAddrSpace( 8985 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 8986 } 8987 if (CLI.RetSExt) 8988 MyFlags.Flags.setSExt(); 8989 if (CLI.RetZExt) 8990 MyFlags.Flags.setZExt(); 8991 if (CLI.IsInReg) 8992 MyFlags.Flags.setInReg(); 8993 CLI.Ins.push_back(MyFlags); 8994 } 8995 } 8996 } 8997 8998 // We push in swifterror return as the last element of CLI.Ins. 8999 ArgListTy &Args = CLI.getArgs(); 9000 if (supportSwiftError()) { 9001 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9002 if (Args[i].IsSwiftError) { 9003 ISD::InputArg MyFlags; 9004 MyFlags.VT = getPointerTy(DL); 9005 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9006 MyFlags.Flags.setSwiftError(); 9007 CLI.Ins.push_back(MyFlags); 9008 } 9009 } 9010 } 9011 9012 // Handle all of the outgoing arguments. 9013 CLI.Outs.clear(); 9014 CLI.OutVals.clear(); 9015 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9016 SmallVector<EVT, 4> ValueVTs; 9017 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9018 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9019 Type *FinalType = Args[i].Ty; 9020 if (Args[i].IsByVal) 9021 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9022 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9023 FinalType, CLI.CallConv, CLI.IsVarArg); 9024 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9025 ++Value) { 9026 EVT VT = ValueVTs[Value]; 9027 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9028 SDValue Op = SDValue(Args[i].Node.getNode(), 9029 Args[i].Node.getResNo() + Value); 9030 ISD::ArgFlagsTy Flags; 9031 9032 // Certain targets (such as MIPS), may have a different ABI alignment 9033 // for a type depending on the context. Give the target a chance to 9034 // specify the alignment it wants. 9035 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9036 9037 if (Args[i].Ty->isPointerTy()) { 9038 Flags.setPointer(); 9039 Flags.setPointerAddrSpace( 9040 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9041 } 9042 if (Args[i].IsZExt) 9043 Flags.setZExt(); 9044 if (Args[i].IsSExt) 9045 Flags.setSExt(); 9046 if (Args[i].IsInReg) { 9047 // If we are using vectorcall calling convention, a structure that is 9048 // passed InReg - is surely an HVA 9049 if (CLI.CallConv == CallingConv::X86_VectorCall && 9050 isa<StructType>(FinalType)) { 9051 // The first value of a structure is marked 9052 if (0 == Value) 9053 Flags.setHvaStart(); 9054 Flags.setHva(); 9055 } 9056 // Set InReg Flag 9057 Flags.setInReg(); 9058 } 9059 if (Args[i].IsSRet) 9060 Flags.setSRet(); 9061 if (Args[i].IsSwiftSelf) 9062 Flags.setSwiftSelf(); 9063 if (Args[i].IsSwiftError) 9064 Flags.setSwiftError(); 9065 if (Args[i].IsByVal) 9066 Flags.setByVal(); 9067 if (Args[i].IsInAlloca) { 9068 Flags.setInAlloca(); 9069 // Set the byval flag for CCAssignFn callbacks that don't know about 9070 // inalloca. This way we can know how many bytes we should've allocated 9071 // and how many bytes a callee cleanup function will pop. If we port 9072 // inalloca to more targets, we'll have to add custom inalloca handling 9073 // in the various CC lowering callbacks. 9074 Flags.setByVal(); 9075 } 9076 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9077 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9078 Type *ElementTy = Ty->getElementType(); 9079 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9080 // For ByVal, alignment should come from FE. BE will guess if this 9081 // info is not there but there are cases it cannot get right. 9082 unsigned FrameAlign; 9083 if (Args[i].Alignment) 9084 FrameAlign = Args[i].Alignment; 9085 else 9086 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9087 Flags.setByValAlign(FrameAlign); 9088 } 9089 if (Args[i].IsNest) 9090 Flags.setNest(); 9091 if (NeedsRegBlock) 9092 Flags.setInConsecutiveRegs(); 9093 Flags.setOrigAlign(OriginalAlignment); 9094 9095 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9096 CLI.CallConv, VT); 9097 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9098 CLI.CallConv, VT); 9099 SmallVector<SDValue, 4> Parts(NumParts); 9100 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9101 9102 if (Args[i].IsSExt) 9103 ExtendKind = ISD::SIGN_EXTEND; 9104 else if (Args[i].IsZExt) 9105 ExtendKind = ISD::ZERO_EXTEND; 9106 9107 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9108 // for now. 9109 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9110 CanLowerReturn) { 9111 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 9112 "unexpected use of 'returned'"); 9113 // Before passing 'returned' to the target lowering code, ensure that 9114 // either the register MVT and the actual EVT are the same size or that 9115 // the return value and argument are extended in the same way; in these 9116 // cases it's safe to pass the argument register value unchanged as the 9117 // return register value (although it's at the target's option whether 9118 // to do so) 9119 // TODO: allow code generation to take advantage of partially preserved 9120 // registers rather than clobbering the entire register when the 9121 // parameter extension method is not compatible with the return 9122 // extension method 9123 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9124 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9125 CLI.RetZExt == Args[i].IsZExt)) 9126 Flags.setReturned(); 9127 } 9128 9129 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9130 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9131 9132 for (unsigned j = 0; j != NumParts; ++j) { 9133 // if it isn't first piece, alignment must be 1 9134 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9135 i < CLI.NumFixedArgs, 9136 i, j*Parts[j].getValueType().getStoreSize()); 9137 if (NumParts > 1 && j == 0) 9138 MyFlags.Flags.setSplit(); 9139 else if (j != 0) { 9140 MyFlags.Flags.setOrigAlign(1); 9141 if (j == NumParts - 1) 9142 MyFlags.Flags.setSplitEnd(); 9143 } 9144 9145 CLI.Outs.push_back(MyFlags); 9146 CLI.OutVals.push_back(Parts[j]); 9147 } 9148 9149 if (NeedsRegBlock && Value == NumValues - 1) 9150 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9151 } 9152 } 9153 9154 SmallVector<SDValue, 4> InVals; 9155 CLI.Chain = LowerCall(CLI, InVals); 9156 9157 // Update CLI.InVals to use outside of this function. 9158 CLI.InVals = InVals; 9159 9160 // Verify that the target's LowerCall behaved as expected. 9161 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9162 "LowerCall didn't return a valid chain!"); 9163 assert((!CLI.IsTailCall || InVals.empty()) && 9164 "LowerCall emitted a return value for a tail call!"); 9165 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9166 "LowerCall didn't emit the correct number of values!"); 9167 9168 // For a tail call, the return value is merely live-out and there aren't 9169 // any nodes in the DAG representing it. Return a special value to 9170 // indicate that a tail call has been emitted and no more Instructions 9171 // should be processed in the current block. 9172 if (CLI.IsTailCall) { 9173 CLI.DAG.setRoot(CLI.Chain); 9174 return std::make_pair(SDValue(), SDValue()); 9175 } 9176 9177 #ifndef NDEBUG 9178 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9179 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9180 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9181 "LowerCall emitted a value with the wrong type!"); 9182 } 9183 #endif 9184 9185 SmallVector<SDValue, 4> ReturnValues; 9186 if (!CanLowerReturn) { 9187 // The instruction result is the result of loading from the 9188 // hidden sret parameter. 9189 SmallVector<EVT, 1> PVTs; 9190 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9191 9192 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9193 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9194 EVT PtrVT = PVTs[0]; 9195 9196 unsigned NumValues = RetTys.size(); 9197 ReturnValues.resize(NumValues); 9198 SmallVector<SDValue, 4> Chains(NumValues); 9199 9200 // An aggregate return value cannot wrap around the address space, so 9201 // offsets to its parts don't wrap either. 9202 SDNodeFlags Flags; 9203 Flags.setNoUnsignedWrap(true); 9204 9205 for (unsigned i = 0; i < NumValues; ++i) { 9206 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9207 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9208 PtrVT), Flags); 9209 SDValue L = CLI.DAG.getLoad( 9210 RetTys[i], CLI.DL, CLI.Chain, Add, 9211 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9212 DemoteStackIdx, Offsets[i]), 9213 /* Alignment = */ 1); 9214 ReturnValues[i] = L; 9215 Chains[i] = L.getValue(1); 9216 } 9217 9218 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9219 } else { 9220 // Collect the legal value parts into potentially illegal values 9221 // that correspond to the original function's return values. 