1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 // Limit the width of DAG chains. This is important in general to prevent 74 // prevent DAG-based analysis from blowing up. For example, alias analysis and 75 // load clustering may not complete in reasonable time. It is difficult to 76 // recognize and avoid this situation within each individual analysis, and 77 // future analyses are likely to have the same behavior. Limiting DAG width is 78 // the safe approach, and will be especially important with global DAGs. 79 // 80 // MaxParallelChains default is arbitrarily high to avoid affecting 81 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 82 // sequence over this should have been converted to llvm.memcpy by the 83 // frontend. It easy to induce this behavior with .ll code such as: 84 // %buffer = alloca [4096 x i8] 85 // %data = load [4096 x i8]* %argPtr 86 // store [4096 x i8] %data, [4096 x i8]* %buffer 87 static const unsigned MaxParallelChains = 64; 88 89 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 90 const SDValue *Parts, unsigned NumParts, 91 EVT PartVT, EVT ValueVT); 92 93 /// getCopyFromParts - Create a value that contains the specified legal parts 94 /// combined into the value they represent. If the parts combine to a type 95 /// larger then ValueVT then AssertOp can be used to specify whether the extra 96 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 97 /// (ISD::AssertSext). 98 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 99 const SDValue *Parts, 100 unsigned NumParts, EVT PartVT, EVT ValueVT, 101 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 102 if (ValueVT.isVector()) 103 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 104 105 assert(NumParts > 0 && "No parts to assemble!"); 106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 107 SDValue Val = Parts[0]; 108 109 if (NumParts > 1) { 110 // Assemble the value from multiple parts. 111 if (ValueVT.isInteger()) { 112 unsigned PartBits = PartVT.getSizeInBits(); 113 unsigned ValueBits = ValueVT.getSizeInBits(); 114 115 // Assemble the power of 2 part. 116 unsigned RoundParts = NumParts & (NumParts - 1) ? 117 1 << Log2_32(NumParts) : NumParts; 118 unsigned RoundBits = PartBits * RoundParts; 119 EVT RoundVT = RoundBits == ValueBits ? 120 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 121 SDValue Lo, Hi; 122 123 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 124 125 if (RoundParts > 2) { 126 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 127 PartVT, HalfVT); 128 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 129 RoundParts / 2, PartVT, HalfVT); 130 } else { 131 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 132 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 133 } 134 135 if (TLI.isBigEndian()) 136 std::swap(Lo, Hi); 137 138 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 139 140 if (RoundParts < NumParts) { 141 // Assemble the trailing non-power-of-2 part. 142 unsigned OddParts = NumParts - RoundParts; 143 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 144 Hi = getCopyFromParts(DAG, DL, 145 Parts + RoundParts, OddParts, PartVT, OddVT); 146 147 // Combine the round and odd parts. 148 Lo = Val; 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 152 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 153 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 154 DAG.getConstant(Lo.getValueType().getSizeInBits(), 155 TLI.getPointerTy())); 156 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 157 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 158 } 159 } else if (PartVT.isFloatingPoint()) { 160 // FP split into multiple FP parts (for ppcf128) 161 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 162 "Unexpected split"); 163 SDValue Lo, Hi; 164 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 165 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 166 if (TLI.isBigEndian()) 167 std::swap(Lo, Hi); 168 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 169 } else { 170 // FP split into integer parts (soft fp) 171 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 172 !PartVT.isVector() && "Unexpected split"); 173 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 174 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 175 } 176 } 177 178 // There is now one part, held in Val. Correct it to match ValueVT. 179 PartVT = Val.getValueType(); 180 181 if (PartVT == ValueVT) 182 return Val; 183 184 if (PartVT.isInteger() && ValueVT.isInteger()) { 185 if (ValueVT.bitsLT(PartVT)) { 186 // For a truncate, see if we have any information to 187 // indicate whether the truncated bits will always be 188 // zero or sign-extension. 189 if (AssertOp != ISD::DELETED_NODE) 190 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 191 DAG.getValueType(ValueVT)); 192 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 193 } 194 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 195 } 196 197 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 198 // FP_ROUND's are always exact here. 199 if (ValueVT.bitsLT(Val.getValueType())) 200 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 201 DAG.getIntPtrConstant(1)); 202 203 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 204 } 205 206 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 207 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 208 209 llvm_unreachable("Unknown mismatch!"); 210 return SDValue(); 211 } 212 213 /// getCopyFromParts - Create a value that contains the specified legal parts 214 /// combined into the value they represent. If the parts combine to a type 215 /// larger then ValueVT then AssertOp can be used to specify whether the extra 216 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 217 /// (ISD::AssertSext). 218 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 219 const SDValue *Parts, unsigned NumParts, 220 EVT PartVT, EVT ValueVT) { 221 assert(ValueVT.isVector() && "Not a vector value"); 222 assert(NumParts > 0 && "No parts to assemble!"); 223 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 224 SDValue Val = Parts[0]; 225 226 // Handle a multi-element vector. 227 if (NumParts > 1) { 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate 249 // operands from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 259 // intermediate operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 262 ValueVT, &Ops[0], NumIntermediates); 263 } 264 265 // There is now one part, held in Val. Correct it to match ValueVT. 266 PartVT = Val.getValueType(); 267 268 if (PartVT == ValueVT) 269 return Val; 270 271 if (PartVT.isVector()) { 272 // If the element type of the source/dest vectors are the same, but the 273 // parts vector has more elements than the value vector, then we have a 274 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 275 // elements we want. 276 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 277 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 278 "Cannot narrow, it would be a lossy transformation"); 279 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 280 DAG.getIntPtrConstant(0)); 281 } 282 283 // Vector/Vector bitcast. 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 } 286 287 assert(ValueVT.getVectorElementType() == PartVT && 288 ValueVT.getVectorNumElements() == 1 && 289 "Only trivial scalar-to-vector conversions should get here!"); 290 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 291 } 292 293 294 295 296 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 297 SDValue Val, SDValue *Parts, unsigned NumParts, 298 EVT PartVT); 299 300 /// getCopyToParts - Create a series of nodes that contain the specified value 301 /// split into legal parts. If the parts contain more bits than Val, then, for 302 /// integers, ExtendKind can be used to specify how to generate the extra bits. 303 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 304 SDValue Val, SDValue *Parts, unsigned NumParts, 305 EVT PartVT, 306 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 307 EVT ValueVT = Val.getValueType(); 308 309 // Handle the vector case separately. 310 if (ValueVT.isVector()) 311 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 312 313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 314 unsigned PartBits = PartVT.getSizeInBits(); 315 unsigned OrigNumParts = NumParts; 316 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 317 318 if (NumParts == 0) 319 return; 320 321 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 322 if (PartVT == ValueVT) { 323 assert(NumParts == 1 && "No-op copy with multiple parts!"); 324 Parts[0] = Val; 325 return; 326 } 327 328 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 329 // If the parts cover more bits than the value has, promote the value. 330 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 331 assert(NumParts == 1 && "Do not know what to promote to!"); 332 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 333 } else { 334 assert(PartVT.isInteger() && ValueVT.isInteger() && 335 "Unknown mismatch!"); 336 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 337 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 338 } 339 } else if (PartBits == ValueVT.getSizeInBits()) { 340 // Different types of the same size. 341 assert(NumParts == 1 && PartVT != ValueVT); 342 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 343 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 344 // If the parts cover less bits than value has, truncate the value. 345 assert(PartVT.isInteger() && ValueVT.isInteger() && 346 "Unknown mismatch!"); 347 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 348 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 349 } 350 351 // The value may have changed - recompute ValueVT. 352 ValueVT = Val.getValueType(); 353 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 354 "Failed to tile the value with PartVT!"); 355 356 if (NumParts == 1) { 357 assert(PartVT == ValueVT && "Type conversion failed!"); 358 Parts[0] = Val; 359 return; 360 } 361 362 // Expand the value into multiple parts. 363 if (NumParts & (NumParts - 1)) { 364 // The number of parts is not a power of 2. Split off and copy the tail. 365 assert(PartVT.isInteger() && ValueVT.isInteger() && 366 "Do not know what to expand to!"); 367 unsigned RoundParts = 1 << Log2_32(NumParts); 368 unsigned RoundBits = RoundParts * PartBits; 369 unsigned OddParts = NumParts - RoundParts; 370 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 371 DAG.getIntPtrConstant(RoundBits)); 372 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 373 374 if (TLI.isBigEndian()) 375 // The odd parts were reversed by getCopyToParts - unreverse them. 376 std::reverse(Parts + RoundParts, Parts + NumParts); 377 378 NumParts = RoundParts; 379 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 380 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 381 } 382 383 // The number of parts is a power of 2. Repeatedly bisect the value using 384 // EXTRACT_ELEMENT. 385 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 386 EVT::getIntegerVT(*DAG.getContext(), 387 ValueVT.getSizeInBits()), 388 Val); 389 390 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 391 for (unsigned i = 0; i < NumParts; i += StepSize) { 392 unsigned ThisBits = StepSize * PartBits / 2; 393 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 394 SDValue &Part0 = Parts[i]; 395 SDValue &Part1 = Parts[i+StepSize/2]; 396 397 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 398 ThisVT, Part0, DAG.getIntPtrConstant(1)); 399 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 400 ThisVT, Part0, DAG.getIntPtrConstant(0)); 401 402 if (ThisBits == PartBits && ThisVT != PartVT) { 403 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 404 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 405 } 406 } 407 } 408 409 if (TLI.isBigEndian()) 410 std::reverse(Parts, Parts + OrigNumParts); 411 } 412 413 414 /// getCopyToPartsVector - Create a series of nodes that contain the specified 415 /// value split into legal parts. 416 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 417 SDValue Val, SDValue *Parts, unsigned NumParts, 418 EVT PartVT) { 419 EVT ValueVT = Val.getValueType(); 420 assert(ValueVT.isVector() && "Not a vector"); 421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 422 423 if (NumParts == 1) { 424 if (PartVT == ValueVT) { 425 // Nothing to do. 426 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 427 // Bitconvert vector->vector case. 428 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 429 } else if (PartVT.isVector() && 430 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 431 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 432 EVT ElementVT = PartVT.getVectorElementType(); 433 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 434 // undef elements. 435 SmallVector<SDValue, 16> Ops; 436 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 437 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 438 ElementVT, Val, DAG.getIntPtrConstant(i))); 439 440 for (unsigned i = ValueVT.getVectorNumElements(), 441 e = PartVT.getVectorNumElements(); i != e; ++i) 442 Ops.push_back(DAG.getUNDEF(ElementVT)); 443 444 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 445 446 // FIXME: Use CONCAT for 2x -> 4x. 447 448 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 449 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 450 } else { 451 // Vector -> scalar conversion. 452 assert(ValueVT.getVectorElementType() == PartVT && 453 ValueVT.getVectorNumElements() == 1 && 454 "Only trivial vector-to-scalar conversions should get here!"); 455 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 456 PartVT, Val, DAG.getIntPtrConstant(0)); 457 } 458 459 Parts[0] = Val; 460 return; 461 } 462 463 // Handle a multi-element vector. 464 EVT IntermediateVT, RegisterVT; 465 unsigned NumIntermediates; 466 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 467 IntermediateVT, 468 NumIntermediates, RegisterVT); 469 unsigned NumElements = ValueVT.getVectorNumElements(); 470 471 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 472 NumParts = NumRegs; // Silence a compiler warning. 473 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 474 475 // Split the vector into intermediate operands. 476 SmallVector<SDValue, 8> Ops(NumIntermediates); 477 for (unsigned i = 0; i != NumIntermediates; ++i) { 478 if (IntermediateVT.isVector()) 479 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 480 IntermediateVT, Val, 481 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 482 else 483 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 484 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 485 } 486 487 // Split the intermediate operands into legal parts. 488 if (NumParts == NumIntermediates) { 489 // If the register was not expanded, promote or copy the value, 490 // as appropriate. 491 for (unsigned i = 0; i != NumParts; ++i) 492 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 493 } else if (NumParts > 0) { 494 // If the intermediate type was expanded, split each the value into 495 // legal parts. 496 assert(NumParts % NumIntermediates == 0 && 497 "Must expand into a divisible number of parts!"); 498 unsigned Factor = NumParts / NumIntermediates; 499 for (unsigned i = 0; i != NumIntermediates; ++i) 500 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 501 } 502 } 503 504 505 506 507 namespace { 508 /// RegsForValue - This struct represents the registers (physical or virtual) 509 /// that a particular set of values is assigned, and the type information 510 /// about the value. The most common situation is to represent one value at a 511 /// time, but struct or array values are handled element-wise as multiple 512 /// values. The splitting of aggregates is performed recursively, so that we 513 /// never have aggregate-typed registers. The values at this point do not 514 /// necessarily have legal types, so each value may require one or more 515 /// registers of some legal type. 516 /// 517 struct RegsForValue { 518 /// ValueVTs - The value types of the values, which may not be legal, and 519 /// may need be promoted or synthesized from one or more registers. 520 /// 521 SmallVector<EVT, 4> ValueVTs; 522 523 /// RegVTs - The value types of the registers. This is the same size as 524 /// ValueVTs and it records, for each value, what the type of the assigned 525 /// register or registers are. (Individual values are never synthesized 526 /// from more than one type of register.) 527 /// 528 /// With virtual registers, the contents of RegVTs is redundant with TLI's 529 /// getRegisterType member function, however when with physical registers 530 /// it is necessary to have a separate record of the types. 531 /// 532 SmallVector<EVT, 4> RegVTs; 533 534 /// Regs - This list holds the registers assigned to the values. 535 /// Each legal or promoted value requires one register, and each 536 /// expanded value requires multiple registers. 537 /// 538 SmallVector<unsigned, 4> Regs; 539 540 RegsForValue() {} 541 542 RegsForValue(const SmallVector<unsigned, 4> ®s, 543 EVT regvt, EVT valuevt) 544 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 545 546 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 547 unsigned Reg, const Type *Ty) { 548 ComputeValueVTs(tli, Ty, ValueVTs); 549 550 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 551 EVT ValueVT = ValueVTs[Value]; 552 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 553 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 554 for (unsigned i = 0; i != NumRegs; ++i) 555 Regs.push_back(Reg + i); 556 RegVTs.push_back(RegisterVT); 557 Reg += NumRegs; 558 } 559 } 560 561 /// areValueTypesLegal - Return true if types of all the values are legal. 562 bool areValueTypesLegal(const TargetLowering &TLI) { 563 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 564 EVT RegisterVT = RegVTs[Value]; 565 if (!TLI.isTypeLegal(RegisterVT)) 566 return false; 567 } 568 return true; 569 } 570 571 /// append - Add the specified values to this one. 572 void append(const RegsForValue &RHS) { 573 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 574 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 575 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 576 } 577 578 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 579 /// this value and returns the result as a ValueVTs value. This uses 580 /// Chain/Flag as the input and updates them for the output Chain/Flag. 581 /// If the Flag pointer is NULL, no flag is used. 582 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 583 DebugLoc dl, 584 SDValue &Chain, SDValue *Flag) const; 585 586 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 587 /// specified value into the registers specified by this object. This uses 588 /// Chain/Flag as the input and updates them for the output Chain/Flag. 589 /// If the Flag pointer is NULL, no flag is used. 590 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 591 SDValue &Chain, SDValue *Flag) const; 592 593 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 594 /// operand list. This adds the code marker, matching input operand index 595 /// (if applicable), and includes the number of values added into it. 596 void AddInlineAsmOperands(unsigned Kind, 597 bool HasMatching, unsigned MatchingIdx, 598 SelectionDAG &DAG, 599 std::vector<SDValue> &Ops) const; 600 }; 601 } 602 603 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 604 /// this value and returns the result as a ValueVT value. This uses 605 /// Chain/Flag as the input and updates them for the output Chain/Flag. 606 /// If the Flag pointer is NULL, no flag is used. 607 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 608 FunctionLoweringInfo &FuncInfo, 609 DebugLoc dl, 610 SDValue &Chain, SDValue *Flag) const { 611 // A Value with type {} or [0 x %t] needs no registers. 612 if (ValueVTs.empty()) 613 return SDValue(); 614 615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 616 617 // Assemble the legal parts into the final values. 618 SmallVector<SDValue, 4> Values(ValueVTs.size()); 619 SmallVector<SDValue, 8> Parts; 620 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 621 // Copy the legal parts from the registers. 622 EVT ValueVT = ValueVTs[Value]; 623 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 624 EVT RegisterVT = RegVTs[Value]; 625 626 Parts.resize(NumRegs); 627 for (unsigned i = 0; i != NumRegs; ++i) { 628 SDValue P; 629 if (Flag == 0) { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 631 } else { 632 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 633 *Flag = P.getValue(2); 634 } 635 636 Chain = P.getValue(1); 637 Parts[i] = P; 638 639 // If the source register was virtual and if we know something about it, 640 // add an assert node. 641 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 642 !RegisterVT.isInteger() || RegisterVT.isVector()) 643 continue; 644 645 const FunctionLoweringInfo::LiveOutInfo *LOI = 646 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 647 if (!LOI) 648 continue; 649 650 unsigned RegSize = RegisterVT.getSizeInBits(); 651 unsigned NumSignBits = LOI->NumSignBits; 652 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 653 654 // FIXME: We capture more information than the dag can represent. For 655 // now, just use the tightest assertzext/assertsext possible. 656 bool isSExt = true; 657 EVT FromVT(MVT::Other); 658 if (NumSignBits == RegSize) 659 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 660 else if (NumZeroBits >= RegSize-1) 661 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 662 else if (NumSignBits > RegSize-8) 663 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 664 else if (NumZeroBits >= RegSize-8) 665 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 666 else if (NumSignBits > RegSize-16) 667 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 668 else if (NumZeroBits >= RegSize-16) 669 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 670 else if (NumSignBits > RegSize-32) 671 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 672 else if (NumZeroBits >= RegSize-32) 673 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 674 else 675 continue; 676 677 // Add an assertion node. 678 assert(FromVT != MVT::Other); 679 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 680 RegisterVT, P, DAG.getValueType(FromVT)); 681 } 682 683 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 684 NumRegs, RegisterVT, ValueVT); 685 Part += NumRegs; 686 Parts.clear(); 687 } 688 689 return DAG.getNode(ISD::MERGE_VALUES, dl, 690 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 691 &Values[0], ValueVTs.size()); 692 } 693 694 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 695 /// specified value into the registers specified by this object. This uses 696 /// Chain/Flag as the input and updates them for the output Chain/Flag. 697 /// If the Flag pointer is NULL, no flag is used. 698 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 699 SDValue &Chain, SDValue *Flag) const { 700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 701 702 // Get the list of the values's legal parts. 703 unsigned NumRegs = Regs.size(); 704 SmallVector<SDValue, 8> Parts(NumRegs); 705 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 706 EVT ValueVT = ValueVTs[Value]; 707 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 708 EVT RegisterVT = RegVTs[Value]; 709 710 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 711 &Parts[Part], NumParts, RegisterVT); 712 Part += NumParts; 713 } 714 715 // Copy the parts into the registers. 716 SmallVector<SDValue, 8> Chains(NumRegs); 717 for (unsigned i = 0; i != NumRegs; ++i) { 718 SDValue Part; 719 if (Flag == 0) { 720 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 721 } else { 722 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 723 *Flag = Part.getValue(1); 724 } 725 726 Chains[i] = Part.getValue(0); 727 } 728 729 if (NumRegs == 1 || Flag) 730 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 731 // flagged to it. That is the CopyToReg nodes and the user are considered 732 // a single scheduling unit. If we create a TokenFactor and return it as 733 // chain, then the TokenFactor is both a predecessor (operand) of the 734 // user as well as a successor (the TF operands are flagged to the user). 735 // c1, f1 = CopyToReg 736 // c2, f2 = CopyToReg 737 // c3 = TokenFactor c1, c2 738 // ... 739 // = op c3, ..., f2 740 Chain = Chains[NumRegs-1]; 741 else 742 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 743 } 744 745 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 746 /// operand list. This adds the code marker and includes the number of 747 /// values added into it. 748 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 749 unsigned MatchingIdx, 750 SelectionDAG &DAG, 751 std::vector<SDValue> &Ops) const { 752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 753 754 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 755 if (HasMatching) 756 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 757 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 758 Ops.push_back(Res); 759 760 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 761 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 762 EVT RegisterVT = RegVTs[Value]; 763 for (unsigned i = 0; i != NumRegs; ++i) { 764 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 765 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 766 } 767 } 768 } 769 770 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 771 AA = &aa; 772 GFI = gfi; 773 TD = DAG.getTarget().getTargetData(); 774 } 775 776 /// clear - Clear out the current SelectionDAG and the associated 777 /// state and prepare this SelectionDAGBuilder object to be used 778 /// for a new block. This doesn't clear out information about 779 /// additional blocks that are needed to complete switch lowering 780 /// or PHI node updating; that information is cleared out as it is 781 /// consumed. 782 void SelectionDAGBuilder::clear() { 783 NodeMap.clear(); 784 UnusedArgNodeMap.clear(); 785 PendingLoads.clear(); 786 PendingExports.clear(); 787 DanglingDebugInfoMap.clear(); 788 CurDebugLoc = DebugLoc(); 789 HasTailCall = false; 790 } 791 792 /// getRoot - Return the current virtual root of the Selection DAG, 793 /// flushing any PendingLoad items. This must be done before emitting 794 /// a store or any other node that may need to be ordered after any 795 /// prior load instructions. 796 /// 797 SDValue SelectionDAGBuilder::getRoot() { 798 if (PendingLoads.empty()) 799 return DAG.getRoot(); 800 801 if (PendingLoads.size() == 1) { 802 SDValue Root = PendingLoads[0]; 803 DAG.setRoot(Root); 804 PendingLoads.clear(); 805 return Root; 806 } 807 808 // Otherwise, we have to make a token factor node. 809 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 810 &PendingLoads[0], PendingLoads.size()); 811 PendingLoads.clear(); 812 DAG.setRoot(Root); 813 return Root; 814 } 815 816 /// getControlRoot - Similar to getRoot, but instead of flushing all the 817 /// PendingLoad items, flush all the PendingExports items. It is necessary 818 /// to do this before emitting a terminator instruction. 819 /// 820 SDValue SelectionDAGBuilder::getControlRoot() { 821 SDValue Root = DAG.getRoot(); 822 823 if (PendingExports.empty()) 824 return Root; 825 826 // Turn all of the CopyToReg chains into one factored node. 827 if (Root.getOpcode() != ISD::EntryToken) { 828 unsigned i = 0, e = PendingExports.size(); 829 for (; i != e; ++i) { 830 assert(PendingExports[i].getNode()->getNumOperands() > 1); 831 if (PendingExports[i].getNode()->getOperand(0) == Root) 832 break; // Don't add the root if we already indirectly depend on it. 833 } 834 835 if (i == e) 836 PendingExports.push_back(Root); 837 } 838 839 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 840 &PendingExports[0], 841 PendingExports.size()); 842 PendingExports.clear(); 843 DAG.setRoot(Root); 844 return Root; 845 } 846 847 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 848 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 849 DAG.AssignOrdering(Node, SDNodeOrder); 850 851 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 852 AssignOrderingToNode(Node->getOperand(I).getNode()); 853 } 854 855 void SelectionDAGBuilder::visit(const Instruction &I) { 856 // Set up outgoing PHI node register values before emitting the terminator. 857 if (isa<TerminatorInst>(&I)) 858 HandlePHINodesInSuccessorBlocks(I.getParent()); 859 860 CurDebugLoc = I.getDebugLoc(); 861 862 visit(I.getOpcode(), I); 863 864 if (!isa<TerminatorInst>(&I) && !HasTailCall) 865 CopyToExportRegsIfNeeded(&I); 866 867 CurDebugLoc = DebugLoc(); 868 } 869 870 void SelectionDAGBuilder::visitPHI(const PHINode &) { 871 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 872 } 873 874 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 875 // Note: this doesn't use InstVisitor, because it has to work with 876 // ConstantExpr's in addition to instructions. 877 switch (Opcode) { 878 default: llvm_unreachable("Unknown instruction type encountered!"); 879 // Build the switch statement using the Instruction.def file. 880 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 881 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 882 #include "llvm/Instruction.def" 883 } 884 885 // Assign the ordering to the freshly created DAG nodes. 