1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/CodeGen/Analysis.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineMemOperand.h" 46 #include "llvm/CodeGen/MachineModuleInfo.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/RuntimeLibcalls.h" 50 #include "llvm/CodeGen/SelectionDAG.h" 51 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 54 #include "llvm/CodeGen/TargetFrameLowering.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/WinEHFuncInfo.h" 60 #include "llvm/IR/Argument.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/CallingConv.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/ConstantRange.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfoMetadata.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/MC/MCSymbol.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include <cstddef> 102 #include <cstring> 103 #include <iterator> 104 #include <limits> 105 #include <numeric> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 // Return the calling convention if the Value passed requires ABI mangling as it 153 // is a parameter to a function or a return value from a function which is not 154 // an intrinsic. 155 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 156 if (auto *R = dyn_cast<ReturnInst>(V)) 157 return R->getParent()->getParent()->getCallingConv(); 158 159 if (auto *CI = dyn_cast<CallInst>(V)) { 160 const bool IsInlineAsm = CI->isInlineAsm(); 161 const bool IsIndirectFunctionCall = 162 !IsInlineAsm && !CI->getCalledFunction(); 163 164 // It is possible that the call instruction is an inline asm statement or an 165 // indirect function call in which case the return value of 166 // getCalledFunction() would be nullptr. 167 const bool IsInstrinsicCall = 168 !IsInlineAsm && !IsIndirectFunctionCall && 169 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 170 171 if (!IsInlineAsm && !IsInstrinsicCall) 172 return CI->getCallingConv(); 173 } 174 175 return None; 176 } 177 178 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 179 const SDValue *Parts, unsigned NumParts, 180 MVT PartVT, EVT ValueVT, const Value *V, 181 Optional<CallingConv::ID> CC); 182 183 /// getCopyFromParts - Create a value that contains the specified legal parts 184 /// combined into the value they represent. If the parts combine to a type 185 /// larger than ValueVT then AssertOp can be used to specify whether the extra 186 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 187 /// (ISD::AssertSext). 188 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC = None, 192 Optional<ISD::NodeType> AssertOp = None) { 193 // Let the target assemble the parts if it wants to 194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 195 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 196 PartVT, ValueVT, CC)) 197 return Val; 198 199 if (ValueVT.isVector()) 200 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 201 CC); 202 203 assert(NumParts > 0 && "No parts to assemble!"); 204 SDValue Val = Parts[0]; 205 206 if (NumParts > 1) { 207 // Assemble the value from multiple parts. 208 if (ValueVT.isInteger()) { 209 unsigned PartBits = PartVT.getSizeInBits(); 210 unsigned ValueBits = ValueVT.getSizeInBits(); 211 212 // Assemble the power of 2 part. 213 unsigned RoundParts = 214 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 215 unsigned RoundBits = PartBits * RoundParts; 216 EVT RoundVT = RoundBits == ValueBits ? 217 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 218 SDValue Lo, Hi; 219 220 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 221 222 if (RoundParts > 2) { 223 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 224 PartVT, HalfVT, V); 225 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 226 RoundParts / 2, PartVT, HalfVT, V); 227 } else { 228 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 229 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 230 } 231 232 if (DAG.getDataLayout().isBigEndian()) 233 std::swap(Lo, Hi); 234 235 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 236 237 if (RoundParts < NumParts) { 238 // Assemble the trailing non-power-of-2 part. 239 unsigned OddParts = NumParts - RoundParts; 240 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 241 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 242 OddVT, V, CC); 243 244 // Combine the round and odd parts. 245 Lo = Val; 246 if (DAG.getDataLayout().isBigEndian()) 247 std::swap(Lo, Hi); 248 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 249 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 250 Hi = 251 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 252 DAG.getConstant(Lo.getValueSizeInBits(), DL, 253 TLI.getPointerTy(DAG.getDataLayout()))); 254 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 255 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 256 } 257 } else if (PartVT.isFloatingPoint()) { 258 // FP split into multiple FP parts (for ppcf128) 259 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 260 "Unexpected split"); 261 SDValue Lo, Hi; 262 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 263 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 264 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 265 std::swap(Lo, Hi); 266 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 267 } else { 268 // FP split into integer parts (soft fp) 269 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 270 !PartVT.isVector() && "Unexpected split"); 271 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 272 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 273 } 274 } 275 276 // There is now one part, held in Val. Correct it to match ValueVT. 277 // PartEVT is the type of the register class that holds the value. 278 // ValueVT is the type of the inline asm operation. 279 EVT PartEVT = Val.getValueType(); 280 281 if (PartEVT == ValueVT) 282 return Val; 283 284 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 285 ValueVT.bitsLT(PartEVT)) { 286 // For an FP value in an integer part, we need to truncate to the right 287 // width first. 288 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 289 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 290 } 291 292 // Handle types that have the same size. 293 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 294 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 295 296 // Handle types with different sizes. 297 if (PartEVT.isInteger() && ValueVT.isInteger()) { 298 if (ValueVT.bitsLT(PartEVT)) { 299 // For a truncate, see if we have any information to 300 // indicate whether the truncated bits will always be 301 // zero or sign-extension. 302 if (AssertOp.hasValue()) 303 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 304 DAG.getValueType(ValueVT)); 305 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 306 } 307 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 308 } 309 310 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 311 // FP_ROUND's are always exact here. 312 if (ValueVT.bitsLT(Val.getValueType())) 313 return DAG.getNode( 314 ISD::FP_ROUND, DL, ValueVT, Val, 315 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 316 317 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 318 } 319 320 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 321 // then truncating. 322 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 323 ValueVT.bitsLT(PartEVT)) { 324 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 325 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 326 } 327 328 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 329 } 330 331 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 332 const Twine &ErrMsg) { 333 const Instruction *I = dyn_cast_or_null<Instruction>(V); 334 if (!V) 335 return Ctx.emitError(ErrMsg); 336 337 const char *AsmError = ", possible invalid constraint for vector type"; 338 if (const CallInst *CI = dyn_cast<CallInst>(I)) 339 if (CI->isInlineAsm()) 340 return Ctx.emitError(I, ErrMsg + AsmError); 341 342 return Ctx.emitError(I, ErrMsg); 343 } 344 345 /// getCopyFromPartsVector - Create a value that contains the specified legal 346 /// parts combined into the value they represent. If the parts combine to a 347 /// type larger than ValueVT then AssertOp can be used to specify whether the 348 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 349 /// ValueVT (ISD::AssertSext). 350 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 351 const SDValue *Parts, unsigned NumParts, 352 MVT PartVT, EVT ValueVT, const Value *V, 353 Optional<CallingConv::ID> CallConv) { 354 assert(ValueVT.isVector() && "Not a vector value"); 355 assert(NumParts > 0 && "No parts to assemble!"); 356 const bool IsABIRegCopy = CallConv.hasValue(); 357 358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 359 SDValue Val = Parts[0]; 360 361 // Handle a multi-element vector. 362 if (NumParts > 1) { 363 EVT IntermediateVT; 364 MVT RegisterVT; 365 unsigned NumIntermediates; 366 unsigned NumRegs; 367 368 if (IsABIRegCopy) { 369 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 370 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 371 NumIntermediates, RegisterVT); 372 } else { 373 NumRegs = 374 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 375 NumIntermediates, RegisterVT); 376 } 377 378 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 379 NumParts = NumRegs; // Silence a compiler warning. 380 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 381 assert(RegisterVT.getSizeInBits() == 382 Parts[0].getSimpleValueType().getSizeInBits() && 383 "Part type sizes don't match!"); 384 385 // Assemble the parts into intermediate operands. 386 SmallVector<SDValue, 8> Ops(NumIntermediates); 387 if (NumIntermediates == NumParts) { 388 // If the register was not expanded, truncate or copy the value, 389 // as appropriate. 390 for (unsigned i = 0; i != NumParts; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 392 PartVT, IntermediateVT, V, CallConv); 393 } else if (NumParts > 0) { 394 // If the intermediate type was expanded, build the intermediate 395 // operands from the parts. 396 assert(NumParts % NumIntermediates == 0 && 397 "Must expand into a divisible number of parts!"); 398 unsigned Factor = NumParts / NumIntermediates; 399 for (unsigned i = 0; i != NumIntermediates; ++i) 400 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 401 PartVT, IntermediateVT, V, CallConv); 402 } 403 404 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 405 // intermediate operands. 406 EVT BuiltVectorTy = 407 IntermediateVT.isVector() 408 ? EVT::getVectorVT( 409 *DAG.getContext(), IntermediateVT.getScalarType(), 410 IntermediateVT.getVectorElementCount() * NumParts) 411 : EVT::getVectorVT(*DAG.getContext(), 412 IntermediateVT.getScalarType(), 413 NumIntermediates); 414 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 415 : ISD::BUILD_VECTOR, 416 DL, BuiltVectorTy, Ops); 417 } 418 419 // There is now one part, held in Val. Correct it to match ValueVT. 420 EVT PartEVT = Val.getValueType(); 421 422 if (PartEVT == ValueVT) 423 return Val; 424 425 if (PartEVT.isVector()) { 426 // If the element type of the source/dest vectors are the same, but the 427 // parts vector has more elements than the value vector, then we have a 428 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 429 // elements we want. 430 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 431 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 432 ValueVT.getVectorElementCount().getKnownMinValue()) && 433 (PartEVT.getVectorElementCount().isScalable() == 434 ValueVT.getVectorElementCount().isScalable()) && 435 "Cannot narrow, it would be a lossy transformation"); 436 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 437 DAG.getVectorIdxConstant(0, DL)); 438 } 439 440 // Vector/Vector bitcast. 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 444 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 445 "Cannot handle this kind of promotion"); 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 449 } 450 451 // Trivial bitcast if the types are the same size and the destination 452 // vector type is legal. 453 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 454 TLI.isTypeLegal(ValueVT)) 455 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 456 457 if (ValueVT.getVectorNumElements() != 1) { 458 // Certain ABIs require that vectors are passed as integers. For vectors 459 // are the same size, this is an obvious bitcast. 460 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 463 // Bitcast Val back the original type and extract the corresponding 464 // vector we want. 465 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 466 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 467 ValueVT.getVectorElementType(), Elts); 468 Val = DAG.getBitcast(WiderVecType, Val); 469 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 470 DAG.getVectorIdxConstant(0, DL)); 471 } 472 473 diagnosePossiblyInvalidConstraint( 474 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 475 return DAG.getUNDEF(ValueVT); 476 } 477 478 // Handle cases such as i8 -> <1 x i1> 479 EVT ValueSVT = ValueVT.getVectorElementType(); 480 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 481 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 482 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 483 else 484 Val = ValueVT.isFloatingPoint() 485 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 486 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 487 } 488 489 return DAG.getBuildVector(ValueVT, DL, Val); 490 } 491 492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V, 495 Optional<CallingConv::ID> CallConv); 496 497 /// getCopyToParts - Create a series of nodes that contain the specified value 498 /// split into legal parts. If the parts contain more bits than Val, then, for 499 /// integers, ExtendKind can be used to specify how to generate the extra bits. 500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 501 SDValue *Parts, unsigned NumParts, MVT PartVT, 502 const Value *V, 503 Optional<CallingConv::ID> CallConv = None, 504 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 505 // Let the target split the parts if it wants to 506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 507 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 508 CallConv)) 509 return; 510 EVT ValueVT = Val.getValueType(); 511 512 // Handle the vector case separately. 513 if (ValueVT.isVector()) 514 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 515 CallConv); 516 517 unsigned PartBits = PartVT.getSizeInBits(); 518 unsigned OrigNumParts = NumParts; 519 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 520 "Copying to an illegal type!"); 521 522 if (NumParts == 0) 523 return; 524 525 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 526 EVT PartEVT = PartVT; 527 if (PartEVT == ValueVT) { 528 assert(NumParts == 1 && "No-op copy with multiple parts!"); 529 Parts[0] = Val; 530 return; 531 } 532 533 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 534 // If the parts cover more bits than the value has, promote the value. 535 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 536 assert(NumParts == 1 && "Do not know what to promote to!"); 537 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 538 } else { 539 if (ValueVT.isFloatingPoint()) { 540 // FP values need to be bitcast, then extended if they are being put 541 // into a larger container. 542 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 543 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 544 } 545 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 546 ValueVT.isInteger() && 547 "Unknown mismatch!"); 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 549 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 550 if (PartVT == MVT::x86mmx) 551 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 552 } 553 } else if (PartBits == ValueVT.getSizeInBits()) { 554 // Different types of the same size. 555 assert(NumParts == 1 && PartEVT != ValueVT); 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 558 // If the parts cover less bits than value has, truncate the value. 559 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 560 ValueVT.isInteger() && 561 "Unknown mismatch!"); 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 563 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 564 if (PartVT == MVT::x86mmx) 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 // The value may have changed - recompute ValueVT. 569 ValueVT = Val.getValueType(); 570 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 571 "Failed to tile the value with PartVT!"); 572 573 if (NumParts == 1) { 574 if (PartEVT != ValueVT) { 575 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 576 "scalar-to-vector conversion failed"); 577 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 578 } 579 580 Parts[0] = Val; 581 return; 582 } 583 584 // Expand the value into multiple parts. 585 if (NumParts & (NumParts - 1)) { 586 // The number of parts is not a power of 2. Split off and copy the tail. 587 assert(PartVT.isInteger() && ValueVT.isInteger() && 588 "Do not know what to expand to!"); 589 unsigned RoundParts = 1 << Log2_32(NumParts); 590 unsigned RoundBits = RoundParts * PartBits; 591 unsigned OddParts = NumParts - RoundParts; 592 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 593 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 594 595 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 596 CallConv); 597 598 if (DAG.getDataLayout().isBigEndian()) 599 // The odd parts were reversed by getCopyToParts - unreverse them. 600 std::reverse(Parts + RoundParts, Parts + NumParts); 601 602 NumParts = RoundParts; 603 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 604 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 605 } 606 607 // The number of parts is a power of 2. Repeatedly bisect the value using 608 // EXTRACT_ELEMENT. 609 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 610 EVT::getIntegerVT(*DAG.getContext(), 611 ValueVT.getSizeInBits()), 612 Val); 613 614 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 615 for (unsigned i = 0; i < NumParts; i += StepSize) { 616 unsigned ThisBits = StepSize * PartBits / 2; 617 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 618 SDValue &Part0 = Parts[i]; 619 SDValue &Part1 = Parts[i+StepSize/2]; 620 621 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 622 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 623 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 625 626 if (ThisBits == PartBits && ThisVT != PartVT) { 627 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 628 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 629 } 630 } 631 } 632 633 if (DAG.getDataLayout().isBigEndian()) 634 std::reverse(Parts, Parts + OrigNumParts); 635 } 636 637 static SDValue widenVectorToPartType(SelectionDAG &DAG, 638 SDValue Val, const SDLoc &DL, EVT PartVT) { 639 if (!PartVT.isFixedLengthVector()) 640 return SDValue(); 641 642 EVT ValueVT = Val.getValueType(); 643 unsigned PartNumElts = PartVT.getVectorNumElements(); 644 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 645 if (PartNumElts > ValueNumElts && 646 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 647 EVT ElementVT = PartVT.getVectorElementType(); 648 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 649 // undef elements. 650 SmallVector<SDValue, 16> Ops; 651 DAG.ExtractVectorElements(Val, Ops); 652 SDValue EltUndef = DAG.getUNDEF(ElementVT); 653 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 654 Ops.push_back(EltUndef); 655 656 // FIXME: Use CONCAT for 2x -> 4x. 657 return DAG.getBuildVector(PartVT, DL, Ops); 658 } 659 660 return SDValue(); 661 } 662 663 /// getCopyToPartsVector - Create a series of nodes that contain the specified 664 /// value split into legal parts. 665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 666 SDValue Val, SDValue *Parts, unsigned NumParts, 667 MVT PartVT, const Value *V, 668 Optional<CallingConv::ID> CallConv) { 669 EVT ValueVT = Val.getValueType(); 670 assert(ValueVT.isVector() && "Not a vector"); 671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 672 const bool IsABIRegCopy = CallConv.hasValue(); 673 674 if (NumParts == 1) { 675 EVT PartEVT = PartVT; 676 if (PartEVT == ValueVT) { 677 // Nothing to do. 678 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 679 // Bitconvert vector->vector case. 680 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 681 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 682 Val = Widened; 683 } else if (PartVT.isVector() && 684 PartEVT.getVectorElementType().bitsGE( 685 ValueVT.getVectorElementType()) && 686 PartEVT.getVectorElementCount() == 687 ValueVT.getVectorElementCount()) { 688 689 // Promoted vector extract 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } else { 692 if (ValueVT.getVectorNumElements() == 1) { 693 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 694 DAG.getVectorIdxConstant(0, DL)); 695 } else { 696 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 697 "lossy conversion of vector to scalar type"); 698 EVT IntermediateType = 699 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 700 Val = DAG.getBitcast(IntermediateType, Val); 701 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 702 } 703 } 704 705 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 706 Parts[0] = Val; 707 return; 708 } 709 710 // Handle a multi-element vector. 711 EVT IntermediateVT; 712 MVT RegisterVT; 713 unsigned NumIntermediates; 714 unsigned NumRegs; 715 if (IsABIRegCopy) { 716 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 717 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } else { 720 NumRegs = 721 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 722 NumIntermediates, RegisterVT); 723 } 724 725 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 726 NumParts = NumRegs; // Silence a compiler warning. 727 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 728 729 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 730 "Mixing scalable and fixed vectors when copying in parts"); 731 732 Optional<ElementCount> DestEltCnt; 733 734 if (IntermediateVT.isVector()) 735 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 736 else 737 DestEltCnt = ElementCount::getFixed(NumIntermediates); 738 739 EVT BuiltVectorTy = EVT::getVectorVT( 740 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 741 if (ValueVT != BuiltVectorTy) { 742 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 743 Val = Widened; 744 745 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 746 } 747 748 // Split the vector into intermediate operands. 749 SmallVector<SDValue, 8> Ops(NumIntermediates); 750 for (unsigned i = 0; i != NumIntermediates; ++i) { 751 if (IntermediateVT.isVector()) { 752 // This does something sensible for scalable vectors - see the 753 // definition of EXTRACT_SUBVECTOR for further details. 754 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 755 Ops[i] = 756 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 757 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 758 } else { 759 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 760 DAG.getVectorIdxConstant(i, DL)); 761 } 762 } 763 764 // Split the intermediate operands into legal parts. 765 if (NumParts == NumIntermediates) { 766 // If the register was not expanded, promote or copy the value, 767 // as appropriate. 768 for (unsigned i = 0; i != NumParts; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 770 } else if (NumParts > 0) { 771 // If the intermediate type was expanded, split each the value into 772 // legal parts. 773 assert(NumIntermediates != 0 && "division by zero"); 774 assert(NumParts % NumIntermediates == 0 && 775 "Must expand into a divisible number of parts!"); 776 unsigned Factor = NumParts / NumIntermediates; 777 for (unsigned i = 0; i != NumIntermediates; ++i) 778 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 779 CallConv); 780 } 781 } 782 783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 784 EVT valuevt, Optional<CallingConv::ID> CC) 785 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 786 RegCount(1, regs.size()), CallConv(CC) {} 787 788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 789 const DataLayout &DL, unsigned Reg, Type *Ty, 790 Optional<CallingConv::ID> CC) { 791 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 792 793 CallConv = CC; 794 795 for (EVT ValueVT : ValueVTs) { 796 unsigned NumRegs = 797 isABIMangled() 798 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 799 : TLI.getNumRegisters(Context, ValueVT); 800 MVT RegisterVT = 801 isABIMangled() 802 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 803 : TLI.getRegisterType(Context, ValueVT); 804 for (unsigned i = 0; i != NumRegs; ++i) 805 Regs.push_back(Reg + i); 806 RegVTs.push_back(RegisterVT); 807 RegCount.push_back(NumRegs); 808 Reg += NumRegs; 809 } 810 } 811 812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 813 FunctionLoweringInfo &FuncInfo, 814 const SDLoc &dl, SDValue &Chain, 815 SDValue *Flag, const Value *V) const { 816 // A Value with type {} or [0 x %t] needs no registers. 817 if (ValueVTs.empty()) 818 return SDValue(); 819 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 // Assemble the legal parts into the final values. 823 SmallVector<SDValue, 4> Values(ValueVTs.size()); 824 SmallVector<SDValue, 8> Parts; 825 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 826 // Copy the legal parts from the registers. 827 EVT ValueVT = ValueVTs[Value]; 828 unsigned NumRegs = RegCount[Value]; 829 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 830 *DAG.getContext(), 831 CallConv.getValue(), RegVTs[Value]) 832 : RegVTs[Value]; 833 834 Parts.resize(NumRegs); 835 for (unsigned i = 0; i != NumRegs; ++i) { 836 SDValue P; 837 if (!Flag) { 838 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 839 } else { 840 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 841 *Flag = P.getValue(2); 842 } 843 844 Chain = P.getValue(1); 845 Parts[i] = P; 846 847 // If the source register was virtual and if we know something about it, 848 // add an assert node. 849 if (!Register::isVirtualRegister(Regs[Part + i]) || 850 !RegisterVT.isInteger()) 851 continue; 852 853 const FunctionLoweringInfo::LiveOutInfo *LOI = 854 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 855 if (!LOI) 856 continue; 857 858 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 859 unsigned NumSignBits = LOI->NumSignBits; 860 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 861 862 if (NumZeroBits == RegSize) { 863 // The current value is a zero. 864 // Explicitly express that as it would be easier for 865 // optimizations to kick in. 866 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 867 continue; 868 } 869 870 // FIXME: We capture more information than the dag can represent. For 871 // now, just use the tightest assertzext/assertsext possible. 872 bool isSExt; 873 EVT FromVT(MVT::Other); 874 if (NumZeroBits) { 875 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 876 isSExt = false; 877 } else if (NumSignBits > 1) { 878 FromVT = 879 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 880 isSExt = true; 881 } else { 882 continue; 883 } 884 // Add an assertion node. 885 assert(FromVT != MVT::Other); 886 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 887 RegisterVT, P, DAG.getValueType(FromVT)); 888 } 889 890 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 891 RegisterVT, ValueVT, V, CallConv); 892 Part += NumRegs; 893 Parts.clear(); 894 } 895 896 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 897 } 898 899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 900 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 901 const Value *V, 902 ISD::NodeType PreferredExtendType) const { 903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 904 ISD::NodeType ExtendKind = PreferredExtendType; 905 906 // Get the list of the values's legal parts. 907 unsigned NumRegs = Regs.size(); 908 SmallVector<SDValue, 8> Parts(NumRegs); 909 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 910 unsigned NumParts = RegCount[Value]; 911 912 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 913 *DAG.getContext(), 914 CallConv.getValue(), RegVTs[Value]) 915 : RegVTs[Value]; 916 917 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 918 ExtendKind = ISD::ZERO_EXTEND; 919 920 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 921 NumParts, RegisterVT, V, CallConv, ExtendKind); 922 Part += NumParts; 923 } 924 925 // Copy the parts into the registers. 926 SmallVector<SDValue, 8> Chains(NumRegs); 927 for (unsigned i = 0; i != NumRegs; ++i) { 928 SDValue Part; 929 if (!Flag) { 930 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 931 } else { 932 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 933 *Flag = Part.getValue(1); 934 } 935 936 Chains[i] = Part.getValue(0); 937 } 938 939 if (NumRegs == 1 || Flag) 940 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 941 // flagged to it. That is the CopyToReg nodes and the user are considered 942 // a single scheduling unit. If we create a TokenFactor and return it as 943 // chain, then the TokenFactor is both a predecessor (operand) of the 944 // user as well as a successor (the TF operands are flagged to the user). 945 // c1, f1 = CopyToReg 946 // c2, f2 = CopyToReg 947 // c3 = TokenFactor c1, c2 948 // ... 949 // = op c3, ..., f2 950 Chain = Chains[NumRegs-1]; 951 else 952 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 953 } 954 955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 956 unsigned MatchingIdx, const SDLoc &dl, 957 SelectionDAG &DAG, 958 std::vector<SDValue> &Ops) const { 959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 960 961 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 962 if (HasMatching) 963 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 964 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 965 // Put the register class of the virtual registers in the flag word. That 966 // way, later passes can recompute register class constraints for inline 967 // assembly as well as normal instructions. 968 // Don't do this for tied operands that can use the regclass information 969 // from the def. 970 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 971 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 972 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 973 } 974 975 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 976 Ops.push_back(Res); 977 978 if (Code == InlineAsm::Kind_Clobber) { 979 // Clobbers should always have a 1:1 mapping with registers, and may 980 // reference registers that have illegal (e.g. vector) types. Hence, we 981 // shouldn't try to apply any sort of splitting logic to them. 982 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 983 "No 1:1 mapping from clobbers to regs?"); 984 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 985 (void)SP; 986 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 987 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 988 assert( 989 (Regs[I] != SP || 990 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 991 "If we clobbered the stack pointer, MFI should know about it."); 992 } 993 return; 994 } 995 996 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 997 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 998 MVT RegisterVT = RegVTs[Value]; 999 for (unsigned i = 0; i != NumRegs; ++i) { 1000 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1001 unsigned TheReg = Regs[Reg++]; 1002 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1003 } 1004 } 1005 } 1006 1007 SmallVector<std::pair<unsigned, unsigned>, 4> 1008 RegsForValue::getRegsAndSizes() const { 1009 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1010 unsigned I = 0; 1011 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1012 unsigned RegCount = std::get<0>(CountAndVT); 1013 MVT RegisterVT = std::get<1>(CountAndVT); 1014 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1015 for (unsigned E = I + RegCount; I != E; ++I) 1016 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1017 } 1018 return OutVec; 1019 } 1020 1021 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1022 const TargetLibraryInfo *li) { 1023 AA = aa; 1024 GFI = gfi; 1025 LibInfo = li; 1026 DL = &DAG.getDataLayout(); 1027 Context = DAG.getContext(); 1028 LPadToCallSiteMap.clear(); 1029 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1030 } 1031 1032 void SelectionDAGBuilder::clear() { 1033 NodeMap.clear(); 1034 UnusedArgNodeMap.clear(); 1035 PendingLoads.clear(); 1036 PendingExports.clear(); 1037 PendingConstrainedFP.clear(); 1038 PendingConstrainedFPStrict.clear(); 1039 CurInst = nullptr; 1040 HasTailCall = false; 1041 SDNodeOrder = LowestSDNodeOrder; 1042 StatepointLowering.clear(); 1043 } 1044 1045 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1046 DanglingDebugInfoMap.clear(); 1047 } 1048 1049 // Update DAG root to include dependencies on Pending chains. 1050 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1051 SDValue Root = DAG.getRoot(); 1052 1053 if (Pending.empty()) 1054 return Root; 1055 1056 // Add current root to PendingChains, unless we already indirectly 1057 // depend on it. 1058 if (Root.getOpcode() != ISD::EntryToken) { 1059 unsigned i = 0, e = Pending.size(); 1060 for (; i != e; ++i) { 1061 assert(Pending[i].getNode()->getNumOperands() > 1); 1062 if (Pending[i].getNode()->getOperand(0) == Root) 1063 break; // Don't add the root if we already indirectly depend on it. 1064 } 1065 1066 if (i == e) 1067 Pending.push_back(Root); 1068 } 1069 1070 if (Pending.size() == 1) 1071 Root = Pending[0]; 1072 else 1073 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1074 1075 DAG.setRoot(Root); 1076 Pending.clear(); 1077 return Root; 1078 } 1079 1080 SDValue SelectionDAGBuilder::getMemoryRoot() { 1081 return updateRoot(PendingLoads); 1082 } 1083 1084 SDValue SelectionDAGBuilder::getRoot() { 1085 // Chain up all pending constrained intrinsics together with all 1086 // pending loads, by simply appending them to PendingLoads and 1087 // then calling getMemoryRoot(). 1088 PendingLoads.reserve(PendingLoads.size() + 1089 PendingConstrainedFP.size() + 1090 PendingConstrainedFPStrict.size()); 1091 PendingLoads.append(PendingConstrainedFP.begin(), 1092 PendingConstrainedFP.end()); 1093 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1094 PendingConstrainedFPStrict.end()); 1095 PendingConstrainedFP.clear(); 1096 PendingConstrainedFPStrict.clear(); 1097 return getMemoryRoot(); 1098 } 1099 1100 SDValue SelectionDAGBuilder::getControlRoot() { 1101 // We need to emit pending fpexcept.strict constrained intrinsics, 1102 // so append them to the PendingExports list. 1103 PendingExports.append(PendingConstrainedFPStrict.begin(), 1104 PendingConstrainedFPStrict.end()); 1105 PendingConstrainedFPStrict.clear(); 1106 return updateRoot(PendingExports); 1107 } 1108 1109 void SelectionDAGBuilder::visit(const Instruction &I) { 1110 // Set up outgoing PHI node register values before emitting the terminator. 1111 if (I.isTerminator()) { 1112 HandlePHINodesInSuccessorBlocks(I.getParent()); 1113 } 1114 1115 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1116 if (!isa<DbgInfoIntrinsic>(I)) 1117 ++SDNodeOrder; 1118 1119 CurInst = &I; 1120 1121 visit(I.getOpcode(), I); 1122 1123 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1124 // ConstrainedFPIntrinsics handle their own FMF. 1125 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1126 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1127 // maps to this instruction. 1128 // TODO: We could handle all flags (nsw, etc) here. 1129 // TODO: If an IR instruction maps to >1 node, only the final node will have 1130 // flags set. 1131 // TODO: The handling of flags should be improved, see 1132 // https://reviews.llvm.org/D86871 1133 if (SDNode *Node = getNodeForIRValue(&I)) { 1134 SDNodeFlags IncomingFlags; 1135 IncomingFlags.copyFMF(*FPMO); 1136 if (!Node->getFlags().isDefined()) 1137 Node->setFlags(IncomingFlags); 1138 else 1139 Node->intersectFlagsWith(IncomingFlags); 1140 } 1141 } 1142 } 1143 1144 if (!I.isTerminator() && !HasTailCall && 1145 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1146 CopyToExportRegsIfNeeded(&I); 1147 1148 CurInst = nullptr; 1149 } 1150 1151 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1152 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1153 } 1154 1155 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1156 // Note: this doesn't use InstVisitor, because it has to work with 1157 // ConstantExpr's in addition to instructions. 1158 switch (Opcode) { 1159 default: llvm_unreachable("Unknown instruction type encountered!"); 1160 // Build the switch statement using the Instruction.def file. 1161 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1162 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1163 #include "llvm/IR/Instruction.def" 1164 } 1165 } 1166 1167 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1168 const DIExpression *Expr) { 1169 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1170 const DbgValueInst *DI = DDI.getDI(); 1171 DIVariable *DanglingVariable = DI->getVariable(); 1172 DIExpression *DanglingExpr = DI->getExpression(); 1173 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1174 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1175 return true; 1176 } 1177 return false; 1178 }; 1179 1180 for (auto &DDIMI : DanglingDebugInfoMap) { 1181 DanglingDebugInfoVector &DDIV = DDIMI.second; 1182 1183 // If debug info is to be dropped, run it through final checks to see 1184 // whether it can be salvaged. 1185 for (auto &DDI : DDIV) 1186 if (isMatchingDbgValue(DDI)) 1187 salvageUnresolvedDbgValue(DDI); 1188 1189 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1190 } 1191 } 1192 1193 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1194 // generate the debug data structures now that we've seen its definition. 1195 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1196 SDValue Val) { 1197 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1198 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1199 return; 1200 1201 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1202 for (auto &DDI : DDIV) { 1203 const DbgValueInst *DI = DDI.getDI(); 1204 assert(DI && "Ill-formed DanglingDebugInfo"); 1205 DebugLoc dl = DDI.getdl(); 1206 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1207 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1208 DILocalVariable *Variable = DI->getVariable(); 1209 DIExpression *Expr = DI->getExpression(); 1210 assert(Variable->isValidLocationForIntrinsic(dl) && 1211 "Expected inlined-at fields to agree"); 1212 SDDbgValue *SDV; 1213 if (Val.getNode()) { 1214 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1215 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1216 // we couldn't resolve it directly when examining the DbgValue intrinsic 1217 // in the first place we should not be more successful here). Unless we 1218 // have some test case that prove this to be correct we should avoid 1219 // calling EmitFuncArgumentDbgValue here. 1220 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1221 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1222 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1223 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1224 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1225 // inserted after the definition of Val when emitting the instructions 1226 // after ISel. An alternative could be to teach 1227 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1228 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1229 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1230 << ValSDNodeOrder << "\n"); 1231 SDV = getDbgValue(Val, Variable, Expr, dl, 1232 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1233 DAG.AddDbgValue(SDV, Val.getNode(), false); 1234 } else 1235 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1236 << "in EmitFuncArgumentDbgValue\n"); 1237 } else { 1238 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1239 auto Undef = 1240 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1241 auto SDV = 1242 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1243 DAG.AddDbgValue(SDV, nullptr, false); 1244 } 1245 } 1246 DDIV.clear(); 1247 } 1248 1249 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1250 Value *V = DDI.getDI()->getValue(); 1251 DILocalVariable *Var = DDI.getDI()->getVariable(); 1252 DIExpression *Expr = DDI.getDI()->getExpression(); 1253 DebugLoc DL = DDI.getdl(); 1254 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1255 unsigned SDOrder = DDI.getSDNodeOrder(); 1256 1257 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1258 // that DW_OP_stack_value is desired. 1259 assert(isa<DbgValueInst>(DDI.getDI())); 1260 bool StackValue = true; 1261 1262 // Can this Value can be encoded without any further work? 1263 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1264 return; 1265 1266 // Attempt to salvage back through as many instructions as possible. Bail if 1267 // a non-instruction is seen, such as a constant expression or global 1268 // variable. FIXME: Further work could recover those too. 1269 while (isa<Instruction>(V)) { 1270 Instruction &VAsInst = *cast<Instruction>(V); 1271 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1272 1273 // If we cannot salvage any further, and haven't yet found a suitable debug 1274 // expression, bail out. 1275 if (!NewExpr) 1276 break; 1277 1278 // New value and expr now represent this debuginfo. 1279 V = VAsInst.getOperand(0); 1280 Expr = NewExpr; 1281 1282 // Some kind of simplification occurred: check whether the operand of the 1283 // salvaged debug expression can be encoded in this DAG. 1284 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1285 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1286 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1287 return; 1288 } 1289 } 1290 1291 // This was the final opportunity to salvage this debug information, and it 1292 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1293 // any earlier variable location. 1294 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1295 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1296 DAG.AddDbgValue(SDV, nullptr, false); 1297 1298 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1299 << "\n"); 1300 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1301 << "\n"); 1302 } 1303 1304 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1305 DIExpression *Expr, DebugLoc dl, 1306 DebugLoc InstDL, unsigned Order) { 1307 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1308 SDDbgValue *SDV; 1309 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1310 isa<ConstantPointerNull>(V)) { 1311 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1312 DAG.AddDbgValue(SDV, nullptr, false); 1313 return true; 1314 } 1315 1316 // If the Value is a frame index, we can create a FrameIndex debug value 1317 // without relying on the DAG at all. 1318 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1319 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1320 if (SI != FuncInfo.StaticAllocaMap.end()) { 1321 auto SDV = 1322 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1323 /*IsIndirect*/ false, dl, SDNodeOrder); 1324 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1325 // is still available even if the SDNode gets optimized out. 1326 DAG.AddDbgValue(SDV, nullptr, false); 1327 return true; 1328 } 1329 } 1330 1331 // Do not use getValue() in here; we don't want to generate code at 1332 // this point if it hasn't been done yet. 1333 SDValue N = NodeMap[V]; 1334 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1335 N = UnusedArgNodeMap[V]; 1336 if (N.getNode()) { 1337 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1338 return true; 1339 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1340 DAG.AddDbgValue(SDV, N.getNode(), false); 1341 return true; 1342 } 1343 1344 // Special rules apply for the first dbg.values of parameter variables in a 1345 // function. Identify them by the fact they reference Argument Values, that 1346 // they're parameters, and they are parameters of the current function. We 1347 // need to let them dangle until they get an SDNode. 1348 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1349 !InstDL.getInlinedAt(); 1350 if (!IsParamOfFunc) { 1351 // The value is not used in this block yet (or it would have an SDNode). 1352 // We still want the value to appear for the user if possible -- if it has 1353 // an associated VReg, we can refer to that instead. 1354 auto VMI = FuncInfo.ValueMap.find(V); 1355 if (VMI != FuncInfo.ValueMap.end()) { 1356 unsigned Reg = VMI->second; 1357 // If this is a PHI node, it may be split up into several MI PHI nodes 1358 // (in FunctionLoweringInfo::set). 1359 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1360 V->getType(), None); 1361 if (RFV.occupiesMultipleRegs()) { 1362 unsigned Offset = 0; 1363 unsigned BitsToDescribe = 0; 1364 if (auto VarSize = Var->getSizeInBits()) 1365 BitsToDescribe = *VarSize; 1366 if (auto Fragment = Expr->getFragmentInfo()) 1367 BitsToDescribe = Fragment->SizeInBits; 1368 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1369 unsigned RegisterSize = RegAndSize.second; 1370 // Bail out if all bits are described already. 1371 if (Offset >= BitsToDescribe) 1372 break; 1373 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1374 ? BitsToDescribe - Offset 1375 : RegisterSize; 1376 auto FragmentExpr = DIExpression::createFragmentExpression( 1377 Expr, Offset, FragmentSize); 1378 if (!FragmentExpr) 1379 continue; 1380 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1381 false, dl, SDNodeOrder); 1382 DAG.AddDbgValue(SDV, nullptr, false); 1383 Offset += RegisterSize; 1384 } 1385 } else { 1386 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1387 DAG.AddDbgValue(SDV, nullptr, false); 1388 } 1389 return true; 1390 } 1391 } 1392 1393 return false; 1394 } 1395 1396 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1397 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1398 for (auto &Pair : DanglingDebugInfoMap) 1399 for (auto &DDI : Pair.second) 1400 salvageUnresolvedDbgValue(DDI); 1401 clearDanglingDebugInfo(); 1402 } 1403 1404 /// getCopyFromRegs - If there was virtual register allocated for the value V 1405 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1406 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1407 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1408 SDValue Result; 1409 1410 if (It != FuncInfo.ValueMap.end()) { 1411 Register InReg = It->second; 1412 1413 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1414 DAG.getDataLayout(), InReg, Ty, 1415 None); // This is not an ABI copy. 1416 SDValue Chain = DAG.getEntryNode(); 1417 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1418 V); 1419 resolveDanglingDebugInfo(V, Result); 1420 } 1421 1422 return Result; 1423 } 1424 1425 /// getValue - Return an SDValue for the given Value. 1426 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1427 // If we already have an SDValue for this value, use it. It's important 1428 // to do this first, so that we don't create a CopyFromReg if we already 1429 // have a regular SDValue. 1430 SDValue &N = NodeMap[V]; 1431 if (N.getNode()) return N; 1432 1433 // If there's a virtual register allocated and initialized for this 1434 // value, use it. 1435 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1436 return copyFromReg; 1437 1438 // Otherwise create a new SDValue and remember it. 1439 SDValue Val = getValueImpl(V); 1440 NodeMap[V] = Val; 1441 resolveDanglingDebugInfo(V, Val); 1442 return Val; 1443 } 1444 1445 /// getNonRegisterValue - Return an SDValue for the given Value, but 1446 /// don't look in FuncInfo.ValueMap for a virtual register. 1447 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1448 // If we already have an SDValue for this value, use it. 1449 SDValue &N = NodeMap[V]; 1450 if (N.getNode()) { 1451 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1452 // Remove the debug location from the node as the node is about to be used 1453 // in a location which may differ from the original debug location. This 1454 // is relevant to Constant and ConstantFP nodes because they can appear 1455 // as constant expressions inside PHI nodes. 1456 N->setDebugLoc(DebugLoc()); 1457 } 1458 return N; 1459 } 1460 1461 // Otherwise create a new SDValue and remember it. 1462 SDValue Val = getValueImpl(V); 1463 NodeMap[V] = Val; 1464 resolveDanglingDebugInfo(V, Val); 1465 return Val; 1466 } 1467 1468 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1469 /// Create an SDValue for the given value. 