9222 Optional<ISD::NodeType> AssertOp; 9223 if (CLI.RetSExt) 9224 AssertOp = ISD::AssertSext; 9225 else if (CLI.RetZExt) 9226 AssertOp = ISD::AssertZext; 9227 unsigned CurReg = 0; 9228 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9229 EVT VT = RetTys[I]; 9230 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9231 CLI.CallConv, VT); 9232 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9233 CLI.CallConv, VT); 9234 9235 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9236 NumRegs, RegisterVT, VT, nullptr, 9237 CLI.CallConv, AssertOp)); 9238 CurReg += NumRegs; 9239 } 9240 9241 // For a function returning void, there is no return value. We can't create 9242 // such a node, so we just return a null return value in that case. In 9243 // that case, nothing will actually look at the value. 9244 if (ReturnValues.empty()) 9245 return std::make_pair(SDValue(), CLI.Chain); 9246 } 9247 9248 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9249 CLI.DAG.getVTList(RetTys), ReturnValues); 9250 return std::make_pair(Res, CLI.Chain); 9251 } 9252 9253 void TargetLowering::LowerOperationWrapper(SDNode *N, 9254 SmallVectorImpl<SDValue> &Results, 9255 SelectionDAG &DAG) const { 9256 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9257 Results.push_back(Res); 9258 } 9259 9260 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9261 llvm_unreachable("LowerOperation not implemented for this target!"); 9262 } 9263 9264 void 9265 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9266 SDValue Op = getNonRegisterValue(V); 9267 assert((Op.getOpcode() != ISD::CopyFromReg || 9268 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9269 "Copy from a reg to the same reg!"); 9270 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9271 9272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9273 // If this is an InlineAsm we have to match the registers required, not the 9274 // notional registers required by the type. 9275 9276 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9277 None); // This is not an ABI copy. 9278 SDValue Chain = DAG.getEntryNode(); 9279 9280 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9281 FuncInfo.PreferredExtendType.end()) 9282 ? ISD::ANY_EXTEND 9283 : FuncInfo.PreferredExtendType[V]; 9284 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9285 PendingExports.push_back(Chain); 9286 } 9287 9288 #include "llvm/CodeGen/SelectionDAGISel.h" 9289 9290 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9291 /// entry block, return true. This includes arguments used by switches, since 9292 /// the switch may expand into multiple basic blocks. 9293 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9294 // With FastISel active, we may be splitting blocks, so force creation 9295 // of virtual registers for all non-dead arguments. 9296 if (FastISel) 9297 return A->use_empty(); 9298 9299 const BasicBlock &Entry = A->getParent()->front(); 9300 for (const User *U : A->users()) 9301 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9302 return false; // Use not in entry block. 9303 9304 return true; 9305 } 9306 9307 using ArgCopyElisionMapTy = 9308 DenseMap<const Argument *, 9309 std::pair<const AllocaInst *, const StoreInst *>>; 9310 9311 /// Scan the entry block of the function in FuncInfo for arguments that look 9312 /// like copies into a local alloca. Record any copied arguments in 9313 /// ArgCopyElisionCandidates. 9314 static void 9315 findArgumentCopyElisionCandidates(const DataLayout &DL, 9316 FunctionLoweringInfo *FuncInfo, 9317 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9318 // Record the state of every static alloca used in the entry block. Argument 9319 // allocas are all used in the entry block, so we need approximately as many 9320 // entries as we have arguments. 9321 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9322 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9323 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9324 StaticAllocas.reserve(NumArgs * 2); 9325 9326 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9327 if (!V) 9328 return nullptr; 9329 V = V->stripPointerCasts(); 9330 const auto *AI = dyn_cast<AllocaInst>(V); 9331 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9332 return nullptr; 9333 auto Iter = StaticAllocas.insert({AI, Unknown}); 9334 return &Iter.first->second; 9335 }; 9336 9337 // Look for stores of arguments to static allocas. Look through bitcasts and 9338 // GEPs to handle type coercions, as long as the alloca is fully initialized 9339 // by the store. Any non-store use of an alloca escapes it and any subsequent 9340 // unanalyzed store might write it. 9341 // FIXME: Handle structs initialized with multiple stores. 9342 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9343 // Look for stores, and handle non-store uses conservatively. 9344 const auto *SI = dyn_cast<StoreInst>(&I); 9345 if (!SI) { 9346 // We will look through cast uses, so ignore them completely. 9347 if (I.isCast()) 9348 continue; 9349 // Ignore debug info intrinsics, they don't escape or store to allocas. 9350 if (isa<DbgInfoIntrinsic>(I)) 9351 continue; 9352 // This is an unknown instruction. Assume it escapes or writes to all 9353 // static alloca operands. 9354 for (const Use &U : I.operands()) { 9355 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9356 *Info = StaticAllocaInfo::Clobbered; 9357 } 9358 continue; 9359 } 9360 9361 // If the stored value is a static alloca, mark it as escaped. 9362 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9363 *Info = StaticAllocaInfo::Clobbered; 9364 9365 // Check if the destination is a static alloca. 9366 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9367 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9368 if (!Info) 9369 continue; 9370 const AllocaInst *AI = cast<AllocaInst>(Dst); 9371 9372 // Skip allocas that have been initialized or clobbered. 9373 if (*Info != StaticAllocaInfo::Unknown) 9374 continue; 9375 9376 // Check if the stored value is an argument, and that this store fully 9377 // initializes the alloca. Don't elide copies from the same argument twice. 9378 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9379 const auto *Arg = dyn_cast<Argument>(Val); 9380 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9381 Arg->getType()->isEmptyTy() || 9382 DL.getTypeStoreSize(Arg->getType()) != 9383 DL.getTypeAllocSize(AI->getAllocatedType()) || 9384 ArgCopyElisionCandidates.count(Arg)) { 9385 *Info = StaticAllocaInfo::Clobbered; 9386 continue; 9387 } 9388 9389 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9390 << '\n'); 9391 9392 // Mark this alloca and store for argument copy elision. 9393 *Info = StaticAllocaInfo::Elidable; 9394 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9395 9396 // Stop scanning if we've seen all arguments. This will happen early in -O0 9397 // builds, which is useful, because -O0 builds have large entry blocks and 9398 // many allocas. 9399 if (ArgCopyElisionCandidates.size() == NumArgs) 9400 break; 9401 } 9402 } 9403 9404 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9405 /// ArgVal is a load from a suitable fixed stack object. 9406 static void tryToElideArgumentCopy( 9407 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9408 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9409 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9410 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9411 SDValue ArgVal, bool &ArgHasUses) { 9412 // Check if this is a load from a fixed stack object. 9413 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9414 if (!LNode) 9415 return; 9416 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9417 if (!FINode) 9418 return; 9419 9420 // Check that the fixed stack object is the right size and alignment. 9421 // Look at the alignment that the user wrote on the alloca instead of looking 9422 // at the stack object. 9423 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9424 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9425 const AllocaInst *AI = ArgCopyIter->second.first; 9426 int FixedIndex = FINode->getIndex(); 9427 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9428 int OldIndex = AllocaIndex; 9429 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9430 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9431 LLVM_DEBUG( 9432 dbgs() << " argument copy elision failed due to bad fixed stack " 9433 "object size\n"); 9434 return; 9435 } 9436 unsigned RequiredAlignment = AI->getAlignment(); 9437 if (!RequiredAlignment) { 9438 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9439 AI->getAllocatedType()); 9440 } 9441 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9442 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9443 "greater than stack argument alignment (" 9444 << RequiredAlignment << " vs " 9445 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9446 return; 9447 } 9448 9449 // Perform the elision. Delete the old stack object and replace its only use 9450 // in the variable info map. Mark the stack object as mutable. 9451 LLVM_DEBUG({ 9452 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9453 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9454 << '\n'; 9455 }); 9456 MFI.RemoveStackObject(OldIndex); 9457 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9458 AllocaIndex = FixedIndex; 9459 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9460 Chains.push_back(ArgVal.getValue(1)); 9461 9462 // Avoid emitting code for the store implementing the copy. 9463 const StoreInst *SI = ArgCopyIter->second.second; 9464 ElidedArgCopyInstrs.insert(SI); 9465 9466 // Check for uses of the argument again so that we can avoid exporting ArgVal 9467 // if it is't used by anything other than the store. 