886 if (NodeMap.count(&I)) { 887 ++SDNodeOrder; 888 AssignOrderingToNode(getValue(&I).getNode()); 889 } 890 } 891 892 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 893 // generate the debug data structures now that we've seen its definition. 894 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 895 SDValue Val) { 896 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 897 if (DDI.getDI()) { 898 const DbgValueInst *DI = DDI.getDI(); 899 DebugLoc dl = DDI.getdl(); 900 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 901 MDNode *Variable = DI->getVariable(); 902 uint64_t Offset = DI->getOffset(); 903 SDDbgValue *SDV; 904 if (Val.getNode()) { 905 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 906 SDV = DAG.getDbgValue(Variable, Val.getNode(), 907 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 908 DAG.AddDbgValue(SDV, Val.getNode(), false); 909 } 910 } else 911 DEBUG(dbgs() << "Dropping debug info for " << DI); 912 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 913 } 914 } 915 916 // getValue - Return an SDValue for the given Value. 917 SDValue SelectionDAGBuilder::getValue(const Value *V) { 918 // If we already have an SDValue for this value, use it. It's important 919 // to do this first, so that we don't create a CopyFromReg if we already 920 // have a regular SDValue. 921 SDValue &N = NodeMap[V]; 922 if (N.getNode()) return N; 923 924 // If there's a virtual register allocated and initialized for this 925 // value, use it. 926 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 927 if (It != FuncInfo.ValueMap.end()) { 928 unsigned InReg = It->second; 929 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 930 SDValue Chain = DAG.getEntryNode(); 931 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 932 resolveDanglingDebugInfo(V, N); 933 return N; 934 } 935 936 // Otherwise create a new SDValue and remember it. 937 SDValue Val = getValueImpl(V); 938 NodeMap[V] = Val; 939 resolveDanglingDebugInfo(V, Val); 940 return Val; 941 } 942 943 /// getNonRegisterValue - Return an SDValue for the given Value, but 944 /// don't look in FuncInfo.ValueMap for a virtual register. 945 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 946 // If we already have an SDValue for this value, use it. 947 SDValue &N = NodeMap[V]; 948 if (N.getNode()) return N; 949 950 // Otherwise create a new SDValue and remember it. 951 SDValue Val = getValueImpl(V); 952 NodeMap[V] = Val; 953 resolveDanglingDebugInfo(V, Val); 954 return Val; 955 } 956 957 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 958 /// Create an SDValue for the given value. 959 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 960 if (const Constant *C = dyn_cast<Constant>(V)) { 961 EVT VT = TLI.getValueType(V->getType(), true); 962 963 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 964 return DAG.getConstant(*CI, VT); 965 966 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 967 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 968 969 if (isa<ConstantPointerNull>(C)) 970 return DAG.getConstant(0, TLI.getPointerTy()); 971 972 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 973 return DAG.getConstantFP(*CFP, VT); 974 975 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 976 return DAG.getUNDEF(VT); 977 978 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 979 visit(CE->getOpcode(), *CE); 980 SDValue N1 = NodeMap[V]; 981 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 982 return N1; 983 } 984 985 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 986 SmallVector<SDValue, 4> Constants; 987 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 988 OI != OE; ++OI) { 989 SDNode *Val = getValue(*OI).getNode(); 990 // If the operand is an empty aggregate, there are no values. 991 if (!Val) continue; 992 // Add each leaf value from the operand to the Constants list 993 // to form a flattened list of all the values. 994 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 995 Constants.push_back(SDValue(Val, i)); 996 } 997 998 return DAG.getMergeValues(&Constants[0], Constants.size(), 999 getCurDebugLoc()); 1000 } 1001 1002 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1003 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1004 "Unknown struct or array constant!"); 1005 1006 SmallVector<EVT, 4> ValueVTs; 1007 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1008 unsigned NumElts = ValueVTs.size(); 1009 if (NumElts == 0) 1010 return SDValue(); // empty struct 1011 SmallVector<SDValue, 4> Constants(NumElts); 1012 for (unsigned i = 0; i != NumElts; ++i) { 1013 EVT EltVT = ValueVTs[i]; 1014 if (isa<UndefValue>(C)) 1015 Constants[i] = DAG.getUNDEF(EltVT); 1016 else if (EltVT.isFloatingPoint()) 1017 Constants[i] = DAG.getConstantFP(0, EltVT); 1018 else 1019 Constants[i] = DAG.getConstant(0, EltVT); 1020 } 1021 1022 return DAG.getMergeValues(&Constants[0], NumElts, 1023 getCurDebugLoc()); 1024 } 1025 1026 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1027 return DAG.getBlockAddress(BA, VT); 1028 1029 const VectorType *VecTy = cast<VectorType>(V->getType()); 1030 unsigned NumElements = VecTy->getNumElements(); 1031 1032 // Now that we know the number and type of the elements, get that number of 1033 // elements into the Ops array based on what kind of constant it is. 1034 SmallVector<SDValue, 16> Ops; 1035 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1036 for (unsigned i = 0; i != NumElements; ++i) 1037 Ops.push_back(getValue(CP->getOperand(i))); 1038 } else { 1039 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1040 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1041 1042 SDValue Op; 1043 if (EltVT.isFloatingPoint()) 1044 Op = DAG.getConstantFP(0, EltVT); 1045 else 1046 Op = DAG.getConstant(0, EltVT); 1047 Ops.assign(NumElements, Op); 1048 } 1049 1050 // Create a BUILD_VECTOR node. 1051 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1052 VT, &Ops[0], Ops.size()); 1053 } 1054 1055 // If this is a static alloca, generate it as the frameindex instead of 1056 // computation. 1057 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1058 DenseMap<const AllocaInst*, int>::iterator SI = 1059 FuncInfo.StaticAllocaMap.find(AI); 1060 if (SI != FuncInfo.StaticAllocaMap.end()) 1061 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1062 } 1063 1064 // If this is an instruction which fast-isel has deferred, select it now. 1065 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1066 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1067 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1068 SDValue Chain = DAG.getEntryNode(); 1069 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1070 } 1071 1072 llvm_unreachable("Can't get register for value!"); 1073 return SDValue(); 1074 } 1075 1076 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1077 SDValue Chain = getControlRoot(); 1078 SmallVector<ISD::OutputArg, 8> Outs; 1079 SmallVector<SDValue, 8> OutVals; 1080 1081 if (!FuncInfo.CanLowerReturn) { 1082 unsigned DemoteReg = FuncInfo.DemoteRegister; 1083 const Function *F = I.getParent()->getParent(); 1084 1085 // Emit a store of the return value through the virtual register. 1086 // Leave Outs empty so that LowerReturn won't try to load return 1087 // registers the usual way. 1088 SmallVector<EVT, 1> PtrValueVTs; 1089 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1090 PtrValueVTs); 1091 1092 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1093 SDValue RetOp = getValue(I.getOperand(0)); 1094 1095 SmallVector<EVT, 4> ValueVTs; 1096 SmallVector<uint64_t, 4> Offsets; 1097 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1098 unsigned NumValues = ValueVTs.size(); 1099 1100 SmallVector<SDValue, 4> Chains(NumValues); 1101 for (unsigned i = 0; i != NumValues; ++i) { 1102 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1103 RetPtr.getValueType(), RetPtr, 1104 DAG.getIntPtrConstant(Offsets[i])); 1105 Chains[i] = 1106 DAG.getStore(Chain, getCurDebugLoc(), 1107 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1108 // FIXME: better loc info would be nice. 1109 Add, MachinePointerInfo(), false, false, 0); 1110 } 1111 1112 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1113 MVT::Other, &Chains[0], NumValues); 1114 } else if (I.getNumOperands() != 0) { 1115 SmallVector<EVT, 4> ValueVTs; 1116 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1117 unsigned NumValues = ValueVTs.size(); 1118 if (NumValues) { 1119 SDValue RetOp = getValue(I.getOperand(0)); 1120 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1121 EVT VT = ValueVTs[j]; 1122 1123 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1124 1125 const Function *F = I.getParent()->getParent(); 1126 if (F->paramHasAttr(0, Attribute::SExt)) 1127 ExtendKind = ISD::SIGN_EXTEND; 1128 else if (F->paramHasAttr(0, Attribute::ZExt)) 1129 ExtendKind = ISD::ZERO_EXTEND; 1130 1131 // FIXME: C calling convention requires the return type to be promoted 1132 // to at least 32-bit. But this is not necessary for non-C calling 1133 // conventions. The frontend should mark functions whose return values 1134 // require promoting with signext or zeroext attributes. 1135 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1136 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1137 if (VT.bitsLT(MinVT)) 1138 VT = MinVT; 1139 } 1140 1141 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1142 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1143 SmallVector<SDValue, 4> Parts(NumParts); 1144 getCopyToParts(DAG, getCurDebugLoc(), 1145 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1146 &Parts[0], NumParts, PartVT, ExtendKind); 1147 1148 // 'inreg' on function refers to return value 1149 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1150 if (F->paramHasAttr(0, Attribute::InReg)) 1151 Flags.setInReg(); 1152 1153 // Propagate extension type if any 1154 if (F->paramHasAttr(0, Attribute::SExt)) 1155 Flags.setSExt(); 1156 else if (F->paramHasAttr(0, Attribute::ZExt)) 1157 Flags.setZExt(); 1158 1159 for (unsigned i = 0; i < NumParts; ++i) { 1160 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1161 /*isfixed=*/true)); 1162 OutVals.push_back(Parts[i]); 1163 } 1164 } 1165 } 1166 } 1167 1168 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1169 CallingConv::ID CallConv = 1170 DAG.getMachineFunction().getFunction()->getCallingConv(); 1171 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1172 Outs, OutVals, getCurDebugLoc(), DAG); 1173 1174 // Verify that the target's LowerReturn behaved as expected. 1175 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1176 "LowerReturn didn't return a valid chain!"); 1177 1178 // Update the DAG with the new chain value resulting from return lowering. 1179 DAG.setRoot(Chain); 1180 } 1181 1182 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1183 /// created for it, emit nodes to copy the value into the virtual 1184 /// registers. 1185 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1186 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1187 if (VMI != FuncInfo.ValueMap.end()) { 1188 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1189 CopyValueToVirtualRegister(V, VMI->second); 1190 } 1191 } 1192 1193 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1194 /// the current basic block, add it to ValueMap now so that we'll get a 1195 /// CopyTo/FromReg. 1196 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1197 // No need to export constants. 1198 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1199 1200 // Already exported? 1201 if (FuncInfo.isExportedInst(V)) return; 1202 1203 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1204 CopyValueToVirtualRegister(V, Reg); 1205 } 1206 1207 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1208 const BasicBlock *FromBB) { 1209 // The operands of the setcc have to be in this block. We don't know 1210 // how to export them from some other block. 1211 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1212 // Can export from current BB. 1213 if (VI->getParent() == FromBB) 1214 return true; 1215 1216 // Is already exported, noop. 1217 return FuncInfo.isExportedInst(V); 1218 } 1219 1220 // If this is an argument, we can export it if the BB is the entry block or 1221 // if it is already exported. 1222 if (isa<Argument>(V)) { 1223 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1224 return true; 1225 1226 // Otherwise, can only export this if it is already exported. 1227 return FuncInfo.isExportedInst(V); 1228 } 1229 1230 // Otherwise, constants can always be exported. 1231 return true; 1232 } 1233 1234 static bool InBlock(const Value *V, const BasicBlock *BB) { 1235 if (const Instruction *I = dyn_cast<Instruction>(V)) 1236 return I->getParent() == BB; 1237 return true; 1238 } 1239 1240 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1241 /// This function emits a branch and is used at the leaves of an OR or an 1242 /// AND operator tree. 1243 /// 1244 void 1245 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1246 MachineBasicBlock *TBB, 1247 MachineBasicBlock *FBB, 1248 MachineBasicBlock *CurBB, 1249 MachineBasicBlock *SwitchBB) { 1250 const BasicBlock *BB = CurBB->getBasicBlock(); 1251 1252 // If the leaf of the tree is a comparison, merge the condition into 1253 // the caseblock. 1254 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1255 // The operands of the cmp have to be in this block. We don't know 1256 // how to export them from some other block. If this is the first block 1257 // of the sequence, no exporting is needed. 1258 if (CurBB == SwitchBB || 1259 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1260 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1261 ISD::CondCode Condition; 1262 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1263 Condition = getICmpCondCode(IC->getPredicate()); 1264 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1265 Condition = getFCmpCondCode(FC->getPredicate()); 1266 } else { 1267 Condition = ISD::SETEQ; // silence warning. 1268 llvm_unreachable("Unknown compare instruction"); 1269 } 1270 1271 CaseBlock CB(Condition, BOp->getOperand(0), 1272 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1273 SwitchCases.push_back(CB); 1274 return; 1275 } 1276 } 1277 1278 // Create a CaseBlock record representing this branch. 1279 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1280 NULL, TBB, FBB, CurBB); 1281 SwitchCases.push_back(CB); 1282 } 1283 1284 /// FindMergedConditions - If Cond is an expression like 1285 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1286 MachineBasicBlock *TBB, 1287 MachineBasicBlock *FBB, 1288 MachineBasicBlock *CurBB, 1289 MachineBasicBlock *SwitchBB, 1290 unsigned Opc) { 1291 // If this node is not part of the or/and tree, emit it as a branch. 1292 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1293 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1294 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1295 BOp->getParent() != CurBB->getBasicBlock() || 1296 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1297 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1298 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1299 return; 1300 } 1301 1302 // Create TmpBB after CurBB. 1303 MachineFunction::iterator BBI = CurBB; 1304 MachineFunction &MF = DAG.getMachineFunction(); 1305 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1306 CurBB->getParent()->insert(++BBI, TmpBB); 1307 1308 if (Opc == Instruction::Or) { 1309 // Codegen X | Y as: 1310 // jmp_if_X TBB 1311 // jmp TmpBB 1312 // TmpBB: 1313 // jmp_if_Y TBB 1314 // jmp FBB 1315 // 1316 1317 // Emit the LHS condition. 1318 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1319 1320 // Emit the RHS condition into TmpBB. 1321 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1322 } else { 1323 assert(Opc == Instruction::And && "Unknown merge op!"); 1324 // Codegen X & Y as: 1325 // jmp_if_X TmpBB 1326 // jmp FBB 1327 // TmpBB: 1328 // jmp_if_Y TBB 1329 // jmp FBB 1330 // 1331 // This requires creation of TmpBB after CurBB. 1332 1333 // Emit the LHS condition. 1334 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1335 1336 // Emit the RHS condition into TmpBB. 1337 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1338 } 1339 } 1340 1341 /// If the set of cases should be emitted as a series of branches, return true. 1342 /// If we should emit this as a bunch of and/or'd together conditions, return 1343 /// false. 1344 bool 1345 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1346 if (Cases.size() != 2) return true; 1347 1348 // If this is two comparisons of the same values or'd or and'd together, they 1349 // will get folded into a single comparison, so don't emit two blocks. 1350 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1351 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1352 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1353 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1354 return false; 1355 } 1356 1357 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1358 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1359 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1360 Cases[0].CC == Cases[1].CC && 1361 isa<Constant>(Cases[0].CmpRHS) && 1362 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1363 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1364 return false; 1365 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1366 return false; 1367 } 1368 1369 return true; 1370 } 1371 1372 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1373 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1374 1375 // Update machine-CFG edges. 1376 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1377 1378 // Figure out which block is immediately after the current one. 1379 MachineBasicBlock *NextBlock = 0; 1380 MachineFunction::iterator BBI = BrMBB; 1381 if (++BBI != FuncInfo.MF->end()) 1382 NextBlock = BBI; 1383 1384 if (I.isUnconditional()) { 1385 // Update machine-CFG edges. 1386 BrMBB->addSuccessor(Succ0MBB); 1387 1388 // If this is not a fall-through branch, emit the branch. 1389 if (Succ0MBB != NextBlock) 1390 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1391 MVT::Other, getControlRoot(), 1392 DAG.getBasicBlock(Succ0MBB))); 1393 1394 return; 1395 } 1396 1397 // If this condition is one of the special cases we handle, do special stuff 1398 // now. 1399 const Value *CondVal = I.getCondition(); 1400 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1401 1402 // If this is a series of conditions that are or'd or and'd together, emit 1403 // this as a sequence of branches instead of setcc's with and/or operations. 1404 // As long as jumps are not expensive, this should improve performance. 1405 // For example, instead of something like: 1406 // cmp A, B 1407 // C = seteq 1408 // cmp D, E 1409 // F = setle 1410 // or C, F 1411 // jnz foo 1412 // Emit: 1413 // cmp A, B 1414 // je foo 1415 // cmp D, E 1416 // jle foo 1417 // 1418 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1419 if (!TLI.isJumpExpensive() && 1420 BOp->hasOneUse() && 1421 (BOp->getOpcode() == Instruction::And || 1422 BOp->getOpcode() == Instruction::Or)) { 1423 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1424 BOp->getOpcode()); 1425 // If the compares in later blocks need to use values not currently 1426 // exported from this block, export them now. This block should always 1427 // be the first entry. 1428 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1429 1430 // Allow some cases to be rejected. 1431 if (ShouldEmitAsBranches(SwitchCases)) { 1432 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1433 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1434 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1435 } 1436 1437 // Emit the branch for this block. 1438 visitSwitchCase(SwitchCases[0], BrMBB); 1439 SwitchCases.erase(SwitchCases.begin()); 1440 return; 1441 } 1442 1443 // Okay, we decided not to do this, remove any inserted MBB's and clear 1444 // SwitchCases. 1445 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1446 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1447 1448 SwitchCases.clear(); 1449 } 1450 } 1451 1452 // Create a CaseBlock record representing this branch. 1453 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1454 NULL, Succ0MBB, Succ1MBB, BrMBB); 1455 1456 // Use visitSwitchCase to actually insert the fast branch sequence for this 1457 // cond branch. 1458 visitSwitchCase(CB, BrMBB); 1459 } 1460 1461 /// visitSwitchCase - Emits the necessary code to represent a single node in 1462 /// the binary search tree resulting from lowering a switch instruction. 1463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1464 MachineBasicBlock *SwitchBB) { 1465 SDValue Cond; 1466 SDValue CondLHS = getValue(CB.CmpLHS); 1467 DebugLoc dl = getCurDebugLoc(); 1468 1469 // Build the setcc now. 1470 if (CB.CmpMHS == NULL) { 1471 // Fold "(X == true)" to X and "(X == false)" to !X to 1472 // handle common cases produced by branch lowering. 1473 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1474 CB.CC == ISD::SETEQ) 1475 Cond = CondLHS; 1476 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1477 CB.CC == ISD::SETEQ) { 1478 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1479 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1480 } else 1481 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1482 } else { 1483 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1484 1485 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1486 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1487 1488 SDValue CmpOp = getValue(CB.CmpMHS); 1489 EVT VT = CmpOp.getValueType(); 1490 1491 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1492 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1493 ISD::SETLE); 1494 } else { 1495 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1496 VT, CmpOp, DAG.getConstant(Low, VT)); 1497 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1498 DAG.getConstant(High-Low, VT), ISD::SETULE); 1499 } 1500 } 1501 1502 // Update successor info 1503 SwitchBB->addSuccessor(CB.TrueBB); 1504 SwitchBB->addSuccessor(CB.FalseBB); 1505 1506 // Set NextBlock to be the MBB immediately after the current one, if any. 1507 // This is used to avoid emitting unnecessary branches to the next block. 1508 MachineBasicBlock *NextBlock = 0; 1509 MachineFunction::iterator BBI = SwitchBB; 1510 if (++BBI != FuncInfo.MF->end()) 1511 NextBlock = BBI; 1512 1513 // If the lhs block is the next block, invert the condition so that we can 1514 // fall through to the lhs instead of the rhs block. 1515 if (CB.TrueBB == NextBlock) { 1516 std::swap(CB.TrueBB, CB.FalseBB); 1517 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1518 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1519 } 1520 1521 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1522 MVT::Other, getControlRoot(), Cond, 1523 DAG.getBasicBlock(CB.TrueBB)); 1524 1525 // Insert the false branch. Do this even if it's a fall through branch, 1526 // this makes it easier to do DAG optimizations which require inverting 1527 // the branch condition. 1528 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1529 DAG.getBasicBlock(CB.FalseBB)); 1530 1531 DAG.setRoot(BrCond); 1532 } 1533 1534 /// visitJumpTable - Emit JumpTable node in the current MBB 1535 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1536 // Emit the code for the jump table 1537 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1538 EVT PTy = TLI.getPointerTy(); 1539 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1540 JT.Reg, PTy); 1541 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1542 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1543 MVT::Other, Index.getValue(1), 1544 Table, Index); 1545 DAG.setRoot(BrJumpTable); 1546 } 1547 1548 /// visitJumpTableHeader - This function emits necessary code to produce index 1549 /// in the JumpTable from switch case. 1550 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1551 JumpTableHeader &JTH, 1552 MachineBasicBlock *SwitchBB) { 1553 // Subtract the lowest switch case value from the value being switched on and 1554 // conditional branch to default mbb if the result is greater than the 1555 // difference between smallest and largest cases. 1556 SDValue SwitchOp = getValue(JTH.SValue); 1557 EVT VT = SwitchOp.getValueType(); 1558 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1559 DAG.getConstant(JTH.First, VT)); 1560 1561 // The SDNode we just created, which holds the value being switched on minus 1562 // the smallest case value, needs to be copied to a virtual register so it 1563 // can be used as an index into the jump table in a subsequent basic block. 1564 // This value may be smaller or larger than the target's pointer type, and 1565 // therefore require extension or truncating. 1566 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1567 1568 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1569 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1570 JumpTableReg, SwitchOp); 1571 JT.Reg = JumpTableReg; 1572 1573 // Emit the range check for the jump table, and branch to the default block 1574 // for the switch statement if the value being switched on exceeds the largest 1575 // case in the switch. 1576 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1577 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1578 DAG.getConstant(JTH.Last-JTH.First,VT), 1579 ISD::SETUGT); 1580 1581 // Set NextBlock to be the MBB immediately after the current one, if any. 1582 // This is used to avoid emitting unnecessary branches to the next block. 1583 MachineBasicBlock *NextBlock = 0; 1584 MachineFunction::iterator BBI = SwitchBB; 1585 1586 if (++BBI != FuncInfo.MF->end()) 1587 NextBlock = BBI; 1588 1589 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1590 MVT::Other, CopyTo, CMP, 1591 DAG.getBasicBlock(JT.Default)); 1592 1593 if (JT.MBB != NextBlock) 1594 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1595 DAG.getBasicBlock(JT.MBB)); 1596 1597 DAG.setRoot(BrCond); 1598 } 1599 1600 /// visitBitTestHeader - This function emits necessary code to produce value 1601 /// suitable for "bit tests" 1602 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1603 MachineBasicBlock *SwitchBB) { 1604 // Subtract the minimum value 1605 SDValue SwitchOp = getValue(B.SValue); 1606 EVT VT = SwitchOp.getValueType(); 1607 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1608 DAG.getConstant(B.First, VT)); 1609 1610 // Check range 1611 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1612 TLI.getSetCCResultType(Sub.getValueType()), 1613 Sub, DAG.getConstant(B.Range, VT), 1614 ISD::SETUGT); 1615 1616 // Determine the type of the test operands. 1617 bool UsePtrType = false; 1618 if (!TLI.isTypeLegal(VT)) 1619 UsePtrType = true; 1620 else { 1621 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1622 if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) { 1623 // Switch table case range are encoded into series of masks. 1624 // Just use pointer type, it's guaranteed to fit. 1625 UsePtrType = true; 1626 break; 1627 } 1628 } 1629 if (UsePtrType) { 1630 VT = TLI.getPointerTy(); 1631 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1632 } 1633 1634 B.RegVT = VT; 1635 B.Reg = FuncInfo.CreateReg(VT); 1636 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1637 B.Reg, Sub); 1638 1639 // Set NextBlock to be the MBB immediately after the current one, if any. 1640 // This is used to avoid emitting unnecessary branches to the next block. 1641 MachineBasicBlock *NextBlock = 0; 1642 MachineFunction::iterator BBI = SwitchBB; 1643 if (++BBI != FuncInfo.MF->end()) 1644 NextBlock = BBI; 1645 1646 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1647 1648 SwitchBB->addSuccessor(B.Default); 1649 SwitchBB->addSuccessor(MBB); 1650 1651 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1652 MVT::Other, CopyTo, RangeCmp, 1653 DAG.getBasicBlock(B.Default)); 1654 1655 if (MBB != NextBlock) 1656 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1657 DAG.getBasicBlock(MBB)); 1658 1659 DAG.setRoot(BrRange); 1660 } 1661 1662 /// visitBitTestCase - this function produces one "bit test" 1663 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1664 MachineBasicBlock* NextMBB, 1665 unsigned Reg, 1666 BitTestCase &B, 1667 MachineBasicBlock *SwitchBB) { 1668 EVT VT = BB.RegVT; 1669 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1670 Reg, VT); 1671 SDValue Cmp; 1672 if (CountPopulation_64(B.Mask) == 1) { 1673 // Testing for a single bit; just compare the shift count with what it 1674 // would need to be to shift a 1 bit in that position. 1675 Cmp = DAG.getSetCC(getCurDebugLoc(), 1676 TLI.getSetCCResultType(VT), 1677 ShiftOp, 1678 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1679 ISD::SETEQ); 1680 } else { 1681 // Make desired shift 1682 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1683 DAG.getConstant(1, VT), ShiftOp); 1684 1685 // Emit bit tests and jumps 1686 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1687 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1688 Cmp = DAG.getSetCC(getCurDebugLoc(), 1689 TLI.getSetCCResultType(VT), 1690 AndOp, DAG.getConstant(0, VT), 1691 ISD::SETNE); 1692 } 1693 1694 SwitchBB->addSuccessor(B.TargetBB); 1695 SwitchBB->addSuccessor(NextMBB); 1696 1697 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1698 MVT::Other, getControlRoot(), 1699 Cmp, DAG.getBasicBlock(B.TargetBB)); 1700 1701 // Set NextBlock to be the MBB immediately after the current one, if any. 1702 // This is used to avoid emitting unnecessary branches to the next block. 