1470 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1471 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1472 1473 if (const Constant *C = dyn_cast<Constant>(V)) { 1474 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1475 1476 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1477 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1478 1479 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1480 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1481 1482 if (isa<ConstantPointerNull>(C)) { 1483 unsigned AS = V->getType()->getPointerAddressSpace(); 1484 return DAG.getConstant(0, getCurSDLoc(), 1485 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1486 } 1487 1488 if (match(C, m_VScale(DAG.getDataLayout()))) 1489 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1490 1491 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1492 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1493 1494 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1495 return DAG.getUNDEF(VT); 1496 1497 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1498 visit(CE->getOpcode(), *CE); 1499 SDValue N1 = NodeMap[V]; 1500 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1501 return N1; 1502 } 1503 1504 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1505 SmallVector<SDValue, 4> Constants; 1506 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1507 OI != OE; ++OI) { 1508 SDNode *Val = getValue(*OI).getNode(); 1509 // If the operand is an empty aggregate, there are no values. 1510 if (!Val) continue; 1511 // Add each leaf value from the operand to the Constants list 1512 // to form a flattened list of all the values. 1513 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1514 Constants.push_back(SDValue(Val, i)); 1515 } 1516 1517 return DAG.getMergeValues(Constants, getCurSDLoc()); 1518 } 1519 1520 if (const ConstantDataSequential *CDS = 1521 dyn_cast<ConstantDataSequential>(C)) { 1522 SmallVector<SDValue, 4> Ops; 1523 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1524 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1525 // Add each leaf value from the operand to the Constants list 1526 // to form a flattened list of all the values. 1527 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1528 Ops.push_back(SDValue(Val, i)); 1529 } 1530 1531 if (isa<ArrayType>(CDS->getType())) 1532 return DAG.getMergeValues(Ops, getCurSDLoc()); 1533 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1534 } 1535 1536 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1537 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1538 "Unknown struct or array constant!"); 1539 1540 SmallVector<EVT, 4> ValueVTs; 1541 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1542 unsigned NumElts = ValueVTs.size(); 1543 if (NumElts == 0) 1544 return SDValue(); // empty struct 1545 SmallVector<SDValue, 4> Constants(NumElts); 1546 for (unsigned i = 0; i != NumElts; ++i) { 1547 EVT EltVT = ValueVTs[i]; 1548 if (isa<UndefValue>(C)) 1549 Constants[i] = DAG.getUNDEF(EltVT); 1550 else if (EltVT.isFloatingPoint()) 1551 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1552 else 1553 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1554 } 1555 1556 return DAG.getMergeValues(Constants, getCurSDLoc()); 1557 } 1558 1559 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1560 return DAG.getBlockAddress(BA, VT); 1561 1562 VectorType *VecTy = cast<VectorType>(V->getType()); 1563 1564 // Now that we know the number and type of the elements, get that number of 1565 // elements into the Ops array based on what kind of constant it is. 1566 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1567 SmallVector<SDValue, 16> Ops; 1568 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1569 for (unsigned i = 0; i != NumElements; ++i) 1570 Ops.push_back(getValue(CV->getOperand(i))); 1571 1572 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1573 } else if (isa<ConstantAggregateZero>(C)) { 1574 EVT EltVT = 1575 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1576 1577 SDValue Op; 1578 if (EltVT.isFloatingPoint()) 1579 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1580 else 1581 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1582 1583 if (isa<ScalableVectorType>(VecTy)) 1584 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1585 else { 1586 SmallVector<SDValue, 16> Ops; 1587 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1588 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1589 } 1590 } 1591 llvm_unreachable("Unknown vector constant"); 1592 } 1593 1594 // If this is a static alloca, generate it as the frameindex instead of 1595 // computation. 1596 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1597 DenseMap<const AllocaInst*, int>::iterator SI = 1598 FuncInfo.StaticAllocaMap.find(AI); 1599 if (SI != FuncInfo.StaticAllocaMap.end()) 1600 return DAG.getFrameIndex(SI->second, 1601 TLI.getFrameIndexTy(DAG.getDataLayout())); 1602 } 1603 1604 // If this is an instruction which fast-isel has deferred, select it now. 1605 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1606 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1607 1608 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1609 Inst->getType(), getABIRegCopyCC(V)); 1610 SDValue Chain = DAG.getEntryNode(); 1611 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1612 } 1613 1614 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1615 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1616 } 1617 llvm_unreachable("Can't get register for value!"); 1618 } 1619 1620 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1621 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1622 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1623 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1624 bool IsSEH = isAsynchronousEHPersonality(Pers); 1625 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1626 if (!IsSEH) 1627 CatchPadMBB->setIsEHScopeEntry(); 1628 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1629 if (IsMSVCCXX || IsCoreCLR) 1630 CatchPadMBB->setIsEHFuncletEntry(); 1631 } 1632 1633 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1634 // Update machine-CFG edge. 1635 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1636 FuncInfo.MBB->addSuccessor(TargetMBB); 1637 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 bool IsSEH = isAsynchronousEHPersonality(Pers); 1640 if (IsSEH) { 1641 // If this is not a fall-through branch or optimizations are switched off, 1642 // emit the branch. 1643 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1644 TM.getOptLevel() == CodeGenOpt::None) 1645 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1646 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1647 return; 1648 } 1649 1650 // Figure out the funclet membership for the catchret's successor. 1651 // This will be used by the FuncletLayout pass to determine how to order the 1652 // BB's. 1653 // A 'catchret' returns to the outer scope's color. 1654 Value *ParentPad = I.getCatchSwitchParentPad(); 1655 const BasicBlock *SuccessorColor; 1656 if (isa<ConstantTokenNone>(ParentPad)) 1657 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1658 else 1659 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1660 assert(SuccessorColor && "No parent funclet for catchret!"); 1661 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1662 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1663 1664 // Create the terminator node. 1665 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1666 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1667 DAG.getBasicBlock(SuccessorColorMBB)); 1668 DAG.setRoot(Ret); 1669 } 1670 1671 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1672 // Don't emit any special code for the cleanuppad instruction. It just marks 1673 // the start of an EH scope/funclet. 1674 FuncInfo.MBB->setIsEHScopeEntry(); 1675 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1676 if (Pers != EHPersonality::Wasm_CXX) { 1677 FuncInfo.MBB->setIsEHFuncletEntry(); 1678 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1679 } 1680 } 1681 1682 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1683 // the control flow always stops at the single catch pad, as it does for a 1684 // cleanup pad. In case the exception caught is not of the types the catch pad 1685 // catches, it will be rethrown by a rethrow. 1686 static void findWasmUnwindDestinations( 1687 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1688 BranchProbability Prob, 1689 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1690 &UnwindDests) { 1691 while (EHPadBB) { 1692 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1693 if (isa<CleanupPadInst>(Pad)) { 1694 // Stop on cleanup pads. 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 break; 1698 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1699 // Add the catchpad handlers to the possible destinations. We don't 1700 // continue to the unwind destination of the catchswitch for wasm. 1701 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 } 1705 break; 1706 } else { 1707 continue; 1708 } 1709 } 1710 } 1711 1712 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1713 /// many places it could ultimately go. In the IR, we have a single unwind 1714 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1715 /// This function skips over imaginary basic blocks that hold catchswitch 1716 /// instructions, and finds all the "real" machine 1717 /// basic block destinations. As those destinations may not be successors of 1718 /// EHPadBB, here we also calculate the edge probability to those destinations. 1719 /// The passed-in Prob is the edge probability to EHPadBB. 1720 static void findUnwindDestinations( 1721 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1722 BranchProbability Prob, 1723 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1724 &UnwindDests) { 1725 EHPersonality Personality = 1726 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1727 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1728 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1729 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1730 bool IsSEH = isAsynchronousEHPersonality(Personality); 1731 1732 if (IsWasmCXX) { 1733 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1734 assert(UnwindDests.size() <= 1 && 1735 "There should be at most one unwind destination for wasm"); 1736 return; 1737 } 1738 1739 while (EHPadBB) { 1740 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1741 BasicBlock *NewEHPadBB = nullptr; 1742 if (isa<LandingPadInst>(Pad)) { 1743 // Stop on landingpads. They are not funclets. 1744 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1745 break; 1746 } else if (isa<CleanupPadInst>(Pad)) { 1747 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1748 // personalities. 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1750 UnwindDests.back().first->setIsEHScopeEntry(); 1751 UnwindDests.back().first->setIsEHFuncletEntry(); 1752 break; 1753 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1754 // Add the catchpad handlers to the possible destinations. 1755 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1756 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1757 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1758 if (IsMSVCCXX || IsCoreCLR) 1759 UnwindDests.back().first->setIsEHFuncletEntry(); 1760 if (!IsSEH) 1761 UnwindDests.back().first->setIsEHScopeEntry(); 1762 } 1763 NewEHPadBB = CatchSwitch->getUnwindDest(); 1764 } else { 1765 continue; 1766 } 1767 1768 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1769 if (BPI && NewEHPadBB) 1770 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1771 EHPadBB = NewEHPadBB; 1772 } 1773 } 1774 1775 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1776 // Update successor info. 1777 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1778 auto UnwindDest = I.getUnwindDest(); 1779 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1780 BranchProbability UnwindDestProb = 1781 (BPI && UnwindDest) 1782 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1783 : BranchProbability::getZero(); 1784 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1785 for (auto &UnwindDest : UnwindDests) { 1786 UnwindDest.first->setIsEHPad(); 1787 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1788 } 1789 FuncInfo.MBB->normalizeSuccProbs(); 1790 1791 // Create the terminator node. 1792 SDValue Ret = 1793 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1794 DAG.setRoot(Ret); 1795 } 1796 1797 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1798 report_fatal_error("visitCatchSwitch not yet implemented!"); 1799 } 1800 1801 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1803 auto &DL = DAG.getDataLayout(); 1804 SDValue Chain = getControlRoot(); 1805 SmallVector<ISD::OutputArg, 8> Outs; 1806 SmallVector<SDValue, 8> OutVals; 1807 1808 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1809 // lower 1810 // 1811 // %val = call <ty> @llvm.experimental.deoptimize() 1812 // ret <ty> %val 1813 // 1814 // differently. 1815 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1816 LowerDeoptimizingReturn(); 1817 return; 1818 } 1819 1820 if (!FuncInfo.CanLowerReturn) { 1821 unsigned DemoteReg = FuncInfo.DemoteRegister; 1822 const Function *F = I.getParent()->getParent(); 1823 1824 // Emit a store of the return value through the virtual register. 1825 // Leave Outs empty so that LowerReturn won't try to load return 1826 // registers the usual way. 1827 SmallVector<EVT, 1> PtrValueVTs; 1828 ComputeValueVTs(TLI, DL, 1829 F->getReturnType()->getPointerTo( 1830 DAG.getDataLayout().getAllocaAddrSpace()), 1831 PtrValueVTs); 1832 1833 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1834 DemoteReg, PtrValueVTs[0]); 1835 SDValue RetOp = getValue(I.getOperand(0)); 1836 1837 SmallVector<EVT, 4> ValueVTs, MemVTs; 1838 SmallVector<uint64_t, 4> Offsets; 1839 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1840 &Offsets); 1841 unsigned NumValues = ValueVTs.size(); 1842 1843 SmallVector<SDValue, 4> Chains(NumValues); 1844 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1845 for (unsigned i = 0; i != NumValues; ++i) { 1846 // An aggregate return value cannot wrap around the address space, so 1847 // offsets to its parts don't wrap either. 1848 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1849 TypeSize::Fixed(Offsets[i])); 1850 1851 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1852 if (MemVTs[i] != ValueVTs[i]) 1853 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1854 Chains[i] = DAG.getStore( 1855 Chain, getCurSDLoc(), Val, 1856 // FIXME: better loc info would be nice. 1857 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1858 commonAlignment(BaseAlign, Offsets[i])); 1859 } 1860 1861 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1862 MVT::Other, Chains); 1863 } else if (I.getNumOperands() != 0) { 1864 SmallVector<EVT, 4> ValueVTs; 1865 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1866 unsigned NumValues = ValueVTs.size(); 1867 if (NumValues) { 1868 SDValue RetOp = getValue(I.getOperand(0)); 1869 1870 const Function *F = I.getParent()->getParent(); 1871 1872 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1873 I.getOperand(0)->getType(), F->getCallingConv(), 1874 /*IsVarArg*/ false); 1875 1876 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1877 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1878 Attribute::SExt)) 1879 ExtendKind = ISD::SIGN_EXTEND; 1880 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1881 Attribute::ZExt)) 1882 ExtendKind = ISD::ZERO_EXTEND; 1883 1884 LLVMContext &Context = F->getContext(); 1885 bool RetInReg = F->getAttributes().hasAttribute( 1886 AttributeList::ReturnIndex, Attribute::InReg); 1887 1888 for (unsigned j = 0; j != NumValues; ++j) { 1889 EVT VT = ValueVTs[j]; 1890 1891 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1892 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1893 1894 CallingConv::ID CC = F->getCallingConv(); 1895 1896 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1897 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1898 SmallVector<SDValue, 4> Parts(NumParts); 1899 getCopyToParts(DAG, getCurSDLoc(), 1900 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1901 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1902 1903 // 'inreg' on function refers to return value 1904 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1905 if (RetInReg) 1906 Flags.setInReg(); 1907 1908 if (I.getOperand(0)->getType()->isPointerTy()) { 1909 Flags.setPointer(); 1910 Flags.setPointerAddrSpace( 1911 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1912 } 1913 1914 if (NeedsRegBlock) { 1915 Flags.setInConsecutiveRegs(); 1916 if (j == NumValues - 1) 1917 Flags.setInConsecutiveRegsLast(); 1918 } 1919 1920 // Propagate extension type if any 1921 if (ExtendKind == ISD::SIGN_EXTEND) 1922 Flags.setSExt(); 1923 else if (ExtendKind == ISD::ZERO_EXTEND) 1924 Flags.setZExt(); 1925 1926 for (unsigned i = 0; i < NumParts; ++i) { 1927 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1928 VT, /*isfixed=*/true, 0, 0)); 1929 OutVals.push_back(Parts[i]); 1930 } 1931 } 1932 } 1933 } 1934 1935 // Push in swifterror virtual register as the last element of Outs. This makes 1936 // sure swifterror virtual register will be returned in the swifterror 1937 // physical register. 1938 const Function *F = I.getParent()->getParent(); 1939 if (TLI.supportSwiftError() && 1940 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1941 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1942 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1943 Flags.setSwiftError(); 1944 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1945 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1946 true /*isfixed*/, 1 /*origidx*/, 1947 0 /*partOffs*/)); 1948 // Create SDNode for the swifterror virtual register. 1949 OutVals.push_back( 1950 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1951 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1952 EVT(TLI.getPointerTy(DL)))); 1953 } 1954 1955 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1956 CallingConv::ID CallConv = 1957 DAG.getMachineFunction().getFunction().getCallingConv(); 1958 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1959 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1960 1961 // Verify that the target's LowerReturn behaved as expected. 1962 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1963 "LowerReturn didn't return a valid chain!"); 1964 1965 // Update the DAG with the new chain value resulting from return lowering. 1966 DAG.setRoot(Chain); 1967 } 1968 1969 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1970 /// created for it, emit nodes to copy the value into the virtual 1971 /// registers. 1972 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1973 // Skip empty types 1974 if (V->getType()->isEmptyTy()) 1975 return; 1976 1977 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1978 if (VMI != FuncInfo.ValueMap.end()) { 1979 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1980 CopyValueToVirtualRegister(V, VMI->second); 1981 } 1982 } 1983 1984 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1985 /// the current basic block, add it to ValueMap now so that we'll get a 1986 /// CopyTo/FromReg. 1987 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1988 // No need to export constants. 1989 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1990 1991 // Already exported? 1992 if (FuncInfo.isExportedInst(V)) return; 1993 1994 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1995 CopyValueToVirtualRegister(V, Reg); 1996 } 1997 1998 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1999 const BasicBlock *FromBB) { 2000 // The operands of the setcc have to be in this block. We don't know 2001 // how to export them from some other block. 2002 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2003 // Can export from current BB. 2004 if (VI->getParent() == FromBB) 2005 return true; 2006 2007 // Is already exported, noop. 2008 return FuncInfo.isExportedInst(V); 2009 } 2010 2011 // If this is an argument, we can export it if the BB is the entry block or 2012 // if it is already exported. 2013 if (isa<Argument>(V)) { 2014 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2015 return true; 2016 2017 // Otherwise, can only export this if it is already exported. 2018 return FuncInfo.isExportedInst(V); 2019 } 2020 2021 // Otherwise, constants can always be exported. 2022 return true; 2023 } 2024 2025 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2026 BranchProbability 2027 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2028 const MachineBasicBlock *Dst) const { 2029 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2030 const BasicBlock *SrcBB = Src->getBasicBlock(); 2031 const BasicBlock *DstBB = Dst->getBasicBlock(); 2032 if (!BPI) { 2033 // If BPI is not available, set the default probability as 1 / N, where N is 2034 // the number of successors. 2035 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2036 return BranchProbability(1, SuccSize); 2037 } 2038 return BPI->getEdgeProbability(SrcBB, DstBB); 2039 } 2040 2041 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2042 MachineBasicBlock *Dst, 2043 BranchProbability Prob) { 2044 if (!FuncInfo.BPI) 2045 Src->addSuccessorWithoutProb(Dst); 2046 else { 2047 if (Prob.isUnknown()) 2048 Prob = getEdgeProbability(Src, Dst); 2049 Src->addSuccessor(Dst, Prob); 2050 } 2051 } 2052 2053 static bool InBlock(const Value *V, const BasicBlock *BB) { 2054 if (const Instruction *I = dyn_cast<Instruction>(V)) 2055 return I->getParent() == BB; 2056 return true; 2057 } 2058 2059 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2060 /// This function emits a branch and is used at the leaves of an OR or an 2061 /// AND operator tree. 2062 void 2063 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2064 MachineBasicBlock *TBB, 2065 MachineBasicBlock *FBB, 2066 MachineBasicBlock *CurBB, 2067 MachineBasicBlock *SwitchBB, 2068 BranchProbability TProb, 2069 BranchProbability FProb, 2070 bool InvertCond) { 2071 const BasicBlock *BB = CurBB->getBasicBlock(); 2072 2073 // If the leaf of the tree is a comparison, merge the condition into 2074 // the caseblock. 2075 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2076 // The operands of the cmp have to be in this block. We don't know 2077 // how to export them from some other block. If this is the first block 2078 // of the sequence, no exporting is needed. 2079 if (CurBB == SwitchBB || 2080 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2081 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2082 ISD::CondCode Condition; 2083 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2084 ICmpInst::Predicate Pred = 2085 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2086 Condition = getICmpCondCode(Pred); 2087 } else { 2088 const FCmpInst *FC = cast<FCmpInst>(Cond); 2089 FCmpInst::Predicate Pred = 2090 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2091 Condition = getFCmpCondCode(Pred); 2092 if (TM.Options.NoNaNsFPMath) 2093 Condition = getFCmpCodeWithoutNaN(Condition); 2094 } 2095 2096 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2097 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2098 SL->SwitchCases.push_back(CB); 2099 return; 2100 } 2101 } 2102 2103 // Create a CaseBlock record representing this branch. 2104 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2105 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2106 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2107 SL->SwitchCases.push_back(CB); 2108 } 2109 2110 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2111 MachineBasicBlock *TBB, 2112 MachineBasicBlock *FBB, 2113 MachineBasicBlock *CurBB, 2114 MachineBasicBlock *SwitchBB, 2115 Instruction::BinaryOps Opc, 2116 BranchProbability TProb, 2117 BranchProbability FProb, 2118 bool InvertCond) { 2119 // Skip over not part of the tree and remember to invert op and operands at 2120 // next level. 2121 Value *NotCond; 2122 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2123 InBlock(NotCond, CurBB->getBasicBlock())) { 2124 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2125 !InvertCond); 2126 return; 2127 } 2128 2129 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2130 // Compute the effective opcode for Cond, taking into account whether it needs 2131 // to be inverted, e.g. 2132 // and (not (or A, B)), C 2133 // gets lowered as 2134 // and (and (not A, not B), C) 2135 unsigned BOpc = 0; 2136 if (BOp) { 2137 BOpc = BOp->getOpcode(); 2138 if (InvertCond) { 2139 if (BOpc == Instruction::And) 2140 BOpc = Instruction::Or; 2141 else if (BOpc == Instruction::Or) 2142 BOpc = Instruction::And; 2143 } 2144 } 2145 2146 // If this node is not part of the or/and tree, emit it as a branch. 2147 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2148 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2149 BOp->getParent() != CurBB->getBasicBlock() || 2150 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2151 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2152 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2153 TProb, FProb, InvertCond); 2154 return; 2155 } 2156 2157 // Create TmpBB after CurBB. 2158 MachineFunction::iterator BBI(CurBB); 2159 MachineFunction &MF = DAG.getMachineFunction(); 2160 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2161 CurBB->getParent()->insert(++BBI, TmpBB); 2162 2163 if (Opc == Instruction::Or) { 2164 // Codegen X | Y as: 2165 // BB1: 2166 // jmp_if_X TBB 2167 // jmp TmpBB 2168 // TmpBB: 2169 // jmp_if_Y TBB 2170 // jmp FBB 2171 // 2172 2173 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2174 // The requirement is that 2175 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2176 // = TrueProb for original BB. 2177 // Assuming the original probabilities are A and B, one choice is to set 2178 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2179 // A/(1+B) and 2B/(1+B). This choice assumes that 2180 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2181 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2182 // TmpBB, but the math is more complicated. 2183 2184 auto NewTrueProb = TProb / 2; 2185 auto NewFalseProb = TProb / 2 + FProb; 2186 // Emit the LHS condition. 2187 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2188 NewTrueProb, NewFalseProb, InvertCond); 2189 2190 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2191 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2192 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2193 // Emit the RHS condition into TmpBB. 2194 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2195 Probs[0], Probs[1], InvertCond); 2196 } else { 2197 assert(Opc == Instruction::And && "Unknown merge op!"); 2198 // Codegen X & Y as: 2199 // BB1: 2200 // jmp_if_X TmpBB 2201 // jmp FBB 2202 // TmpBB: 2203 // jmp_if_Y TBB 2204 // jmp FBB 2205 // 2206 // This requires creation of TmpBB after CurBB. 2207 2208 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2209 // The requirement is that 2210 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2211 // = FalseProb for original BB. 2212 // Assuming the original probabilities are A and B, one choice is to set 2213 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2214 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2215 // TrueProb for BB1 * FalseProb for TmpBB. 2216 2217 auto NewTrueProb = TProb + FProb / 2; 2218 auto NewFalseProb = FProb / 2; 2219 // Emit the LHS condition. 2220 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2221 NewTrueProb, NewFalseProb, InvertCond); 2222 2223 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2224 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2225 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2226 // Emit the RHS condition into TmpBB. 2227 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2228 Probs[0], Probs[1], InvertCond); 2229 } 2230 } 2231 2232 /// If the set of cases should be emitted as a series of branches, return true. 2233 /// If we should emit this as a bunch of and/or'd together conditions, return 2234 /// false. 2235 bool 2236 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2237 if (Cases.size() != 2) return true; 2238 2239 // If this is two comparisons of the same values or'd or and'd together, they 2240 // will get folded into a single comparison, so don't emit two blocks. 2241 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2242 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2243 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2244 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2245 return false; 2246 } 2247 2248 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2249 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2250 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2251 Cases[0].CC == Cases[1].CC && 2252 isa<Constant>(Cases[0].CmpRHS) && 2253 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2254 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2255 return false; 2256 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2257 return false; 2258 } 2259 2260 return true; 2261 } 2262 2263 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2264 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2265 2266 // Update machine-CFG edges. 2267 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2268 2269 if (I.isUnconditional()) { 2270 // Update machine-CFG edges. 2271 BrMBB->addSuccessor(Succ0MBB); 2272 2273 // If this is not a fall-through branch or optimizations are switched off, 2274 // emit the branch. 2275 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2276 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2277 MVT::Other, getControlRoot(), 2278 DAG.getBasicBlock(Succ0MBB))); 2279 2280 return; 2281 } 2282 2283 // If this condition is one of the special cases we handle, do special stuff 2284 // now. 2285 const Value *CondVal = I.getCondition(); 2286 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2287 2288 // If this is a series of conditions that are or'd or and'd together, emit 2289 // this as a sequence of branches instead of setcc's with and/or operations. 2290 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2291 // unpredictable branches, and vector extracts because those jumps are likely 2292 // expensive for any target), this should improve performance. 2293 // For example, instead of something like: 2294 // cmp A, B 2295 // C = seteq 2296 // cmp D, E 2297 // F = setle 2298 // or C, F 2299 // jnz foo 2300 // Emit: 2301 // cmp A, B 2302 // je foo 2303 // cmp D, E 2304 // jle foo 2305 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2306 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2307 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2308 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2309 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2310 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2311 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2312 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2313 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2314 Opcode, 2315 getEdgeProbability(BrMBB, Succ0MBB), 2316 getEdgeProbability(BrMBB, Succ1MBB), 2317 /*InvertCond=*/false); 2318 // If the compares in later blocks need to use values not currently 2319 // exported from this block, export them now. This block should always 2320 // be the first entry. 2321 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2322 2323 // Allow some cases to be rejected. 2324 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2325 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2326 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2327 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2328 } 2329 2330 // Emit the branch for this block. 2331 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2332 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2333 return; 2334 } 2335 2336 // Okay, we decided not to do this, remove any inserted MBB's and clear 2337 // SwitchCases. 2338 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2339 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2340 2341 SL->SwitchCases.clear(); 2342 } 2343 } 2344 2345 // Create a CaseBlock record representing this branch. 2346 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2347 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2348 2349 // Use visitSwitchCase to actually insert the fast branch sequence for this 2350 // cond branch. 2351 visitSwitchCase(CB, BrMBB); 2352 } 2353 2354 /// visitSwitchCase - Emits the necessary code to represent a single node in 2355 /// the binary search tree resulting from lowering a switch instruction. 2356 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2357 MachineBasicBlock *SwitchBB) { 2358 SDValue Cond; 2359 SDValue CondLHS = getValue(CB.CmpLHS); 2360 SDLoc dl = CB.DL; 2361 2362 if (CB.CC == ISD::SETTRUE) { 2363 // Branch or fall through to TrueBB. 2364 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2365 SwitchBB->normalizeSuccProbs(); 2366 if (CB.TrueBB != NextBlock(SwitchBB)) { 2367 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2368 DAG.getBasicBlock(CB.TrueBB))); 2369 } 2370 return; 2371 } 2372 2373 auto &TLI = DAG.getTargetLoweringInfo(); 2374 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2375 2376 // Build the setcc now. 2377 if (!CB.CmpMHS) { 2378 // Fold "(X == true)" to X and "(X == false)" to !X to 2379 // handle common cases produced by branch lowering. 2380 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2381 CB.CC == ISD::SETEQ) 2382 Cond = CondLHS; 2383 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2384 CB.CC == ISD::SETEQ) { 2385 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2386 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2387 } else { 2388 SDValue CondRHS = getValue(CB.CmpRHS); 2389 2390 // If a pointer's DAG type is larger than its memory type then the DAG 2391 // values are zero-extended. This breaks signed comparisons so truncate 2392 // back to the underlying type before doing the compare. 2393 if (CondLHS.getValueType() != MemVT) { 2394 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2395 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2396 } 2397 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2398 } 2399 } else { 2400 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2401 2402 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2403 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2404 2405 SDValue CmpOp = getValue(CB.CmpMHS); 2406 EVT VT = CmpOp.getValueType(); 2407 2408 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2409 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2410 ISD::SETLE); 2411 } else { 2412 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2413 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2414 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2415 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2416 } 2417 } 2418 2419 // Update successor info 2420 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2421 // TrueBB and FalseBB are always different unless the incoming IR is 2422 // degenerate. This only happens when running llc on weird IR. 2423 if (CB.TrueBB != CB.FalseBB) 2424 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2425 SwitchBB->normalizeSuccProbs(); 2426 2427 // If the lhs block is the next block, invert the condition so that we can 2428 // fall through to the lhs instead of the rhs block. 2429 if (CB.TrueBB == NextBlock(SwitchBB)) { 2430 std::swap(CB.TrueBB, CB.FalseBB); 2431 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2432 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2433 } 2434 2435 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2436 MVT::Other, getControlRoot(), Cond, 2437 DAG.getBasicBlock(CB.TrueBB)); 2438 2439 // Insert the false branch. Do this even if it's a fall through branch, 2440 // this makes it easier to do DAG optimizations which require inverting 2441 // the branch condition. 2442 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2443 DAG.getBasicBlock(CB.FalseBB)); 2444 2445 DAG.setRoot(BrCond); 2446 } 2447 2448 /// visitJumpTable - Emit JumpTable node in the current MBB 2449 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2450 // Emit the code for the jump table 2451 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2452 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2453 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2454 JT.Reg, PTy); 2455 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2456 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2457 MVT::Other, Index.getValue(1), 2458 Table, Index); 2459 DAG.setRoot(BrJumpTable); 2460 } 2461 2462 /// visitJumpTableHeader - This function emits necessary code to produce index 2463 /// in the JumpTable from switch case. 2464 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2465 JumpTableHeader &JTH, 2466 MachineBasicBlock *SwitchBB) { 2467 SDLoc dl = getCurSDLoc(); 2468 2469 // Subtract the lowest switch case value from the value being switched on. 2470 SDValue SwitchOp = getValue(JTH.SValue); 2471 EVT VT = SwitchOp.getValueType(); 2472 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2473 DAG.getConstant(JTH.First, dl, VT)); 2474 2475 // The SDNode we just created, which holds the value being switched on minus 2476 // the smallest case value, needs to be copied to a virtual register so it 2477 // can be used as an index into the jump table in a subsequent basic block. 2478 // This value may be smaller or larger than the target's pointer type, and 2479 // therefore require extension or truncating. 2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2481 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2482 2483 unsigned JumpTableReg = 2484 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2485 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2486 JumpTableReg, SwitchOp); 2487 JT.Reg = JumpTableReg; 2488 2489 if (!JTH.OmitRangeCheck) { 2490 // Emit the range check for the jump table, and branch to the default block 2491 // for the switch statement if the value being switched on exceeds the 2492 // largest case in the switch. 2493 SDValue CMP = DAG.getSetCC( 2494 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2495 Sub.getValueType()), 2496 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2497 2498 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2499 MVT::Other, CopyTo, CMP, 2500 DAG.getBasicBlock(JT.Default)); 2501 2502 // Avoid emitting unnecessary branches to the next block. 2503 if (JT.MBB != NextBlock(SwitchBB)) 2504 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2505 DAG.getBasicBlock(JT.MBB)); 2506 2507 DAG.setRoot(BrCond); 2508 } else { 2509 // Avoid emitting unnecessary branches to the next block. 2510 if (JT.MBB != NextBlock(SwitchBB)) 2511 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2512 DAG.getBasicBlock(JT.MBB))); 2513 else 2514 DAG.setRoot(CopyTo); 2515 } 2516 } 2517 2518 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2519 /// variable if there exists one. 2520 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2521 SDValue &Chain) { 2522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2523 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2524 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2525 MachineFunction &MF = DAG.getMachineFunction(); 2526 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2527 MachineSDNode *Node = 2528 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2529 if (Global) { 2530 MachinePointerInfo MPInfo(Global); 2531 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2532 MachineMemOperand::MODereferenceable; 2533 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2534 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2535 DAG.setNodeMemRefs(Node, {MemRef}); 2536 } 2537 if (PtrTy != PtrMemTy) 2538 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2539 return SDValue(Node, 0); 2540 } 2541 2542 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2543 /// tail spliced into a stack protector check success bb. 2544 /// 2545 /// For a high level explanation of how this fits into the stack protector 2546 /// generation see the comment on the declaration of class 2547 /// StackProtectorDescriptor. 2548 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2549 MachineBasicBlock *ParentBB) { 2550 2551 // First create the loads to the guard/stack slot for the comparison. 2552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2553 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2554 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2555 2556 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2557 int FI = MFI.getStackProtectorIndex(); 2558 2559 SDValue Guard; 2560 SDLoc dl = getCurSDLoc(); 2561 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2562 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2563 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2564 2565 // Generate code to load the content of the guard slot. 2566 SDValue GuardVal = DAG.getLoad( 2567 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2568 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2569 MachineMemOperand::MOVolatile); 2570 2571 if (TLI.useStackGuardXorFP()) 2572 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2573 2574 // Retrieve guard check function, nullptr if instrumentation is inlined. 2575 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2576 // The target provides a guard check function to validate the guard value. 2577 // Generate a call to that function with the content of the guard slot as 2578 // argument. 2579 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2580 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2581 2582 TargetLowering::ArgListTy Args; 2583 TargetLowering::ArgListEntry Entry; 2584 Entry.Node = GuardVal; 2585 Entry.Ty = FnTy->getParamType(0); 2586 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2587 Entry.IsInReg = true; 2588 Args.push_back(Entry); 2589 2590 TargetLowering::CallLoweringInfo CLI(DAG); 2591 CLI.setDebugLoc(getCurSDLoc()) 2592 .setChain(DAG.getEntryNode()) 2593 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2594 getValue(GuardCheckFn), std::move(Args)); 2595 2596 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2597 DAG.setRoot(Result.second); 2598 return; 2599 } 2600 2601 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2602 // Otherwise, emit a volatile load to retrieve the stack guard value. 2603 SDValue Chain = DAG.getEntryNode(); 2604 if (TLI.useLoadStackGuardNode()) { 2605 Guard = getLoadStackGuard(DAG, dl, Chain); 2606 } else { 2607 const Value *IRGuard = TLI.getSDagStackGuard(M); 2608 SDValue GuardPtr = getValue(IRGuard); 2609 2610 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2611 MachinePointerInfo(IRGuard, 0), Align, 2612 MachineMemOperand::MOVolatile); 2613 } 2614 2615 // Perform the comparison via a getsetcc. 2616 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2617 *DAG.getContext(), 2618 Guard.getValueType()), 2619 Guard, GuardVal, ISD::SETNE); 2620 2621 // If the guard/stackslot do not equal, branch to failure MBB. 2622 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2623 MVT::Other, GuardVal.getOperand(0), 2624 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2625 // Otherwise branch to success MBB. 2626 SDValue Br = DAG.getNode(ISD::BR, dl, 2627 MVT::Other, BrCond, 2628 DAG.getBasicBlock(SPD.getSuccessMBB())); 2629 2630 DAG.setRoot(Br); 2631 } 2632 2633 /// Codegen the failure basic block for a stack protector check. 2634 /// 2635 /// A failure stack protector machine basic block consists simply of a call to 2636 /// __stack_chk_fail(). 2637 /// 2638 /// For a high level explanation of how this fits into the stack protector 2639 /// generation see the comment on the declaration of class 2640 /// StackProtectorDescriptor. 2641 void 2642 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2644 TargetLowering::MakeLibCallOptions CallOptions; 2645 CallOptions.setDiscardResult(true); 2646 SDValue Chain = 2647 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2648 None, CallOptions, getCurSDLoc()).second; 2649 // On PS4, the "return address" must still be within the calling function, 2650 // even if it's at the very end, so emit an explicit TRAP here. 2651 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2652 if (TM.getTargetTriple().isPS4CPU()) 2653 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2654 // WebAssembly needs an unreachable instruction after a non-returning call, 2655 // because the function return type can be different from __stack_chk_fail's 2656 // return type (void). 2657 if (TM.getTargetTriple().isWasm()) 2658 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2659 2660 DAG.setRoot(Chain); 2661 } 2662 2663 /// visitBitTestHeader - This function emits necessary code to produce value 2664 /// suitable for "bit tests" 2665 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2666 MachineBasicBlock *SwitchBB) { 2667 SDLoc dl = getCurSDLoc(); 2668 2669 // Subtract the minimum value. 2670 SDValue SwitchOp = getValue(B.SValue); 2671 EVT VT = SwitchOp.getValueType(); 2672 SDValue RangeSub = 2673 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2674 2675 // Determine the type of the test operands. 2676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2677 bool UsePtrType = false; 2678 if (!TLI.isTypeLegal(VT)) { 2679 UsePtrType = true; 2680 } else { 2681 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2682 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2683 // Switch table case range are encoded into series of masks. 2684 // Just use pointer type, it's guaranteed to fit. 2685 UsePtrType = true; 2686 break; 2687 } 2688 } 2689 SDValue Sub = RangeSub; 2690 if (UsePtrType) { 2691 VT = TLI.getPointerTy(DAG.getDataLayout()); 2692 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2693 } 2694 2695 B.RegVT = VT.getSimpleVT(); 2696 B.Reg = FuncInfo.CreateReg(B.RegVT); 2697 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2698 2699 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2700 2701 if (!B.OmitRangeCheck) 2702 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2703 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2704 SwitchBB->normalizeSuccProbs(); 2705 2706 SDValue Root = CopyTo; 2707 if (!B.OmitRangeCheck) { 2708 // Conditional branch to the default block. 2709 SDValue RangeCmp = DAG.getSetCC(dl, 2710 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2711 RangeSub.getValueType()), 2712 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2713 ISD::SETUGT); 2714 2715 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2716 DAG.getBasicBlock(B.Default)); 2717 } 2718 2719 // Avoid emitting unnecessary branches to the next block. 2720 if (MBB != NextBlock(SwitchBB)) 2721 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2722 2723 DAG.setRoot(Root); 2724 } 2725 2726 /// visitBitTestCase - this function produces one "bit test" 2727 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2728 MachineBasicBlock* NextMBB, 2729 BranchProbability BranchProbToNext, 2730 unsigned Reg, 2731 BitTestCase &B, 2732 MachineBasicBlock *SwitchBB) { 2733 SDLoc dl = getCurSDLoc(); 2734 MVT VT = BB.RegVT; 2735 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2736 SDValue Cmp; 2737 unsigned PopCount = countPopulation(B.Mask); 2738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2739 if (PopCount == 1) { 2740 // Testing for a single bit; just compare the shift count with what it 2741 // would need to be to shift a 1 bit in that position. 2742 Cmp = DAG.getSetCC( 2743 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2744 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2745 ISD::SETEQ); 2746 } else if (PopCount == BB.Range) { 2747 // There is only one zero bit in the range, test for it directly. 2748 Cmp = DAG.getSetCC( 2749 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2750 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2751 ISD::SETNE); 2752 } else { 2753 // Make desired shift 2754 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2755 DAG.getConstant(1, dl, VT), ShiftOp); 2756 2757 // Emit bit tests and jumps 2758 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2759 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2760 Cmp = DAG.getSetCC( 2761 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2762 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2763 } 2764 2765 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2766 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2767 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2768 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2769 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2770 // one as they are relative probabilities (and thus work more like weights), 2771 // and hence we need to normalize them to let the sum of them become one. 2772 SwitchBB->normalizeSuccProbs(); 2773 2774 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2775 MVT::Other, getControlRoot(), 2776 Cmp, DAG.getBasicBlock(B.TargetBB)); 2777 2778 // Avoid emitting unnecessary branches to the next block. 