9468 for (const Value *U : Arg.users()) { 9469 if (U != SI) { 9470 ArgHasUses = true; 9471 break; 9472 } 9473 } 9474 } 9475 9476 void SelectionDAGISel::LowerArguments(const Function &F) { 9477 SelectionDAG &DAG = SDB->DAG; 9478 SDLoc dl = SDB->getCurSDLoc(); 9479 const DataLayout &DL = DAG.getDataLayout(); 9480 SmallVector<ISD::InputArg, 16> Ins; 9481 9482 if (!FuncInfo->CanLowerReturn) { 9483 // Put in an sret pointer parameter before all the other parameters. 9484 SmallVector<EVT, 1> ValueVTs; 9485 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9486 F.getReturnType()->getPointerTo( 9487 DAG.getDataLayout().getAllocaAddrSpace()), 9488 ValueVTs); 9489 9490 // NOTE: Assuming that a pointer will never break down to more than one VT 9491 // or one register. 9492 ISD::ArgFlagsTy Flags; 9493 Flags.setSRet(); 9494 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9495 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9496 ISD::InputArg::NoArgIndex, 0); 9497 Ins.push_back(RetArg); 9498 } 9499 9500 // Look for stores of arguments to static allocas. Mark such arguments with a 9501 // flag to ask the target to give us the memory location of that argument if 9502 // available. 9503 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9504 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9505 9506 // Set up the incoming argument description vector. 9507 for (const Argument &Arg : F.args()) { 9508 unsigned ArgNo = Arg.getArgNo(); 9509 SmallVector<EVT, 4> ValueVTs; 9510 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9511 bool isArgValueUsed = !Arg.use_empty(); 9512 unsigned PartBase = 0; 9513 Type *FinalType = Arg.getType(); 9514 if (Arg.hasAttribute(Attribute::ByVal)) 9515 FinalType = cast<PointerType>(FinalType)->getElementType(); 9516 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9517 FinalType, F.getCallingConv(), F.isVarArg()); 9518 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9519 Value != NumValues; ++Value) { 9520 EVT VT = ValueVTs[Value]; 9521 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9522 ISD::ArgFlagsTy Flags; 9523 9524 // Certain targets (such as MIPS), may have a different ABI alignment 9525 // for a type depending on the context. Give the target a chance to 9526 // specify the alignment it wants. 9527 unsigned OriginalAlignment = 9528 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9529 9530 if (Arg.getType()->isPointerTy()) { 9531 Flags.setPointer(); 9532 Flags.setPointerAddrSpace( 9533 cast<PointerType>(Arg.getType())->getAddressSpace()); 9534 } 9535 if (Arg.hasAttribute(Attribute::ZExt)) 9536 Flags.setZExt(); 9537 if (Arg.hasAttribute(Attribute::SExt)) 9538 Flags.setSExt(); 9539 if (Arg.hasAttribute(Attribute::InReg)) { 9540 // If we are using vectorcall calling convention, a structure that is 9541 // passed InReg - is surely an HVA 9542 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9543 isa<StructType>(Arg.getType())) { 9544 // The first value of a structure is marked 9545 if (0 == Value) 9546 Flags.setHvaStart(); 9547 Flags.setHva(); 9548 } 9549 // Set InReg Flag 9550 Flags.setInReg(); 9551 } 9552 if (Arg.hasAttribute(Attribute::StructRet)) 9553 Flags.setSRet(); 9554 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9555 Flags.setSwiftSelf(); 9556 if (Arg.hasAttribute(Attribute::SwiftError)) 9557 Flags.setSwiftError(); 9558 if (Arg.hasAttribute(Attribute::ByVal)) 9559 Flags.setByVal(); 9560 if (Arg.hasAttribute(Attribute::InAlloca)) { 9561 Flags.setInAlloca(); 9562 // Set the byval flag for CCAssignFn callbacks that don't know about 9563 // inalloca. This way we can know how many bytes we should've allocated 9564 // and how many bytes a callee cleanup function will pop. If we port 9565 // inalloca to more targets, we'll have to add custom inalloca handling 9566 // in the various CC lowering callbacks. 9567 Flags.setByVal(); 9568 } 9569 if (F.getCallingConv() == CallingConv::X86_INTR) { 9570 // IA Interrupt passes frame (1st parameter) by value in the stack. 9571 if (ArgNo == 0) 9572 Flags.setByVal(); 9573 } 9574 if (Flags.isByVal() || Flags.isInAlloca()) { 9575 PointerType *Ty = cast<PointerType>(Arg.getType()); 9576 Type *ElementTy = Ty->getElementType(); 9577 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9578 // For ByVal, alignment should be passed from FE. BE will guess if 9579 // this info is not there but there are cases it cannot get right. 9580 unsigned FrameAlign; 9581 if (Arg.getParamAlignment()) 9582 FrameAlign = Arg.getParamAlignment(); 9583 else 9584 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9585 Flags.setByValAlign(FrameAlign); 9586 } 9587 if (Arg.hasAttribute(Attribute::Nest)) 9588 Flags.setNest(); 9589 if (NeedsRegBlock) 9590 Flags.setInConsecutiveRegs(); 9591 Flags.setOrigAlign(OriginalAlignment); 9592 if (ArgCopyElisionCandidates.count(&Arg)) 9593 Flags.setCopyElisionCandidate(); 9594 9595 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9596 *CurDAG->getContext(), F.getCallingConv(), VT); 9597 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9598 *CurDAG->getContext(), F.getCallingConv(), VT); 9599 for (unsigned i = 0; i != NumRegs; ++i) { 9600 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9601 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9602 if (NumRegs > 1 && i == 0) 9603 MyFlags.Flags.setSplit(); 9604 // if it isn't first piece, alignment must be 1 9605 else if (i > 0) { 9606 MyFlags.Flags.setOrigAlign(1); 9607 if (i == NumRegs - 1) 9608 MyFlags.Flags.setSplitEnd(); 9609 } 9610 Ins.push_back(MyFlags); 9611 } 9612 if (NeedsRegBlock && Value == NumValues - 1) 9613 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9614 PartBase += VT.getStoreSize(); 9615 } 9616 } 9617 9618 // Call the target to set up the argument values. 9619 SmallVector<SDValue, 8> InVals; 9620 SDValue NewRoot = TLI->LowerFormalArguments( 9621 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9622 9623 // Verify that the target's LowerFormalArguments behaved as expected. 9624 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9625 "LowerFormalArguments didn't return a valid chain!"); 9626 assert(InVals.size() == Ins.size() && 9627 "LowerFormalArguments didn't emit the correct number of values!"); 9628 LLVM_DEBUG({ 9629 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9630 assert(InVals[i].getNode() && 9631 "LowerFormalArguments emitted a null value!"); 9632 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9633 "LowerFormalArguments emitted a value with the wrong type!"); 9634 } 9635 }); 9636 9637 // Update the DAG with the new chain value resulting from argument lowering. 9638 DAG.setRoot(NewRoot); 9639 9640 // Set up the argument values. 9641 unsigned i = 0; 9642 if (!FuncInfo->CanLowerReturn) { 9643 // Create a virtual register for the sret pointer, and put in a copy 9644 // from the sret argument into it. 9645 SmallVector<EVT, 1> ValueVTs; 9646 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9647 F.getReturnType()->getPointerTo( 9648 DAG.getDataLayout().getAllocaAddrSpace()), 9649 ValueVTs); 9650 MVT VT = ValueVTs[0].getSimpleVT(); 9651 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9652 Optional<ISD::NodeType> AssertOp = None; 9653 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9654 nullptr, F.getCallingConv(), AssertOp); 9655 9656 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9657 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9658 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9659 FuncInfo->DemoteRegister = SRetReg; 9660 NewRoot = 9661 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9662 DAG.setRoot(NewRoot); 9663 9664 // i indexes lowered arguments. Bump it past the hidden sret argument. 9665 ++i; 9666 } 9667 9668 SmallVector<SDValue, 4> Chains; 9669 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9670 for (const Argument &Arg : F.args()) { 9671 SmallVector<SDValue, 4> ArgValues; 9672 SmallVector<EVT, 4> ValueVTs; 9673 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9674 unsigned NumValues = ValueVTs.size(); 9675 if (NumValues == 0) 9676 continue; 9677 9678 bool ArgHasUses = !Arg.use_empty(); 9679 9680 // Elide the copying store if the target loaded this argument from a 9681 // suitable fixed stack object. 9682 if (Ins[i].Flags.isCopyElisionCandidate()) { 9683 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9684 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9685 InVals[i], ArgHasUses); 9686 } 9687 9688 // If this argument is unused then remember its value. It is used to generate 9689 // debugging information. 9690 bool isSwiftErrorArg = 9691 TLI->supportSwiftError() && 9692 Arg.hasAttribute(Attribute::SwiftError); 9693 if (!ArgHasUses && !isSwiftErrorArg) { 9694 SDB->setUnusedArgValue(&Arg, InVals[i]); 9695 9696 // Also remember any frame index for use in FastISel. 