1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 InlineAsm::Flag Flag(Code, Regs.size()); 999 if (HasMatching) 1000 Flag.setMatchingOp(MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag.setRegClass(RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind::Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 if (VT == MVT::aarch64svcount) { 1742 assert(C->isNullValue() && "Can only zero this target type!"); 1743 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1744 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1745 } 1746 1747 VectorType *VecTy = cast<VectorType>(V->getType()); 1748 1749 // Now that we know the number and type of the elements, get that number of 1750 // elements into the Ops array based on what kind of constant it is. 1751 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1752 SmallVector<SDValue, 16> Ops; 1753 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1754 for (unsigned i = 0; i != NumElements; ++i) 1755 Ops.push_back(getValue(CV->getOperand(i))); 1756 1757 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1758 } 1759 1760 if (isa<ConstantAggregateZero>(C)) { 1761 EVT EltVT = 1762 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1763 1764 SDValue Op; 1765 if (EltVT.isFloatingPoint()) 1766 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1767 else 1768 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1769 1770 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1771 } 1772 1773 llvm_unreachable("Unknown vector constant"); 1774 } 1775 1776 // If this is a static alloca, generate it as the frameindex instead of 1777 // computation. 1778 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1779 DenseMap<const AllocaInst*, int>::iterator SI = 1780 FuncInfo.StaticAllocaMap.find(AI); 1781 if (SI != FuncInfo.StaticAllocaMap.end()) 1782 return DAG.getFrameIndex( 1783 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1784 } 1785 1786 // If this is an instruction which fast-isel has deferred, select it now. 1787 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1788 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1789 1790 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1791 Inst->getType(), std::nullopt); 1792 SDValue Chain = DAG.getEntryNode(); 1793 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1794 } 1795 1796 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1797 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1798 1799 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1800 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1801 1802 llvm_unreachable("Can't get register for value!"); 1803 } 1804 1805 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1806 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1807 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1808 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1809 bool IsSEH = isAsynchronousEHPersonality(Pers); 1810 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1811 if (!IsSEH) 1812 CatchPadMBB->setIsEHScopeEntry(); 1813 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1814 if (IsMSVCCXX || IsCoreCLR) 1815 CatchPadMBB->setIsEHFuncletEntry(); 1816 } 1817 1818 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1819 // Update machine-CFG edge. 1820 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1821 FuncInfo.MBB->addSuccessor(TargetMBB); 1822 TargetMBB->setIsEHCatchretTarget(true); 1823 DAG.getMachineFunction().setHasEHCatchret(true); 1824 1825 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1826 bool IsSEH = isAsynchronousEHPersonality(Pers); 1827 if (IsSEH) { 1828 // If this is not a fall-through branch or optimizations are switched off, 1829 // emit the branch. 1830 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1831 TM.getOptLevel() == CodeGenOptLevel::None) 1832 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1833 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1834 return; 1835 } 1836 1837 // Figure out the funclet membership for the catchret's successor. 1838 // This will be used by the FuncletLayout pass to determine how to order the 1839 // BB's. 1840 // A 'catchret' returns to the outer scope's color. 1841 Value *ParentPad = I.getCatchSwitchParentPad(); 1842 const BasicBlock *SuccessorColor; 1843 if (isa<ConstantTokenNone>(ParentPad)) 1844 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1845 else 1846 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1847 assert(SuccessorColor && "No parent funclet for catchret!"); 1848 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1849 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1850 1851 // Create the terminator node. 1852 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1853 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1854 DAG.getBasicBlock(SuccessorColorMBB)); 1855 DAG.setRoot(Ret); 1856 } 1857 1858 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1859 // Don't emit any special code for the cleanuppad instruction. It just marks 1860 // the start of an EH scope/funclet. 1861 FuncInfo.MBB->setIsEHScopeEntry(); 1862 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1863 if (Pers != EHPersonality::Wasm_CXX) { 1864 FuncInfo.MBB->setIsEHFuncletEntry(); 1865 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1866 } 1867 } 1868 1869 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1870 // not match, it is OK to add only the first unwind destination catchpad to the 1871 // successors, because there will be at least one invoke instruction within the 1872 // catch scope that points to the next unwind destination, if one exists, so 1873 // CFGSort cannot mess up with BB sorting order. 1874 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1875 // call within them, and catchpads only consisting of 'catch (...)' have a 1876 // '__cxa_end_catch' call within them, both of which generate invokes in case 1877 // the next unwind destination exists, i.e., the next unwind destination is not 1878 // the caller.) 1879 // 1880 // Having at most one EH pad successor is also simpler and helps later 1881 // transformations. 1882 // 1883 // For example, 1884 // current: 1885 // invoke void @foo to ... unwind label %catch.dispatch 1886 // catch.dispatch: 1887 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1888 // catch.start: 1889 // ... 1890 // ... in this BB or some other child BB dominated by this BB there will be an 1891 // invoke that points to 'next' BB as an unwind destination 1892 // 1893 // next: ; We don't need to add this to 'current' BB's successor 1894 // ... 1895 static void findWasmUnwindDestinations( 1896 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1897 BranchProbability Prob, 1898 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1899 &UnwindDests) { 1900 while (EHPadBB) { 1901 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1902 if (isa<CleanupPadInst>(Pad)) { 1903 // Stop on cleanup pads. 1904 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1905 UnwindDests.back().first->setIsEHScopeEntry(); 1906 break; 1907 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1908 // Add the catchpad handlers to the possible destinations. We don't 1909 // continue to the unwind destination of the catchswitch for wasm. 1910 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1911 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1912 UnwindDests.back().first->setIsEHScopeEntry(); 1913 } 1914 break; 1915 } else { 1916 continue; 1917 } 1918 } 1919 } 1920 1921 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1922 /// many places it could ultimately go. In the IR, we have a single unwind 1923 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1924 /// This function skips over imaginary basic blocks that hold catchswitch 1925 /// instructions, and finds all the "real" machine 1926 /// basic block destinations. As those destinations may not be successors of 1927 /// EHPadBB, here we also calculate the edge probability to those destinations. 1928 /// The passed-in Prob is the edge probability to EHPadBB. 1929 static void findUnwindDestinations( 1930 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1931 BranchProbability Prob, 1932 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1933 &UnwindDests) { 1934 EHPersonality Personality = 1935 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1936 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1937 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1938 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1939 bool IsSEH = isAsynchronousEHPersonality(Personality); 1940 1941 if (IsWasmCXX) { 1942 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1943 assert(UnwindDests.size() <= 1 && 1944 "There should be at most one unwind destination for wasm"); 1945 return; 1946 } 1947 1948 while (EHPadBB) { 1949 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1950 BasicBlock *NewEHPadBB = nullptr; 1951 if (isa<LandingPadInst>(Pad)) { 1952 // Stop on landingpads. They are not funclets. 1953 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1954 break; 1955 } else if (isa<CleanupPadInst>(Pad)) { 1956 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1957 // personalities. 1958 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1959 UnwindDests.back().first->setIsEHScopeEntry(); 1960 UnwindDests.back().first->setIsEHFuncletEntry(); 1961 break; 1962 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1963 // Add the catchpad handlers to the possible destinations. 1964 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1965 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1966 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1967 if (IsMSVCCXX || IsCoreCLR) 1968 UnwindDests.back().first->setIsEHFuncletEntry(); 1969 if (!IsSEH) 1970 UnwindDests.back().first->setIsEHScopeEntry(); 1971 } 1972 NewEHPadBB = CatchSwitch->getUnwindDest(); 1973 } else { 1974 continue; 1975 } 1976 1977 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1978 if (BPI && NewEHPadBB) 1979 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1980 EHPadBB = NewEHPadBB; 1981 } 1982 } 1983 1984 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1985 // Update successor info. 1986 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1987 auto UnwindDest = I.getUnwindDest(); 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 BranchProbability UnwindDestProb = 1990 (BPI && UnwindDest) 1991 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1992 : BranchProbability::getZero(); 1993 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1994 for (auto &UnwindDest : UnwindDests) { 1995 UnwindDest.first->setIsEHPad(); 1996 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1997 } 1998 FuncInfo.MBB->normalizeSuccProbs(); 1999 2000 // Create the terminator node. 2001 SDValue Ret = 2002 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2003 DAG.setRoot(Ret); 2004 } 2005 2006 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2007 report_fatal_error("visitCatchSwitch not yet implemented!"); 2008 } 2009 2010 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 auto &DL = DAG.getDataLayout(); 2013 SDValue Chain = getControlRoot(); 2014 SmallVector<ISD::OutputArg, 8> Outs; 2015 SmallVector<SDValue, 8> OutVals; 2016 2017 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2018 // lower 2019 // 2020 // %val = call <ty> @llvm.experimental.deoptimize() 2021 // ret <ty> %val 2022 // 2023 // differently. 2024 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2025 LowerDeoptimizingReturn(); 2026 return; 2027 } 2028 2029 if (!FuncInfo.CanLowerReturn) { 2030 unsigned DemoteReg = FuncInfo.DemoteRegister; 2031 const Function *F = I.getParent()->getParent(); 2032 2033 // Emit a store of the return value through the virtual register. 2034 // Leave Outs empty so that LowerReturn won't try to load return 2035 // registers the usual way. 2036 SmallVector<EVT, 1> PtrValueVTs; 2037 ComputeValueVTs(TLI, DL, 2038 PointerType::get(F->getContext(), 2039 DAG.getDataLayout().getAllocaAddrSpace()), 2040 PtrValueVTs); 2041 2042 SDValue RetPtr = 2043 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2044 SDValue RetOp = getValue(I.getOperand(0)); 2045 2046 SmallVector<EVT, 4> ValueVTs, MemVTs; 2047 SmallVector<uint64_t, 4> Offsets; 2048 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2049 &Offsets, 0); 2050 unsigned NumValues = ValueVTs.size(); 2051 2052 SmallVector<SDValue, 4> Chains(NumValues); 2053 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2054 for (unsigned i = 0; i != NumValues; ++i) { 2055 // An aggregate return value cannot wrap around the address space, so 2056 // offsets to its parts don't wrap either. 2057 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2058 TypeSize::Fixed(Offsets[i])); 2059 2060 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2061 if (MemVTs[i] != ValueVTs[i]) 2062 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2063 Chains[i] = DAG.getStore( 2064 Chain, getCurSDLoc(), Val, 2065 // FIXME: better loc info would be nice. 2066 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2067 commonAlignment(BaseAlign, Offsets[i])); 2068 } 2069 2070 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2071 MVT::Other, Chains); 2072 } else if (I.getNumOperands() != 0) { 2073 SmallVector<EVT, 4> ValueVTs; 2074 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2075 unsigned NumValues = ValueVTs.size(); 2076 if (NumValues) { 2077 SDValue RetOp = getValue(I.getOperand(0)); 2078 2079 const Function *F = I.getParent()->getParent(); 2080 2081 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2082 I.getOperand(0)->getType(), F->getCallingConv(), 2083 /*IsVarArg*/ false, DL); 2084 2085 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2086 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2087 ExtendKind = ISD::SIGN_EXTEND; 2088 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2089 ExtendKind = ISD::ZERO_EXTEND; 2090 2091 LLVMContext &Context = F->getContext(); 2092 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2093 2094 for (unsigned j = 0; j != NumValues; ++j) { 2095 EVT VT = ValueVTs[j]; 2096 2097 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2098 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2099 2100 CallingConv::ID CC = F->getCallingConv(); 2101 2102 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2103 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2104 SmallVector<SDValue, 4> Parts(NumParts); 2105 getCopyToParts(DAG, getCurSDLoc(), 2106 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2107 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2108 2109 // 'inreg' on function refers to return value 2110 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2111 if (RetInReg) 2112 Flags.setInReg(); 2113 2114 if (I.getOperand(0)->getType()->isPointerTy()) { 2115 Flags.setPointer(); 2116 Flags.setPointerAddrSpace( 2117 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2118 } 2119 2120 if (NeedsRegBlock) { 2121 Flags.setInConsecutiveRegs(); 2122 if (j == NumValues - 1) 2123 Flags.setInConsecutiveRegsLast(); 2124 } 2125 2126 // Propagate extension type if any 2127 if (ExtendKind == ISD::SIGN_EXTEND) 2128 Flags.setSExt(); 2129 else if (ExtendKind == ISD::ZERO_EXTEND) 2130 Flags.setZExt(); 2131 2132 for (unsigned i = 0; i < NumParts; ++i) { 2133 Outs.push_back(ISD::OutputArg(Flags, 2134 Parts[i].getValueType().getSimpleVT(), 2135 VT, /*isfixed=*/true, 0, 0)); 2136 OutVals.push_back(Parts[i]); 2137 } 2138 } 2139 } 2140 } 2141 2142 // Push in swifterror virtual register as the last element of Outs. This makes 2143 // sure swifterror virtual register will be returned in the swifterror 2144 // physical register. 2145 const Function *F = I.getParent()->getParent(); 2146 if (TLI.supportSwiftError() && 2147 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2148 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2149 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2150 Flags.setSwiftError(); 2151 Outs.push_back(ISD::OutputArg( 2152 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2153 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2154 // Create SDNode for the swifterror virtual register. 2155 OutVals.push_back( 2156 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2157 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2158 EVT(TLI.getPointerTy(DL)))); 2159 } 2160 2161 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2162 CallingConv::ID CallConv = 2163 DAG.getMachineFunction().getFunction().getCallingConv(); 2164 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2165 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2166 2167 // Verify that the target's LowerReturn behaved as expected. 2168 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2169 "LowerReturn didn't return a valid chain!"); 2170 2171 // Update the DAG with the new chain value resulting from return lowering. 2172 DAG.setRoot(Chain); 2173 } 2174 2175 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2176 /// created for it, emit nodes to copy the value into the virtual 2177 /// registers. 2178 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2179 // Skip empty types 2180 if (V->getType()->isEmptyTy()) 2181 return; 2182 2183 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2184 if (VMI != FuncInfo.ValueMap.end()) { 2185 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2186 "Unused value assigned virtual registers!"); 2187 CopyValueToVirtualRegister(V, VMI->second); 2188 } 2189 } 2190 2191 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2192 /// the current basic block, add it to ValueMap now so that we'll get a 2193 /// CopyTo/FromReg. 2194 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2195 // No need to export constants. 2196 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2197 2198 // Already exported? 2199 if (FuncInfo.isExportedInst(V)) return; 2200 2201 Register Reg = FuncInfo.InitializeRegForValue(V); 2202 CopyValueToVirtualRegister(V, Reg); 2203 } 2204 2205 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2206 const BasicBlock *FromBB) { 2207 // The operands of the setcc have to be in this block. We don't know 2208 // how to export them from some other block. 2209 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2210 // Can export from current BB. 2211 if (VI->getParent() == FromBB) 2212 return true; 2213 2214 // Is already exported, noop. 2215 return FuncInfo.isExportedInst(V); 2216 } 2217 2218 // If this is an argument, we can export it if the BB is the entry block or 2219 // if it is already exported. 2220 if (isa<Argument>(V)) { 2221 if (FromBB->isEntryBlock()) 2222 return true; 2223 2224 // Otherwise, can only export this if it is already exported. 2225 return FuncInfo.isExportedInst(V); 2226 } 2227 2228 // Otherwise, constants can always be exported. 2229 return true; 2230 } 2231 2232 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2233 BranchProbability 2234 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2235 const MachineBasicBlock *Dst) const { 2236 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2237 const BasicBlock *SrcBB = Src->getBasicBlock(); 2238 const BasicBlock *DstBB = Dst->getBasicBlock(); 2239 if (!BPI) { 2240 // If BPI is not available, set the default probability as 1 / N, where N is 2241 // the number of successors. 2242 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2243 return BranchProbability(1, SuccSize); 2244 } 2245 return BPI->getEdgeProbability(SrcBB, DstBB); 2246 } 2247 2248 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2249 MachineBasicBlock *Dst, 2250 BranchProbability Prob) { 2251 if (!FuncInfo.BPI) 2252 Src->addSuccessorWithoutProb(Dst); 2253 else { 2254 if (Prob.isUnknown()) 2255 Prob = getEdgeProbability(Src, Dst); 2256 Src->addSuccessor(Dst, Prob); 2257 } 2258 } 2259 2260 static bool InBlock(const Value *V, const BasicBlock *BB) { 2261 if (const Instruction *I = dyn_cast<Instruction>(V)) 2262 return I->getParent() == BB; 2263 return true; 2264 } 2265 2266 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2267 /// This function emits a branch and is used at the leaves of an OR or an 2268 /// AND operator tree. 2269 void 2270 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2271 MachineBasicBlock *TBB, 2272 MachineBasicBlock *FBB, 2273 MachineBasicBlock *CurBB, 2274 MachineBasicBlock *SwitchBB, 2275 BranchProbability TProb, 2276 BranchProbability FProb, 2277 bool InvertCond) { 2278 const BasicBlock *BB = CurBB->getBasicBlock(); 2279 2280 // If the leaf of the tree is a comparison, merge the condition into 2281 // the caseblock. 