2779 if (NextMBB != NextBlock(SwitchBB)) 2780 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2781 DAG.getBasicBlock(NextMBB)); 2782 2783 DAG.setRoot(BrAnd); 2784 } 2785 2786 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2787 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2788 2789 // Retrieve successors. Look through artificial IR level blocks like 2790 // catchswitch for successors. 2791 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2792 const BasicBlock *EHPadBB = I.getSuccessor(1); 2793 2794 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2795 // have to do anything here to lower funclet bundles. 2796 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2797 LLVMContext::OB_gc_transition, 2798 LLVMContext::OB_gc_live, 2799 LLVMContext::OB_funclet, 2800 LLVMContext::OB_cfguardtarget}) && 2801 "Cannot lower invokes with arbitrary operand bundles yet!"); 2802 2803 const Value *Callee(I.getCalledOperand()); 2804 const Function *Fn = dyn_cast<Function>(Callee); 2805 if (isa<InlineAsm>(Callee)) 2806 visitInlineAsm(I); 2807 else if (Fn && Fn->isIntrinsic()) { 2808 switch (Fn->getIntrinsicID()) { 2809 default: 2810 llvm_unreachable("Cannot invoke this intrinsic"); 2811 case Intrinsic::donothing: 2812 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2813 break; 2814 case Intrinsic::experimental_patchpoint_void: 2815 case Intrinsic::experimental_patchpoint_i64: 2816 visitPatchpoint(I, EHPadBB); 2817 break; 2818 case Intrinsic::experimental_gc_statepoint: 2819 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2820 break; 2821 case Intrinsic::wasm_rethrow_in_catch: { 2822 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2823 // special because it can be invoked, so we manually lower it to a DAG 2824 // node here. 2825 SmallVector<SDValue, 8> Ops; 2826 Ops.push_back(getRoot()); // inchain 2827 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2828 Ops.push_back( 2829 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2830 TLI.getPointerTy(DAG.getDataLayout()))); 2831 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2832 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2833 break; 2834 } 2835 } 2836 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2837 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2838 // Eventually we will support lowering the @llvm.experimental.deoptimize 2839 // intrinsic, and right now there are no plans to support other intrinsics 2840 // with deopt state. 2841 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2842 } else { 2843 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2844 } 2845 2846 // If the value of the invoke is used outside of its defining block, make it 2847 // available as a virtual register. 2848 // We already took care of the exported value for the statepoint instruction 2849 // during call to the LowerStatepoint. 2850 if (!isa<GCStatepointInst>(I)) { 2851 CopyToExportRegsIfNeeded(&I); 2852 } 2853 2854 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2855 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2856 BranchProbability EHPadBBProb = 2857 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2858 : BranchProbability::getZero(); 2859 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2860 2861 // Update successor info. 2862 addSuccessorWithProb(InvokeMBB, Return); 2863 for (auto &UnwindDest : UnwindDests) { 2864 UnwindDest.first->setIsEHPad(); 2865 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2866 } 2867 InvokeMBB->normalizeSuccProbs(); 2868 2869 // Drop into normal successor. 2870 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2871 DAG.getBasicBlock(Return))); 2872 } 2873 2874 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2875 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2876 2877 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2878 // have to do anything here to lower funclet bundles. 2879 assert(!I.hasOperandBundlesOtherThan( 2880 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2881 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2882 2883 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2884 visitInlineAsm(I); 2885 CopyToExportRegsIfNeeded(&I); 2886 2887 // Retrieve successors. 2888 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2889 2890 // Update successor info. 2891 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2892 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2893 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2894 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2895 Target->setIsInlineAsmBrIndirectTarget(); 2896 } 2897 CallBrMBB->normalizeSuccProbs(); 2898 2899 // Drop into default successor. 2900 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2901 MVT::Other, getControlRoot(), 2902 DAG.getBasicBlock(Return))); 2903 } 2904 2905 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2906 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2907 } 2908 2909 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2910 assert(FuncInfo.MBB->isEHPad() && 2911 "Call to landingpad not in landing pad!"); 2912 2913 // If there aren't registers to copy the values into (e.g., during SjLj 2914 // exceptions), then don't bother to create these DAG nodes. 2915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2916 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2917 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2918 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2919 return; 2920 2921 // If landingpad's return type is token type, we don't create DAG nodes 2922 // for its exception pointer and selector value. The extraction of exception 2923 // pointer or selector value from token type landingpads is not currently 2924 // supported. 2925 if (LP.getType()->isTokenTy()) 2926 return; 2927 2928 SmallVector<EVT, 2> ValueVTs; 2929 SDLoc dl = getCurSDLoc(); 2930 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2931 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2932 2933 // Get the two live-in registers as SDValues. The physregs have already been 2934 // copied into virtual registers. 2935 SDValue Ops[2]; 2936 if (FuncInfo.ExceptionPointerVirtReg) { 2937 Ops[0] = DAG.getZExtOrTrunc( 2938 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2939 FuncInfo.ExceptionPointerVirtReg, 2940 TLI.getPointerTy(DAG.getDataLayout())), 2941 dl, ValueVTs[0]); 2942 } else { 2943 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2944 } 2945 Ops[1] = DAG.getZExtOrTrunc( 2946 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2947 FuncInfo.ExceptionSelectorVirtReg, 2948 TLI.getPointerTy(DAG.getDataLayout())), 2949 dl, ValueVTs[1]); 2950 2951 // Merge into one. 2952 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2953 DAG.getVTList(ValueVTs), Ops); 2954 setValue(&LP, Res); 2955 } 2956 2957 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2958 MachineBasicBlock *Last) { 2959 // Update JTCases. 2960 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2961 if (SL->JTCases[i].first.HeaderBB == First) 2962 SL->JTCases[i].first.HeaderBB = Last; 2963 2964 // Update BitTestCases. 2965 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2966 if (SL->BitTestCases[i].Parent == First) 2967 SL->BitTestCases[i].Parent = Last; 2968 } 2969 2970 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2971 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2972 2973 // Update machine-CFG edges with unique successors. 2974 SmallSet<BasicBlock*, 32> Done; 2975 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2976 BasicBlock *BB = I.getSuccessor(i); 2977 bool Inserted = Done.insert(BB).second; 2978 if (!Inserted) 2979 continue; 2980 2981 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2982 addSuccessorWithProb(IndirectBrMBB, Succ); 2983 } 2984 IndirectBrMBB->normalizeSuccProbs(); 2985 2986 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2987 MVT::Other, getControlRoot(), 2988 getValue(I.getAddress()))); 2989 } 2990 2991 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2992 if (!DAG.getTarget().Options.TrapUnreachable) 2993 return; 2994 2995 // We may be able to ignore unreachable behind a noreturn call. 2996 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2997 const BasicBlock &BB = *I.getParent(); 2998 if (&I != &BB.front()) { 2999 BasicBlock::const_iterator PredI = 3000 std::prev(BasicBlock::const_iterator(&I)); 3001 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3002 if (Call->doesNotReturn()) 3003 return; 3004 } 3005 } 3006 } 3007 3008 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3009 } 3010 3011 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3012 SDNodeFlags Flags; 3013 3014 SDValue Op = getValue(I.getOperand(0)); 3015 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3016 Op, Flags); 3017 setValue(&I, UnNodeValue); 3018 } 3019 3020 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3021 SDNodeFlags Flags; 3022 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3023 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3024 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3025 } 3026 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3027 Flags.setExact(ExactOp->isExact()); 3028 } 3029 3030 SDValue Op1 = getValue(I.getOperand(0)); 3031 SDValue Op2 = getValue(I.getOperand(1)); 3032 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3033 Op1, Op2, Flags); 3034 setValue(&I, BinNodeValue); 3035 } 3036 3037 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3038 SDValue Op1 = getValue(I.getOperand(0)); 3039 SDValue Op2 = getValue(I.getOperand(1)); 3040 3041 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3042 Op1.getValueType(), DAG.getDataLayout()); 3043 3044 // Coerce the shift amount to the right type if we can. 3045 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3046 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3047 unsigned Op2Size = Op2.getValueSizeInBits(); 3048 SDLoc DL = getCurSDLoc(); 3049 3050 // If the operand is smaller than the shift count type, promote it. 3051 if (ShiftSize > Op2Size) 3052 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3053 3054 // If the operand is larger than the shift count type but the shift 3055 // count type has enough bits to represent any shift value, truncate 3056 // it now. This is a common case and it exposes the truncate to 3057 // optimization early. 3058 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3059 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3060 // Otherwise we'll need to temporarily settle for some other convenient 3061 // type. Type legalization will make adjustments once the shiftee is split. 3062 else 3063 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3064 } 3065 3066 bool nuw = false; 3067 bool nsw = false; 3068 bool exact = false; 3069 3070 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3071 3072 if (const OverflowingBinaryOperator *OFBinOp = 3073 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3074 nuw = OFBinOp->hasNoUnsignedWrap(); 3075 nsw = OFBinOp->hasNoSignedWrap(); 3076 } 3077 if (const PossiblyExactOperator *ExactOp = 3078 dyn_cast<const PossiblyExactOperator>(&I)) 3079 exact = ExactOp->isExact(); 3080 } 3081 SDNodeFlags Flags; 3082 Flags.setExact(exact); 3083 Flags.setNoSignedWrap(nsw); 3084 Flags.setNoUnsignedWrap(nuw); 3085 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3086 Flags); 3087 setValue(&I, Res); 3088 } 3089 3090 void SelectionDAGBuilder::visitSDiv(const User &I) { 3091 SDValue Op1 = getValue(I.getOperand(0)); 3092 SDValue Op2 = getValue(I.getOperand(1)); 3093 3094 SDNodeFlags Flags; 3095 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3096 cast<PossiblyExactOperator>(&I)->isExact()); 3097 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3098 Op2, Flags)); 3099 } 3100 3101 void SelectionDAGBuilder::visitICmp(const User &I) { 3102 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3103 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3104 predicate = IC->getPredicate(); 3105 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3106 predicate = ICmpInst::Predicate(IC->getPredicate()); 3107 SDValue Op1 = getValue(I.getOperand(0)); 3108 SDValue Op2 = getValue(I.getOperand(1)); 3109 ISD::CondCode Opcode = getICmpCondCode(predicate); 3110 3111 auto &TLI = DAG.getTargetLoweringInfo(); 3112 EVT MemVT = 3113 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3114 3115 // If a pointer's DAG type is larger than its memory type then the DAG values 3116 // are zero-extended. This breaks signed comparisons so truncate back to the 3117 // underlying type before doing the compare. 3118 if (Op1.getValueType() != MemVT) { 3119 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3120 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3121 } 3122 3123 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3124 I.getType()); 3125 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3126 } 3127 3128 void SelectionDAGBuilder::visitFCmp(const User &I) { 3129 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3130 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3131 predicate = FC->getPredicate(); 3132 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3133 predicate = FCmpInst::Predicate(FC->getPredicate()); 3134 SDValue Op1 = getValue(I.getOperand(0)); 3135 SDValue Op2 = getValue(I.getOperand(1)); 3136 3137 ISD::CondCode Condition = getFCmpCondCode(predicate); 3138 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3139 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3140 Condition = getFCmpCodeWithoutNaN(Condition); 3141 3142 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3143 I.getType()); 3144 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3145 } 3146 3147 // Check if the condition of the select has one use or two users that are both 3148 // selects with the same condition. 3149 static bool hasOnlySelectUsers(const Value *Cond) { 3150 return llvm::all_of(Cond->users(), [](const Value *V) { 3151 return isa<SelectInst>(V); 3152 }); 3153 } 3154 3155 void SelectionDAGBuilder::visitSelect(const User &I) { 3156 SmallVector<EVT, 4> ValueVTs; 3157 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3158 ValueVTs); 3159 unsigned NumValues = ValueVTs.size(); 3160 if (NumValues == 0) return; 3161 3162 SmallVector<SDValue, 4> Values(NumValues); 3163 SDValue Cond = getValue(I.getOperand(0)); 3164 SDValue LHSVal = getValue(I.getOperand(1)); 3165 SDValue RHSVal = getValue(I.getOperand(2)); 3166 SmallVector<SDValue, 1> BaseOps(1, Cond); 3167 ISD::NodeType OpCode = 3168 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3169 3170 bool IsUnaryAbs = false; 3171 3172 // Min/max matching is only viable if all output VTs are the same. 3173 if (is_splat(ValueVTs)) { 3174 EVT VT = ValueVTs[0]; 3175 LLVMContext &Ctx = *DAG.getContext(); 3176 auto &TLI = DAG.getTargetLoweringInfo(); 3177 3178 // We care about the legality of the operation after it has been type 3179 // legalized. 3180 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3181 VT = TLI.getTypeToTransformTo(Ctx, VT); 3182 3183 // If the vselect is legal, assume we want to leave this as a vector setcc + 3184 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3185 // min/max is legal on the scalar type. 3186 bool UseScalarMinMax = VT.isVector() && 3187 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3188 3189 Value *LHS, *RHS; 3190 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3191 ISD::NodeType Opc = ISD::DELETED_NODE; 3192 switch (SPR.Flavor) { 3193 case SPF_UMAX: Opc = ISD::UMAX; break; 3194 case SPF_UMIN: Opc = ISD::UMIN; break; 3195 case SPF_SMAX: Opc = ISD::SMAX; break; 3196 case SPF_SMIN: Opc = ISD::SMIN; break; 3197 case SPF_FMINNUM: 3198 switch (SPR.NaNBehavior) { 3199 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3200 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3201 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3202 case SPNB_RETURNS_ANY: { 3203 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3204 Opc = ISD::FMINNUM; 3205 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3206 Opc = ISD::FMINIMUM; 3207 else if (UseScalarMinMax) 3208 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3209 ISD::FMINNUM : ISD::FMINIMUM; 3210 break; 3211 } 3212 } 3213 break; 3214 case SPF_FMAXNUM: 3215 switch (SPR.NaNBehavior) { 3216 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3217 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3218 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3219 case SPNB_RETURNS_ANY: 3220 3221 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3222 Opc = ISD::FMAXNUM; 3223 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3224 Opc = ISD::FMAXIMUM; 3225 else if (UseScalarMinMax) 3226 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3227 ISD::FMAXNUM : ISD::FMAXIMUM; 3228 break; 3229 } 3230 break; 3231 case SPF_ABS: 3232 IsUnaryAbs = true; 3233 Opc = ISD::ABS; 3234 break; 3235 case SPF_NABS: 3236 // TODO: we need to produce sub(0, abs(X)). 3237 default: break; 3238 } 3239 3240 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3241 (TLI.isOperationLegalOrCustom(Opc, VT) || 3242 (UseScalarMinMax && 3243 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3244 // If the underlying comparison instruction is used by any other 3245 // instruction, the consumed instructions won't be destroyed, so it is 3246 // not profitable to convert to a min/max. 3247 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3248 OpCode = Opc; 3249 LHSVal = getValue(LHS); 3250 RHSVal = getValue(RHS); 3251 BaseOps.clear(); 3252 } 3253 3254 if (IsUnaryAbs) { 3255 OpCode = Opc; 3256 LHSVal = getValue(LHS); 3257 BaseOps.clear(); 3258 } 3259 } 3260 3261 if (IsUnaryAbs) { 3262 for (unsigned i = 0; i != NumValues; ++i) { 3263 Values[i] = 3264 DAG.getNode(OpCode, getCurSDLoc(), 3265 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3266 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3267 } 3268 } else { 3269 for (unsigned i = 0; i != NumValues; ++i) { 3270 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3271 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3272 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3273 Values[i] = DAG.getNode( 3274 OpCode, getCurSDLoc(), 3275 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3276 } 3277 } 3278 3279 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3280 DAG.getVTList(ValueVTs), Values)); 3281 } 3282 3283 void SelectionDAGBuilder::visitTrunc(const User &I) { 3284 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3285 SDValue N = getValue(I.getOperand(0)); 3286 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3287 I.getType()); 3288 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3289 } 3290 3291 void SelectionDAGBuilder::visitZExt(const User &I) { 3292 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3293 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3294 SDValue N = getValue(I.getOperand(0)); 3295 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3296 I.getType()); 3297 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3298 } 3299 3300 void SelectionDAGBuilder::visitSExt(const User &I) { 3301 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3302 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3303 SDValue N = getValue(I.getOperand(0)); 3304 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3305 I.getType()); 3306 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3307 } 3308 3309 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3310 // FPTrunc is never a no-op cast, no need to check 3311 SDValue N = getValue(I.getOperand(0)); 3312 SDLoc dl = getCurSDLoc(); 3313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3314 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3315 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3316 DAG.getTargetConstant( 3317 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3318 } 3319 3320 void SelectionDAGBuilder::visitFPExt(const User &I) { 3321 // FPExt is never a no-op cast, no need to check 3322 SDValue N = getValue(I.getOperand(0)); 3323 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3324 I.getType()); 3325 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3326 } 3327 3328 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3329 // FPToUI is never a no-op cast, no need to check 3330 SDValue N = getValue(I.getOperand(0)); 3331 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3332 I.getType()); 3333 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3334 } 3335 3336 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3337 // FPToSI is never a no-op cast, no need to check 3338 SDValue N = getValue(I.getOperand(0)); 3339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3340 I.getType()); 3341 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3342 } 3343 3344 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3345 // UIToFP is never a no-op cast, no need to check 3346 SDValue N = getValue(I.getOperand(0)); 3347 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3348 I.getType()); 3349 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3350 } 3351 3352 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3353 // SIToFP is never a no-op cast, no need to check 3354 SDValue N = getValue(I.getOperand(0)); 3355 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3356 I.getType()); 3357 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3358 } 3359 3360 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3361 // What to do depends on the size of the integer and the size of the pointer. 3362 // We can either truncate, zero extend, or no-op, accordingly. 3363 SDValue N = getValue(I.getOperand(0)); 3364 auto &TLI = DAG.getTargetLoweringInfo(); 3365 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3366 I.getType()); 3367 EVT PtrMemVT = 3368 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3369 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3370 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3371 setValue(&I, N); 3372 } 3373 3374 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3375 // What to do depends on the size of the integer and the size of the pointer. 3376 // We can either truncate, zero extend, or no-op, accordingly. 3377 SDValue N = getValue(I.getOperand(0)); 3378 auto &TLI = DAG.getTargetLoweringInfo(); 3379 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3380 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3381 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3382 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3383 setValue(&I, N); 3384 } 3385 3386 void SelectionDAGBuilder::visitBitCast(const User &I) { 3387 SDValue N = getValue(I.getOperand(0)); 3388 SDLoc dl = getCurSDLoc(); 3389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3390 I.getType()); 3391 3392 // BitCast assures us that source and destination are the same size so this is 3393 // either a BITCAST or a no-op. 3394 if (DestVT != N.getValueType()) 3395 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3396 DestVT, N)); // convert types. 3397 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3398 // might fold any kind of constant expression to an integer constant and that 3399 // is not what we are looking for. Only recognize a bitcast of a genuine 3400 // constant integer as an opaque constant. 3401 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3402 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3403 /*isOpaque*/true)); 3404 else 3405 setValue(&I, N); // noop cast. 3406 } 3407 3408 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3409 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3410 const Value *SV = I.getOperand(0); 3411 SDValue N = getValue(SV); 3412 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3413 3414 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3415 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3416 3417 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3418 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3419 3420 setValue(&I, N); 3421 } 3422 3423 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3425 SDValue InVec = getValue(I.getOperand(0)); 3426 SDValue InVal = getValue(I.getOperand(1)); 3427 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3428 TLI.getVectorIdxTy(DAG.getDataLayout())); 3429 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3430 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3431 InVec, InVal, InIdx)); 3432 } 3433 3434 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3436 SDValue InVec = getValue(I.getOperand(0)); 3437 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3438 TLI.getVectorIdxTy(DAG.getDataLayout())); 3439 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3440 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3441 InVec, InIdx)); 3442 } 3443 3444 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3445 SDValue Src1 = getValue(I.getOperand(0)); 3446 SDValue Src2 = getValue(I.getOperand(1)); 3447 ArrayRef<int> Mask; 3448 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3449 Mask = SVI->getShuffleMask(); 3450 else 3451 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3452 SDLoc DL = getCurSDLoc(); 3453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3454 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3455 EVT SrcVT = Src1.getValueType(); 3456 3457 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3458 VT.isScalableVector()) { 3459 // Canonical splat form of first element of first input vector. 3460 SDValue FirstElt = 3461 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3462 DAG.getVectorIdxConstant(0, DL)); 3463 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3464 return; 3465 } 3466 3467 // For now, we only handle splats for scalable vectors. 3468 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3469 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3470 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3471 3472 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3473 unsigned MaskNumElts = Mask.size(); 3474 3475 if (SrcNumElts == MaskNumElts) { 3476 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3477 return; 3478 } 3479 3480 // Normalize the shuffle vector since mask and vector length don't match. 3481 if (SrcNumElts < MaskNumElts) { 3482 // Mask is longer than the source vectors. We can use concatenate vector to 3483 // make the mask and vectors lengths match. 3484 3485 if (MaskNumElts % SrcNumElts == 0) { 3486 // Mask length is a multiple of the source vector length. 3487 // Check if the shuffle is some kind of concatenation of the input 3488 // vectors. 3489 unsigned NumConcat = MaskNumElts / SrcNumElts; 3490 bool IsConcat = true; 3491 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3492 for (unsigned i = 0; i != MaskNumElts; ++i) { 3493 int Idx = Mask[i]; 3494 if (Idx < 0) 3495 continue; 3496 // Ensure the indices in each SrcVT sized piece are sequential and that 3497 // the same source is used for the whole piece. 3498 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3499 (ConcatSrcs[i / SrcNumElts] >= 0 && 3500 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3501 IsConcat = false; 3502 break; 3503 } 3504 // Remember which source this index came from. 3505 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3506 } 3507 3508 // The shuffle is concatenating multiple vectors together. Just emit 3509 // a CONCAT_VECTORS operation. 3510 if (IsConcat) { 3511 SmallVector<SDValue, 8> ConcatOps; 3512 for (auto Src : ConcatSrcs) { 3513 if (Src < 0) 3514 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3515 else if (Src == 0) 3516 ConcatOps.push_back(Src1); 3517 else 3518 ConcatOps.push_back(Src2); 3519 } 3520 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3521 return; 3522 } 3523 } 3524 3525 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3526 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3527 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3528 PaddedMaskNumElts); 3529 3530 // Pad both vectors with undefs to make them the same length as the mask. 3531 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3532 3533 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3534 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3535 MOps1[0] = Src1; 3536 MOps2[0] = Src2; 3537 3538 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3539 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3540 3541 // Readjust mask for new input vector length. 3542 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3543 for (unsigned i = 0; i != MaskNumElts; ++i) { 3544 int Idx = Mask[i]; 3545 if (Idx >= (int)SrcNumElts) 3546 Idx -= SrcNumElts - PaddedMaskNumElts; 3547 MappedOps[i] = Idx; 3548 } 3549 3550 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3551 3552 // If the concatenated vector was padded, extract a subvector with the 3553 // correct number of elements. 3554 if (MaskNumElts != PaddedMaskNumElts) 3555 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3556 DAG.getVectorIdxConstant(0, DL)); 3557 3558 setValue(&I, Result); 3559 return; 3560 } 3561 3562 if (SrcNumElts > MaskNumElts) { 3563 // Analyze the access pattern of the vector to see if we can extract 3564 // two subvectors and do the shuffle. 3565 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3566 bool CanExtract = true; 3567 for (int Idx : Mask) { 3568 unsigned Input = 0; 3569 if (Idx < 0) 3570 continue; 3571 3572 if (Idx >= (int)SrcNumElts) { 3573 Input = 1; 3574 Idx -= SrcNumElts; 3575 } 3576 3577 // If all the indices come from the same MaskNumElts sized portion of 3578 // the sources we can use extract. Also make sure the extract wouldn't 3579 // extract past the end of the source. 3580 int NewStartIdx = alignDown(Idx, MaskNumElts); 3581 if (NewStartIdx + MaskNumElts > SrcNumElts || 3582 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3583 CanExtract = false; 3584 // Make sure we always update StartIdx as we use it to track if all 3585 // elements are undef. 3586 StartIdx[Input] = NewStartIdx; 3587 } 3588 3589 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3590 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3591 return; 3592 } 3593 if (CanExtract) { 3594 // Extract appropriate subvector and generate a vector shuffle 3595 for (unsigned Input = 0; Input < 2; ++Input) { 3596 SDValue &Src = Input == 0 ? Src1 : Src2; 3597 if (StartIdx[Input] < 0) 3598 Src = DAG.getUNDEF(VT); 3599 else { 3600 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3601 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3602 } 3603 } 3604 3605 // Calculate new mask. 3606 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3607 for (int &Idx : MappedOps) { 3608 if (Idx >= (int)SrcNumElts) 3609 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3610 else if (Idx >= 0) 3611 Idx -= StartIdx[0]; 3612 } 3613 3614 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3615 return; 3616 } 3617 } 3618 3619 // We can't use either concat vectors or extract subvectors so fall back to 3620 // replacing the shuffle with extract and build vector. 3621 // to insert and build vector. 3622 EVT EltVT = VT.getVectorElementType(); 3623 SmallVector<SDValue,8> Ops; 3624 for (int Idx : Mask) { 3625 SDValue Res; 3626 3627 if (Idx < 0) { 3628 Res = DAG.getUNDEF(EltVT); 3629 } else { 3630 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3631 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3632 3633 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3634 DAG.getVectorIdxConstant(Idx, DL)); 3635 } 3636 3637 Ops.push_back(Res); 3638 } 3639 3640 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3641 } 3642 3643 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3644 ArrayRef<unsigned> Indices; 3645 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3646 Indices = IV->getIndices(); 3647 else 3648 Indices = cast<ConstantExpr>(&I)->getIndices(); 3649 3650 const Value *Op0 = I.getOperand(0); 3651 const Value *Op1 = I.getOperand(1); 3652 Type *AggTy = I.getType(); 3653 Type *ValTy = Op1->getType(); 3654 bool IntoUndef = isa<UndefValue>(Op0); 3655 bool FromUndef = isa<UndefValue>(Op1); 3656 3657 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3658 3659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3660 SmallVector<EVT, 4> AggValueVTs; 3661 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3662 SmallVector<EVT, 4> ValValueVTs; 3663 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3664 3665 unsigned NumAggValues = AggValueVTs.size(); 3666 unsigned NumValValues = ValValueVTs.size(); 3667 SmallVector<SDValue, 4> Values(NumAggValues); 3668 3669 // Ignore an insertvalue that produces an empty object 3670 if (!NumAggValues) { 3671 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3672 return; 3673 } 3674 3675 SDValue Agg = getValue(Op0); 3676 unsigned i = 0; 3677 // Copy the beginning value(s) from the original aggregate. 3678 for (; i != LinearIndex; ++i) 3679 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3680 SDValue(Agg.getNode(), Agg.getResNo() + i); 3681 // Copy values from the inserted value(s). 3682 if (NumValValues) { 3683 SDValue Val = getValue(Op1); 3684 for (; i != LinearIndex + NumValValues; ++i) 3685 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3686 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3687 } 3688 // Copy remaining value(s) from the original aggregate. 3689 for (; i != NumAggValues; ++i) 3690 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3691 SDValue(Agg.getNode(), Agg.getResNo() + i); 3692 3693 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3694 DAG.getVTList(AggValueVTs), Values)); 3695 } 3696 3697 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3698 ArrayRef<unsigned> Indices; 3699 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3700 Indices = EV->getIndices(); 3701 else 3702 Indices = cast<ConstantExpr>(&I)->getIndices(); 3703 3704 const Value *Op0 = I.getOperand(0); 3705 Type *AggTy = Op0->getType(); 3706 Type *ValTy = I.getType(); 3707 bool OutOfUndef = isa<UndefValue>(Op0); 3708 3709 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3710 3711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3712 SmallVector<EVT, 4> ValValueVTs; 3713 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3714 3715 unsigned NumValValues = ValValueVTs.size(); 3716 3717 // Ignore a extractvalue that produces an empty object 3718 if (!NumValValues) { 3719 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3720 return; 3721 } 3722 3723 SmallVector<SDValue, 4> Values(NumValValues); 3724 3725 SDValue Agg = getValue(Op0); 3726 // Copy out the selected value(s). 3727 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3728 Values[i - LinearIndex] = 3729 OutOfUndef ? 3730 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3731 SDValue(Agg.getNode(), Agg.getResNo() + i); 3732 3733 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3734 DAG.getVTList(ValValueVTs), Values)); 3735 } 3736 3737 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3738 Value *Op0 = I.getOperand(0); 3739 // Note that the pointer operand may be a vector of pointers. Take the scalar 3740 // element which holds a pointer. 3741 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3742 SDValue N = getValue(Op0); 3743 SDLoc dl = getCurSDLoc(); 3744 auto &TLI = DAG.getTargetLoweringInfo(); 3745 3746 // Normalize Vector GEP - all scalar operands should be converted to the 3747 // splat vector. 3748 bool IsVectorGEP = I.getType()->isVectorTy(); 3749 ElementCount VectorElementCount = 3750 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3751 : ElementCount::getFixed(0); 3752 3753 if (IsVectorGEP && !N.getValueType().isVector()) { 3754 LLVMContext &Context = *DAG.getContext(); 3755 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3756 if (VectorElementCount.isScalable()) 3757 N = DAG.getSplatVector(VT, dl, N); 3758 else 3759 N = DAG.getSplatBuildVector(VT, dl, N); 3760 } 3761 3762 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3763 GTI != E; ++GTI) { 3764 const Value *Idx = GTI.getOperand(); 3765 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3766 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3767 if (Field) { 3768 // N = N + Offset 3769 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3770 3771 // In an inbounds GEP with an offset that is nonnegative even when 3772 // interpreted as signed, assume there is no unsigned overflow. 3773 SDNodeFlags Flags; 3774 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3775 Flags.setNoUnsignedWrap(true); 3776 3777 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3778 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3779 } 3780 } else { 3781 // IdxSize is the width of the arithmetic according to IR semantics. 3782 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3783 // (and fix up the result later). 3784 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3785 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3786 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3787 // We intentionally mask away the high bits here; ElementSize may not 3788 // fit in IdxTy. 3789 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3790 bool ElementScalable = ElementSize.isScalable(); 3791 3792 // If this is a scalar constant or a splat vector of constants, 3793 // handle it quickly. 3794 const auto *C = dyn_cast<Constant>(Idx); 3795 if (C && isa<VectorType>(C->getType())) 3796 C = C->getSplatValue(); 3797 3798 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3799 if (CI && CI->isZero()) 3800 continue; 3801 if (CI && !ElementScalable) { 3802 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3803 LLVMContext &Context = *DAG.getContext(); 3804 SDValue OffsVal; 3805 if (IsVectorGEP) 3806 OffsVal = DAG.getConstant( 3807 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3808 else 3809 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3810 3811 // In an inbounds GEP with an offset that is nonnegative even when 3812 // interpreted as signed, assume there is no unsigned overflow. 3813 SDNodeFlags Flags; 3814 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3815 Flags.setNoUnsignedWrap(true); 3816 3817 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3818 3819 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3820 continue; 3821 } 3822 3823 // N = N + Idx * ElementMul; 3824 SDValue IdxN = getValue(Idx); 3825 3826 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3827 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3828 VectorElementCount); 3829 if (VectorElementCount.isScalable()) 3830 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3831 else 3832 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3833 } 3834 3835 // If the index is smaller or larger than intptr_t, truncate or extend 3836 // it. 3837 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3838 3839 if (ElementScalable) { 3840 EVT VScaleTy = N.getValueType().getScalarType(); 3841 SDValue VScale = DAG.getNode( 3842 ISD::VSCALE, dl, VScaleTy, 3843 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3844 if (IsVectorGEP) 3845 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3846 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3847 } else { 3848 // If this is a multiply by a power of two, turn it into a shl 3849 // immediately. This is a very common case. 3850 if (ElementMul != 1) { 3851 if (ElementMul.isPowerOf2()) { 3852 unsigned Amt = ElementMul.logBase2(); 3853 IdxN = DAG.getNode(ISD::SHL, dl, 3854 N.getValueType(), IdxN, 3855 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3856 } else { 3857 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3858 IdxN.getValueType()); 3859 IdxN = DAG.getNode(ISD::MUL, dl, 3860 N.getValueType(), IdxN, Scale); 3861 } 3862 } 3863 } 3864 3865 N = DAG.getNode(ISD::ADD, dl, 3866 N.getValueType(), N, IdxN); 3867 } 3868 } 3869 3870 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3871 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3872 if (IsVectorGEP) { 3873 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3874 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3875 } 3876 3877 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3878 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3879 3880 setValue(&I, N); 3881 } 3882 3883 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3884 // If this is a fixed sized alloca in the entry block of the function, 3885 // allocate it statically on the stack. 3886 if (FuncInfo.StaticAllocaMap.count(&I)) 3887 return; // getValue will auto-populate this. 3888 3889 SDLoc dl = getCurSDLoc(); 3890 Type *Ty = I.getAllocatedType(); 3891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3892 auto &DL = DAG.getDataLayout(); 3893 uint64_t TySize = DL.getTypeAllocSize(Ty); 3894 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3895 3896 SDValue AllocSize = getValue(I.getArraySize()); 3897 3898 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3899 if (AllocSize.getValueType() != IntPtr) 3900 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3901 3902 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3903 AllocSize, 3904 DAG.getConstant(TySize, dl, IntPtr)); 3905 3906 // Handle alignment. If the requested alignment is less than or equal to 3907 // the stack alignment, ignore it. If the size is greater than or equal to 3908 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3909 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3910 if (*Alignment <= StackAlign) 3911 Alignment = None; 3912 3913 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3914 // Round the size of the allocation up to the stack alignment size 3915 // by add SA-1 to the size. This doesn't overflow because we're computing 3916 // an address inside an alloca. 3917 SDNodeFlags Flags; 3918 Flags.setNoUnsignedWrap(true); 3919 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3920 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3921 3922 // Mask out the low bits for alignment purposes. 3923 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3924 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3925 3926 SDValue Ops[] = { 3927 getRoot(), AllocSize, 3928 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3929 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3930 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3931 setValue(&I, DSA); 3932 DAG.setRoot(DSA.getValue(1)); 3933 3934 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3935 } 3936 3937 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3938 if (I.isAtomic()) 3939 return visitAtomicLoad(I); 3940 3941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3942 const Value *SV = I.getOperand(0); 3943 if (TLI.supportSwiftError()) { 3944 // Swifterror values can come from either a function parameter with 3945 // swifterror attribute or an alloca with swifterror attribute. 3946 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3947 if (Arg->hasSwiftErrorAttr()) 3948 return visitLoadFromSwiftError(I); 3949 } 3950 3951 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3952 if (Alloca->isSwiftError()) 3953 return visitLoadFromSwiftError(I); 3954 } 3955 } 3956 3957 SDValue Ptr = getValue(SV); 3958 3959 Type *Ty = I.getType(); 3960 Align Alignment = I.getAlign(); 3961 3962 AAMDNodes AAInfo; 3963 I.getAAMetadata(AAInfo); 3964 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3965 3966 SmallVector<EVT, 4> ValueVTs, MemVTs; 3967 SmallVector<uint64_t, 4> Offsets; 3968 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3969 unsigned NumValues = ValueVTs.size(); 3970 if (NumValues == 0) 3971 return; 3972 3973 bool isVolatile = I.isVolatile(); 3974 3975 SDValue Root; 3976 bool ConstantMemory = false; 3977 if (isVolatile) 3978 // Serialize volatile loads with other side effects. 3979 Root = getRoot(); 3980 else if (NumValues > MaxParallelChains) 3981 Root = getMemoryRoot(); 3982 else if (AA && 3983 AA->pointsToConstantMemory(MemoryLocation( 3984 SV, 3985 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3986 AAInfo))) { 3987 // Do not serialize (non-volatile) loads of constant memory with anything. 3988 Root = DAG.getEntryNode(); 3989 ConstantMemory = true; 3990 } else { 3991 // Do not serialize non-volatile loads against each other. 3992 Root = DAG.getRoot(); 3993 } 3994 3995 SDLoc dl = getCurSDLoc(); 3996 3997 if (isVolatile) 3998 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3999 4000 // An aggregate load cannot wrap around the address space, so offsets to its 4001 // parts don't wrap either. 4002 SDNodeFlags Flags; 4003 Flags.setNoUnsignedWrap(true); 4004 4005 SmallVector<SDValue, 4> Values(NumValues); 4006 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4007 EVT PtrVT = Ptr.getValueType(); 4008 4009 MachineMemOperand::Flags MMOFlags 4010 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4011 4012 unsigned ChainI = 0; 4013 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4014 // Serializing loads here may result in excessive register pressure, and 4015 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4016 // could recover a bit by hoisting nodes upward in the chain by recognizing 4017 // they are side-effect free or do not alias. The optimizer should really 4018 // avoid this case by converting large object/array copies to llvm.memcpy 4019 // (MaxParallelChains should always remain as failsafe). 4020 if (ChainI == MaxParallelChains) { 4021 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4022 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4023 makeArrayRef(Chains.data(), ChainI)); 4024 Root = Chain; 4025 ChainI = 0; 4026 } 4027 SDValue A = DAG.getNode(ISD::ADD, dl, 4028 PtrVT, Ptr, 4029 DAG.getConstant(Offsets[i], dl, PtrVT), 4030 Flags); 4031 4032 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4033 MachinePointerInfo(SV, Offsets[i]), Alignment, 4034 MMOFlags, AAInfo, Ranges); 4035 Chains[ChainI] = L.getValue(1); 4036 4037 if (MemVTs[i] != ValueVTs[i]) 4038 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4039 4040 Values[i] = L; 4041 } 4042 4043 if (!ConstantMemory) { 4044 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4045 makeArrayRef(Chains.data(), ChainI)); 4046 if (isVolatile) 4047 DAG.setRoot(Chain); 4048 else 4049 PendingLoads.push_back(Chain); 4050 } 4051 4052 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4053 DAG.getVTList(ValueVTs), Values)); 4054 } 4055 4056 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4057 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4058 "call visitStoreToSwiftError when backend supports swifterror"); 4059 4060 SmallVector<EVT, 4> ValueVTs; 4061 SmallVector<uint64_t, 4> Offsets; 4062 const Value *SrcV = I.getOperand(0); 4063 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4064 SrcV->getType(), ValueVTs, &Offsets); 4065 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4066 "expect a single EVT for swifterror"); 4067 4068 SDValue Src = getValue(SrcV); 4069 // Create a virtual register, then update the virtual register. 4070 Register VReg = 4071 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4072 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4073 // Chain can be getRoot or getControlRoot. 4074 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4075 SDValue(Src.getNode(), Src.getResNo())); 4076 DAG.setRoot(CopyNode); 4077 } 4078 4079 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4080 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4081 "call visitLoadFromSwiftError when backend supports swifterror"); 4082 4083 assert(!I.isVolatile() && 4084 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4085 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4086 "Support volatile, non temporal, invariant for load_from_swift_error"); 4087 4088 const Value *SV = I.getOperand(0); 4089 Type *Ty = I.getType(); 4090 AAMDNodes AAInfo; 4091 I.getAAMetadata(AAInfo); 4092 assert( 4093 (!AA || 4094 !AA->pointsToConstantMemory(MemoryLocation( 4095 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4096 AAInfo))) && 4097 "load_from_swift_error should not be constant memory"); 4098 4099 SmallVector<EVT, 4> ValueVTs; 4100 SmallVector<uint64_t, 4> Offsets; 4101 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4102 ValueVTs, &Offsets); 4103 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4104 "expect a single EVT for swifterror"); 4105 4106 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4107 SDValue L = DAG.getCopyFromReg( 4108 getRoot(), getCurSDLoc(), 4109 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4110 4111 setValue(&I, L); 4112 } 4113 4114 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4115 if (I.isAtomic()) 4116 return visitAtomicStore(I); 4117 4118 const Value *SrcV = I.getOperand(0); 4119 const Value *PtrV = I.getOperand(1); 4120 4121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4122 if (TLI.supportSwiftError()) { 4123 // Swifterror values can come from either a function parameter with 4124 // swifterror attribute or an alloca with swifterror attribute. 