1703 MachineBasicBlock *NextBlock = 0; 1704 MachineFunction::iterator BBI = SwitchBB; 1705 if (++BBI != FuncInfo.MF->end()) 1706 NextBlock = BBI; 1707 1708 if (NextMBB != NextBlock) 1709 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1710 DAG.getBasicBlock(NextMBB)); 1711 1712 DAG.setRoot(BrAnd); 1713 } 1714 1715 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1716 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1717 1718 // Retrieve successors. 1719 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1720 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1721 1722 const Value *Callee(I.getCalledValue()); 1723 if (isa<InlineAsm>(Callee)) 1724 visitInlineAsm(&I); 1725 else 1726 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1727 1728 // If the value of the invoke is used outside of its defining block, make it 1729 // available as a virtual register. 1730 CopyToExportRegsIfNeeded(&I); 1731 1732 // Update successor info 1733 InvokeMBB->addSuccessor(Return); 1734 InvokeMBB->addSuccessor(LandingPad); 1735 1736 // Drop into normal successor. 1737 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1738 MVT::Other, getControlRoot(), 1739 DAG.getBasicBlock(Return))); 1740 } 1741 1742 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1743 } 1744 1745 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1746 /// small case ranges). 1747 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1748 CaseRecVector& WorkList, 1749 const Value* SV, 1750 MachineBasicBlock *Default, 1751 MachineBasicBlock *SwitchBB) { 1752 Case& BackCase = *(CR.Range.second-1); 1753 1754 // Size is the number of Cases represented by this range. 1755 size_t Size = CR.Range.second - CR.Range.first; 1756 if (Size > 3) 1757 return false; 1758 1759 // Get the MachineFunction which holds the current MBB. This is used when 1760 // inserting any additional MBBs necessary to represent the switch. 1761 MachineFunction *CurMF = FuncInfo.MF; 1762 1763 // Figure out which block is immediately after the current one. 1764 MachineBasicBlock *NextBlock = 0; 1765 MachineFunction::iterator BBI = CR.CaseBB; 1766 1767 if (++BBI != FuncInfo.MF->end()) 1768 NextBlock = BBI; 1769 1770 // If any two of the cases has the same destination, and if one value 1771 // is the same as the other, but has one bit unset that the other has set, 1772 // use bit manipulation to do two compares at once. For example: 1773 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1774 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1775 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1776 if (Size == 2 && CR.CaseBB == SwitchBB) { 1777 Case &Small = *CR.Range.first; 1778 Case &Big = *(CR.Range.second-1); 1779 1780 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1781 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1782 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1783 1784 // Check that there is only one bit different. 1785 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1786 (SmallValue | BigValue) == BigValue) { 1787 // Isolate the common bit. 1788 APInt CommonBit = BigValue & ~SmallValue; 1789 assert((SmallValue | CommonBit) == BigValue && 1790 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1791 1792 SDValue CondLHS = getValue(SV); 1793 EVT VT = CondLHS.getValueType(); 1794 DebugLoc DL = getCurDebugLoc(); 1795 1796 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1797 DAG.getConstant(CommonBit, VT)); 1798 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1799 Or, DAG.getConstant(BigValue, VT), 1800 ISD::SETEQ); 1801 1802 // Update successor info. 1803 SwitchBB->addSuccessor(Small.BB); 1804 SwitchBB->addSuccessor(Default); 1805 1806 // Insert the true branch. 1807 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1808 getControlRoot(), Cond, 1809 DAG.getBasicBlock(Small.BB)); 1810 1811 // Insert the false branch. 1812 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1813 DAG.getBasicBlock(Default)); 1814 1815 DAG.setRoot(BrCond); 1816 return true; 1817 } 1818 } 1819 } 1820 1821 // Rearrange the case blocks so that the last one falls through if possible. 1822 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1823 // The last case block won't fall through into 'NextBlock' if we emit the 1824 // branches in this order. See if rearranging a case value would help. 1825 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1826 if (I->BB == NextBlock) { 1827 std::swap(*I, BackCase); 1828 break; 1829 } 1830 } 1831 } 1832 1833 // Create a CaseBlock record representing a conditional branch to 1834 // the Case's target mbb if the value being switched on SV is equal 1835 // to C. 1836 MachineBasicBlock *CurBlock = CR.CaseBB; 1837 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1838 MachineBasicBlock *FallThrough; 1839 if (I != E-1) { 1840 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1841 CurMF->insert(BBI, FallThrough); 1842 1843 // Put SV in a virtual register to make it available from the new blocks. 1844 ExportFromCurrentBlock(SV); 1845 } else { 1846 // If the last case doesn't match, go to the default block. 1847 FallThrough = Default; 1848 } 1849 1850 const Value *RHS, *LHS, *MHS; 1851 ISD::CondCode CC; 1852 if (I->High == I->Low) { 1853 // This is just small small case range :) containing exactly 1 case 1854 CC = ISD::SETEQ; 1855 LHS = SV; RHS = I->High; MHS = NULL; 1856 } else { 1857 CC = ISD::SETLE; 1858 LHS = I->Low; MHS = SV; RHS = I->High; 1859 } 1860 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1861 1862 // If emitting the first comparison, just call visitSwitchCase to emit the 1863 // code into the current block. Otherwise, push the CaseBlock onto the 1864 // vector to be later processed by SDISel, and insert the node's MBB 1865 // before the next MBB. 1866 if (CurBlock == SwitchBB) 1867 visitSwitchCase(CB, SwitchBB); 1868 else 1869 SwitchCases.push_back(CB); 1870 1871 CurBlock = FallThrough; 1872 } 1873 1874 return true; 1875 } 1876 1877 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1878 return !DisableJumpTables && 1879 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1880 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1881 } 1882 1883 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1884 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1885 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 1886 return (LastExt - FirstExt + 1ULL); 1887 } 1888 1889 /// handleJTSwitchCase - Emit jumptable for current switch case range 1890 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1891 CaseRecVector& WorkList, 1892 const Value* SV, 1893 MachineBasicBlock* Default, 1894 MachineBasicBlock *SwitchBB) { 1895 Case& FrontCase = *CR.Range.first; 1896 Case& BackCase = *(CR.Range.second-1); 1897 1898 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1899 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1900 1901 APInt TSize(First.getBitWidth(), 0); 1902 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1903 I!=E; ++I) 1904 TSize += I->size(); 1905 1906 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1907 return false; 1908 1909 APInt Range = ComputeRange(First, Last); 1910 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1911 if (Density < 0.4) 1912 return false; 1913 1914 DEBUG(dbgs() << "Lowering jump table\n" 1915 << "First entry: " << First << ". Last entry: " << Last << '\n' 1916 << "Range: " << Range 1917 << ". Size: " << TSize << ". Density: " << Density << "\n\n"); 1918 1919 // Get the MachineFunction which holds the current MBB. This is used when 1920 // inserting any additional MBBs necessary to represent the switch. 1921 MachineFunction *CurMF = FuncInfo.MF; 1922 1923 // Figure out which block is immediately after the current one. 1924 MachineFunction::iterator BBI = CR.CaseBB; 1925 ++BBI; 1926 1927 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1928 1929 // Create a new basic block to hold the code for loading the address 1930 // of the jump table, and jumping to it. Update successor information; 1931 // we will either branch to the default case for the switch, or the jump 1932 // table. 1933 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1934 CurMF->insert(BBI, JumpTableBB); 1935 CR.CaseBB->addSuccessor(Default); 1936 CR.CaseBB->addSuccessor(JumpTableBB); 1937 1938 // Build a vector of destination BBs, corresponding to each target 1939 // of the jump table. If the value of the jump table slot corresponds to 1940 // a case statement, push the case's BB onto the vector, otherwise, push 1941 // the default BB. 1942 std::vector<MachineBasicBlock*> DestBBs; 1943 APInt TEI = First; 1944 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1945 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1946 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1947 1948 if (Low.sle(TEI) && TEI.sle(High)) { 1949 DestBBs.push_back(I->BB); 1950 if (TEI==High) 1951 ++I; 1952 } else { 1953 DestBBs.push_back(Default); 1954 } 1955 } 1956 1957 // Update successor info. Add one edge to each unique successor. 1958 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1959 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1960 E = DestBBs.end(); I != E; ++I) { 1961 if (!SuccsHandled[(*I)->getNumber()]) { 1962 SuccsHandled[(*I)->getNumber()] = true; 1963 JumpTableBB->addSuccessor(*I); 1964 } 1965 } 1966 1967 // Create a jump table index for this jump table. 1968 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1969 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1970 ->createJumpTableIndex(DestBBs); 1971 1972 // Set the jump table information so that we can codegen it as a second 1973 // MachineBasicBlock 1974 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1975 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1976 if (CR.CaseBB == SwitchBB) 1977 visitJumpTableHeader(JT, JTH, SwitchBB); 1978 1979 JTCases.push_back(JumpTableBlock(JTH, JT)); 1980 1981 return true; 1982 } 1983 1984 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1985 /// 2 subtrees. 1986 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1987 CaseRecVector& WorkList, 1988 const Value* SV, 1989 MachineBasicBlock *Default, 1990 MachineBasicBlock *SwitchBB) { 1991 // Get the MachineFunction which holds the current MBB. This is used when 1992 // inserting any additional MBBs necessary to represent the switch. 1993 MachineFunction *CurMF = FuncInfo.MF; 1994 1995 // Figure out which block is immediately after the current one. 1996 MachineFunction::iterator BBI = CR.CaseBB; 1997 ++BBI; 1998 1999 Case& FrontCase = *CR.Range.first; 2000 Case& BackCase = *(CR.Range.second-1); 2001 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2002 2003 // Size is the number of Cases represented by this range. 2004 unsigned Size = CR.Range.second - CR.Range.first; 2005 2006 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2007 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2008 double FMetric = 0; 2009 CaseItr Pivot = CR.Range.first + Size/2; 2010 2011 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2012 // (heuristically) allow us to emit JumpTable's later. 2013 APInt TSize(First.getBitWidth(), 0); 2014 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2015 I!=E; ++I) 2016 TSize += I->size(); 2017 2018 APInt LSize = FrontCase.size(); 2019 APInt RSize = TSize-LSize; 2020 DEBUG(dbgs() << "Selecting best pivot: \n" 2021 << "First: " << First << ", Last: " << Last <<'\n' 2022 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2023 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2024 J!=E; ++I, ++J) { 2025 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2026 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2027 APInt Range = ComputeRange(LEnd, RBegin); 2028 assert((Range - 2ULL).isNonNegative() && 2029 "Invalid case distance"); 2030 double LDensity = (double)LSize.roundToDouble() / 2031 (LEnd - First + 1ULL).roundToDouble(); 2032 double RDensity = (double)RSize.roundToDouble() / 2033 (Last - RBegin + 1ULL).roundToDouble(); 2034 double Metric = Range.logBase2()*(LDensity+RDensity); 2035 // Should always split in some non-trivial place 2036 DEBUG(dbgs() <<"=>Step\n" 2037 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2038 << "LDensity: " << LDensity 2039 << ", RDensity: " << RDensity << '\n' 2040 << "Metric: " << Metric << '\n'); 2041 if (FMetric < Metric) { 2042 Pivot = J; 2043 FMetric = Metric; 2044 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2045 } 2046 2047 LSize += J->size(); 2048 RSize -= J->size(); 2049 } 2050 if (areJTsAllowed(TLI)) { 2051 // If our case is dense we *really* should handle it earlier! 2052 assert((FMetric > 0) && "Should handle dense range earlier!"); 2053 } else { 2054 Pivot = CR.Range.first + Size/2; 2055 } 2056 2057 CaseRange LHSR(CR.Range.first, Pivot); 2058 CaseRange RHSR(Pivot, CR.Range.second); 2059 Constant *C = Pivot->Low; 2060 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2061 2062 // We know that we branch to the LHS if the Value being switched on is 2063 // less than the Pivot value, C. We use this to optimize our binary 2064 // tree a bit, by recognizing that if SV is greater than or equal to the 2065 // LHS's Case Value, and that Case Value is exactly one less than the 2066 // Pivot's Value, then we can branch directly to the LHS's Target, 2067 // rather than creating a leaf node for it. 2068 if ((LHSR.second - LHSR.first) == 1 && 2069 LHSR.first->High == CR.GE && 2070 cast<ConstantInt>(C)->getValue() == 2071 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2072 TrueBB = LHSR.first->BB; 2073 } else { 2074 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2075 CurMF->insert(BBI, TrueBB); 2076 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2077 2078 // Put SV in a virtual register to make it available from the new blocks. 2079 ExportFromCurrentBlock(SV); 2080 } 2081 2082 // Similar to the optimization above, if the Value being switched on is 2083 // known to be less than the Constant CR.LT, and the current Case Value 2084 // is CR.LT - 1, then we can branch directly to the target block for 2085 // the current Case Value, rather than emitting a RHS leaf node for it. 2086 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2087 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2088 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2089 FalseBB = RHSR.first->BB; 2090 } else { 2091 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2092 CurMF->insert(BBI, FalseBB); 2093 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2094 2095 // Put SV in a virtual register to make it available from the new blocks. 2096 ExportFromCurrentBlock(SV); 2097 } 2098 2099 // Create a CaseBlock record representing a conditional branch to 2100 // the LHS node if the value being switched on SV is less than C. 2101 // Otherwise, branch to LHS. 2102 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2103 2104 if (CR.CaseBB == SwitchBB) 2105 visitSwitchCase(CB, SwitchBB); 2106 else 2107 SwitchCases.push_back(CB); 2108 2109 return true; 2110 } 2111 2112 /// handleBitTestsSwitchCase - if current case range has few destination and 2113 /// range span less, than machine word bitwidth, encode case range into series 2114 /// of masks and emit bit tests with these masks. 2115 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2116 CaseRecVector& WorkList, 2117 const Value* SV, 2118 MachineBasicBlock* Default, 2119 MachineBasicBlock *SwitchBB){ 2120 EVT PTy = TLI.getPointerTy(); 2121 unsigned IntPtrBits = PTy.getSizeInBits(); 2122 2123 Case& FrontCase = *CR.Range.first; 2124 Case& BackCase = *(CR.Range.second-1); 2125 2126 // Get the MachineFunction which holds the current MBB. This is used when 2127 // inserting any additional MBBs necessary to represent the switch. 2128 MachineFunction *CurMF = FuncInfo.MF; 2129 2130 // If target does not have legal shift left, do not emit bit tests at all. 2131 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2132 return false; 2133 2134 size_t numCmps = 0; 2135 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2136 I!=E; ++I) { 2137 // Single case counts one, case range - two. 2138 numCmps += (I->Low == I->High ? 1 : 2); 2139 } 2140 2141 // Count unique destinations 2142 SmallSet<MachineBasicBlock*, 4> Dests; 2143 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2144 Dests.insert(I->BB); 2145 if (Dests.size() > 3) 2146 // Don't bother the code below, if there are too much unique destinations 2147 return false; 2148 } 2149 DEBUG(dbgs() << "Total number of unique destinations: " 2150 << Dests.size() << '\n' 2151 << "Total number of comparisons: " << numCmps << '\n'); 2152 2153 // Compute span of values. 2154 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2155 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2156 APInt cmpRange = maxValue - minValue; 2157 2158 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2159 << "Low bound: " << minValue << '\n' 2160 << "High bound: " << maxValue << '\n'); 2161 2162 if (cmpRange.uge(IntPtrBits) || 2163 (!(Dests.size() == 1 && numCmps >= 3) && 2164 !(Dests.size() == 2 && numCmps >= 5) && 2165 !(Dests.size() >= 3 && numCmps >= 6))) 2166 return false; 2167 2168 DEBUG(dbgs() << "Emitting bit tests\n"); 2169 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2170 2171 // Optimize the case where all the case values fit in a 2172 // word without having to subtract minValue. In this case, 2173 // we can optimize away the subtraction. 2174 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2175 cmpRange = maxValue; 2176 } else { 2177 lowBound = minValue; 2178 } 2179 2180 CaseBitsVector CasesBits; 2181 unsigned i, count = 0; 2182 2183 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2184 MachineBasicBlock* Dest = I->BB; 2185 for (i = 0; i < count; ++i) 2186 if (Dest == CasesBits[i].BB) 2187 break; 2188 2189 if (i == count) { 2190 assert((count < 3) && "Too much destinations to test!"); 2191 CasesBits.push_back(CaseBits(0, Dest, 0)); 2192 count++; 2193 } 2194 2195 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2196 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2197 2198 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2199 uint64_t hi = (highValue - lowBound).getZExtValue(); 2200 2201 for (uint64_t j = lo; j <= hi; j++) { 2202 CasesBits[i].Mask |= 1ULL << j; 2203 CasesBits[i].Bits++; 2204 } 2205 2206 } 2207 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2208 2209 BitTestInfo BTC; 2210 2211 // Figure out which block is immediately after the current one. 2212 MachineFunction::iterator BBI = CR.CaseBB; 2213 ++BBI; 2214 2215 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2216 2217 DEBUG(dbgs() << "Cases:\n"); 2218 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2219 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2220 << ", Bits: " << CasesBits[i].Bits 2221 << ", BB: " << CasesBits[i].BB << '\n'); 2222 2223 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2224 CurMF->insert(BBI, CaseBB); 2225 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2226 CaseBB, 2227 CasesBits[i].BB)); 2228 2229 // Put SV in a virtual register to make it available from the new blocks. 2230 ExportFromCurrentBlock(SV); 2231 } 2232 2233 BitTestBlock BTB(lowBound, cmpRange, SV, 2234 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2235 CR.CaseBB, Default, BTC); 2236 2237 if (CR.CaseBB == SwitchBB) 2238 visitBitTestHeader(BTB, SwitchBB); 2239 2240 BitTestCases.push_back(BTB); 2241 2242 return true; 2243 } 2244 2245 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2246 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2247 const SwitchInst& SI) { 2248 size_t numCmps = 0; 2249 2250 // Start with "simple" cases 2251 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2252 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2253 Cases.push_back(Case(SI.getSuccessorValue(i), 2254 SI.getSuccessorValue(i), 2255 SMBB)); 2256 } 2257 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2258 2259 // Merge case into clusters 2260 if (Cases.size() >= 2) 2261 // Must recompute end() each iteration because it may be 2262 // invalidated by erase if we hold on to it 2263 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2264 J != Cases.end(); ) { 2265 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2266 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2267 MachineBasicBlock* nextBB = J->BB; 2268 MachineBasicBlock* currentBB = I->BB; 2269 2270 // If the two neighboring cases go to the same destination, merge them 2271 // into a single case. 2272 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2273 I->High = J->High; 2274 J = Cases.erase(J); 2275 } else { 2276 I = J++; 2277 } 2278 } 2279 2280 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2281 if (I->Low != I->High) 2282 // A range counts double, since it requires two compares. 2283 ++numCmps; 2284 } 2285 2286 return numCmps; 2287 } 2288 2289 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2290 MachineBasicBlock *Last) { 2291 // Update JTCases. 2292 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2293 if (JTCases[i].first.HeaderBB == First) 2294 JTCases[i].first.HeaderBB = Last; 2295 2296 // Update BitTestCases. 2297 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2298 if (BitTestCases[i].Parent == First) 2299 BitTestCases[i].Parent = Last; 2300 } 2301 2302 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2303 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2304 2305 // Figure out which block is immediately after the current one. 2306 MachineBasicBlock *NextBlock = 0; 2307 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2308 2309 // If there is only the default destination, branch to it if it is not the 2310 // next basic block. Otherwise, just fall through. 2311 if (SI.getNumOperands() == 2) { 2312 // Update machine-CFG edges. 2313 2314 // If this is not a fall-through branch, emit the branch. 2315 SwitchMBB->addSuccessor(Default); 2316 if (Default != NextBlock) 2317 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2318 MVT::Other, getControlRoot(), 2319 DAG.getBasicBlock(Default))); 2320 2321 return; 2322 } 2323 2324 // If there are any non-default case statements, create a vector of Cases 2325 // representing each one, and sort the vector so that we can efficiently 2326 // create a binary search tree from them. 2327 CaseVector Cases; 2328 size_t numCmps = Clusterify(Cases, SI); 2329 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2330 << ". Total compares: " << numCmps << '\n'); 2331 numCmps = 0; 2332 2333 // Get the Value to be switched on and default basic blocks, which will be 2334 // inserted into CaseBlock records, representing basic blocks in the binary 2335 // search tree. 2336 const Value *SV = SI.getOperand(0); 2337 2338 // Push the initial CaseRec onto the worklist 2339 CaseRecVector WorkList; 2340 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2341 CaseRange(Cases.begin(),Cases.end()))); 2342 2343 while (!WorkList.empty()) { 2344 // Grab a record representing a case range to process off the worklist 2345 CaseRec CR = WorkList.back(); 2346 WorkList.pop_back(); 2347 2348 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2349 continue; 2350 2351 // If the range has few cases (two or less) emit a series of specific 2352 // tests. 2353 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2354 continue; 2355 2356 // If the switch has more than 5 blocks, and at least 40% dense, and the 2357 // target supports indirect branches, then emit a jump table rather than 2358 // lowering the switch to a binary tree of conditional branches. 2359 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2360 continue; 2361 2362 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2363 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2364 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2365 } 2366 } 2367 2368 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2369 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2370 2371 // Update machine-CFG edges with unique successors. 2372 SmallVector<BasicBlock*, 32> succs; 2373 succs.reserve(I.getNumSuccessors()); 2374 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2375 succs.push_back(I.getSuccessor(i)); 2376 array_pod_sort(succs.begin(), succs.end()); 2377 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2378 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2379 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2380 2381 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2382 MVT::Other, getControlRoot(), 2383 getValue(I.getAddress()))); 2384 } 2385 2386 void SelectionDAGBuilder::visitFSub(const User &I) { 2387 // -0.0 - X --> fneg 2388 const Type *Ty = I.getType(); 2389 if (isa<Constant>(I.getOperand(0)) && 2390 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2391 SDValue Op2 = getValue(I.getOperand(1)); 2392 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2393 Op2.getValueType(), Op2)); 2394 return; 2395 } 2396 2397 visitBinary(I, ISD::FSUB); 2398 } 2399 2400 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2401 SDValue Op1 = getValue(I.getOperand(0)); 2402 SDValue Op2 = getValue(I.getOperand(1)); 2403 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2404 Op1.getValueType(), Op1, Op2)); 2405 } 2406 2407 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2408 SDValue Op1 = getValue(I.getOperand(0)); 2409 SDValue Op2 = getValue(I.getOperand(1)); 2410 2411 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2412 2413 // Coerce the shift amount to the right type if we can. 2414 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2415 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2416 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2417 DebugLoc DL = getCurDebugLoc(); 2418 2419 // If the operand is smaller than the shift count type, promote it. 2420 if (ShiftSize > Op2Size) 2421 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2422 2423 // If the operand is larger than the shift count type but the shift 2424 // count type has enough bits to represent any shift value, truncate 2425 // it now. This is a common case and it exposes the truncate to 2426 // optimization early. 2427 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2428 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2429 // Otherwise we'll need to temporarily settle for some other convenient 2430 // type. Type legalization will make adjustments once the shiftee is split. 