2282 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2283 // The operands of the cmp have to be in this block. We don't know 2284 // how to export them from some other block. If this is the first block 2285 // of the sequence, no exporting is needed. 2286 if (CurBB == SwitchBB || 2287 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2288 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2289 ISD::CondCode Condition; 2290 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2291 ICmpInst::Predicate Pred = 2292 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2293 Condition = getICmpCondCode(Pred); 2294 } else { 2295 const FCmpInst *FC = cast<FCmpInst>(Cond); 2296 FCmpInst::Predicate Pred = 2297 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2298 Condition = getFCmpCondCode(Pred); 2299 if (TM.Options.NoNaNsFPMath) 2300 Condition = getFCmpCodeWithoutNaN(Condition); 2301 } 2302 2303 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2304 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2305 SL->SwitchCases.push_back(CB); 2306 return; 2307 } 2308 } 2309 2310 // Create a CaseBlock record representing this branch. 2311 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2312 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2313 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2314 SL->SwitchCases.push_back(CB); 2315 } 2316 2317 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2318 MachineBasicBlock *TBB, 2319 MachineBasicBlock *FBB, 2320 MachineBasicBlock *CurBB, 2321 MachineBasicBlock *SwitchBB, 2322 Instruction::BinaryOps Opc, 2323 BranchProbability TProb, 2324 BranchProbability FProb, 2325 bool InvertCond) { 2326 // Skip over not part of the tree and remember to invert op and operands at 2327 // next level. 2328 Value *NotCond; 2329 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2330 InBlock(NotCond, CurBB->getBasicBlock())) { 2331 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2332 !InvertCond); 2333 return; 2334 } 2335 2336 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2337 const Value *BOpOp0, *BOpOp1; 2338 // Compute the effective opcode for Cond, taking into account whether it needs 2339 // to be inverted, e.g. 2340 // and (not (or A, B)), C 2341 // gets lowered as 2342 // and (and (not A, not B), C) 2343 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2344 if (BOp) { 2345 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2346 ? Instruction::And 2347 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2348 ? Instruction::Or 2349 : (Instruction::BinaryOps)0); 2350 if (InvertCond) { 2351 if (BOpc == Instruction::And) 2352 BOpc = Instruction::Or; 2353 else if (BOpc == Instruction::Or) 2354 BOpc = Instruction::And; 2355 } 2356 } 2357 2358 // If this node is not part of the or/and tree, emit it as a branch. 2359 // Note that all nodes in the tree should have same opcode. 2360 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2361 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2362 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2363 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2364 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2365 TProb, FProb, InvertCond); 2366 return; 2367 } 2368 2369 // Create TmpBB after CurBB. 2370 MachineFunction::iterator BBI(CurBB); 2371 MachineFunction &MF = DAG.getMachineFunction(); 2372 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2373 CurBB->getParent()->insert(++BBI, TmpBB); 2374 2375 if (Opc == Instruction::Or) { 2376 // Codegen X | Y as: 2377 // BB1: 2378 // jmp_if_X TBB 2379 // jmp TmpBB 2380 // TmpBB: 2381 // jmp_if_Y TBB 2382 // jmp FBB 2383 // 2384 2385 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2386 // The requirement is that 2387 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2388 // = TrueProb for original BB. 2389 // Assuming the original probabilities are A and B, one choice is to set 2390 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2391 // A/(1+B) and 2B/(1+B). This choice assumes that 2392 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2393 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2394 // TmpBB, but the math is more complicated. 2395 2396 auto NewTrueProb = TProb / 2; 2397 auto NewFalseProb = TProb / 2 + FProb; 2398 // Emit the LHS condition. 2399 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2400 NewFalseProb, InvertCond); 2401 2402 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2403 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2404 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2405 // Emit the RHS condition into TmpBB. 2406 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2407 Probs[1], InvertCond); 2408 } else { 2409 assert(Opc == Instruction::And && "Unknown merge op!"); 2410 // Codegen X & Y as: 2411 // BB1: 2412 // jmp_if_X TmpBB 2413 // jmp FBB 2414 // TmpBB: 2415 // jmp_if_Y TBB 2416 // jmp FBB 2417 // 2418 // This requires creation of TmpBB after CurBB. 2419 2420 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2421 // The requirement is that 2422 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2423 // = FalseProb for original BB. 2424 // Assuming the original probabilities are A and B, one choice is to set 2425 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2426 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2427 // TrueProb for BB1 * FalseProb for TmpBB. 2428 2429 auto NewTrueProb = TProb + FProb / 2; 2430 auto NewFalseProb = FProb / 2; 2431 // Emit the LHS condition. 2432 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2433 NewFalseProb, InvertCond); 2434 2435 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2436 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2437 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2438 // Emit the RHS condition into TmpBB. 2439 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2440 Probs[1], InvertCond); 2441 } 2442 } 2443 2444 /// If the set of cases should be emitted as a series of branches, return true. 2445 /// If we should emit this as a bunch of and/or'd together conditions, return 2446 /// false. 2447 bool 2448 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2449 if (Cases.size() != 2) return true; 2450 2451 // If this is two comparisons of the same values or'd or and'd together, they 2452 // will get folded into a single comparison, so don't emit two blocks. 2453 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2454 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2455 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2456 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2457 return false; 2458 } 2459 2460 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2461 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2462 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2463 Cases[0].CC == Cases[1].CC && 2464 isa<Constant>(Cases[0].CmpRHS) && 2465 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2466 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2467 return false; 2468 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2469 return false; 2470 } 2471 2472 return true; 2473 } 2474 2475 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2476 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2477 2478 // Update machine-CFG edges. 2479 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2480 2481 if (I.isUnconditional()) { 2482 // Update machine-CFG edges. 2483 BrMBB->addSuccessor(Succ0MBB); 2484 2485 // If this is not a fall-through branch or optimizations are switched off, 2486 // emit the branch. 2487 if (Succ0MBB != NextBlock(BrMBB) || 2488 TM.getOptLevel() == CodeGenOptLevel::None) { 2489 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2490 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2491 setValue(&I, Br); 2492 DAG.setRoot(Br); 2493 } 2494 2495 return; 2496 } 2497 2498 // If this condition is one of the special cases we handle, do special stuff 2499 // now. 2500 const Value *CondVal = I.getCondition(); 2501 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2502 2503 // If this is a series of conditions that are or'd or and'd together, emit 2504 // this as a sequence of branches instead of setcc's with and/or operations. 2505 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2506 // unpredictable branches, and vector extracts because those jumps are likely 2507 // expensive for any target), this should improve performance. 2508 // For example, instead of something like: 2509 // cmp A, B 2510 // C = seteq 2511 // cmp D, E 2512 // F = setle 2513 // or C, F 2514 // jnz foo 2515 // Emit: 2516 // cmp A, B 2517 // je foo 2518 // cmp D, E 2519 // jle foo 2520 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2521 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2522 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2523 Value *Vec; 2524 const Value *BOp0, *BOp1; 2525 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2526 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2527 Opcode = Instruction::And; 2528 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2529 Opcode = Instruction::Or; 2530 2531 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2532 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2533 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2534 getEdgeProbability(BrMBB, Succ0MBB), 2535 getEdgeProbability(BrMBB, Succ1MBB), 2536 /*InvertCond=*/false); 2537 // If the compares in later blocks need to use values not currently 2538 // exported from this block, export them now. This block should always 2539 // be the first entry. 2540 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2541 2542 // Allow some cases to be rejected. 2543 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2544 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2545 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2546 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2547 } 2548 2549 // Emit the branch for this block. 2550 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2551 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2552 return; 2553 } 2554 2555 // Okay, we decided not to do this, remove any inserted MBB's and clear 2556 // SwitchCases. 2557 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2558 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2559 2560 SL->SwitchCases.clear(); 2561 } 2562 } 2563 2564 // Create a CaseBlock record representing this branch. 2565 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2566 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2567 2568 // Use visitSwitchCase to actually insert the fast branch sequence for this 2569 // cond branch. 2570 visitSwitchCase(CB, BrMBB); 2571 } 2572 2573 /// visitSwitchCase - Emits the necessary code to represent a single node in 2574 /// the binary search tree resulting from lowering a switch instruction. 2575 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2576 MachineBasicBlock *SwitchBB) { 2577 SDValue Cond; 2578 SDValue CondLHS = getValue(CB.CmpLHS); 2579 SDLoc dl = CB.DL; 2580 2581 if (CB.CC == ISD::SETTRUE) { 2582 // Branch or fall through to TrueBB. 2583 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2584 SwitchBB->normalizeSuccProbs(); 2585 if (CB.TrueBB != NextBlock(SwitchBB)) { 2586 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2587 DAG.getBasicBlock(CB.TrueBB))); 2588 } 2589 return; 2590 } 2591 2592 auto &TLI = DAG.getTargetLoweringInfo(); 2593 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2594 2595 // Build the setcc now. 2596 if (!CB.CmpMHS) { 2597 // Fold "(X == true)" to X and "(X == false)" to !X to 2598 // handle common cases produced by branch lowering. 2599 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2600 CB.CC == ISD::SETEQ) 2601 Cond = CondLHS; 2602 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2603 CB.CC == ISD::SETEQ) { 2604 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2605 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2606 } else { 2607 SDValue CondRHS = getValue(CB.CmpRHS); 2608 2609 // If a pointer's DAG type is larger than its memory type then the DAG 2610 // values are zero-extended. This breaks signed comparisons so truncate 2611 // back to the underlying type before doing the compare. 2612 if (CondLHS.getValueType() != MemVT) { 2613 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2614 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2615 } 2616 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2617 } 2618 } else { 2619 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2620 2621 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2622 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2623 2624 SDValue CmpOp = getValue(CB.CmpMHS); 2625 EVT VT = CmpOp.getValueType(); 2626 2627 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2628 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2629 ISD::SETLE); 2630 } else { 2631 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2632 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2633 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2634 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2635 } 2636 } 2637 2638 // Update successor info 2639 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2640 // TrueBB and FalseBB are always different unless the incoming IR is 2641 // degenerate. This only happens when running llc on weird IR. 2642 if (CB.TrueBB != CB.FalseBB) 2643 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2644 SwitchBB->normalizeSuccProbs(); 2645 2646 // If the lhs block is the next block, invert the condition so that we can 2647 // fall through to the lhs instead of the rhs block. 2648 if (CB.TrueBB == NextBlock(SwitchBB)) { 2649 std::swap(CB.TrueBB, CB.FalseBB); 2650 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2651 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2652 } 2653 2654 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2655 MVT::Other, getControlRoot(), Cond, 2656 DAG.getBasicBlock(CB.TrueBB)); 2657 2658 setValue(CurInst, BrCond); 2659 2660 // Insert the false branch. Do this even if it's a fall through branch, 2661 // this makes it easier to do DAG optimizations which require inverting 2662 // the branch condition. 2663 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2664 DAG.getBasicBlock(CB.FalseBB)); 2665 2666 DAG.setRoot(BrCond); 2667 } 2668 2669 /// visitJumpTable - Emit JumpTable node in the current MBB 2670 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2671 // Emit the code for the jump table 2672 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2673 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2674 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2675 JT.Reg, PTy); 2676 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2677 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2678 MVT::Other, Index.getValue(1), 2679 Table, Index); 2680 DAG.setRoot(BrJumpTable); 2681 } 2682 2683 /// visitJumpTableHeader - This function emits necessary code to produce index 2684 /// in the JumpTable from switch case. 2685 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2686 JumpTableHeader &JTH, 2687 MachineBasicBlock *SwitchBB) { 2688 SDLoc dl = getCurSDLoc(); 2689 2690 // Subtract the lowest switch case value from the value being switched on. 2691 SDValue SwitchOp = getValue(JTH.SValue); 2692 EVT VT = SwitchOp.getValueType(); 2693 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2694 DAG.getConstant(JTH.First, dl, VT)); 2695 2696 // The SDNode we just created, which holds the value being switched on minus 2697 // the smallest case value, needs to be copied to a virtual register so it 2698 // can be used as an index into the jump table in a subsequent basic block. 2699 // This value may be smaller or larger than the target's pointer type, and 2700 // therefore require extension or truncating. 2701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2702 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2703 2704 unsigned JumpTableReg = 2705 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2706 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2707 JumpTableReg, SwitchOp); 2708 JT.Reg = JumpTableReg; 2709 2710 if (!JTH.FallthroughUnreachable) { 2711 // Emit the range check for the jump table, and branch to the default block 2712 // for the switch statement if the value being switched on exceeds the 2713 // largest case in the switch. 2714 SDValue CMP = DAG.getSetCC( 2715 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2716 Sub.getValueType()), 2717 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2718 2719 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, CopyTo, CMP, 2721 DAG.getBasicBlock(JT.Default)); 2722 2723 // Avoid emitting unnecessary branches to the next block. 2724 if (JT.MBB != NextBlock(SwitchBB)) 2725 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2726 DAG.getBasicBlock(JT.MBB)); 2727 2728 DAG.setRoot(BrCond); 2729 } else { 2730 // Avoid emitting unnecessary branches to the next block. 2731 if (JT.MBB != NextBlock(SwitchBB)) 2732 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2733 DAG.getBasicBlock(JT.MBB))); 2734 else 2735 DAG.setRoot(CopyTo); 2736 } 2737 } 2738 2739 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2740 /// variable if there exists one. 2741 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2742 SDValue &Chain) { 2743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2744 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2745 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2746 MachineFunction &MF = DAG.getMachineFunction(); 2747 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2748 MachineSDNode *Node = 2749 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2750 if (Global) { 2751 MachinePointerInfo MPInfo(Global); 2752 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2753 MachineMemOperand::MODereferenceable; 2754 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2755 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2756 DAG.setNodeMemRefs(Node, {MemRef}); 2757 } 2758 if (PtrTy != PtrMemTy) 2759 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2760 return SDValue(Node, 0); 2761 } 2762 2763 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2764 /// tail spliced into a stack protector check success bb. 2765 /// 2766 /// For a high level explanation of how this fits into the stack protector 2767 /// generation see the comment on the declaration of class 2768 /// StackProtectorDescriptor. 2769 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2770 MachineBasicBlock *ParentBB) { 2771 2772 // First create the loads to the guard/stack slot for the comparison. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2775 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2776 2777 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2778 int FI = MFI.getStackProtectorIndex(); 2779 2780 SDValue Guard; 2781 SDLoc dl = getCurSDLoc(); 2782 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2783 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2784 Align Align = 2785 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2786 2787 // Generate code to load the content of the guard slot. 2788 SDValue GuardVal = DAG.getLoad( 2789 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2790 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2791 MachineMemOperand::MOVolatile); 2792 2793 if (TLI.useStackGuardXorFP()) 2794 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2795 2796 // Retrieve guard check function, nullptr if instrumentation is inlined. 