4125 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4126 if (Arg->hasSwiftErrorAttr()) 4127 return visitStoreToSwiftError(I); 4128 } 4129 4130 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4131 if (Alloca->isSwiftError()) 4132 return visitStoreToSwiftError(I); 4133 } 4134 } 4135 4136 SmallVector<EVT, 4> ValueVTs, MemVTs; 4137 SmallVector<uint64_t, 4> Offsets; 4138 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4139 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4140 unsigned NumValues = ValueVTs.size(); 4141 if (NumValues == 0) 4142 return; 4143 4144 // Get the lowered operands. Note that we do this after 4145 // checking if NumResults is zero, because with zero results 4146 // the operands won't have values in the map. 4147 SDValue Src = getValue(SrcV); 4148 SDValue Ptr = getValue(PtrV); 4149 4150 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4151 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4152 SDLoc dl = getCurSDLoc(); 4153 Align Alignment = I.getAlign(); 4154 AAMDNodes AAInfo; 4155 I.getAAMetadata(AAInfo); 4156 4157 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4158 4159 // An aggregate load cannot wrap around the address space, so offsets to its 4160 // parts don't wrap either. 4161 SDNodeFlags Flags; 4162 Flags.setNoUnsignedWrap(true); 4163 4164 unsigned ChainI = 0; 4165 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4166 // See visitLoad comments. 4167 if (ChainI == MaxParallelChains) { 4168 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4169 makeArrayRef(Chains.data(), ChainI)); 4170 Root = Chain; 4171 ChainI = 0; 4172 } 4173 SDValue Add = 4174 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4175 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4176 if (MemVTs[i] != ValueVTs[i]) 4177 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4178 SDValue St = 4179 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4180 Alignment, MMOFlags, AAInfo); 4181 Chains[ChainI] = St; 4182 } 4183 4184 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4185 makeArrayRef(Chains.data(), ChainI)); 4186 DAG.setRoot(StoreNode); 4187 } 4188 4189 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4190 bool IsCompressing) { 4191 SDLoc sdl = getCurSDLoc(); 4192 4193 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4194 MaybeAlign &Alignment) { 4195 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4196 Src0 = I.getArgOperand(0); 4197 Ptr = I.getArgOperand(1); 4198 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4199 Mask = I.getArgOperand(3); 4200 }; 4201 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4202 MaybeAlign &Alignment) { 4203 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4204 Src0 = I.getArgOperand(0); 4205 Ptr = I.getArgOperand(1); 4206 Mask = I.getArgOperand(2); 4207 Alignment = None; 4208 }; 4209 4210 Value *PtrOperand, *MaskOperand, *Src0Operand; 4211 MaybeAlign Alignment; 4212 if (IsCompressing) 4213 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4214 else 4215 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4216 4217 SDValue Ptr = getValue(PtrOperand); 4218 SDValue Src0 = getValue(Src0Operand); 4219 SDValue Mask = getValue(MaskOperand); 4220 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4221 4222 EVT VT = Src0.getValueType(); 4223 if (!Alignment) 4224 Alignment = DAG.getEVTAlign(VT); 4225 4226 AAMDNodes AAInfo; 4227 I.getAAMetadata(AAInfo); 4228 4229 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4230 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4231 // TODO: Make MachineMemOperands aware of scalable 4232 // vectors. 4233 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4234 SDValue StoreNode = 4235 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4236 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4237 DAG.setRoot(StoreNode); 4238 setValue(&I, StoreNode); 4239 } 4240 4241 // Get a uniform base for the Gather/Scatter intrinsic. 4242 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4243 // We try to represent it as a base pointer + vector of indices. 4244 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4245 // The first operand of the GEP may be a single pointer or a vector of pointers 4246 // Example: 4247 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4248 // or 4249 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4250 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4251 // 4252 // When the first GEP operand is a single pointer - it is the uniform base we 4253 // are looking for. If first operand of the GEP is a splat vector - we 4254 // extract the splat value and use it as a uniform base. 4255 // In all other cases the function returns 'false'. 4256 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4257 ISD::MemIndexType &IndexType, SDValue &Scale, 4258 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4259 SelectionDAG& DAG = SDB->DAG; 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 const DataLayout &DL = DAG.getDataLayout(); 4262 4263 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4264 4265 // Handle splat constant pointer. 4266 if (auto *C = dyn_cast<Constant>(Ptr)) { 4267 C = C->getSplatValue(); 4268 if (!C) 4269 return false; 4270 4271 Base = SDB->getValue(C); 4272 4273 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4274 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4275 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4276 IndexType = ISD::SIGNED_SCALED; 4277 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4278 return true; 4279 } 4280 4281 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4282 if (!GEP || GEP->getParent() != CurBB) 4283 return false; 4284 4285 if (GEP->getNumOperands() != 2) 4286 return false; 4287 4288 const Value *BasePtr = GEP->getPointerOperand(); 4289 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4290 4291 // Make sure the base is scalar and the index is a vector. 4292 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4293 return false; 4294 4295 Base = SDB->getValue(BasePtr); 4296 Index = SDB->getValue(IndexVal); 4297 IndexType = ISD::SIGNED_SCALED; 4298 Scale = DAG.getTargetConstant( 4299 DL.getTypeAllocSize(GEP->getResultElementType()), 4300 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4301 return true; 4302 } 4303 4304 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4305 SDLoc sdl = getCurSDLoc(); 4306 4307 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4308 const Value *Ptr = I.getArgOperand(1); 4309 SDValue Src0 = getValue(I.getArgOperand(0)); 4310 SDValue Mask = getValue(I.getArgOperand(3)); 4311 EVT VT = Src0.getValueType(); 4312 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4313 ->getMaybeAlignValue() 4314 .getValueOr(DAG.getEVTAlign(VT)); 4315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4316 4317 AAMDNodes AAInfo; 4318 I.getAAMetadata(AAInfo); 4319 4320 SDValue Base; 4321 SDValue Index; 4322 ISD::MemIndexType IndexType; 4323 SDValue Scale; 4324 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4325 I.getParent()); 4326 4327 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4328 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4329 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4330 // TODO: Make MachineMemOperands aware of scalable 4331 // vectors. 4332 MemoryLocation::UnknownSize, Alignment, AAInfo); 4333 if (!UniformBase) { 4334 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4335 Index = getValue(Ptr); 4336 IndexType = ISD::SIGNED_SCALED; 4337 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4338 } 4339 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4340 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4341 Ops, MMO, IndexType); 4342 DAG.setRoot(Scatter); 4343 setValue(&I, Scatter); 4344 } 4345 4346 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4347 SDLoc sdl = getCurSDLoc(); 4348 4349 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4350 MaybeAlign &Alignment) { 4351 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4352 Ptr = I.getArgOperand(0); 4353 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4354 Mask = I.getArgOperand(2); 4355 Src0 = I.getArgOperand(3); 4356 }; 4357 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4358 MaybeAlign &Alignment) { 4359 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4360 Ptr = I.getArgOperand(0); 4361 Alignment = None; 4362 Mask = I.getArgOperand(1); 4363 Src0 = I.getArgOperand(2); 4364 }; 4365 4366 Value *PtrOperand, *MaskOperand, *Src0Operand; 4367 MaybeAlign Alignment; 4368 if (IsExpanding) 4369 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4370 else 4371 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4372 4373 SDValue Ptr = getValue(PtrOperand); 4374 SDValue Src0 = getValue(Src0Operand); 4375 SDValue Mask = getValue(MaskOperand); 4376 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4377 4378 EVT VT = Src0.getValueType(); 4379 if (!Alignment) 4380 Alignment = DAG.getEVTAlign(VT); 4381 4382 AAMDNodes AAInfo; 4383 I.getAAMetadata(AAInfo); 4384 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4385 4386 // Do not serialize masked loads of constant memory with anything. 4387 MemoryLocation ML; 4388 if (VT.isScalableVector()) 4389 ML = MemoryLocation(PtrOperand); 4390 else 4391 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4392 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4393 AAInfo); 4394 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4395 4396 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4397 4398 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4399 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4400 // TODO: Make MachineMemOperands aware of scalable 4401 // vectors. 4402 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4403 4404 SDValue Load = 4405 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4406 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4407 if (AddToChain) 4408 PendingLoads.push_back(Load.getValue(1)); 4409 setValue(&I, Load); 4410 } 4411 4412 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4413 SDLoc sdl = getCurSDLoc(); 4414 4415 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4416 const Value *Ptr = I.getArgOperand(0); 4417 SDValue Src0 = getValue(I.getArgOperand(3)); 4418 SDValue Mask = getValue(I.getArgOperand(2)); 4419 4420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4421 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4422 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4423 ->getMaybeAlignValue() 4424 .getValueOr(DAG.getEVTAlign(VT)); 4425 4426 AAMDNodes AAInfo; 4427 I.getAAMetadata(AAInfo); 4428 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4429 4430 SDValue Root = DAG.getRoot(); 4431 SDValue Base; 4432 SDValue Index; 4433 ISD::MemIndexType IndexType; 4434 SDValue Scale; 4435 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4436 I.getParent()); 4437 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4438 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4439 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4440 // TODO: Make MachineMemOperands aware of scalable 4441 // vectors. 4442 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4443 4444 if (!UniformBase) { 4445 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4446 Index = getValue(Ptr); 4447 IndexType = ISD::SIGNED_SCALED; 4448 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4449 } 4450 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4451 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4452 Ops, MMO, IndexType); 4453 4454 PendingLoads.push_back(Gather.getValue(1)); 4455 setValue(&I, Gather); 4456 } 4457 4458 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4459 SDLoc dl = getCurSDLoc(); 4460 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4461 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4462 SyncScope::ID SSID = I.getSyncScopeID(); 4463 4464 SDValue InChain = getRoot(); 4465 4466 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4467 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4468 4469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4470 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4471 4472 MachineFunction &MF = DAG.getMachineFunction(); 4473 MachineMemOperand *MMO = MF.getMachineMemOperand( 4474 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4475 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4476 FailureOrdering); 4477 4478 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4479 dl, MemVT, VTs, InChain, 4480 getValue(I.getPointerOperand()), 4481 getValue(I.getCompareOperand()), 4482 getValue(I.getNewValOperand()), MMO); 4483 4484 SDValue OutChain = L.getValue(2); 4485 4486 setValue(&I, L); 4487 DAG.setRoot(OutChain); 4488 } 4489 4490 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4491 SDLoc dl = getCurSDLoc(); 4492 ISD::NodeType NT; 4493 switch (I.getOperation()) { 4494 default: llvm_unreachable("Unknown atomicrmw operation"); 4495 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4496 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4497 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4498 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4499 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4500 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4501 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4502 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4503 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4504 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4505 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4506 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4507 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4508 } 4509 AtomicOrdering Ordering = I.getOrdering(); 4510 SyncScope::ID SSID = I.getSyncScopeID(); 4511 4512 SDValue InChain = getRoot(); 4513 4514 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4516 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4517 4518 MachineFunction &MF = DAG.getMachineFunction(); 4519 MachineMemOperand *MMO = MF.getMachineMemOperand( 4520 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4521 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4522 4523 SDValue L = 4524 DAG.getAtomic(NT, dl, MemVT, InChain, 4525 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4526 MMO); 4527 4528 SDValue OutChain = L.getValue(1); 4529 4530 setValue(&I, L); 4531 DAG.setRoot(OutChain); 4532 } 4533 4534 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4535 SDLoc dl = getCurSDLoc(); 4536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4537 SDValue Ops[3]; 4538 Ops[0] = getRoot(); 4539 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4540 TLI.getFenceOperandTy(DAG.getDataLayout())); 4541 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4542 TLI.getFenceOperandTy(DAG.getDataLayout())); 4543 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4544 } 4545 4546 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4547 SDLoc dl = getCurSDLoc(); 4548 AtomicOrdering Order = I.getOrdering(); 4549 SyncScope::ID SSID = I.getSyncScopeID(); 4550 4551 SDValue InChain = getRoot(); 4552 4553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4554 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4555 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4556 4557 if (!TLI.supportsUnalignedAtomics() && 4558 I.getAlignment() < MemVT.getSizeInBits() / 8) 4559 report_fatal_error("Cannot generate unaligned atomic load"); 4560 4561 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4562 4563 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4564 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4565 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4566 4567 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4568 4569 SDValue Ptr = getValue(I.getPointerOperand()); 4570 4571 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4572 // TODO: Once this is better exercised by tests, it should be merged with 4573 // the normal path for loads to prevent future divergence. 4574 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4575 if (MemVT != VT) 4576 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4577 4578 setValue(&I, L); 4579 SDValue OutChain = L.getValue(1); 4580 if (!I.isUnordered()) 4581 DAG.setRoot(OutChain); 4582 else 4583 PendingLoads.push_back(OutChain); 4584 return; 4585 } 4586 4587 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4588 Ptr, MMO); 4589 4590 SDValue OutChain = L.getValue(1); 4591 if (MemVT != VT) 4592 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4593 4594 setValue(&I, L); 4595 DAG.setRoot(OutChain); 4596 } 4597 4598 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4599 SDLoc dl = getCurSDLoc(); 4600 4601 AtomicOrdering Ordering = I.getOrdering(); 4602 SyncScope::ID SSID = I.getSyncScopeID(); 4603 4604 SDValue InChain = getRoot(); 4605 4606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4607 EVT MemVT = 4608 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4609 4610 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4611 report_fatal_error("Cannot generate unaligned atomic store"); 4612 4613 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4614 4615 MachineFunction &MF = DAG.getMachineFunction(); 4616 MachineMemOperand *MMO = MF.getMachineMemOperand( 4617 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4618 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4619 4620 SDValue Val = getValue(I.getValueOperand()); 4621 if (Val.getValueType() != MemVT) 4622 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4623 SDValue Ptr = getValue(I.getPointerOperand()); 4624 4625 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4626 // TODO: Once this is better exercised by tests, it should be merged with 4627 // the normal path for stores to prevent future divergence. 4628 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4629 DAG.setRoot(S); 4630 return; 4631 } 4632 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4633 Ptr, Val, MMO); 4634 4635 4636 DAG.setRoot(OutChain); 4637 } 4638 4639 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4640 /// node. 4641 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4642 unsigned Intrinsic) { 4643 // Ignore the callsite's attributes. A specific call site may be marked with 4644 // readnone, but the lowering code will expect the chain based on the 4645 // definition. 4646 const Function *F = I.getCalledFunction(); 4647 bool HasChain = !F->doesNotAccessMemory(); 4648 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4649 4650 // Build the operand list. 4651 SmallVector<SDValue, 8> Ops; 4652 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4653 if (OnlyLoad) { 4654 // We don't need to serialize loads against other loads. 4655 Ops.push_back(DAG.getRoot()); 4656 } else { 4657 Ops.push_back(getRoot()); 4658 } 4659 } 4660 4661 // Info is set by getTgtMemInstrinsic 4662 TargetLowering::IntrinsicInfo Info; 4663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4664 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4665 DAG.getMachineFunction(), 4666 Intrinsic); 4667 4668 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4669 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4670 Info.opc == ISD::INTRINSIC_W_CHAIN) 4671 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4672 TLI.getPointerTy(DAG.getDataLayout()))); 4673 4674 // Add all operands of the call to the operand list. 4675 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4676 const Value *Arg = I.getArgOperand(i); 4677 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4678 Ops.push_back(getValue(Arg)); 4679 continue; 4680 } 4681 4682 // Use TargetConstant instead of a regular constant for immarg. 4683 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4684 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4685 assert(CI->getBitWidth() <= 64 && 4686 "large intrinsic immediates not handled"); 4687 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4688 } else { 4689 Ops.push_back( 4690 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4691 } 4692 } 4693 4694 SmallVector<EVT, 4> ValueVTs; 4695 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4696 4697 if (HasChain) 4698 ValueVTs.push_back(MVT::Other); 4699 4700 SDVTList VTs = DAG.getVTList(ValueVTs); 4701 4702 // Create the node. 4703 SDValue Result; 4704 if (IsTgtIntrinsic) { 4705 // This is target intrinsic that touches memory 4706 AAMDNodes AAInfo; 4707 I.getAAMetadata(AAInfo); 4708 Result = 4709 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4710 MachinePointerInfo(Info.ptrVal, Info.offset), 4711 Info.align, Info.flags, Info.size, AAInfo); 4712 } else if (!HasChain) { 4713 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4714 } else if (!I.getType()->isVoidTy()) { 4715 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4716 } else { 4717 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4718 } 4719 4720 if (HasChain) { 4721 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4722 if (OnlyLoad) 4723 PendingLoads.push_back(Chain); 4724 else 4725 DAG.setRoot(Chain); 4726 } 4727 4728 if (!I.getType()->isVoidTy()) { 4729 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4730 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4731 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4732 } else 4733 Result = lowerRangeToAssertZExt(DAG, I, Result); 4734 4735 MaybeAlign Alignment = I.getRetAlign(); 4736 if (!Alignment) 4737 Alignment = F->getAttributes().getRetAlignment(); 4738 // Insert `assertalign` node if there's an alignment. 4739 if (InsertAssertAlign && Alignment) { 4740 Result = 4741 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4742 } 4743 4744 setValue(&I, Result); 4745 } 4746 } 4747 4748 /// GetSignificand - Get the significand and build it into a floating-point 4749 /// number with exponent of 1: 4750 /// 4751 /// Op = (Op & 0x007fffff) | 0x3f800000; 4752 /// 4753 /// where Op is the hexadecimal representation of floating point value. 4754 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4755 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4756 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4757 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4758 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4759 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4760 } 4761 4762 /// GetExponent - Get the exponent: 4763 /// 4764 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4765 /// 4766 /// where Op is the hexadecimal representation of floating point value. 4767 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4768 const TargetLowering &TLI, const SDLoc &dl) { 4769 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4770 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4771 SDValue t1 = DAG.getNode( 4772 ISD::SRL, dl, MVT::i32, t0, 4773 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4774 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4775 DAG.getConstant(127, dl, MVT::i32)); 4776 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4777 } 4778 4779 /// getF32Constant - Get 32-bit floating point constant. 4780 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4781 const SDLoc &dl) { 4782 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4783 MVT::f32); 4784 } 4785 4786 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4787 SelectionDAG &DAG) { 4788 // TODO: What fast-math-flags should be set on the floating-point nodes? 4789 4790 // IntegerPartOfX = ((int32_t)(t0); 4791 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4792 4793 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4794 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4795 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4796 4797 // IntegerPartOfX <<= 23; 4798 IntegerPartOfX = DAG.getNode( 4799 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4800 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4801 DAG.getDataLayout()))); 4802 4803 SDValue TwoToFractionalPartOfX; 4804 if (LimitFloatPrecision <= 6) { 4805 // For floating-point precision of 6: 4806 // 4807 // TwoToFractionalPartOfX = 4808 // 0.997535578f + 4809 // (0.735607626f + 0.252464424f * x) * x; 4810 // 4811 // error 0.0144103317, which is 6 bits 4812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4813 getF32Constant(DAG, 0x3e814304, dl)); 4814 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4815 getF32Constant(DAG, 0x3f3c50c8, dl)); 4816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4817 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4818 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4819 } else if (LimitFloatPrecision <= 12) { 4820 // For floating-point precision of 12: 4821 // 4822 // TwoToFractionalPartOfX = 4823 // 0.999892986f + 4824 // (0.696457318f + 4825 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4826 // 4827 // error 0.000107046256, which is 13 to 14 bits 4828 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4829 getF32Constant(DAG, 0x3da235e3, dl)); 4830 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4831 getF32Constant(DAG, 0x3e65b8f3, dl)); 4832 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4833 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4834 getF32Constant(DAG, 0x3f324b07, dl)); 4835 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4836 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4837 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4838 } else { // LimitFloatPrecision <= 18 4839 // For floating-point precision of 18: 4840 // 4841 // TwoToFractionalPartOfX = 4842 // 0.999999982f + 4843 // (0.693148872f + 4844 // (0.240227044f + 4845 // (0.554906021e-1f + 4846 // (0.961591928e-2f + 4847 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4848 // error 2.47208000*10^(-7), which is better than 18 bits 4849 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4850 getF32Constant(DAG, 0x3924b03e, dl)); 4851 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4852 getF32Constant(DAG, 0x3ab24b87, dl)); 4853 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4854 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4855 getF32Constant(DAG, 0x3c1d8c17, dl)); 4856 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4857 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4858 getF32Constant(DAG, 0x3d634a1d, dl)); 4859 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4860 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4861 getF32Constant(DAG, 0x3e75fe14, dl)); 4862 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4863 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4864 getF32Constant(DAG, 0x3f317234, dl)); 4865 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4866 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4867 getF32Constant(DAG, 0x3f800000, dl)); 4868 } 4869 4870 // Add the exponent into the result in integer domain. 4871 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4872 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4873 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4874 } 4875 4876 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4877 /// limited-precision mode. 4878 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4879 const TargetLowering &TLI) { 4880 if (Op.getValueType() == MVT::f32 && 4881 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4882 4883 // Put the exponent in the right bit position for later addition to the 4884 // final result: 4885 // 4886 // t0 = Op * log2(e) 4887 4888 // TODO: What fast-math-flags should be set here? 4889 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4890 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4891 return getLimitedPrecisionExp2(t0, dl, DAG); 4892 } 4893 4894 // No special expansion. 4895 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4896 } 4897 4898 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4899 /// limited-precision mode. 4900 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4901 const TargetLowering &TLI) { 4902 // TODO: What fast-math-flags should be set on the floating-point nodes? 4903 4904 if (Op.getValueType() == MVT::f32 && 4905 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4906 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4907 4908 // Scale the exponent by log(2). 4909 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4910 SDValue LogOfExponent = 4911 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4912 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4913 4914 // Get the significand and build it into a floating-point number with 4915 // exponent of 1. 4916 SDValue X = GetSignificand(DAG, Op1, dl); 4917 4918 SDValue LogOfMantissa; 4919 if (LimitFloatPrecision <= 6) { 4920 // For floating-point precision of 6: 4921 // 4922 // LogofMantissa = 4923 // -1.1609546f + 4924 // (1.4034025f - 0.23903021f * x) * x; 4925 // 4926 // error 0.0034276066, which is better than 8 bits 4927 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4928 getF32Constant(DAG, 0xbe74c456, dl)); 4929 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4930 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4932 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4933 getF32Constant(DAG, 0x3f949a29, dl)); 4934 } else if (LimitFloatPrecision <= 12) { 4935 // For floating-point precision of 12: 4936 // 4937 // LogOfMantissa = 4938 // -1.7417939f + 4939 // (2.8212026f + 4940 // (-1.4699568f + 4941 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4942 // 4943 // error 0.000061011436, which is 14 bits 4944 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4945 getF32Constant(DAG, 0xbd67b6d6, dl)); 4946 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4947 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4949 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4950 getF32Constant(DAG, 0x3fbc278b, dl)); 4951 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4952 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4953 getF32Constant(DAG, 0x40348e95, dl)); 4954 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4955 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4956 getF32Constant(DAG, 0x3fdef31a, dl)); 4957 } else { // LimitFloatPrecision <= 18 4958 // For floating-point precision of 18: 4959 // 4960 // LogOfMantissa = 4961 // -2.1072184f + 4962 // (4.2372794f + 4963 // (-3.7029485f + 4964 // (2.2781945f + 4965 // (-0.87823314f + 4966 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4967 // 4968 // error 0.0000023660568, which is better than 18 bits 4969 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4970 getF32Constant(DAG, 0xbc91e5ac, dl)); 4971 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4972 getF32Constant(DAG, 0x3e4350aa, dl)); 4973 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4974 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4975 getF32Constant(DAG, 0x3f60d3e3, dl)); 4976 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4977 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4978 getF32Constant(DAG, 0x4011cdf0, dl)); 4979 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4980 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4981 getF32Constant(DAG, 0x406cfd1c, dl)); 4982 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4983 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4984 getF32Constant(DAG, 0x408797cb, dl)); 4985 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4986 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4987 getF32Constant(DAG, 0x4006dcab, dl)); 4988 } 4989 4990 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4991 } 4992 4993 // No special expansion. 4994 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4995 } 4996 4997 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4998 /// limited-precision mode. 4999 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5000 const TargetLowering &TLI) { 5001 // TODO: What fast-math-flags should be set on the floating-point nodes? 5002 5003 if (Op.getValueType() == MVT::f32 && 5004 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5005 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5006 5007 // Get the exponent. 5008 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5009 5010 // Get the significand and build it into a floating-point number with 5011 // exponent of 1. 5012 SDValue X = GetSignificand(DAG, Op1, dl); 5013 5014 // Different possible minimax approximations of significand in 5015 // floating-point for various degrees of accuracy over [1,2]. 5016 SDValue Log2ofMantissa; 5017 if (LimitFloatPrecision <= 6) { 5018 // For floating-point precision of 6: 5019 // 5020 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5021 // 5022 // error 0.0049451742, which is more than 7 bits 5023 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5024 getF32Constant(DAG, 0xbeb08fe0, dl)); 5025 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5026 getF32Constant(DAG, 0x40019463, dl)); 5027 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5028 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5029 getF32Constant(DAG, 0x3fd6633d, dl)); 5030 } else if (LimitFloatPrecision <= 12) { 5031 // For floating-point precision of 12: 5032 // 5033 // Log2ofMantissa = 5034 // -2.51285454f + 5035 // (4.07009056f + 5036 // (-2.12067489f + 5037 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5038 // 5039 // error 0.0000876136000, which is better than 13 bits 5040 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5041 getF32Constant(DAG, 0xbda7262e, dl)); 5042 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5043 getF32Constant(DAG, 0x3f25280b, dl)); 5044 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5045 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5046 getF32Constant(DAG, 0x4007b923, dl)); 5047 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5048 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5049 getF32Constant(DAG, 0x40823e2f, dl)); 5050 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5051 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5052 getF32Constant(DAG, 0x4020d29c, dl)); 5053 } else { // LimitFloatPrecision <= 18 5054 // For floating-point precision of 18: 5055 // 5056 // Log2ofMantissa = 5057 // -3.0400495f + 5058 // (6.1129976f + 5059 // (-5.3420409f + 5060 // (3.2865683f + 5061 // (-1.2669343f + 5062 // (0.27515199f - 5063 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5064 // 5065 // error 0.0000018516, which is better than 18 bits 5066 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5067 getF32Constant(DAG, 0xbcd2769e, dl)); 5068 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5069 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5070 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5071 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5072 getF32Constant(DAG, 0x3fa22ae7, dl)); 5073 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5074 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5075 getF32Constant(DAG, 0x40525723, dl)); 5076 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5077 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5078 getF32Constant(DAG, 0x40aaf200, dl)); 5079 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5080 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5081 getF32Constant(DAG, 0x40c39dad, dl)); 5082 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5083 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5084 getF32Constant(DAG, 0x4042902c, dl)); 5085 } 5086 5087 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5088 } 5089 5090 // No special expansion. 5091 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5092 } 5093 5094 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5095 /// limited-precision mode. 5096 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5097 const TargetLowering &TLI) { 5098 // TODO: What fast-math-flags should be set on the floating-point nodes? 5099 5100 if (Op.getValueType() == MVT::f32 && 5101 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5102 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5103 5104 // Scale the exponent by log10(2) [0.30102999f]. 5105 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5106 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5107 getF32Constant(DAG, 0x3e9a209a, dl)); 5108 5109 // Get the significand and build it into a floating-point number with 5110 // exponent of 1. 5111 SDValue X = GetSignificand(DAG, Op1, dl); 5112 5113 SDValue Log10ofMantissa; 5114 if (LimitFloatPrecision <= 6) { 5115 // For floating-point precision of 6: 5116 // 5117 // Log10ofMantissa = 5118 // -0.50419619f + 5119 // (0.60948995f - 0.10380950f * x) * x; 5120 // 5121 // error 0.0014886165, which is 6 bits 5122 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5123 getF32Constant(DAG, 0xbdd49a13, dl)); 5124 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5125 getF32Constant(DAG, 0x3f1c0789, dl)); 5126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5127 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5128 getF32Constant(DAG, 0x3f011300, dl)); 5129 } else if (LimitFloatPrecision <= 12) { 5130 // For floating-point precision of 12: 5131 // 5132 // Log10ofMantissa = 5133 // -0.64831180f + 5134 // (0.91751397f + 5135 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5136 // 5137 // error 0.00019228036, which is better than 12 bits 5138 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5139 getF32Constant(DAG, 0x3d431f31, dl)); 5140 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5141 getF32Constant(DAG, 0x3ea21fb2, dl)); 5142 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5143 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5144 getF32Constant(DAG, 0x3f6ae232, dl)); 5145 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5146 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5147 getF32Constant(DAG, 0x3f25f7c3, dl)); 5148 } else { // LimitFloatPrecision <= 18 5149 // For floating-point precision of 18: 5150 // 5151 // Log10ofMantissa = 5152 // -0.84299375f + 5153 // (1.5327582f + 5154 // (-1.0688956f + 5155 // (0.49102474f + 5156 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5157 // 5158 // error 0.0000037995730, which is better than 18 bits 5159 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5160 getF32Constant(DAG, 0x3c5d51ce, dl)); 5161 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5162 getF32Constant(DAG, 0x3e00685a, dl)); 5163 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5164 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5165 getF32Constant(DAG, 0x3efb6798, dl)); 5166 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5167 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5168 getF32Constant(DAG, 0x3f88d192, dl)); 5169 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5170 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5171 getF32Constant(DAG, 0x3fc4316c, dl)); 5172 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5173 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5174 getF32Constant(DAG, 0x3f57ce70, dl)); 5175 } 5176 5177 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5178 } 5179 5180 // No special expansion. 5181 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5182 } 5183 5184 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5185 /// limited-precision mode. 5186 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5187 const TargetLowering &TLI) { 5188 if (Op.getValueType() == MVT::f32 && 5189 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5190 return getLimitedPrecisionExp2(Op, dl, DAG); 5191 5192 // No special expansion. 5193 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5194 } 5195 5196 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5197 /// limited-precision mode with x == 10.0f. 5198 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5199 SelectionDAG &DAG, const TargetLowering &TLI) { 5200 bool IsExp10 = false; 5201 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5202 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5203 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5204 APFloat Ten(10.0f); 5205 IsExp10 = LHSC->isExactlyValue(Ten); 5206 } 5207 } 5208 5209 // TODO: What fast-math-flags should be set on the FMUL node? 5210 if (IsExp10) { 5211 // Put the exponent in the right bit position for later addition to the 5212 // final result: 5213 // 5214 // #define LOG2OF10 3.3219281f 5215 // t0 = Op * LOG2OF10; 5216 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5217 getF32Constant(DAG, 0x40549a78, dl)); 5218 return getLimitedPrecisionExp2(t0, dl, DAG); 5219 } 5220 5221 // No special expansion. 5222 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5223 } 5224 5225 /// ExpandPowI - Expand a llvm.powi intrinsic. 5226 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5227 SelectionDAG &DAG) { 5228 // If RHS is a constant, we can expand this out to a multiplication tree, 5229 // otherwise we end up lowering to a call to __powidf2 (for example). When 5230 // optimizing for size, we only want to do this if the expansion would produce 5231 // a small number of multiplies, otherwise we do the full expansion. 5232 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5233 // Get the exponent as a positive value. 5234 unsigned Val = RHSC->getSExtValue(); 5235 if ((int)Val < 0) Val = -Val; 5236 5237 // powi(x, 0) -> 1.0 5238 if (Val == 0) 5239 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5240 5241 bool OptForSize = DAG.shouldOptForSize(); 5242 if (!OptForSize || 5243 // If optimizing for size, don't insert too many multiplies. 5244 // This inserts up to 5 multiplies. 5245 countPopulation(Val) + Log2_32(Val) < 7) { 5246 // We use the simple binary decomposition method to generate the multiply 5247 // sequence. There are more optimal ways to do this (for example, 5248 // powi(x,15) generates one more multiply than it should), but this has 5249 // the benefit of being both really simple and much better than a libcall. 5250 SDValue Res; // Logically starts equal to 1.0 5251 SDValue CurSquare = LHS; 5252 // TODO: Intrinsics should have fast-math-flags that propagate to these 5253 // nodes. 5254 while (Val) { 5255 if (Val & 1) { 5256 if (Res.getNode()) 5257 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5258 else 5259 Res = CurSquare; // 1.0*CurSquare. 5260 } 5261 5262 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5263 CurSquare, CurSquare); 5264 Val >>= 1; 5265 } 5266 5267 // If the original was negative, invert the result, producing 1/(x*x*x). 5268 if (RHSC->getSExtValue() < 0) 5269 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5270 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5271 return Res; 5272 } 5273 } 5274 5275 // Otherwise, expand to a libcall. 5276 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5277 } 5278 5279 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5280 SDValue LHS, SDValue RHS, SDValue Scale, 5281 SelectionDAG &DAG, const TargetLowering &TLI) { 5282 EVT VT = LHS.getValueType(); 5283 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5284 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5285 LLVMContext &Ctx = *DAG.getContext(); 5286 5287 // If the type is legal but the operation isn't, this node might survive all 5288 // the way to operation legalization. If we end up there and we do not have 5289 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5290 // node. 5291 5292 // Coax the legalizer into expanding the node during type legalization instead 5293 // by bumping the size by one bit. This will force it to Promote, enabling the 5294 // early expansion and avoiding the need to expand later. 5295 5296 // We don't have to do this if Scale is 0; that can always be expanded, unless 5297 // it's a saturating signed operation. Those can experience true integer 5298 // division overflow, a case which we must avoid. 5299 5300 // FIXME: We wouldn't have to do this (or any of the early 5301 // expansion/promotion) if it was possible to expand a libcall of an 5302 // illegal type during operation legalization. But it's not, so things 5303 // get a bit hacky. 5304 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5305 if ((ScaleInt > 0 || (Saturating && Signed)) && 5306 (TLI.isTypeLegal(VT) || 5307 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5308 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5309 Opcode, VT, ScaleInt); 5310 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5311 EVT PromVT; 5312 if (VT.isScalarInteger()) 5313 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5314 else if (VT.isVector()) { 5315 PromVT = VT.getVectorElementType(); 5316 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5317 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5318 } else 5319 llvm_unreachable("Wrong VT for DIVFIX?"); 5320 if (Signed) { 5321 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5322 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5323 } else { 5324 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5325 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5326 } 5327 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5328 // For saturating operations, we need to shift up the LHS to get the 5329 // proper saturation width, and then shift down again afterwards. 5330 if (Saturating) 5331 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5332 DAG.getConstant(1, DL, ShiftTy)); 5333 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5334 if (Saturating) 5335 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5336 DAG.getConstant(1, DL, ShiftTy)); 5337 return DAG.getZExtOrTrunc(Res, DL, VT); 5338 } 5339 } 5340 5341 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5342 } 5343 5344 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5345 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5346 static void 5347 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5348 const SDValue &N) { 5349 switch (N.getOpcode()) { 5350 case ISD::CopyFromReg: { 5351 SDValue Op = N.getOperand(1); 5352 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5353 Op.getValueType().getSizeInBits()); 5354 return; 5355 } 5356 case ISD::BITCAST: 5357 case ISD::AssertZext: 5358 case ISD::AssertSext: 5359 case ISD::TRUNCATE: 5360 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5361 return; 5362 case ISD::BUILD_PAIR: 5363 case ISD::BUILD_VECTOR: 5364 case ISD::CONCAT_VECTORS: 5365 for (SDValue Op : N->op_values()) 5366 getUnderlyingArgRegs(Regs, Op); 5367 return; 5368 default: 5369 return; 5370 } 5371 } 5372 5373 /// If the DbgValueInst is a dbg_value of a function argument, create the 5374 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5375 /// instruction selection, they will be inserted to the entry BB. 5376 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5377 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5378 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5379 const Argument *Arg = dyn_cast<Argument>(V); 5380 if (!Arg) 5381 return false; 5382 5383 if (!IsDbgDeclare) { 5384 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5385 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5386 // the entry block. 5387 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5388 if (!IsInEntryBlock) 5389 return false; 5390 5391 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5392 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5393 // variable that also is a param. 5394 // 5395 // Although, if we are at the top of the entry block already, we can still 5396 // emit using ArgDbgValue. This might catch some situations when the 5397 // dbg.value refers to an argument that isn't used in the entry block, so 5398 // any CopyToReg node would be optimized out and the only way to express 5399 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5400 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5401 // we should only emit as ArgDbgValue if the Variable is an argument to the 5402 // current function, and the dbg.value intrinsic is found in the entry 5403 // block. 5404 bool VariableIsFunctionInputArg = Variable->isParameter() && 5405 !DL->getInlinedAt(); 5406 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5407 if (!IsInPrologue && !VariableIsFunctionInputArg) 5408 return false; 5409 5410 // Here we assume that a function argument on IR level only can be used to 5411 // describe one input parameter on source level. If we for example have 5412 // source code like this 5413 // 5414 // struct A { long x, y; }; 5415 // void foo(struct A a, long b) { 5416 // ... 5417 // b = a.x; 5418 // ... 5419 // } 5420 // 5421 // and IR like this 5422 // 5423 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5424 // entry: 5425 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5426 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5427 // call void @llvm.dbg.value(metadata i32 %b, "b", 5428 // ... 