2431 else 2432 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2433 } 2434 2435 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2436 Op1.getValueType(), Op1, Op2)); 2437 } 2438 2439 void SelectionDAGBuilder::visitICmp(const User &I) { 2440 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2441 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2442 predicate = IC->getPredicate(); 2443 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2444 predicate = ICmpInst::Predicate(IC->getPredicate()); 2445 SDValue Op1 = getValue(I.getOperand(0)); 2446 SDValue Op2 = getValue(I.getOperand(1)); 2447 ISD::CondCode Opcode = getICmpCondCode(predicate); 2448 2449 EVT DestVT = TLI.getValueType(I.getType()); 2450 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2451 } 2452 2453 void SelectionDAGBuilder::visitFCmp(const User &I) { 2454 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2455 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2456 predicate = FC->getPredicate(); 2457 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2458 predicate = FCmpInst::Predicate(FC->getPredicate()); 2459 SDValue Op1 = getValue(I.getOperand(0)); 2460 SDValue Op2 = getValue(I.getOperand(1)); 2461 ISD::CondCode Condition = getFCmpCondCode(predicate); 2462 EVT DestVT = TLI.getValueType(I.getType()); 2463 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2464 } 2465 2466 void SelectionDAGBuilder::visitSelect(const User &I) { 2467 SmallVector<EVT, 4> ValueVTs; 2468 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2469 unsigned NumValues = ValueVTs.size(); 2470 if (NumValues == 0) return; 2471 2472 SmallVector<SDValue, 4> Values(NumValues); 2473 SDValue Cond = getValue(I.getOperand(0)); 2474 SDValue TrueVal = getValue(I.getOperand(1)); 2475 SDValue FalseVal = getValue(I.getOperand(2)); 2476 2477 for (unsigned i = 0; i != NumValues; ++i) 2478 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2479 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2480 Cond, 2481 SDValue(TrueVal.getNode(), 2482 TrueVal.getResNo() + i), 2483 SDValue(FalseVal.getNode(), 2484 FalseVal.getResNo() + i)); 2485 2486 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2487 DAG.getVTList(&ValueVTs[0], NumValues), 2488 &Values[0], NumValues)); 2489 } 2490 2491 void SelectionDAGBuilder::visitTrunc(const User &I) { 2492 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2493 SDValue N = getValue(I.getOperand(0)); 2494 EVT DestVT = TLI.getValueType(I.getType()); 2495 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2496 } 2497 2498 void SelectionDAGBuilder::visitZExt(const User &I) { 2499 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2500 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2501 SDValue N = getValue(I.getOperand(0)); 2502 EVT DestVT = TLI.getValueType(I.getType()); 2503 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2504 } 2505 2506 void SelectionDAGBuilder::visitSExt(const User &I) { 2507 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2508 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2509 SDValue N = getValue(I.getOperand(0)); 2510 EVT DestVT = TLI.getValueType(I.getType()); 2511 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2512 } 2513 2514 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2515 // FPTrunc is never a no-op cast, no need to check 2516 SDValue N = getValue(I.getOperand(0)); 2517 EVT DestVT = TLI.getValueType(I.getType()); 2518 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2519 DestVT, N, DAG.getIntPtrConstant(0))); 2520 } 2521 2522 void SelectionDAGBuilder::visitFPExt(const User &I){ 2523 // FPTrunc is never a no-op cast, no need to check 2524 SDValue N = getValue(I.getOperand(0)); 2525 EVT DestVT = TLI.getValueType(I.getType()); 2526 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2527 } 2528 2529 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2530 // FPToUI is never a no-op cast, no need to check 2531 SDValue N = getValue(I.getOperand(0)); 2532 EVT DestVT = TLI.getValueType(I.getType()); 2533 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2534 } 2535 2536 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2537 // FPToSI is never a no-op cast, no need to check 2538 SDValue N = getValue(I.getOperand(0)); 2539 EVT DestVT = TLI.getValueType(I.getType()); 2540 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2541 } 2542 2543 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2544 // UIToFP is never a no-op cast, no need to check 2545 SDValue N = getValue(I.getOperand(0)); 2546 EVT DestVT = TLI.getValueType(I.getType()); 2547 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2548 } 2549 2550 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2551 // SIToFP is never a no-op cast, no need to check 2552 SDValue N = getValue(I.getOperand(0)); 2553 EVT DestVT = TLI.getValueType(I.getType()); 2554 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2555 } 2556 2557 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2558 // What to do depends on the size of the integer and the size of the pointer. 2559 // We can either truncate, zero extend, or no-op, accordingly. 2560 SDValue N = getValue(I.getOperand(0)); 2561 EVT DestVT = TLI.getValueType(I.getType()); 2562 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2563 } 2564 2565 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2566 // What to do depends on the size of the integer and the size of the pointer. 2567 // We can either truncate, zero extend, or no-op, accordingly. 2568 SDValue N = getValue(I.getOperand(0)); 2569 EVT DestVT = TLI.getValueType(I.getType()); 2570 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2571 } 2572 2573 void SelectionDAGBuilder::visitBitCast(const User &I) { 2574 SDValue N = getValue(I.getOperand(0)); 2575 EVT DestVT = TLI.getValueType(I.getType()); 2576 2577 // BitCast assures us that source and destination are the same size so this is 2578 // either a BITCAST or a no-op. 2579 if (DestVT != N.getValueType()) 2580 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2581 DestVT, N)); // convert types. 2582 else 2583 setValue(&I, N); // noop cast. 2584 } 2585 2586 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2587 SDValue InVec = getValue(I.getOperand(0)); 2588 SDValue InVal = getValue(I.getOperand(1)); 2589 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2590 TLI.getPointerTy(), 2591 getValue(I.getOperand(2))); 2592 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2593 TLI.getValueType(I.getType()), 2594 InVec, InVal, InIdx)); 2595 } 2596 2597 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2598 SDValue InVec = getValue(I.getOperand(0)); 2599 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2600 TLI.getPointerTy(), 2601 getValue(I.getOperand(1))); 2602 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2603 TLI.getValueType(I.getType()), InVec, InIdx)); 2604 } 2605 2606 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2607 // from SIndx and increasing to the element length (undefs are allowed). 2608 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2609 unsigned MaskNumElts = Mask.size(); 2610 for (unsigned i = 0; i != MaskNumElts; ++i) 2611 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2612 return false; 2613 return true; 2614 } 2615 2616 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2617 SmallVector<int, 8> Mask; 2618 SDValue Src1 = getValue(I.getOperand(0)); 2619 SDValue Src2 = getValue(I.getOperand(1)); 2620 2621 // Convert the ConstantVector mask operand into an array of ints, with -1 2622 // representing undef values. 2623 SmallVector<Constant*, 8> MaskElts; 2624 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2625 unsigned MaskNumElts = MaskElts.size(); 2626 for (unsigned i = 0; i != MaskNumElts; ++i) { 2627 if (isa<UndefValue>(MaskElts[i])) 2628 Mask.push_back(-1); 2629 else 2630 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2631 } 2632 2633 EVT VT = TLI.getValueType(I.getType()); 2634 EVT SrcVT = Src1.getValueType(); 2635 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2636 2637 if (SrcNumElts == MaskNumElts) { 2638 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2639 &Mask[0])); 2640 return; 2641 } 2642 2643 // Normalize the shuffle vector since mask and vector length don't match. 2644 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2645 // Mask is longer than the source vectors and is a multiple of the source 2646 // vectors. We can use concatenate vector to make the mask and vectors 2647 // lengths match. 2648 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2649 // The shuffle is concatenating two vectors together. 2650 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2651 VT, Src1, Src2)); 2652 return; 2653 } 2654 2655 // Pad both vectors with undefs to make them the same length as the mask. 2656 unsigned NumConcat = MaskNumElts / SrcNumElts; 2657 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2658 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2659 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2660 2661 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2662 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2663 MOps1[0] = Src1; 2664 MOps2[0] = Src2; 2665 2666 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2667 getCurDebugLoc(), VT, 2668 &MOps1[0], NumConcat); 2669 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2670 getCurDebugLoc(), VT, 2671 &MOps2[0], NumConcat); 2672 2673 // Readjust mask for new input vector length. 2674 SmallVector<int, 8> MappedOps; 2675 for (unsigned i = 0; i != MaskNumElts; ++i) { 2676 int Idx = Mask[i]; 2677 if (Idx < (int)SrcNumElts) 2678 MappedOps.push_back(Idx); 2679 else 2680 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2681 } 2682 2683 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2684 &MappedOps[0])); 2685 return; 2686 } 2687 2688 if (SrcNumElts > MaskNumElts) { 2689 // Analyze the access pattern of the vector to see if we can extract 2690 // two subvectors and do the shuffle. The analysis is done by calculating 2691 // the range of elements the mask access on both vectors. 2692 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2693 int MaxRange[2] = {-1, -1}; 2694 2695 for (unsigned i = 0; i != MaskNumElts; ++i) { 2696 int Idx = Mask[i]; 2697 int Input = 0; 2698 if (Idx < 0) 2699 continue; 2700 2701 if (Idx >= (int)SrcNumElts) { 2702 Input = 1; 2703 Idx -= SrcNumElts; 2704 } 2705 if (Idx > MaxRange[Input]) 2706 MaxRange[Input] = Idx; 2707 if (Idx < MinRange[Input]) 2708 MinRange[Input] = Idx; 2709 } 2710 2711 // Check if the access is smaller than the vector size and can we find 2712 // a reasonable extract index. 2713 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2714 // Extract. 2715 int StartIdx[2]; // StartIdx to extract from 2716 for (int Input=0; Input < 2; ++Input) { 2717 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2718 RangeUse[Input] = 0; // Unused 2719 StartIdx[Input] = 0; 2720 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2721 // Fits within range but we should see if we can find a good 2722 // start index that is a multiple of the mask length. 2723 if (MaxRange[Input] < (int)MaskNumElts) { 2724 RangeUse[Input] = 1; // Extract from beginning of the vector 2725 StartIdx[Input] = 0; 2726 } else { 2727 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2728 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2729 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2730 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2731 } 2732 } 2733 } 2734 2735 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2736 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2737 return; 2738 } 2739 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2740 // Extract appropriate subvector and generate a vector shuffle 2741 for (int Input=0; Input < 2; ++Input) { 2742 SDValue &Src = Input == 0 ? Src1 : Src2; 2743 if (RangeUse[Input] == 0) 2744 Src = DAG.getUNDEF(VT); 2745 else 2746 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2747 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2748 } 2749 2750 // Calculate new mask. 2751 SmallVector<int, 8> MappedOps; 2752 for (unsigned i = 0; i != MaskNumElts; ++i) { 2753 int Idx = Mask[i]; 2754 if (Idx < 0) 2755 MappedOps.push_back(Idx); 2756 else if (Idx < (int)SrcNumElts) 2757 MappedOps.push_back(Idx - StartIdx[0]); 2758 else 2759 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2760 } 2761 2762 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2763 &MappedOps[0])); 2764 return; 2765 } 2766 } 2767 2768 // We can't use either concat vectors or extract subvectors so fall back to 2769 // replacing the shuffle with extract and build vector. 2770 // to insert and build vector. 2771 EVT EltVT = VT.getVectorElementType(); 2772 EVT PtrVT = TLI.getPointerTy(); 2773 SmallVector<SDValue,8> Ops; 2774 for (unsigned i = 0; i != MaskNumElts; ++i) { 2775 if (Mask[i] < 0) { 2776 Ops.push_back(DAG.getUNDEF(EltVT)); 2777 } else { 2778 int Idx = Mask[i]; 2779 SDValue Res; 2780 2781 if (Idx < (int)SrcNumElts) 2782 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2783 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2784 else 2785 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2786 EltVT, Src2, 2787 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2788 2789 Ops.push_back(Res); 2790 } 2791 } 2792 2793 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2794 VT, &Ops[0], Ops.size())); 2795 } 2796 2797 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2798 const Value *Op0 = I.getOperand(0); 2799 const Value *Op1 = I.getOperand(1); 2800 const Type *AggTy = I.getType(); 2801 const Type *ValTy = Op1->getType(); 2802 bool IntoUndef = isa<UndefValue>(Op0); 2803 bool FromUndef = isa<UndefValue>(Op1); 2804 2805 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2806 2807 SmallVector<EVT, 4> AggValueVTs; 2808 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2809 SmallVector<EVT, 4> ValValueVTs; 2810 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2811 2812 unsigned NumAggValues = AggValueVTs.size(); 2813 unsigned NumValValues = ValValueVTs.size(); 2814 SmallVector<SDValue, 4> Values(NumAggValues); 2815 2816 SDValue Agg = getValue(Op0); 2817 SDValue Val = getValue(Op1); 2818 unsigned i = 0; 2819 // Copy the beginning value(s) from the original aggregate. 2820 for (; i != LinearIndex; ++i) 2821 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2822 SDValue(Agg.getNode(), Agg.getResNo() + i); 2823 // Copy values from the inserted value(s). 2824 for (; i != LinearIndex + NumValValues; ++i) 2825 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2826 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2827 // Copy remaining value(s) from the original aggregate. 2828 for (; i != NumAggValues; ++i) 2829 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2830 SDValue(Agg.getNode(), Agg.getResNo() + i); 2831 2832 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2833 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2834 &Values[0], NumAggValues)); 2835 } 2836 2837 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2838 const Value *Op0 = I.getOperand(0); 2839 const Type *AggTy = Op0->getType(); 2840 const Type *ValTy = I.getType(); 2841 bool OutOfUndef = isa<UndefValue>(Op0); 2842 2843 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2844 2845 SmallVector<EVT, 4> ValValueVTs; 2846 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2847 2848 unsigned NumValValues = ValValueVTs.size(); 2849 SmallVector<SDValue, 4> Values(NumValValues); 2850 2851 SDValue Agg = getValue(Op0); 2852 // Copy out the selected value(s). 2853 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2854 Values[i - LinearIndex] = 2855 OutOfUndef ? 2856 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2857 SDValue(Agg.getNode(), Agg.getResNo() + i); 2858 2859 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2860 DAG.getVTList(&ValValueVTs[0], NumValValues), 2861 &Values[0], NumValValues)); 2862 } 2863 2864 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2865 SDValue N = getValue(I.getOperand(0)); 2866 const Type *Ty = I.getOperand(0)->getType(); 2867 2868 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2869 OI != E; ++OI) { 2870 const Value *Idx = *OI; 2871 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2872 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2873 if (Field) { 2874 // N = N + Offset 2875 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2876 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2877 DAG.getIntPtrConstant(Offset)); 2878 } 2879 2880 Ty = StTy->getElementType(Field); 2881 } else { 2882 Ty = cast<SequentialType>(Ty)->getElementType(); 2883 2884 // If this is a constant subscript, handle it quickly. 2885 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2886 if (CI->isZero()) continue; 2887 uint64_t Offs = 2888 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2889 SDValue OffsVal; 2890 EVT PTy = TLI.getPointerTy(); 2891 unsigned PtrBits = PTy.getSizeInBits(); 2892 if (PtrBits < 64) 2893 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2894 TLI.getPointerTy(), 2895 DAG.getConstant(Offs, MVT::i64)); 2896 else 2897 OffsVal = DAG.getIntPtrConstant(Offs); 2898 2899 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2900 OffsVal); 2901 continue; 2902 } 2903 2904 // N = N + Idx * ElementSize; 2905 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2906 TD->getTypeAllocSize(Ty)); 2907 SDValue IdxN = getValue(Idx); 2908 2909 // If the index is smaller or larger than intptr_t, truncate or extend 2910 // it. 2911 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2912 2913 // If this is a multiply by a power of two, turn it into a shl 2914 // immediately. This is a very common case. 2915 if (ElementSize != 1) { 2916 if (ElementSize.isPowerOf2()) { 2917 unsigned Amt = ElementSize.logBase2(); 2918 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2919 N.getValueType(), IdxN, 2920 DAG.getConstant(Amt, TLI.getPointerTy())); 2921 } else { 2922 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2923 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2924 N.getValueType(), IdxN, Scale); 2925 } 2926 } 2927 2928 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2929 N.getValueType(), N, IdxN); 2930 } 2931 } 2932 2933 setValue(&I, N); 2934 } 2935 2936 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2937 // If this is a fixed sized alloca in the entry block of the function, 2938 // allocate it statically on the stack. 2939 if (FuncInfo.StaticAllocaMap.count(&I)) 2940 return; // getValue will auto-populate this. 2941 2942 const Type *Ty = I.getAllocatedType(); 2943 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2944 unsigned Align = 2945 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2946 I.getAlignment()); 2947 2948 SDValue AllocSize = getValue(I.getArraySize()); 2949 2950 EVT IntPtr = TLI.getPointerTy(); 2951 if (AllocSize.getValueType() != IntPtr) 2952 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2953 2954 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2955 AllocSize, 2956 DAG.getConstant(TySize, IntPtr)); 2957 2958 // Handle alignment. If the requested alignment is less than or equal to 2959 // the stack alignment, ignore it. If the size is greater than or equal to 2960 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2961 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 2962 if (Align <= StackAlign) 2963 Align = 0; 2964 2965 // Round the size of the allocation up to the stack alignment size 2966 // by add SA-1 to the size. 2967 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2968 AllocSize.getValueType(), AllocSize, 2969 DAG.getIntPtrConstant(StackAlign-1)); 2970 2971 // Mask out the low bits for alignment purposes. 2972 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2973 AllocSize.getValueType(), AllocSize, 2974 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2975 2976 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2977 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2978 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2979 VTs, Ops, 3); 2980 setValue(&I, DSA); 2981 DAG.setRoot(DSA.getValue(1)); 2982 2983 // Inform the Frame Information that we have just allocated a variable-sized 2984 // object. 2985 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2986 } 2987 2988 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2989 const Value *SV = I.getOperand(0); 2990 SDValue Ptr = getValue(SV); 2991 2992 const Type *Ty = I.getType(); 2993 2994 bool isVolatile = I.isVolatile(); 2995 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2996 unsigned Alignment = I.getAlignment(); 2997 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 2998 2999 SmallVector<EVT, 4> ValueVTs; 3000 SmallVector<uint64_t, 4> Offsets; 3001 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3002 unsigned NumValues = ValueVTs.size(); 3003 if (NumValues == 0) 3004 return; 3005 3006 SDValue Root; 3007 bool ConstantMemory = false; 3008 if (I.isVolatile() || NumValues > MaxParallelChains) 3009 // Serialize volatile loads with other side effects. 3010 Root = getRoot(); 3011 else if (AA->pointsToConstantMemory( 3012 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3013 // Do not serialize (non-volatile) loads of constant memory with anything. 3014 Root = DAG.getEntryNode(); 3015 ConstantMemory = true; 3016 } else { 3017 // Do not serialize non-volatile loads against each other. 3018 Root = DAG.getRoot(); 3019 } 3020 3021 SmallVector<SDValue, 4> Values(NumValues); 3022 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3023 NumValues)); 3024 EVT PtrVT = Ptr.getValueType(); 3025 unsigned ChainI = 0; 3026 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3027 // Serializing loads here may result in excessive register pressure, and 3028 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3029 // could recover a bit by hoisting nodes upward in the chain by recognizing 3030 // they are side-effect free or do not alias. The optimizer should really 3031 // avoid this case by converting large object/array copies to llvm.memcpy 3032 // (MaxParallelChains should always remain as failsafe). 3033 if (ChainI == MaxParallelChains) { 3034 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3035 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3036 MVT::Other, &Chains[0], ChainI); 3037 Root = Chain; 3038 ChainI = 0; 3039 } 3040 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3041 PtrVT, Ptr, 3042 DAG.getConstant(Offsets[i], PtrVT)); 3043 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3044 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3045 isNonTemporal, Alignment, TBAAInfo); 3046 3047 Values[i] = L; 3048 Chains[ChainI] = L.getValue(1); 3049 } 3050 3051 if (!ConstantMemory) { 3052 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3053 MVT::Other, &Chains[0], ChainI); 3054 if (isVolatile) 3055 DAG.setRoot(Chain); 3056 else 3057 PendingLoads.push_back(Chain); 3058 } 3059 3060 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3061 DAG.getVTList(&ValueVTs[0], NumValues), 3062 &Values[0], NumValues)); 3063 } 3064 3065 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3066 const Value *SrcV = I.getOperand(0); 3067 const Value *PtrV = I.getOperand(1); 3068 3069 SmallVector<EVT, 4> ValueVTs; 3070 SmallVector<uint64_t, 4> Offsets; 3071 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3072 unsigned NumValues = ValueVTs.size(); 3073 if (NumValues == 0) 3074 return; 3075 3076 // Get the lowered operands. Note that we do this after 3077 // checking if NumResults is zero, because with zero results 3078 // the operands won't have values in the map. 3079 SDValue Src = getValue(SrcV); 3080 SDValue Ptr = getValue(PtrV); 3081 3082 SDValue Root = getRoot(); 3083 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3084 NumValues)); 3085 EVT PtrVT = Ptr.getValueType(); 3086 bool isVolatile = I.isVolatile(); 3087 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3088 unsigned Alignment = I.getAlignment(); 3089 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3090 3091 unsigned ChainI = 0; 3092 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3093 // See visitLoad comments. 3094 if (ChainI == MaxParallelChains) { 3095 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3096 MVT::Other, &Chains[0], ChainI); 3097 Root = Chain; 3098 ChainI = 0; 3099 } 3100 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3101 DAG.getConstant(Offsets[i], PtrVT)); 3102 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3103 SDValue(Src.getNode(), Src.getResNo() + i), 3104 Add, MachinePointerInfo(PtrV, Offsets[i]), 3105 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3106 Chains[ChainI] = St; 3107 } 3108 3109 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3110 MVT::Other, &Chains[0], ChainI); 3111 ++SDNodeOrder; 3112 AssignOrderingToNode(StoreNode.getNode()); 3113 DAG.setRoot(StoreNode); 3114 } 3115 3116 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3117 /// node. 3118 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3119 unsigned Intrinsic) { 3120 bool HasChain = !I.doesNotAccessMemory(); 3121 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3122 3123 // Build the operand list. 3124 SmallVector<SDValue, 8> Ops; 3125 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3126 if (OnlyLoad) { 3127 // We don't need to serialize loads against other loads. 3128 Ops.push_back(DAG.getRoot()); 3129 } else { 3130 Ops.push_back(getRoot()); 3131 } 3132 } 3133 3134 // Info is set by getTgtMemInstrinsic 3135 TargetLowering::IntrinsicInfo Info; 3136 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3137 3138 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3139 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3140 Info.opc == ISD::INTRINSIC_W_CHAIN) 3141 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3142 3143 // Add all operands of the call to the operand list. 3144 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3145 SDValue Op = getValue(I.getArgOperand(i)); 3146 assert(TLI.isTypeLegal(Op.getValueType()) && 3147 "Intrinsic uses a non-legal type?"); 3148 Ops.push_back(Op); 3149 } 3150 3151 SmallVector<EVT, 4> ValueVTs; 3152 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3153 #ifndef NDEBUG 3154 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3155 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3156 "Intrinsic uses a non-legal type?"); 3157 } 3158 #endif // NDEBUG 3159 3160 if (HasChain) 3161 ValueVTs.push_back(MVT::Other); 3162 3163 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3164 3165 // Create the node. 3166 SDValue Result; 3167 if (IsTgtIntrinsic) { 3168 // This is target intrinsic that touches memory 3169 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3170 VTs, &Ops[0], Ops.size(), 3171 Info.memVT, 3172 MachinePointerInfo(Info.ptrVal, Info.offset), 3173 Info.align, Info.vol, 3174 Info.readMem, Info.writeMem); 3175 } else if (!HasChain) { 3176 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3177 VTs, &Ops[0], Ops.size()); 3178 } else if (!I.getType()->isVoidTy()) { 3179 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3180 VTs, &Ops[0], Ops.size()); 3181 } else { 3182 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3183 VTs, &Ops[0], Ops.size()); 3184 } 3185 3186 if (HasChain) { 3187 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3188 if (OnlyLoad) 3189 PendingLoads.push_back(Chain); 3190 else 3191 DAG.setRoot(Chain); 3192 } 3193 3194 if (!I.getType()->isVoidTy()) { 3195 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3196 EVT VT = TLI.getValueType(PTy); 3197 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3198 } 3199 3200 setValue(&I, Result); 3201 } 3202 } 3203 3204 /// GetSignificand - Get the significand and build it into a floating-point 3205 /// number with exponent of 1: 3206 /// 3207 /// Op = (Op & 0x007fffff) | 0x3f800000; 3208 /// 3209 /// where Op is the hexidecimal representation of floating point value. 3210 static SDValue 3211 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3212 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3213 DAG.getConstant(0x007fffff, MVT::i32)); 3214 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3215 DAG.getConstant(0x3f800000, MVT::i32)); 3216 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3217 } 3218 3219 /// GetExponent - Get the exponent: 3220 /// 3221 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3222 /// 3223 /// where Op is the hexidecimal representation of floating point value. 3224 static SDValue 3225 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3226 DebugLoc dl) { 3227 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3228 DAG.getConstant(0x7f800000, MVT::i32)); 3229 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3230 DAG.getConstant(23, TLI.getPointerTy())); 3231 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3232 DAG.getConstant(127, MVT::i32)); 3233 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3234 } 3235 3236 /// getF32Constant - Get 32-bit floating point constant. 3237 static SDValue 3238 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3239 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3240 } 3241 3242 /// Inlined utility function to implement binary input atomic intrinsics for 3243 /// visitIntrinsicCall: I is a call instruction 3244 /// Op is the associated NodeType for I 3245 const char * 3246 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3247 ISD::NodeType Op) { 3248 SDValue Root = getRoot(); 3249 SDValue L = 3250 DAG.getAtomic(Op, getCurDebugLoc(), 3251 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3252 Root, 3253 getValue(I.getArgOperand(0)), 3254 getValue(I.getArgOperand(1)), 3255 I.getArgOperand(0)); 3256 setValue(&I, L); 3257 DAG.setRoot(L.getValue(1)); 3258 return 0; 3259 } 3260 3261 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3262 const char * 3263 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3264 SDValue Op1 = getValue(I.getArgOperand(0)); 3265 SDValue Op2 = getValue(I.getArgOperand(1)); 3266 3267 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3268 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3269 return 0; 3270 } 3271 3272 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3273 /// limited-precision mode. 3274 void 3275 SelectionDAGBuilder::visitExp(const CallInst &I) { 3276 SDValue result; 3277 DebugLoc dl = getCurDebugLoc(); 3278 3279 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3280 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3281 SDValue Op = getValue(I.getArgOperand(0)); 3282 3283 // Put the exponent in the right bit position for later addition to the 3284 // final result: 3285 // 3286 // #define LOG2OFe 1.4426950f 3287 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3288 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3289 getF32Constant(DAG, 0x3fb8aa3b)); 3290 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3291 3292 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3293 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3294 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3295 3296 // IntegerPartOfX <<= 23; 3297 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3298 DAG.getConstant(23, TLI.getPointerTy())); 3299 3300 if (LimitFloatPrecision <= 6) { 3301 // For floating-point precision of 6: 3302 // 3303 // TwoToFractionalPartOfX = 3304 // 0.997535578f + 3305 // (0.735607626f + 0.252464424f * x) * x; 3306 // 3307 // error 0.0144103317, which is 6 bits 3308 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3309 getF32Constant(DAG, 0x3e814304)); 3310 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3311 getF32Constant(DAG, 0x3f3c50c8)); 3312 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3313 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3314 getF32Constant(DAG, 0x3f7f5e7e)); 3315 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3316 3317 // Add the exponent into the result in integer domain. 