2797 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2798 // The target provides a guard check function to validate the guard value. 2799 // Generate a call to that function with the content of the guard slot as 2800 // argument. 2801 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2802 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2803 2804 TargetLowering::ArgListTy Args; 2805 TargetLowering::ArgListEntry Entry; 2806 Entry.Node = GuardVal; 2807 Entry.Ty = FnTy->getParamType(0); 2808 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2809 Entry.IsInReg = true; 2810 Args.push_back(Entry); 2811 2812 TargetLowering::CallLoweringInfo CLI(DAG); 2813 CLI.setDebugLoc(getCurSDLoc()) 2814 .setChain(DAG.getEntryNode()) 2815 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2816 getValue(GuardCheckFn), std::move(Args)); 2817 2818 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2819 DAG.setRoot(Result.second); 2820 return; 2821 } 2822 2823 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2824 // Otherwise, emit a volatile load to retrieve the stack guard value. 2825 SDValue Chain = DAG.getEntryNode(); 2826 if (TLI.useLoadStackGuardNode()) { 2827 Guard = getLoadStackGuard(DAG, dl, Chain); 2828 } else { 2829 const Value *IRGuard = TLI.getSDagStackGuard(M); 2830 SDValue GuardPtr = getValue(IRGuard); 2831 2832 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2833 MachinePointerInfo(IRGuard, 0), Align, 2834 MachineMemOperand::MOVolatile); 2835 } 2836 2837 // Perform the comparison via a getsetcc. 2838 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2839 *DAG.getContext(), 2840 Guard.getValueType()), 2841 Guard, GuardVal, ISD::SETNE); 2842 2843 // If the guard/stackslot do not equal, branch to failure MBB. 2844 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2845 MVT::Other, GuardVal.getOperand(0), 2846 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2847 // Otherwise branch to success MBB. 2848 SDValue Br = DAG.getNode(ISD::BR, dl, 2849 MVT::Other, BrCond, 2850 DAG.getBasicBlock(SPD.getSuccessMBB())); 2851 2852 DAG.setRoot(Br); 2853 } 2854 2855 /// Codegen the failure basic block for a stack protector check. 2856 /// 2857 /// A failure stack protector machine basic block consists simply of a call to 2858 /// __stack_chk_fail(). 2859 /// 2860 /// For a high level explanation of how this fits into the stack protector 2861 /// generation see the comment on the declaration of class 2862 /// StackProtectorDescriptor. 2863 void 2864 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2866 TargetLowering::MakeLibCallOptions CallOptions; 2867 CallOptions.setDiscardResult(true); 2868 SDValue Chain = 2869 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2870 std::nullopt, CallOptions, getCurSDLoc()) 2871 .second; 2872 // On PS4/PS5, the "return address" must still be within the calling 2873 // function, even if it's at the very end, so emit an explicit TRAP here. 2874 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2875 if (TM.getTargetTriple().isPS()) 2876 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2877 // WebAssembly needs an unreachable instruction after a non-returning call, 2878 // because the function return type can be different from __stack_chk_fail's 2879 // return type (void). 2880 if (TM.getTargetTriple().isWasm()) 2881 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2882 2883 DAG.setRoot(Chain); 2884 } 2885 2886 /// visitBitTestHeader - This function emits necessary code to produce value 2887 /// suitable for "bit tests" 2888 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2889 MachineBasicBlock *SwitchBB) { 2890 SDLoc dl = getCurSDLoc(); 2891 2892 // Subtract the minimum value. 2893 SDValue SwitchOp = getValue(B.SValue); 2894 EVT VT = SwitchOp.getValueType(); 2895 SDValue RangeSub = 2896 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2897 2898 // Determine the type of the test operands. 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 bool UsePtrType = false; 2901 if (!TLI.isTypeLegal(VT)) { 2902 UsePtrType = true; 2903 } else { 2904 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2905 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2906 // Switch table case range are encoded into series of masks. 2907 // Just use pointer type, it's guaranteed to fit. 2908 UsePtrType = true; 2909 break; 2910 } 2911 } 2912 SDValue Sub = RangeSub; 2913 if (UsePtrType) { 2914 VT = TLI.getPointerTy(DAG.getDataLayout()); 2915 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2916 } 2917 2918 B.RegVT = VT.getSimpleVT(); 2919 B.Reg = FuncInfo.CreateReg(B.RegVT); 2920 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2921 2922 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2923 2924 if (!B.FallthroughUnreachable) 2925 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2926 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2927 SwitchBB->normalizeSuccProbs(); 2928 2929 SDValue Root = CopyTo; 2930 if (!B.FallthroughUnreachable) { 2931 // Conditional branch to the default block. 2932 SDValue RangeCmp = DAG.getSetCC(dl, 2933 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2934 RangeSub.getValueType()), 2935 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2936 ISD::SETUGT); 2937 2938 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2939 DAG.getBasicBlock(B.Default)); 2940 } 2941 2942 // Avoid emitting unnecessary branches to the next block. 2943 if (MBB != NextBlock(SwitchBB)) 2944 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2945 2946 DAG.setRoot(Root); 2947 } 2948 2949 /// visitBitTestCase - this function produces one "bit test" 2950 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2951 MachineBasicBlock* NextMBB, 2952 BranchProbability BranchProbToNext, 2953 unsigned Reg, 2954 BitTestCase &B, 2955 MachineBasicBlock *SwitchBB) { 2956 SDLoc dl = getCurSDLoc(); 2957 MVT VT = BB.RegVT; 2958 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2959 SDValue Cmp; 2960 unsigned PopCount = llvm::popcount(B.Mask); 2961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2962 if (PopCount == 1) { 2963 // Testing for a single bit; just compare the shift count with what it 2964 // would need to be to shift a 1 bit in that position. 2965 Cmp = DAG.getSetCC( 2966 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2967 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2968 ISD::SETEQ); 2969 } else if (PopCount == BB.Range) { 2970 // There is only one zero bit in the range, test for it directly. 2971 Cmp = DAG.getSetCC( 2972 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2973 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2974 } else { 2975 // Make desired shift 2976 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2977 DAG.getConstant(1, dl, VT), ShiftOp); 2978 2979 // Emit bit tests and jumps 2980 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2981 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2982 Cmp = DAG.getSetCC( 2983 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2984 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2985 } 2986 2987 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2988 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2989 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2990 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2991 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2992 // one as they are relative probabilities (and thus work more like weights), 2993 // and hence we need to normalize them to let the sum of them become one. 2994 SwitchBB->normalizeSuccProbs(); 2995 2996 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2997 MVT::Other, getControlRoot(), 2998 Cmp, DAG.getBasicBlock(B.TargetBB)); 2999 3000 // Avoid emitting unnecessary branches to the next block. 3001 if (NextMBB != NextBlock(SwitchBB)) 3002 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3003 DAG.getBasicBlock(NextMBB)); 3004 3005 DAG.setRoot(BrAnd); 3006 } 3007 3008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3010 3011 // Retrieve successors. Look through artificial IR level blocks like 3012 // catchswitch for successors. 3013 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3014 const BasicBlock *EHPadBB = I.getSuccessor(1); 3015 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3016 3017 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3018 // have to do anything here to lower funclet bundles. 3019 assert(!I.hasOperandBundlesOtherThan( 3020 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3021 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3022 LLVMContext::OB_cfguardtarget, 3023 LLVMContext::OB_clang_arc_attachedcall}) && 3024 "Cannot lower invokes with arbitrary operand bundles yet!"); 3025 3026 const Value *Callee(I.getCalledOperand()); 3027 const Function *Fn = dyn_cast<Function>(Callee); 3028 if (isa<InlineAsm>(Callee)) 3029 visitInlineAsm(I, EHPadBB); 3030 else if (Fn && Fn->isIntrinsic()) { 3031 switch (Fn->getIntrinsicID()) { 3032 default: 3033 llvm_unreachable("Cannot invoke this intrinsic"); 3034 case Intrinsic::donothing: 3035 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3036 case Intrinsic::seh_try_begin: 3037 case Intrinsic::seh_scope_begin: 3038 case Intrinsic::seh_try_end: 3039 case Intrinsic::seh_scope_end: 3040 if (EHPadMBB) 3041 // a block referenced by EH table 3042 // so dtor-funclet not removed by opts 3043 EHPadMBB->setMachineBlockAddressTaken(); 3044 break; 3045 case Intrinsic::experimental_patchpoint_void: 3046 case Intrinsic::experimental_patchpoint_i64: 3047 visitPatchpoint(I, EHPadBB); 3048 break; 3049 case Intrinsic::experimental_gc_statepoint: 3050 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3051 break; 3052 case Intrinsic::wasm_rethrow: { 3053 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3054 // special because it can be invoked, so we manually lower it to a DAG 3055 // node here. 3056 SmallVector<SDValue, 8> Ops; 3057 Ops.push_back(getRoot()); // inchain 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 Ops.push_back( 3060 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3061 TLI.getPointerTy(DAG.getDataLayout()))); 3062 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3063 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3064 break; 3065 } 3066 } 3067 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3068 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3069 // Eventually we will support lowering the @llvm.experimental.deoptimize 3070 // intrinsic, and right now there are no plans to support other intrinsics 3071 // with deopt state. 3072 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3073 } else { 3074 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3075 } 3076 3077 // If the value of the invoke is used outside of its defining block, make it 3078 // available as a virtual register. 3079 // We already took care of the exported value for the statepoint instruction 3080 // during call to the LowerStatepoint. 3081 if (!isa<GCStatepointInst>(I)) { 3082 CopyToExportRegsIfNeeded(&I); 3083 } 3084 3085 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3086 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3087 BranchProbability EHPadBBProb = 3088 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3089 : BranchProbability::getZero(); 3090 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3091 3092 // Update successor info. 3093 addSuccessorWithProb(InvokeMBB, Return); 3094 for (auto &UnwindDest : UnwindDests) { 3095 UnwindDest.first->setIsEHPad(); 3096 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3097 } 3098 InvokeMBB->normalizeSuccProbs(); 3099 3100 // Drop into normal successor. 3101 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3102 DAG.getBasicBlock(Return))); 3103 } 3104 3105 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3106 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3107 3108 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3109 // have to do anything here to lower funclet bundles. 3110 assert(!I.hasOperandBundlesOtherThan( 3111 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3112 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3113 3114 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3115 visitInlineAsm(I); 3116 CopyToExportRegsIfNeeded(&I); 3117 3118 // Retrieve successors. 3119 SmallPtrSet<BasicBlock *, 8> Dests; 3120 Dests.insert(I.getDefaultDest()); 3121 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3122 3123 // Update successor info. 3124 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3125 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3126 BasicBlock *Dest = I.getIndirectDest(i); 3127 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3128 Target->setIsInlineAsmBrIndirectTarget(); 3129 Target->setMachineBlockAddressTaken(); 3130 Target->setLabelMustBeEmitted(); 3131 // Don't add duplicate machine successors. 3132 if (Dests.insert(Dest).second) 3133 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3134 } 3135 CallBrMBB->normalizeSuccProbs(); 3136 3137 // Drop into default successor. 3138 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3139 MVT::Other, getControlRoot(), 3140 DAG.getBasicBlock(Return))); 3141 } 3142 3143 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3144 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3145 } 3146 3147 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3148 assert(FuncInfo.MBB->isEHPad() && 3149 "Call to landingpad not in landing pad!"); 3150 3151 // If there aren't registers to copy the values into (e.g., during SjLj 3152 // exceptions), then don't bother to create these DAG nodes. 3153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3154 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3155 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3156 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3157 return; 3158 3159 // If landingpad's return type is token type, we don't create DAG nodes 3160 // for its exception pointer and selector value. The extraction of exception 3161 // pointer or selector value from token type landingpads is not currently 3162 // supported. 3163 if (LP.getType()->isTokenTy()) 3164 return; 3165 3166 SmallVector<EVT, 2> ValueVTs; 3167 SDLoc dl = getCurSDLoc(); 3168 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3169 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3170 3171 // Get the two live-in registers as SDValues. The physregs have already been 3172 // copied into virtual registers. 3173 SDValue Ops[2]; 3174 if (FuncInfo.ExceptionPointerVirtReg) { 3175 Ops[0] = DAG.getZExtOrTrunc( 3176 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3177 FuncInfo.ExceptionPointerVirtReg, 3178 TLI.getPointerTy(DAG.getDataLayout())), 3179 dl, ValueVTs[0]); 3180 } else { 3181 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3182 } 3183 Ops[1] = DAG.getZExtOrTrunc( 3184 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3185 FuncInfo.ExceptionSelectorVirtReg, 3186 TLI.getPointerTy(DAG.getDataLayout())), 3187 dl, ValueVTs[1]); 3188 3189 // Merge into one. 3190 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3191 DAG.getVTList(ValueVTs), Ops); 3192 setValue(&LP, Res); 3193 } 3194 3195 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3196 MachineBasicBlock *Last) { 3197 // Update JTCases. 3198 for (JumpTableBlock &JTB : SL->JTCases) 3199 if (JTB.first.HeaderBB == First) 3200 JTB.first.HeaderBB = Last; 3201 3202 // Update BitTestCases. 3203 for (BitTestBlock &BTB : SL->BitTestCases) 3204 if (BTB.Parent == First) 3205 BTB.Parent = Last; 3206 } 3207 3208 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3209 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3210 3211 // Update machine-CFG edges with unique successors. 3212 SmallSet<BasicBlock*, 32> Done; 3213 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3214 BasicBlock *BB = I.getSuccessor(i); 3215 bool Inserted = Done.insert(BB).second; 3216 if (!Inserted) 3217 continue; 3218 3219 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3220 addSuccessorWithProb(IndirectBrMBB, Succ); 3221 } 3222 IndirectBrMBB->normalizeSuccProbs(); 3223 3224 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3225 MVT::Other, getControlRoot(), 3226 getValue(I.getAddress()))); 3227 } 3228 3229 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3230 if (!DAG.getTarget().Options.TrapUnreachable) 3231 return; 3232 3233 // We may be able to ignore unreachable behind a noreturn call. 3234 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3235 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3236 if (Call->doesNotReturn()) 3237 return; 3238 } 3239 } 3240 3241 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3242 } 3243 3244 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3245 SDNodeFlags Flags; 3246 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3247 Flags.copyFMF(*FPOp); 3248 3249 SDValue Op = getValue(I.getOperand(0)); 3250 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3251 Op, Flags); 3252 setValue(&I, UnNodeValue); 3253 } 3254 3255 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3256 SDNodeFlags Flags; 3257 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3258 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3259 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3260 } 3261 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3262 Flags.setExact(ExactOp->isExact()); 3263 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3264 Flags.copyFMF(*FPOp); 3265 3266 SDValue Op1 = getValue(I.getOperand(0)); 3267 SDValue Op2 = getValue(I.getOperand(1)); 3268 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3269 Op1, Op2, Flags); 3270 setValue(&I, BinNodeValue); 3271 } 3272 3273 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3274 SDValue Op1 = getValue(I.getOperand(0)); 3275 SDValue Op2 = getValue(I.getOperand(1)); 3276 3277 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3278 Op1.getValueType(), DAG.getDataLayout()); 3279 3280 // Coerce the shift amount to the right type if we can. This exposes the 3281 // truncate or zext to optimization early. 3282 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3283 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3284 "Unexpected shift type"); 3285 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3286 } 3287 3288 bool nuw = false; 3289 bool nsw = false; 3290 bool exact = false; 3291 3292 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3293 3294 if (const OverflowingBinaryOperator *OFBinOp = 3295 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3296 nuw = OFBinOp->hasNoUnsignedWrap(); 3297 nsw = OFBinOp->hasNoSignedWrap(); 3298 } 3299 if (const PossiblyExactOperator *ExactOp = 3300 dyn_cast<const PossiblyExactOperator>(&I)) 3301 exact = ExactOp->isExact(); 3302 } 3303 SDNodeFlags Flags; 3304 Flags.setExact(exact); 3305 Flags.setNoSignedWrap(nsw); 3306 Flags.setNoUnsignedWrap(nuw); 3307 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3308 Flags); 3309 setValue(&I, Res); 3310 } 3311 3312 void SelectionDAGBuilder::visitSDiv(const User &I) { 3313 SDValue Op1 = getValue(I.getOperand(0)); 3314 SDValue Op2 = getValue(I.getOperand(1)); 3315 3316 SDNodeFlags Flags; 3317 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3318 cast<PossiblyExactOperator>(&I)->isExact()); 3319 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3320 Op2, Flags)); 3321 } 3322 3323 void SelectionDAGBuilder::visitICmp(const User &I) { 3324 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3325 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3326 predicate = IC->getPredicate(); 3327 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3328 predicate = ICmpInst::Predicate(IC->getPredicate()); 3329 SDValue Op1 = getValue(I.getOperand(0)); 3330 SDValue Op2 = getValue(I.getOperand(1)); 3331 ISD::CondCode Opcode = getICmpCondCode(predicate); 3332 3333 auto &TLI = DAG.getTargetLoweringInfo(); 3334 EVT MemVT = 3335 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3336 3337 // If a pointer's DAG type is larger than its memory type then the DAG values 3338 // are zero-extended. This breaks signed comparisons so truncate back to the 3339 // underlying type before doing the compare. 