5429 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5430 // ... 5431 // 5432 // then the last dbg.value is describing a parameter "b" using a value that 5433 // is an argument. But since we already has used %a1 to describe a parameter 5434 // we should not handle that last dbg.value here (that would result in an 5435 // incorrect hoisting of the DBG_VALUE to the function entry). 5436 // Notice that we allow one dbg.value per IR level argument, to accommodate 5437 // for the situation with fragments above. 5438 if (VariableIsFunctionInputArg) { 5439 unsigned ArgNo = Arg->getArgNo(); 5440 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5441 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5442 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5443 return false; 5444 FuncInfo.DescribedArgs.set(ArgNo); 5445 } 5446 } 5447 5448 MachineFunction &MF = DAG.getMachineFunction(); 5449 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5450 5451 bool IsIndirect = false; 5452 Optional<MachineOperand> Op; 5453 // Some arguments' frame index is recorded during argument lowering. 5454 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5455 if (FI != std::numeric_limits<int>::max()) 5456 Op = MachineOperand::CreateFI(FI); 5457 5458 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5459 if (!Op && N.getNode()) { 5460 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5461 Register Reg; 5462 if (ArgRegsAndSizes.size() == 1) 5463 Reg = ArgRegsAndSizes.front().first; 5464 5465 if (Reg && Reg.isVirtual()) { 5466 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5467 Register PR = RegInfo.getLiveInPhysReg(Reg); 5468 if (PR) 5469 Reg = PR; 5470 } 5471 if (Reg) { 5472 Op = MachineOperand::CreateReg(Reg, false); 5473 IsIndirect = IsDbgDeclare; 5474 } 5475 } 5476 5477 if (!Op && N.getNode()) { 5478 // Check if frame index is available. 5479 SDValue LCandidate = peekThroughBitcasts(N); 5480 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5481 if (FrameIndexSDNode *FINode = 5482 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5483 Op = MachineOperand::CreateFI(FINode->getIndex()); 5484 } 5485 5486 if (!Op) { 5487 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5488 auto splitMultiRegDbgValue 5489 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5490 unsigned Offset = 0; 5491 for (auto RegAndSize : SplitRegs) { 5492 // If the expression is already a fragment, the current register 5493 // offset+size might extend beyond the fragment. In this case, only 5494 // the register bits that are inside the fragment are relevant. 5495 int RegFragmentSizeInBits = RegAndSize.second; 5496 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5497 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5498 // The register is entirely outside the expression fragment, 5499 // so is irrelevant for debug info. 5500 if (Offset >= ExprFragmentSizeInBits) 5501 break; 5502 // The register is partially outside the expression fragment, only 5503 // the low bits within the fragment are relevant for debug info. 5504 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5505 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5506 } 5507 } 5508 5509 auto FragmentExpr = DIExpression::createFragmentExpression( 5510 Expr, Offset, RegFragmentSizeInBits); 5511 Offset += RegAndSize.second; 5512 // If a valid fragment expression cannot be created, the variable's 5513 // correct value cannot be determined and so it is set as Undef. 5514 if (!FragmentExpr) { 5515 SDDbgValue *SDV = DAG.getConstantDbgValue( 5516 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5517 DAG.AddDbgValue(SDV, nullptr, false); 5518 continue; 5519 } 5520 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5521 FuncInfo.ArgDbgValues.push_back( 5522 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5523 RegAndSize.first, Variable, *FragmentExpr)); 5524 } 5525 }; 5526 5527 // Check if ValueMap has reg number. 5528 DenseMap<const Value *, Register>::const_iterator 5529 VMI = FuncInfo.ValueMap.find(V); 5530 if (VMI != FuncInfo.ValueMap.end()) { 5531 const auto &TLI = DAG.getTargetLoweringInfo(); 5532 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5533 V->getType(), getABIRegCopyCC(V)); 5534 if (RFV.occupiesMultipleRegs()) { 5535 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5536 return true; 5537 } 5538 5539 Op = MachineOperand::CreateReg(VMI->second, false); 5540 IsIndirect = IsDbgDeclare; 5541 } else if (ArgRegsAndSizes.size() > 1) { 5542 // This was split due to the calling convention, and no virtual register 5543 // mapping exists for the value. 5544 splitMultiRegDbgValue(ArgRegsAndSizes); 5545 return true; 5546 } 5547 } 5548 5549 if (!Op) 5550 return false; 5551 5552 assert(Variable->isValidLocationForIntrinsic(DL) && 5553 "Expected inlined-at fields to agree"); 5554 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5555 FuncInfo.ArgDbgValues.push_back( 5556 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5557 *Op, Variable, Expr)); 5558 5559 return true; 5560 } 5561 5562 /// Return the appropriate SDDbgValue based on N. 5563 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5564 DILocalVariable *Variable, 5565 DIExpression *Expr, 5566 const DebugLoc &dl, 5567 unsigned DbgSDNodeOrder) { 5568 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5569 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5570 // stack slot locations. 5571 // 5572 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5573 // debug values here after optimization: 5574 // 5575 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5576 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5577 // 5578 // Both describe the direct values of their associated variables. 5579 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5580 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5581 } 5582 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5583 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5584 } 5585 5586 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5587 switch (Intrinsic) { 5588 case Intrinsic::smul_fix: 5589 return ISD::SMULFIX; 5590 case Intrinsic::umul_fix: 5591 return ISD::UMULFIX; 5592 case Intrinsic::smul_fix_sat: 5593 return ISD::SMULFIXSAT; 5594 case Intrinsic::umul_fix_sat: 5595 return ISD::UMULFIXSAT; 5596 case Intrinsic::sdiv_fix: 5597 return ISD::SDIVFIX; 5598 case Intrinsic::udiv_fix: 5599 return ISD::UDIVFIX; 5600 case Intrinsic::sdiv_fix_sat: 5601 return ISD::SDIVFIXSAT; 5602 case Intrinsic::udiv_fix_sat: 5603 return ISD::UDIVFIXSAT; 5604 default: 5605 llvm_unreachable("Unhandled fixed point intrinsic"); 5606 } 5607 } 5608 5609 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5610 const char *FunctionName) { 5611 assert(FunctionName && "FunctionName must not be nullptr"); 5612 SDValue Callee = DAG.getExternalSymbol( 5613 FunctionName, 5614 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5615 LowerCallTo(I, Callee, I.isTailCall()); 5616 } 5617 5618 /// Given a @llvm.call.preallocated.setup, return the corresponding 5619 /// preallocated call. 5620 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5621 assert(cast<CallBase>(PreallocatedSetup) 5622 ->getCalledFunction() 5623 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5624 "expected call_preallocated_setup Value"); 5625 for (auto *U : PreallocatedSetup->users()) { 5626 auto *UseCall = cast<CallBase>(U); 5627 const Function *Fn = UseCall->getCalledFunction(); 5628 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5629 return UseCall; 5630 } 5631 } 5632 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5633 } 5634 5635 /// Lower the call to the specified intrinsic function. 5636 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5637 unsigned Intrinsic) { 5638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5639 SDLoc sdl = getCurSDLoc(); 5640 DebugLoc dl = getCurDebugLoc(); 5641 SDValue Res; 5642 5643 switch (Intrinsic) { 5644 default: 5645 // By default, turn this into a target intrinsic node. 5646 visitTargetIntrinsic(I, Intrinsic); 5647 return; 5648 case Intrinsic::vscale: { 5649 match(&I, m_VScale(DAG.getDataLayout())); 5650 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5651 setValue(&I, 5652 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5653 return; 5654 } 5655 case Intrinsic::vastart: visitVAStart(I); return; 5656 case Intrinsic::vaend: visitVAEnd(I); return; 5657 case Intrinsic::vacopy: visitVACopy(I); return; 5658 case Intrinsic::returnaddress: 5659 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5660 TLI.getPointerTy(DAG.getDataLayout()), 5661 getValue(I.getArgOperand(0)))); 5662 return; 5663 case Intrinsic::addressofreturnaddress: 5664 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5665 TLI.getPointerTy(DAG.getDataLayout()))); 5666 return; 5667 case Intrinsic::sponentry: 5668 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5669 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5670 return; 5671 case Intrinsic::frameaddress: 5672 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5673 TLI.getFrameIndexTy(DAG.getDataLayout()), 5674 getValue(I.getArgOperand(0)))); 5675 return; 5676 case Intrinsic::read_volatile_register: 5677 case Intrinsic::read_register: { 5678 Value *Reg = I.getArgOperand(0); 5679 SDValue Chain = getRoot(); 5680 SDValue RegName = 5681 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5682 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5683 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5684 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5685 setValue(&I, Res); 5686 DAG.setRoot(Res.getValue(1)); 5687 return; 5688 } 5689 case Intrinsic::write_register: { 5690 Value *Reg = I.getArgOperand(0); 5691 Value *RegValue = I.getArgOperand(1); 5692 SDValue Chain = getRoot(); 5693 SDValue RegName = 5694 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5695 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5696 RegName, getValue(RegValue))); 5697 return; 5698 } 5699 case Intrinsic::memcpy: { 5700 const auto &MCI = cast<MemCpyInst>(I); 5701 SDValue Op1 = getValue(I.getArgOperand(0)); 5702 SDValue Op2 = getValue(I.getArgOperand(1)); 5703 SDValue Op3 = getValue(I.getArgOperand(2)); 5704 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5705 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5706 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5707 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5708 bool isVol = MCI.isVolatile(); 5709 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5710 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5711 // node. 5712 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5713 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5714 /* AlwaysInline */ false, isTC, 5715 MachinePointerInfo(I.getArgOperand(0)), 5716 MachinePointerInfo(I.getArgOperand(1))); 5717 updateDAGForMaybeTailCall(MC); 5718 return; 5719 } 5720 case Intrinsic::memcpy_inline: { 5721 const auto &MCI = cast<MemCpyInlineInst>(I); 5722 SDValue Dst = getValue(I.getArgOperand(0)); 5723 SDValue Src = getValue(I.getArgOperand(1)); 5724 SDValue Size = getValue(I.getArgOperand(2)); 5725 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5726 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5727 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5728 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5729 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5730 bool isVol = MCI.isVolatile(); 5731 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5732 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5733 // node. 5734 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5735 /* AlwaysInline */ true, isTC, 5736 MachinePointerInfo(I.getArgOperand(0)), 5737 MachinePointerInfo(I.getArgOperand(1))); 5738 updateDAGForMaybeTailCall(MC); 5739 return; 5740 } 5741 case Intrinsic::memset: { 5742 const auto &MSI = cast<MemSetInst>(I); 5743 SDValue Op1 = getValue(I.getArgOperand(0)); 5744 SDValue Op2 = getValue(I.getArgOperand(1)); 5745 SDValue Op3 = getValue(I.getArgOperand(2)); 5746 // @llvm.memset defines 0 and 1 to both mean no alignment. 5747 Align Alignment = MSI.getDestAlign().valueOrOne(); 5748 bool isVol = MSI.isVolatile(); 5749 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5750 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5751 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5752 MachinePointerInfo(I.getArgOperand(0))); 5753 updateDAGForMaybeTailCall(MS); 5754 return; 5755 } 5756 case Intrinsic::memmove: { 5757 const auto &MMI = cast<MemMoveInst>(I); 5758 SDValue Op1 = getValue(I.getArgOperand(0)); 5759 SDValue Op2 = getValue(I.getArgOperand(1)); 5760 SDValue Op3 = getValue(I.getArgOperand(2)); 5761 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5762 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5763 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5764 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5765 bool isVol = MMI.isVolatile(); 5766 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5767 // FIXME: Support passing different dest/src alignments to the memmove DAG 5768 // node. 5769 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5770 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5771 isTC, MachinePointerInfo(I.getArgOperand(0)), 5772 MachinePointerInfo(I.getArgOperand(1))); 5773 updateDAGForMaybeTailCall(MM); 5774 return; 5775 } 5776 case Intrinsic::memcpy_element_unordered_atomic: { 5777 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5778 SDValue Dst = getValue(MI.getRawDest()); 5779 SDValue Src = getValue(MI.getRawSource()); 5780 SDValue Length = getValue(MI.getLength()); 5781 5782 unsigned DstAlign = MI.getDestAlignment(); 5783 unsigned SrcAlign = MI.getSourceAlignment(); 5784 Type *LengthTy = MI.getLength()->getType(); 5785 unsigned ElemSz = MI.getElementSizeInBytes(); 5786 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5787 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5788 SrcAlign, Length, LengthTy, ElemSz, isTC, 5789 MachinePointerInfo(MI.getRawDest()), 5790 MachinePointerInfo(MI.getRawSource())); 5791 updateDAGForMaybeTailCall(MC); 5792 return; 5793 } 5794 case Intrinsic::memmove_element_unordered_atomic: { 5795 auto &MI = cast<AtomicMemMoveInst>(I); 5796 SDValue Dst = getValue(MI.getRawDest()); 5797 SDValue Src = getValue(MI.getRawSource()); 5798 SDValue Length = getValue(MI.getLength()); 5799 5800 unsigned DstAlign = MI.getDestAlignment(); 5801 unsigned SrcAlign = MI.getSourceAlignment(); 5802 Type *LengthTy = MI.getLength()->getType(); 5803 unsigned ElemSz = MI.getElementSizeInBytes(); 5804 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5805 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5806 SrcAlign, Length, LengthTy, ElemSz, isTC, 5807 MachinePointerInfo(MI.getRawDest()), 5808 MachinePointerInfo(MI.getRawSource())); 5809 updateDAGForMaybeTailCall(MC); 5810 return; 5811 } 5812 case Intrinsic::memset_element_unordered_atomic: { 5813 auto &MI = cast<AtomicMemSetInst>(I); 5814 SDValue Dst = getValue(MI.getRawDest()); 5815 SDValue Val = getValue(MI.getValue()); 5816 SDValue Length = getValue(MI.getLength()); 5817 5818 unsigned DstAlign = MI.getDestAlignment(); 5819 Type *LengthTy = MI.getLength()->getType(); 5820 unsigned ElemSz = MI.getElementSizeInBytes(); 5821 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5822 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5823 LengthTy, ElemSz, isTC, 5824 MachinePointerInfo(MI.getRawDest())); 5825 updateDAGForMaybeTailCall(MC); 5826 return; 5827 } 5828 case Intrinsic::call_preallocated_setup: { 5829 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5830 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5831 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5832 getRoot(), SrcValue); 5833 setValue(&I, Res); 5834 DAG.setRoot(Res); 5835 return; 5836 } 5837 case Intrinsic::call_preallocated_arg: { 5838 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5839 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5840 SDValue Ops[3]; 5841 Ops[0] = getRoot(); 5842 Ops[1] = SrcValue; 5843 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5844 MVT::i32); // arg index 5845 SDValue Res = DAG.getNode( 5846 ISD::PREALLOCATED_ARG, sdl, 5847 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5848 setValue(&I, Res); 5849 DAG.setRoot(Res.getValue(1)); 5850 return; 5851 } 5852 case Intrinsic::dbg_addr: 5853 case Intrinsic::dbg_declare: { 5854 const auto &DI = cast<DbgVariableIntrinsic>(I); 5855 DILocalVariable *Variable = DI.getVariable(); 5856 DIExpression *Expression = DI.getExpression(); 5857 dropDanglingDebugInfo(Variable, Expression); 5858 assert(Variable && "Missing variable"); 5859 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5860 << "\n"); 5861 // Check if address has undef value. 5862 const Value *Address = DI.getVariableLocation(); 5863 if (!Address || isa<UndefValue>(Address) || 5864 (Address->use_empty() && !isa<Argument>(Address))) { 5865 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5866 << " (bad/undef/unused-arg address)\n"); 5867 return; 5868 } 5869 5870 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5871 5872 // Check if this variable can be described by a frame index, typically 5873 // either as a static alloca or a byval parameter. 5874 int FI = std::numeric_limits<int>::max(); 5875 if (const auto *AI = 5876 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5877 if (AI->isStaticAlloca()) { 5878 auto I = FuncInfo.StaticAllocaMap.find(AI); 5879 if (I != FuncInfo.StaticAllocaMap.end()) 5880 FI = I->second; 5881 } 5882 } else if (const auto *Arg = dyn_cast<Argument>( 5883 Address->stripInBoundsConstantOffsets())) { 5884 FI = FuncInfo.getArgumentFrameIndex(Arg); 5885 } 5886 5887 // llvm.dbg.addr is control dependent and always generates indirect 5888 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5889 // the MachineFunction variable table. 5890 if (FI != std::numeric_limits<int>::max()) { 5891 if (Intrinsic == Intrinsic::dbg_addr) { 5892 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5893 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5894 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5895 } else { 5896 LLVM_DEBUG(dbgs() << "Skipping " << DI 5897 << " (variable info stashed in MF side table)\n"); 5898 } 5899 return; 5900 } 5901 5902 SDValue &N = NodeMap[Address]; 5903 if (!N.getNode() && isa<Argument>(Address)) 5904 // Check unused arguments map. 5905 N = UnusedArgNodeMap[Address]; 5906 SDDbgValue *SDV; 5907 if (N.getNode()) { 5908 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5909 Address = BCI->getOperand(0); 5910 // Parameters are handled specially. 5911 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5912 if (isParameter && FINode) { 5913 // Byval parameter. We have a frame index at this point. 5914 SDV = 5915 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5916 /*IsIndirect*/ true, dl, SDNodeOrder); 5917 } else if (isa<Argument>(Address)) { 5918 // Address is an argument, so try to emit its dbg value using 5919 // virtual register info from the FuncInfo.ValueMap. 5920 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5921 return; 5922 } else { 5923 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5924 true, dl, SDNodeOrder); 5925 } 5926 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5927 } else { 5928 // If Address is an argument then try to emit its dbg value using 5929 // virtual register info from the FuncInfo.ValueMap. 5930 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5931 N)) { 5932 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5933 << " (could not emit func-arg dbg_value)\n"); 5934 } 5935 } 5936 return; 5937 } 5938 case Intrinsic::dbg_label: { 5939 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5940 DILabel *Label = DI.getLabel(); 5941 assert(Label && "Missing label"); 5942 5943 SDDbgLabel *SDV; 5944 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5945 DAG.AddDbgLabel(SDV); 5946 return; 5947 } 5948 case Intrinsic::dbg_value: { 5949 const DbgValueInst &DI = cast<DbgValueInst>(I); 5950 assert(DI.getVariable() && "Missing variable"); 5951 5952 DILocalVariable *Variable = DI.getVariable(); 5953 DIExpression *Expression = DI.getExpression(); 5954 dropDanglingDebugInfo(Variable, Expression); 5955 const Value *V = DI.getValue(); 5956 if (!V) 5957 return; 5958 5959 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5960 SDNodeOrder)) 5961 return; 5962 5963 // TODO: Dangling debug info will eventually either be resolved or produce 5964 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5965 // between the original dbg.value location and its resolved DBG_VALUE, which 5966 // we should ideally fill with an extra Undef DBG_VALUE. 5967 5968 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5969 return; 5970 } 5971 5972 case Intrinsic::eh_typeid_for: { 5973 // Find the type id for the given typeinfo. 5974 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5975 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5976 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5977 setValue(&I, Res); 5978 return; 5979 } 5980 5981 case Intrinsic::eh_return_i32: 5982 case Intrinsic::eh_return_i64: 5983 DAG.getMachineFunction().setCallsEHReturn(true); 5984 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5985 MVT::Other, 5986 getControlRoot(), 5987 getValue(I.getArgOperand(0)), 5988 getValue(I.getArgOperand(1)))); 5989 return; 5990 case Intrinsic::eh_unwind_init: 5991 DAG.getMachineFunction().setCallsUnwindInit(true); 5992 return; 5993 case Intrinsic::eh_dwarf_cfa: 5994 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5995 TLI.getPointerTy(DAG.getDataLayout()), 5996 getValue(I.getArgOperand(0)))); 5997 return; 5998 case Intrinsic::eh_sjlj_callsite: { 5999 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6000 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6001 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6002 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6003 6004 MMI.setCurrentCallSite(CI->getZExtValue()); 6005 return; 6006 } 6007 case Intrinsic::eh_sjlj_functioncontext: { 6008 // Get and store the index of the function context. 6009 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6010 AllocaInst *FnCtx = 6011 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6012 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6013 MFI.setFunctionContextIndex(FI); 6014 return; 6015 } 6016 case Intrinsic::eh_sjlj_setjmp: { 6017 SDValue Ops[2]; 6018 Ops[0] = getRoot(); 6019 Ops[1] = getValue(I.getArgOperand(0)); 6020 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6021 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6022 setValue(&I, Op.getValue(0)); 6023 DAG.setRoot(Op.getValue(1)); 6024 return; 6025 } 6026 case Intrinsic::eh_sjlj_longjmp: 6027 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6028 getRoot(), getValue(I.getArgOperand(0)))); 6029 return; 6030 case Intrinsic::eh_sjlj_setup_dispatch: 6031 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6032 getRoot())); 6033 return; 6034 case Intrinsic::masked_gather: 6035 visitMaskedGather(I); 6036 return; 6037 case Intrinsic::masked_load: 6038 visitMaskedLoad(I); 6039 return; 6040 case Intrinsic::masked_scatter: 6041 visitMaskedScatter(I); 6042 return; 6043 case Intrinsic::masked_store: 6044 visitMaskedStore(I); 6045 return; 6046 case Intrinsic::masked_expandload: 6047 visitMaskedLoad(I, true /* IsExpanding */); 6048 return; 6049 case Intrinsic::masked_compressstore: 6050 visitMaskedStore(I, true /* IsCompressing */); 6051 return; 6052 case Intrinsic::powi: 6053 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6054 getValue(I.getArgOperand(1)), DAG)); 6055 return; 6056 case Intrinsic::log: 6057 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6058 return; 6059 case Intrinsic::log2: 6060 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6061 return; 6062 case Intrinsic::log10: 6063 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6064 return; 6065 case Intrinsic::exp: 6066 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6067 return; 6068 case Intrinsic::exp2: 6069 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6070 return; 6071 case Intrinsic::pow: 6072 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6073 getValue(I.getArgOperand(1)), DAG, TLI)); 6074 return; 6075 case Intrinsic::sqrt: 6076 case Intrinsic::fabs: 6077 case Intrinsic::sin: 6078 case Intrinsic::cos: 6079 case Intrinsic::floor: 6080 case Intrinsic::ceil: 6081 case Intrinsic::trunc: 6082 case Intrinsic::rint: 6083 case Intrinsic::nearbyint: 6084 case Intrinsic::round: 6085 case Intrinsic::roundeven: 6086 case Intrinsic::canonicalize: { 6087 unsigned Opcode; 6088 switch (Intrinsic) { 6089 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6090 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6091 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6092 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6093 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6094 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6095 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6096 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6097 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6098 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6099 case Intrinsic::round: Opcode = ISD::FROUND; break; 6100 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6101 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6102 } 6103 6104 setValue(&I, DAG.getNode(Opcode, sdl, 6105 getValue(I.getArgOperand(0)).getValueType(), 6106 getValue(I.getArgOperand(0)))); 6107 return; 6108 } 6109 case Intrinsic::lround: 6110 case Intrinsic::llround: 6111 case Intrinsic::lrint: 6112 case Intrinsic::llrint: { 6113 unsigned Opcode; 6114 switch (Intrinsic) { 6115 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6116 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6117 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6118 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6119 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6120 } 6121 6122 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6123 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6124 getValue(I.getArgOperand(0)))); 6125 return; 6126 } 6127 case Intrinsic::minnum: 6128 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6129 getValue(I.getArgOperand(0)).getValueType(), 6130 getValue(I.getArgOperand(0)), 6131 getValue(I.getArgOperand(1)))); 6132 return; 6133 case Intrinsic::maxnum: 6134 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6135 getValue(I.getArgOperand(0)).getValueType(), 6136 getValue(I.getArgOperand(0)), 6137 getValue(I.getArgOperand(1)))); 6138 return; 6139 case Intrinsic::minimum: 6140 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6141 getValue(I.getArgOperand(0)).getValueType(), 6142 getValue(I.getArgOperand(0)), 6143 getValue(I.getArgOperand(1)))); 6144 return; 6145 case Intrinsic::maximum: 6146 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6147 getValue(I.getArgOperand(0)).getValueType(), 6148 getValue(I.getArgOperand(0)), 6149 getValue(I.getArgOperand(1)))); 6150 return; 6151 case Intrinsic::copysign: 6152 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6153 getValue(I.getArgOperand(0)).getValueType(), 6154 getValue(I.getArgOperand(0)), 6155 getValue(I.getArgOperand(1)))); 6156 return; 6157 case Intrinsic::fma: 6158 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6159 getValue(I.getArgOperand(0)).getValueType(), 6160 getValue(I.getArgOperand(0)), 6161 getValue(I.getArgOperand(1)), 6162 getValue(I.getArgOperand(2)))); 6163 return; 6164 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6165 case Intrinsic::INTRINSIC: 6166 #include "llvm/IR/ConstrainedOps.def" 6167 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6168 return; 6169 case Intrinsic::fmuladd: { 6170 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6171 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6172 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6173 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6174 getValue(I.getArgOperand(0)).getValueType(), 6175 getValue(I.getArgOperand(0)), 6176 getValue(I.getArgOperand(1)), 6177 getValue(I.getArgOperand(2)))); 6178 } else { 6179 // TODO: Intrinsic calls should have fast-math-flags. 6180 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6181 getValue(I.getArgOperand(0)).getValueType(), 6182 getValue(I.getArgOperand(0)), 6183 getValue(I.getArgOperand(1))); 6184 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6185 getValue(I.getArgOperand(0)).getValueType(), 6186 Mul, 6187 getValue(I.getArgOperand(2))); 6188 setValue(&I, Add); 6189 } 6190 return; 6191 } 6192 case Intrinsic::convert_to_fp16: 6193 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6194 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6195 getValue(I.getArgOperand(0)), 6196 DAG.getTargetConstant(0, sdl, 6197 MVT::i32)))); 6198 return; 6199 case Intrinsic::convert_from_fp16: 6200 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6201 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6202 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6203 getValue(I.getArgOperand(0))))); 6204 return; 6205 case Intrinsic::pcmarker: { 6206 SDValue Tmp = getValue(I.getArgOperand(0)); 6207 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6208 return; 6209 } 6210 case Intrinsic::readcyclecounter: { 6211 SDValue Op = getRoot(); 6212 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6213 DAG.getVTList(MVT::i64, MVT::Other), Op); 6214 setValue(&I, Res); 6215 DAG.setRoot(Res.getValue(1)); 6216 return; 6217 } 6218 case Intrinsic::bitreverse: 6219 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6220 getValue(I.getArgOperand(0)).getValueType(), 6221 getValue(I.getArgOperand(0)))); 6222 return; 6223 case Intrinsic::bswap: 6224 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6225 getValue(I.getArgOperand(0)).getValueType(), 6226 getValue(I.getArgOperand(0)))); 6227 return; 6228 case Intrinsic::cttz: { 6229 SDValue Arg = getValue(I.getArgOperand(0)); 6230 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6231 EVT Ty = Arg.getValueType(); 6232 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6233 sdl, Ty, Arg)); 6234 return; 6235 } 6236 case Intrinsic::ctlz: { 6237 SDValue Arg = getValue(I.getArgOperand(0)); 6238 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6239 EVT Ty = Arg.getValueType(); 6240 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6241 sdl, Ty, Arg)); 6242 return; 6243 } 6244 case Intrinsic::ctpop: { 6245 SDValue Arg = getValue(I.getArgOperand(0)); 6246 EVT Ty = Arg.getValueType(); 6247 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6248 return; 6249 } 6250 case Intrinsic::fshl: 6251 case Intrinsic::fshr: { 6252 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6253 SDValue X = getValue(I.getArgOperand(0)); 6254 SDValue Y = getValue(I.getArgOperand(1)); 6255 SDValue Z = getValue(I.getArgOperand(2)); 6256 EVT VT = X.getValueType(); 6257 6258 if (X == Y) { 6259 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6260 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6261 } else { 6262 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6263 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6264 } 6265 return; 6266 } 6267 case Intrinsic::sadd_sat: { 6268 SDValue Op1 = getValue(I.getArgOperand(0)); 6269 SDValue Op2 = getValue(I.getArgOperand(1)); 6270 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6271 return; 6272 } 6273 case Intrinsic::uadd_sat: { 6274 SDValue Op1 = getValue(I.getArgOperand(0)); 6275 SDValue Op2 = getValue(I.getArgOperand(1)); 6276 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6277 return; 6278 } 6279 case Intrinsic::ssub_sat: { 6280 SDValue Op1 = getValue(I.getArgOperand(0)); 6281 SDValue Op2 = getValue(I.getArgOperand(1)); 6282 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6283 return; 6284 } 6285 case Intrinsic::usub_sat: { 6286 SDValue Op1 = getValue(I.getArgOperand(0)); 6287 SDValue Op2 = getValue(I.getArgOperand(1)); 6288 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6289 return; 6290 } 6291 case Intrinsic::sshl_sat: { 6292 SDValue Op1 = getValue(I.getArgOperand(0)); 6293 SDValue Op2 = getValue(I.getArgOperand(1)); 6294 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6295 return; 6296 } 6297 case Intrinsic::ushl_sat: { 6298 SDValue Op1 = getValue(I.getArgOperand(0)); 6299 SDValue Op2 = getValue(I.getArgOperand(1)); 6300 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6301 return; 6302 } 6303 case Intrinsic::smul_fix: 6304 case Intrinsic::umul_fix: 6305 case Intrinsic::smul_fix_sat: 6306 case Intrinsic::umul_fix_sat: { 6307 SDValue Op1 = getValue(I.getArgOperand(0)); 6308 SDValue Op2 = getValue(I.getArgOperand(1)); 6309 SDValue Op3 = getValue(I.getArgOperand(2)); 6310 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6311 Op1.getValueType(), Op1, Op2, Op3)); 6312 return; 6313 } 6314 case Intrinsic::sdiv_fix: 6315 case Intrinsic::udiv_fix: 6316 case Intrinsic::sdiv_fix_sat: 6317 case Intrinsic::udiv_fix_sat: { 6318 SDValue Op1 = getValue(I.getArgOperand(0)); 6319 SDValue Op2 = getValue(I.getArgOperand(1)); 6320 SDValue Op3 = getValue(I.getArgOperand(2)); 6321 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6322 Op1, Op2, Op3, DAG, TLI)); 6323 return; 6324 } 6325 case Intrinsic::smax: { 6326 SDValue Op1 = getValue(I.getArgOperand(0)); 6327 SDValue Op2 = getValue(I.getArgOperand(1)); 6328 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6329 return; 6330 } 6331 case Intrinsic::smin: { 6332 SDValue Op1 = getValue(I.getArgOperand(0)); 6333 SDValue Op2 = getValue(I.getArgOperand(1)); 6334 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6335 return; 6336 } 6337 case Intrinsic::umax: { 6338 SDValue Op1 = getValue(I.getArgOperand(0)); 6339 SDValue Op2 = getValue(I.getArgOperand(1)); 6340 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6341 return; 6342 } 6343 case Intrinsic::umin: { 6344 SDValue Op1 = getValue(I.getArgOperand(0)); 6345 SDValue Op2 = getValue(I.getArgOperand(1)); 6346 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6347 return; 6348 } 6349 case Intrinsic::abs: { 6350 // TODO: Preserve "int min is poison" arg in SDAG? 6351 SDValue Op1 = getValue(I.getArgOperand(0)); 6352 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6353 return; 6354 } 6355 case Intrinsic::stacksave: { 6356 SDValue Op = getRoot(); 6357 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6358 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6359 setValue(&I, Res); 6360 DAG.setRoot(Res.getValue(1)); 6361 return; 6362 } 6363 case Intrinsic::stackrestore: 6364 Res = getValue(I.getArgOperand(0)); 6365 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6366 return; 6367 case Intrinsic::get_dynamic_area_offset: { 6368 SDValue Op = getRoot(); 6369 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6370 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6371 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6372 // target. 6373 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6374 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6375 " intrinsic!"); 6376 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6377 Op); 6378 DAG.setRoot(Op); 6379 setValue(&I, Res); 6380 return; 6381 } 6382 case Intrinsic::stackguard: { 6383 MachineFunction &MF = DAG.getMachineFunction(); 6384 const Module &M = *MF.getFunction().getParent(); 6385 SDValue Chain = getRoot(); 6386 if (TLI.useLoadStackGuardNode()) { 6387 Res = getLoadStackGuard(DAG, sdl, Chain); 6388 } else { 6389 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6390 const Value *Global = TLI.getSDagStackGuard(M); 6391 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6392 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6393 MachinePointerInfo(Global, 0), Align, 6394 MachineMemOperand::MOVolatile); 6395 } 6396 if (TLI.useStackGuardXorFP()) 6397 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6398 DAG.setRoot(Chain); 6399 setValue(&I, Res); 6400 return; 6401 } 6402 case Intrinsic::stackprotector: { 6403 // Emit code into the DAG to store the stack guard onto the stack. 6404 MachineFunction &MF = DAG.getMachineFunction(); 6405 MachineFrameInfo &MFI = MF.getFrameInfo(); 6406 SDValue Src, Chain = getRoot(); 6407 6408 if (TLI.useLoadStackGuardNode()) 6409 Src = getLoadStackGuard(DAG, sdl, Chain); 6410 else 6411 Src = getValue(I.getArgOperand(0)); // The guard's value. 6412 6413 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6414 6415 int FI = FuncInfo.StaticAllocaMap[Slot]; 6416 MFI.setStackProtectorIndex(FI); 6417 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6418 6419 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6420 6421 // Store the stack protector onto the stack. 6422 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6423 DAG.getMachineFunction(), FI), 6424 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6425 setValue(&I, Res); 6426 DAG.setRoot(Res); 6427 return; 6428 } 6429 case Intrinsic::objectsize: 6430 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6431 6432 case Intrinsic::is_constant: 6433 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6434 6435 case Intrinsic::annotation: 6436 case Intrinsic::ptr_annotation: 6437 case Intrinsic::launder_invariant_group: 6438 case Intrinsic::strip_invariant_group: 6439 // Drop the intrinsic, but forward the value 6440 setValue(&I, getValue(I.getOperand(0))); 6441 return; 6442 case Intrinsic::assume: 6443 case Intrinsic::var_annotation: 6444 case Intrinsic::sideeffect: 6445 // Discard annotate attributes, assumptions, and artificial side-effects. 6446 return; 6447 6448 case Intrinsic::codeview_annotation: { 6449 // Emit a label associated with this metadata. 6450 MachineFunction &MF = DAG.getMachineFunction(); 6451 MCSymbol *Label = 6452 MF.getMMI().getContext().createTempSymbol("annotation", true); 6453 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6454 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6455 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6456 DAG.setRoot(Res); 6457 return; 6458 } 6459 6460 case Intrinsic::init_trampoline: { 6461 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6462 6463 SDValue Ops[6]; 6464 Ops[0] = getRoot(); 6465 Ops[1] = getValue(I.getArgOperand(0)); 6466 Ops[2] = getValue(I.getArgOperand(1)); 6467 Ops[3] = getValue(I.getArgOperand(2)); 6468 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6469 Ops[5] = DAG.getSrcValue(F); 6470 6471 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6472 6473 DAG.setRoot(Res); 6474 return; 6475 } 6476 case Intrinsic::adjust_trampoline: 6477 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6478 TLI.getPointerTy(DAG.getDataLayout()), 6479 getValue(I.getArgOperand(0)))); 6480 return; 6481 case Intrinsic::gcroot: { 6482 assert(DAG.getMachineFunction().getFunction().hasGC() && 6483 "only valid in functions with gc specified, enforced by Verifier"); 6484 assert(GFI && "implied by previous"); 6485 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6486 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6487 6488 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6489 GFI->addStackRoot(FI->getIndex(), TypeMap); 6490 return; 6491 } 6492 case Intrinsic::gcread: 6493 case Intrinsic::gcwrite: 6494 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6495 case Intrinsic::flt_rounds: 6496 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6497 setValue(&I, Res); 6498 DAG.setRoot(Res.getValue(1)); 6499 return; 6500 6501 case Intrinsic::expect: 6502 // Just replace __builtin_expect(exp, c) with EXP. 6503 setValue(&I, getValue(I.getArgOperand(0))); 6504 return; 6505 6506 case Intrinsic::debugtrap: 6507 case Intrinsic::trap: { 6508 StringRef TrapFuncName = 6509 I.getAttributes() 6510 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6511 .getValueAsString(); 6512 if (TrapFuncName.empty()) { 6513 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6514 ISD::TRAP : ISD::DEBUGTRAP; 6515 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6516 return; 6517 } 6518 TargetLowering::ArgListTy Args; 6519 6520 TargetLowering::CallLoweringInfo CLI(DAG); 6521 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6522 CallingConv::C, I.getType(), 6523 DAG.getExternalSymbol(TrapFuncName.data(), 6524 TLI.getPointerTy(DAG.getDataLayout())), 6525 std::move(Args)); 6526 6527 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6528 DAG.setRoot(Result.second); 6529 return; 6530 } 6531 6532 case Intrinsic::uadd_with_overflow: 6533 case Intrinsic::sadd_with_overflow: 6534 case Intrinsic::usub_with_overflow: 6535 case Intrinsic::ssub_with_overflow: 6536 case Intrinsic::umul_with_overflow: 6537 case Intrinsic::smul_with_overflow: { 6538 ISD::NodeType Op; 6539 switch (Intrinsic) { 6540 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6541 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6542 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6543 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6544 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6545 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6546 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6547 } 6548 SDValue Op1 = getValue(I.getArgOperand(0)); 6549 SDValue Op2 = getValue(I.getArgOperand(1)); 6550 6551 EVT ResultVT = Op1.getValueType(); 6552 EVT OverflowVT = MVT::i1; 6553 if (ResultVT.isVector()) 6554 OverflowVT = EVT::getVectorVT( 6555 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6556 6557 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6558 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6559 return; 6560 } 6561 case Intrinsic::prefetch: { 6562 SDValue Ops[5]; 6563 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6564 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6565 Ops[0] = DAG.getRoot(); 6566 Ops[1] = getValue(I.getArgOperand(0)); 6567 Ops[2] = getValue(I.getArgOperand(1)); 6568 Ops[3] = getValue(I.getArgOperand(2)); 6569 Ops[4] = getValue(I.getArgOperand(3)); 6570 SDValue Result = DAG.getMemIntrinsicNode( 6571 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6572 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6573 /* align */ None, Flags); 6574 6575 // Chain the prefetch in parallell with any pending loads, to stay out of 6576 // the way of later optimizations. 6577 PendingLoads.push_back(Result); 6578 Result = getRoot(); 6579 DAG.setRoot(Result); 6580 return; 6581 } 6582 case Intrinsic::lifetime_start: 6583 case Intrinsic::lifetime_end: { 6584 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6585 // Stack coloring is not enabled in O0, discard region information. 6586 if (TM.getOptLevel() == CodeGenOpt::None) 6587 return; 6588 6589 const int64_t ObjectSize = 6590 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6591 Value *const ObjectPtr = I.getArgOperand(1); 6592 SmallVector<const Value *, 4> Allocas; 6593 getUnderlyingObjects(ObjectPtr, Allocas); 6594 6595 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6596 E = Allocas.end(); Object != E; ++Object) { 6597 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6598 6599 // Could not find an Alloca. 6600 if (!LifetimeObject) 6601 continue; 6602 6603 // First check that the Alloca is static, otherwise it won't have a 6604 // valid frame index. 6605 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6606 if (SI == FuncInfo.StaticAllocaMap.end()) 6607 return; 6608 6609 const int FrameIndex = SI->second; 6610 int64_t Offset; 6611 if (GetPointerBaseWithConstantOffset( 6612 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6613 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6614 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6615 Offset); 6616 DAG.setRoot(Res); 6617 } 6618 return; 6619 } 6620 case Intrinsic::invariant_start: 6621 // Discard region information. 6622 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6623 return; 6624 case Intrinsic::invariant_end: 6625 // Discard region information. 6626 return; 6627 case Intrinsic::clear_cache: 6628 /// FunctionName may be null. 6629 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6630 lowerCallToExternalSymbol(I, FunctionName); 6631 return; 6632 case Intrinsic::donothing: 6633 // ignore 6634 return; 6635 case Intrinsic::experimental_stackmap: 6636 visitStackmap(I); 6637 return; 6638 case Intrinsic::experimental_patchpoint_void: 6639 case Intrinsic::experimental_patchpoint_i64: 6640 visitPatchpoint(I); 6641 return; 6642 case Intrinsic::experimental_gc_statepoint: 6643 LowerStatepoint(cast<GCStatepointInst>(I)); 6644 return; 6645 case Intrinsic::experimental_gc_result: 6646 visitGCResult(cast<GCResultInst>(I)); 6647 return; 6648 case Intrinsic::experimental_gc_relocate: 6649 visitGCRelocate(cast<GCRelocateInst>(I)); 6650 return; 6651 case Intrinsic::instrprof_increment: 6652 llvm_unreachable("instrprof failed to lower an increment"); 6653 case Intrinsic::instrprof_value_profile: 6654 llvm_unreachable("instrprof failed to lower a value profiling call"); 6655 case Intrinsic::localescape: { 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6658 6659 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6660 // is the same on all targets. 6661 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6662 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6663 if (isa<ConstantPointerNull>(Arg)) 6664 continue; // Skip null pointers. They represent a hole in index space. 6665 AllocaInst *Slot = cast<AllocaInst>(Arg); 6666 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6667 "can only escape static allocas"); 6668 int FI = FuncInfo.StaticAllocaMap[Slot]; 6669 MCSymbol *FrameAllocSym = 6670 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6671 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6672 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6673 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6674 .addSym(FrameAllocSym) 6675 .addFrameIndex(FI); 6676 } 6677 6678 return; 6679 } 6680 6681 case Intrinsic::localrecover: { 6682 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6683 MachineFunction &MF = DAG.getMachineFunction(); 6684 6685 // Get the symbol that defines the frame offset. 6686 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6687 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6688 unsigned IdxVal = 6689 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6690 MCSymbol *FrameAllocSym = 6691 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6692 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6693 6694 Value *FP = I.getArgOperand(1); 6695 SDValue FPVal = getValue(FP); 6696 EVT PtrVT = FPVal.getValueType(); 6697 6698 // Create a MCSymbol for the label to avoid any target lowering 6699 // that would make this PC relative. 6700 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6701 SDValue OffsetVal = 6702 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6703 6704 // Add the offset to the FP. 6705 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6706 setValue(&I, Add); 6707 6708 return; 6709 } 6710 6711 case Intrinsic::eh_exceptionpointer: 6712 case Intrinsic::eh_exceptioncode: { 6713 // Get the exception pointer vreg, copy from it, and resize it to fit. 6714 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6715 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6716 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6717 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6718 SDValue N = 6719 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6720 if (Intrinsic == Intrinsic::eh_exceptioncode) 6721 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6722 setValue(&I, N); 6723 return; 6724 } 6725 case Intrinsic::xray_customevent: { 6726 // Here we want to make sure that the intrinsic behaves as if it has a 6727 // specific calling convention, and only for x86_64. 6728 // FIXME: Support other platforms later. 6729 const auto &Triple = DAG.getTarget().getTargetTriple(); 6730 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6731 return; 6732 6733 SDLoc DL = getCurSDLoc(); 6734 SmallVector<SDValue, 8> Ops; 6735 6736 // We want to say that we always want the arguments in registers. 6737 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6738 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6739 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6740 SDValue Chain = getRoot(); 6741 Ops.push_back(LogEntryVal); 6742 Ops.push_back(StrSizeVal); 6743 Ops.push_back(Chain); 6744 6745 // We need to enforce the calling convention for the callsite, so that 6746 // argument ordering is enforced correctly, and that register allocation can 6747 // see that some registers may be assumed clobbered and have to preserve 6748 // them across calls to the intrinsic. 