3318 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3319 TwoToFracPartOfX, IntegerPartOfX); 3320 3321 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3322 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3323 // For floating-point precision of 12: 3324 // 3325 // TwoToFractionalPartOfX = 3326 // 0.999892986f + 3327 // (0.696457318f + 3328 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3329 // 3330 // 0.000107046256 error, which is 13 to 14 bits 3331 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3332 getF32Constant(DAG, 0x3da235e3)); 3333 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3334 getF32Constant(DAG, 0x3e65b8f3)); 3335 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3336 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3337 getF32Constant(DAG, 0x3f324b07)); 3338 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3339 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3340 getF32Constant(DAG, 0x3f7ff8fd)); 3341 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3342 3343 // Add the exponent into the result in integer domain. 3344 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3345 TwoToFracPartOfX, IntegerPartOfX); 3346 3347 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3348 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3349 // For floating-point precision of 18: 3350 // 3351 // TwoToFractionalPartOfX = 3352 // 0.999999982f + 3353 // (0.693148872f + 3354 // (0.240227044f + 3355 // (0.554906021e-1f + 3356 // (0.961591928e-2f + 3357 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3358 // 3359 // error 2.47208000*10^(-7), which is better than 18 bits 3360 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3361 getF32Constant(DAG, 0x3924b03e)); 3362 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3363 getF32Constant(DAG, 0x3ab24b87)); 3364 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3365 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3366 getF32Constant(DAG, 0x3c1d8c17)); 3367 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3368 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3369 getF32Constant(DAG, 0x3d634a1d)); 3370 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3371 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3372 getF32Constant(DAG, 0x3e75fe14)); 3373 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3374 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3375 getF32Constant(DAG, 0x3f317234)); 3376 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3377 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3378 getF32Constant(DAG, 0x3f800000)); 3379 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3380 MVT::i32, t13); 3381 3382 // Add the exponent into the result in integer domain. 3383 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3384 TwoToFracPartOfX, IntegerPartOfX); 3385 3386 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3387 } 3388 } else { 3389 // No special expansion. 3390 result = DAG.getNode(ISD::FEXP, dl, 3391 getValue(I.getArgOperand(0)).getValueType(), 3392 getValue(I.getArgOperand(0))); 3393 } 3394 3395 setValue(&I, result); 3396 } 3397 3398 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3399 /// limited-precision mode. 3400 void 3401 SelectionDAGBuilder::visitLog(const CallInst &I) { 3402 SDValue result; 3403 DebugLoc dl = getCurDebugLoc(); 3404 3405 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3406 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3407 SDValue Op = getValue(I.getArgOperand(0)); 3408 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3409 3410 // Scale the exponent by log(2) [0.69314718f]. 3411 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3412 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3413 getF32Constant(DAG, 0x3f317218)); 3414 3415 // Get the significand and build it into a floating-point number with 3416 // exponent of 1. 3417 SDValue X = GetSignificand(DAG, Op1, dl); 3418 3419 if (LimitFloatPrecision <= 6) { 3420 // For floating-point precision of 6: 3421 // 3422 // LogofMantissa = 3423 // -1.1609546f + 3424 // (1.4034025f - 0.23903021f * x) * x; 3425 // 3426 // error 0.0034276066, which is better than 8 bits 3427 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3428 getF32Constant(DAG, 0xbe74c456)); 3429 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3430 getF32Constant(DAG, 0x3fb3a2b1)); 3431 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3432 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3433 getF32Constant(DAG, 0x3f949a29)); 3434 3435 result = DAG.getNode(ISD::FADD, dl, 3436 MVT::f32, LogOfExponent, LogOfMantissa); 3437 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3438 // For floating-point precision of 12: 3439 // 3440 // LogOfMantissa = 3441 // -1.7417939f + 3442 // (2.8212026f + 3443 // (-1.4699568f + 3444 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3445 // 3446 // error 0.000061011436, which is 14 bits 3447 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3448 getF32Constant(DAG, 0xbd67b6d6)); 3449 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3450 getF32Constant(DAG, 0x3ee4f4b8)); 3451 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3452 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3453 getF32Constant(DAG, 0x3fbc278b)); 3454 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3455 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3456 getF32Constant(DAG, 0x40348e95)); 3457 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3458 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3459 getF32Constant(DAG, 0x3fdef31a)); 3460 3461 result = DAG.getNode(ISD::FADD, dl, 3462 MVT::f32, LogOfExponent, LogOfMantissa); 3463 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3464 // For floating-point precision of 18: 3465 // 3466 // LogOfMantissa = 3467 // -2.1072184f + 3468 // (4.2372794f + 3469 // (-3.7029485f + 3470 // (2.2781945f + 3471 // (-0.87823314f + 3472 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3473 // 3474 // error 0.0000023660568, which is better than 18 bits 3475 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3476 getF32Constant(DAG, 0xbc91e5ac)); 3477 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3478 getF32Constant(DAG, 0x3e4350aa)); 3479 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3480 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3481 getF32Constant(DAG, 0x3f60d3e3)); 3482 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3483 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3484 getF32Constant(DAG, 0x4011cdf0)); 3485 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3486 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3487 getF32Constant(DAG, 0x406cfd1c)); 3488 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3489 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3490 getF32Constant(DAG, 0x408797cb)); 3491 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3492 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3493 getF32Constant(DAG, 0x4006dcab)); 3494 3495 result = DAG.getNode(ISD::FADD, dl, 3496 MVT::f32, LogOfExponent, LogOfMantissa); 3497 } 3498 } else { 3499 // No special expansion. 3500 result = DAG.getNode(ISD::FLOG, dl, 3501 getValue(I.getArgOperand(0)).getValueType(), 3502 getValue(I.getArgOperand(0))); 3503 } 3504 3505 setValue(&I, result); 3506 } 3507 3508 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3509 /// limited-precision mode. 3510 void 3511 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3512 SDValue result; 3513 DebugLoc dl = getCurDebugLoc(); 3514 3515 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3516 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3517 SDValue Op = getValue(I.getArgOperand(0)); 3518 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3519 3520 // Get the exponent. 3521 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3522 3523 // Get the significand and build it into a floating-point number with 3524 // exponent of 1. 3525 SDValue X = GetSignificand(DAG, Op1, dl); 3526 3527 // Different possible minimax approximations of significand in 3528 // floating-point for various degrees of accuracy over [1,2]. 3529 if (LimitFloatPrecision <= 6) { 3530 // For floating-point precision of 6: 3531 // 3532 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3533 // 3534 // error 0.0049451742, which is more than 7 bits 3535 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3536 getF32Constant(DAG, 0xbeb08fe0)); 3537 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3538 getF32Constant(DAG, 0x40019463)); 3539 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3540 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3541 getF32Constant(DAG, 0x3fd6633d)); 3542 3543 result = DAG.getNode(ISD::FADD, dl, 3544 MVT::f32, LogOfExponent, Log2ofMantissa); 3545 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3546 // For floating-point precision of 12: 3547 // 3548 // Log2ofMantissa = 3549 // -2.51285454f + 3550 // (4.07009056f + 3551 // (-2.12067489f + 3552 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3553 // 3554 // error 0.0000876136000, which is better than 13 bits 3555 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3556 getF32Constant(DAG, 0xbda7262e)); 3557 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3558 getF32Constant(DAG, 0x3f25280b)); 3559 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3560 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3561 getF32Constant(DAG, 0x4007b923)); 3562 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3563 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3564 getF32Constant(DAG, 0x40823e2f)); 3565 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3566 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3567 getF32Constant(DAG, 0x4020d29c)); 3568 3569 result = DAG.getNode(ISD::FADD, dl, 3570 MVT::f32, LogOfExponent, Log2ofMantissa); 3571 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3572 // For floating-point precision of 18: 3573 // 3574 // Log2ofMantissa = 3575 // -3.0400495f + 3576 // (6.1129976f + 3577 // (-5.3420409f + 3578 // (3.2865683f + 3579 // (-1.2669343f + 3580 // (0.27515199f - 3581 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3582 // 3583 // error 0.0000018516, which is better than 18 bits 3584 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3585 getF32Constant(DAG, 0xbcd2769e)); 3586 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3587 getF32Constant(DAG, 0x3e8ce0b9)); 3588 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3589 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3590 getF32Constant(DAG, 0x3fa22ae7)); 3591 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3592 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3593 getF32Constant(DAG, 0x40525723)); 3594 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3595 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3596 getF32Constant(DAG, 0x40aaf200)); 3597 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3598 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3599 getF32Constant(DAG, 0x40c39dad)); 3600 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3601 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3602 getF32Constant(DAG, 0x4042902c)); 3603 3604 result = DAG.getNode(ISD::FADD, dl, 3605 MVT::f32, LogOfExponent, Log2ofMantissa); 3606 } 3607 } else { 3608 // No special expansion. 3609 result = DAG.getNode(ISD::FLOG2, dl, 3610 getValue(I.getArgOperand(0)).getValueType(), 3611 getValue(I.getArgOperand(0))); 3612 } 3613 3614 setValue(&I, result); 3615 } 3616 3617 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3618 /// limited-precision mode. 3619 void 3620 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3621 SDValue result; 3622 DebugLoc dl = getCurDebugLoc(); 3623 3624 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3625 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3626 SDValue Op = getValue(I.getArgOperand(0)); 3627 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3628 3629 // Scale the exponent by log10(2) [0.30102999f]. 3630 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3631 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3632 getF32Constant(DAG, 0x3e9a209a)); 3633 3634 // Get the significand and build it into a floating-point number with 3635 // exponent of 1. 3636 SDValue X = GetSignificand(DAG, Op1, dl); 3637 3638 if (LimitFloatPrecision <= 6) { 3639 // For floating-point precision of 6: 3640 // 3641 // Log10ofMantissa = 3642 // -0.50419619f + 3643 // (0.60948995f - 0.10380950f * x) * x; 3644 // 3645 // error 0.0014886165, which is 6 bits 3646 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3647 getF32Constant(DAG, 0xbdd49a13)); 3648 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3649 getF32Constant(DAG, 0x3f1c0789)); 3650 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3651 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3652 getF32Constant(DAG, 0x3f011300)); 3653 3654 result = DAG.getNode(ISD::FADD, dl, 3655 MVT::f32, LogOfExponent, Log10ofMantissa); 3656 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3657 // For floating-point precision of 12: 3658 // 3659 // Log10ofMantissa = 3660 // -0.64831180f + 3661 // (0.91751397f + 3662 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3663 // 3664 // error 0.00019228036, which is better than 12 bits 3665 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3666 getF32Constant(DAG, 0x3d431f31)); 3667 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3668 getF32Constant(DAG, 0x3ea21fb2)); 3669 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3670 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3671 getF32Constant(DAG, 0x3f6ae232)); 3672 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3673 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3674 getF32Constant(DAG, 0x3f25f7c3)); 3675 3676 result = DAG.getNode(ISD::FADD, dl, 3677 MVT::f32, LogOfExponent, Log10ofMantissa); 3678 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3679 // For floating-point precision of 18: 3680 // 3681 // Log10ofMantissa = 3682 // -0.84299375f + 3683 // (1.5327582f + 3684 // (-1.0688956f + 3685 // (0.49102474f + 3686 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3687 // 3688 // error 0.0000037995730, which is better than 18 bits 3689 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3690 getF32Constant(DAG, 0x3c5d51ce)); 3691 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3692 getF32Constant(DAG, 0x3e00685a)); 3693 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3694 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3695 getF32Constant(DAG, 0x3efb6798)); 3696 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3697 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3698 getF32Constant(DAG, 0x3f88d192)); 3699 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3700 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3701 getF32Constant(DAG, 0x3fc4316c)); 3702 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3703 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3704 getF32Constant(DAG, 0x3f57ce70)); 3705 3706 result = DAG.getNode(ISD::FADD, dl, 3707 MVT::f32, LogOfExponent, Log10ofMantissa); 3708 } 3709 } else { 3710 // No special expansion. 3711 result = DAG.getNode(ISD::FLOG10, dl, 3712 getValue(I.getArgOperand(0)).getValueType(), 3713 getValue(I.getArgOperand(0))); 3714 } 3715 3716 setValue(&I, result); 3717 } 3718 3719 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3720 /// limited-precision mode. 3721 void 3722 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3723 SDValue result; 3724 DebugLoc dl = getCurDebugLoc(); 3725 3726 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3727 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3728 SDValue Op = getValue(I.getArgOperand(0)); 3729 3730 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3731 3732 // FractionalPartOfX = x - (float)IntegerPartOfX; 3733 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3734 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3735 3736 // IntegerPartOfX <<= 23; 3737 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3738 DAG.getConstant(23, TLI.getPointerTy())); 3739 3740 if (LimitFloatPrecision <= 6) { 3741 // For floating-point precision of 6: 3742 // 3743 // TwoToFractionalPartOfX = 3744 // 0.997535578f + 3745 // (0.735607626f + 0.252464424f * x) * x; 3746 // 3747 // error 0.0144103317, which is 6 bits 3748 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3749 getF32Constant(DAG, 0x3e814304)); 3750 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3751 getF32Constant(DAG, 0x3f3c50c8)); 3752 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3753 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3754 getF32Constant(DAG, 0x3f7f5e7e)); 3755 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3756 SDValue TwoToFractionalPartOfX = 3757 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3758 3759 result = DAG.getNode(ISD::BITCAST, dl, 3760 MVT::f32, TwoToFractionalPartOfX); 3761 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3762 // For floating-point precision of 12: 3763 // 3764 // TwoToFractionalPartOfX = 3765 // 0.999892986f + 3766 // (0.696457318f + 3767 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3768 // 3769 // error 0.000107046256, which is 13 to 14 bits 3770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3771 getF32Constant(DAG, 0x3da235e3)); 3772 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3773 getF32Constant(DAG, 0x3e65b8f3)); 3774 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3775 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3776 getF32Constant(DAG, 0x3f324b07)); 3777 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3778 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3779 getF32Constant(DAG, 0x3f7ff8fd)); 3780 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3781 SDValue TwoToFractionalPartOfX = 3782 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3783 3784 result = DAG.getNode(ISD::BITCAST, dl, 3785 MVT::f32, TwoToFractionalPartOfX); 3786 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3787 // For floating-point precision of 18: 3788 // 3789 // TwoToFractionalPartOfX = 3790 // 0.999999982f + 3791 // (0.693148872f + 3792 // (0.240227044f + 3793 // (0.554906021e-1f + 3794 // (0.961591928e-2f + 3795 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3796 // error 2.47208000*10^(-7), which is better than 18 bits 3797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3798 getF32Constant(DAG, 0x3924b03e)); 3799 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3800 getF32Constant(DAG, 0x3ab24b87)); 3801 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3802 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3803 getF32Constant(DAG, 0x3c1d8c17)); 3804 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3805 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3806 getF32Constant(DAG, 0x3d634a1d)); 3807 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3808 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3809 getF32Constant(DAG, 0x3e75fe14)); 3810 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3811 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3812 getF32Constant(DAG, 0x3f317234)); 3813 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3814 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3815 getF32Constant(DAG, 0x3f800000)); 3816 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3817 SDValue TwoToFractionalPartOfX = 3818 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3819 3820 result = DAG.getNode(ISD::BITCAST, dl, 3821 MVT::f32, TwoToFractionalPartOfX); 3822 } 3823 } else { 3824 // No special expansion. 3825 result = DAG.getNode(ISD::FEXP2, dl, 3826 getValue(I.getArgOperand(0)).getValueType(), 3827 getValue(I.getArgOperand(0))); 3828 } 3829 3830 setValue(&I, result); 3831 } 3832 3833 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3834 /// limited-precision mode with x == 10.0f. 3835 void 3836 SelectionDAGBuilder::visitPow(const CallInst &I) { 3837 SDValue result; 3838 const Value *Val = I.getArgOperand(0); 3839 DebugLoc dl = getCurDebugLoc(); 3840 bool IsExp10 = false; 3841 3842 if (getValue(Val).getValueType() == MVT::f32 && 3843 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3844 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3845 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3846 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3847 APFloat Ten(10.0f); 3848 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3849 } 3850 } 3851 } 3852 3853 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3854 SDValue Op = getValue(I.getArgOperand(1)); 3855 3856 // Put the exponent in the right bit position for later addition to the 3857 // final result: 3858 // 3859 // #define LOG2OF10 3.3219281f 3860 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3861 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3862 getF32Constant(DAG, 0x40549a78)); 3863 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3864 3865 // FractionalPartOfX = x - (float)IntegerPartOfX; 3866 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3867 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3868 3869 // IntegerPartOfX <<= 23; 3870 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3871 DAG.getConstant(23, TLI.getPointerTy())); 3872 3873 if (LimitFloatPrecision <= 6) { 3874 // For floating-point precision of 6: 3875 // 3876 // twoToFractionalPartOfX = 3877 // 0.997535578f + 3878 // (0.735607626f + 0.252464424f * x) * x; 3879 // 3880 // error 0.0144103317, which is 6 bits 3881 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3882 getF32Constant(DAG, 0x3e814304)); 3883 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3884 getF32Constant(DAG, 0x3f3c50c8)); 3885 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3886 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3887 getF32Constant(DAG, 0x3f7f5e7e)); 3888 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3889 SDValue TwoToFractionalPartOfX = 3890 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3891 3892 result = DAG.getNode(ISD::BITCAST, dl, 3893 MVT::f32, TwoToFractionalPartOfX); 3894 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3895 // For floating-point precision of 12: 3896 // 3897 // TwoToFractionalPartOfX = 3898 // 0.999892986f + 3899 // (0.696457318f + 3900 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3901 // 3902 // error 0.000107046256, which is 13 to 14 bits 3903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3904 getF32Constant(DAG, 0x3da235e3)); 3905 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3906 getF32Constant(DAG, 0x3e65b8f3)); 3907 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3908 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3909 getF32Constant(DAG, 0x3f324b07)); 3910 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3911 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3912 getF32Constant(DAG, 0x3f7ff8fd)); 3913 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3914 SDValue TwoToFractionalPartOfX = 3915 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3916 3917 result = DAG.getNode(ISD::BITCAST, dl, 3918 MVT::f32, TwoToFractionalPartOfX); 3919 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3920 // For floating-point precision of 18: 3921 // 3922 // TwoToFractionalPartOfX = 3923 // 0.999999982f + 3924 // (0.693148872f + 3925 // (0.240227044f + 3926 // (0.554906021e-1f + 3927 // (0.961591928e-2f + 3928 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3929 // error 2.47208000*10^(-7), which is better than 18 bits 3930 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3931 getF32Constant(DAG, 0x3924b03e)); 3932 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3933 getF32Constant(DAG, 0x3ab24b87)); 3934 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3935 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3936 getF32Constant(DAG, 0x3c1d8c17)); 3937 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3938 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3939 getF32Constant(DAG, 0x3d634a1d)); 3940 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3941 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3942 getF32Constant(DAG, 0x3e75fe14)); 3943 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3944 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3945 getF32Constant(DAG, 0x3f317234)); 3946 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3947 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3948 getF32Constant(DAG, 0x3f800000)); 3949 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3950 SDValue TwoToFractionalPartOfX = 3951 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3952 3953 result = DAG.getNode(ISD::BITCAST, dl, 3954 MVT::f32, TwoToFractionalPartOfX); 3955 } 3956 } else { 3957 // No special expansion. 3958 result = DAG.getNode(ISD::FPOW, dl, 3959 getValue(I.getArgOperand(0)).getValueType(), 3960 getValue(I.getArgOperand(0)), 3961 getValue(I.getArgOperand(1))); 3962 } 3963 3964 setValue(&I, result); 3965 } 3966 3967 3968 /// ExpandPowI - Expand a llvm.powi intrinsic. 3969 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3970 SelectionDAG &DAG) { 3971 // If RHS is a constant, we can expand this out to a multiplication tree, 3972 // otherwise we end up lowering to a call to __powidf2 (for example). When 3973 // optimizing for size, we only want to do this if the expansion would produce 3974 // a small number of multiplies, otherwise we do the full expansion. 3975 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3976 // Get the exponent as a positive value. 3977 unsigned Val = RHSC->getSExtValue(); 3978 if ((int)Val < 0) Val = -Val; 3979 3980 // powi(x, 0) -> 1.0 3981 if (Val == 0) 3982 return DAG.getConstantFP(1.0, LHS.getValueType()); 3983 3984 const Function *F = DAG.getMachineFunction().getFunction(); 3985 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3986 // If optimizing for size, don't insert too many multiplies. This 3987 // inserts up to 5 multiplies. 3988 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3989 // We use the simple binary decomposition method to generate the multiply 3990 // sequence. There are more optimal ways to do this (for example, 3991 // powi(x,15) generates one more multiply than it should), but this has 3992 // the benefit of being both really simple and much better than a libcall. 3993 SDValue Res; // Logically starts equal to 1.0 3994 SDValue CurSquare = LHS; 3995 while (Val) { 3996 if (Val & 1) { 3997 if (Res.getNode()) 3998 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3999 else 4000 Res = CurSquare; // 1.0*CurSquare. 4001 } 4002 4003 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4004 CurSquare, CurSquare); 4005 Val >>= 1; 4006 } 4007 4008 // If the original was negative, invert the result, producing 1/(x*x*x). 4009 if (RHSC->getSExtValue() < 0) 4010 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4011 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4012 return Res; 4013 } 4014 } 4015 4016 // Otherwise, expand to a libcall. 4017 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4018 } 4019 4020 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4021 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4022 /// At the end of instruction selection, they will be inserted to the entry BB. 4023 bool 4024 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4025 int64_t Offset, 4026 const SDValue &N) { 4027 const Argument *Arg = dyn_cast<Argument>(V); 4028 if (!Arg) 4029 return false; 4030 4031 MachineFunction &MF = DAG.getMachineFunction(); 4032 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4033 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4034 4035 // Ignore inlined function arguments here. 4036 DIVariable DV(Variable); 4037 if (DV.isInlinedFnArgument(MF.getFunction())) 4038 return false; 4039 4040 MachineBasicBlock *MBB = FuncInfo.MBB; 4041 if (MBB != &MF.front()) 4042 return false; 4043 4044 unsigned Reg = 0; 4045 if (Arg->hasByValAttr()) { 4046 // Byval arguments' frame index is recorded during argument lowering. 4047 // Use this info directly. 4048 Reg = TRI->getFrameRegister(MF); 4049 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4050 // If byval argument ofset is not recorded then ignore this. 4051 if (!Offset) 4052 Reg = 0; 4053 } 4054 4055 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 4056 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4057 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4058 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4059 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4060 if (PR) 4061 Reg = PR; 4062 } 4063 } 4064 4065 if (!Reg) { 4066 // Check if ValueMap has reg number. 