3340 if (Op1.getValueType() != MemVT) { 3341 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3342 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3343 } 3344 3345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3346 I.getType()); 3347 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3348 } 3349 3350 void SelectionDAGBuilder::visitFCmp(const User &I) { 3351 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3352 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3353 predicate = FC->getPredicate(); 3354 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3355 predicate = FCmpInst::Predicate(FC->getPredicate()); 3356 SDValue Op1 = getValue(I.getOperand(0)); 3357 SDValue Op2 = getValue(I.getOperand(1)); 3358 3359 ISD::CondCode Condition = getFCmpCondCode(predicate); 3360 auto *FPMO = cast<FPMathOperator>(&I); 3361 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3362 Condition = getFCmpCodeWithoutNaN(Condition); 3363 3364 SDNodeFlags Flags; 3365 Flags.copyFMF(*FPMO); 3366 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3367 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3371 } 3372 3373 // Check if the condition of the select has one use or two users that are both 3374 // selects with the same condition. 3375 static bool hasOnlySelectUsers(const Value *Cond) { 3376 return llvm::all_of(Cond->users(), [](const Value *V) { 3377 return isa<SelectInst>(V); 3378 }); 3379 } 3380 3381 void SelectionDAGBuilder::visitSelect(const User &I) { 3382 SmallVector<EVT, 4> ValueVTs; 3383 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3384 ValueVTs); 3385 unsigned NumValues = ValueVTs.size(); 3386 if (NumValues == 0) return; 3387 3388 SmallVector<SDValue, 4> Values(NumValues); 3389 SDValue Cond = getValue(I.getOperand(0)); 3390 SDValue LHSVal = getValue(I.getOperand(1)); 3391 SDValue RHSVal = getValue(I.getOperand(2)); 3392 SmallVector<SDValue, 1> BaseOps(1, Cond); 3393 ISD::NodeType OpCode = 3394 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3395 3396 bool IsUnaryAbs = false; 3397 bool Negate = false; 3398 3399 SDNodeFlags Flags; 3400 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3401 Flags.copyFMF(*FPOp); 3402 3403 Flags.setUnpredictable( 3404 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3405 3406 // Min/max matching is only viable if all output VTs are the same. 3407 if (all_equal(ValueVTs)) { 3408 EVT VT = ValueVTs[0]; 3409 LLVMContext &Ctx = *DAG.getContext(); 3410 auto &TLI = DAG.getTargetLoweringInfo(); 3411 3412 // We care about the legality of the operation after it has been type 3413 // legalized. 3414 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3415 VT = TLI.getTypeToTransformTo(Ctx, VT); 3416 3417 // If the vselect is legal, assume we want to leave this as a vector setcc + 3418 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3419 // min/max is legal on the scalar type. 3420 bool UseScalarMinMax = VT.isVector() && 3421 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3422 3423 // ValueTracking's select pattern matching does not account for -0.0, 3424 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3425 // -0.0 is less than +0.0. 3426 Value *LHS, *RHS; 3427 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3428 ISD::NodeType Opc = ISD::DELETED_NODE; 3429 switch (SPR.Flavor) { 3430 case SPF_UMAX: Opc = ISD::UMAX; break; 3431 case SPF_UMIN: Opc = ISD::UMIN; break; 3432 case SPF_SMAX: Opc = ISD::SMAX; break; 3433 case SPF_SMIN: Opc = ISD::SMIN; break; 3434 case SPF_FMINNUM: 3435 switch (SPR.NaNBehavior) { 3436 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3437 case SPNB_RETURNS_NAN: break; 3438 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3439 case SPNB_RETURNS_ANY: 3440 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3441 (UseScalarMinMax && 3442 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3443 Opc = ISD::FMINNUM; 3444 break; 3445 } 3446 break; 3447 case SPF_FMAXNUM: 3448 switch (SPR.NaNBehavior) { 3449 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3450 case SPNB_RETURNS_NAN: break; 3451 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3452 case SPNB_RETURNS_ANY: 3453 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3454 (UseScalarMinMax && 3455 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3456 Opc = ISD::FMAXNUM; 3457 break; 3458 } 3459 break; 3460 case SPF_NABS: 3461 Negate = true; 3462 [[fallthrough]]; 3463 case SPF_ABS: 3464 IsUnaryAbs = true; 3465 Opc = ISD::ABS; 3466 break; 3467 default: break; 3468 } 3469 3470 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3471 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3472 (UseScalarMinMax && 3473 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3474 // If the underlying comparison instruction is used by any other 3475 // instruction, the consumed instructions won't be destroyed, so it is 3476 // not profitable to convert to a min/max. 3477 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3478 OpCode = Opc; 3479 LHSVal = getValue(LHS); 3480 RHSVal = getValue(RHS); 3481 BaseOps.clear(); 3482 } 3483 3484 if (IsUnaryAbs) { 3485 OpCode = Opc; 3486 LHSVal = getValue(LHS); 3487 BaseOps.clear(); 3488 } 3489 } 3490 3491 if (IsUnaryAbs) { 3492 for (unsigned i = 0; i != NumValues; ++i) { 3493 SDLoc dl = getCurSDLoc(); 3494 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3495 Values[i] = 3496 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3497 if (Negate) 3498 Values[i] = DAG.getNegative(Values[i], dl, VT); 3499 } 3500 } else { 3501 for (unsigned i = 0; i != NumValues; ++i) { 3502 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3503 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3504 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3505 Values[i] = DAG.getNode( 3506 OpCode, getCurSDLoc(), 3507 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3508 } 3509 } 3510 3511 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3512 DAG.getVTList(ValueVTs), Values)); 3513 } 3514 3515 void SelectionDAGBuilder::visitTrunc(const User &I) { 3516 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3517 SDValue N = getValue(I.getOperand(0)); 3518 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3519 I.getType()); 3520 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3521 } 3522 3523 void SelectionDAGBuilder::visitZExt(const User &I) { 3524 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3525 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3526 SDValue N = getValue(I.getOperand(0)); 3527 auto &TLI = DAG.getTargetLoweringInfo(); 3528 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3529 3530 SDNodeFlags Flags; 3531 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3532 Flags.setNonNeg(PNI->hasNonNeg()); 3533 3534 // Eagerly use nonneg information to canonicalize towards sign_extend if 3535 // that is the target's preference. 3536 // TODO: Let the target do this later. 3537 if (Flags.hasNonNeg() && 3538 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3539 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3540 return; 3541 } 3542 3543 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3544 } 3545 3546 void SelectionDAGBuilder::visitSExt(const User &I) { 3547 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3548 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3549 SDValue N = getValue(I.getOperand(0)); 3550 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3551 I.getType()); 3552 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3553 } 3554 3555 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3556 // FPTrunc is never a no-op cast, no need to check 3557 SDValue N = getValue(I.getOperand(0)); 3558 SDLoc dl = getCurSDLoc(); 3559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3560 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3561 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3562 DAG.getTargetConstant( 3563 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3564 } 3565 3566 void SelectionDAGBuilder::visitFPExt(const User &I) { 3567 // FPExt is never a no-op cast, no need to check 3568 SDValue N = getValue(I.getOperand(0)); 3569 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3570 I.getType()); 3571 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3572 } 3573 3574 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3575 // FPToUI is never a no-op cast, no need to check 3576 SDValue N = getValue(I.getOperand(0)); 3577 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3578 I.getType()); 3579 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3580 } 3581 3582 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3583 // FPToSI is never a no-op cast, no need to check 3584 SDValue N = getValue(I.getOperand(0)); 3585 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3586 I.getType()); 3587 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3588 } 3589 3590 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3591 // UIToFP is never a no-op cast, no need to check 3592 SDValue N = getValue(I.getOperand(0)); 3593 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3594 I.getType()); 3595 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3596 } 3597 3598 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3599 // SIToFP is never a no-op cast, no need to check 3600 SDValue N = getValue(I.getOperand(0)); 3601 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3602 I.getType()); 3603 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3604 } 3605 3606 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3607 // What to do depends on the size of the integer and the size of the pointer. 3608 // We can either truncate, zero extend, or no-op, accordingly. 3609 SDValue N = getValue(I.getOperand(0)); 3610 auto &TLI = DAG.getTargetLoweringInfo(); 3611 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3612 I.getType()); 3613 EVT PtrMemVT = 3614 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3615 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3616 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3617 setValue(&I, N); 3618 } 3619 3620 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3621 // What to do depends on the size of the integer and the size of the pointer. 3622 // We can either truncate, zero extend, or no-op, accordingly. 3623 SDValue N = getValue(I.getOperand(0)); 3624 auto &TLI = DAG.getTargetLoweringInfo(); 3625 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3626 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3627 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3628 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3629 setValue(&I, N); 3630 } 3631 3632 void SelectionDAGBuilder::visitBitCast(const User &I) { 3633 SDValue N = getValue(I.getOperand(0)); 3634 SDLoc dl = getCurSDLoc(); 3635 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3636 I.getType()); 3637 3638 // BitCast assures us that source and destination are the same size so this is 3639 // either a BITCAST or a no-op. 3640 if (DestVT != N.getValueType()) 3641 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3642 DestVT, N)); // convert types. 3643 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3644 // might fold any kind of constant expression to an integer constant and that 3645 // is not what we are looking for. Only recognize a bitcast of a genuine 3646 // constant integer as an opaque constant. 3647 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3648 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3649 /*isOpaque*/true)); 3650 else 3651 setValue(&I, N); // noop cast. 3652 } 3653 3654 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3656 const Value *SV = I.getOperand(0); 3657 SDValue N = getValue(SV); 3658 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3659 3660 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3661 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3662 3663 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3664 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3665 3666 setValue(&I, N); 3667 } 3668 3669 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3671 SDValue InVec = getValue(I.getOperand(0)); 3672 SDValue InVal = getValue(I.getOperand(1)); 3673 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3674 TLI.getVectorIdxTy(DAG.getDataLayout())); 3675 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3676 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3677 InVec, InVal, InIdx)); 3678 } 3679 3680 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3682 SDValue InVec = getValue(I.getOperand(0)); 3683 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3684 TLI.getVectorIdxTy(DAG.getDataLayout())); 3685 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3686 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3687 InVec, InIdx)); 3688 } 3689 3690 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3691 SDValue Src1 = getValue(I.getOperand(0)); 3692 SDValue Src2 = getValue(I.getOperand(1)); 3693 ArrayRef<int> Mask; 3694 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3695 Mask = SVI->getShuffleMask(); 3696 else 3697 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3698 SDLoc DL = getCurSDLoc(); 3699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3700 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3701 EVT SrcVT = Src1.getValueType(); 3702 3703 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3704 VT.isScalableVector()) { 3705 // Canonical splat form of first element of first input vector. 3706 SDValue FirstElt = 3707 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3708 DAG.getVectorIdxConstant(0, DL)); 3709 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3710 return; 3711 } 3712 3713 // For now, we only handle splats for scalable vectors. 3714 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3715 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3716 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3717 3718 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3719 unsigned MaskNumElts = Mask.size(); 3720 3721 if (SrcNumElts == MaskNumElts) { 3722 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3723 return; 3724 } 3725 3726 // Normalize the shuffle vector since mask and vector length don't match. 3727 if (SrcNumElts < MaskNumElts) { 3728 // Mask is longer than the source vectors. We can use concatenate vector to 3729 // make the mask and vectors lengths match. 3730 3731 if (MaskNumElts % SrcNumElts == 0) { 3732 // Mask length is a multiple of the source vector length. 3733 // Check if the shuffle is some kind of concatenation of the input 3734 // vectors. 3735 unsigned NumConcat = MaskNumElts / SrcNumElts; 3736 bool IsConcat = true; 3737 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3738 for (unsigned i = 0; i != MaskNumElts; ++i) { 3739 int Idx = Mask[i]; 3740 if (Idx < 0) 3741 continue; 3742 // Ensure the indices in each SrcVT sized piece are sequential and that 3743 // the same source is used for the whole piece. 3744 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3745 (ConcatSrcs[i / SrcNumElts] >= 0 && 3746 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3747 IsConcat = false; 3748 break; 3749 } 3750 // Remember which source this index came from. 3751 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3752 } 3753 3754 // The shuffle is concatenating multiple vectors together. Just emit 3755 // a CONCAT_VECTORS operation. 3756 if (IsConcat) { 3757 SmallVector<SDValue, 8> ConcatOps; 3758 for (auto Src : ConcatSrcs) { 3759 if (Src < 0) 3760 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3761 else if (Src == 0) 3762 ConcatOps.push_back(Src1); 3763 else 3764 ConcatOps.push_back(Src2); 3765 } 3766 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3767 return; 3768 } 3769 } 3770 3771 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3772 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3773 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3774 PaddedMaskNumElts); 3775 3776 // Pad both vectors with undefs to make them the same length as the mask. 3777 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3778 3779 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3780 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3781 MOps1[0] = Src1; 3782 MOps2[0] = Src2; 3783 3784 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3785 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3786 3787 // Readjust mask for new input vector length. 3788 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3789 for (unsigned i = 0; i != MaskNumElts; ++i) { 3790 int Idx = Mask[i]; 3791 if (Idx >= (int)SrcNumElts) 3792 Idx -= SrcNumElts - PaddedMaskNumElts; 3793 MappedOps[i] = Idx; 3794 } 3795 3796 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3797 3798 // If the concatenated vector was padded, extract a subvector with the 3799 // correct number of elements. 3800 if (MaskNumElts != PaddedMaskNumElts) 3801 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3802 DAG.getVectorIdxConstant(0, DL)); 3803 3804 setValue(&I, Result); 3805 return; 3806 } 3807 3808 if (SrcNumElts > MaskNumElts) { 3809 // Analyze the access pattern of the vector to see if we can extract 3810 // two subvectors and do the shuffle. 3811 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3812 bool CanExtract = true; 3813 for (int Idx : Mask) { 3814 unsigned Input = 0; 3815 if (Idx < 0) 3816 continue; 3817 3818 if (Idx >= (int)SrcNumElts) { 3819 Input = 1; 3820 Idx -= SrcNumElts; 3821 } 3822 3823 // If all the indices come from the same MaskNumElts sized portion of 3824 // the sources we can use extract. Also make sure the extract wouldn't 3825 // extract past the end of the source. 3826 int NewStartIdx = alignDown(Idx, MaskNumElts); 3827 if (NewStartIdx + MaskNumElts > SrcNumElts || 3828 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3829 CanExtract = false; 3830 // Make sure we always update StartIdx as we use it to track if all 3831 // elements are undef. 3832 StartIdx[Input] = NewStartIdx; 3833 } 3834 3835 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3836 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3837 return; 3838 } 3839 if (CanExtract) { 3840 // Extract appropriate subvector and generate a vector shuffle 3841 for (unsigned Input = 0; Input < 2; ++Input) { 3842 SDValue &Src = Input == 0 ? Src1 : Src2; 3843 if (StartIdx[Input] < 0) 3844 Src = DAG.getUNDEF(VT); 3845 else { 3846 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3847 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3848 } 3849 } 3850 3851 // Calculate new mask. 3852 SmallVector<int, 8> MappedOps(Mask); 3853 for (int &Idx : MappedOps) { 3854 if (Idx >= (int)SrcNumElts) 3855 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3856 else if (Idx >= 0) 3857 Idx -= StartIdx[0]; 3858 } 3859 3860 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3861 return; 3862 } 3863 } 3864 3865 // We can't use either concat vectors or extract subvectors so fall back to 3866 // replacing the shuffle with extract and build vector. 3867 // to insert and build vector. 