6749 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6750 DL, NodeTys, Ops); 6751 SDValue patchableNode = SDValue(MN, 0); 6752 DAG.setRoot(patchableNode); 6753 setValue(&I, patchableNode); 6754 return; 6755 } 6756 case Intrinsic::xray_typedevent: { 6757 // Here we want to make sure that the intrinsic behaves as if it has a 6758 // specific calling convention, and only for x86_64. 6759 // FIXME: Support other platforms later. 6760 const auto &Triple = DAG.getTarget().getTargetTriple(); 6761 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6762 return; 6763 6764 SDLoc DL = getCurSDLoc(); 6765 SmallVector<SDValue, 8> Ops; 6766 6767 // We want to say that we always want the arguments in registers. 6768 // It's unclear to me how manipulating the selection DAG here forces callers 6769 // to provide arguments in registers instead of on the stack. 6770 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6771 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6772 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6773 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6774 SDValue Chain = getRoot(); 6775 Ops.push_back(LogTypeId); 6776 Ops.push_back(LogEntryVal); 6777 Ops.push_back(StrSizeVal); 6778 Ops.push_back(Chain); 6779 6780 // We need to enforce the calling convention for the callsite, so that 6781 // argument ordering is enforced correctly, and that register allocation can 6782 // see that some registers may be assumed clobbered and have to preserve 6783 // them across calls to the intrinsic. 6784 MachineSDNode *MN = DAG.getMachineNode( 6785 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6786 SDValue patchableNode = SDValue(MN, 0); 6787 DAG.setRoot(patchableNode); 6788 setValue(&I, patchableNode); 6789 return; 6790 } 6791 case Intrinsic::experimental_deoptimize: 6792 LowerDeoptimizeCall(&I); 6793 return; 6794 6795 case Intrinsic::experimental_vector_reduce_v2_fadd: 6796 case Intrinsic::experimental_vector_reduce_v2_fmul: 6797 case Intrinsic::experimental_vector_reduce_add: 6798 case Intrinsic::experimental_vector_reduce_mul: 6799 case Intrinsic::experimental_vector_reduce_and: 6800 case Intrinsic::experimental_vector_reduce_or: 6801 case Intrinsic::experimental_vector_reduce_xor: 6802 case Intrinsic::experimental_vector_reduce_smax: 6803 case Intrinsic::experimental_vector_reduce_smin: 6804 case Intrinsic::experimental_vector_reduce_umax: 6805 case Intrinsic::experimental_vector_reduce_umin: 6806 case Intrinsic::experimental_vector_reduce_fmax: 6807 case Intrinsic::experimental_vector_reduce_fmin: 6808 visitVectorReduce(I, Intrinsic); 6809 return; 6810 6811 case Intrinsic::icall_branch_funnel: { 6812 SmallVector<SDValue, 16> Ops; 6813 Ops.push_back(getValue(I.getArgOperand(0))); 6814 6815 int64_t Offset; 6816 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6817 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6818 if (!Base) 6819 report_fatal_error( 6820 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6821 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6822 6823 struct BranchFunnelTarget { 6824 int64_t Offset; 6825 SDValue Target; 6826 }; 6827 SmallVector<BranchFunnelTarget, 8> Targets; 6828 6829 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6830 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6831 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6832 if (ElemBase != Base) 6833 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6834 "to the same GlobalValue"); 6835 6836 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6837 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6838 if (!GA) 6839 report_fatal_error( 6840 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6841 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6842 GA->getGlobal(), getCurSDLoc(), 6843 Val.getValueType(), GA->getOffset())}); 6844 } 6845 llvm::sort(Targets, 6846 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6847 return T1.Offset < T2.Offset; 6848 }); 6849 6850 for (auto &T : Targets) { 6851 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6852 Ops.push_back(T.Target); 6853 } 6854 6855 Ops.push_back(DAG.getRoot()); // Chain 6856 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6857 getCurSDLoc(), MVT::Other, Ops), 6858 0); 6859 DAG.setRoot(N); 6860 setValue(&I, N); 6861 HasTailCall = true; 6862 return; 6863 } 6864 6865 case Intrinsic::wasm_landingpad_index: 6866 // Information this intrinsic contained has been transferred to 6867 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6868 // delete it now. 6869 return; 6870 6871 case Intrinsic::aarch64_settag: 6872 case Intrinsic::aarch64_settag_zero: { 6873 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6874 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6875 SDValue Val = TSI.EmitTargetCodeForSetTag( 6876 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6877 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6878 ZeroMemory); 6879 DAG.setRoot(Val); 6880 setValue(&I, Val); 6881 return; 6882 } 6883 case Intrinsic::ptrmask: { 6884 SDValue Ptr = getValue(I.getOperand(0)); 6885 SDValue Const = getValue(I.getOperand(1)); 6886 6887 EVT PtrVT = Ptr.getValueType(); 6888 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6889 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6890 return; 6891 } 6892 case Intrinsic::get_active_lane_mask: { 6893 auto DL = getCurSDLoc(); 6894 SDValue Index = getValue(I.getOperand(0)); 6895 SDValue TripCount = getValue(I.getOperand(1)); 6896 Type *ElementTy = I.getOperand(0)->getType(); 6897 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6898 unsigned VecWidth = VT.getVectorNumElements(); 6899 6900 SmallVector<SDValue, 16> OpsTripCount; 6901 SmallVector<SDValue, 16> OpsIndex; 6902 SmallVector<SDValue, 16> OpsStepConstants; 6903 for (unsigned i = 0; i < VecWidth; i++) { 6904 OpsTripCount.push_back(TripCount); 6905 OpsIndex.push_back(Index); 6906 OpsStepConstants.push_back( 6907 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 6908 } 6909 6910 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 6911 6912 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 6913 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6914 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6915 SDValue VectorInduction = DAG.getNode( 6916 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6917 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 6918 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6919 VectorTripCount, ISD::CondCode::SETULT); 6920 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6921 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6922 SetCC)); 6923 return; 6924 } 6925 } 6926 } 6927 6928 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6929 const ConstrainedFPIntrinsic &FPI) { 6930 SDLoc sdl = getCurSDLoc(); 6931 6932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6933 SmallVector<EVT, 4> ValueVTs; 6934 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6935 ValueVTs.push_back(MVT::Other); // Out chain 6936 6937 // We do not need to serialize constrained FP intrinsics against 6938 // each other or against (nonvolatile) loads, so they can be 6939 // chained like loads. 6940 SDValue Chain = DAG.getRoot(); 6941 SmallVector<SDValue, 4> Opers; 6942 Opers.push_back(Chain); 6943 if (FPI.isUnaryOp()) { 6944 Opers.push_back(getValue(FPI.getArgOperand(0))); 6945 } else if (FPI.isTernaryOp()) { 6946 Opers.push_back(getValue(FPI.getArgOperand(0))); 6947 Opers.push_back(getValue(FPI.getArgOperand(1))); 6948 Opers.push_back(getValue(FPI.getArgOperand(2))); 6949 } else { 6950 Opers.push_back(getValue(FPI.getArgOperand(0))); 6951 Opers.push_back(getValue(FPI.getArgOperand(1))); 6952 } 6953 6954 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6955 assert(Result.getNode()->getNumValues() == 2); 6956 6957 // Push node to the appropriate list so that future instructions can be 6958 // chained up correctly. 6959 SDValue OutChain = Result.getValue(1); 6960 switch (EB) { 6961 case fp::ExceptionBehavior::ebIgnore: 6962 // The only reason why ebIgnore nodes still need to be chained is that 6963 // they might depend on the current rounding mode, and therefore must 6964 // not be moved across instruction that may change that mode. 6965 LLVM_FALLTHROUGH; 6966 case fp::ExceptionBehavior::ebMayTrap: 6967 // These must not be moved across calls or instructions that may change 6968 // floating-point exception masks. 6969 PendingConstrainedFP.push_back(OutChain); 6970 break; 6971 case fp::ExceptionBehavior::ebStrict: 6972 // These must not be moved across calls or instructions that may change 6973 // floating-point exception masks or read floating-point exception flags. 6974 // In addition, they cannot be optimized out even if unused. 6975 PendingConstrainedFPStrict.push_back(OutChain); 6976 break; 6977 } 6978 }; 6979 6980 SDVTList VTs = DAG.getVTList(ValueVTs); 6981 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 6982 6983 SDNodeFlags Flags; 6984 if (EB == fp::ExceptionBehavior::ebIgnore) 6985 Flags.setNoFPExcept(true); 6986 6987 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 6988 Flags.copyFMF(*FPOp); 6989 6990 unsigned Opcode; 6991 switch (FPI.getIntrinsicID()) { 6992 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6993 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6994 case Intrinsic::INTRINSIC: \ 6995 Opcode = ISD::STRICT_##DAGN; \ 6996 break; 6997 #include "llvm/IR/ConstrainedOps.def" 6998 case Intrinsic::experimental_constrained_fmuladd: { 6999 Opcode = ISD::STRICT_FMA; 7000 // Break fmuladd into fmul and fadd. 7001 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7002 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7003 ValueVTs[0])) { 7004 Opers.pop_back(); 7005 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7006 pushOutChain(Mul, EB); 7007 Opcode = ISD::STRICT_FADD; 7008 Opers.clear(); 7009 Opers.push_back(Mul.getValue(1)); 7010 Opers.push_back(Mul.getValue(0)); 7011 Opers.push_back(getValue(FPI.getArgOperand(2))); 7012 } 7013 break; 7014 } 7015 } 7016 7017 // A few strict DAG nodes carry additional operands that are not 7018 // set up by the default code above. 7019 switch (Opcode) { 7020 default: break; 7021 case ISD::STRICT_FP_ROUND: 7022 Opers.push_back( 7023 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7024 break; 7025 case ISD::STRICT_FSETCC: 7026 case ISD::STRICT_FSETCCS: { 7027 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7028 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7029 break; 7030 } 7031 } 7032 7033 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7034 pushOutChain(Result, EB); 7035 7036 SDValue FPResult = Result.getValue(0); 7037 setValue(&FPI, FPResult); 7038 } 7039 7040 std::pair<SDValue, SDValue> 7041 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7042 const BasicBlock *EHPadBB) { 7043 MachineFunction &MF = DAG.getMachineFunction(); 7044 MachineModuleInfo &MMI = MF.getMMI(); 7045 MCSymbol *BeginLabel = nullptr; 7046 7047 if (EHPadBB) { 7048 // Insert a label before the invoke call to mark the try range. This can be 7049 // used to detect deletion of the invoke via the MachineModuleInfo. 7050 BeginLabel = MMI.getContext().createTempSymbol(); 7051 7052 // For SjLj, keep track of which landing pads go with which invokes 7053 // so as to maintain the ordering of pads in the LSDA. 7054 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7055 if (CallSiteIndex) { 7056 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7057 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7058 7059 // Now that the call site is handled, stop tracking it. 7060 MMI.setCurrentCallSite(0); 7061 } 7062 7063 // Both PendingLoads and PendingExports must be flushed here; 7064 // this call might not return. 7065 (void)getRoot(); 7066 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7067 7068 CLI.setChain(getRoot()); 7069 } 7070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7071 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7072 7073 assert((CLI.IsTailCall || Result.second.getNode()) && 7074 "Non-null chain expected with non-tail call!"); 7075 assert((Result.second.getNode() || !Result.first.getNode()) && 7076 "Null value expected with tail call!"); 7077 7078 if (!Result.second.getNode()) { 7079 // As a special case, a null chain means that a tail call has been emitted 7080 // and the DAG root is already updated. 7081 HasTailCall = true; 7082 7083 // Since there's no actual continuation from this block, nothing can be 7084 // relying on us setting vregs for them. 7085 PendingExports.clear(); 7086 } else { 7087 DAG.setRoot(Result.second); 7088 } 7089 7090 if (EHPadBB) { 7091 // Insert a label at the end of the invoke call to mark the try range. This 7092 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7093 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7094 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7095 7096 // Inform MachineModuleInfo of range. 7097 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7098 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7099 // actually use outlined funclets and their LSDA info style. 7100 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7101 assert(CLI.CB); 7102 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7103 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7104 } else if (!isScopedEHPersonality(Pers)) { 7105 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7106 } 7107 } 7108 7109 return Result; 7110 } 7111 7112 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7113 bool isTailCall, 7114 const BasicBlock *EHPadBB) { 7115 auto &DL = DAG.getDataLayout(); 7116 FunctionType *FTy = CB.getFunctionType(); 7117 Type *RetTy = CB.getType(); 7118 7119 TargetLowering::ArgListTy Args; 7120 Args.reserve(CB.arg_size()); 7121 7122 const Value *SwiftErrorVal = nullptr; 7123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7124 7125 if (isTailCall) { 7126 // Avoid emitting tail calls in functions with the disable-tail-calls 7127 // attribute. 7128 auto *Caller = CB.getParent()->getParent(); 7129 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7130 "true") 7131 isTailCall = false; 7132 7133 // We can't tail call inside a function with a swifterror argument. Lowering 7134 // does not support this yet. It would have to move into the swifterror 7135 // register before the call. 7136 if (TLI.supportSwiftError() && 7137 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7138 isTailCall = false; 7139 } 7140 7141 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7142 TargetLowering::ArgListEntry Entry; 7143 const Value *V = *I; 7144 7145 // Skip empty types 7146 if (V->getType()->isEmptyTy()) 7147 continue; 7148 7149 SDValue ArgNode = getValue(V); 7150 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7151 7152 Entry.setAttributes(&CB, I - CB.arg_begin()); 7153 7154 // Use swifterror virtual register as input to the call. 7155 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7156 SwiftErrorVal = V; 7157 // We find the virtual register for the actual swifterror argument. 7158 // Instead of using the Value, we use the virtual register instead. 7159 Entry.Node = 7160 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7161 EVT(TLI.getPointerTy(DL))); 7162 } 7163 7164 Args.push_back(Entry); 7165 7166 // If we have an explicit sret argument that is an Instruction, (i.e., it 7167 // might point to function-local memory), we can't meaningfully tail-call. 7168 if (Entry.IsSRet && isa<Instruction>(V)) 7169 isTailCall = false; 7170 } 7171 7172 // If call site has a cfguardtarget operand bundle, create and add an 7173 // additional ArgListEntry. 7174 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7175 TargetLowering::ArgListEntry Entry; 7176 Value *V = Bundle->Inputs[0]; 7177 SDValue ArgNode = getValue(V); 7178 Entry.Node = ArgNode; 7179 Entry.Ty = V->getType(); 7180 Entry.IsCFGuardTarget = true; 7181 Args.push_back(Entry); 7182 } 7183 7184 // Check if target-independent constraints permit a tail call here. 7185 // Target-dependent constraints are checked within TLI->LowerCallTo. 7186 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7187 isTailCall = false; 7188 7189 // Disable tail calls if there is an swifterror argument. Targets have not 7190 // been updated to support tail calls. 7191 if (TLI.supportSwiftError() && SwiftErrorVal) 7192 isTailCall = false; 7193 7194 TargetLowering::CallLoweringInfo CLI(DAG); 7195 CLI.setDebugLoc(getCurSDLoc()) 7196 .setChain(getRoot()) 7197 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7198 .setTailCall(isTailCall) 7199 .setConvergent(CB.isConvergent()) 7200 .setIsPreallocated( 7201 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7202 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7203 7204 if (Result.first.getNode()) { 7205 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7206 setValue(&CB, Result.first); 7207 } 7208 7209 // The last element of CLI.InVals has the SDValue for swifterror return. 7210 // Here we copy it to a virtual register and update SwiftErrorMap for 7211 // book-keeping. 7212 if (SwiftErrorVal && TLI.supportSwiftError()) { 7213 // Get the last element of InVals. 7214 SDValue Src = CLI.InVals.back(); 7215 Register VReg = 7216 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7217 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7218 DAG.setRoot(CopyNode); 7219 } 7220 } 7221 7222 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7223 SelectionDAGBuilder &Builder) { 7224 // Check to see if this load can be trivially constant folded, e.g. if the 7225 // input is from a string literal. 7226 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7227 // Cast pointer to the type we really want to load. 7228 Type *LoadTy = 7229 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7230 if (LoadVT.isVector()) 7231 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7232 7233 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7234 PointerType::getUnqual(LoadTy)); 7235 7236 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7237 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7238 return Builder.getValue(LoadCst); 7239 } 7240 7241 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7242 // still constant memory, the input chain can be the entry node. 7243 SDValue Root; 7244 bool ConstantMemory = false; 7245 7246 // Do not serialize (non-volatile) loads of constant memory with anything. 7247 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7248 Root = Builder.DAG.getEntryNode(); 7249 ConstantMemory = true; 7250 } else { 7251 // Do not serialize non-volatile loads against each other. 7252 Root = Builder.DAG.getRoot(); 7253 } 7254 7255 SDValue Ptr = Builder.getValue(PtrVal); 7256 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7257 Ptr, MachinePointerInfo(PtrVal), 7258 /* Alignment = */ 1); 7259 7260 if (!ConstantMemory) 7261 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7262 return LoadVal; 7263 } 7264 7265 /// Record the value for an instruction that produces an integer result, 7266 /// converting the type where necessary. 7267 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7268 SDValue Value, 7269 bool IsSigned) { 7270 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7271 I.getType(), true); 7272 if (IsSigned) 7273 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7274 else 7275 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7276 setValue(&I, Value); 7277 } 7278 7279 /// See if we can lower a memcmp call into an optimized form. If so, return 7280 /// true and lower it. Otherwise return false, and it will be lowered like a 7281 /// normal call. 7282 /// The caller already checked that \p I calls the appropriate LibFunc with a 7283 /// correct prototype. 7284 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7285 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7286 const Value *Size = I.getArgOperand(2); 7287 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7288 if (CSize && CSize->getZExtValue() == 0) { 7289 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7290 I.getType(), true); 7291 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7292 return true; 7293 } 7294 7295 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7296 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7297 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7298 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7299 if (Res.first.getNode()) { 7300 processIntegerCallValue(I, Res.first, true); 7301 PendingLoads.push_back(Res.second); 7302 return true; 7303 } 7304 7305 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7306 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7307 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7308 return false; 7309 7310 // If the target has a fast compare for the given size, it will return a 7311 // preferred load type for that size. Require that the load VT is legal and 7312 // that the target supports unaligned loads of that type. Otherwise, return 7313 // INVALID. 7314 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7316 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7317 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7318 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7319 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7320 // TODO: Check alignment of src and dest ptrs. 7321 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7322 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7323 if (!TLI.isTypeLegal(LVT) || 7324 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7325 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7326 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7327 } 7328 7329 return LVT; 7330 }; 7331 7332 // This turns into unaligned loads. We only do this if the target natively 7333 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7334 // we'll only produce a small number of byte loads. 7335 MVT LoadVT; 7336 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7337 switch (NumBitsToCompare) { 7338 default: 7339 return false; 7340 case 16: 7341 LoadVT = MVT::i16; 7342 break; 7343 case 32: 7344 LoadVT = MVT::i32; 7345 break; 7346 case 64: 7347 case 128: 7348 case 256: 7349 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7350 break; 7351 } 7352 7353 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7354 return false; 7355 7356 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7357 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7358 7359 // Bitcast to a wide integer type if the loads are vectors. 7360 if (LoadVT.isVector()) { 7361 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7362 LoadL = DAG.getBitcast(CmpVT, LoadL); 7363 LoadR = DAG.getBitcast(CmpVT, LoadR); 7364 } 7365 7366 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7367 processIntegerCallValue(I, Cmp, false); 7368 return true; 7369 } 7370 7371 /// See if we can lower a memchr call into an optimized form. If so, return 7372 /// true and lower it. Otherwise return false, and it will be lowered like a 7373 /// normal call. 7374 /// The caller already checked that \p I calls the appropriate LibFunc with a 7375 /// correct prototype. 7376 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7377 const Value *Src = I.getArgOperand(0); 7378 const Value *Char = I.getArgOperand(1); 7379 const Value *Length = I.getArgOperand(2); 7380 7381 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7382 std::pair<SDValue, SDValue> Res = 7383 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7384 getValue(Src), getValue(Char), getValue(Length), 7385 MachinePointerInfo(Src)); 7386 if (Res.first.getNode()) { 7387 setValue(&I, Res.first); 7388 PendingLoads.push_back(Res.second); 7389 return true; 7390 } 7391 7392 return false; 7393 } 7394 7395 /// See if we can lower a mempcpy call into an optimized form. If so, return 7396 /// true and lower it. Otherwise return false, and it will be lowered like a 7397 /// normal call. 7398 /// The caller already checked that \p I calls the appropriate LibFunc with a 7399 /// correct prototype. 7400 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7401 SDValue Dst = getValue(I.getArgOperand(0)); 7402 SDValue Src = getValue(I.getArgOperand(1)); 7403 SDValue Size = getValue(I.getArgOperand(2)); 7404 7405 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7406 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7407 // DAG::getMemcpy needs Alignment to be defined. 7408 Align Alignment = std::min(DstAlign, SrcAlign); 7409 7410 bool isVol = false; 7411 SDLoc sdl = getCurSDLoc(); 7412 7413 // In the mempcpy context we need to pass in a false value for isTailCall 7414 // because the return pointer needs to be adjusted by the size of 7415 // the copied memory. 7416 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7417 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7418 /*isTailCall=*/false, 7419 MachinePointerInfo(I.getArgOperand(0)), 7420 MachinePointerInfo(I.getArgOperand(1))); 7421 assert(MC.getNode() != nullptr && 7422 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7423 DAG.setRoot(MC); 7424 7425 // Check if Size needs to be truncated or extended. 7426 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7427 7428 // Adjust return pointer to point just past the last dst byte. 7429 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7430 Dst, Size); 7431 setValue(&I, DstPlusSize); 7432 return true; 7433 } 7434 7435 /// See if we can lower a strcpy call into an optimized form. If so, return 7436 /// true and lower it, otherwise return false and it will be lowered like a 7437 /// normal call. 7438 /// The caller already checked that \p I calls the appropriate LibFunc with a 7439 /// correct prototype. 7440 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7441 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7442 7443 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7444 std::pair<SDValue, SDValue> Res = 7445 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7446 getValue(Arg0), getValue(Arg1), 7447 MachinePointerInfo(Arg0), 7448 MachinePointerInfo(Arg1), isStpcpy); 7449 if (Res.first.getNode()) { 7450 setValue(&I, Res.first); 7451 DAG.setRoot(Res.second); 7452 return true; 7453 } 7454 7455 return false; 7456 } 7457 7458 /// See if we can lower a strcmp call into an optimized form. If so, return 7459 /// true and lower it, otherwise return false and it will be lowered like a 7460 /// normal call. 7461 /// The caller already checked that \p I calls the appropriate LibFunc with a 7462 /// correct prototype. 7463 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7464 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7465 7466 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7467 std::pair<SDValue, SDValue> Res = 7468 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7469 getValue(Arg0), getValue(Arg1), 7470 MachinePointerInfo(Arg0), 7471 MachinePointerInfo(Arg1)); 7472 if (Res.first.getNode()) { 7473 processIntegerCallValue(I, Res.first, true); 7474 PendingLoads.push_back(Res.second); 7475 return true; 7476 } 7477 7478 return false; 7479 } 7480 7481 /// See if we can lower a strlen call into an optimized form. If so, return 7482 /// true and lower it, otherwise return false and it will be lowered like a 7483 /// normal call. 7484 /// The caller already checked that \p I calls the appropriate LibFunc with a 7485 /// correct prototype. 7486 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7487 const Value *Arg0 = I.getArgOperand(0); 7488 7489 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7490 std::pair<SDValue, SDValue> Res = 7491 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7492 getValue(Arg0), MachinePointerInfo(Arg0)); 7493 if (Res.first.getNode()) { 7494 processIntegerCallValue(I, Res.first, false); 7495 PendingLoads.push_back(Res.second); 7496 return true; 7497 } 7498 7499 return false; 7500 } 7501 7502 /// See if we can lower a strnlen call into an optimized form. If so, return 7503 /// true and lower it, otherwise return false and it will be lowered like a 7504 /// normal call. 7505 /// The caller already checked that \p I calls the appropriate LibFunc with a 7506 /// correct prototype. 7507 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7508 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7509 7510 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7511 std::pair<SDValue, SDValue> Res = 7512 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7513 getValue(Arg0), getValue(Arg1), 7514 MachinePointerInfo(Arg0)); 7515 if (Res.first.getNode()) { 7516 processIntegerCallValue(I, Res.first, false); 7517 PendingLoads.push_back(Res.second); 7518 return true; 7519 } 7520 7521 return false; 7522 } 7523 7524 /// See if we can lower a unary floating-point operation into an SDNode with 7525 /// the specified Opcode. If so, return true and lower it, otherwise return 7526 /// false and it will be lowered like a normal call. 7527 /// The caller already checked that \p I calls the appropriate LibFunc with a 7528 /// correct prototype. 7529 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7530 unsigned Opcode) { 7531 // We already checked this call's prototype; verify it doesn't modify errno. 7532 if (!I.onlyReadsMemory()) 7533 return false; 7534 7535 SDValue Tmp = getValue(I.getArgOperand(0)); 7536 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7537 return true; 7538 } 7539 7540 /// See if we can lower a binary floating-point operation into an SDNode with 7541 /// the specified Opcode. If so, return true and lower it. Otherwise return 7542 /// false, and it will be lowered like a normal call. 7543 /// The caller already checked that \p I calls the appropriate LibFunc with a 7544 /// correct prototype. 7545 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7546 unsigned Opcode) { 7547 // We already checked this call's prototype; verify it doesn't modify errno. 7548 if (!I.onlyReadsMemory()) 7549 return false; 7550 7551 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7552 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7553 EVT VT = Tmp0.getValueType(); 7554 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7555 return true; 7556 } 7557 7558 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7559 // Handle inline assembly differently. 7560 if (I.isInlineAsm()) { 7561 visitInlineAsm(I); 7562 return; 7563 } 7564 7565 if (Function *F = I.getCalledFunction()) { 7566 if (F->isDeclaration()) { 7567 // Is this an LLVM intrinsic or a target-specific intrinsic? 7568 unsigned IID = F->getIntrinsicID(); 7569 if (!IID) 7570 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7571 IID = II->getIntrinsicID(F); 7572 7573 if (IID) { 7574 visitIntrinsicCall(I, IID); 7575 return; 7576 } 7577 } 7578 7579 // Check for well-known libc/libm calls. If the function is internal, it 7580 // can't be a library call. Don't do the check if marked as nobuiltin for 7581 // some reason or the call site requires strict floating point semantics. 7582 LibFunc Func; 7583 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7584 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7585 LibInfo->hasOptimizedCodeGen(Func)) { 7586 switch (Func) { 7587 default: break; 7588 case LibFunc_copysign: 7589 case LibFunc_copysignf: 7590 case LibFunc_copysignl: 7591 // We already checked this call's prototype; verify it doesn't modify 7592 // errno. 7593 if (I.onlyReadsMemory()) { 7594 SDValue LHS = getValue(I.getArgOperand(0)); 7595 SDValue RHS = getValue(I.getArgOperand(1)); 7596 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7597 LHS.getValueType(), LHS, RHS)); 7598 return; 7599 } 7600 break; 7601 case LibFunc_fabs: 7602 case LibFunc_fabsf: 7603 case LibFunc_fabsl: 7604 if (visitUnaryFloatCall(I, ISD::FABS)) 7605 return; 7606 break; 7607 case LibFunc_fmin: 7608 case LibFunc_fminf: 7609 case LibFunc_fminl: 7610 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7611 return; 7612 break; 7613 case LibFunc_fmax: 7614 case LibFunc_fmaxf: 7615 case LibFunc_fmaxl: 7616 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7617 return; 7618 break; 7619 case LibFunc_sin: 7620 case LibFunc_sinf: 7621 case LibFunc_sinl: 7622 if (visitUnaryFloatCall(I, ISD::FSIN)) 7623 return; 7624 break; 7625 case LibFunc_cos: 7626 case LibFunc_cosf: 7627 case LibFunc_cosl: 7628 if (visitUnaryFloatCall(I, ISD::FCOS)) 7629 return; 7630 break; 7631 case LibFunc_sqrt: 7632 case LibFunc_sqrtf: 7633 case LibFunc_sqrtl: 7634 case LibFunc_sqrt_finite: 7635 case LibFunc_sqrtf_finite: 7636 case LibFunc_sqrtl_finite: 7637 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7638 return; 7639 break; 7640 case LibFunc_floor: 7641 case LibFunc_floorf: 7642 case LibFunc_floorl: 7643 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7644 return; 7645 break; 7646 case LibFunc_nearbyint: 7647 case LibFunc_nearbyintf: 7648 case LibFunc_nearbyintl: 7649 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7650 return; 7651 break; 7652 case LibFunc_ceil: 7653 case LibFunc_ceilf: 7654 case LibFunc_ceill: 7655 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7656 return; 7657 break; 7658 case LibFunc_rint: 7659 case LibFunc_rintf: 7660 case LibFunc_rintl: 7661 if (visitUnaryFloatCall(I, ISD::FRINT)) 7662 return; 7663 break; 7664 case LibFunc_round: 7665 case LibFunc_roundf: 7666 case LibFunc_roundl: 7667 if (visitUnaryFloatCall(I, ISD::FROUND)) 7668 return; 7669 break; 7670 case LibFunc_trunc: 7671 case LibFunc_truncf: 7672 case LibFunc_truncl: 7673 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7674 return; 7675 break; 7676 case LibFunc_log2: 7677 case LibFunc_log2f: 7678 case LibFunc_log2l: 7679 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7680 return; 7681 break; 7682 case LibFunc_exp2: 7683 case LibFunc_exp2f: 7684 case LibFunc_exp2l: 7685 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7686 return; 7687 break; 7688 case LibFunc_memcmp: 7689 if (visitMemCmpCall(I)) 7690 return; 7691 break; 7692 case LibFunc_mempcpy: 7693 if (visitMemPCpyCall(I)) 7694 return; 7695 break; 7696 case LibFunc_memchr: 7697 if (visitMemChrCall(I)) 7698 return; 7699 break; 7700 case LibFunc_strcpy: 7701 if (visitStrCpyCall(I, false)) 7702 return; 7703 break; 7704 case LibFunc_stpcpy: 7705 if (visitStrCpyCall(I, true)) 7706 return; 7707 break; 7708 case LibFunc_strcmp: 7709 if (visitStrCmpCall(I)) 7710 return; 7711 break; 7712 case LibFunc_strlen: 7713 if (visitStrLenCall(I)) 7714 return; 7715 break; 7716 case LibFunc_strnlen: 7717 if (visitStrNLenCall(I)) 7718 return; 7719 break; 7720 } 7721 } 7722 } 7723 7724 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7725 // have to do anything here to lower funclet bundles. 7726 // CFGuardTarget bundles are lowered in LowerCallTo. 7727 assert(!I.hasOperandBundlesOtherThan( 7728 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7729 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7730 "Cannot lower calls with arbitrary operand bundles!"); 7731 7732 SDValue Callee = getValue(I.getCalledOperand()); 7733 7734 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7735 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7736 else 7737 // Check if we can potentially perform a tail call. More detailed checking 7738 // is be done within LowerCallTo, after more information about the call is 7739 // known. 7740 LowerCallTo(I, Callee, I.isTailCall()); 7741 } 7742 7743 namespace { 7744 7745 /// AsmOperandInfo - This contains information for each constraint that we are 7746 /// lowering. 7747 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7748 public: 7749 /// CallOperand - If this is the result output operand or a clobber 7750 /// this is null, otherwise it is the incoming operand to the CallInst. 7751 /// This gets modified as the asm is processed. 7752 SDValue CallOperand; 7753 7754 /// AssignedRegs - If this is a register or register class operand, this 7755 /// contains the set of register corresponding to the operand. 7756 RegsForValue AssignedRegs; 7757 7758 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7759 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7760 } 7761 7762 /// Whether or not this operand accesses memory 7763 bool hasMemory(const TargetLowering &TLI) const { 7764 // Indirect operand accesses access memory. 7765 if (isIndirect) 7766 return true; 7767 7768 for (const auto &Code : Codes) 7769 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7770 return true; 7771 7772 return false; 7773 } 7774 7775 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7776 /// corresponds to. If there is no Value* for this operand, it returns 7777 /// MVT::Other. 7778 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7779 const DataLayout &DL) const { 7780 if (!CallOperandVal) return MVT::Other; 7781 7782 if (isa<BasicBlock>(CallOperandVal)) 7783 return TLI.getProgramPointerTy(DL); 7784 7785 llvm::Type *OpTy = CallOperandVal->getType(); 7786 7787 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7788 // If this is an indirect operand, the operand is a pointer to the 7789 // accessed type. 7790 if (isIndirect) { 7791 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7792 if (!PtrTy) 7793 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7794 OpTy = PtrTy->getElementType(); 7795 } 7796 7797 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7798 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7799 if (STy->getNumElements() == 1) 7800 OpTy = STy->getElementType(0); 7801 7802 // If OpTy is not a single value, it may be a struct/union that we 7803 // can tile with integers. 7804 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7805 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7806 switch (BitSize) { 7807 default: break; 7808 case 1: 7809 case 8: 7810 case 16: 7811 case 32: 7812 case 64: 7813 case 128: 7814 OpTy = IntegerType::get(Context, BitSize); 7815 break; 7816 } 7817 } 7818 7819 return TLI.getValueType(DL, OpTy, true); 7820 } 7821 }; 7822 7823 7824 } // end anonymous namespace 7825 7826 /// Make sure that the output operand \p OpInfo and its corresponding input 7827 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7828 /// out). 7829 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7830 SDISelAsmOperandInfo &MatchingOpInfo, 7831 SelectionDAG &DAG) { 7832 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7833 return; 7834 7835 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7836 const auto &TLI = DAG.getTargetLoweringInfo(); 7837 7838 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7839 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7840 OpInfo.ConstraintVT); 7841 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7842 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7843 MatchingOpInfo.ConstraintVT); 7844 if ((OpInfo.ConstraintVT.isInteger() != 7845 MatchingOpInfo.ConstraintVT.isInteger()) || 7846 (MatchRC.second != InputRC.second)) { 7847 // FIXME: error out in a more elegant fashion 7848 report_fatal_error("Unsupported asm: input constraint" 7849 " with a matching output constraint of" 7850 " incompatible type!"); 7851 } 7852 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7853 } 7854 7855 /// Get a direct memory input to behave well as an indirect operand. 7856 /// This may introduce stores, hence the need for a \p Chain. 7857 /// \return The (possibly updated) chain. 7858 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7859 SDISelAsmOperandInfo &OpInfo, 7860 SelectionDAG &DAG) { 7861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7862 7863 // If we don't have an indirect input, put it in the constpool if we can, 7864 // otherwise spill it to a stack slot. 7865 // TODO: This isn't quite right. We need to handle these according to 7866 // the addressing mode that the constraint wants. Also, this may take 7867 // an additional register for the computation and we don't want that 7868 // either. 7869 7870 // If the operand is a float, integer, or vector constant, spill to a 7871 // constant pool entry to get its address. 7872 const Value *OpVal = OpInfo.CallOperandVal; 7873 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7874 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7875 OpInfo.CallOperand = DAG.getConstantPool( 7876 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7877 return Chain; 7878 } 7879 7880 // Otherwise, create a stack slot and emit a store to it before the asm. 7881 Type *Ty = OpVal->getType(); 7882 auto &DL = DAG.getDataLayout(); 7883 uint64_t TySize = DL.getTypeAllocSize(Ty); 7884 MachineFunction &MF = DAG.getMachineFunction(); 7885 int SSFI = MF.getFrameInfo().CreateStackObject( 7886 TySize, DL.getPrefTypeAlign(Ty), false); 7887 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7888 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7889 MachinePointerInfo::getFixedStack(MF, SSFI), 7890 TLI.getMemValueType(DL, Ty)); 7891 OpInfo.CallOperand = StackSlot; 7892 7893 return Chain; 7894 } 7895 7896 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7897 /// specified operand. We prefer to assign virtual registers, to allow the 7898 /// register allocator to handle the assignment process. However, if the asm 7899 /// uses features that we can't model on machineinstrs, we have SDISel do the 7900 /// allocation. This produces generally horrible, but correct, code. 7901 /// 7902 /// OpInfo describes the operand 7903 /// RefOpInfo describes the matching operand if any, the operand otherwise 7904 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7905 SDISelAsmOperandInfo &OpInfo, 7906 SDISelAsmOperandInfo &RefOpInfo) { 7907 LLVMContext &Context = *DAG.getContext(); 7908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7909 7910 MachineFunction &MF = DAG.getMachineFunction(); 7911 SmallVector<unsigned, 4> Regs; 7912 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7913 7914 // No work to do for memory operations. 7915 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7916 return; 7917 7918 // If this is a constraint for a single physreg, or a constraint for a 7919 // register class, find it. 7920 unsigned AssignedReg; 7921 const TargetRegisterClass *RC; 7922 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7923 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7924 // RC is unset only on failure. Return immediately. 7925 if (!RC) 7926 return; 7927 7928 // Get the actual register value type. This is important, because the user 7929 // may have asked for (e.g.) the AX register in i32 type. We need to 7930 // remember that AX is actually i16 to get the right extension. 7931 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7932 7933 if (OpInfo.ConstraintVT != MVT::Other) { 7934 // If this is an FP operand in an integer register (or visa versa), or more 7935 // generally if the operand value disagrees with the register class we plan 7936 // to stick it in, fix the operand type. 7937 // 7938 // If this is an input value, the bitcast to the new type is done now. 7939 // Bitcast for output value is done at the end of visitInlineAsm(). 7940 if ((OpInfo.Type == InlineAsm::isOutput || 7941 OpInfo.Type == InlineAsm::isInput) && 7942 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7943 // Try to convert to the first EVT that the reg class contains. If the 7944 // types are identical size, use a bitcast to convert (e.g. two differing 7945 // vector types). Note: output bitcast is done at the end of 7946 // visitInlineAsm(). 7947 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7948 // Exclude indirect inputs while they are unsupported because the code 7949 // to perform the load is missing and thus OpInfo.CallOperand still 7950 // refers to the input address rather than the pointed-to value. 7951 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7952 OpInfo.CallOperand = 7953 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7954 OpInfo.ConstraintVT = RegVT; 7955 // If the operand is an FP value and we want it in integer registers, 7956 // use the corresponding integer type. This turns an f64 value into 7957 // i64, which can be passed with two i32 values on a 32-bit machine. 7958 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7959 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7960 if (OpInfo.Type == InlineAsm::isInput) 7961 OpInfo.CallOperand = 7962 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7963 OpInfo.ConstraintVT = VT; 7964 } 7965 } 7966 } 7967 7968 // No need to allocate a matching input constraint since the constraint it's 7969 // matching to has already been allocated. 7970 if (OpInfo.isMatchingInputConstraint()) 7971 return; 7972 7973 EVT ValueVT = OpInfo.ConstraintVT; 7974 if (OpInfo.ConstraintVT == MVT::Other) 7975 ValueVT = RegVT; 7976 7977 // Initialize NumRegs. 7978 unsigned NumRegs = 1; 7979 if (OpInfo.ConstraintVT != MVT::Other) 7980 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7981 7982 // If this is a constraint for a specific physical register, like {r17}, 7983 // assign it now. 7984 7985 // If this associated to a specific register, initialize iterator to correct 7986 // place. If virtual, make sure we have enough registers 7987 7988 // Initialize iterator if necessary 7989 TargetRegisterClass::iterator I = RC->begin(); 7990 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7991 7992 // Do not check for single registers. 7993 if (AssignedReg) { 7994 for (; *I != AssignedReg; ++I) 7995 assert(I != RC->end() && "AssignedReg should be member of RC"); 7996 } 7997 7998 for (; NumRegs; --NumRegs, ++I) { 7999 assert(I != RC->end() && "Ran out of registers to allocate!"); 8000 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8001 Regs.push_back(R); 8002 } 8003 8004 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8005 } 8006 8007 static unsigned 8008 findMatchingInlineAsmOperand(unsigned OperandNo, 8009 const std::vector<SDValue> &AsmNodeOperands) { 8010 // Scan until we find the definition we already emitted of this operand. 8011 unsigned CurOp = InlineAsm::Op_FirstOperand; 8012 for (; OperandNo; --OperandNo) { 8013 // Advance to the next operand. 8014 unsigned OpFlag = 8015 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8016 assert((InlineAsm::isRegDefKind(OpFlag) || 8017 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8018 InlineAsm::isMemKind(OpFlag)) && 8019 "Skipped past definitions?"); 8020 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8021 } 8022 return CurOp; 8023 } 8024 8025 namespace { 8026 8027 class ExtraFlags { 8028 unsigned Flags = 0; 8029 8030 public: 8031 explicit ExtraFlags(const CallBase &Call) { 8032 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8033 if (IA->hasSideEffects()) 8034 Flags |= InlineAsm::Extra_HasSideEffects; 8035 if (IA->isAlignStack()) 8036 Flags |= InlineAsm::Extra_IsAlignStack; 8037 if (Call.isConvergent()) 8038 Flags |= InlineAsm::Extra_IsConvergent; 8039 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8040 } 8041 8042 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8043 // Ideally, we would only check against memory constraints. However, the 8044 // meaning of an Other constraint can be target-specific and we can't easily 8045 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8046 // for Other constraints as well. 8047 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8048 OpInfo.ConstraintType == TargetLowering::C_Other) { 8049 if (OpInfo.Type == InlineAsm::isInput) 8050 Flags |= InlineAsm::Extra_MayLoad; 8051 else if (OpInfo.Type == InlineAsm::isOutput) 8052 Flags |= InlineAsm::Extra_MayStore; 8053 else if (OpInfo.Type == InlineAsm::isClobber) 8054 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8055 } 8056 } 8057 8058 unsigned get() const { return Flags; } 8059 }; 8060 8061 } // end anonymous namespace 8062 8063 /// visitInlineAsm - Handle a call to an InlineAsm object. 8064 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8065 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8066 8067 /// ConstraintOperands - Information about all of the constraints. 8068 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8069 8070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8071 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8072 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8073 8074 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8075 // AsmDialect, MayLoad, MayStore). 8076 bool HasSideEffect = IA->hasSideEffects(); 8077 ExtraFlags ExtraInfo(Call); 8078 8079 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8080 unsigned ResNo = 0; // ResNo - The result number of the next output. 8081 unsigned NumMatchingOps = 0; 8082 for (auto &T : TargetConstraints) { 8083 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8084 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8085 8086 // Compute the value type for each operand. 