9697 if (FrameIndexSDNode *FI = 9698 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9699 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9700 } 9701 9702 for (unsigned Val = 0; Val != NumValues; ++Val) { 9703 EVT VT = ValueVTs[Val]; 9704 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9705 F.getCallingConv(), VT); 9706 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9707 *CurDAG->getContext(), F.getCallingConv(), VT); 9708 9709 // Even an apparant 'unused' swifterror argument needs to be returned. So 9710 // we do generate a copy for it that can be used on return from the 9711 // function. 9712 if (ArgHasUses || isSwiftErrorArg) { 9713 Optional<ISD::NodeType> AssertOp; 9714 if (Arg.hasAttribute(Attribute::SExt)) 9715 AssertOp = ISD::AssertSext; 9716 else if (Arg.hasAttribute(Attribute::ZExt)) 9717 AssertOp = ISD::AssertZext; 9718 9719 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9720 PartVT, VT, nullptr, 9721 F.getCallingConv(), AssertOp)); 9722 } 9723 9724 i += NumParts; 9725 } 9726 9727 // We don't need to do anything else for unused arguments. 9728 if (ArgValues.empty()) 9729 continue; 9730 9731 // Note down frame index. 9732 if (FrameIndexSDNode *FI = 9733 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9734 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9735 9736 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9737 SDB->getCurSDLoc()); 9738 9739 SDB->setValue(&Arg, Res); 9740 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9741 // We want to associate the argument with the frame index, among 9742 // involved operands, that correspond to the lowest address. The 9743 // getCopyFromParts function, called earlier, is swapping the order of 9744 // the operands to BUILD_PAIR depending on endianness. The result of 9745 // that swapping is that the least significant bits of the argument will 9746 // be in the first operand of the BUILD_PAIR node, and the most 9747 // significant bits will be in the second operand. 9748 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9749 if (LoadSDNode *LNode = 9750 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9751 if (FrameIndexSDNode *FI = 9752 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9753 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9754 } 9755 9756 // Update the SwiftErrorVRegDefMap. 9757 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9758 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9759 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9760 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9761 Reg); 9762 } 9763 9764 // If this argument is live outside of the entry block, insert a copy from 9765 // wherever we got it to the vreg that other BB's will reference it as. 9766 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9767 // If we can, though, try to skip creating an unnecessary vreg. 9768 // FIXME: This isn't very clean... it would be nice to make this more 9769 // general. It's also subtly incompatible with the hacks FastISel 9770 // uses with vregs. 9771 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9772 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9773 FuncInfo->ValueMap[&Arg] = Reg; 9774 continue; 9775 } 9776 } 9777 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9778 FuncInfo->InitializeRegForValue(&Arg); 9779 SDB->CopyToExportRegsIfNeeded(&Arg); 9780 } 9781 } 9782 9783 if (!Chains.empty()) { 9784 Chains.push_back(NewRoot); 9785 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9786 } 9787 9788 DAG.setRoot(NewRoot); 9789 9790 assert(i == InVals.size() && "Argument register count mismatch!"); 9791 9792 // If any argument copy elisions occurred and we have debug info, update the 9793 // stale frame indices used in the dbg.declare variable info table. 9794 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9795 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9796 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9797 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9798 if (I != ArgCopyElisionFrameIndexMap.end()) 9799 VI.Slot = I->second; 9800 } 9801 } 9802 9803 // Finally, if the target has anything special to do, allow it to do so. 9804 EmitFunctionEntryCode(); 9805 } 9806 9807 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9808 /// ensure constants are generated when needed. Remember the virtual registers 9809 /// that need to be added to the Machine PHI nodes as input. We cannot just 9810 /// directly add them, because expansion might result in multiple MBB's for one 9811 /// BB. As such, the start of the BB might correspond to a different MBB than 9812 /// the end. 9813 void 9814 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9815 const Instruction *TI = LLVMBB->getTerminator(); 9816 9817 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9818 9819 // Check PHI nodes in successors that expect a value to be available from this 9820 // block. 9821 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9822 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9823 if (!isa<PHINode>(SuccBB->begin())) continue; 9824 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9825 9826 // If this terminator has multiple identical successors (common for 9827 // switches), only handle each succ once. 9828 if (!SuccsHandled.insert(SuccMBB).second) 9829 continue; 9830 9831 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9832 9833 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9834 // nodes and Machine PHI nodes, but the incoming operands have not been 9835 // emitted yet. 9836 for (const PHINode &PN : SuccBB->phis()) { 9837 // Ignore dead phi's. 9838 if (PN.use_empty()) 9839 continue; 9840 9841 // Skip empty types 9842 if (PN.getType()->isEmptyTy()) 9843 continue; 9844 9845 unsigned Reg; 9846 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9847 9848 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9849 unsigned &RegOut = ConstantsOut[C]; 9850 if (RegOut == 0) { 9851 RegOut = FuncInfo.CreateRegs(C); 9852 CopyValueToVirtualRegister(C, RegOut); 9853 } 9854 Reg = RegOut; 9855 } else { 9856 DenseMap<const Value *, unsigned>::iterator I = 9857 FuncInfo.ValueMap.find(PHIOp); 9858 if (I != FuncInfo.ValueMap.end()) 9859 Reg = I->second; 9860 else { 9861 assert(isa<AllocaInst>(PHIOp) && 9862 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9863 "Didn't codegen value into a register!??"); 9864 Reg = FuncInfo.CreateRegs(PHIOp); 9865 CopyValueToVirtualRegister(PHIOp, Reg); 9866 } 9867 } 9868 9869 // Remember that this register needs to added to the machine PHI node as 9870 // the input for this MBB. 9871 SmallVector<EVT, 4> ValueVTs; 9872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9873 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9874 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9875 EVT VT = ValueVTs[vti]; 9876 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9877 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9878 FuncInfo.PHINodesToUpdate.push_back( 9879 std::make_pair(&*MBBI++, Reg + i)); 9880 Reg += NumRegisters; 9881 } 9882 } 9883 } 9884 9885 ConstantsOut.clear(); 9886 } 9887 9888 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9889 /// is 0. 9890 MachineBasicBlock * 9891 SelectionDAGBuilder::StackProtectorDescriptor:: 9892 AddSuccessorMBB(const BasicBlock *BB, 9893 MachineBasicBlock *ParentMBB, 9894 bool IsLikely, 9895 MachineBasicBlock *SuccMBB) { 9896 // If SuccBB has not been created yet, create it. 9897 if (!SuccMBB) { 9898 MachineFunction *MF = ParentMBB->getParent(); 9899 MachineFunction::iterator BBI(ParentMBB); 9900 SuccMBB = MF->CreateMachineBasicBlock(BB); 9901 MF->insert(++BBI, SuccMBB); 9902 } 9903 // Add it as a successor of ParentMBB. 9904 ParentMBB->addSuccessor( 9905 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9906 return SuccMBB; 9907 } 9908 9909 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9910 MachineFunction::iterator I(MBB); 9911 if (++I == FuncInfo.MF->end()) 9912 return nullptr; 9913 return &*I; 9914 } 9915 9916 /// During lowering new call nodes can be created (such as memset, etc.). 9917 /// Those will become new roots of the current DAG, but complications arise 9918 /// when they are tail calls. In such cases, the call lowering will update 9919 /// the root, but the builder still needs to know that a tail call has been 9920 /// lowered in order to avoid generating an additional return. 9921 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9922 // If the node is null, we do have a tail call. 9923 if (MaybeTC.getNode() != nullptr) 9924 DAG.setRoot(MaybeTC); 9925 else 9926 HasTailCall = true; 9927 } 9928 9929 uint64_t 9930 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9931 unsigned First, unsigned Last) const { 9932 assert(Last >= First); 9933 const APInt &LowCase = Clusters[First].Low->getValue(); 9934 const APInt &HighCase = Clusters[Last].High->getValue(); 9935 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9936 9937 // FIXME: A range of consecutive cases has 100% density, but only requires one 9938 // comparison to lower. We should discriminate against such consecutive ranges 9939 // in jump tables. 