3868 EVT EltVT = VT.getVectorElementType(); 3869 SmallVector<SDValue,8> Ops; 3870 for (int Idx : Mask) { 3871 SDValue Res; 3872 3873 if (Idx < 0) { 3874 Res = DAG.getUNDEF(EltVT); 3875 } else { 3876 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3877 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3878 3879 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3880 DAG.getVectorIdxConstant(Idx, DL)); 3881 } 3882 3883 Ops.push_back(Res); 3884 } 3885 3886 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3887 } 3888 3889 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3890 ArrayRef<unsigned> Indices = I.getIndices(); 3891 const Value *Op0 = I.getOperand(0); 3892 const Value *Op1 = I.getOperand(1); 3893 Type *AggTy = I.getType(); 3894 Type *ValTy = Op1->getType(); 3895 bool IntoUndef = isa<UndefValue>(Op0); 3896 bool FromUndef = isa<UndefValue>(Op1); 3897 3898 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3899 3900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3901 SmallVector<EVT, 4> AggValueVTs; 3902 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3903 SmallVector<EVT, 4> ValValueVTs; 3904 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3905 3906 unsigned NumAggValues = AggValueVTs.size(); 3907 unsigned NumValValues = ValValueVTs.size(); 3908 SmallVector<SDValue, 4> Values(NumAggValues); 3909 3910 // Ignore an insertvalue that produces an empty object 3911 if (!NumAggValues) { 3912 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3913 return; 3914 } 3915 3916 SDValue Agg = getValue(Op0); 3917 unsigned i = 0; 3918 // Copy the beginning value(s) from the original aggregate. 3919 for (; i != LinearIndex; ++i) 3920 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3921 SDValue(Agg.getNode(), Agg.getResNo() + i); 3922 // Copy values from the inserted value(s). 3923 if (NumValValues) { 3924 SDValue Val = getValue(Op1); 3925 for (; i != LinearIndex + NumValValues; ++i) 3926 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3927 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3928 } 3929 // Copy remaining value(s) from the original aggregate. 3930 for (; i != NumAggValues; ++i) 3931 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3932 SDValue(Agg.getNode(), Agg.getResNo() + i); 3933 3934 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3935 DAG.getVTList(AggValueVTs), Values)); 3936 } 3937 3938 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3939 ArrayRef<unsigned> Indices = I.getIndices(); 3940 const Value *Op0 = I.getOperand(0); 3941 Type *AggTy = Op0->getType(); 3942 Type *ValTy = I.getType(); 3943 bool OutOfUndef = isa<UndefValue>(Op0); 3944 3945 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3946 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 SmallVector<EVT, 4> ValValueVTs; 3949 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3950 3951 unsigned NumValValues = ValValueVTs.size(); 3952 3953 // Ignore a extractvalue that produces an empty object 3954 if (!NumValValues) { 3955 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3956 return; 3957 } 3958 3959 SmallVector<SDValue, 4> Values(NumValValues); 3960 3961 SDValue Agg = getValue(Op0); 3962 // Copy out the selected value(s). 3963 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3964 Values[i - LinearIndex] = 3965 OutOfUndef ? 3966 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3967 SDValue(Agg.getNode(), Agg.getResNo() + i); 3968 3969 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3970 DAG.getVTList(ValValueVTs), Values)); 3971 } 3972 3973 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3974 Value *Op0 = I.getOperand(0); 3975 // Note that the pointer operand may be a vector of pointers. Take the scalar 3976 // element which holds a pointer. 3977 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3978 SDValue N = getValue(Op0); 3979 SDLoc dl = getCurSDLoc(); 3980 auto &TLI = DAG.getTargetLoweringInfo(); 3981 3982 // Normalize Vector GEP - all scalar operands should be converted to the 3983 // splat vector. 3984 bool IsVectorGEP = I.getType()->isVectorTy(); 3985 ElementCount VectorElementCount = 3986 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3987 : ElementCount::getFixed(0); 3988 3989 if (IsVectorGEP && !N.getValueType().isVector()) { 3990 LLVMContext &Context = *DAG.getContext(); 3991 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3992 N = DAG.getSplat(VT, dl, N); 3993 } 3994 3995 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3996 GTI != E; ++GTI) { 3997 const Value *Idx = GTI.getOperand(); 3998 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3999 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4000 if (Field) { 4001 // N = N + Offset 4002 uint64_t Offset = 4003 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4004 4005 // In an inbounds GEP with an offset that is nonnegative even when 4006 // interpreted as signed, assume there is no unsigned overflow. 4007 SDNodeFlags Flags; 4008 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4009 Flags.setNoUnsignedWrap(true); 4010 4011 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4012 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4013 } 4014 } else { 4015 // IdxSize is the width of the arithmetic according to IR semantics. 4016 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4017 // (and fix up the result later). 4018 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4019 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4020 TypeSize ElementSize = 4021 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4022 // We intentionally mask away the high bits here; ElementSize may not 4023 // fit in IdxTy. 4024 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4025 bool ElementScalable = ElementSize.isScalable(); 4026 4027 // If this is a scalar constant or a splat vector of constants, 4028 // handle it quickly. 4029 const auto *C = dyn_cast<Constant>(Idx); 4030 if (C && isa<VectorType>(C->getType())) 4031 C = C->getSplatValue(); 4032 4033 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4034 if (CI && CI->isZero()) 4035 continue; 4036 if (CI && !ElementScalable) { 4037 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4038 LLVMContext &Context = *DAG.getContext(); 4039 SDValue OffsVal; 4040 if (IsVectorGEP) 4041 OffsVal = DAG.getConstant( 4042 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4043 else 4044 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4045 4046 // In an inbounds GEP with an offset that is nonnegative even when 4047 // interpreted as signed, assume there is no unsigned overflow. 4048 SDNodeFlags Flags; 4049 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4050 Flags.setNoUnsignedWrap(true); 4051 4052 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4053 4054 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4055 continue; 4056 } 4057 4058 // N = N + Idx * ElementMul; 4059 SDValue IdxN = getValue(Idx); 4060 4061 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4062 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4063 VectorElementCount); 4064 IdxN = DAG.getSplat(VT, dl, IdxN); 4065 } 4066 4067 // If the index is smaller or larger than intptr_t, truncate or extend 4068 // it. 4069 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4070 4071 if (ElementScalable) { 4072 EVT VScaleTy = N.getValueType().getScalarType(); 4073 SDValue VScale = DAG.getNode( 4074 ISD::VSCALE, dl, VScaleTy, 4075 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4076 if (IsVectorGEP) 4077 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4078 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4079 } else { 4080 // If this is a multiply by a power of two, turn it into a shl 4081 // immediately. This is a very common case. 4082 if (ElementMul != 1) { 4083 if (ElementMul.isPowerOf2()) { 4084 unsigned Amt = ElementMul.logBase2(); 4085 IdxN = DAG.getNode(ISD::SHL, dl, 4086 N.getValueType(), IdxN, 4087 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4088 } else { 4089 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4090 IdxN.getValueType()); 4091 IdxN = DAG.getNode(ISD::MUL, dl, 4092 N.getValueType(), IdxN, Scale); 4093 } 4094 } 4095 } 4096 4097 N = DAG.getNode(ISD::ADD, dl, 4098 N.getValueType(), N, IdxN); 4099 } 4100 } 4101 4102 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4103 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4104 if (IsVectorGEP) { 4105 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4106 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4107 } 4108 4109 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4110 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4111 4112 setValue(&I, N); 4113 } 4114 4115 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4116 // If this is a fixed sized alloca in the entry block of the function, 4117 // allocate it statically on the stack. 4118 if (FuncInfo.StaticAllocaMap.count(&I)) 4119 return; // getValue will auto-populate this. 4120 4121 SDLoc dl = getCurSDLoc(); 4122 Type *Ty = I.getAllocatedType(); 4123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4124 auto &DL = DAG.getDataLayout(); 4125 TypeSize TySize = DL.getTypeAllocSize(Ty); 4126 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4127 4128 SDValue AllocSize = getValue(I.getArraySize()); 4129 4130 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4131 if (AllocSize.getValueType() != IntPtr) 4132 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4133 4134 if (TySize.isScalable()) 4135 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4136 DAG.getVScale(dl, IntPtr, 4137 APInt(IntPtr.getScalarSizeInBits(), 4138 TySize.getKnownMinValue()))); 4139 else 4140 AllocSize = 4141 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4142 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4143 4144 // Handle alignment. If the requested alignment is less than or equal to 4145 // the stack alignment, ignore it. If the size is greater than or equal to 4146 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4147 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4148 if (*Alignment <= StackAlign) 4149 Alignment = std::nullopt; 4150 4151 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4152 // Round the size of the allocation up to the stack alignment size 4153 // by add SA-1 to the size. This doesn't overflow because we're computing 4154 // an address inside an alloca. 4155 SDNodeFlags Flags; 4156 Flags.setNoUnsignedWrap(true); 4157 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4158 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4159 4160 // Mask out the low bits for alignment purposes. 4161 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4162 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4163 4164 SDValue Ops[] = { 4165 getRoot(), AllocSize, 4166 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4167 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4168 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4169 setValue(&I, DSA); 4170 DAG.setRoot(DSA.getValue(1)); 4171 4172 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4173 } 4174 4175 static const MDNode *getRangeMetadata(const Instruction &I) { 4176 // If !noundef is not present, then !range violation results in a poison 4177 // value rather than immediate undefined behavior. In theory, transferring 4178 // these annotations to SDAG is fine, but in practice there are key SDAG 4179 // transforms that are known not to be poison-safe, such as folding logical 4180 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4181 // also present. 4182 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4183 return nullptr; 4184 return I.getMetadata(LLVMContext::MD_range); 4185 } 4186 4187 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4188 if (I.isAtomic()) 4189 return visitAtomicLoad(I); 4190 4191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4192 const Value *SV = I.getOperand(0); 4193 if (TLI.supportSwiftError()) { 4194 // Swifterror values can come from either a function parameter with 4195 // swifterror attribute or an alloca with swifterror attribute. 4196 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4197 if (Arg->hasSwiftErrorAttr()) 4198 return visitLoadFromSwiftError(I); 4199 } 4200 4201 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4202 if (Alloca->isSwiftError()) 4203 return visitLoadFromSwiftError(I); 4204 } 4205 } 4206 4207 SDValue Ptr = getValue(SV); 4208 4209 Type *Ty = I.getType(); 4210 SmallVector<EVT, 4> ValueVTs, MemVTs; 4211 SmallVector<TypeSize, 4> Offsets; 4212 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4213 unsigned NumValues = ValueVTs.size(); 4214 if (NumValues == 0) 4215 return; 4216 4217 Align Alignment = I.getAlign(); 4218 AAMDNodes AAInfo = I.getAAMetadata(); 4219 const MDNode *Ranges = getRangeMetadata(I); 4220 bool isVolatile = I.isVolatile(); 4221 MachineMemOperand::Flags MMOFlags = 4222 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4223 4224 SDValue Root; 4225 bool ConstantMemory = false; 4226 if (isVolatile) 4227 // Serialize volatile loads with other side effects. 4228 Root = getRoot(); 4229 else if (NumValues > MaxParallelChains) 4230 Root = getMemoryRoot(); 4231 else if (AA && 4232 AA->pointsToConstantMemory(MemoryLocation( 4233 SV, 4234 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4235 AAInfo))) { 4236 // Do not serialize (non-volatile) loads of constant memory with anything. 4237 Root = DAG.getEntryNode(); 4238 ConstantMemory = true; 4239 MMOFlags |= MachineMemOperand::MOInvariant; 4240 } else { 4241 // Do not serialize non-volatile loads against each other. 4242 Root = DAG.getRoot(); 4243 } 4244 4245 SDLoc dl = getCurSDLoc(); 4246 4247 if (isVolatile) 4248 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4249 4250 SmallVector<SDValue, 4> Values(NumValues); 4251 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4252 4253 unsigned ChainI = 0; 4254 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4255 // Serializing loads here may result in excessive register pressure, and 4256 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4257 // could recover a bit by hoisting nodes upward in the chain by recognizing 4258 // they are side-effect free or do not alias. The optimizer should really 4259 // avoid this case by converting large object/array copies to llvm.memcpy 4260 // (MaxParallelChains should always remain as failsafe). 4261 if (ChainI == MaxParallelChains) { 4262 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4263 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4264 ArrayRef(Chains.data(), ChainI)); 4265 Root = Chain; 4266 ChainI = 0; 4267 } 4268 4269 // TODO: MachinePointerInfo only supports a fixed length offset. 4270 MachinePointerInfo PtrInfo = 4271 !Offsets[i].isScalable() || Offsets[i].isZero() 4272 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4273 : MachinePointerInfo(); 4274 4275 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4276 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4277 MMOFlags, AAInfo, Ranges); 4278 Chains[ChainI] = L.getValue(1); 4279 4280 if (MemVTs[i] != ValueVTs[i]) 4281 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4282 4283 Values[i] = L; 4284 } 4285 4286 if (!ConstantMemory) { 4287 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4288 ArrayRef(Chains.data(), ChainI)); 4289 if (isVolatile) 4290 DAG.setRoot(Chain); 4291 else 4292 PendingLoads.push_back(Chain); 4293 } 4294 4295 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4296 DAG.getVTList(ValueVTs), Values)); 4297 } 4298 4299 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4300 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4301 "call visitStoreToSwiftError when backend supports swifterror"); 4302 4303 SmallVector<EVT, 4> ValueVTs; 4304 SmallVector<uint64_t, 4> Offsets; 4305 const Value *SrcV = I.getOperand(0); 4306 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4307 SrcV->getType(), ValueVTs, &Offsets, 0); 4308 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4309 "expect a single EVT for swifterror"); 4310 4311 SDValue Src = getValue(SrcV); 4312 // Create a virtual register, then update the virtual register. 4313 Register VReg = 4314 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4315 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4316 // Chain can be getRoot or getControlRoot. 4317 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4318 SDValue(Src.getNode(), Src.getResNo())); 4319 DAG.setRoot(CopyNode); 4320 } 4321 4322 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4323 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4324 "call visitLoadFromSwiftError when backend supports swifterror"); 4325 4326 assert(!I.isVolatile() && 4327 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4328 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4329 "Support volatile, non temporal, invariant for load_from_swift_error"); 4330 4331 const Value *SV = I.getOperand(0); 4332 Type *Ty = I.getType(); 4333 assert( 4334 (!AA || 4335 !AA->pointsToConstantMemory(MemoryLocation( 4336 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4337 I.getAAMetadata()))) && 4338 "load_from_swift_error should not be constant memory"); 4339 4340 SmallVector<EVT, 4> ValueVTs; 4341 SmallVector<uint64_t, 4> Offsets; 4342 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4343 ValueVTs, &Offsets, 0); 4344 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4345 "expect a single EVT for swifterror"); 4346 4347 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4348 SDValue L = DAG.getCopyFromReg( 4349 getRoot(), getCurSDLoc(), 4350 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4351 4352 setValue(&I, L); 4353 } 4354 4355 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4356 if (I.isAtomic()) 4357 return visitAtomicStore(I); 4358 4359 const Value *SrcV = I.getOperand(0); 4360 const Value *PtrV = I.getOperand(1); 4361 4362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4363 if (TLI.supportSwiftError()) { 4364 // Swifterror values can come from either a function parameter with 4365 // swifterror attribute or an alloca with swifterror attribute. 4366 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4367 if (Arg->hasSwiftErrorAttr()) 4368 return visitStoreToSwiftError(I); 4369 } 4370 4371 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4372 if (Alloca->isSwiftError()) 4373 return visitStoreToSwiftError(I); 4374 } 4375 } 4376 4377 SmallVector<EVT, 4> ValueVTs, MemVTs; 4378 SmallVector<TypeSize, 4> Offsets; 4379 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4380 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4381 unsigned NumValues = ValueVTs.size(); 4382 if (NumValues == 0) 4383 return; 4384 4385 // Get the lowered operands. Note that we do this after 4386 // checking if NumResults is zero, because with zero results 4387 // the operands won't have values in the map. 4388 SDValue Src = getValue(SrcV); 4389 SDValue Ptr = getValue(PtrV); 4390 4391 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4392 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4393 SDLoc dl = getCurSDLoc(); 4394 Align Alignment = I.getAlign(); 4395 AAMDNodes AAInfo = I.getAAMetadata(); 4396 4397 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4398 4399 unsigned ChainI = 0; 4400 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4401 // See visitLoad comments. 4402 if (ChainI == MaxParallelChains) { 4403 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4404 ArrayRef(Chains.data(), ChainI)); 4405 Root = Chain; 4406 ChainI = 0; 4407 } 4408 4409 // TODO: MachinePointerInfo only supports a fixed length offset. 4410 MachinePointerInfo PtrInfo = 4411 !Offsets[i].isScalable() || Offsets[i].isZero() 4412 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4413 : MachinePointerInfo(); 4414 4415 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4416 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4417 if (MemVTs[i] != ValueVTs[i]) 4418 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4419 SDValue St = 4420 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4421 Chains[ChainI] = St; 4422 } 4423 4424 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4425 ArrayRef(Chains.data(), ChainI)); 4426 setValue(&I, StoreNode); 4427 DAG.setRoot(StoreNode); 4428 } 4429 4430 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4431 bool IsCompressing) { 4432 SDLoc sdl = getCurSDLoc(); 4433 4434 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4435 MaybeAlign &Alignment) { 4436 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4437 Src0 = I.getArgOperand(0); 4438 Ptr = I.getArgOperand(1); 4439 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4440 Mask = I.getArgOperand(3); 4441 }; 4442 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4443 MaybeAlign &Alignment) { 4444 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4445 Src0 = I.getArgOperand(0); 4446 Ptr = I.getArgOperand(1); 4447 Mask = I.getArgOperand(2); 4448 Alignment = std::nullopt; 4449 }; 4450 4451 Value *PtrOperand, *MaskOperand, *Src0Operand; 4452 MaybeAlign Alignment; 4453 if (IsCompressing) 4454 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4455 else 4456 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4457 4458 SDValue Ptr = getValue(PtrOperand); 4459 SDValue Src0 = getValue(Src0Operand); 4460 SDValue Mask = getValue(MaskOperand); 4461 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4462 4463 EVT VT = Src0.getValueType(); 4464 if (!Alignment) 4465 Alignment = DAG.getEVTAlign(VT); 4466 4467 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4468 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4469 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4470 SDValue StoreNode = 4471 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4472 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4473 DAG.setRoot(StoreNode); 4474 setValue(&I, StoreNode); 4475 } 4476 4477 // Get a uniform base for the Gather/Scatter intrinsic. 