8087 if (OpInfo.Type == InlineAsm::isInput || 8088 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8089 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8090 8091 // Process the call argument. BasicBlocks are labels, currently appearing 8092 // only in asm's. 8093 if (isa<CallBrInst>(Call) && 8094 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8095 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8096 NumMatchingOps) && 8097 (NumMatchingOps == 0 || 8098 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8099 NumMatchingOps))) { 8100 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8101 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8102 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8103 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8104 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8105 } else { 8106 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8107 } 8108 8109 OpInfo.ConstraintVT = 8110 OpInfo 8111 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8112 .getSimpleVT(); 8113 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8114 // The return value of the call is this value. As such, there is no 8115 // corresponding argument. 8116 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8117 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8118 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8119 DAG.getDataLayout(), STy->getElementType(ResNo)); 8120 } else { 8121 assert(ResNo == 0 && "Asm only has one result!"); 8122 OpInfo.ConstraintVT = 8123 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8124 } 8125 ++ResNo; 8126 } else { 8127 OpInfo.ConstraintVT = MVT::Other; 8128 } 8129 8130 if (OpInfo.hasMatchingInput()) 8131 ++NumMatchingOps; 8132 8133 if (!HasSideEffect) 8134 HasSideEffect = OpInfo.hasMemory(TLI); 8135 8136 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8137 // FIXME: Could we compute this on OpInfo rather than T? 8138 8139 // Compute the constraint code and ConstraintType to use. 8140 TLI.ComputeConstraintToUse(T, SDValue()); 8141 8142 if (T.ConstraintType == TargetLowering::C_Immediate && 8143 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8144 // We've delayed emitting a diagnostic like the "n" constraint because 8145 // inlining could cause an integer showing up. 8146 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8147 "' expects an integer constant " 8148 "expression"); 8149 8150 ExtraInfo.update(T); 8151 } 8152 8153 8154 // We won't need to flush pending loads if this asm doesn't touch 8155 // memory and is nonvolatile. 8156 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8157 8158 bool IsCallBr = isa<CallBrInst>(Call); 8159 if (IsCallBr) { 8160 // If this is a callbr we need to flush pending exports since inlineasm_br 8161 // is a terminator. We need to do this before nodes are glued to 8162 // the inlineasm_br node. 8163 Chain = getControlRoot(); 8164 } 8165 8166 // Second pass over the constraints: compute which constraint option to use. 8167 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8168 // If this is an output operand with a matching input operand, look up the 8169 // matching input. If their types mismatch, e.g. one is an integer, the 8170 // other is floating point, or their sizes are different, flag it as an 8171 // error. 8172 if (OpInfo.hasMatchingInput()) { 8173 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8174 patchMatchingInput(OpInfo, Input, DAG); 8175 } 8176 8177 // Compute the constraint code and ConstraintType to use. 8178 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8179 8180 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8181 OpInfo.Type == InlineAsm::isClobber) 8182 continue; 8183 8184 // If this is a memory input, and if the operand is not indirect, do what we 8185 // need to provide an address for the memory input. 8186 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8187 !OpInfo.isIndirect) { 8188 assert((OpInfo.isMultipleAlternative || 8189 (OpInfo.Type == InlineAsm::isInput)) && 8190 "Can only indirectify direct input operands!"); 8191 8192 // Memory operands really want the address of the value. 8193 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8194 8195 // There is no longer a Value* corresponding to this operand. 8196 OpInfo.CallOperandVal = nullptr; 8197 8198 // It is now an indirect operand. 8199 OpInfo.isIndirect = true; 8200 } 8201 8202 } 8203 8204 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8205 std::vector<SDValue> AsmNodeOperands; 8206 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8207 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8208 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8209 8210 // If we have a !srcloc metadata node associated with it, we want to attach 8211 // this to the ultimately generated inline asm machineinstr. To do this, we 8212 // pass in the third operand as this (potentially null) inline asm MDNode. 8213 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8214 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8215 8216 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8217 // bits as operand 3. 8218 AsmNodeOperands.push_back(DAG.getTargetConstant( 8219 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8220 8221 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8222 // this, assign virtual and physical registers for inputs and otput. 8223 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8224 // Assign Registers. 8225 SDISelAsmOperandInfo &RefOpInfo = 8226 OpInfo.isMatchingInputConstraint() 8227 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8228 : OpInfo; 8229 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8230 8231 auto DetectWriteToReservedRegister = [&]() { 8232 const MachineFunction &MF = DAG.getMachineFunction(); 8233 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8234 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8235 if (Register::isPhysicalRegister(Reg) && 8236 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8237 const char *RegName = TRI.getName(Reg); 8238 emitInlineAsmError(Call, "write to reserved register '" + 8239 Twine(RegName) + "'"); 8240 return true; 8241 } 8242 } 8243 return false; 8244 }; 8245 8246 switch (OpInfo.Type) { 8247 case InlineAsm::isOutput: 8248 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8249 unsigned ConstraintID = 8250 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8251 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8252 "Failed to convert memory constraint code to constraint id."); 8253 8254 // Add information to the INLINEASM node to know about this output. 8255 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8256 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8257 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8258 MVT::i32)); 8259 AsmNodeOperands.push_back(OpInfo.CallOperand); 8260 } else { 8261 // Otherwise, this outputs to a register (directly for C_Register / 8262 // C_RegisterClass, and a target-defined fashion for 8263 // C_Immediate/C_Other). Find a register that we can use. 8264 if (OpInfo.AssignedRegs.Regs.empty()) { 8265 emitInlineAsmError( 8266 Call, "couldn't allocate output register for constraint '" + 8267 Twine(OpInfo.ConstraintCode) + "'"); 8268 return; 8269 } 8270 8271 if (DetectWriteToReservedRegister()) 8272 return; 8273 8274 // Add information to the INLINEASM node to know that this register is 8275 // set. 8276 OpInfo.AssignedRegs.AddInlineAsmOperands( 8277 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8278 : InlineAsm::Kind_RegDef, 8279 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8280 } 8281 break; 8282 8283 case InlineAsm::isInput: { 8284 SDValue InOperandVal = OpInfo.CallOperand; 8285 8286 if (OpInfo.isMatchingInputConstraint()) { 8287 // If this is required to match an output register we have already set, 8288 // just use its register. 8289 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8290 AsmNodeOperands); 8291 unsigned OpFlag = 8292 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8293 if (InlineAsm::isRegDefKind(OpFlag) || 8294 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8295 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8296 if (OpInfo.isIndirect) { 8297 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8298 emitInlineAsmError(Call, "inline asm not supported yet: " 8299 "don't know how to handle tied " 8300 "indirect register inputs"); 8301 return; 8302 } 8303 8304 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8305 SmallVector<unsigned, 4> Regs; 8306 8307 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8308 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8309 MachineRegisterInfo &RegInfo = 8310 DAG.getMachineFunction().getRegInfo(); 8311 for (unsigned i = 0; i != NumRegs; ++i) 8312 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8313 } else { 8314 emitInlineAsmError(Call, 8315 "inline asm error: This value type register " 8316 "class is not natively supported!"); 8317 return; 8318 } 8319 8320 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8321 8322 SDLoc dl = getCurSDLoc(); 8323 // Use the produced MatchedRegs object to 8324 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8325 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8326 true, OpInfo.getMatchedOperand(), dl, 8327 DAG, AsmNodeOperands); 8328 break; 8329 } 8330 8331 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8332 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8333 "Unexpected number of operands"); 8334 // Add information to the INLINEASM node to know about this input. 8335 // See InlineAsm.h isUseOperandTiedToDef. 8336 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8337 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8338 OpInfo.getMatchedOperand()); 8339 AsmNodeOperands.push_back(DAG.getTargetConstant( 8340 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8341 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8342 break; 8343 } 8344 8345 // Treat indirect 'X' constraint as memory. 8346 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8347 OpInfo.isIndirect) 8348 OpInfo.ConstraintType = TargetLowering::C_Memory; 8349 8350 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8351 OpInfo.ConstraintType == TargetLowering::C_Other) { 8352 std::vector<SDValue> Ops; 8353 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8354 Ops, DAG); 8355 if (Ops.empty()) { 8356 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8357 if (isa<ConstantSDNode>(InOperandVal)) { 8358 emitInlineAsmError(Call, "value out of range for constraint '" + 8359 Twine(OpInfo.ConstraintCode) + "'"); 8360 return; 8361 } 8362 8363 emitInlineAsmError(Call, 8364 "invalid operand for inline asm constraint '" + 8365 Twine(OpInfo.ConstraintCode) + "'"); 8366 return; 8367 } 8368 8369 // Add information to the INLINEASM node to know about this input. 8370 unsigned ResOpType = 8371 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8372 AsmNodeOperands.push_back(DAG.getTargetConstant( 8373 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8374 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8375 break; 8376 } 8377 8378 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8379 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8380 assert(InOperandVal.getValueType() == 8381 TLI.getPointerTy(DAG.getDataLayout()) && 8382 "Memory operands expect pointer values"); 8383 8384 unsigned ConstraintID = 8385 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8386 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8387 "Failed to convert memory constraint code to constraint id."); 8388 8389 // Add information to the INLINEASM node to know about this input. 8390 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8391 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8392 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8393 getCurSDLoc(), 8394 MVT::i32)); 8395 AsmNodeOperands.push_back(InOperandVal); 8396 break; 8397 } 8398 8399 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8400 OpInfo.ConstraintType == TargetLowering::C_Register) && 8401 "Unknown constraint type!"); 8402 8403 // TODO: Support this. 8404 if (OpInfo.isIndirect) { 8405 emitInlineAsmError( 8406 Call, "Don't know how to handle indirect register inputs yet " 8407 "for constraint '" + 8408 Twine(OpInfo.ConstraintCode) + "'"); 8409 return; 8410 } 8411 8412 // Copy the input into the appropriate registers. 8413 if (OpInfo.AssignedRegs.Regs.empty()) { 8414 emitInlineAsmError(Call, 8415 "couldn't allocate input reg for constraint '" + 8416 Twine(OpInfo.ConstraintCode) + "'"); 8417 return; 8418 } 8419 8420 if (DetectWriteToReservedRegister()) 8421 return; 8422 8423 SDLoc dl = getCurSDLoc(); 8424 8425 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8426 &Call); 8427 8428 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8429 dl, DAG, AsmNodeOperands); 8430 break; 8431 } 8432 case InlineAsm::isClobber: 8433 // Add the clobbered value to the operand list, so that the register 8434 // allocator is aware that the physreg got clobbered. 8435 if (!OpInfo.AssignedRegs.Regs.empty()) 8436 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8437 false, 0, getCurSDLoc(), DAG, 8438 AsmNodeOperands); 8439 break; 8440 } 8441 } 8442 8443 // Finish up input operands. Set the input chain and add the flag last. 8444 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8445 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8446 8447 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8448 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8449 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8450 Flag = Chain.getValue(1); 8451 8452 // Do additional work to generate outputs. 8453 8454 SmallVector<EVT, 1> ResultVTs; 8455 SmallVector<SDValue, 1> ResultValues; 8456 SmallVector<SDValue, 8> OutChains; 8457 8458 llvm::Type *CallResultType = Call.getType(); 8459 ArrayRef<Type *> ResultTypes; 8460 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8461 ResultTypes = StructResult->elements(); 8462 else if (!CallResultType->isVoidTy()) 8463 ResultTypes = makeArrayRef(CallResultType); 8464 8465 auto CurResultType = ResultTypes.begin(); 8466 auto handleRegAssign = [&](SDValue V) { 8467 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8468 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8469 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8470 ++CurResultType; 8471 // If the type of the inline asm call site return value is different but has 8472 // same size as the type of the asm output bitcast it. One example of this 8473 // is for vectors with different width / number of elements. This can 8474 // happen for register classes that can contain multiple different value 8475 // types. The preg or vreg allocated may not have the same VT as was 8476 // expected. 8477 // 8478 // This can also happen for a return value that disagrees with the register 8479 // class it is put in, eg. a double in a general-purpose register on a 8480 // 32-bit machine. 8481 if (ResultVT != V.getValueType() && 8482 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8483 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8484 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8485 V.getValueType().isInteger()) { 8486 // If a result value was tied to an input value, the computed result 8487 // may have a wider width than the expected result. Extract the 8488 // relevant portion. 8489 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8490 } 8491 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8492 ResultVTs.push_back(ResultVT); 8493 ResultValues.push_back(V); 8494 }; 8495 8496 // Deal with output operands. 8497 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8498 if (OpInfo.Type == InlineAsm::isOutput) { 8499 SDValue Val; 8500 // Skip trivial output operands. 8501 if (OpInfo.AssignedRegs.Regs.empty()) 8502 continue; 8503 8504 switch (OpInfo.ConstraintType) { 8505 case TargetLowering::C_Register: 8506 case TargetLowering::C_RegisterClass: 8507 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8508 Chain, &Flag, &Call); 8509 break; 8510 case TargetLowering::C_Immediate: 8511 case TargetLowering::C_Other: 8512 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8513 OpInfo, DAG); 8514 break; 8515 case TargetLowering::C_Memory: 8516 break; // Already handled. 8517 case TargetLowering::C_Unknown: 8518 assert(false && "Unexpected unknown constraint"); 8519 } 8520 8521 // Indirect output manifest as stores. Record output chains. 8522 if (OpInfo.isIndirect) { 8523 const Value *Ptr = OpInfo.CallOperandVal; 8524 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8525 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8526 MachinePointerInfo(Ptr)); 8527 OutChains.push_back(Store); 8528 } else { 8529 // generate CopyFromRegs to associated registers. 8530 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8531 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8532 for (const SDValue &V : Val->op_values()) 8533 handleRegAssign(V); 8534 } else 8535 handleRegAssign(Val); 8536 } 8537 } 8538 } 8539 8540 // Set results. 8541 if (!ResultValues.empty()) { 8542 assert(CurResultType == ResultTypes.end() && 8543 "Mismatch in number of ResultTypes"); 8544 assert(ResultValues.size() == ResultTypes.size() && 8545 "Mismatch in number of output operands in asm result"); 8546 8547 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8548 DAG.getVTList(ResultVTs), ResultValues); 8549 setValue(&Call, V); 8550 } 8551 8552 // Collect store chains. 8553 if (!OutChains.empty()) 8554 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8555 8556 // Only Update Root if inline assembly has a memory effect. 8557 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8558 DAG.setRoot(Chain); 8559 } 8560 8561 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8562 const Twine &Message) { 8563 LLVMContext &Ctx = *DAG.getContext(); 8564 Ctx.emitError(&Call, Message); 8565 8566 // Make sure we leave the DAG in a valid state 8567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8568 SmallVector<EVT, 1> ValueVTs; 8569 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8570 8571 if (ValueVTs.empty()) 8572 return; 8573 8574 SmallVector<SDValue, 1> Ops; 8575 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8576 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8577 8578 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8579 } 8580 8581 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8582 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8583 MVT::Other, getRoot(), 8584 getValue(I.getArgOperand(0)), 8585 DAG.getSrcValue(I.getArgOperand(0)))); 8586 } 8587 8588 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8589 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8590 const DataLayout &DL = DAG.getDataLayout(); 8591 SDValue V = DAG.getVAArg( 8592 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8593 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8594 DL.getABITypeAlign(I.getType()).value()); 8595 DAG.setRoot(V.getValue(1)); 8596 8597 if (I.getType()->isPointerTy()) 8598 V = DAG.getPtrExtOrTrunc( 8599 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8600 setValue(&I, V); 8601 } 8602 8603 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8604 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8605 MVT::Other, getRoot(), 8606 getValue(I.getArgOperand(0)), 8607 DAG.getSrcValue(I.getArgOperand(0)))); 8608 } 8609 8610 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8611 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8612 MVT::Other, getRoot(), 8613 getValue(I.getArgOperand(0)), 8614 getValue(I.getArgOperand(1)), 8615 DAG.getSrcValue(I.getArgOperand(0)), 8616 DAG.getSrcValue(I.getArgOperand(1)))); 8617 } 8618 8619 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8620 const Instruction &I, 8621 SDValue Op) { 8622 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8623 if (!Range) 8624 return Op; 8625 8626 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8627 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8628 return Op; 8629 8630 APInt Lo = CR.getUnsignedMin(); 8631 if (!Lo.isMinValue()) 8632 return Op; 8633 8634 APInt Hi = CR.getUnsignedMax(); 8635 unsigned Bits = std::max(Hi.getActiveBits(), 8636 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8637 8638 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8639 8640 SDLoc SL = getCurSDLoc(); 8641 8642 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8643 DAG.getValueType(SmallVT)); 8644 unsigned NumVals = Op.getNode()->getNumValues(); 8645 if (NumVals == 1) 8646 return ZExt; 8647 8648 SmallVector<SDValue, 4> Ops; 8649 8650 Ops.push_back(ZExt); 8651 for (unsigned I = 1; I != NumVals; ++I) 8652 Ops.push_back(Op.getValue(I)); 8653 8654 return DAG.getMergeValues(Ops, SL); 8655 } 8656 8657 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8658 /// the call being lowered. 8659 /// 8660 /// This is a helper for lowering intrinsics that follow a target calling 8661 /// convention or require stack pointer adjustment. Only a subset of the 8662 /// intrinsic's operands need to participate in the calling convention. 8663 void SelectionDAGBuilder::populateCallLoweringInfo( 8664 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8665 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8666 bool IsPatchPoint) { 8667 TargetLowering::ArgListTy Args; 8668 Args.reserve(NumArgs); 8669 8670 // Populate the argument list. 8671 // Attributes for args start at offset 1, after the return attribute. 8672 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8673 ArgI != ArgE; ++ArgI) { 8674 const Value *V = Call->getOperand(ArgI); 8675 8676 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8677 8678 TargetLowering::ArgListEntry Entry; 8679 Entry.Node = getValue(V); 8680 Entry.Ty = V->getType(); 8681 Entry.setAttributes(Call, ArgI); 8682 Args.push_back(Entry); 8683 } 8684 8685 CLI.setDebugLoc(getCurSDLoc()) 8686 .setChain(getRoot()) 8687 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8688 .setDiscardResult(Call->use_empty()) 8689 .setIsPatchPoint(IsPatchPoint) 8690 .setIsPreallocated( 8691 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8692 } 8693 8694 /// Add a stack map intrinsic call's live variable operands to a stackmap 8695 /// or patchpoint target node's operand list. 8696 /// 8697 /// Constants are converted to TargetConstants purely as an optimization to 8698 /// avoid constant materialization and register allocation. 8699 /// 8700 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8701 /// generate addess computation nodes, and so FinalizeISel can convert the 8702 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8703 /// address materialization and register allocation, but may also be required 8704 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8705 /// alloca in the entry block, then the runtime may assume that the alloca's 8706 /// StackMap location can be read immediately after compilation and that the 8707 /// location is valid at any point during execution (this is similar to the 8708 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8709 /// only available in a register, then the runtime would need to trap when 8710 /// execution reaches the StackMap in order to read the alloca's location. 8711 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8712 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8713 SelectionDAGBuilder &Builder) { 8714 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8715 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8716 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8717 Ops.push_back( 8718 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8719 Ops.push_back( 8720 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8721 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8722 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8723 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8724 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8725 } else 8726 Ops.push_back(OpVal); 8727 } 8728 } 8729 8730 /// Lower llvm.experimental.stackmap directly to its target opcode. 8731 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8732 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8733 // [live variables...]) 8734 8735 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8736 8737 SDValue Chain, InFlag, Callee, NullPtr; 8738 SmallVector<SDValue, 32> Ops; 8739 8740 SDLoc DL = getCurSDLoc(); 8741 Callee = getValue(CI.getCalledOperand()); 8742 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8743 8744 // The stackmap intrinsic only records the live variables (the arguments 8745 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8746 // intrinsic, this won't be lowered to a function call. This means we don't 8747 // have to worry about calling conventions and target specific lowering code. 8748 // Instead we perform the call lowering right here. 8749 // 8750 // chain, flag = CALLSEQ_START(chain, 0, 0) 8751 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8752 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8753 // 8754 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8755 InFlag = Chain.getValue(1); 8756 8757 // Add the <id> and <numBytes> constants. 8758 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8759 Ops.push_back(DAG.getTargetConstant( 8760 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8761 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8762 Ops.push_back(DAG.getTargetConstant( 8763 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8764 MVT::i32)); 8765 8766 // Push live variables for the stack map. 8767 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8768 8769 // We are not pushing any register mask info here on the operands list, 8770 // because the stackmap doesn't clobber anything. 8771 8772 // Push the chain and the glue flag. 8773 Ops.push_back(Chain); 8774 Ops.push_back(InFlag); 8775 8776 // Create the STACKMAP node. 8777 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8778 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8779 Chain = SDValue(SM, 0); 8780 InFlag = Chain.getValue(1); 8781 8782 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8783 8784 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8785 8786 // Set the root to the target-lowered call chain. 8787 DAG.setRoot(Chain); 8788 8789 // Inform the Frame Information that we have a stackmap in this function. 8790 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8791 } 8792 8793 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8794 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8795 const BasicBlock *EHPadBB) { 8796 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8797 // i32 <numBytes>, 8798 // i8* <target>, 8799 // i32 <numArgs>, 8800 // [Args...], 8801 // [live variables...]) 8802 8803 CallingConv::ID CC = CB.getCallingConv(); 8804 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8805 bool HasDef = !CB.getType()->isVoidTy(); 8806 SDLoc dl = getCurSDLoc(); 8807 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8808 8809 // Handle immediate and symbolic callees. 8810 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8811 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8812 /*isTarget=*/true); 8813 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8814 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8815 SDLoc(SymbolicCallee), 8816 SymbolicCallee->getValueType(0)); 8817 8818 // Get the real number of arguments participating in the call <numArgs> 8819 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8820 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8821 8822 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8823 // Intrinsics include all meta-operands up to but not including CC. 8824 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8825 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8826 "Not enough arguments provided to the patchpoint intrinsic"); 8827 8828 // For AnyRegCC the arguments are lowered later on manually. 8829 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8830 Type *ReturnTy = 8831 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8832 8833 TargetLowering::CallLoweringInfo CLI(DAG); 8834 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8835 ReturnTy, true); 8836 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8837 8838 SDNode *CallEnd = Result.second.getNode(); 8839 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8840 CallEnd = CallEnd->getOperand(0).getNode(); 8841 8842 /// Get a call instruction from the call sequence chain. 8843 /// Tail calls are not allowed. 8844 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8845 "Expected a callseq node."); 8846 SDNode *Call = CallEnd->getOperand(0).getNode(); 8847 bool HasGlue = Call->getGluedNode(); 8848 8849 // Replace the target specific call node with the patchable intrinsic. 8850 SmallVector<SDValue, 8> Ops; 8851 8852 // Add the <id> and <numBytes> constants. 8853 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8854 Ops.push_back(DAG.getTargetConstant( 8855 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8856 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8857 Ops.push_back(DAG.getTargetConstant( 8858 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8859 MVT::i32)); 8860 8861 // Add the callee. 8862 Ops.push_back(Callee); 8863 8864 // Adjust <numArgs> to account for any arguments that have been passed on the 8865 // stack instead. 8866 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8867 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8868 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8869 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8870 8871 // Add the calling convention 8872 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8873 8874 // Add the arguments we omitted previously. The register allocator should 8875 // place these in any free register. 8876 if (IsAnyRegCC) 8877 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8878 Ops.push_back(getValue(CB.getArgOperand(i))); 8879 8880 // Push the arguments from the call instruction up to the register mask. 8881 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8882 Ops.append(Call->op_begin() + 2, e); 8883 8884 // Push live variables for the stack map. 8885 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8886 8887 // Push the register mask info. 8888 if (HasGlue) 8889 Ops.push_back(*(Call->op_end()-2)); 8890 else 8891 Ops.push_back(*(Call->op_end()-1)); 8892 8893 // Push the chain (this is originally the first operand of the call, but 8894 // becomes now the last or second to last operand). 8895 Ops.push_back(*(Call->op_begin())); 8896 8897 // Push the glue flag (last operand). 8898 if (HasGlue) 8899 Ops.push_back(*(Call->op_end()-1)); 8900 8901 SDVTList NodeTys; 8902 if (IsAnyRegCC && HasDef) { 8903 // Create the return types based on the intrinsic definition 8904 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8905 SmallVector<EVT, 3> ValueVTs; 8906 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8907 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8908 8909 // There is always a chain and a glue type at the end 8910 ValueVTs.push_back(MVT::Other); 8911 ValueVTs.push_back(MVT::Glue); 8912 NodeTys = DAG.getVTList(ValueVTs); 8913 } else 8914 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8915 8916 // Replace the target specific call node with a PATCHPOINT node. 8917 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8918 dl, NodeTys, Ops); 8919 8920 // Update the NodeMap. 8921 if (HasDef) { 8922 if (IsAnyRegCC) 8923 setValue(&CB, SDValue(MN, 0)); 8924 else 8925 setValue(&CB, Result.first); 8926 } 8927 8928 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8929 // call sequence. Furthermore the location of the chain and glue can change 8930 // when the AnyReg calling convention is used and the intrinsic returns a 8931 // value. 8932 if (IsAnyRegCC && HasDef) { 8933 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8934 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8935 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8936 } else 8937 DAG.ReplaceAllUsesWith(Call, MN); 8938 DAG.DeleteNode(Call); 8939 8940 // Inform the Frame Information that we have a patchpoint in this function. 8941 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8942 } 8943 8944 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8945 unsigned Intrinsic) { 8946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8947 SDValue Op1 = getValue(I.getArgOperand(0)); 8948 SDValue Op2; 8949 if (I.getNumArgOperands() > 1) 8950 Op2 = getValue(I.getArgOperand(1)); 8951 SDLoc dl = getCurSDLoc(); 8952 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8953 SDValue Res; 8954 FastMathFlags FMF; 8955 if (isa<FPMathOperator>(I)) 8956 FMF = I.getFastMathFlags(); 8957 8958 switch (Intrinsic) { 8959 case Intrinsic::experimental_vector_reduce_v2_fadd: 8960 if (FMF.allowReassoc()) 8961 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8962 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8963 else 8964 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8965 break; 8966 case Intrinsic::experimental_vector_reduce_v2_fmul: 8967 if (FMF.allowReassoc()) 8968 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8969 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8970 else 8971 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8972 break; 8973 case Intrinsic::experimental_vector_reduce_add: 8974 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8975 break; 8976 case Intrinsic::experimental_vector_reduce_mul: 8977 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8978 break; 8979 case Intrinsic::experimental_vector_reduce_and: 8980 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8981 break; 8982 case Intrinsic::experimental_vector_reduce_or: 8983 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8984 break; 8985 case Intrinsic::experimental_vector_reduce_xor: 8986 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8987 break; 8988 case Intrinsic::experimental_vector_reduce_smax: 8989 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8990 break; 8991 case Intrinsic::experimental_vector_reduce_smin: 8992 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8993 break; 8994 case Intrinsic::experimental_vector_reduce_umax: 8995 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8996 break; 8997 case Intrinsic::experimental_vector_reduce_umin: 8998 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8999 break; 9000 case Intrinsic::experimental_vector_reduce_fmax: 9001 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9002 break; 9003 case Intrinsic::experimental_vector_reduce_fmin: 9004 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9005 break; 9006 default: 9007 llvm_unreachable("Unhandled vector reduce intrinsic"); 9008 } 9009 setValue(&I, Res); 9010 } 9011 9012 /// Returns an AttributeList representing the attributes applied to the return 9013 /// value of the given call. 9014 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9015 SmallVector<Attribute::AttrKind, 2> Attrs; 9016 if (CLI.RetSExt) 9017 Attrs.push_back(Attribute::SExt); 9018 if (CLI.RetZExt) 9019 Attrs.push_back(Attribute::ZExt); 9020 if (CLI.IsInReg) 9021 Attrs.push_back(Attribute::InReg); 9022 9023 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9024 Attrs); 9025 } 9026 9027 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9028 /// implementation, which just calls LowerCall. 9029 /// FIXME: When all targets are 9030 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9031 std::pair<SDValue, SDValue> 9032 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9033 // Handle the incoming return values from the call. 9034 CLI.Ins.clear(); 9035 Type *OrigRetTy = CLI.RetTy; 9036 SmallVector<EVT, 4> RetTys; 9037 SmallVector<uint64_t, 4> Offsets; 9038 auto &DL = CLI.DAG.getDataLayout(); 9039 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9040 9041 if (CLI.IsPostTypeLegalization) { 9042 // If we are lowering a libcall after legalization, split the return type. 9043 SmallVector<EVT, 4> OldRetTys; 9044 SmallVector<uint64_t, 4> OldOffsets; 9045 RetTys.swap(OldRetTys); 9046 Offsets.swap(OldOffsets); 9047 9048 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9049 EVT RetVT = OldRetTys[i]; 9050 uint64_t Offset = OldOffsets[i]; 9051 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9052 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9053 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9054 RetTys.append(NumRegs, RegisterVT); 9055 for (unsigned j = 0; j != NumRegs; ++j) 9056 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9057 } 9058 } 9059 9060 SmallVector<ISD::OutputArg, 4> Outs; 9061 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9062 9063 bool CanLowerReturn = 9064 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9065 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9066 9067 SDValue DemoteStackSlot; 9068 int DemoteStackIdx = -100; 9069 if (!CanLowerReturn) { 9070 // FIXME: equivalent assert? 9071 // assert(!CS.hasInAllocaArgument() && 9072 // "sret demotion is incompatible with inalloca"); 9073 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9074 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9075 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9076 DemoteStackIdx = 9077 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9078 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9079 DL.getAllocaAddrSpace()); 9080 9081 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9082 ArgListEntry Entry; 9083 Entry.Node = DemoteStackSlot; 9084 Entry.Ty = StackSlotPtrType; 9085 Entry.IsSExt = false; 9086 Entry.IsZExt = false; 9087 Entry.IsInReg = false; 9088 Entry.IsSRet = true; 9089 Entry.IsNest = false; 9090 Entry.IsByVal = false; 9091 Entry.IsByRef = false; 9092 Entry.IsReturned = false; 9093 Entry.IsSwiftSelf = false; 9094 Entry.IsSwiftError = false; 9095 Entry.IsCFGuardTarget = false; 9096 Entry.Alignment = Alignment; 9097 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9098 CLI.NumFixedArgs += 1; 9099 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9100 9101 // sret demotion isn't compatible with tail-calls, since the sret argument 9102 // points into the callers stack frame. 9103 CLI.IsTailCall = false; 9104 } else { 9105 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9106 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9107 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9108 ISD::ArgFlagsTy Flags; 9109 if (NeedsRegBlock) { 9110 Flags.setInConsecutiveRegs(); 9111 if (I == RetTys.size() - 1) 9112 Flags.setInConsecutiveRegsLast(); 9113 } 9114 EVT VT = RetTys[I]; 9115 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9116 CLI.CallConv, VT); 9117 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9118 CLI.CallConv, VT); 9119 for (unsigned i = 0; i != NumRegs; ++i) { 9120 ISD::InputArg MyFlags; 9121 MyFlags.Flags = Flags; 9122 MyFlags.VT = RegisterVT; 9123 MyFlags.ArgVT = VT; 9124 MyFlags.Used = CLI.IsReturnValueUsed; 9125 if (CLI.RetTy->isPointerTy()) { 9126 MyFlags.Flags.setPointer(); 9127 MyFlags.Flags.setPointerAddrSpace( 9128 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9129 } 9130 if (CLI.RetSExt) 9131 MyFlags.Flags.setSExt(); 9132 if (CLI.RetZExt) 9133 MyFlags.Flags.setZExt(); 9134 if (CLI.IsInReg) 9135 MyFlags.Flags.setInReg(); 9136 CLI.Ins.push_back(MyFlags); 9137 } 9138 } 9139 } 9140 9141 // We push in swifterror return as the last element of CLI.Ins. 9142 ArgListTy &Args = CLI.getArgs(); 9143 if (supportSwiftError()) { 9144 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9145 if (Args[i].IsSwiftError) { 9146 ISD::InputArg MyFlags; 9147 MyFlags.VT = getPointerTy(DL); 9148 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9149 MyFlags.Flags.setSwiftError(); 9150 CLI.Ins.push_back(MyFlags); 9151 } 9152 } 9153 } 9154 9155 // Handle all of the outgoing arguments. 9156 CLI.Outs.clear(); 9157 CLI.OutVals.clear(); 9158 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9159 SmallVector<EVT, 4> ValueVTs; 9160 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9161 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9162 Type *FinalType = Args[i].Ty; 9163 if (Args[i].IsByVal) 9164 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9165 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9166 FinalType, CLI.CallConv, CLI.IsVarArg); 9167 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9168 ++Value) { 9169 EVT VT = ValueVTs[Value]; 9170 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9171 SDValue Op = SDValue(Args[i].Node.getNode(), 9172 Args[i].Node.getResNo() + Value); 9173 ISD::ArgFlagsTy Flags; 9174 9175 // Certain targets (such as MIPS), may have a different ABI alignment 9176 // for a type depending on the context. Give the target a chance to 9177 // specify the alignment it wants. 9178 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9179 9180 if (Args[i].Ty->isPointerTy()) { 9181 Flags.setPointer(); 9182 Flags.setPointerAddrSpace( 9183 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9184 } 9185 if (Args[i].IsZExt) 9186 Flags.setZExt(); 9187 if (Args[i].IsSExt) 9188 Flags.setSExt(); 9189 if (Args[i].IsInReg) { 9190 // If we are using vectorcall calling convention, a structure that is 9191 // passed InReg - is surely an HVA 9192 if (CLI.CallConv == CallingConv::X86_VectorCall && 9193 isa<StructType>(FinalType)) { 9194 // The first value of a structure is marked 9195 if (0 == Value) 9196 Flags.setHvaStart(); 9197 Flags.setHva(); 9198 } 9199 // Set InReg Flag 9200 Flags.setInReg(); 9201 } 9202 if (Args[i].IsSRet) 9203 Flags.setSRet(); 9204 if (Args[i].IsSwiftSelf) 9205 Flags.setSwiftSelf(); 9206 if (Args[i].IsSwiftError) 9207 Flags.setSwiftError(); 9208 if (Args[i].IsCFGuardTarget) 9209 Flags.setCFGuardTarget(); 9210 if (Args[i].IsByVal) 9211 Flags.setByVal(); 9212 if (Args[i].IsByRef) 9213 Flags.setByRef(); 9214 if (Args[i].IsPreallocated) { 9215 Flags.setPreallocated(); 9216 // Set the byval flag for CCAssignFn callbacks that don't know about 9217 // preallocated. This way we can know how many bytes we should've 9218 // allocated and how many bytes a callee cleanup function will pop. If 9219 // we port preallocated to more targets, we'll have to add custom 9220 // preallocated handling in the various CC lowering callbacks. 9221 Flags.setByVal(); 9222 } 9223 if (Args[i].IsInAlloca) { 9224 Flags.setInAlloca(); 9225 // Set the byval flag for CCAssignFn callbacks that don't know about 9226 // inalloca. This way we can know how many bytes we should've allocated 9227 // and how many bytes a callee cleanup function will pop. If we port 9228 // inalloca to more targets, we'll have to add custom inalloca handling 9229 // in the various CC lowering callbacks. 9230 Flags.setByVal(); 9231 } 9232 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9233 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9234 Type *ElementTy = Ty->getElementType(); 9235 9236 unsigned FrameSize = DL.getTypeAllocSize( 9237 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9238 Flags.setByValSize(FrameSize); 9239 9240 // info is not there but there are cases it cannot get right. 9241 Align FrameAlign; 9242 if (auto MA = Args[i].Alignment) 9243 FrameAlign = *MA; 9244 else 9245 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9246 Flags.setByValAlign(FrameAlign); 9247 } 9248 if (Args[i].IsNest) 9249 Flags.setNest(); 9250 if (NeedsRegBlock) 9251 Flags.setInConsecutiveRegs(); 9252 Flags.setOrigAlign(OriginalAlignment); 9253 9254 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9255 CLI.CallConv, VT); 9256 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9257 CLI.CallConv, VT); 9258 SmallVector<SDValue, 4> Parts(NumParts); 9259 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9260 9261 if (Args[i].IsSExt) 9262 ExtendKind = ISD::SIGN_EXTEND; 9263 else if (Args[i].IsZExt) 9264 ExtendKind = ISD::ZERO_EXTEND; 9265 9266 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9267 // for now. 9268 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9269 CanLowerReturn) { 9270 assert((CLI.RetTy == Args[i].Ty || 9271 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9272 CLI.RetTy->getPointerAddressSpace() == 9273 Args[i].Ty->getPointerAddressSpace())) && 9274 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9275 // Before passing 'returned' to the target lowering code, ensure that 9276 // either the register MVT and the actual EVT are the same size or that 9277 // the return value and argument are extended in the same way; in these 9278 // cases it's safe to pass the argument register value unchanged as the 9279 // return register value (although it's at the target's option whether 9280 // to do so) 9281 // TODO: allow code generation to take advantage of partially preserved 9282 // registers rather than clobbering the entire register when the 9283 // parameter extension method is not compatible with the return 9284 // extension method 9285 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9286 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9287 CLI.RetZExt == Args[i].IsZExt)) 9288 Flags.setReturned(); 9289 } 9290 9291 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9292 CLI.CallConv, ExtendKind); 9293 9294 for (unsigned j = 0; j != NumParts; ++j) { 9295 // if it isn't first piece, alignment must be 1 9296 // For scalable vectors the scalable part is currently handled 9297 // by individual targets, so we just use the known minimum size here. 9298 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9299 i < CLI.NumFixedArgs, i, 9300 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9301 if (NumParts > 1 && j == 0) 9302 MyFlags.Flags.setSplit(); 9303 else if (j != 0) { 9304 MyFlags.Flags.setOrigAlign(Align(1)); 9305 if (j == NumParts - 1) 9306 MyFlags.Flags.setSplitEnd(); 9307 } 9308 9309 CLI.Outs.push_back(MyFlags); 9310 CLI.OutVals.push_back(Parts[j]); 9311 } 9312 9313 if (NeedsRegBlock && Value == NumValues - 1) 9314 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9315 } 9316 } 9317 9318 SmallVector<SDValue, 4> InVals; 9319 CLI.Chain = LowerCall(CLI, InVals); 9320 9321 // Update CLI.InVals to use outside of this function. 9322 CLI.InVals = InVals; 9323 9324 // Verify that the target's LowerCall behaved as expected. 9325 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9326 "LowerCall didn't return a valid chain!"); 9327 assert((!CLI.IsTailCall || InVals.empty()) && 9328 "LowerCall emitted a return value for a tail call!"); 9329 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9330 "LowerCall didn't emit the correct number of values!"); 9331 9332 // For a tail call, the return value is merely live-out and there aren't 9333 // any nodes in the DAG representing it. Return a special value to 9334 // indicate that a tail call has been emitted and no more Instructions 9335 // should be processed in the current block. 9336 if (CLI.IsTailCall) { 9337 CLI.DAG.setRoot(CLI.Chain); 9338 return std::make_pair(SDValue(), SDValue()); 9339 } 9340 9341 #ifndef NDEBUG 9342 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9343 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9344 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9345 "LowerCall emitted a value with the wrong type!"); 9346 } 9347 #endif 9348 9349 SmallVector<SDValue, 4> ReturnValues; 9350 if (!CanLowerReturn) { 9351 // The instruction result is the result of loading from the 9352 // hidden sret parameter. 9353 SmallVector<EVT, 1> PVTs; 9354 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9355 9356 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9357 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9358 EVT PtrVT = PVTs[0]; 9359 9360 unsigned NumValues = RetTys.size(); 9361 ReturnValues.resize(NumValues); 9362 SmallVector<SDValue, 4> Chains(NumValues); 9363 9364 // An aggregate return value cannot wrap around the address space, so 9365 // offsets to its parts don't wrap either. 9366 SDNodeFlags Flags; 9367 Flags.setNoUnsignedWrap(true); 9368 9369 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9370 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9371 for (unsigned i = 0; i < NumValues; ++i) { 9372 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9373 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9374 PtrVT), Flags); 9375 SDValue L = CLI.DAG.getLoad( 9376 RetTys[i], CLI.DL, CLI.Chain, Add, 9377 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9378 DemoteStackIdx, Offsets[i]), 9379 HiddenSRetAlign); 9380 ReturnValues[i] = L; 9381 Chains[i] = L.getValue(1); 9382 } 9383 9384 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9385 } else { 9386 // Collect the legal value parts into potentially illegal values 9387 // that correspond to the original function's return values. 