4067 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4068 if (VMI != FuncInfo.ValueMap.end()) 4069 Reg = VMI->second; 4070 } 4071 4072 if (!Reg && N.getNode()) { 4073 // Check if frame index is available. 4074 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4075 if (FrameIndexSDNode *FINode = 4076 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4077 Reg = TRI->getFrameRegister(MF); 4078 Offset = FINode->getIndex(); 4079 } 4080 } 4081 4082 if (!Reg) 4083 return false; 4084 4085 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4086 TII->get(TargetOpcode::DBG_VALUE)) 4087 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4088 FuncInfo.ArgDbgValues.push_back(&*MIB); 4089 return true; 4090 } 4091 4092 // VisualStudio defines setjmp as _setjmp 4093 #if defined(_MSC_VER) && defined(setjmp) && \ 4094 !defined(setjmp_undefined_for_msvc) 4095 # pragma push_macro("setjmp") 4096 # undef setjmp 4097 # define setjmp_undefined_for_msvc 4098 #endif 4099 4100 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4101 /// we want to emit this as a call to a named external function, return the name 4102 /// otherwise lower it and return null. 4103 const char * 4104 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4105 DebugLoc dl = getCurDebugLoc(); 4106 SDValue Res; 4107 4108 switch (Intrinsic) { 4109 default: 4110 // By default, turn this into a target intrinsic node. 4111 visitTargetIntrinsic(I, Intrinsic); 4112 return 0; 4113 case Intrinsic::vastart: visitVAStart(I); return 0; 4114 case Intrinsic::vaend: visitVAEnd(I); return 0; 4115 case Intrinsic::vacopy: visitVACopy(I); return 0; 4116 case Intrinsic::returnaddress: 4117 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4118 getValue(I.getArgOperand(0)))); 4119 return 0; 4120 case Intrinsic::frameaddress: 4121 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4122 getValue(I.getArgOperand(0)))); 4123 return 0; 4124 case Intrinsic::setjmp: 4125 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4126 case Intrinsic::longjmp: 4127 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4128 case Intrinsic::memcpy: { 4129 // Assert for address < 256 since we support only user defined address 4130 // spaces. 4131 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4132 < 256 && 4133 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4134 < 256 && 4135 "Unknown address space"); 4136 SDValue Op1 = getValue(I.getArgOperand(0)); 4137 SDValue Op2 = getValue(I.getArgOperand(1)); 4138 SDValue Op3 = getValue(I.getArgOperand(2)); 4139 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4140 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4141 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4142 MachinePointerInfo(I.getArgOperand(0)), 4143 MachinePointerInfo(I.getArgOperand(1)))); 4144 return 0; 4145 } 4146 case Intrinsic::memset: { 4147 // Assert for address < 256 since we support only user defined address 4148 // spaces. 4149 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4150 < 256 && 4151 "Unknown address space"); 4152 SDValue Op1 = getValue(I.getArgOperand(0)); 4153 SDValue Op2 = getValue(I.getArgOperand(1)); 4154 SDValue Op3 = getValue(I.getArgOperand(2)); 4155 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4156 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4157 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4158 MachinePointerInfo(I.getArgOperand(0)))); 4159 return 0; 4160 } 4161 case Intrinsic::memmove: { 4162 // Assert for address < 256 since we support only user defined address 4163 // spaces. 4164 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4165 < 256 && 4166 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4167 < 256 && 4168 "Unknown address space"); 4169 SDValue Op1 = getValue(I.getArgOperand(0)); 4170 SDValue Op2 = getValue(I.getArgOperand(1)); 4171 SDValue Op3 = getValue(I.getArgOperand(2)); 4172 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4173 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4174 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4175 MachinePointerInfo(I.getArgOperand(0)), 4176 MachinePointerInfo(I.getArgOperand(1)))); 4177 return 0; 4178 } 4179 case Intrinsic::dbg_declare: { 4180 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4181 MDNode *Variable = DI.getVariable(); 4182 const Value *Address = DI.getAddress(); 4183 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4184 return 0; 4185 4186 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4187 // but do not always have a corresponding SDNode built. The SDNodeOrder 4188 // absolute, but not relative, values are different depending on whether 4189 // debug info exists. 4190 ++SDNodeOrder; 4191 4192 // Check if address has undef value. 4193 if (isa<UndefValue>(Address) || 4194 (Address->use_empty() && !isa<Argument>(Address))) { 4195 DEBUG(dbgs() << "Dropping debug info for " << DI); 4196 return 0; 4197 } 4198 4199 SDValue &N = NodeMap[Address]; 4200 if (!N.getNode() && isa<Argument>(Address)) 4201 // Check unused arguments map. 4202 N = UnusedArgNodeMap[Address]; 4203 SDDbgValue *SDV; 4204 if (N.getNode()) { 4205 // Parameters are handled specially. 4206 bool isParameter = 4207 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4208 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4209 Address = BCI->getOperand(0); 4210 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4211 4212 if (isParameter && !AI) { 4213 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4214 if (FINode) 4215 // Byval parameter. We have a frame index at this point. 4216 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4217 0, dl, SDNodeOrder); 4218 else { 4219 // Can't do anything with other non-AI cases yet. This might be a 4220 // parameter of a callee function that got inlined, for example. 4221 DEBUG(dbgs() << "Dropping debug info for " << DI); 4222 return 0; 4223 } 4224 } else if (AI) 4225 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4226 0, dl, SDNodeOrder); 4227 else { 4228 // Can't do anything with other non-AI cases yet. 4229 DEBUG(dbgs() << "Dropping debug info for " << DI); 4230 return 0; 4231 } 4232 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4233 } else { 4234 // If Address is an argument then try to emit its dbg value using 4235 // virtual register info from the FuncInfo.ValueMap. 4236 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4237 // If variable is pinned by a alloca in dominating bb then 4238 // use StaticAllocaMap. 4239 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4240 if (AI->getParent() != DI.getParent()) { 4241 DenseMap<const AllocaInst*, int>::iterator SI = 4242 FuncInfo.StaticAllocaMap.find(AI); 4243 if (SI != FuncInfo.StaticAllocaMap.end()) { 4244 SDV = DAG.getDbgValue(Variable, SI->second, 4245 0, dl, SDNodeOrder); 4246 DAG.AddDbgValue(SDV, 0, false); 4247 return 0; 4248 } 4249 } 4250 } 4251 DEBUG(dbgs() << "Dropping debug info for " << DI); 4252 } 4253 } 4254 return 0; 4255 } 4256 case Intrinsic::dbg_value: { 4257 const DbgValueInst &DI = cast<DbgValueInst>(I); 4258 if (!DIVariable(DI.getVariable()).Verify()) 4259 return 0; 4260 4261 MDNode *Variable = DI.getVariable(); 4262 uint64_t Offset = DI.getOffset(); 4263 const Value *V = DI.getValue(); 4264 if (!V) 4265 return 0; 4266 4267 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4268 // but do not always have a corresponding SDNode built. The SDNodeOrder 4269 // absolute, but not relative, values are different depending on whether 4270 // debug info exists. 4271 ++SDNodeOrder; 4272 SDDbgValue *SDV; 4273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4274 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4275 DAG.AddDbgValue(SDV, 0, false); 4276 } else { 4277 // Do not use getValue() in here; we don't want to generate code at 4278 // this point if it hasn't been done yet. 4279 SDValue N = NodeMap[V]; 4280 if (!N.getNode() && isa<Argument>(V)) 4281 // Check unused arguments map. 4282 N = UnusedArgNodeMap[V]; 4283 if (N.getNode()) { 4284 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4285 SDV = DAG.getDbgValue(Variable, N.getNode(), 4286 N.getResNo(), Offset, dl, SDNodeOrder); 4287 DAG.AddDbgValue(SDV, N.getNode(), false); 4288 } 4289 } else if (!V->use_empty() ) { 4290 // Do not call getValue(V) yet, as we don't want to generate code. 4291 // Remember it for later. 4292 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4293 DanglingDebugInfoMap[V] = DDI; 4294 } else { 4295 // We may expand this to cover more cases. One case where we have no 4296 // data available is an unreferenced parameter. 4297 DEBUG(dbgs() << "Dropping debug info for " << DI); 4298 } 4299 } 4300 4301 // Build a debug info table entry. 4302 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4303 V = BCI->getOperand(0); 4304 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4305 // Don't handle byval struct arguments or VLAs, for example. 4306 if (!AI) 4307 return 0; 4308 DenseMap<const AllocaInst*, int>::iterator SI = 4309 FuncInfo.StaticAllocaMap.find(AI); 4310 if (SI == FuncInfo.StaticAllocaMap.end()) 4311 return 0; // VLAs. 4312 int FI = SI->second; 4313 4314 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4315 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4316 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4317 return 0; 4318 } 4319 case Intrinsic::eh_exception: { 4320 // Insert the EXCEPTIONADDR instruction. 4321 assert(FuncInfo.MBB->isLandingPad() && 4322 "Call to eh.exception not in landing pad!"); 4323 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4324 SDValue Ops[1]; 4325 Ops[0] = DAG.getRoot(); 4326 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4327 setValue(&I, Op); 4328 DAG.setRoot(Op.getValue(1)); 4329 return 0; 4330 } 4331 4332 case Intrinsic::eh_selector: { 4333 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4334 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4335 if (CallMBB->isLandingPad()) 4336 AddCatchInfo(I, &MMI, CallMBB); 4337 else { 4338 #ifndef NDEBUG 4339 FuncInfo.CatchInfoLost.insert(&I); 4340 #endif 4341 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4342 unsigned Reg = TLI.getExceptionSelectorRegister(); 4343 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4344 } 4345 4346 // Insert the EHSELECTION instruction. 4347 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4348 SDValue Ops[2]; 4349 Ops[0] = getValue(I.getArgOperand(0)); 4350 Ops[1] = getRoot(); 4351 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4352 DAG.setRoot(Op.getValue(1)); 4353 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4354 return 0; 4355 } 4356 4357 case Intrinsic::eh_typeid_for: { 4358 // Find the type id for the given typeinfo. 4359 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4360 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4361 Res = DAG.getConstant(TypeID, MVT::i32); 4362 setValue(&I, Res); 4363 return 0; 4364 } 4365 4366 case Intrinsic::eh_return_i32: 4367 case Intrinsic::eh_return_i64: 4368 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4369 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4370 MVT::Other, 4371 getControlRoot(), 4372 getValue(I.getArgOperand(0)), 4373 getValue(I.getArgOperand(1)))); 4374 return 0; 4375 case Intrinsic::eh_unwind_init: 4376 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4377 return 0; 4378 case Intrinsic::eh_dwarf_cfa: { 4379 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4380 TLI.getPointerTy()); 4381 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4382 TLI.getPointerTy(), 4383 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4384 TLI.getPointerTy()), 4385 CfaArg); 4386 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4387 TLI.getPointerTy(), 4388 DAG.getConstant(0, TLI.getPointerTy())); 4389 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4390 FA, Offset)); 4391 return 0; 4392 } 4393 case Intrinsic::eh_sjlj_callsite: { 4394 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4395 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4396 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4397 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4398 4399 MMI.setCurrentCallSite(CI->getZExtValue()); 4400 return 0; 4401 } 4402 case Intrinsic::eh_sjlj_setjmp: { 4403 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4404 getValue(I.getArgOperand(0)))); 4405 return 0; 4406 } 4407 case Intrinsic::eh_sjlj_longjmp: { 4408 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4409 getRoot(), getValue(I.getArgOperand(0)))); 4410 return 0; 4411 } 4412 case Intrinsic::eh_sjlj_dispatch_setup: { 4413 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4414 getRoot(), getValue(I.getArgOperand(0)))); 4415 return 0; 4416 } 4417 4418 case Intrinsic::x86_mmx_pslli_w: 4419 case Intrinsic::x86_mmx_pslli_d: 4420 case Intrinsic::x86_mmx_pslli_q: 4421 case Intrinsic::x86_mmx_psrli_w: 4422 case Intrinsic::x86_mmx_psrli_d: 4423 case Intrinsic::x86_mmx_psrli_q: 4424 case Intrinsic::x86_mmx_psrai_w: 4425 case Intrinsic::x86_mmx_psrai_d: { 4426 SDValue ShAmt = getValue(I.getArgOperand(1)); 4427 if (isa<ConstantSDNode>(ShAmt)) { 4428 visitTargetIntrinsic(I, Intrinsic); 4429 return 0; 4430 } 4431 unsigned NewIntrinsic = 0; 4432 EVT ShAmtVT = MVT::v2i32; 4433 switch (Intrinsic) { 4434 case Intrinsic::x86_mmx_pslli_w: 4435 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4436 break; 4437 case Intrinsic::x86_mmx_pslli_d: 4438 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4439 break; 4440 case Intrinsic::x86_mmx_pslli_q: 4441 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4442 break; 4443 case Intrinsic::x86_mmx_psrli_w: 4444 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4445 break; 4446 case Intrinsic::x86_mmx_psrli_d: 4447 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4448 break; 4449 case Intrinsic::x86_mmx_psrli_q: 4450 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4451 break; 4452 case Intrinsic::x86_mmx_psrai_w: 4453 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4454 break; 4455 case Intrinsic::x86_mmx_psrai_d: 4456 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4457 break; 4458 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4459 } 4460 4461 // The vector shift intrinsics with scalars uses 32b shift amounts but 4462 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4463 // to be zero. 4464 // We must do this early because v2i32 is not a legal type. 4465 DebugLoc dl = getCurDebugLoc(); 4466 SDValue ShOps[2]; 4467 ShOps[0] = ShAmt; 4468 ShOps[1] = DAG.getConstant(0, MVT::i32); 4469 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4470 EVT DestVT = TLI.getValueType(I.getType()); 4471 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4472 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4473 DAG.getConstant(NewIntrinsic, MVT::i32), 4474 getValue(I.getArgOperand(0)), ShAmt); 4475 setValue(&I, Res); 4476 return 0; 4477 } 4478 case Intrinsic::convertff: 4479 case Intrinsic::convertfsi: 4480 case Intrinsic::convertfui: 4481 case Intrinsic::convertsif: 4482 case Intrinsic::convertuif: 4483 case Intrinsic::convertss: 4484 case Intrinsic::convertsu: 4485 case Intrinsic::convertus: 4486 case Intrinsic::convertuu: { 4487 ISD::CvtCode Code = ISD::CVT_INVALID; 4488 switch (Intrinsic) { 4489 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4490 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4491 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4492 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4493 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4494 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4495 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4496 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4497 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4498 } 4499 EVT DestVT = TLI.getValueType(I.getType()); 4500 const Value *Op1 = I.getArgOperand(0); 4501 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4502 DAG.getValueType(DestVT), 4503 DAG.getValueType(getValue(Op1).getValueType()), 4504 getValue(I.getArgOperand(1)), 4505 getValue(I.getArgOperand(2)), 4506 Code); 4507 setValue(&I, Res); 4508 return 0; 4509 } 4510 case Intrinsic::sqrt: 4511 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4512 getValue(I.getArgOperand(0)).getValueType(), 4513 getValue(I.getArgOperand(0)))); 4514 return 0; 4515 case Intrinsic::powi: 4516 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4517 getValue(I.getArgOperand(1)), DAG)); 4518 return 0; 4519 case Intrinsic::sin: 4520 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4521 getValue(I.getArgOperand(0)).getValueType(), 4522 getValue(I.getArgOperand(0)))); 4523 return 0; 4524 case Intrinsic::cos: 4525 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4526 getValue(I.getArgOperand(0)).getValueType(), 4527 getValue(I.getArgOperand(0)))); 4528 return 0; 4529 case Intrinsic::log: 4530 visitLog(I); 4531 return 0; 4532 case Intrinsic::log2: 4533 visitLog2(I); 4534 return 0; 4535 case Intrinsic::log10: 4536 visitLog10(I); 4537 return 0; 4538 case Intrinsic::exp: 4539 visitExp(I); 4540 return 0; 4541 case Intrinsic::exp2: 4542 visitExp2(I); 4543 return 0; 4544 case Intrinsic::pow: 4545 visitPow(I); 4546 return 0; 4547 case Intrinsic::convert_to_fp16: 4548 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4549 MVT::i16, getValue(I.getArgOperand(0)))); 4550 return 0; 4551 case Intrinsic::convert_from_fp16: 4552 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4553 MVT::f32, getValue(I.getArgOperand(0)))); 4554 return 0; 4555 case Intrinsic::pcmarker: { 4556 SDValue Tmp = getValue(I.getArgOperand(0)); 4557 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4558 return 0; 4559 } 4560 case Intrinsic::readcyclecounter: { 4561 SDValue Op = getRoot(); 4562 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4563 DAG.getVTList(MVT::i64, MVT::Other), 4564 &Op, 1); 4565 setValue(&I, Res); 4566 DAG.setRoot(Res.getValue(1)); 4567 return 0; 4568 } 4569 case Intrinsic::bswap: 4570 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4571 getValue(I.getArgOperand(0)).getValueType(), 4572 getValue(I.getArgOperand(0)))); 4573 return 0; 4574 case Intrinsic::cttz: { 4575 SDValue Arg = getValue(I.getArgOperand(0)); 4576 EVT Ty = Arg.getValueType(); 4577 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4578 return 0; 4579 } 4580 case Intrinsic::ctlz: { 4581 SDValue Arg = getValue(I.getArgOperand(0)); 4582 EVT Ty = Arg.getValueType(); 4583 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4584 return 0; 4585 } 4586 case Intrinsic::ctpop: { 4587 SDValue Arg = getValue(I.getArgOperand(0)); 4588 EVT Ty = Arg.getValueType(); 4589 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4590 return 0; 4591 } 4592 case Intrinsic::stacksave: { 4593 SDValue Op = getRoot(); 4594 Res = DAG.getNode(ISD::STACKSAVE, dl, 4595 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4596 setValue(&I, Res); 4597 DAG.setRoot(Res.getValue(1)); 4598 return 0; 4599 } 4600 case Intrinsic::stackrestore: { 4601 Res = getValue(I.getArgOperand(0)); 4602 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4603 return 0; 4604 } 4605 case Intrinsic::stackprotector: { 4606 // Emit code into the DAG to store the stack guard onto the stack. 4607 MachineFunction &MF = DAG.getMachineFunction(); 4608 MachineFrameInfo *MFI = MF.getFrameInfo(); 4609 EVT PtrTy = TLI.getPointerTy(); 4610 4611 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4612 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4613 4614 int FI = FuncInfo.StaticAllocaMap[Slot]; 4615 MFI->setStackProtectorIndex(FI); 4616 4617 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4618 4619 // Store the stack protector onto the stack. 4620 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4621 MachinePointerInfo::getFixedStack(FI), 4622 true, false, 0); 4623 setValue(&I, Res); 4624 DAG.setRoot(Res); 4625 return 0; 4626 } 4627 case Intrinsic::objectsize: { 4628 // If we don't know by now, we're never going to know. 4629 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4630 4631 assert(CI && "Non-constant type in __builtin_object_size?"); 4632 4633 SDValue Arg = getValue(I.getCalledValue()); 4634 EVT Ty = Arg.getValueType(); 4635 4636 if (CI->isZero()) 4637 Res = DAG.getConstant(-1ULL, Ty); 4638 else 4639 Res = DAG.getConstant(0, Ty); 4640 4641 setValue(&I, Res); 4642 return 0; 4643 } 4644 case Intrinsic::var_annotation: 4645 // Discard annotate attributes 4646 return 0; 4647 4648 case Intrinsic::init_trampoline: { 4649 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4650 4651 SDValue Ops[6]; 4652 Ops[0] = getRoot(); 4653 Ops[1] = getValue(I.getArgOperand(0)); 4654 Ops[2] = getValue(I.getArgOperand(1)); 4655 Ops[3] = getValue(I.getArgOperand(2)); 4656 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4657 Ops[5] = DAG.getSrcValue(F); 4658 4659 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4660 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4661 Ops, 6); 4662 4663 setValue(&I, Res); 4664 DAG.setRoot(Res.getValue(1)); 4665 return 0; 4666 } 4667 case Intrinsic::gcroot: 4668 if (GFI) { 4669 const Value *Alloca = I.getArgOperand(0); 4670 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4671 4672 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4673 GFI->addStackRoot(FI->getIndex(), TypeMap); 4674 } 4675 return 0; 4676 case Intrinsic::gcread: 4677 case Intrinsic::gcwrite: 4678 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4679 return 0; 4680 case Intrinsic::flt_rounds: 4681 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4682 return 0; 4683 case Intrinsic::trap: 4684 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4685 return 0; 4686 case Intrinsic::uadd_with_overflow: 4687 return implVisitAluOverflow(I, ISD::UADDO); 4688 case Intrinsic::sadd_with_overflow: 4689 return implVisitAluOverflow(I, ISD::SADDO); 4690 case Intrinsic::usub_with_overflow: 4691 return implVisitAluOverflow(I, ISD::USUBO); 4692 case Intrinsic::ssub_with_overflow: 4693 return implVisitAluOverflow(I, ISD::SSUBO); 4694 case Intrinsic::umul_with_overflow: 4695 return implVisitAluOverflow(I, ISD::UMULO); 4696 case Intrinsic::smul_with_overflow: 4697 return implVisitAluOverflow(I, ISD::SMULO); 4698 4699 case Intrinsic::prefetch: { 4700 SDValue Ops[4]; 4701 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4702 Ops[0] = getRoot(); 4703 Ops[1] = getValue(I.getArgOperand(0)); 4704 Ops[2] = getValue(I.getArgOperand(1)); 4705 Ops[3] = getValue(I.getArgOperand(2)); 4706 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4707 DAG.getVTList(MVT::Other), 4708 &Ops[0], 4, 4709 EVT::getIntegerVT(*Context, 8), 4710 MachinePointerInfo(I.getArgOperand(0)), 4711 0, /* align */ 4712 false, /* volatile */ 4713 rw==0, /* read */ 4714 rw==1)); /* write */ 4715 return 0; 4716 } 4717 case Intrinsic::memory_barrier: { 4718 SDValue Ops[6]; 4719 Ops[0] = getRoot(); 4720 for (int x = 1; x < 6; ++x) 4721 Ops[x] = getValue(I.getArgOperand(x - 1)); 4722 4723 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4724 return 0; 4725 } 4726 case Intrinsic::atomic_cmp_swap: { 4727 SDValue Root = getRoot(); 4728 SDValue L = 4729 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4730 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4731 Root, 4732 getValue(I.getArgOperand(0)), 4733 getValue(I.getArgOperand(1)), 4734 getValue(I.getArgOperand(2)), 4735 MachinePointerInfo(I.getArgOperand(0))); 4736 setValue(&I, L); 4737 DAG.setRoot(L.getValue(1)); 4738 return 0; 4739 } 4740 case Intrinsic::atomic_load_add: 4741 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4742 case Intrinsic::atomic_load_sub: 4743 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4744 case Intrinsic::atomic_load_or: 4745 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4746 case Intrinsic::atomic_load_xor: 4747 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4748 case Intrinsic::atomic_load_and: 4749 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4750 case Intrinsic::atomic_load_nand: 4751 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4752 case Intrinsic::atomic_load_max: 4753 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4754 case Intrinsic::atomic_load_min: 4755 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4756 case Intrinsic::atomic_load_umin: 4757 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4758 case Intrinsic::atomic_load_umax: 4759 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4760 case Intrinsic::atomic_swap: 4761 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4762 4763 case Intrinsic::invariant_start: 4764 case Intrinsic::lifetime_start: 4765 // Discard region information. 4766 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4767 return 0; 4768 case Intrinsic::invariant_end: 4769 case Intrinsic::lifetime_end: 4770 // Discard region information. 4771 return 0; 4772 } 4773 } 4774 4775 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4776 bool isTailCall, 4777 MachineBasicBlock *LandingPad) { 4778 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4779 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4780 const Type *RetTy = FTy->getReturnType(); 4781 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4782 MCSymbol *BeginLabel = 0; 4783 4784 TargetLowering::ArgListTy Args; 4785 TargetLowering::ArgListEntry Entry; 4786 Args.reserve(CS.arg_size()); 4787 4788 // Check whether the function can return without sret-demotion. 4789 SmallVector<ISD::OutputArg, 4> Outs; 4790 SmallVector<uint64_t, 4> Offsets; 4791 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4792 Outs, TLI, &Offsets); 4793 4794 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4795 FTy->isVarArg(), Outs, FTy->getContext()); 4796 4797 SDValue DemoteStackSlot; 4798 int DemoteStackIdx = -100; 4799 4800 if (!CanLowerReturn) { 4801 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4802 FTy->getReturnType()); 4803 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4804 FTy->getReturnType()); 4805 MachineFunction &MF = DAG.getMachineFunction(); 4806 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4807 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4808 4809 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4810 Entry.Node = DemoteStackSlot; 4811 Entry.Ty = StackSlotPtrType; 4812 Entry.isSExt = false; 4813 Entry.isZExt = false; 4814 Entry.isInReg = false; 4815 Entry.isSRet = true; 4816 Entry.isNest = false; 4817 Entry.isByVal = false; 4818 Entry.Alignment = Align; 4819 Args.push_back(Entry); 4820 RetTy = Type::getVoidTy(FTy->getContext()); 4821 } 4822 4823 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4824 i != e; ++i) { 4825 SDValue ArgNode = getValue(*i); 4826 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4827 4828 unsigned attrInd = i - CS.arg_begin() + 1; 4829 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4830 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4831 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4832 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4833 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4834 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4835 Entry.Alignment = CS.getParamAlignment(attrInd); 4836 Args.push_back(Entry); 4837 } 4838 4839 if (LandingPad) { 4840 // Insert a label before the invoke call to mark the try range. This can be 4841 // used to detect deletion of the invoke via the MachineModuleInfo. 4842 BeginLabel = MMI.getContext().CreateTempSymbol(); 4843 4844 // For SjLj, keep track of which landing pads go with which invokes 4845 // so as to maintain the ordering of pads in the LSDA. 4846 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4847 if (CallSiteIndex) { 4848 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4849 // Now that the call site is handled, stop tracking it. 4850 MMI.setCurrentCallSite(0); 4851 } 4852 4853 // Both PendingLoads and PendingExports must be flushed here; 4854 // this call might not return. 4855 (void)getRoot(); 4856 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4857 } 4858 4859 // Check if target-independent constraints permit a tail call here. 4860 // Target-dependent constraints are checked within TLI.LowerCallTo. 4861 if (isTailCall && 4862 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4863 isTailCall = false; 4864 4865 // If there's a possibility that fast-isel has already selected some amount 4866 // of the current basic block, don't emit a tail call. 4867 if (isTailCall && EnableFastISel) 4868 isTailCall = false; 4869 4870 std::pair<SDValue,SDValue> Result = 4871 TLI.LowerCallTo(getRoot(), RetTy, 4872 CS.paramHasAttr(0, Attribute::SExt), 4873 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4874 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4875 CS.getCallingConv(), 4876 isTailCall, 4877 !CS.getInstruction()->use_empty(), 4878 Callee, Args, DAG, getCurDebugLoc()); 4879 assert((isTailCall || Result.second.getNode()) && 4880 "Non-null chain expected with non-tail call!"); 4881 assert((Result.second.getNode() || !Result.first.getNode()) && 4882 "Null value expected with tail call!"); 4883 if (Result.first.getNode()) { 4884 setValue(CS.getInstruction(), Result.first); 4885 } else if (!CanLowerReturn && Result.second.getNode()) { 4886 // The instruction result is the result of loading from the 4887 // hidden sret parameter. 