4478 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4479 // We try to represent it as a base pointer + vector of indices. 4480 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4481 // The first operand of the GEP may be a single pointer or a vector of pointers 4482 // Example: 4483 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4484 // or 4485 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4486 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4487 // 4488 // When the first GEP operand is a single pointer - it is the uniform base we 4489 // are looking for. If first operand of the GEP is a splat vector - we 4490 // extract the splat value and use it as a uniform base. 4491 // In all other cases the function returns 'false'. 4492 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4493 ISD::MemIndexType &IndexType, SDValue &Scale, 4494 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4495 uint64_t ElemSize) { 4496 SelectionDAG& DAG = SDB->DAG; 4497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4498 const DataLayout &DL = DAG.getDataLayout(); 4499 4500 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4501 4502 // Handle splat constant pointer. 4503 if (auto *C = dyn_cast<Constant>(Ptr)) { 4504 C = C->getSplatValue(); 4505 if (!C) 4506 return false; 4507 4508 Base = SDB->getValue(C); 4509 4510 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4511 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4512 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4513 IndexType = ISD::SIGNED_SCALED; 4514 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4515 return true; 4516 } 4517 4518 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4519 if (!GEP || GEP->getParent() != CurBB) 4520 return false; 4521 4522 if (GEP->getNumOperands() != 2) 4523 return false; 4524 4525 const Value *BasePtr = GEP->getPointerOperand(); 4526 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4527 4528 // Make sure the base is scalar and the index is a vector. 4529 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4530 return false; 4531 4532 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4533 if (ScaleVal.isScalable()) 4534 return false; 4535 4536 // Target may not support the required addressing mode. 4537 if (ScaleVal != 1 && 4538 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4539 return false; 4540 4541 Base = SDB->getValue(BasePtr); 4542 Index = SDB->getValue(IndexVal); 4543 IndexType = ISD::SIGNED_SCALED; 4544 4545 Scale = 4546 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4547 return true; 4548 } 4549 4550 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4551 SDLoc sdl = getCurSDLoc(); 4552 4553 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4554 const Value *Ptr = I.getArgOperand(1); 4555 SDValue Src0 = getValue(I.getArgOperand(0)); 4556 SDValue Mask = getValue(I.getArgOperand(3)); 4557 EVT VT = Src0.getValueType(); 4558 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4559 ->getMaybeAlignValue() 4560 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4562 4563 SDValue Base; 4564 SDValue Index; 4565 ISD::MemIndexType IndexType; 4566 SDValue Scale; 4567 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4568 I.getParent(), VT.getScalarStoreSize()); 4569 4570 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4571 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4572 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4573 // TODO: Make MachineMemOperands aware of scalable 4574 // vectors. 4575 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4576 if (!UniformBase) { 4577 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4578 Index = getValue(Ptr); 4579 IndexType = ISD::SIGNED_SCALED; 4580 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4581 } 4582 4583 EVT IdxVT = Index.getValueType(); 4584 EVT EltTy = IdxVT.getVectorElementType(); 4585 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4586 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4587 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4588 } 4589 4590 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4591 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4592 Ops, MMO, IndexType, false); 4593 DAG.setRoot(Scatter); 4594 setValue(&I, Scatter); 4595 } 4596 4597 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4598 SDLoc sdl = getCurSDLoc(); 4599 4600 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4601 MaybeAlign &Alignment) { 4602 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4603 Ptr = I.getArgOperand(0); 4604 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4605 Mask = I.getArgOperand(2); 4606 Src0 = I.getArgOperand(3); 4607 }; 4608 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4609 MaybeAlign &Alignment) { 4610 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4611 Ptr = I.getArgOperand(0); 4612 Alignment = std::nullopt; 4613 Mask = I.getArgOperand(1); 4614 Src0 = I.getArgOperand(2); 4615 }; 4616 4617 Value *PtrOperand, *MaskOperand, *Src0Operand; 4618 MaybeAlign Alignment; 4619 if (IsExpanding) 4620 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4621 else 4622 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4623 4624 SDValue Ptr = getValue(PtrOperand); 4625 SDValue Src0 = getValue(Src0Operand); 4626 SDValue Mask = getValue(MaskOperand); 4627 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4628 4629 EVT VT = Src0.getValueType(); 4630 if (!Alignment) 4631 Alignment = DAG.getEVTAlign(VT); 4632 4633 AAMDNodes AAInfo = I.getAAMetadata(); 4634 const MDNode *Ranges = getRangeMetadata(I); 4635 4636 // Do not serialize masked loads of constant memory with anything. 4637 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4638 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4639 4640 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4641 4642 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4643 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4644 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4645 4646 SDValue Load = 4647 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4648 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4649 if (AddToChain) 4650 PendingLoads.push_back(Load.getValue(1)); 4651 setValue(&I, Load); 4652 } 4653 4654 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4655 SDLoc sdl = getCurSDLoc(); 4656 4657 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4658 const Value *Ptr = I.getArgOperand(0); 4659 SDValue Src0 = getValue(I.getArgOperand(3)); 4660 SDValue Mask = getValue(I.getArgOperand(2)); 4661 4662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4663 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4664 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4665 ->getMaybeAlignValue() 4666 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4667 4668 const MDNode *Ranges = getRangeMetadata(I); 4669 4670 SDValue Root = DAG.getRoot(); 4671 SDValue Base; 4672 SDValue Index; 4673 ISD::MemIndexType IndexType; 4674 SDValue Scale; 4675 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4676 I.getParent(), VT.getScalarStoreSize()); 4677 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4678 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4679 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4680 // TODO: Make MachineMemOperands aware of scalable 4681 // vectors. 4682 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4683 4684 if (!UniformBase) { 4685 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4686 Index = getValue(Ptr); 4687 IndexType = ISD::SIGNED_SCALED; 4688 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4689 } 4690 4691 EVT IdxVT = Index.getValueType(); 4692 EVT EltTy = IdxVT.getVectorElementType(); 4693 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4694 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4695 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4696 } 4697 4698 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4699 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4700 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4701 4702 PendingLoads.push_back(Gather.getValue(1)); 4703 setValue(&I, Gather); 4704 } 4705 4706 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4707 SDLoc dl = getCurSDLoc(); 4708 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4709 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4710 SyncScope::ID SSID = I.getSyncScopeID(); 4711 4712 SDValue InChain = getRoot(); 4713 4714 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4715 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4716 4717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4718 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4719 4720 MachineFunction &MF = DAG.getMachineFunction(); 4721 MachineMemOperand *MMO = MF.getMachineMemOperand( 4722 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4723 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4724 FailureOrdering); 4725 4726 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4727 dl, MemVT, VTs, InChain, 4728 getValue(I.getPointerOperand()), 4729 getValue(I.getCompareOperand()), 4730 getValue(I.getNewValOperand()), MMO); 4731 4732 SDValue OutChain = L.getValue(2); 4733 4734 setValue(&I, L); 4735 DAG.setRoot(OutChain); 4736 } 4737 4738 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4739 SDLoc dl = getCurSDLoc(); 4740 ISD::NodeType NT; 4741 switch (I.getOperation()) { 4742 default: llvm_unreachable("Unknown atomicrmw operation"); 4743 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4744 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4745 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4746 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4747 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4748 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4749 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4750 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4751 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4752 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4753 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4754 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4755 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4756 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4757 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4758 case AtomicRMWInst::UIncWrap: 4759 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4760 break; 4761 case AtomicRMWInst::UDecWrap: 4762 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4763 break; 4764 } 4765 AtomicOrdering Ordering = I.getOrdering(); 4766 SyncScope::ID SSID = I.getSyncScopeID(); 4767 4768 SDValue InChain = getRoot(); 4769 4770 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4772 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4773 4774 MachineFunction &MF = DAG.getMachineFunction(); 4775 MachineMemOperand *MMO = MF.getMachineMemOperand( 4776 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4777 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4778 4779 SDValue L = 4780 DAG.getAtomic(NT, dl, MemVT, InChain, 4781 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4782 MMO); 4783 4784 SDValue OutChain = L.getValue(1); 4785 4786 setValue(&I, L); 4787 DAG.setRoot(OutChain); 4788 } 4789 4790 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4791 SDLoc dl = getCurSDLoc(); 4792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4793 SDValue Ops[3]; 4794 Ops[0] = getRoot(); 4795 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4796 TLI.getFenceOperandTy(DAG.getDataLayout())); 4797 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4798 TLI.getFenceOperandTy(DAG.getDataLayout())); 4799 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4800 setValue(&I, N); 4801 DAG.setRoot(N); 4802 } 4803 4804 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4805 SDLoc dl = getCurSDLoc(); 4806 AtomicOrdering Order = I.getOrdering(); 4807 SyncScope::ID SSID = I.getSyncScopeID(); 4808 4809 SDValue InChain = getRoot(); 4810 4811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4812 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4813 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4814 4815 if (!TLI.supportsUnalignedAtomics() && 4816 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4817 report_fatal_error("Cannot generate unaligned atomic load"); 4818 4819 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4820 4821 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4822 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4823 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4824 4825 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4826 4827 SDValue Ptr = getValue(I.getPointerOperand()); 4828 4829 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4830 // TODO: Once this is better exercised by tests, it should be merged with 4831 // the normal path for loads to prevent future divergence. 4832 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4833 if (MemVT != VT) 4834 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4835 4836 setValue(&I, L); 4837 SDValue OutChain = L.getValue(1); 4838 if (!I.isUnordered()) 4839 DAG.setRoot(OutChain); 4840 else 4841 PendingLoads.push_back(OutChain); 4842 return; 4843 } 4844 4845 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4846 Ptr, MMO); 4847 4848 SDValue OutChain = L.getValue(1); 4849 if (MemVT != VT) 4850 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4851 4852 setValue(&I, L); 4853 DAG.setRoot(OutChain); 4854 } 4855 4856 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4857 SDLoc dl = getCurSDLoc(); 4858 4859 AtomicOrdering Ordering = I.getOrdering(); 4860 SyncScope::ID SSID = I.getSyncScopeID(); 4861 4862 SDValue InChain = getRoot(); 4863 4864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4865 EVT MemVT = 4866 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4867 4868 if (!TLI.supportsUnalignedAtomics() && 4869 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4870 report_fatal_error("Cannot generate unaligned atomic store"); 4871 4872 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4873 4874 MachineFunction &MF = DAG.getMachineFunction(); 4875 MachineMemOperand *MMO = MF.getMachineMemOperand( 4876 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4877 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4878 4879 SDValue Val = getValue(I.getValueOperand()); 4880 if (Val.getValueType() != MemVT) 4881 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4882 SDValue Ptr = getValue(I.getPointerOperand()); 4883 4884 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4885 // TODO: Once this is better exercised by tests, it should be merged with 4886 // the normal path for stores to prevent future divergence. 4887 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4888 setValue(&I, S); 4889 DAG.setRoot(S); 4890 return; 4891 } 4892 SDValue OutChain = 4893 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4894 4895 setValue(&I, OutChain); 4896 DAG.setRoot(OutChain); 4897 } 4898 4899 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4900 /// node. 4901 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4902 unsigned Intrinsic) { 4903 // Ignore the callsite's attributes. A specific call site may be marked with 4904 // readnone, but the lowering code will expect the chain based on the 4905 // definition. 4906 const Function *F = I.getCalledFunction(); 4907 bool HasChain = !F->doesNotAccessMemory(); 4908 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4909 4910 // Build the operand list. 4911 SmallVector<SDValue, 8> Ops; 4912 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4913 if (OnlyLoad) { 4914 // We don't need to serialize loads against other loads. 4915 Ops.push_back(DAG.getRoot()); 4916 } else { 4917 Ops.push_back(getRoot()); 4918 } 4919 } 4920 4921 // Info is set by getTgtMemIntrinsic 4922 TargetLowering::IntrinsicInfo Info; 4923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4924 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4925 DAG.getMachineFunction(), 4926 Intrinsic); 4927 4928 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4929 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4930 Info.opc == ISD::INTRINSIC_W_CHAIN) 4931 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4932 TLI.getPointerTy(DAG.getDataLayout()))); 4933 4934 // Add all operands of the call to the operand list. 4935 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4936 const Value *Arg = I.getArgOperand(i); 4937 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4938 Ops.push_back(getValue(Arg)); 4939 continue; 4940 } 4941 4942 // Use TargetConstant instead of a regular constant for immarg. 4943 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4944 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4945 assert(CI->getBitWidth() <= 64 && 4946 "large intrinsic immediates not handled"); 4947 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4948 } else { 4949 Ops.push_back( 4950 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4951 } 4952 } 4953 4954 SmallVector<EVT, 4> ValueVTs; 4955 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4956 4957 if (HasChain) 4958 ValueVTs.push_back(MVT::Other); 4959 4960 SDVTList VTs = DAG.getVTList(ValueVTs); 4961 4962 // Propagate fast-math-flags from IR to node(s). 4963 SDNodeFlags Flags; 4964 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4965 Flags.copyFMF(*FPMO); 4966 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4967 4968 // Create the node. 4969 SDValue Result; 4970 // In some cases, custom collection of operands from CallInst I may be needed. 4971 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4972 if (IsTgtIntrinsic) { 4973 // This is target intrinsic that touches memory 4974 // 4975 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4976 // didn't yield anything useful. 4977 MachinePointerInfo MPI; 4978 if (Info.ptrVal) 4979 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4980 else if (Info.fallbackAddressSpace) 4981 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4982 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4983 Info.memVT, MPI, Info.align, Info.flags, 4984 Info.size, I.getAAMetadata()); 4985 } else if (!HasChain) { 4986 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4987 } else if (!I.getType()->isVoidTy()) { 4988 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4989 } else { 4990 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4991 } 4992 4993 if (HasChain) { 4994 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4995 if (OnlyLoad) 4996 PendingLoads.push_back(Chain); 4997 else 4998 DAG.setRoot(Chain); 4999 } 5000 5001 if (!I.getType()->isVoidTy()) { 5002 if (!isa<VectorType>(I.getType())) 5003 Result = lowerRangeToAssertZExt(DAG, I, Result); 5004 5005 MaybeAlign Alignment = I.getRetAlign(); 5006 5007 // Insert `assertalign` node if there's an alignment. 