9388 Optional<ISD::NodeType> AssertOp; 9389 if (CLI.RetSExt) 9390 AssertOp = ISD::AssertSext; 9391 else if (CLI.RetZExt) 9392 AssertOp = ISD::AssertZext; 9393 unsigned CurReg = 0; 9394 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9395 EVT VT = RetTys[I]; 9396 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9397 CLI.CallConv, VT); 9398 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9399 CLI.CallConv, VT); 9400 9401 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9402 NumRegs, RegisterVT, VT, nullptr, 9403 CLI.CallConv, AssertOp)); 9404 CurReg += NumRegs; 9405 } 9406 9407 // For a function returning void, there is no return value. We can't create 9408 // such a node, so we just return a null return value in that case. In 9409 // that case, nothing will actually look at the value. 9410 if (ReturnValues.empty()) 9411 return std::make_pair(SDValue(), CLI.Chain); 9412 } 9413 9414 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9415 CLI.DAG.getVTList(RetTys), ReturnValues); 9416 return std::make_pair(Res, CLI.Chain); 9417 } 9418 9419 void TargetLowering::LowerOperationWrapper(SDNode *N, 9420 SmallVectorImpl<SDValue> &Results, 9421 SelectionDAG &DAG) const { 9422 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9423 Results.push_back(Res); 9424 } 9425 9426 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9427 llvm_unreachable("LowerOperation not implemented for this target!"); 9428 } 9429 9430 void 9431 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9432 SDValue Op = getNonRegisterValue(V); 9433 assert((Op.getOpcode() != ISD::CopyFromReg || 9434 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9435 "Copy from a reg to the same reg!"); 9436 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9437 9438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9439 // If this is an InlineAsm we have to match the registers required, not the 9440 // notional registers required by the type. 9441 9442 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9443 None); // This is not an ABI copy. 9444 SDValue Chain = DAG.getEntryNode(); 9445 9446 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9447 FuncInfo.PreferredExtendType.end()) 9448 ? ISD::ANY_EXTEND 9449 : FuncInfo.PreferredExtendType[V]; 9450 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9451 PendingExports.push_back(Chain); 9452 } 9453 9454 #include "llvm/CodeGen/SelectionDAGISel.h" 9455 9456 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9457 /// entry block, return true. This includes arguments used by switches, since 9458 /// the switch may expand into multiple basic blocks. 9459 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9460 // With FastISel active, we may be splitting blocks, so force creation 9461 // of virtual registers for all non-dead arguments. 9462 if (FastISel) 9463 return A->use_empty(); 9464 9465 const BasicBlock &Entry = A->getParent()->front(); 9466 for (const User *U : A->users()) 9467 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9468 return false; // Use not in entry block. 9469 9470 return true; 9471 } 9472 9473 using ArgCopyElisionMapTy = 9474 DenseMap<const Argument *, 9475 std::pair<const AllocaInst *, const StoreInst *>>; 9476 9477 /// Scan the entry block of the function in FuncInfo for arguments that look 9478 /// like copies into a local alloca. Record any copied arguments in 9479 /// ArgCopyElisionCandidates. 9480 static void 9481 findArgumentCopyElisionCandidates(const DataLayout &DL, 9482 FunctionLoweringInfo *FuncInfo, 9483 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9484 // Record the state of every static alloca used in the entry block. Argument 9485 // allocas are all used in the entry block, so we need approximately as many 9486 // entries as we have arguments. 9487 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9488 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9489 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9490 StaticAllocas.reserve(NumArgs * 2); 9491 9492 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9493 if (!V) 9494 return nullptr; 9495 V = V->stripPointerCasts(); 9496 const auto *AI = dyn_cast<AllocaInst>(V); 9497 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9498 return nullptr; 9499 auto Iter = StaticAllocas.insert({AI, Unknown}); 9500 return &Iter.first->second; 9501 }; 9502 9503 // Look for stores of arguments to static allocas. Look through bitcasts and 9504 // GEPs to handle type coercions, as long as the alloca is fully initialized 9505 // by the store. Any non-store use of an alloca escapes it and any subsequent 9506 // unanalyzed store might write it. 9507 // FIXME: Handle structs initialized with multiple stores. 9508 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9509 // Look for stores, and handle non-store uses conservatively. 9510 const auto *SI = dyn_cast<StoreInst>(&I); 9511 if (!SI) { 9512 // We will look through cast uses, so ignore them completely. 9513 if (I.isCast()) 9514 continue; 9515 // Ignore debug info intrinsics, they don't escape or store to allocas. 9516 if (isa<DbgInfoIntrinsic>(I)) 9517 continue; 9518 // This is an unknown instruction. Assume it escapes or writes to all 9519 // static alloca operands. 9520 for (const Use &U : I.operands()) { 9521 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9522 *Info = StaticAllocaInfo::Clobbered; 9523 } 9524 continue; 9525 } 9526 9527 // If the stored value is a static alloca, mark it as escaped. 9528 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9529 *Info = StaticAllocaInfo::Clobbered; 9530 9531 // Check if the destination is a static alloca. 9532 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9533 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9534 if (!Info) 9535 continue; 9536 const AllocaInst *AI = cast<AllocaInst>(Dst); 9537 9538 // Skip allocas that have been initialized or clobbered. 9539 if (*Info != StaticAllocaInfo::Unknown) 9540 continue; 9541 9542 // Check if the stored value is an argument, and that this store fully 9543 // initializes the alloca. Don't elide copies from the same argument twice. 9544 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9545 const auto *Arg = dyn_cast<Argument>(Val); 9546 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9547 Arg->getType()->isEmptyTy() || 9548 DL.getTypeStoreSize(Arg->getType()) != 9549 DL.getTypeAllocSize(AI->getAllocatedType()) || 9550 ArgCopyElisionCandidates.count(Arg)) { 9551 *Info = StaticAllocaInfo::Clobbered; 9552 continue; 9553 } 9554 9555 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9556 << '\n'); 9557 9558 // Mark this alloca and store for argument copy elision. 9559 *Info = StaticAllocaInfo::Elidable; 9560 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9561 9562 // Stop scanning if we've seen all arguments. This will happen early in -O0 9563 // builds, which is useful, because -O0 builds have large entry blocks and 9564 // many allocas. 9565 if (ArgCopyElisionCandidates.size() == NumArgs) 9566 break; 9567 } 9568 } 9569 9570 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9571 /// ArgVal is a load from a suitable fixed stack object. 9572 static void tryToElideArgumentCopy( 9573 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9574 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9575 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9576 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9577 SDValue ArgVal, bool &ArgHasUses) { 9578 // Check if this is a load from a fixed stack object. 9579 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9580 if (!LNode) 9581 return; 9582 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9583 if (!FINode) 9584 return; 9585 9586 // Check that the fixed stack object is the right size and alignment. 9587 // Look at the alignment that the user wrote on the alloca instead of looking 9588 // at the stack object. 9589 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9590 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9591 const AllocaInst *AI = ArgCopyIter->second.first; 9592 int FixedIndex = FINode->getIndex(); 9593 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9594 int OldIndex = AllocaIndex; 9595 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9596 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9597 LLVM_DEBUG( 9598 dbgs() << " argument copy elision failed due to bad fixed stack " 9599 "object size\n"); 9600 return; 9601 } 9602 Align RequiredAlignment = AI->getAlign(); 9603 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9604 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9605 "greater than stack argument alignment (" 9606 << DebugStr(RequiredAlignment) << " vs " 9607 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9608 return; 9609 } 9610 9611 // Perform the elision. Delete the old stack object and replace its only use 9612 // in the variable info map. Mark the stack object as mutable. 9613 LLVM_DEBUG({ 9614 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9615 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9616 << '\n'; 9617 }); 9618 MFI.RemoveStackObject(OldIndex); 9619 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9620 AllocaIndex = FixedIndex; 9621 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9622 Chains.push_back(ArgVal.getValue(1)); 9623 9624 // Avoid emitting code for the store implementing the copy. 9625 const StoreInst *SI = ArgCopyIter->second.second; 9626 ElidedArgCopyInstrs.insert(SI); 9627 9628 // Check for uses of the argument again so that we can avoid exporting ArgVal 9629 // if it is't used by anything other than the store. 9630 for (const Value *U : Arg.users()) { 9631 if (U != SI) { 9632 ArgHasUses = true; 9633 break; 9634 } 9635 } 9636 } 9637 9638 void SelectionDAGISel::LowerArguments(const Function &F) { 9639 SelectionDAG &DAG = SDB->DAG; 9640 SDLoc dl = SDB->getCurSDLoc(); 9641 const DataLayout &DL = DAG.getDataLayout(); 9642 SmallVector<ISD::InputArg, 16> Ins; 9643 9644 // In Naked functions we aren't going to save any registers. 9645 if (F.hasFnAttribute(Attribute::Naked)) 9646 return; 9647 9648 if (!FuncInfo->CanLowerReturn) { 9649 // Put in an sret pointer parameter before all the other parameters. 9650 SmallVector<EVT, 1> ValueVTs; 9651 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9652 F.getReturnType()->getPointerTo( 9653 DAG.getDataLayout().getAllocaAddrSpace()), 9654 ValueVTs); 9655 9656 // NOTE: Assuming that a pointer will never break down to more than one VT 9657 // or one register. 9658 ISD::ArgFlagsTy Flags; 9659 Flags.setSRet(); 9660 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9661 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9662 ISD::InputArg::NoArgIndex, 0); 9663 Ins.push_back(RetArg); 9664 } 9665 9666 // Look for stores of arguments to static allocas. Mark such arguments with a 9667 // flag to ask the target to give us the memory location of that argument if 9668 // available. 9669 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9670 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9671 ArgCopyElisionCandidates); 9672 9673 // Set up the incoming argument description vector. 9674 for (const Argument &Arg : F.args()) { 9675 unsigned ArgNo = Arg.getArgNo(); 9676 SmallVector<EVT, 4> ValueVTs; 9677 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9678 bool isArgValueUsed = !Arg.use_empty(); 9679 unsigned PartBase = 0; 9680 Type *FinalType = Arg.getType(); 9681 if (Arg.hasAttribute(Attribute::ByVal)) 9682 FinalType = Arg.getParamByValType(); 9683 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9684 FinalType, F.getCallingConv(), F.isVarArg()); 9685 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9686 Value != NumValues; ++Value) { 9687 EVT VT = ValueVTs[Value]; 9688 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9689 ISD::ArgFlagsTy Flags; 9690 9691 // Certain targets (such as MIPS), may have a different ABI alignment 9692 // for a type depending on the context. Give the target a chance to 9693 // specify the alignment it wants. 9694 const Align OriginalAlignment( 9695 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9696 9697 if (Arg.getType()->isPointerTy()) { 9698 Flags.setPointer(); 9699 Flags.setPointerAddrSpace( 9700 cast<PointerType>(Arg.getType())->getAddressSpace()); 9701 } 9702 if (Arg.hasAttribute(Attribute::ZExt)) 9703 Flags.setZExt(); 9704 if (Arg.hasAttribute(Attribute::SExt)) 9705 Flags.setSExt(); 9706 if (Arg.hasAttribute(Attribute::InReg)) { 9707 // If we are using vectorcall calling convention, a structure that is 9708 // passed InReg - is surely an HVA 9709 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9710 isa<StructType>(Arg.getType())) { 9711 // The first value of a structure is marked 9712 if (0 == Value) 9713 Flags.setHvaStart(); 9714 Flags.setHva(); 9715 } 9716 // Set InReg Flag 9717 Flags.setInReg(); 9718 } 9719 if (Arg.hasAttribute(Attribute::StructRet)) 9720 Flags.setSRet(); 9721 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9722 Flags.setSwiftSelf(); 9723 if (Arg.hasAttribute(Attribute::SwiftError)) 9724 Flags.setSwiftError(); 9725 if (Arg.hasAttribute(Attribute::ByVal)) 9726 Flags.setByVal(); 9727 if (Arg.hasAttribute(Attribute::ByRef)) 9728 Flags.setByRef(); 9729 if (Arg.hasAttribute(Attribute::InAlloca)) { 9730 Flags.setInAlloca(); 9731 // Set the byval flag for CCAssignFn callbacks that don't know about 9732 // inalloca. This way we can know how many bytes we should've allocated 9733 // and how many bytes a callee cleanup function will pop. If we port 9734 // inalloca to more targets, we'll have to add custom inalloca handling 9735 // in the various CC lowering callbacks. 9736 Flags.setByVal(); 9737 } 9738 if (Arg.hasAttribute(Attribute::Preallocated)) { 9739 Flags.setPreallocated(); 9740 // Set the byval flag for CCAssignFn callbacks that don't know about 9741 // preallocated. This way we can know how many bytes we should've 9742 // allocated and how many bytes a callee cleanup function will pop. If 9743 // we port preallocated to more targets, we'll have to add custom 9744 // preallocated handling in the various CC lowering callbacks. 9745 Flags.setByVal(); 9746 } 9747 9748 Type *ArgMemTy = nullptr; 9749 if (F.getCallingConv() == CallingConv::X86_INTR) { 9750 // IA Interrupt passes frame (1st parameter) by value in the stack. 9751 if (ArgNo == 0) { 9752 Flags.setByVal(); 9753 // FIXME: Dependence on pointee element type. See bug 46672. 9754 ArgMemTy = Arg.getType()->getPointerElementType(); 9755 } 9756 } 9757 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 9758 Flags.isByRef()) { 9759 if (!ArgMemTy) 9760 ArgMemTy = Arg.getPointeeInMemoryValueType(); 9761 9762 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 9763 9764 // For in-memory arguments, size and alignment should be passed from FE. 9765 // BE will guess if this info is not there but there are cases it cannot 9766 // get right. 9767 MaybeAlign MemAlign = Arg.getParamAlign(); 9768 if (!MemAlign) 9769 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 9770 9771 if (Flags.isByRef()) { 9772 Flags.setByRefSize(MemSize); 9773 Flags.setByRefAlign(*MemAlign); 9774 } else { 9775 Flags.setByValSize(MemSize); 9776 Flags.setByValAlign(*MemAlign); 9777 } 9778 } 9779 9780 if (Arg.hasAttribute(Attribute::Nest)) 9781 Flags.setNest(); 9782 if (NeedsRegBlock) 9783 Flags.setInConsecutiveRegs(); 9784 Flags.setOrigAlign(OriginalAlignment); 9785 if (ArgCopyElisionCandidates.count(&Arg)) 9786 Flags.setCopyElisionCandidate(); 9787 if (Arg.hasAttribute(Attribute::Returned)) 9788 Flags.setReturned(); 9789 9790 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9791 *CurDAG->getContext(), F.getCallingConv(), VT); 9792 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9793 *CurDAG->getContext(), F.getCallingConv(), VT); 9794 for (unsigned i = 0; i != NumRegs; ++i) { 9795 // For scalable vectors, use the minimum size; individual targets 9796 // are responsible for handling scalable vector arguments and 9797 // return values. 9798 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9799 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9800 if (NumRegs > 1 && i == 0) 9801 MyFlags.Flags.setSplit(); 9802 // if it isn't first piece, alignment must be 1 9803 else if (i > 0) { 9804 MyFlags.Flags.setOrigAlign(Align(1)); 9805 if (i == NumRegs - 1) 9806 MyFlags.Flags.setSplitEnd(); 9807 } 9808 Ins.push_back(MyFlags); 9809 } 9810 if (NeedsRegBlock && Value == NumValues - 1) 9811 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9812 PartBase += VT.getStoreSize().getKnownMinSize(); 9813 } 9814 } 9815 9816 // Call the target to set up the argument values. 9817 SmallVector<SDValue, 8> InVals; 9818 SDValue NewRoot = TLI->LowerFormalArguments( 9819 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9820 9821 // Verify that the target's LowerFormalArguments behaved as expected. 9822 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9823 "LowerFormalArguments didn't return a valid chain!"); 9824 assert(InVals.size() == Ins.size() && 9825 "LowerFormalArguments didn't emit the correct number of values!"); 9826 LLVM_DEBUG({ 9827 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9828 assert(InVals[i].getNode() && 9829 "LowerFormalArguments emitted a null value!"); 9830 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9831 "LowerFormalArguments emitted a value with the wrong type!"); 9832 } 9833 }); 9834 9835 // Update the DAG with the new chain value resulting from argument lowering. 9836 DAG.setRoot(NewRoot); 9837 9838 // Set up the argument values. 9839 unsigned i = 0; 9840 if (!FuncInfo->CanLowerReturn) { 9841 // Create a virtual register for the sret pointer, and put in a copy 9842 // from the sret argument into it. 9843 SmallVector<EVT, 1> ValueVTs; 9844 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9845 F.getReturnType()->getPointerTo( 9846 DAG.getDataLayout().getAllocaAddrSpace()), 9847 ValueVTs); 9848 MVT VT = ValueVTs[0].getSimpleVT(); 9849 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9850 Optional<ISD::NodeType> AssertOp = None; 9851 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9852 nullptr, F.getCallingConv(), AssertOp); 9853 9854 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9855 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9856 Register SRetReg = 9857 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9858 FuncInfo->DemoteRegister = SRetReg; 9859 NewRoot = 9860 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9861 DAG.setRoot(NewRoot); 9862 9863 // i indexes lowered arguments. Bump it past the hidden sret argument. 9864 ++i; 9865 } 9866 9867 SmallVector<SDValue, 4> Chains; 9868 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9869 for (const Argument &Arg : F.args()) { 9870 SmallVector<SDValue, 4> ArgValues; 9871 SmallVector<EVT, 4> ValueVTs; 9872 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9873 unsigned NumValues = ValueVTs.size(); 9874 if (NumValues == 0) 9875 continue; 9876 9877 bool ArgHasUses = !Arg.use_empty(); 9878 9879 // Elide the copying store if the target loaded this argument from a 9880 // suitable fixed stack object. 9881 if (Ins[i].Flags.isCopyElisionCandidate()) { 9882 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9883 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9884 InVals[i], ArgHasUses); 9885 } 9886 9887 // If this argument is unused then remember its value. It is used to generate 9888 // debugging information. 9889 bool isSwiftErrorArg = 9890 TLI->supportSwiftError() && 9891 Arg.hasAttribute(Attribute::SwiftError); 9892 if (!ArgHasUses && !isSwiftErrorArg) { 9893 SDB->setUnusedArgValue(&Arg, InVals[i]); 9894 9895 // Also remember any frame index for use in FastISel. 9896 if (FrameIndexSDNode *FI = 9897 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9898 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9899 } 9900 9901 for (unsigned Val = 0; Val != NumValues; ++Val) { 9902 EVT VT = ValueVTs[Val]; 9903 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9904 F.getCallingConv(), VT); 9905 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9906 *CurDAG->getContext(), F.getCallingConv(), VT); 9907 9908 // Even an apparent 'unused' swifterror argument needs to be returned. So 9909 // we do generate a copy for it that can be used on return from the 9910 // function. 9911 if (ArgHasUses || isSwiftErrorArg) { 9912 Optional<ISD::NodeType> AssertOp; 9913 if (Arg.hasAttribute(Attribute::SExt)) 9914 AssertOp = ISD::AssertSext; 9915 else if (Arg.hasAttribute(Attribute::ZExt)) 9916 AssertOp = ISD::AssertZext; 9917 9918 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9919 PartVT, VT, nullptr, 9920 F.getCallingConv(), AssertOp)); 9921 } 9922 9923 i += NumParts; 9924 } 9925 9926 // We don't need to do anything else for unused arguments. 9927 if (ArgValues.empty()) 9928 continue; 9929 9930 // Note down frame index. 9931 if (FrameIndexSDNode *FI = 9932 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9933 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9934 9935 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9936 SDB->getCurSDLoc()); 9937 9938 SDB->setValue(&Arg, Res); 9939 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9940 // We want to associate the argument with the frame index, among 9941 // involved operands, that correspond to the lowest address. The 9942 // getCopyFromParts function, called earlier, is swapping the order of 9943 // the operands to BUILD_PAIR depending on endianness. The result of 9944 // that swapping is that the least significant bits of the argument will 9945 // be in the first operand of the BUILD_PAIR node, and the most 9946 // significant bits will be in the second operand. 9947 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9948 if (LoadSDNode *LNode = 9949 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9950 if (FrameIndexSDNode *FI = 9951 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9952 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9953 } 9954 9955 // Analyses past this point are naive and don't expect an assertion. 9956 if (Res.getOpcode() == ISD::AssertZext) 9957 Res = Res.getOperand(0); 9958 9959 // Update the SwiftErrorVRegDefMap. 9960 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9961 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9962 if (Register::isVirtualRegister(Reg)) 9963 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9964 Reg); 9965 } 9966 9967 // If this argument is live outside of the entry block, insert a copy from 9968 // wherever we got it to the vreg that other BB's will reference it as. 9969 if (Res.getOpcode() == ISD::CopyFromReg) { 9970 // If we can, though, try to skip creating an unnecessary vreg. 9971 // FIXME: This isn't very clean... it would be nice to make this more 9972 // general. 9973 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9974 if (Register::isVirtualRegister(Reg)) { 9975 FuncInfo->ValueMap[&Arg] = Reg; 9976 continue; 9977 } 9978 } 9979 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9980 FuncInfo->InitializeRegForValue(&Arg); 9981 SDB->CopyToExportRegsIfNeeded(&Arg); 9982 } 9983 } 9984 9985 if (!Chains.empty()) { 9986 Chains.push_back(NewRoot); 9987 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9988 } 9989 9990 DAG.setRoot(NewRoot); 9991 9992 assert(i == InVals.size() && "Argument register count mismatch!"); 9993 9994 // If any argument copy elisions occurred and we have debug info, update the 9995 // stale frame indices used in the dbg.declare variable info table. 9996 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9997 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9998 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9999 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10000 if (I != ArgCopyElisionFrameIndexMap.end()) 10001 VI.Slot = I->second; 10002 } 10003 } 10004 10005 // Finally, if the target has anything special to do, allow it to do so. 10006 emitFunctionEntryCode(); 10007 } 10008 10009 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10010 /// ensure constants are generated when needed. Remember the virtual registers 10011 /// that need to be added to the Machine PHI nodes as input. We cannot just 10012 /// directly add them, because expansion might result in multiple MBB's for one 10013 /// BB. As such, the start of the BB might correspond to a different MBB than 10014 /// the end. 10015 void 10016 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10017 const Instruction *TI = LLVMBB->getTerminator(); 10018 10019 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10020 10021 // Check PHI nodes in successors that expect a value to be available from this 10022 // block. 10023 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10024 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10025 if (!isa<PHINode>(SuccBB->begin())) continue; 10026 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10027 10028 // If this terminator has multiple identical successors (common for 10029 // switches), only handle each succ once. 10030 if (!SuccsHandled.insert(SuccMBB).second) 10031 continue; 10032 10033 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10034 10035 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10036 // nodes and Machine PHI nodes, but the incoming operands have not been 10037 // emitted yet. 10038 for (const PHINode &PN : SuccBB->phis()) { 10039 // Ignore dead phi's. 10040 if (PN.use_empty()) 10041 continue; 10042 10043 // Skip empty types 10044 if (PN.getType()->isEmptyTy()) 10045 continue; 10046 10047 unsigned Reg; 10048 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10049 10050 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10051 unsigned &RegOut = ConstantsOut[C]; 10052 if (RegOut == 0) { 10053 RegOut = FuncInfo.CreateRegs(C); 10054 CopyValueToVirtualRegister(C, RegOut); 10055 } 10056 Reg = RegOut; 10057 } else { 10058 DenseMap<const Value *, Register>::iterator I = 10059 FuncInfo.ValueMap.find(PHIOp); 10060 if (I != FuncInfo.ValueMap.end()) 10061 Reg = I->second; 10062 else { 10063 assert(isa<AllocaInst>(PHIOp) && 10064 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10065 "Didn't codegen value into a register!??"); 10066 Reg = FuncInfo.CreateRegs(PHIOp); 10067 CopyValueToVirtualRegister(PHIOp, Reg); 10068 } 10069 } 10070 10071 // Remember that this register needs to added to the machine PHI node as 10072 // the input for this MBB. 10073 SmallVector<EVT, 4> ValueVTs; 10074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10075 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10076 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10077 EVT VT = ValueVTs[vti]; 10078 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10079 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10080 FuncInfo.PHINodesToUpdate.push_back( 10081 std::make_pair(&*MBBI++, Reg + i)); 10082 Reg += NumRegisters; 10083 } 10084 } 10085 } 10086 10087 ConstantsOut.clear(); 10088 } 10089 10090 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10091 /// is 0. 10092 MachineBasicBlock * 10093 SelectionDAGBuilder::StackProtectorDescriptor:: 10094 AddSuccessorMBB(const BasicBlock *BB, 10095 MachineBasicBlock *ParentMBB, 10096 bool IsLikely, 10097 MachineBasicBlock *SuccMBB) { 10098 // If SuccBB has not been created yet, create it. 10099 if (!SuccMBB) { 10100 MachineFunction *MF = ParentMBB->getParent(); 10101 MachineFunction::iterator BBI(ParentMBB); 10102 SuccMBB = MF->CreateMachineBasicBlock(BB); 10103 MF->insert(++BBI, SuccMBB); 10104 } 10105 // Add it as a successor of ParentMBB. 10106 ParentMBB->addSuccessor( 10107 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10108 return SuccMBB; 10109 } 10110 10111 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10112 MachineFunction::iterator I(MBB); 10113 if (++I == FuncInfo.MF->end()) 10114 return nullptr; 10115 return &*I; 10116 } 10117 10118 /// During lowering new call nodes can be created (such as memset, etc.). 10119 /// Those will become new roots of the current DAG, but complications arise 10120 /// when they are tail calls. In such cases, the call lowering will update 10121 /// the root, but the builder still needs to know that a tail call has been 10122 /// lowered in order to avoid generating an additional return. 10123 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10124 // If the node is null, we do have a tail call. 10125 if (MaybeTC.getNode() != nullptr) 10126 DAG.setRoot(MaybeTC); 10127 else 10128 HasTailCall = true; 10129 } 10130 10131 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10132 MachineBasicBlock *SwitchMBB, 10133 MachineBasicBlock *DefaultMBB) { 10134 MachineFunction *CurMF = FuncInfo.MF; 10135 MachineBasicBlock *NextMBB = nullptr; 10136 MachineFunction::iterator BBI(W.MBB); 10137 if (++BBI != FuncInfo.MF->end()) 10138 NextMBB = &*BBI; 10139 10140 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10141 10142 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10143 10144 if (Size == 2 && W.MBB == SwitchMBB) { 10145 // If any two of the cases has the same destination, and if one value 10146 // is the same as the other, but has one bit unset that the other has set, 10147 // use bit manipulation to do two compares at once. For example: 10148 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10149 // TODO: This could be extended to merge any 2 cases in switches with 3 10150 // cases. 10151 // TODO: Handle cases where W.CaseBB != SwitchBB. 10152 CaseCluster &Small = *W.FirstCluster; 10153 CaseCluster &Big = *W.LastCluster; 10154 10155 if (Small.Low == Small.High && Big.Low == Big.High && 10156 Small.MBB == Big.MBB) { 10157 const APInt &SmallValue = Small.Low->getValue(); 10158 const APInt &BigValue = Big.Low->getValue(); 10159 10160 // Check that there is only one bit different. 10161 APInt CommonBit = BigValue ^ SmallValue; 10162 if (CommonBit.isPowerOf2()) { 10163 SDValue CondLHS = getValue(Cond); 10164 EVT VT = CondLHS.getValueType(); 10165 SDLoc DL = getCurSDLoc(); 10166 10167 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10168 DAG.getConstant(CommonBit, DL, VT)); 10169 SDValue Cond = DAG.getSetCC( 10170 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10171 ISD::SETEQ); 10172 10173 // Update successor info. 10174 // Both Small and Big will jump to Small.BB, so we sum up the 10175 // probabilities. 10176 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10177 if (BPI) 10178 addSuccessorWithProb( 10179 SwitchMBB, DefaultMBB, 10180 // The default destination is the first successor in IR. 10181 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10182 else 10183 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10184 10185 // Insert the true branch. 10186 SDValue BrCond = 10187 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10188 DAG.getBasicBlock(Small.MBB)); 10189 // Insert the false branch. 10190 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10191 DAG.getBasicBlock(DefaultMBB)); 10192 10193 DAG.setRoot(BrCond); 10194 return; 10195 } 10196 } 10197 } 10198 10199 if (TM.getOptLevel() != CodeGenOpt::None) { 10200 // Here, we order cases by probability so the most likely case will be 10201 // checked first. However, two clusters can have the same probability in 10202 // which case their relative ordering is non-deterministic. So we use Low 10203 // as a tie-breaker as clusters are guaranteed to never overlap. 10204 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10205 [](const CaseCluster &a, const CaseCluster &b) { 10206 return a.Prob != b.Prob ? 10207 a.Prob > b.Prob : 10208 a.Low->getValue().slt(b.Low->getValue()); 10209 }); 10210 10211 // Rearrange the case blocks so that the last one falls through if possible 10212 // without changing the order of probabilities. 10213 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10214 --I; 10215 if (I->Prob > W.LastCluster->Prob) 10216 break; 10217 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10218 std::swap(*I, *W.LastCluster); 10219 break; 10220 } 10221 } 10222 } 10223 10224 // Compute total probability. 10225 BranchProbability DefaultProb = W.DefaultProb; 10226 BranchProbability UnhandledProbs = DefaultProb; 10227 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10228 UnhandledProbs += I->Prob; 10229 10230 MachineBasicBlock *CurMBB = W.MBB; 10231 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10232 bool FallthroughUnreachable = false; 10233 MachineBasicBlock *Fallthrough; 10234 if (I == W.LastCluster) { 10235 // For the last cluster, fall through to the default destination. 10236 Fallthrough = DefaultMBB; 10237 FallthroughUnreachable = isa<UnreachableInst>( 10238 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10239 } else { 10240 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10241 CurMF->insert(BBI, Fallthrough); 10242 // Put Cond in a virtual register to make it available from the new blocks. 10243 ExportFromCurrentBlock(Cond); 10244 } 10245 UnhandledProbs -= I->Prob; 10246 10247 switch (I->Kind) { 10248 case CC_JumpTable: { 10249 // FIXME: Optimize away range check based on pivot comparisons. 10250 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10251 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10252 10253 // The jump block hasn't been inserted yet; insert it here. 10254 MachineBasicBlock *JumpMBB = JT->MBB; 10255 CurMF->insert(BBI, JumpMBB); 10256 10257 auto JumpProb = I->Prob; 10258 auto FallthroughProb = UnhandledProbs; 10259 10260 // If the default statement is a target of the jump table, we evenly 10261 // distribute the default probability to successors of CurMBB. Also 10262 // update the probability on the edge from JumpMBB to Fallthrough. 10263 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10264 SE = JumpMBB->succ_end(); 10265 SI != SE; ++SI) { 10266 if (*SI == DefaultMBB) { 10267 JumpProb += DefaultProb / 2; 10268 FallthroughProb -= DefaultProb / 2; 10269 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10270 JumpMBB->normalizeSuccProbs(); 10271 break; 10272 } 10273 } 10274 10275 if (FallthroughUnreachable) { 10276 // Skip the range check if the fallthrough block is unreachable. 10277 JTH->OmitRangeCheck = true; 10278 } 10279 10280 if (!JTH->OmitRangeCheck) 10281 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10282 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10283 CurMBB->normalizeSuccProbs(); 10284 10285 // The jump table header will be inserted in our current block, do the 10286 // range check, and fall through to our fallthrough block. 10287 JTH->HeaderBB = CurMBB; 10288 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10289 10290 // If we're in the right place, emit the jump table header right now. 10291 if (CurMBB == SwitchMBB) { 10292 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10293 JTH->Emitted = true; 10294 } 10295 break; 10296 } 10297 case CC_BitTests: { 10298 // FIXME: Optimize away range check based on pivot comparisons. 10299 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10300 10301 // The bit test blocks haven't been inserted yet; insert them here. 10302 for (BitTestCase &BTC : BTB->Cases) 10303 CurMF->insert(BBI, BTC.ThisBB); 10304 10305 // Fill in fields of the BitTestBlock. 10306 BTB->Parent = CurMBB; 10307 BTB->Default = Fallthrough; 10308 10309 BTB->DefaultProb = UnhandledProbs; 10310 // If the cases in bit test don't form a contiguous range, we evenly 10311 // distribute the probability on the edge to Fallthrough to two 10312 // successors of CurMBB. 10313 if (!BTB->ContiguousRange) { 10314 BTB->Prob += DefaultProb / 2; 10315 BTB->DefaultProb -= DefaultProb / 2; 10316 } 10317 10318 if (FallthroughUnreachable) { 10319 // Skip the range check if the fallthrough block is unreachable. 10320 BTB->OmitRangeCheck = true; 10321 } 10322 10323 // If we're in the right place, emit the bit test header right now. 10324 if (CurMBB == SwitchMBB) { 10325 visitBitTestHeader(*BTB, SwitchMBB); 10326 BTB->Emitted = true; 10327 } 10328 break; 10329 } 10330 case CC_Range: { 10331 const Value *RHS, *LHS, *MHS; 10332 ISD::CondCode CC; 10333 if (I->Low == I->High) { 10334 // Check Cond == I->Low. 10335 CC = ISD::SETEQ; 10336 LHS = Cond; 10337 RHS=I->Low; 10338 MHS = nullptr; 10339 } else { 10340 // Check I->Low <= Cond <= I->High. 10341 CC = ISD::SETLE; 10342 LHS = I->Low; 10343 MHS = Cond; 10344 RHS = I->High; 10345 } 10346 10347 // If Fallthrough is unreachable, fold away the comparison. 10348 if (FallthroughUnreachable) 10349 CC = ISD::SETTRUE; 10350 10351 // The false probability is the sum of all unhandled cases. 10352 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10353 getCurSDLoc(), I->Prob, UnhandledProbs); 10354 10355 if (CurMBB == SwitchMBB) 10356 visitSwitchCase(CB, SwitchMBB); 10357 else 10358 SL->SwitchCases.push_back(CB); 10359 10360 break; 10361 } 10362 } 10363 CurMBB = Fallthrough; 10364 } 10365 } 10366 10367 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10368 CaseClusterIt First, 10369 CaseClusterIt Last) { 10370 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10371 if (X.Prob != CC.Prob) 10372 return X.Prob > CC.Prob; 10373 10374 // Ties are broken by comparing the case value. 10375 return X.Low->getValue().slt(CC.Low->getValue()); 10376 }); 10377 } 10378 10379 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10380 const SwitchWorkListItem &W, 10381 Value *Cond, 10382 MachineBasicBlock *SwitchMBB) { 10383 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10384 "Clusters not sorted?"); 10385 10386 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10387 10388 // Balance the tree based on branch probabilities to create a near-optimal (in 10389 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10390 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10391 CaseClusterIt LastLeft = W.FirstCluster; 10392 CaseClusterIt FirstRight = W.LastCluster; 10393 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10394 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10395 10396 // Move LastLeft and FirstRight towards each other from opposite directions to 10397 // find a partitioning of the clusters which balances the probability on both 10398 // sides. If LeftProb and RightProb are equal, alternate which side is 10399 // taken to ensure 0-probability nodes are distributed evenly. 10400 unsigned I = 0; 10401 while (LastLeft + 1 < FirstRight) { 10402 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10403 LeftProb += (++LastLeft)->Prob; 10404 else 10405 RightProb += (--FirstRight)->Prob; 10406 I++; 10407 } 10408 10409 while (true) { 10410 // Our binary search tree differs from a typical BST in that ours can have up 10411 // to three values in each leaf. The pivot selection above doesn't take that 10412 // into account, which means the tree might require more nodes and be less 10413 // efficient. We compensate for this here. 10414 10415 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10416 unsigned NumRight = W.LastCluster - FirstRight + 1; 10417 10418 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10419 // If one side has less than 3 clusters, and the other has more than 3, 10420 // consider taking a cluster from the other side. 10421 10422 if (NumLeft < NumRight) { 10423 // Consider moving the first cluster on the right to the left side. 10424 CaseCluster &CC = *FirstRight; 10425 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10426 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10427 if (LeftSideRank <= RightSideRank) { 10428 // Moving the cluster to the left does not demote it. 10429 ++LastLeft; 10430 ++FirstRight; 10431 continue; 10432 } 10433 } else { 10434 assert(NumRight < NumLeft); 10435 // Consider moving the last element on the left to the right side. 10436 CaseCluster &CC = *LastLeft; 10437 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10438 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10439 if (RightSideRank <= LeftSideRank) { 10440 // Moving the cluster to the right does not demot it. 10441 --LastLeft; 10442 --FirstRight; 10443 continue; 10444 } 10445 } 10446 } 10447 break; 10448 } 10449 10450 assert(LastLeft + 1 == FirstRight); 10451 assert(LastLeft >= W.FirstCluster); 10452 assert(FirstRight <= W.LastCluster); 10453 10454 // Use the first element on the right as pivot since we will make less-than 10455 // comparisons against it. 10456 CaseClusterIt PivotCluster = FirstRight; 10457 assert(PivotCluster > W.FirstCluster); 10458 assert(PivotCluster <= W.LastCluster); 10459 10460 CaseClusterIt FirstLeft = W.FirstCluster; 10461 CaseClusterIt LastRight = W.LastCluster; 10462 10463 const ConstantInt *Pivot = PivotCluster->Low; 10464 10465 // New blocks will be inserted immediately after the current one. 10466 MachineFunction::iterator BBI(W.MBB); 10467 ++BBI; 10468 10469 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10470 // we can branch to its destination directly if it's squeezed exactly in 10471 // between the known lower bound and Pivot - 1. 10472 MachineBasicBlock *LeftMBB; 10473 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10474 FirstLeft->Low == W.GE && 10475 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10476 LeftMBB = FirstLeft->MBB; 10477 } else { 10478 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10479 FuncInfo.MF->insert(BBI, LeftMBB); 10480 WorkList.push_back( 10481 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10482 // Put Cond in a virtual register to make it available from the new blocks. 10483 ExportFromCurrentBlock(Cond); 10484 } 10485 10486 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10487 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10488 // directly if RHS.High equals the current upper bound. 10489 MachineBasicBlock *RightMBB; 10490 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10491 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10492 RightMBB = FirstRight->MBB; 10493 } else { 10494 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10495 FuncInfo.MF->insert(BBI, RightMBB); 10496 WorkList.push_back( 10497 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10498 // Put Cond in a virtual register to make it available from the new blocks. 10499 ExportFromCurrentBlock(Cond); 10500 } 10501 10502 // Create the CaseBlock record that will be used to lower the branch. 10503 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10504 getCurSDLoc(), LeftProb, RightProb); 10505 10506 if (W.MBB == SwitchMBB) 10507 visitSwitchCase(CB, SwitchMBB); 10508 else 10509 SL->SwitchCases.push_back(CB); 10510 } 10511 10512 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10513 // from the swith statement. 10514 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10515 BranchProbability PeeledCaseProb) { 10516 if (PeeledCaseProb == BranchProbability::getOne()) 10517 return BranchProbability::getZero(); 10518 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10519 10520 uint32_t Numerator = CaseProb.getNumerator(); 10521 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10522 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10523 } 10524 10525 // Try to peel the top probability case if it exceeds the threshold. 10526 // Return current MachineBasicBlock for the switch statement if the peeling 10527 // does not occur. 10528 // If the peeling is performed, return the newly created MachineBasicBlock 10529 // for the peeled switch statement. Also update Clusters to remove the peeled 10530 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10531 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10532 const SwitchInst &SI, CaseClusterVector &Clusters, 10533 BranchProbability &PeeledCaseProb) { 10534 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10535 // Don't perform if there is only one cluster or optimizing for size. 10536 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10537 TM.getOptLevel() == CodeGenOpt::None || 10538 SwitchMBB->getParent()->getFunction().hasMinSize()) 10539 return SwitchMBB; 10540 10541 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10542 unsigned PeeledCaseIndex = 0; 10543 bool SwitchPeeled = false; 10544 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10545 CaseCluster &CC = Clusters[Index]; 10546 if (CC.Prob < TopCaseProb) 10547 continue; 10548 TopCaseProb = CC.Prob; 10549 PeeledCaseIndex = Index; 10550 SwitchPeeled = true; 10551 } 10552 if (!SwitchPeeled) 10553 return SwitchMBB; 10554 10555 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10556 << TopCaseProb << "\n"); 10557 10558 // Record the MBB for the peeled switch statement. 10559 MachineFunction::iterator BBI(SwitchMBB); 10560 ++BBI; 10561 MachineBasicBlock *PeeledSwitchMBB = 10562 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10563 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10564 10565 ExportFromCurrentBlock(SI.getCondition()); 10566 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10567 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10568 nullptr, nullptr, TopCaseProb.getCompl()}; 10569 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10570 10571 Clusters.erase(PeeledCaseIt); 10572 for (CaseCluster &CC : Clusters) { 10573 LLVM_DEBUG( 10574 dbgs() << "Scale the probablity for one cluster, before scaling: " 10575 << CC.Prob << "\n"); 10576 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10577 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10578 } 10579 PeeledCaseProb = TopCaseProb; 10580 return PeeledSwitchMBB; 10581 } 10582 10583 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10584 // Extract cases from the switch. 10585 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10586 CaseClusterVector Clusters; 10587 Clusters.reserve(SI.getNumCases()); 10588 for (auto I : SI.cases()) { 10589 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10590 const ConstantInt *CaseVal = I.getCaseValue(); 10591 BranchProbability Prob = 10592 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10593 : BranchProbability(1, SI.getNumCases() + 1); 10594 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10595 } 10596 10597 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10598 10599 // Cluster adjacent cases with the same destination. We do this at all 10600 // optimization levels because it's cheap to do and will make codegen faster 10601 // if there are many clusters. 10602 sortAndRangeify(Clusters); 10603 10604 // The branch probablity of the peeled case. 10605 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10606 MachineBasicBlock *PeeledSwitchMBB = 10607 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10608 10609 // If there is only the default destination, jump there directly. 10610 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10611 if (Clusters.empty()) { 10612 assert(PeeledSwitchMBB == SwitchMBB); 10613 SwitchMBB->addSuccessor(DefaultMBB); 10614 if (DefaultMBB != NextBlock(SwitchMBB)) { 10615 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10616 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10617 } 10618 return; 10619 } 10620 10621 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10622 SL->findBitTestClusters(Clusters, &SI); 10623 10624 LLVM_DEBUG({ 10625 dbgs() << "Case clusters: "; 10626 for (const CaseCluster &C : Clusters) { 10627 if (C.Kind == CC_JumpTable) 10628 dbgs() << "JT:"; 10629 if (C.Kind == CC_BitTests) 10630 dbgs() << "BT:"; 10631 10632 C.Low->getValue().print(dbgs(), true); 10633 if (C.Low != C.High) { 10634 dbgs() << '-'; 10635 C.High->getValue().print(dbgs(), true); 10636 } 10637 dbgs() << ' '; 10638 } 10639 dbgs() << '\n'; 10640 }); 10641 10642 assert(!Clusters.empty()); 10643 SwitchWorkList WorkList; 10644 CaseClusterIt First = Clusters.begin(); 10645 CaseClusterIt Last = Clusters.end() - 1; 10646 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10647 // Scale the branchprobability for DefaultMBB if the peel occurs and 10648 // DefaultMBB is not replaced. 10649 if (PeeledCaseProb != BranchProbability::getZero() && 10650 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10651 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10652 WorkList.push_back( 10653 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10654 10655 while (!WorkList.empty()) { 10656 SwitchWorkListItem W = WorkList.back(); 10657 WorkList.pop_back(); 10658 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10659 10660 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10661 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10662 // For optimized builds, lower large range as a balanced binary tree. 10663 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10664 continue; 10665 } 10666 10667 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10668 } 10669 } 10670 10671 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10672 SmallVector<EVT, 4> ValueVTs; 10673 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10674 ValueVTs); 10675 unsigned NumValues = ValueVTs.size(); 10676 if (NumValues == 0) return; 10677 10678 SmallVector<SDValue, 4> Values(NumValues); 10679 SDValue Op = getValue(I.getOperand(0)); 10680 10681 for (unsigned i = 0; i != NumValues; ++i) 10682 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10683 SDValue(Op.getNode(), Op.getResNo() + i)); 10684 10685 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10686 DAG.getVTList(ValueVTs), Values)); 10687 } 10688