9940 9941 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9942 } 9943 9944 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9945 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9946 unsigned Last) const { 9947 assert(Last >= First); 9948 assert(TotalCases[Last] >= TotalCases[First]); 9949 uint64_t NumCases = 9950 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9951 return NumCases; 9952 } 9953 9954 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9955 unsigned First, unsigned Last, 9956 const SwitchInst *SI, 9957 MachineBasicBlock *DefaultMBB, 9958 CaseCluster &JTCluster) { 9959 assert(First <= Last); 9960 9961 auto Prob = BranchProbability::getZero(); 9962 unsigned NumCmps = 0; 9963 std::vector<MachineBasicBlock*> Table; 9964 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9965 9966 // Initialize probabilities in JTProbs. 9967 for (unsigned I = First; I <= Last; ++I) 9968 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9969 9970 for (unsigned I = First; I <= Last; ++I) { 9971 assert(Clusters[I].Kind == CC_Range); 9972 Prob += Clusters[I].Prob; 9973 const APInt &Low = Clusters[I].Low->getValue(); 9974 const APInt &High = Clusters[I].High->getValue(); 9975 NumCmps += (Low == High) ? 1 : 2; 9976 if (I != First) { 9977 // Fill the gap between this and the previous cluster. 9978 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9979 assert(PreviousHigh.slt(Low)); 9980 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9981 for (uint64_t J = 0; J < Gap; J++) 9982 Table.push_back(DefaultMBB); 9983 } 9984 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9985 for (uint64_t J = 0; J < ClusterSize; ++J) 9986 Table.push_back(Clusters[I].MBB); 9987 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9988 } 9989 9990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9991 unsigned NumDests = JTProbs.size(); 9992 if (TLI.isSuitableForBitTests( 9993 NumDests, NumCmps, Clusters[First].Low->getValue(), 9994 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9995 // Clusters[First..Last] should be lowered as bit tests instead. 9996 return false; 9997 } 9998 9999 // Create the MBB that will load from and jump through the table. 10000 // Note: We create it here, but it's not inserted into the function yet. 10001 MachineFunction *CurMF = FuncInfo.MF; 10002 MachineBasicBlock *JumpTableMBB = 10003 CurMF->CreateMachineBasicBlock(SI->getParent()); 10004 10005 // Add successors. Note: use table order for determinism. 10006 SmallPtrSet<MachineBasicBlock *, 8> Done; 10007 for (MachineBasicBlock *Succ : Table) { 10008 if (Done.count(Succ)) 10009 continue; 10010 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 10011 Done.insert(Succ); 10012 } 10013 JumpTableMBB->normalizeSuccProbs(); 10014 10015 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 10016 ->createJumpTableIndex(Table); 10017 10018 // Set up the jump table info. 10019 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 10020 JumpTableHeader JTH(Clusters[First].Low->getValue(), 10021 Clusters[Last].High->getValue(), SI->getCondition(), 10022 nullptr, false); 10023 JTCases.emplace_back(std::move(JTH), std::move(JT)); 10024 10025 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 10026 JTCases.size() - 1, Prob); 10027 return true; 10028 } 10029 10030 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 10031 const SwitchInst *SI, 10032 MachineBasicBlock *DefaultMBB) { 10033 #ifndef NDEBUG 10034 // Clusters must be non-empty, sorted, and only contain Range clusters. 10035 assert(!Clusters.empty()); 10036 for (CaseCluster &C : Clusters) 10037 assert(C.Kind == CC_Range); 10038 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 10039 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 10040 #endif 10041 10042 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10043 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 10044 return; 10045 10046 const int64_t N = Clusters.size(); 10047 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 10048 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 10049 10050 if (N < 2 || N < MinJumpTableEntries) 10051 return; 10052 10053 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 10054 SmallVector<unsigned, 8> TotalCases(N); 10055 for (unsigned i = 0; i < N; ++i) { 10056 const APInt &Hi = Clusters[i].High->getValue(); 10057 const APInt &Lo = Clusters[i].Low->getValue(); 10058 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 10059 if (i != 0) 10060 TotalCases[i] += TotalCases[i - 1]; 10061 } 10062 10063 // Cheap case: the whole range may be suitable for jump table. 10064 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 10065 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 10066 assert(NumCases < UINT64_MAX / 100); 10067 assert(Range >= NumCases); 10068 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 10069 CaseCluster JTCluster; 10070 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 10071 Clusters[0] = JTCluster; 10072 Clusters.resize(1); 10073 return; 10074 } 10075 } 10076 10077 // The algorithm below is not suitable for -O0. 10078 if (TM.getOptLevel() == CodeGenOpt::None) 10079 return; 10080 10081 // Split Clusters into minimum number of dense partitions. The algorithm uses 10082 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 10083 // for the Case Statement'" (1994), but builds the MinPartitions array in 10084 // reverse order to make it easier to reconstruct the partitions in ascending 10085 // order. In the choice between two optimal partitionings, it picks the one 10086 // which yields more jump tables. 10087 10088 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10089 SmallVector<unsigned, 8> MinPartitions(N); 10090 // LastElement[i] is the last element of the partition starting at i. 10091 SmallVector<unsigned, 8> LastElement(N); 10092 // PartitionsScore[i] is used to break ties when choosing between two 10093 // partitionings resulting in the same number of partitions. 10094 SmallVector<unsigned, 8> PartitionsScore(N); 10095 // For PartitionsScore, a small number of comparisons is considered as good as 10096 // a jump table and a single comparison is considered better than a jump 10097 // table. 10098 enum PartitionScores : unsigned { 10099 NoTable = 0, 10100 Table = 1, 10101 FewCases = 1, 10102 SingleCase = 2 10103 }; 10104 10105 // Base case: There is only one way to partition Clusters[N-1]. 10106 MinPartitions[N - 1] = 1; 10107 LastElement[N - 1] = N - 1; 10108 PartitionsScore[N - 1] = PartitionScores::SingleCase; 10109 10110 // Note: loop indexes are signed to avoid underflow. 10111 for (int64_t i = N - 2; i >= 0; i--) { 10112 // Find optimal partitioning of Clusters[i..N-1]. 10113 // Baseline: Put Clusters[i] into a partition on its own. 10114 MinPartitions[i] = MinPartitions[i + 1] + 1; 10115 LastElement[i] = i; 10116 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 10117 10118 // Search for a solution that results in fewer partitions. 10119 for (int64_t j = N - 1; j > i; j--) { 10120 // Try building a partition from Clusters[i..j]. 10121 uint64_t Range = getJumpTableRange(Clusters, i, j); 10122 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 10123 assert(NumCases < UINT64_MAX / 100); 10124 assert(Range >= NumCases); 10125 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 10126 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10127 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 10128 int64_t NumEntries = j - i + 1; 10129 10130 if (NumEntries == 1) 10131 Score += PartitionScores::SingleCase; 10132 else if (NumEntries <= SmallNumberOfEntries) 10133 Score += PartitionScores::FewCases; 10134 else if (NumEntries >= MinJumpTableEntries) 10135 Score += PartitionScores::Table; 10136 10137 // If this leads to fewer partitions, or to the same number of 10138 // partitions with better score, it is a better partitioning. 10139 if (NumPartitions < MinPartitions[i] || 10140 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 10141 MinPartitions[i] = NumPartitions; 10142 LastElement[i] = j; 10143 PartitionsScore[i] = Score; 10144 } 10145 } 10146 } 10147 } 10148 10149 // Iterate over the partitions, replacing some with jump tables in-place. 