4888 SmallVector<EVT, 1> PVTs; 4889 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4890 4891 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4892 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4893 EVT PtrVT = PVTs[0]; 4894 unsigned NumValues = Outs.size(); 4895 SmallVector<SDValue, 4> Values(NumValues); 4896 SmallVector<SDValue, 4> Chains(NumValues); 4897 4898 for (unsigned i = 0; i < NumValues; ++i) { 4899 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4900 DemoteStackSlot, 4901 DAG.getConstant(Offsets[i], PtrVT)); 4902 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4903 Add, 4904 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4905 false, false, 1); 4906 Values[i] = L; 4907 Chains[i] = L.getValue(1); 4908 } 4909 4910 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4911 MVT::Other, &Chains[0], NumValues); 4912 PendingLoads.push_back(Chain); 4913 4914 // Collect the legal value parts into potentially illegal values 4915 // that correspond to the original function's return values. 4916 SmallVector<EVT, 4> RetTys; 4917 RetTy = FTy->getReturnType(); 4918 ComputeValueVTs(TLI, RetTy, RetTys); 4919 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4920 SmallVector<SDValue, 4> ReturnValues; 4921 unsigned CurReg = 0; 4922 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4923 EVT VT = RetTys[I]; 4924 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4925 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4926 4927 SDValue ReturnValue = 4928 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4929 RegisterVT, VT, AssertOp); 4930 ReturnValues.push_back(ReturnValue); 4931 CurReg += NumRegs; 4932 } 4933 4934 setValue(CS.getInstruction(), 4935 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4936 DAG.getVTList(&RetTys[0], RetTys.size()), 4937 &ReturnValues[0], ReturnValues.size())); 4938 4939 } 4940 4941 // As a special case, a null chain means that a tail call has been emitted and 4942 // the DAG root is already updated. 4943 if (Result.second.getNode()) 4944 DAG.setRoot(Result.second); 4945 else 4946 HasTailCall = true; 4947 4948 if (LandingPad) { 4949 // Insert a label at the end of the invoke call to mark the try range. This 4950 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4951 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4952 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4953 4954 // Inform MachineModuleInfo of range. 4955 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4956 } 4957 } 4958 4959 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4960 /// value is equal or not-equal to zero. 4961 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4962 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4963 UI != E; ++UI) { 4964 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4965 if (IC->isEquality()) 4966 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4967 if (C->isNullValue()) 4968 continue; 4969 // Unknown instruction. 4970 return false; 4971 } 4972 return true; 4973 } 4974 4975 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4976 const Type *LoadTy, 4977 SelectionDAGBuilder &Builder) { 4978 4979 // Check to see if this load can be trivially constant folded, e.g. if the 4980 // input is from a string literal. 4981 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4982 // Cast pointer to the type we really want to load. 4983 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4984 PointerType::getUnqual(LoadTy)); 4985 4986 if (const Constant *LoadCst = 4987 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4988 Builder.TD)) 4989 return Builder.getValue(LoadCst); 4990 } 4991 4992 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4993 // still constant memory, the input chain can be the entry node. 4994 SDValue Root; 4995 bool ConstantMemory = false; 4996 4997 // Do not serialize (non-volatile) loads of constant memory with anything. 4998 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4999 Root = Builder.DAG.getEntryNode(); 5000 ConstantMemory = true; 5001 } else { 5002 // Do not serialize non-volatile loads against each other. 5003 Root = Builder.DAG.getRoot(); 5004 } 5005 5006 SDValue Ptr = Builder.getValue(PtrVal); 5007 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5008 Ptr, MachinePointerInfo(PtrVal), 5009 false /*volatile*/, 5010 false /*nontemporal*/, 1 /* align=1 */); 5011 5012 if (!ConstantMemory) 5013 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5014 return LoadVal; 5015 } 5016 5017 5018 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5019 /// If so, return true and lower it, otherwise return false and it will be 5020 /// lowered like a normal call. 5021 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5022 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5023 if (I.getNumArgOperands() != 3) 5024 return false; 5025 5026 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5027 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5028 !I.getArgOperand(2)->getType()->isIntegerTy() || 5029 !I.getType()->isIntegerTy()) 5030 return false; 5031 5032 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5033 5034 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5035 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5036 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5037 bool ActuallyDoIt = true; 5038 MVT LoadVT; 5039 const Type *LoadTy; 5040 switch (Size->getZExtValue()) { 5041 default: 5042 LoadVT = MVT::Other; 5043 LoadTy = 0; 5044 ActuallyDoIt = false; 5045 break; 5046 case 2: 5047 LoadVT = MVT::i16; 5048 LoadTy = Type::getInt16Ty(Size->getContext()); 5049 break; 5050 case 4: 5051 LoadVT = MVT::i32; 5052 LoadTy = Type::getInt32Ty(Size->getContext()); 5053 break; 5054 case 8: 5055 LoadVT = MVT::i64; 5056 LoadTy = Type::getInt64Ty(Size->getContext()); 5057 break; 5058 /* 5059 case 16: 5060 LoadVT = MVT::v4i32; 5061 LoadTy = Type::getInt32Ty(Size->getContext()); 5062 LoadTy = VectorType::get(LoadTy, 4); 5063 break; 5064 */ 5065 } 5066 5067 // This turns into unaligned loads. We only do this if the target natively 5068 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5069 // we'll only produce a small number of byte loads. 5070 5071 // Require that we can find a legal MVT, and only do this if the target 5072 // supports unaligned loads of that type. Expanding into byte loads would 5073 // bloat the code. 5074 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5075 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5076 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5077 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5078 ActuallyDoIt = false; 5079 } 5080 5081 if (ActuallyDoIt) { 5082 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5083 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5084 5085 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5086 ISD::SETNE); 5087 EVT CallVT = TLI.getValueType(I.getType(), true); 5088 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5089 return true; 5090 } 5091 } 5092 5093 5094 return false; 5095 } 5096 5097 5098 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5099 // Handle inline assembly differently. 5100 if (isa<InlineAsm>(I.getCalledValue())) { 5101 visitInlineAsm(&I); 5102 return; 5103 } 5104 5105 // See if any floating point values are being passed to this function. This is 5106 // used to emit an undefined reference to fltused on Windows. 5107 const FunctionType *FT = 5108 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5109 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5110 if (FT->isVarArg() && 5111 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5112 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5113 const Type* T = I.getArgOperand(i)->getType(); 5114 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 5115 i != e; ++i) { 5116 if (!i->isFloatingPointTy()) continue; 5117 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5118 break; 5119 } 5120 } 5121 } 5122 5123 const char *RenameFn = 0; 5124 if (Function *F = I.getCalledFunction()) { 5125 if (F->isDeclaration()) { 5126 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5127 if (unsigned IID = II->getIntrinsicID(F)) { 5128 RenameFn = visitIntrinsicCall(I, IID); 5129 if (!RenameFn) 5130 return; 5131 } 5132 } 5133 if (unsigned IID = F->getIntrinsicID()) { 5134 RenameFn = visitIntrinsicCall(I, IID); 5135 if (!RenameFn) 5136 return; 5137 } 5138 } 5139 5140 // Check for well-known libc/libm calls. If the function is internal, it 5141 // can't be a library call. 5142 if (!F->hasLocalLinkage() && F->hasName()) { 5143 StringRef Name = F->getName(); 5144 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5145 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5146 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5147 I.getType() == I.getArgOperand(0)->getType() && 5148 I.getType() == I.getArgOperand(1)->getType()) { 5149 SDValue LHS = getValue(I.getArgOperand(0)); 5150 SDValue RHS = getValue(I.getArgOperand(1)); 5151 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5152 LHS.getValueType(), LHS, RHS)); 5153 return; 5154 } 5155 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5156 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5157 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5158 I.getType() == I.getArgOperand(0)->getType()) { 5159 SDValue Tmp = getValue(I.getArgOperand(0)); 5160 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5161 Tmp.getValueType(), Tmp)); 5162 return; 5163 } 5164 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5165 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5166 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5167 I.getType() == I.getArgOperand(0)->getType() && 5168 I.onlyReadsMemory()) { 5169 SDValue Tmp = getValue(I.getArgOperand(0)); 5170 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5171 Tmp.getValueType(), Tmp)); 5172 return; 5173 } 5174 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5175 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5176 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5177 I.getType() == I.getArgOperand(0)->getType() && 5178 I.onlyReadsMemory()) { 5179 SDValue Tmp = getValue(I.getArgOperand(0)); 5180 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5181 Tmp.getValueType(), Tmp)); 5182 return; 5183 } 5184 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5185 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5186 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5187 I.getType() == I.getArgOperand(0)->getType() && 5188 I.onlyReadsMemory()) { 5189 SDValue Tmp = getValue(I.getArgOperand(0)); 5190 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5191 Tmp.getValueType(), Tmp)); 5192 return; 5193 } 5194 } else if (Name == "memcmp") { 5195 if (visitMemCmpCall(I)) 5196 return; 5197 } 5198 } 5199 } 5200 5201 SDValue Callee; 5202 if (!RenameFn) 5203 Callee = getValue(I.getCalledValue()); 5204 else 5205 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5206 5207 // Check if we can potentially perform a tail call. More detailed checking is 5208 // be done within LowerCallTo, after more information about the call is known. 5209 LowerCallTo(&I, Callee, I.isTailCall()); 5210 } 5211 5212 namespace llvm { 5213 5214 /// AsmOperandInfo - This contains information for each constraint that we are 5215 /// lowering. 5216 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5217 public TargetLowering::AsmOperandInfo { 5218 public: 5219 /// CallOperand - If this is the result output operand or a clobber 5220 /// this is null, otherwise it is the incoming operand to the CallInst. 5221 /// This gets modified as the asm is processed. 5222 SDValue CallOperand; 5223 5224 /// AssignedRegs - If this is a register or register class operand, this 5225 /// contains the set of register corresponding to the operand. 5226 RegsForValue AssignedRegs; 5227 5228 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5229 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5230 } 5231 5232 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5233 /// busy in OutputRegs/InputRegs. 5234 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5235 std::set<unsigned> &OutputRegs, 5236 std::set<unsigned> &InputRegs, 5237 const TargetRegisterInfo &TRI) const { 5238 if (isOutReg) { 5239 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5240 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5241 } 5242 if (isInReg) { 5243 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5244 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5245 } 5246 } 5247 5248 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5249 /// corresponds to. If there is no Value* for this operand, it returns 5250 /// MVT::Other. 5251 EVT getCallOperandValEVT(LLVMContext &Context, 5252 const TargetLowering &TLI, 5253 const TargetData *TD) const { 5254 if (CallOperandVal == 0) return MVT::Other; 5255 5256 if (isa<BasicBlock>(CallOperandVal)) 5257 return TLI.getPointerTy(); 5258 5259 const llvm::Type *OpTy = CallOperandVal->getType(); 5260 5261 // If this is an indirect operand, the operand is a pointer to the 5262 // accessed type. 5263 if (isIndirect) { 5264 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5265 if (!PtrTy) 5266 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5267 OpTy = PtrTy->getElementType(); 5268 } 5269 5270 // If OpTy is not a single value, it may be a struct/union that we 5271 // can tile with integers. 5272 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5273 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5274 switch (BitSize) { 5275 default: break; 5276 case 1: 5277 case 8: 5278 case 16: 5279 case 32: 5280 case 64: 5281 case 128: 5282 OpTy = IntegerType::get(Context, BitSize); 5283 break; 5284 } 5285 } 5286 5287 return TLI.getValueType(OpTy, true); 5288 } 5289 5290 private: 5291 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5292 /// specified set. 5293 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5294 const TargetRegisterInfo &TRI) { 5295 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5296 Regs.insert(Reg); 5297 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5298 for (; *Aliases; ++Aliases) 5299 Regs.insert(*Aliases); 5300 } 5301 }; 5302 5303 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5304 5305 } // end llvm namespace. 5306 5307 /// isAllocatableRegister - If the specified register is safe to allocate, 5308 /// i.e. it isn't a stack pointer or some other special register, return the 5309 /// register class for the register. Otherwise, return null. 5310 static const TargetRegisterClass * 5311 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5312 const TargetLowering &TLI, 5313 const TargetRegisterInfo *TRI) { 5314 EVT FoundVT = MVT::Other; 5315 const TargetRegisterClass *FoundRC = 0; 5316 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5317 E = TRI->regclass_end(); RCI != E; ++RCI) { 5318 EVT ThisVT = MVT::Other; 5319 5320 const TargetRegisterClass *RC = *RCI; 5321 // If none of the value types for this register class are valid, we 5322 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5323 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5324 I != E; ++I) { 5325 if (TLI.isTypeLegal(*I)) { 5326 // If we have already found this register in a different register class, 5327 // choose the one with the largest VT specified. For example, on 5328 // PowerPC, we favor f64 register classes over f32. 5329 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5330 ThisVT = *I; 5331 break; 5332 } 5333 } 5334 } 5335 5336 if (ThisVT == MVT::Other) continue; 5337 5338 // NOTE: This isn't ideal. In particular, this might allocate the 5339 // frame pointer in functions that need it (due to them not being taken 5340 // out of allocation, because a variable sized allocation hasn't been seen 5341 // yet). This is a slight code pessimization, but should still work. 5342 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5343 E = RC->allocation_order_end(MF); I != E; ++I) 5344 if (*I == Reg) { 5345 // We found a matching register class. Keep looking at others in case 5346 // we find one with larger registers that this physreg is also in. 5347 FoundRC = RC; 5348 FoundVT = ThisVT; 5349 break; 5350 } 5351 } 5352 return FoundRC; 5353 } 5354 5355 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5356 /// specified operand. We prefer to assign virtual registers, to allow the 5357 /// register allocator to handle the assignment process. However, if the asm 5358 /// uses features that we can't model on machineinstrs, we have SDISel do the 5359 /// allocation. This produces generally horrible, but correct, code. 5360 /// 5361 /// OpInfo describes the operand. 5362 /// Input and OutputRegs are the set of already allocated physical registers. 5363 /// 5364 void SelectionDAGBuilder:: 5365 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5366 std::set<unsigned> &OutputRegs, 5367 std::set<unsigned> &InputRegs) { 5368 LLVMContext &Context = FuncInfo.Fn->getContext(); 5369 5370 // Compute whether this value requires an input register, an output register, 5371 // or both. 5372 bool isOutReg = false; 5373 bool isInReg = false; 5374 switch (OpInfo.Type) { 5375 case InlineAsm::isOutput: 5376 isOutReg = true; 5377 5378 // If there is an input constraint that matches this, we need to reserve 5379 // the input register so no other inputs allocate to it. 5380 isInReg = OpInfo.hasMatchingInput(); 5381 break; 5382 case InlineAsm::isInput: 5383 isInReg = true; 5384 isOutReg = false; 5385 break; 5386 case InlineAsm::isClobber: 5387 isOutReg = true; 5388 isInReg = true; 5389 break; 5390 } 5391 5392 5393 MachineFunction &MF = DAG.getMachineFunction(); 5394 SmallVector<unsigned, 4> Regs; 5395 5396 // If this is a constraint for a single physreg, or a constraint for a 5397 // register class, find it. 5398 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5399 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5400 OpInfo.ConstraintVT); 5401 5402 unsigned NumRegs = 1; 5403 if (OpInfo.ConstraintVT != MVT::Other) { 5404 // If this is a FP input in an integer register (or visa versa) insert a bit 5405 // cast of the input value. More generally, handle any case where the input 5406 // value disagrees with the register class we plan to stick this in. 5407 if (OpInfo.Type == InlineAsm::isInput && 5408 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5409 // Try to convert to the first EVT that the reg class contains. If the 5410 // types are identical size, use a bitcast to convert (e.g. two differing 5411 // vector types). 5412 EVT RegVT = *PhysReg.second->vt_begin(); 5413 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5414 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5415 RegVT, OpInfo.CallOperand); 5416 OpInfo.ConstraintVT = RegVT; 5417 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5418 // If the input is a FP value and we want it in FP registers, do a 5419 // bitcast to the corresponding integer type. This turns an f64 value 5420 // into i64, which can be passed with two i32 values on a 32-bit 5421 // machine. 5422 RegVT = EVT::getIntegerVT(Context, 5423 OpInfo.ConstraintVT.getSizeInBits()); 5424 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5425 RegVT, OpInfo.CallOperand); 5426 OpInfo.ConstraintVT = RegVT; 5427 } 5428 } 5429 5430 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5431 } 5432 5433 EVT RegVT; 5434 EVT ValueVT = OpInfo.ConstraintVT; 5435 5436 // If this is a constraint for a specific physical register, like {r17}, 5437 // assign it now. 5438 if (unsigned AssignedReg = PhysReg.first) { 5439 const TargetRegisterClass *RC = PhysReg.second; 5440 if (OpInfo.ConstraintVT == MVT::Other) 5441 ValueVT = *RC->vt_begin(); 5442 5443 // Get the actual register value type. This is important, because the user 5444 // may have asked for (e.g.) the AX register in i32 type. We need to 5445 // remember that AX is actually i16 to get the right extension. 5446 RegVT = *RC->vt_begin(); 5447 5448 // This is a explicit reference to a physical register. 5449 Regs.push_back(AssignedReg); 5450 5451 // If this is an expanded reference, add the rest of the regs to Regs. 5452 if (NumRegs != 1) { 5453 TargetRegisterClass::iterator I = RC->begin(); 5454 for (; *I != AssignedReg; ++I) 5455 assert(I != RC->end() && "Didn't find reg!"); 5456 5457 // Already added the first reg. 5458 --NumRegs; ++I; 5459 for (; NumRegs; --NumRegs, ++I) { 5460 assert(I != RC->end() && "Ran out of registers to allocate!"); 5461 Regs.push_back(*I); 5462 } 5463 } 5464 5465 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5466 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5467 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5468 return; 5469 } 5470 5471 // Otherwise, if this was a reference to an LLVM register class, create vregs 5472 // for this reference. 5473 if (const TargetRegisterClass *RC = PhysReg.second) { 5474 RegVT = *RC->vt_begin(); 5475 if (OpInfo.ConstraintVT == MVT::Other) 5476 ValueVT = RegVT; 5477 5478 // Create the appropriate number of virtual registers. 5479 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5480 for (; NumRegs; --NumRegs) 5481 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5482 5483 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5484 return; 5485 } 5486 5487 // This is a reference to a register class that doesn't directly correspond 5488 // to an LLVM register class. Allocate NumRegs consecutive, available, 5489 // registers from the class. 5490 std::vector<unsigned> RegClassRegs 5491 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5492 OpInfo.ConstraintVT); 5493 5494 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5495 unsigned NumAllocated = 0; 5496 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5497 unsigned Reg = RegClassRegs[i]; 5498 // See if this register is available. 5499 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5500 (isInReg && InputRegs.count(Reg))) { // Already used. 5501 // Make sure we find consecutive registers. 5502 NumAllocated = 0; 5503 continue; 5504 } 5505 5506 // Check to see if this register is allocatable (i.e. don't give out the 5507 // stack pointer). 5508 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5509 if (!RC) { // Couldn't allocate this register. 5510 // Reset NumAllocated to make sure we return consecutive registers. 5511 NumAllocated = 0; 5512 continue; 5513 } 5514 5515 // Okay, this register is good, we can use it. 5516 ++NumAllocated; 5517 5518 // If we allocated enough consecutive registers, succeed. 5519 if (NumAllocated == NumRegs) { 5520 unsigned RegStart = (i-NumAllocated)+1; 5521 unsigned RegEnd = i+1; 5522 // Mark all of the allocated registers used. 5523 for (unsigned i = RegStart; i != RegEnd; ++i) 5524 Regs.push_back(RegClassRegs[i]); 5525 5526 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5527 OpInfo.ConstraintVT); 5528 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5529 return; 5530 } 5531 } 5532 5533 // Otherwise, we couldn't allocate enough registers for this. 5534 } 5535 5536 /// visitInlineAsm - Handle a call to an InlineAsm object. 5537 /// 5538 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5539 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5540 5541 /// ConstraintOperands - Information about all of the constraints. 5542 SDISelAsmOperandInfoVector ConstraintOperands; 5543 5544 std::set<unsigned> OutputRegs, InputRegs; 5545 5546 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS); 5547 bool hasMemory = false; 5548 5549 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5550 unsigned ResNo = 0; // ResNo - The result number of the next output. 5551 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5552 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5553 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5554 5555 EVT OpVT = MVT::Other; 5556 5557 // Compute the value type for each operand. 5558 switch (OpInfo.Type) { 5559 case InlineAsm::isOutput: 5560 // Indirect outputs just consume an argument. 5561 if (OpInfo.isIndirect) { 5562 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5563 break; 5564 } 5565 5566 // The return value of the call is this value. As such, there is no 5567 // corresponding argument. 5568 assert(!CS.getType()->isVoidTy() && 5569 "Bad inline asm!"); 5570 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5571 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5572 } else { 5573 assert(ResNo == 0 && "Asm only has one result!"); 5574 OpVT = TLI.getValueType(CS.getType()); 5575 } 5576 ++ResNo; 5577 break; 5578 case InlineAsm::isInput: 5579 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5580 break; 5581 case InlineAsm::isClobber: 5582 // Nothing to do. 5583 break; 5584 } 5585 5586 // If this is an input or an indirect output, process the call argument. 5587 // BasicBlocks are labels, currently appearing only in asm's. 5588 if (OpInfo.CallOperandVal) { 5589 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5590 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5591 } else { 5592 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5593 } 5594 5595 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5596 } 5597 5598 OpInfo.ConstraintVT = OpVT; 5599 5600 // Indirect operand accesses access memory. 5601 if (OpInfo.isIndirect) 5602 hasMemory = true; 5603 else { 5604 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5605 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5606 if (CType == TargetLowering::C_Memory) { 5607 hasMemory = true; 5608 break; 5609 } 5610 } 5611 } 5612 } 5613 5614 SDValue Chain, Flag; 5615 5616 // We won't need to flush pending loads if this asm doesn't touch 5617 // memory and is nonvolatile. 5618 if (hasMemory || IA->hasSideEffects()) 5619 Chain = getRoot(); 5620 else 5621 Chain = DAG.getRoot(); 5622 5623 // Second pass over the constraints: compute which constraint option to use 5624 // and assign registers to constraints that want a specific physreg. 5625 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5626 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5627 5628 // If this is an output operand with a matching input operand, look up the 5629 // matching input. If their types mismatch, e.g. one is an integer, the 5630 // other is floating point, or their sizes are different, flag it as an 5631 // error. 5632 if (OpInfo.hasMatchingInput()) { 5633 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5634 5635 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5636 if ((OpInfo.ConstraintVT.isInteger() != 5637 Input.ConstraintVT.isInteger()) || 5638 (OpInfo.ConstraintVT.getSizeInBits() != 5639 Input.ConstraintVT.getSizeInBits())) { 5640 report_fatal_error("Unsupported asm: input constraint" 5641 " with a matching output constraint of" 5642 " incompatible type!"); 5643 } 5644 Input.ConstraintVT = OpInfo.ConstraintVT; 5645 } 5646 } 5647 5648 // Compute the constraint code and ConstraintType to use. 5649 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5650 5651 // If this is a memory input, and if the operand is not indirect, do what we 5652 // need to to provide an address for the memory input. 5653 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5654 !OpInfo.isIndirect) { 5655 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5656 "Can only indirectify direct input operands!"); 5657 5658 // Memory operands really want the address of the value. If we don't have 5659 // an indirect input, put it in the constpool if we can, otherwise spill 5660 // it to a stack slot. 5661 5662 // If the operand is a float, integer, or vector constant, spill to a 5663 // constant pool entry to get its address. 5664 const Value *OpVal = OpInfo.CallOperandVal; 5665 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5666 isa<ConstantVector>(OpVal)) { 5667 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5668 TLI.getPointerTy()); 5669 } else { 5670 // Otherwise, create a stack slot and emit a store to it before the 5671 // asm. 5672 const Type *Ty = OpVal->getType(); 5673 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5674 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5675 MachineFunction &MF = DAG.getMachineFunction(); 5676 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5677 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5678 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5679 OpInfo.CallOperand, StackSlot, 5680 MachinePointerInfo::getFixedStack(SSFI), 5681 false, false, 0); 5682 OpInfo.CallOperand = StackSlot; 5683 } 5684 5685 // There is no longer a Value* corresponding to this operand. 5686 OpInfo.CallOperandVal = 0; 5687 5688 // It is now an indirect operand. 5689 OpInfo.isIndirect = true; 5690 } 5691 5692 // If this constraint is for a specific register, allocate it before 5693 // anything else. 5694 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5695 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5696 } 5697 5698 // Second pass - Loop over all of the operands, assigning virtual or physregs 5699 // to register class operands. 