5008 if (InsertAssertAlign && Alignment) { 5009 Result = 5010 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5011 } 5012 5013 setValue(&I, Result); 5014 } 5015 } 5016 5017 /// GetSignificand - Get the significand and build it into a floating-point 5018 /// number with exponent of 1: 5019 /// 5020 /// Op = (Op & 0x007fffff) | 0x3f800000; 5021 /// 5022 /// where Op is the hexadecimal representation of floating point value. 5023 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5024 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5025 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5026 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5027 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5028 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5029 } 5030 5031 /// GetExponent - Get the exponent: 5032 /// 5033 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5034 /// 5035 /// where Op is the hexadecimal representation of floating point value. 5036 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5037 const TargetLowering &TLI, const SDLoc &dl) { 5038 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5039 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5040 SDValue t1 = DAG.getNode( 5041 ISD::SRL, dl, MVT::i32, t0, 5042 DAG.getConstant(23, dl, 5043 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5044 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5045 DAG.getConstant(127, dl, MVT::i32)); 5046 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5047 } 5048 5049 /// getF32Constant - Get 32-bit floating point constant. 5050 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5051 const SDLoc &dl) { 5052 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5053 MVT::f32); 5054 } 5055 5056 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5057 SelectionDAG &DAG) { 5058 // TODO: What fast-math-flags should be set on the floating-point nodes? 5059 5060 // IntegerPartOfX = ((int32_t)(t0); 5061 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5062 5063 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5064 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5065 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5066 5067 // IntegerPartOfX <<= 23; 5068 IntegerPartOfX = 5069 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5070 DAG.getConstant(23, dl, 5071 DAG.getTargetLoweringInfo().getShiftAmountTy( 5072 MVT::i32, DAG.getDataLayout()))); 5073 5074 SDValue TwoToFractionalPartOfX; 5075 if (LimitFloatPrecision <= 6) { 5076 // For floating-point precision of 6: 5077 // 5078 // TwoToFractionalPartOfX = 5079 // 0.997535578f + 5080 // (0.735607626f + 0.252464424f * x) * x; 5081 // 5082 // error 0.0144103317, which is 6 bits 5083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5084 getF32Constant(DAG, 0x3e814304, dl)); 5085 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5086 getF32Constant(DAG, 0x3f3c50c8, dl)); 5087 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5088 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5089 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5090 } else if (LimitFloatPrecision <= 12) { 5091 // For floating-point precision of 12: 5092 // 5093 // TwoToFractionalPartOfX = 5094 // 0.999892986f + 5095 // (0.696457318f + 5096 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5097 // 5098 // error 0.000107046256, which is 13 to 14 bits 5099 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5100 getF32Constant(DAG, 0x3da235e3, dl)); 5101 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5102 getF32Constant(DAG, 0x3e65b8f3, dl)); 5103 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5104 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5105 getF32Constant(DAG, 0x3f324b07, dl)); 5106 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5107 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5108 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5109 } else { // LimitFloatPrecision <= 18 5110 // For floating-point precision of 18: 5111 // 5112 // TwoToFractionalPartOfX = 5113 // 0.999999982f + 5114 // (0.693148872f + 5115 // (0.240227044f + 5116 // (0.554906021e-1f + 5117 // (0.961591928e-2f + 5118 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5119 // error 2.47208000*10^(-7), which is better than 18 bits 5120 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5121 getF32Constant(DAG, 0x3924b03e, dl)); 5122 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5123 getF32Constant(DAG, 0x3ab24b87, dl)); 5124 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5125 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5126 getF32Constant(DAG, 0x3c1d8c17, dl)); 5127 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5128 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5129 getF32Constant(DAG, 0x3d634a1d, dl)); 5130 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5131 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5132 getF32Constant(DAG, 0x3e75fe14, dl)); 5133 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5134 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5135 getF32Constant(DAG, 0x3f317234, dl)); 5136 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5137 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5138 getF32Constant(DAG, 0x3f800000, dl)); 5139 } 5140 5141 // Add the exponent into the result in integer domain. 5142 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5143 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5144 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5145 } 5146 5147 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5148 /// limited-precision mode. 5149 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5150 const TargetLowering &TLI, SDNodeFlags Flags) { 5151 if (Op.getValueType() == MVT::f32 && 5152 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5153 5154 // Put the exponent in the right bit position for later addition to the 5155 // final result: 5156 // 5157 // t0 = Op * log2(e) 5158 5159 // TODO: What fast-math-flags should be set here? 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5161 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5162 return getLimitedPrecisionExp2(t0, dl, DAG); 5163 } 5164 5165 // No special expansion. 5166 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5167 } 5168 5169 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5170 /// limited-precision mode. 5171 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5172 const TargetLowering &TLI, SDNodeFlags Flags) { 5173 // TODO: What fast-math-flags should be set on the floating-point nodes? 5174 5175 if (Op.getValueType() == MVT::f32 && 5176 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5177 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5178 5179 // Scale the exponent by log(2). 5180 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5181 SDValue LogOfExponent = 5182 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5183 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5184 5185 // Get the significand and build it into a floating-point number with 5186 // exponent of 1. 5187 SDValue X = GetSignificand(DAG, Op1, dl); 5188 5189 SDValue LogOfMantissa; 5190 if (LimitFloatPrecision <= 6) { 5191 // For floating-point precision of 6: 5192 // 5193 // LogofMantissa = 5194 // -1.1609546f + 5195 // (1.4034025f - 0.23903021f * x) * x; 5196 // 5197 // error 0.0034276066, which is better than 8 bits 5198 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5199 getF32Constant(DAG, 0xbe74c456, dl)); 5200 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5201 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5202 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5203 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5204 getF32Constant(DAG, 0x3f949a29, dl)); 5205 } else if (LimitFloatPrecision <= 12) { 5206 // For floating-point precision of 12: 5207 // 5208 // LogOfMantissa = 5209 // -1.7417939f + 5210 // (2.8212026f + 5211 // (-1.4699568f + 5212 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5213 // 5214 // error 0.000061011436, which is 14 bits 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5216 getF32Constant(DAG, 0xbd67b6d6, dl)); 5217 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5218 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5220 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5221 getF32Constant(DAG, 0x3fbc278b, dl)); 5222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5224 getF32Constant(DAG, 0x40348e95, dl)); 5225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5226 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5227 getF32Constant(DAG, 0x3fdef31a, dl)); 5228 } else { // LimitFloatPrecision <= 18 5229 // For floating-point precision of 18: 5230 // 5231 // LogOfMantissa = 5232 // -2.1072184f + 5233 // (4.2372794f + 5234 // (-3.7029485f + 5235 // (2.2781945f + 5236 // (-0.87823314f + 5237 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5238 // 5239 // error 0.0000023660568, which is better than 18 bits 5240 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5241 getF32Constant(DAG, 0xbc91e5ac, dl)); 5242 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5243 getF32Constant(DAG, 0x3e4350aa, dl)); 5244 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5245 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5246 getF32Constant(DAG, 0x3f60d3e3, dl)); 5247 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5248 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5249 getF32Constant(DAG, 0x4011cdf0, dl)); 5250 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5251 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5252 getF32Constant(DAG, 0x406cfd1c, dl)); 5253 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5254 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5255 getF32Constant(DAG, 0x408797cb, dl)); 5256 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5257 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5258 getF32Constant(DAG, 0x4006dcab, dl)); 5259 } 5260 5261 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5262 } 5263 5264 // No special expansion. 5265 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5266 } 5267 5268 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5269 /// limited-precision mode. 5270 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5271 const TargetLowering &TLI, SDNodeFlags Flags) { 5272 // TODO: What fast-math-flags should be set on the floating-point nodes? 5273 5274 if (Op.getValueType() == MVT::f32 && 5275 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5276 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5277 5278 // Get the exponent. 5279 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5280 5281 // Get the significand and build it into a floating-point number with 5282 // exponent of 1. 5283 SDValue X = GetSignificand(DAG, Op1, dl); 5284 5285 // Different possible minimax approximations of significand in 5286 // floating-point for various degrees of accuracy over [1,2]. 5287 SDValue Log2ofMantissa; 5288 if (LimitFloatPrecision <= 6) { 5289 // For floating-point precision of 6: 5290 // 5291 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5292 // 5293 // error 0.0049451742, which is more than 7 bits 5294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5295 getF32Constant(DAG, 0xbeb08fe0, dl)); 5296 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5297 getF32Constant(DAG, 0x40019463, dl)); 5298 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5299 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5300 getF32Constant(DAG, 0x3fd6633d, dl)); 5301 } else if (LimitFloatPrecision <= 12) { 5302 // For floating-point precision of 12: 5303 // 5304 // Log2ofMantissa = 5305 // -2.51285454f + 5306 // (4.07009056f + 5307 // (-2.12067489f + 5308 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5309 // 5310 // error 0.0000876136000, which is better than 13 bits 5311 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5312 getF32Constant(DAG, 0xbda7262e, dl)); 5313 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5314 getF32Constant(DAG, 0x3f25280b, dl)); 5315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5316 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5317 getF32Constant(DAG, 0x4007b923, dl)); 5318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5319 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5320 getF32Constant(DAG, 0x40823e2f, dl)); 5321 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5322 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5323 getF32Constant(DAG, 0x4020d29c, dl)); 5324 } else { // LimitFloatPrecision <= 18 5325 // For floating-point precision of 18: 5326 // 5327 // Log2ofMantissa = 5328 // -3.0400495f + 5329 // (6.1129976f + 5330 // (-5.3420409f + 5331 // (3.2865683f + 5332 // (-1.2669343f + 5333 // (0.27515199f - 5334 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5335 // 5336 // error 0.0000018516, which is better than 18 bits 5337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5338 getF32Constant(DAG, 0xbcd2769e, dl)); 5339 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5340 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5341 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5342 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5343 getF32Constant(DAG, 0x3fa22ae7, dl)); 5344 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5345 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5346 getF32Constant(DAG, 0x40525723, dl)); 5347 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5348 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5349 getF32Constant(DAG, 0x40aaf200, dl)); 5350 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5351 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5352 getF32Constant(DAG, 0x40c39dad, dl)); 5353 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5354 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5355 getF32Constant(DAG, 0x4042902c, dl)); 5356 } 5357 5358 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5359 } 5360 5361 // No special expansion. 5362 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5363 } 5364 5365 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5366 /// limited-precision mode. 5367 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5368 const TargetLowering &TLI, SDNodeFlags Flags) { 5369 // TODO: What fast-math-flags should be set on the floating-point nodes? 5370 5371 if (Op.getValueType() == MVT::f32 && 5372 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5373 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5374 5375 // Scale the exponent by log10(2) [0.30102999f]. 5376 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5377 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5378 getF32Constant(DAG, 0x3e9a209a, dl)); 5379 5380 // Get the significand and build it into a floating-point number with 5381 // exponent of 1. 5382 SDValue X = GetSignificand(DAG, Op1, dl); 5383 5384 SDValue Log10ofMantissa; 5385 if (LimitFloatPrecision <= 6) { 5386 // For floating-point precision of 6: 5387 // 5388 // Log10ofMantissa = 5389 // -0.50419619f + 5390 // (0.60948995f - 0.10380950f * x) * x; 5391 // 5392 // error 0.0014886165, which is 6 bits 5393 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5394 getF32Constant(DAG, 0xbdd49a13, dl)); 5395 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5396 getF32Constant(DAG, 0x3f1c0789, dl)); 5397 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5398 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5399 getF32Constant(DAG, 0x3f011300, dl)); 5400 } else if (LimitFloatPrecision <= 12) { 5401 // For floating-point precision of 12: 5402 // 5403 // Log10ofMantissa = 5404 // -0.64831180f + 5405 // (0.91751397f + 5406 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5407 // 5408 // error 0.00019228036, which is better than 12 bits 5409 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5410 getF32Constant(DAG, 0x3d431f31, dl)); 5411 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5412 getF32Constant(DAG, 0x3ea21fb2, dl)); 5413 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5414 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5415 getF32Constant(DAG, 0x3f6ae232, dl)); 5416 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5417 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5418 getF32Constant(DAG, 0x3f25f7c3, dl)); 5419 } else { // LimitFloatPrecision <= 18 5420 // For floating-point precision of 18: 5421 // 5422 // Log10ofMantissa = 5423 // -0.84299375f + 5424 // (1.5327582f + 5425 // (-1.0688956f + 5426 // (0.49102474f + 5427 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5428 // 5429 // error 0.0000037995730, which is better than 18 bits 5430 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5431 getF32Constant(DAG, 0x3c5d51ce, dl)); 5432 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5433 getF32Constant(DAG, 0x3e00685a, dl)); 5434 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5435 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5436 getF32Constant(DAG, 0x3efb6798, dl)); 5437 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5438 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5439 getF32Constant(DAG, 0x3f88d192, dl)); 5440 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5441 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5442 getF32Constant(DAG, 0x3fc4316c, dl)); 5443 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5444 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5445 getF32Constant(DAG, 0x3f57ce70, dl)); 5446 } 5447 5448 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5449 } 5450 5451 // No special expansion. 5452 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5453 } 5454 5455 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5456 /// limited-precision mode. 5457 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5458 const TargetLowering &TLI, SDNodeFlags Flags) { 5459 if (Op.getValueType() == MVT::f32 && 5460 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5461 return getLimitedPrecisionExp2(Op, dl, DAG); 5462 5463 // No special expansion. 5464 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5465 } 5466 5467 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5468 /// limited-precision mode with x == 10.0f. 5469 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5470 SelectionDAG &DAG, const TargetLowering &TLI, 5471 SDNodeFlags Flags) { 5472 bool IsExp10 = false; 5473 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5474 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5475 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5476 APFloat Ten(10.0f); 5477 IsExp10 = LHSC->isExactlyValue(Ten); 5478 } 5479 } 5480 5481 // TODO: What fast-math-flags should be set on the FMUL node? 5482 if (IsExp10) { 5483 // Put the exponent in the right bit position for later addition to the 5484 // final result: 5485 // 5486 // #define LOG2OF10 3.3219281f 5487 // t0 = Op * LOG2OF10; 5488 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5489 getF32Constant(DAG, 0x40549a78, dl)); 5490 return getLimitedPrecisionExp2(t0, dl, DAG); 5491 } 5492 5493 // No special expansion. 5494 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5495 } 5496 5497 /// ExpandPowI - Expand a llvm.powi intrinsic. 5498 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5499 SelectionDAG &DAG) { 5500 // If RHS is a constant, we can expand this out to a multiplication tree if 5501 // it's beneficial on the target, otherwise we end up lowering to a call to 5502 // __powidf2 (for example). 5503 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5504 unsigned Val = RHSC->getSExtValue(); 5505 5506 // powi(x, 0) -> 1.0 5507 if (Val == 0) 5508 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5509 5510 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5511 Val, DAG.shouldOptForSize())) { 5512 // Get the exponent as a positive value. 