10150 unsigned DstIndex = 0; 10151 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10152 Last = LastElement[First]; 10153 assert(Last >= First); 10154 assert(DstIndex <= First); 10155 unsigned NumClusters = Last - First + 1; 10156 10157 CaseCluster JTCluster; 10158 if (NumClusters >= MinJumpTableEntries && 10159 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 10160 Clusters[DstIndex++] = JTCluster; 10161 } else { 10162 for (unsigned I = First; I <= Last; ++I) 10163 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 10164 } 10165 } 10166 Clusters.resize(DstIndex); 10167 } 10168 10169 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 10170 unsigned First, unsigned Last, 10171 const SwitchInst *SI, 10172 CaseCluster &BTCluster) { 10173 assert(First <= Last); 10174 if (First == Last) 10175 return false; 10176 10177 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10178 unsigned NumCmps = 0; 10179 for (int64_t I = First; I <= Last; ++I) { 10180 assert(Clusters[I].Kind == CC_Range); 10181 Dests.set(Clusters[I].MBB->getNumber()); 10182 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 10183 } 10184 unsigned NumDests = Dests.count(); 10185 10186 APInt Low = Clusters[First].Low->getValue(); 10187 APInt High = Clusters[Last].High->getValue(); 10188 assert(Low.slt(High)); 10189 10190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10191 const DataLayout &DL = DAG.getDataLayout(); 10192 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 10193 return false; 10194 10195 APInt LowBound; 10196 APInt CmpRange; 10197 10198 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 10199 assert(TLI.rangeFitsInWord(Low, High, DL) && 10200 "Case range must fit in bit mask!"); 10201 10202 // Check if the clusters cover a contiguous range such that no value in the 10203 // range will jump to the default statement. 10204 bool ContiguousRange = true; 10205 for (int64_t I = First + 1; I <= Last; ++I) { 10206 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10207 ContiguousRange = false; 10208 break; 10209 } 10210 } 10211 10212 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10213 // Optimize the case where all the case values fit in a word without having 10214 // to subtract minValue. In this case, we can optimize away the subtraction. 10215 LowBound = APInt::getNullValue(Low.getBitWidth()); 10216 CmpRange = High; 10217 ContiguousRange = false; 10218 } else { 10219 LowBound = Low; 10220 CmpRange = High - Low; 10221 } 10222 10223 CaseBitsVector CBV; 10224 auto TotalProb = BranchProbability::getZero(); 10225 for (unsigned i = First; i <= Last; ++i) { 10226 // Find the CaseBits for this destination. 10227 unsigned j; 10228 for (j = 0; j < CBV.size(); ++j) 10229 if (CBV[j].BB == Clusters[i].MBB) 10230 break; 10231 if (j == CBV.size()) 10232 CBV.push_back( 10233 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10234 CaseBits *CB = &CBV[j]; 10235 10236 // Update Mask, Bits and ExtraProb. 10237 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10238 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10239 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10240 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10241 CB->Bits += Hi - Lo + 1; 10242 CB->ExtraProb += Clusters[i].Prob; 10243 TotalProb += Clusters[i].Prob; 10244 } 10245 10246 BitTestInfo BTI; 10247 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10248 // Sort by probability first, number of bits second, bit mask third. 10249 if (a.ExtraProb != b.ExtraProb) 10250 return a.ExtraProb > b.ExtraProb; 10251 if (a.Bits != b.Bits) 10252 return a.Bits > b.Bits; 10253 return a.Mask < b.Mask; 10254 }); 10255 10256 for (auto &CB : CBV) { 10257 MachineBasicBlock *BitTestBB = 10258 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10259 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10260 } 10261 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10262 SI->getCondition(), -1U, MVT::Other, false, 10263 ContiguousRange, nullptr, nullptr, std::move(BTI), 10264 TotalProb); 10265 10266 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10267 BitTestCases.size() - 1, TotalProb); 10268 return true; 10269 } 10270 10271 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10272 const SwitchInst *SI) { 10273 // Partition Clusters into as few subsets as possible, where each subset has a 10274 // range that fits in a machine word and has <= 3 unique destinations. 10275 10276 #ifndef NDEBUG 10277 // Clusters must be sorted and contain Range or JumpTable clusters. 10278 assert(!Clusters.empty()); 10279 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10280 for (const CaseCluster &C : Clusters) 10281 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10282 for (unsigned i = 1; i < Clusters.size(); ++i) 10283 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10284 #endif 10285 10286 // The algorithm below is not suitable for -O0. 10287 if (TM.getOptLevel() == CodeGenOpt::None) 10288 return; 10289 10290 // If target does not have legal shift left, do not emit bit tests at all. 10291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10292 const DataLayout &DL = DAG.getDataLayout(); 10293 10294 EVT PTy = TLI.getPointerTy(DL); 10295 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10296 return; 10297 10298 int BitWidth = PTy.getSizeInBits(); 10299 const int64_t N = Clusters.size(); 10300 10301 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10302 SmallVector<unsigned, 8> MinPartitions(N); 10303 // LastElement[i] is the last element of the partition starting at i. 10304 SmallVector<unsigned, 8> LastElement(N); 10305 10306 // FIXME: This might not be the best algorithm for finding bit test clusters. 10307 10308 // Base case: There is only one way to partition Clusters[N-1]. 10309 MinPartitions[N - 1] = 1; 10310 LastElement[N - 1] = N - 1; 10311 10312 // Note: loop indexes are signed to avoid underflow. 10313 for (int64_t i = N - 2; i >= 0; --i) { 10314 // Find optimal partitioning of Clusters[i..N-1]. 10315 // Baseline: Put Clusters[i] into a partition on its own. 10316 MinPartitions[i] = MinPartitions[i + 1] + 1; 10317 LastElement[i] = i; 10318 10319 // Search for a solution that results in fewer partitions. 10320 // Note: the search is limited by BitWidth, reducing time complexity. 10321 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10322 // Try building a partition from Clusters[i..j]. 10323 10324 // Check the range. 10325 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10326 Clusters[j].High->getValue(), DL)) 10327 continue; 10328 10329 // Check nbr of destinations and cluster types. 10330 // FIXME: This works, but doesn't seem very efficient. 10331 bool RangesOnly = true; 10332 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10333 for (int64_t k = i; k <= j; k++) { 10334 if (Clusters[k].Kind != CC_Range) { 10335 RangesOnly = false; 10336 break; 10337 } 10338 Dests.set(Clusters[k].MBB->getNumber()); 10339 } 10340 if (!RangesOnly || Dests.count() > 3) 10341 break; 10342 10343 // Check if it's a better partition. 10344 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10345 if (NumPartitions < MinPartitions[i]) { 10346 // Found a better partition. 10347 MinPartitions[i] = NumPartitions; 10348 LastElement[i] = j; 10349 } 10350 } 10351 } 10352 10353 // Iterate over the partitions, replacing with bit-test clusters in-place. 10354 unsigned DstIndex = 0; 10355 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10356 Last = LastElement[First]; 10357 assert(First <= Last); 10358 assert(DstIndex <= First); 10359 10360 CaseCluster BitTestCluster; 10361 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10362 Clusters[DstIndex++] = BitTestCluster; 10363 } else { 10364 size_t NumClusters = Last - First + 1; 10365 std::memmove(&Clusters[DstIndex], &Clusters[First], 10366 sizeof(Clusters[0]) * NumClusters); 10367 DstIndex += NumClusters; 10368 } 10369 } 10370 Clusters.resize(DstIndex); 10371 } 10372 10373 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10374 MachineBasicBlock *SwitchMBB, 10375 MachineBasicBlock *DefaultMBB) { 10376 MachineFunction *CurMF = FuncInfo.MF; 10377 MachineBasicBlock *NextMBB = nullptr; 10378 MachineFunction::iterator BBI(W.MBB); 10379 if (++BBI != FuncInfo.MF->end()) 10380 NextMBB = &*BBI; 10381 10382 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10383 10384 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10385 10386 if (Size == 2 && W.MBB == SwitchMBB) { 10387 // If any two of the cases has the same destination, and if one value 10388 // is the same as the other, but has one bit unset that the other has set, 10389 // use bit manipulation to do two compares at once. For example: 10390 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10391 // TODO: This could be extended to merge any 2 cases in switches with 3 10392 // cases. 10393 // TODO: Handle cases where W.CaseBB != SwitchBB. 10394 CaseCluster &Small = *W.FirstCluster; 10395 CaseCluster &Big = *W.LastCluster; 10396 10397 if (Small.Low == Small.High && Big.Low == Big.High && 10398 Small.MBB == Big.MBB) { 10399 const APInt &SmallValue = Small.Low->getValue(); 10400 const APInt &BigValue = Big.Low->getValue(); 10401 10402 // Check that there is only one bit different. 10403 APInt CommonBit = BigValue ^ SmallValue; 10404 if (CommonBit.isPowerOf2()) { 10405 SDValue CondLHS = getValue(Cond); 10406 EVT VT = CondLHS.getValueType(); 10407 SDLoc DL = getCurSDLoc(); 10408 10409 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10410 DAG.getConstant(CommonBit, DL, VT)); 10411 SDValue Cond = DAG.getSetCC( 10412 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10413 ISD::SETEQ); 10414 10415 // Update successor info. 10416 // Both Small and Big will jump to Small.BB, so we sum up the 10417 // probabilities. 