5700 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5701 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5702 5703 // C_Register operands have already been allocated, Other/Memory don't need 5704 // to be. 5705 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5706 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5707 } 5708 5709 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5710 std::vector<SDValue> AsmNodeOperands; 5711 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5712 AsmNodeOperands.push_back( 5713 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5714 TLI.getPointerTy())); 5715 5716 // If we have a !srcloc metadata node associated with it, we want to attach 5717 // this to the ultimately generated inline asm machineinstr. To do this, we 5718 // pass in the third operand as this (potentially null) inline asm MDNode. 5719 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5720 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5721 5722 // Remember the HasSideEffect and AlignStack bits as operand 3. 5723 unsigned ExtraInfo = 0; 5724 if (IA->hasSideEffects()) 5725 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5726 if (IA->isAlignStack()) 5727 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5728 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5729 TLI.getPointerTy())); 5730 5731 // Loop over all of the inputs, copying the operand values into the 5732 // appropriate registers and processing the output regs. 5733 RegsForValue RetValRegs; 5734 5735 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5736 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5737 5738 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5739 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5740 5741 switch (OpInfo.Type) { 5742 case InlineAsm::isOutput: { 5743 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5744 OpInfo.ConstraintType != TargetLowering::C_Register) { 5745 // Memory output, or 'other' output (e.g. 'X' constraint). 5746 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5747 5748 // Add information to the INLINEASM node to know about this output. 5749 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5750 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5751 TLI.getPointerTy())); 5752 AsmNodeOperands.push_back(OpInfo.CallOperand); 5753 break; 5754 } 5755 5756 // Otherwise, this is a register or register class output. 5757 5758 // Copy the output from the appropriate register. Find a register that 5759 // we can use. 5760 if (OpInfo.AssignedRegs.Regs.empty()) 5761 report_fatal_error("Couldn't allocate output reg for constraint '" + 5762 Twine(OpInfo.ConstraintCode) + "'!"); 5763 5764 // If this is an indirect operand, store through the pointer after the 5765 // asm. 5766 if (OpInfo.isIndirect) { 5767 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5768 OpInfo.CallOperandVal)); 5769 } else { 5770 // This is the result value of the call. 5771 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5772 // Concatenate this output onto the outputs list. 5773 RetValRegs.append(OpInfo.AssignedRegs); 5774 } 5775 5776 // Add information to the INLINEASM node to know that this register is 5777 // set. 5778 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5779 InlineAsm::Kind_RegDefEarlyClobber : 5780 InlineAsm::Kind_RegDef, 5781 false, 5782 0, 5783 DAG, 5784 AsmNodeOperands); 5785 break; 5786 } 5787 case InlineAsm::isInput: { 5788 SDValue InOperandVal = OpInfo.CallOperand; 5789 5790 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5791 // If this is required to match an output register we have already set, 5792 // just use its register. 5793 unsigned OperandNo = OpInfo.getMatchedOperand(); 5794 5795 // Scan until we find the definition we already emitted of this operand. 5796 // When we find it, create a RegsForValue operand. 5797 unsigned CurOp = InlineAsm::Op_FirstOperand; 5798 for (; OperandNo; --OperandNo) { 5799 // Advance to the next operand. 5800 unsigned OpFlag = 5801 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5802 assert((InlineAsm::isRegDefKind(OpFlag) || 5803 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5804 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5805 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5806 } 5807 5808 unsigned OpFlag = 5809 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5810 if (InlineAsm::isRegDefKind(OpFlag) || 5811 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5812 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5813 if (OpInfo.isIndirect) { 5814 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5815 LLVMContext &Ctx = *DAG.getContext(); 5816 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5817 " don't know how to handle tied " 5818 "indirect register inputs"); 5819 } 5820 5821 RegsForValue MatchedRegs; 5822 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5823 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5824 MatchedRegs.RegVTs.push_back(RegVT); 5825 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5826 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5827 i != e; ++i) 5828 MatchedRegs.Regs.push_back 5829 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5830 5831 // Use the produced MatchedRegs object to 5832 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5833 Chain, &Flag); 5834 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5835 true, OpInfo.getMatchedOperand(), 5836 DAG, AsmNodeOperands); 5837 break; 5838 } 5839 5840 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5841 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5842 "Unexpected number of operands"); 5843 // Add information to the INLINEASM node to know about this input. 5844 // See InlineAsm.h isUseOperandTiedToDef. 5845 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5846 OpInfo.getMatchedOperand()); 5847 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5848 TLI.getPointerTy())); 5849 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5850 break; 5851 } 5852 5853 // Treat indirect 'X' constraint as memory. 5854 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5855 OpInfo.isIndirect) 5856 OpInfo.ConstraintType = TargetLowering::C_Memory; 5857 5858 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5859 std::vector<SDValue> Ops; 5860 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5861 Ops, DAG); 5862 if (Ops.empty()) 5863 report_fatal_error("Invalid operand for inline asm constraint '" + 5864 Twine(OpInfo.ConstraintCode) + "'!"); 5865 5866 // Add information to the INLINEASM node to know about this input. 5867 unsigned ResOpType = 5868 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5869 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5870 TLI.getPointerTy())); 5871 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5872 break; 5873 } 5874 5875 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5876 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5877 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5878 "Memory operands expect pointer values"); 5879 5880 // Add information to the INLINEASM node to know about this input. 5881 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5882 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5883 TLI.getPointerTy())); 5884 AsmNodeOperands.push_back(InOperandVal); 5885 break; 5886 } 5887 5888 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5889 OpInfo.ConstraintType == TargetLowering::C_Register) && 5890 "Unknown constraint type!"); 5891 assert(!OpInfo.isIndirect && 5892 "Don't know how to handle indirect register inputs yet!"); 5893 5894 // Copy the input into the appropriate registers. 5895 if (OpInfo.AssignedRegs.Regs.empty() || 5896 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5897 report_fatal_error("Couldn't allocate input reg for constraint '" + 5898 Twine(OpInfo.ConstraintCode) + "'!"); 5899 5900 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5901 Chain, &Flag); 5902 5903 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5904 DAG, AsmNodeOperands); 5905 break; 5906 } 5907 case InlineAsm::isClobber: { 5908 // Add the clobbered value to the operand list, so that the register 5909 // allocator is aware that the physreg got clobbered. 5910 if (!OpInfo.AssignedRegs.Regs.empty()) 5911 OpInfo.AssignedRegs.AddInlineAsmOperands( 5912 InlineAsm::Kind_RegDefEarlyClobber, 5913 false, 0, DAG, 5914 AsmNodeOperands); 5915 break; 5916 } 5917 } 5918 } 5919 5920 // Finish up input operands. Set the input chain and add the flag last. 5921 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5922 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5923 5924 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5925 DAG.getVTList(MVT::Other, MVT::Glue), 5926 &AsmNodeOperands[0], AsmNodeOperands.size()); 5927 Flag = Chain.getValue(1); 5928 5929 // If this asm returns a register value, copy the result from that register 5930 // and set it as the value of the call. 5931 if (!RetValRegs.Regs.empty()) { 5932 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5933 Chain, &Flag); 5934 5935 // FIXME: Why don't we do this for inline asms with MRVs? 5936 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5937 EVT ResultType = TLI.getValueType(CS.getType()); 5938 5939 // If any of the results of the inline asm is a vector, it may have the 5940 // wrong width/num elts. This can happen for register classes that can 5941 // contain multiple different value types. The preg or vreg allocated may 5942 // not have the same VT as was expected. Convert it to the right type 5943 // with bit_convert. 5944 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5945 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5946 ResultType, Val); 5947 5948 } else if (ResultType != Val.getValueType() && 5949 ResultType.isInteger() && Val.getValueType().isInteger()) { 5950 // If a result value was tied to an input value, the computed result may 5951 // have a wider width than the expected result. Extract the relevant 5952 // portion. 5953 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5954 } 5955 5956 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5957 } 5958 5959 setValue(CS.getInstruction(), Val); 5960 // Don't need to use this as a chain in this case. 5961 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5962 return; 5963 } 5964 5965 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5966 5967 // Process indirect outputs, first output all of the flagged copies out of 5968 // physregs. 5969 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5970 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5971 const Value *Ptr = IndirectStoresToEmit[i].second; 5972 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5973 Chain, &Flag); 5974 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5975 } 5976 5977 // Emit the non-flagged stores from the physregs. 5978 SmallVector<SDValue, 8> OutChains; 5979 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5980 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5981 StoresToEmit[i].first, 5982 getValue(StoresToEmit[i].second), 5983 MachinePointerInfo(StoresToEmit[i].second), 5984 false, false, 0); 5985 OutChains.push_back(Val); 5986 } 5987 5988 if (!OutChains.empty()) 5989 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5990 &OutChains[0], OutChains.size()); 5991 5992 DAG.setRoot(Chain); 5993 } 5994 5995 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5996 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5997 MVT::Other, getRoot(), 5998 getValue(I.getArgOperand(0)), 5999 DAG.getSrcValue(I.getArgOperand(0)))); 6000 } 6001 6002 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6003 const TargetData &TD = *TLI.getTargetData(); 6004 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6005 getRoot(), getValue(I.getOperand(0)), 6006 DAG.getSrcValue(I.getOperand(0)), 6007 TD.getABITypeAlignment(I.getType())); 6008 setValue(&I, V); 6009 DAG.setRoot(V.getValue(1)); 6010 } 6011 6012 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6013 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6014 MVT::Other, getRoot(), 6015 getValue(I.getArgOperand(0)), 6016 DAG.getSrcValue(I.getArgOperand(0)))); 6017 } 6018 6019 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6020 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6021 MVT::Other, getRoot(), 6022 getValue(I.getArgOperand(0)), 6023 getValue(I.getArgOperand(1)), 6024 DAG.getSrcValue(I.getArgOperand(0)), 6025 DAG.getSrcValue(I.getArgOperand(1)))); 6026 } 6027 6028 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6029 /// implementation, which just calls LowerCall. 6030 /// FIXME: When all targets are 6031 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6032 std::pair<SDValue, SDValue> 6033 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 6034 bool RetSExt, bool RetZExt, bool isVarArg, 6035 bool isInreg, unsigned NumFixedArgs, 6036 CallingConv::ID CallConv, bool isTailCall, 6037 bool isReturnValueUsed, 6038 SDValue Callee, 6039 ArgListTy &Args, SelectionDAG &DAG, 6040 DebugLoc dl) const { 6041 // Handle all of the outgoing arguments. 6042 SmallVector<ISD::OutputArg, 32> Outs; 6043 SmallVector<SDValue, 32> OutVals; 6044 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6045 SmallVector<EVT, 4> ValueVTs; 6046 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6047 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6048 Value != NumValues; ++Value) { 6049 EVT VT = ValueVTs[Value]; 6050 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6051 SDValue Op = SDValue(Args[i].Node.getNode(), 6052 Args[i].Node.getResNo() + Value); 6053 ISD::ArgFlagsTy Flags; 6054 unsigned OriginalAlignment = 6055 getTargetData()->getABITypeAlignment(ArgTy); 6056 6057 if (Args[i].isZExt) 6058 Flags.setZExt(); 6059 if (Args[i].isSExt) 6060 Flags.setSExt(); 6061 if (Args[i].isInReg) 6062 Flags.setInReg(); 6063 if (Args[i].isSRet) 6064 Flags.setSRet(); 6065 if (Args[i].isByVal) { 6066 Flags.setByVal(); 6067 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6068 const Type *ElementTy = Ty->getElementType(); 6069 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 6070 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 6071 // For ByVal, alignment should come from FE. BE will guess if this 6072 // info is not there but there are cases it cannot get right. 6073 if (Args[i].Alignment) 6074 FrameAlign = Args[i].Alignment; 6075 Flags.setByValAlign(FrameAlign); 6076 Flags.setByValSize(FrameSize); 6077 } 6078 if (Args[i].isNest) 6079 Flags.setNest(); 6080 Flags.setOrigAlign(OriginalAlignment); 6081 6082 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6083 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6084 SmallVector<SDValue, 4> Parts(NumParts); 6085 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6086 6087 if (Args[i].isSExt) 6088 ExtendKind = ISD::SIGN_EXTEND; 6089 else if (Args[i].isZExt) 6090 ExtendKind = ISD::ZERO_EXTEND; 6091 6092 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6093 PartVT, ExtendKind); 6094 6095 for (unsigned j = 0; j != NumParts; ++j) { 6096 // if it isn't first piece, alignment must be 1 6097 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6098 i < NumFixedArgs); 6099 if (NumParts > 1 && j == 0) 6100 MyFlags.Flags.setSplit(); 6101 else if (j != 0) 6102 MyFlags.Flags.setOrigAlign(1); 6103 6104 Outs.push_back(MyFlags); 6105 OutVals.push_back(Parts[j]); 6106 } 6107 } 6108 } 6109 6110 // Handle the incoming return values from the call. 6111 SmallVector<ISD::InputArg, 32> Ins; 6112 SmallVector<EVT, 4> RetTys; 6113 ComputeValueVTs(*this, RetTy, RetTys); 6114 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6115 EVT VT = RetTys[I]; 6116 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6117 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6118 for (unsigned i = 0; i != NumRegs; ++i) { 6119 ISD::InputArg MyFlags; 6120 MyFlags.VT = RegisterVT.getSimpleVT(); 6121 MyFlags.Used = isReturnValueUsed; 6122 if (RetSExt) 6123 MyFlags.Flags.setSExt(); 6124 if (RetZExt) 6125 MyFlags.Flags.setZExt(); 6126 if (isInreg) 6127 MyFlags.Flags.setInReg(); 6128 Ins.push_back(MyFlags); 6129 } 6130 } 6131 6132 SmallVector<SDValue, 4> InVals; 6133 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6134 Outs, OutVals, Ins, dl, DAG, InVals); 6135 6136 // Verify that the target's LowerCall behaved as expected. 6137 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6138 "LowerCall didn't return a valid chain!"); 6139 assert((!isTailCall || InVals.empty()) && 6140 "LowerCall emitted a return value for a tail call!"); 6141 assert((isTailCall || InVals.size() == Ins.size()) && 6142 "LowerCall didn't emit the correct number of values!"); 6143 6144 // For a tail call, the return value is merely live-out and there aren't 6145 // any nodes in the DAG representing it. Return a special value to 6146 // indicate that a tail call has been emitted and no more Instructions 6147 // should be processed in the current block. 6148 if (isTailCall) { 6149 DAG.setRoot(Chain); 6150 return std::make_pair(SDValue(), SDValue()); 6151 } 6152 6153 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6154 assert(InVals[i].getNode() && 6155 "LowerCall emitted a null value!"); 6156 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6157 "LowerCall emitted a value with the wrong type!"); 6158 }); 6159 6160 // Collect the legal value parts into potentially illegal values 6161 // that correspond to the original function's return values. 6162 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6163 if (RetSExt) 6164 AssertOp = ISD::AssertSext; 6165 else if (RetZExt) 6166 AssertOp = ISD::AssertZext; 6167 SmallVector<SDValue, 4> ReturnValues; 6168 unsigned CurReg = 0; 6169 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6170 EVT VT = RetTys[I]; 6171 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6172 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6173 6174 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6175 NumRegs, RegisterVT, VT, 6176 AssertOp)); 6177 CurReg += NumRegs; 6178 } 6179 6180 // For a function returning void, there is no return value. We can't create 6181 // such a node, so we just return a null return value in that case. In 6182 // that case, nothing will actualy look at the value. 6183 if (ReturnValues.empty()) 6184 return std::make_pair(SDValue(), Chain); 6185 6186 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6187 DAG.getVTList(&RetTys[0], RetTys.size()), 6188 &ReturnValues[0], ReturnValues.size()); 6189 return std::make_pair(Res, Chain); 6190 } 6191 6192 void TargetLowering::LowerOperationWrapper(SDNode *N, 6193 SmallVectorImpl<SDValue> &Results, 6194 SelectionDAG &DAG) const { 6195 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6196 if (Res.getNode()) 6197 Results.push_back(Res); 6198 } 6199 6200 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6201 llvm_unreachable("LowerOperation not implemented for this target!"); 6202 return SDValue(); 6203 } 6204 6205 void 6206 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6207 SDValue Op = getNonRegisterValue(V); 6208 assert((Op.getOpcode() != ISD::CopyFromReg || 6209 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6210 "Copy from a reg to the same reg!"); 6211 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6212 6213 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6214 SDValue Chain = DAG.getEntryNode(); 6215 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6216 PendingExports.push_back(Chain); 6217 } 6218 6219 #include "llvm/CodeGen/SelectionDAGISel.h" 6220 6221 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6222 // If this is the entry block, emit arguments. 6223 const Function &F = *LLVMBB->getParent(); 6224 SelectionDAG &DAG = SDB->DAG; 6225 DebugLoc dl = SDB->getCurDebugLoc(); 6226 const TargetData *TD = TLI.getTargetData(); 6227 SmallVector<ISD::InputArg, 16> Ins; 6228 6229 // Check whether the function can return without sret-demotion. 6230 SmallVector<ISD::OutputArg, 4> Outs; 6231 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6232 Outs, TLI); 6233 6234 if (!FuncInfo->CanLowerReturn) { 6235 // Put in an sret pointer parameter before all the other parameters. 6236 SmallVector<EVT, 1> ValueVTs; 6237 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6238 6239 // NOTE: Assuming that a pointer will never break down to more than one VT 6240 // or one register. 6241 ISD::ArgFlagsTy Flags; 6242 Flags.setSRet(); 6243 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6244 ISD::InputArg RetArg(Flags, RegisterVT, true); 6245 Ins.push_back(RetArg); 6246 } 6247 6248 // Set up the incoming argument description vector. 6249 unsigned Idx = 1; 6250 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6251 I != E; ++I, ++Idx) { 6252 SmallVector<EVT, 4> ValueVTs; 6253 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6254 bool isArgValueUsed = !I->use_empty(); 6255 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6256 Value != NumValues; ++Value) { 6257 EVT VT = ValueVTs[Value]; 6258 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6259 ISD::ArgFlagsTy Flags; 6260 unsigned OriginalAlignment = 6261 TD->getABITypeAlignment(ArgTy); 6262 6263 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6264 Flags.setZExt(); 6265 if (F.paramHasAttr(Idx, Attribute::SExt)) 6266 Flags.setSExt(); 6267 if (F.paramHasAttr(Idx, Attribute::InReg)) 6268 Flags.setInReg(); 6269 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6270 Flags.setSRet(); 6271 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6272 Flags.setByVal(); 6273 const PointerType *Ty = cast<PointerType>(I->getType()); 6274 const Type *ElementTy = Ty->getElementType(); 6275 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6276 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6277 // For ByVal, alignment should be passed from FE. BE will guess if 6278 // this info is not there but there are cases it cannot get right. 6279 if (F.getParamAlignment(Idx)) 6280 FrameAlign = F.getParamAlignment(Idx); 6281 Flags.setByValAlign(FrameAlign); 6282 Flags.setByValSize(FrameSize); 6283 } 6284 if (F.paramHasAttr(Idx, Attribute::Nest)) 6285 Flags.setNest(); 6286 Flags.setOrigAlign(OriginalAlignment); 6287 6288 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6289 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6290 for (unsigned i = 0; i != NumRegs; ++i) { 6291 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6292 if (NumRegs > 1 && i == 0) 6293 MyFlags.Flags.setSplit(); 6294 // if it isn't first piece, alignment must be 1 6295 else if (i > 0) 6296 MyFlags.Flags.setOrigAlign(1); 6297 Ins.push_back(MyFlags); 6298 } 6299 } 6300 } 6301 6302 // Call the target to set up the argument values. 6303 SmallVector<SDValue, 8> InVals; 6304 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6305 F.isVarArg(), Ins, 6306 dl, DAG, InVals); 6307 6308 // Verify that the target's LowerFormalArguments behaved as expected. 6309 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6310 "LowerFormalArguments didn't return a valid chain!"); 6311 assert(InVals.size() == Ins.size() && 6312 "LowerFormalArguments didn't emit the correct number of values!"); 6313 DEBUG({ 6314 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6315 assert(InVals[i].getNode() && 6316 "LowerFormalArguments emitted a null value!"); 6317 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6318 "LowerFormalArguments emitted a value with the wrong type!"); 6319 } 6320 }); 6321 6322 // Update the DAG with the new chain value resulting from argument lowering. 6323 DAG.setRoot(NewRoot); 6324 6325 // Set up the argument values. 6326 unsigned i = 0; 6327 Idx = 1; 6328 if (!FuncInfo->CanLowerReturn) { 6329 // Create a virtual register for the sret pointer, and put in a copy 6330 // from the sret argument into it. 6331 SmallVector<EVT, 1> ValueVTs; 6332 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6333 EVT VT = ValueVTs[0]; 6334 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6335 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6336 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6337 RegVT, VT, AssertOp); 6338 6339 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6340 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6341 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6342 FuncInfo->DemoteRegister = SRetReg; 6343 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6344 SRetReg, ArgValue); 6345 DAG.setRoot(NewRoot); 6346 6347 // i indexes lowered arguments. Bump it past the hidden sret argument. 6348 // Idx indexes LLVM arguments. Don't touch it. 6349 ++i; 6350 } 6351 6352 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6353 ++I, ++Idx) { 6354 SmallVector<SDValue, 4> ArgValues; 6355 SmallVector<EVT, 4> ValueVTs; 6356 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6357 unsigned NumValues = ValueVTs.size(); 6358 6359 // If this argument is unused then remember its value. It is used to generate 6360 // debugging information. 6361 if (I->use_empty() && NumValues) 6362 SDB->setUnusedArgValue(I, InVals[i]); 6363 6364 for (unsigned Value = 0; Value != NumValues; ++Value) { 6365 EVT VT = ValueVTs[Value]; 6366 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6367 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6368 6369 if (!I->use_empty()) { 6370 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6371 if (F.paramHasAttr(Idx, Attribute::SExt)) 6372 AssertOp = ISD::AssertSext; 6373 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6374 AssertOp = ISD::AssertZext; 6375 6376 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6377 NumParts, PartVT, VT, 6378 AssertOp)); 6379 } 6380 6381 i += NumParts; 6382 } 6383 6384 // Note down frame index for byval arguments. 6385 if (I->hasByValAttr() && !ArgValues.empty()) 6386 if (FrameIndexSDNode *FI = 6387 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6388 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6389 6390 if (!I->use_empty()) { 6391 SDValue Res; 6392 if (!ArgValues.empty()) 6393 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6394 SDB->getCurDebugLoc()); 6395 SDB->setValue(I, Res); 6396 6397 // If this argument is live outside of the entry block, insert a copy from 6398 // whereever we got it to the vreg that other BB's will reference it as. 6399 SDB->CopyToExportRegsIfNeeded(I); 6400 } 6401 } 6402 6403 assert(i == InVals.size() && "Argument register count mismatch!"); 6404 6405 // Finally, if the target has anything special to do, allow it to do so. 6406 // FIXME: this should insert code into the DAG! 6407 EmitFunctionEntryCode(); 6408 } 6409 6410 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6411 /// ensure constants are generated when needed. Remember the virtual registers 6412 /// that need to be added to the Machine PHI nodes as input. We cannot just 6413 /// directly add them, because expansion might result in multiple MBB's for one 6414 /// BB. As such, the start of the BB might correspond to a different MBB than 6415 /// the end. 6416 /// 6417 void 6418 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6419 const TerminatorInst *TI = LLVMBB->getTerminator(); 6420 6421 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6422 6423 // Check successor nodes' PHI nodes that expect a constant to be available 6424 // from this block. 6425 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6426 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6427 if (!isa<PHINode>(SuccBB->begin())) continue; 6428 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6429 6430 // If this terminator has multiple identical successors (common for 6431 // switches), only handle each succ once. 6432 if (!SuccsHandled.insert(SuccMBB)) continue; 6433 6434 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6435 6436 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6437 // nodes and Machine PHI nodes, but the incoming operands have not been 6438 // emitted yet. 6439 for (BasicBlock::const_iterator I = SuccBB->begin(); 6440 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6441 // Ignore dead phi's. 6442 if (PN->use_empty()) continue; 6443 6444 unsigned Reg; 6445 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6446 6447 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6448 unsigned &RegOut = ConstantsOut[C]; 6449 if (RegOut == 0) { 6450 RegOut = FuncInfo.CreateRegs(C->getType()); 6451 CopyValueToVirtualRegister(C, RegOut); 6452 } 6453 Reg = RegOut; 6454 } else { 6455 DenseMap<const Value *, unsigned>::iterator I = 6456 FuncInfo.ValueMap.find(PHIOp); 6457 if (I != FuncInfo.ValueMap.end()) 6458 Reg = I->second; 6459 else { 6460 assert(isa<AllocaInst>(PHIOp) && 6461 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6462 "Didn't codegen value into a register!??"); 6463 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6464 CopyValueToVirtualRegister(PHIOp, Reg); 6465 } 6466 } 6467 6468 // Remember that this register needs to added to the machine PHI node as 6469 // the input for this MBB. 6470 SmallVector<EVT, 4> ValueVTs; 6471 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6472 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6473 EVT VT = ValueVTs[vti]; 6474 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6475 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6476 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6477 Reg += NumRegisters; 6478 } 6479 } 6480 } 6481 ConstantsOut.clear(); 6482 } 6483