10418 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10419 if (BPI) 10420 addSuccessorWithProb( 10421 SwitchMBB, DefaultMBB, 10422 // The default destination is the first successor in IR. 10423 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10424 else 10425 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10426 10427 // Insert the true branch. 10428 SDValue BrCond = 10429 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10430 DAG.getBasicBlock(Small.MBB)); 10431 // Insert the false branch. 10432 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10433 DAG.getBasicBlock(DefaultMBB)); 10434 10435 DAG.setRoot(BrCond); 10436 return; 10437 } 10438 } 10439 } 10440 10441 if (TM.getOptLevel() != CodeGenOpt::None) { 10442 // Here, we order cases by probability so the most likely case will be 10443 // checked first. However, two clusters can have the same probability in 10444 // which case their relative ordering is non-deterministic. So we use Low 10445 // as a tie-breaker as clusters are guaranteed to never overlap. 10446 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10447 [](const CaseCluster &a, const CaseCluster &b) { 10448 return a.Prob != b.Prob ? 10449 a.Prob > b.Prob : 10450 a.Low->getValue().slt(b.Low->getValue()); 10451 }); 10452 10453 // Rearrange the case blocks so that the last one falls through if possible 10454 // without changing the order of probabilities. 10455 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10456 --I; 10457 if (I->Prob > W.LastCluster->Prob) 10458 break; 10459 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10460 std::swap(*I, *W.LastCluster); 10461 break; 10462 } 10463 } 10464 } 10465 10466 // Compute total probability. 10467 BranchProbability DefaultProb = W.DefaultProb; 10468 BranchProbability UnhandledProbs = DefaultProb; 10469 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10470 UnhandledProbs += I->Prob; 10471 10472 MachineBasicBlock *CurMBB = W.MBB; 10473 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10474 bool FallthroughUnreachable = false; 10475 MachineBasicBlock *Fallthrough; 10476 if (I == W.LastCluster) { 10477 // For the last cluster, fall through to the default destination. 10478 Fallthrough = DefaultMBB; 10479 FallthroughUnreachable = isa<UnreachableInst>( 10480 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10481 } else { 10482 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10483 CurMF->insert(BBI, Fallthrough); 10484 // Put Cond in a virtual register to make it available from the new blocks. 10485 ExportFromCurrentBlock(Cond); 10486 } 10487 UnhandledProbs -= I->Prob; 10488 10489 switch (I->Kind) { 10490 case CC_JumpTable: { 10491 // FIXME: Optimize away range check based on pivot comparisons. 10492 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10493 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10494 10495 // The jump block hasn't been inserted yet; insert it here. 10496 MachineBasicBlock *JumpMBB = JT->MBB; 10497 CurMF->insert(BBI, JumpMBB); 10498 10499 auto JumpProb = I->Prob; 10500 auto FallthroughProb = UnhandledProbs; 10501 10502 // If the default statement is a target of the jump table, we evenly 10503 // distribute the default probability to successors of CurMBB. Also 10504 // update the probability on the edge from JumpMBB to Fallthrough. 10505 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10506 SE = JumpMBB->succ_end(); 10507 SI != SE; ++SI) { 10508 if (*SI == DefaultMBB) { 10509 JumpProb += DefaultProb / 2; 10510 FallthroughProb -= DefaultProb / 2; 10511 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10512 JumpMBB->normalizeSuccProbs(); 10513 break; 10514 } 10515 } 10516 10517 if (FallthroughUnreachable) { 10518 // Skip the range check if the fallthrough block is unreachable. 10519 JTH->OmitRangeCheck = true; 10520 } 10521 10522 if (!JTH->OmitRangeCheck) 10523 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10524 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10525 CurMBB->normalizeSuccProbs(); 10526 10527 // The jump table header will be inserted in our current block, do the 10528 // range check, and fall through to our fallthrough block. 10529 JTH->HeaderBB = CurMBB; 10530 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10531 10532 // If we're in the right place, emit the jump table header right now. 10533 if (CurMBB == SwitchMBB) { 10534 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10535 JTH->Emitted = true; 10536 } 10537 break; 10538 } 10539 case CC_BitTests: { 10540 // FIXME: If Fallthrough is unreachable, skip the range check. 10541 10542 // FIXME: Optimize away range check based on pivot comparisons. 10543 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10544 10545 // The bit test blocks haven't been inserted yet; insert them here. 10546 for (BitTestCase &BTC : BTB->Cases) 10547 CurMF->insert(BBI, BTC.ThisBB); 10548 10549 // Fill in fields of the BitTestBlock. 10550 BTB->Parent = CurMBB; 10551 BTB->Default = Fallthrough; 10552 10553 BTB->DefaultProb = UnhandledProbs; 10554 // If the cases in bit test don't form a contiguous range, we evenly 10555 // distribute the probability on the edge to Fallthrough to two 10556 // successors of CurMBB. 10557 if (!BTB->ContiguousRange) { 10558 BTB->Prob += DefaultProb / 2; 10559 BTB->DefaultProb -= DefaultProb / 2; 10560 } 10561 10562 // If we're in the right place, emit the bit test header right now. 10563 if (CurMBB == SwitchMBB) { 10564 visitBitTestHeader(*BTB, SwitchMBB); 10565 BTB->Emitted = true; 10566 } 10567 break; 10568 } 10569 case CC_Range: { 10570 const Value *RHS, *LHS, *MHS; 10571 ISD::CondCode CC; 10572 if (I->Low == I->High) { 10573 // Check Cond == I->Low. 10574 CC = ISD::SETEQ; 10575 LHS = Cond; 10576 RHS=I->Low; 10577 MHS = nullptr; 10578 } else { 10579 // Check I->Low <= Cond <= I->High. 10580 CC = ISD::SETLE; 10581 LHS = I->Low; 10582 MHS = Cond; 10583 RHS = I->High; 10584 } 10585 10586 // If Fallthrough is unreachable, fold away the comparison. 10587 if (FallthroughUnreachable) 10588 CC = ISD::SETTRUE; 10589 10590 // The false probability is the sum of all unhandled cases. 10591 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10592 getCurSDLoc(), I->Prob, UnhandledProbs); 10593 10594 if (CurMBB == SwitchMBB) 10595 visitSwitchCase(CB, SwitchMBB); 10596 else 10597 SwitchCases.push_back(CB); 10598 10599 break; 10600 } 10601 } 10602 CurMBB = Fallthrough; 10603 } 10604 } 10605 10606 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10607 CaseClusterIt First, 10608 CaseClusterIt Last) { 10609 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10610 if (X.Prob != CC.Prob) 10611 return X.Prob > CC.Prob; 10612 10613 // Ties are broken by comparing the case value. 10614 return X.Low->getValue().slt(CC.Low->getValue()); 10615 }); 10616 } 10617 10618 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10619 const SwitchWorkListItem &W, 10620 Value *Cond, 10621 MachineBasicBlock *SwitchMBB) { 10622 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10623 "Clusters not sorted?"); 10624 10625 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10626 10627 // Balance the tree based on branch probabilities to create a near-optimal (in 10628 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10629 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10630 CaseClusterIt LastLeft = W.FirstCluster; 10631 CaseClusterIt FirstRight = W.LastCluster; 10632 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10633 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10634 10635 // Move LastLeft and FirstRight towards each other from opposite directions to 10636 // find a partitioning of the clusters which balances the probability on both 10637 // sides. If LeftProb and RightProb are equal, alternate which side is 10638 // taken to ensure 0-probability nodes are distributed evenly. 10639 unsigned I = 0; 10640 while (LastLeft + 1 < FirstRight) { 10641 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10642 LeftProb += (++LastLeft)->Prob; 10643 else 10644 RightProb += (--FirstRight)->Prob; 10645 I++; 10646 } 10647 10648 while (true) { 10649 // Our binary search tree differs from a typical BST in that ours can have up 10650 // to three values in each leaf. The pivot selection above doesn't take that 10651 // into account, which means the tree might require more nodes and be less 10652 // efficient. We compensate for this here. 10653 10654 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10655 unsigned NumRight = W.LastCluster - FirstRight + 1; 10656 10657 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10658 // If one side has less than 3 clusters, and the other has more than 3, 10659 // consider taking a cluster from the other side. 10660 10661 if (NumLeft < NumRight) { 10662 // Consider moving the first cluster on the right to the left side. 10663 CaseCluster &CC = *FirstRight; 10664 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10665 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10666 if (LeftSideRank <= RightSideRank) { 10667 // Moving the cluster to the left does not demote it. 10668 ++LastLeft; 10669 ++FirstRight; 10670 continue; 10671 } 10672 } else { 10673 assert(NumRight < NumLeft); 10674 // Consider moving the last element on the left to the right side. 10675 CaseCluster &CC = *LastLeft; 10676 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10677 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10678 if (RightSideRank <= LeftSideRank) { 10679 // Moving the cluster to the right does not demot it. 10680 --LastLeft; 10681 --FirstRight; 10682 continue; 10683 } 10684 } 10685 } 10686 break; 10687 } 10688 10689 assert(LastLeft + 1 == FirstRight); 10690 assert(LastLeft >= W.FirstCluster); 10691 assert(FirstRight <= W.LastCluster); 10692 10693 // Use the first element on the right as pivot since we will make less-than 10694 // comparisons against it. 10695 CaseClusterIt PivotCluster = FirstRight; 10696 assert(PivotCluster > W.FirstCluster); 10697 assert(PivotCluster <= W.LastCluster); 10698 10699 CaseClusterIt FirstLeft = W.FirstCluster; 10700 CaseClusterIt LastRight = W.LastCluster; 10701 10702 const ConstantInt *Pivot = PivotCluster->Low; 10703 10704 // New blocks will be inserted immediately after the current one. 10705 MachineFunction::iterator BBI(W.MBB); 10706 ++BBI; 10707 10708 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10709 // we can branch to its destination directly if it's squeezed exactly in 10710 // between the known lower bound and Pivot - 1. 10711 MachineBasicBlock *LeftMBB; 10712 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10713 FirstLeft->Low == W.GE && 10714 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10715 LeftMBB = FirstLeft->MBB; 10716 } else { 10717 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10718 FuncInfo.MF->insert(BBI, LeftMBB); 10719 WorkList.push_back( 10720 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10721 // Put Cond in a virtual register to make it available from the new blocks. 10722 ExportFromCurrentBlock(Cond); 10723 } 10724 10725 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10726 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10727 // directly if RHS.High equals the current upper bound. 10728 MachineBasicBlock *RightMBB; 10729 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10730 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10731 RightMBB = FirstRight->MBB; 10732 } else { 10733 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10734 FuncInfo.MF->insert(BBI, RightMBB); 10735 WorkList.push_back( 10736 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10737 // Put Cond in a virtual register to make it available from the new blocks. 10738 ExportFromCurrentBlock(Cond); 10739 } 10740 10741 // Create the CaseBlock record that will be used to lower the branch. 10742 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10743 getCurSDLoc(), LeftProb, RightProb); 10744 10745 if (W.MBB == SwitchMBB) 10746 visitSwitchCase(CB, SwitchMBB); 10747 else 10748 SwitchCases.push_back(CB); 10749 } 10750 10751 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10752 // from the swith statement. 10753 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10754 BranchProbability PeeledCaseProb) { 10755 if (PeeledCaseProb == BranchProbability::getOne()) 10756 return BranchProbability::getZero(); 10757 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10758 10759 uint32_t Numerator = CaseProb.getNumerator(); 10760 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10761 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10762 } 10763 10764 // Try to peel the top probability case if it exceeds the threshold. 10765 // Return current MachineBasicBlock for the switch statement if the peeling 10766 // does not occur. 10767 // If the peeling is performed, return the newly created MachineBasicBlock 10768 // for the peeled switch statement. Also update Clusters to remove the peeled 10769 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10770 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10771 const SwitchInst &SI, CaseClusterVector &Clusters, 10772 BranchProbability &PeeledCaseProb) { 10773 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10774 // Don't perform if there is only one cluster or optimizing for size. 10775 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10776 TM.getOptLevel() == CodeGenOpt::None || 10777 SwitchMBB->getParent()->getFunction().hasMinSize()) 10778 return SwitchMBB; 10779 10780 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10781 unsigned PeeledCaseIndex = 0; 10782 bool SwitchPeeled = false; 10783 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10784 CaseCluster &CC = Clusters[Index]; 10785 if (CC.Prob < TopCaseProb) 10786 continue; 10787 TopCaseProb = CC.Prob; 10788 PeeledCaseIndex = Index; 10789 SwitchPeeled = true; 10790 } 10791 if (!SwitchPeeled) 10792 return SwitchMBB; 10793 10794 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10795 << TopCaseProb << "\n"); 10796 10797 // Record the MBB for the peeled switch statement. 10798 MachineFunction::iterator BBI(SwitchMBB); 10799 ++BBI; 10800 MachineBasicBlock *PeeledSwitchMBB = 10801 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10802 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10803 10804 ExportFromCurrentBlock(SI.getCondition()); 10805 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10806 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10807 nullptr, nullptr, TopCaseProb.getCompl()}; 10808 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10809 10810 Clusters.erase(PeeledCaseIt); 10811 for (CaseCluster &CC : Clusters) { 10812 LLVM_DEBUG( 10813 dbgs() << "Scale the probablity for one cluster, before scaling: " 10814 << CC.Prob << "\n"); 10815 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10816 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10817 } 10818 PeeledCaseProb = TopCaseProb; 10819 return PeeledSwitchMBB; 10820 } 10821 10822 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10823 // Extract cases from the switch. 10824 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10825 CaseClusterVector Clusters; 10826 Clusters.reserve(SI.getNumCases()); 10827 for (auto I : SI.cases()) { 10828 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10829 const ConstantInt *CaseVal = I.getCaseValue(); 10830 BranchProbability Prob = 10831 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10832 : BranchProbability(1, SI.getNumCases() + 1); 10833 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10834 } 10835 10836 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10837 10838 // Cluster adjacent cases with the same destination. We do this at all 10839 // optimization levels because it's cheap to do and will make codegen faster 10840 // if there are many clusters. 10841 sortAndRangeify(Clusters); 10842 10843 // The branch probablity of the peeled case. 10844 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10845 MachineBasicBlock *PeeledSwitchMBB = 10846 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10847 10848 // If there is only the default destination, jump there directly. 10849 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10850 if (Clusters.empty()) { 10851 assert(PeeledSwitchMBB == SwitchMBB); 10852 SwitchMBB->addSuccessor(DefaultMBB); 10853 if (DefaultMBB != NextBlock(SwitchMBB)) { 10854 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10855 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10856 } 10857 return; 10858 } 10859 10860 findJumpTables(Clusters, &SI, DefaultMBB); 10861 findBitTestClusters(Clusters, &SI); 10862 10863 LLVM_DEBUG({ 10864 dbgs() << "Case clusters: "; 10865 for (const CaseCluster &C : Clusters) { 10866 if (C.Kind == CC_JumpTable) 10867 dbgs() << "JT:"; 10868 if (C.Kind == CC_BitTests) 10869 dbgs() << "BT:"; 10870 10871 C.Low->getValue().print(dbgs(), true); 10872 if (C.Low != C.High) { 10873 dbgs() << '-'; 10874 C.High->getValue().print(dbgs(), true); 10875 } 10876 dbgs() << ' '; 10877 } 10878 dbgs() << '\n'; 10879 }); 10880 10881 assert(!Clusters.empty()); 10882 SwitchWorkList WorkList; 10883 CaseClusterIt First = Clusters.begin(); 10884 CaseClusterIt Last = Clusters.end() - 1; 10885 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10886 // Scale the branchprobability for DefaultMBB if the peel occurs and 10887 // DefaultMBB is not replaced. 10888 if (PeeledCaseProb != BranchProbability::getZero() && 10889 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10890 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10891 WorkList.push_back( 10892 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10893 10894 while (!WorkList.empty()) { 10895 SwitchWorkListItem W = WorkList.back(); 10896 WorkList.pop_back(); 10897 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10898 10899 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10900 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10901 // For optimized builds, lower large range as a balanced binary tree. 10902 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10903 continue; 10904 } 10905 10906 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10907 } 10908 } 10909