5513 if ((int)Val < 0) 5514 Val = -Val; 5515 // We use the simple binary decomposition method to generate the multiply 5516 // sequence. There are more optimal ways to do this (for example, 5517 // powi(x,15) generates one more multiply than it should), but this has 5518 // the benefit of being both really simple and much better than a libcall. 5519 SDValue Res; // Logically starts equal to 1.0 5520 SDValue CurSquare = LHS; 5521 // TODO: Intrinsics should have fast-math-flags that propagate to these 5522 // nodes. 5523 while (Val) { 5524 if (Val & 1) { 5525 if (Res.getNode()) 5526 Res = 5527 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5528 else 5529 Res = CurSquare; // 1.0*CurSquare. 5530 } 5531 5532 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5533 CurSquare, CurSquare); 5534 Val >>= 1; 5535 } 5536 5537 // If the original was negative, invert the result, producing 1/(x*x*x). 5538 if (RHSC->getSExtValue() < 0) 5539 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5540 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5541 return Res; 5542 } 5543 } 5544 5545 // Otherwise, expand to a libcall. 5546 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5547 } 5548 5549 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5550 SDValue LHS, SDValue RHS, SDValue Scale, 5551 SelectionDAG &DAG, const TargetLowering &TLI) { 5552 EVT VT = LHS.getValueType(); 5553 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5554 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5555 LLVMContext &Ctx = *DAG.getContext(); 5556 5557 // If the type is legal but the operation isn't, this node might survive all 5558 // the way to operation legalization. If we end up there and we do not have 5559 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5560 // node. 5561 5562 // Coax the legalizer into expanding the node during type legalization instead 5563 // by bumping the size by one bit. This will force it to Promote, enabling the 5564 // early expansion and avoiding the need to expand later. 5565 5566 // We don't have to do this if Scale is 0; that can always be expanded, unless 5567 // it's a saturating signed operation. Those can experience true integer 5568 // division overflow, a case which we must avoid. 5569 5570 // FIXME: We wouldn't have to do this (or any of the early 5571 // expansion/promotion) if it was possible to expand a libcall of an 5572 // illegal type during operation legalization. But it's not, so things 5573 // get a bit hacky. 5574 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5575 if ((ScaleInt > 0 || (Saturating && Signed)) && 5576 (TLI.isTypeLegal(VT) || 5577 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5578 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5579 Opcode, VT, ScaleInt); 5580 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5581 EVT PromVT; 5582 if (VT.isScalarInteger()) 5583 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5584 else if (VT.isVector()) { 5585 PromVT = VT.getVectorElementType(); 5586 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5587 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5588 } else 5589 llvm_unreachable("Wrong VT for DIVFIX?"); 5590 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5591 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5592 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5593 // For saturating operations, we need to shift up the LHS to get the 5594 // proper saturation width, and then shift down again afterwards. 5595 if (Saturating) 5596 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5597 DAG.getConstant(1, DL, ShiftTy)); 5598 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5599 if (Saturating) 5600 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5601 DAG.getConstant(1, DL, ShiftTy)); 5602 return DAG.getZExtOrTrunc(Res, DL, VT); 5603 } 5604 } 5605 5606 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5607 } 5608 5609 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5610 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5611 static void 5612 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5613 const SDValue &N) { 5614 switch (N.getOpcode()) { 5615 case ISD::CopyFromReg: { 5616 SDValue Op = N.getOperand(1); 5617 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5618 Op.getValueType().getSizeInBits()); 5619 return; 5620 } 5621 case ISD::BITCAST: 5622 case ISD::AssertZext: 5623 case ISD::AssertSext: 5624 case ISD::TRUNCATE: 5625 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5626 return; 5627 case ISD::BUILD_PAIR: 5628 case ISD::BUILD_VECTOR: 5629 case ISD::CONCAT_VECTORS: 5630 for (SDValue Op : N->op_values()) 5631 getUnderlyingArgRegs(Regs, Op); 5632 return; 5633 default: 5634 return; 5635 } 5636 } 5637 5638 /// If the DbgValueInst is a dbg_value of a function argument, create the 5639 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5640 /// instruction selection, they will be inserted to the entry BB. 5641 /// We don't currently support this for variadic dbg_values, as they shouldn't 5642 /// appear for function arguments or in the prologue. 5643 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5644 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5645 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5646 const Argument *Arg = dyn_cast<Argument>(V); 5647 if (!Arg) 5648 return false; 5649 5650 MachineFunction &MF = DAG.getMachineFunction(); 5651 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5652 5653 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5654 // we've been asked to pursue. 5655 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5656 bool Indirect) { 5657 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5658 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5659 // pointing at the VReg, which will be patched up later. 5660 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5661 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5662 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5663 /* isKill */ false, /* isDead */ false, 5664 /* isUndef */ false, /* isEarlyClobber */ false, 5665 /* SubReg */ 0, /* isDebug */ true)}); 5666 5667 auto *NewDIExpr = FragExpr; 5668 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5669 // the DIExpression. 5670 if (Indirect) 5671 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5672 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5673 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5674 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5675 } else { 5676 // Create a completely standard DBG_VALUE. 5677 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5678 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5679 } 5680 }; 5681 5682 if (Kind == FuncArgumentDbgValueKind::Value) { 5683 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5684 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5685 // the entry block. 5686 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5687 if (!IsInEntryBlock) 5688 return false; 5689 5690 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5691 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5692 // variable that also is a param. 5693 // 5694 // Although, if we are at the top of the entry block already, we can still 5695 // emit using ArgDbgValue. This might catch some situations when the 5696 // dbg.value refers to an argument that isn't used in the entry block, so 5697 // any CopyToReg node would be optimized out and the only way to express 5698 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5699 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5700 // we should only emit as ArgDbgValue if the Variable is an argument to the 5701 // current function, and the dbg.value intrinsic is found in the entry 5702 // block. 5703 bool VariableIsFunctionInputArg = Variable->isParameter() && 5704 !DL->getInlinedAt(); 5705 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5706 if (!IsInPrologue && !VariableIsFunctionInputArg) 5707 return false; 5708 5709 // Here we assume that a function argument on IR level only can be used to 5710 // describe one input parameter on source level. If we for example have 5711 // source code like this 5712 // 5713 // struct A { long x, y; }; 5714 // void foo(struct A a, long b) { 5715 // ... 5716 // b = a.x; 5717 // ... 5718 // } 5719 // 5720 // and IR like this 5721 // 5722 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5723 // entry: 5724 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5725 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5726 // call void @llvm.dbg.value(metadata i32 %b, "b", 5727 // ... 5728 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5729 // ... 5730 // 5731 // then the last dbg.value is describing a parameter "b" using a value that 5732 // is an argument. But since we already has used %a1 to describe a parameter 5733 // we should not handle that last dbg.value here (that would result in an 5734 // incorrect hoisting of the DBG_VALUE to the function entry). 5735 // Notice that we allow one dbg.value per IR level argument, to accommodate 5736 // for the situation with fragments above. 5737 if (VariableIsFunctionInputArg) { 5738 unsigned ArgNo = Arg->getArgNo(); 5739 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5740 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5741 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5742 return false; 5743 FuncInfo.DescribedArgs.set(ArgNo); 5744 } 5745 } 5746 5747 bool IsIndirect = false; 5748 std::optional<MachineOperand> Op; 5749 // Some arguments' frame index is recorded during argument lowering. 5750 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5751 if (FI != std::numeric_limits<int>::max()) 5752 Op = MachineOperand::CreateFI(FI); 5753 5754 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5755 if (!Op && N.getNode()) { 5756 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5757 Register Reg; 5758 if (ArgRegsAndSizes.size() == 1) 5759 Reg = ArgRegsAndSizes.front().first; 5760 5761 if (Reg && Reg.isVirtual()) { 5762 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5763 Register PR = RegInfo.getLiveInPhysReg(Reg); 5764 if (PR) 5765 Reg = PR; 5766 } 5767 if (Reg) { 5768 Op = MachineOperand::CreateReg(Reg, false); 5769 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5770 } 5771 } 5772 5773 if (!Op && N.getNode()) { 5774 // Check if frame index is available. 5775 SDValue LCandidate = peekThroughBitcasts(N); 5776 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5777 if (FrameIndexSDNode *FINode = 5778 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5779 Op = MachineOperand::CreateFI(FINode->getIndex()); 5780 } 5781 5782 if (!Op) { 5783 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5784 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5785 SplitRegs) { 5786 unsigned Offset = 0; 5787 for (const auto &RegAndSize : SplitRegs) { 5788 // If the expression is already a fragment, the current register 5789 // offset+size might extend beyond the fragment. In this case, only 5790 // the register bits that are inside the fragment are relevant. 5791 int RegFragmentSizeInBits = RegAndSize.second; 5792 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5793 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5794 // The register is entirely outside the expression fragment, 5795 // so is irrelevant for debug info. 5796 if (Offset >= ExprFragmentSizeInBits) 5797 break; 5798 // The register is partially outside the expression fragment, only 5799 // the low bits within the fragment are relevant for debug info. 5800 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5801 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5802 } 5803 } 5804 5805 auto FragmentExpr = DIExpression::createFragmentExpression( 5806 Expr, Offset, RegFragmentSizeInBits); 5807 Offset += RegAndSize.second; 5808 // If a valid fragment expression cannot be created, the variable's 5809 // correct value cannot be determined and so it is set as Undef. 5810 if (!FragmentExpr) { 5811 SDDbgValue *SDV = DAG.getConstantDbgValue( 5812 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5813 DAG.AddDbgValue(SDV, false); 5814 continue; 5815 } 5816 MachineInstr *NewMI = 5817 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5818 Kind != FuncArgumentDbgValueKind::Value); 5819 FuncInfo.ArgDbgValues.push_back(NewMI); 5820 } 5821 }; 5822 5823 // Check if ValueMap has reg number. 5824 DenseMap<const Value *, Register>::const_iterator 5825 VMI = FuncInfo.ValueMap.find(V); 5826 if (VMI != FuncInfo.ValueMap.end()) { 5827 const auto &TLI = DAG.getTargetLoweringInfo(); 5828 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5829 V->getType(), std::nullopt); 5830 if (RFV.occupiesMultipleRegs()) { 5831 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5832 return true; 5833 } 5834 5835 Op = MachineOperand::CreateReg(VMI->second, false); 5836 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5837 } else if (ArgRegsAndSizes.size() > 1) { 5838 // This was split due to the calling convention, and no virtual register 5839 // mapping exists for the value. 5840 splitMultiRegDbgValue(ArgRegsAndSizes); 5841 return true; 5842 } 5843 } 5844 5845 if (!Op) 5846 return false; 5847 5848 assert(Variable->isValidLocationForIntrinsic(DL) && 5849 "Expected inlined-at fields to agree"); 5850 MachineInstr *NewMI = nullptr; 5851 5852 if (Op->isReg()) 5853 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5854 else 5855 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5856 Variable, Expr); 5857 5858 // Otherwise, use ArgDbgValues. 5859 FuncInfo.ArgDbgValues.push_back(NewMI); 5860 return true; 5861 } 5862 5863 /// Return the appropriate SDDbgValue based on N. 5864 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5865 DILocalVariable *Variable, 5866 DIExpression *Expr, 5867 const DebugLoc &dl, 5868 unsigned DbgSDNodeOrder) { 5869 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5870 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5871 // stack slot locations. 5872 // 5873 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5874 // debug values here after optimization: 5875 // 5876 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5877 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5878 // 5879 // Both describe the direct values of their associated variables. 5880 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5881 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5882 } 5883 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5884 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5885 } 5886 5887 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5888 switch (Intrinsic) { 5889 case Intrinsic::smul_fix: 5890 return ISD::SMULFIX; 5891 case Intrinsic::umul_fix: 5892 return ISD::UMULFIX; 5893 case Intrinsic::smul_fix_sat: 5894 return ISD::SMULFIXSAT; 5895 case Intrinsic::umul_fix_sat: 5896 return ISD::UMULFIXSAT; 5897 case Intrinsic::sdiv_fix: 5898 return ISD::SDIVFIX; 5899 case Intrinsic::udiv_fix: 5900 return ISD::UDIVFIX; 5901 case Intrinsic::sdiv_fix_sat: 5902 return ISD::SDIVFIXSAT; 5903 case Intrinsic::udiv_fix_sat: 5904 return ISD::UDIVFIXSAT; 5905 default: 5906 llvm_unreachable("Unhandled fixed point intrinsic"); 5907 } 5908 } 5909 5910 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5911 const char *FunctionName) { 5912 assert(FunctionName && "FunctionName must not be nullptr"); 5913 SDValue Callee = DAG.getExternalSymbol( 5914 FunctionName, 5915 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5916 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5917 } 5918 5919 /// Given a @llvm.call.preallocated.setup, return the corresponding 5920 /// preallocated call. 5921 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5922 assert(cast<CallBase>(PreallocatedSetup) 5923 ->getCalledFunction() 5924 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5925 "expected call_preallocated_setup Value"); 5926 for (const auto *U : PreallocatedSetup->users()) { 5927 auto *UseCall = cast<CallBase>(U); 5928 const Function *Fn = UseCall->getCalledFunction(); 5929 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5930 return UseCall; 5931 } 5932 } 5933 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5934 } 5935 5936 /// If DI is a debug value with an EntryValue expression, lower it using the 5937 /// corresponding physical register of the associated Argument value 5938 /// (guaranteed to exist by the verifier). 5939 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5940 DILocalVariable *Variable = DI.getVariable(); 5941 DIExpression *Expr = DI.getExpression(); 5942 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5943 return false; 5944 5945 // These properties are guaranteed by the verifier. 5946 Argument *Arg = cast<Argument>(DI.getValue(0)); 5947 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5948 5949 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5950 if (ArgIt == FuncInfo.ValueMap.end()) { 5951 LLVM_DEBUG( 5952 dbgs() << "Dropping dbg.value: expression is entry_value but " 5953 "couldn't find an associated register for the Argument\n"); 5954 return true; 5955 } 5956 Register ArgVReg = ArgIt->getSecond(); 5957 5958 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5959 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5960 SDDbgValue *SDV = 5961 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5962 DI.getDebugLoc(), SDNodeOrder); 5963 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5964 return true; 5965 } 5966 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5967 "couldn't find a physical register\n"); 5968 return true; 5969 } 5970 5971 /// Lower the call to the specified intrinsic function. 5972 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5973 unsigned Intrinsic) { 5974 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5975 SDLoc sdl = getCurSDLoc(); 5976 DebugLoc dl = getCurDebugLoc(); 5977 SDValue Res; 5978 5979 SDNodeFlags Flags; 5980 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5981 Flags.copyFMF(*FPOp); 5982 5983 switch (Intrinsic) { 5984 default: 5985 // By default, turn this into a target intrinsic node. 5986 visitTargetIntrinsic(I, Intrinsic); 5987 return; 5988 case Intrinsic::vscale: { 5989 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5990 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5991 return; 5992 } 5993 case Intrinsic::vastart: visitVAStart(I); return; 5994 case Intrinsic::vaend: visitVAEnd(I); return; 5995 case Intrinsic::vacopy: visitVACopy(I); return; 5996 case Intrinsic::returnaddress: 5997 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5998 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5999 getValue(I.getArgOperand(0)))); 6000 return; 6001 case Intrinsic::addressofreturnaddress: 6002 setValue(&I, 6003 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6004 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6005 return; 6006 case Intrinsic::sponentry: 6007 setValue(&I, 6008 DAG.getNode(ISD::SPONENTRY, sdl, 6009 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6010 return; 6011 case Intrinsic::frameaddress: 6012 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6013 TLI.getFrameIndexTy(DAG.getDataLayout()), 6014 getValue(I.getArgOperand(0)))); 6015 return; 6016 case Intrinsic::read_volatile_register: 6017 case Intrinsic::read_register: { 6018 Value *Reg = I.getArgOperand(0); 6019 SDValue Chain = getRoot(); 6020 SDValue RegName = 6021 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6022 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6023 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6024 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6025 setValue(&I, Res); 6026 DAG.setRoot(Res.getValue(1)); 6027 return; 6028 } 6029 case Intrinsic::write_register: { 6030 Value *Reg = I.getArgOperand(0); 6031 Value *RegValue = I.getArgOperand(1); 6032 SDValue Chain = getRoot(); 6033 SDValue RegName = 6034 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6035 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6036 RegName, getValue(RegValue))); 6037 return; 6038 } 6039 case Intrinsic::memcpy: { 6040 const auto &MCI = cast<MemCpyInst>(I); 6041 SDValue Op1 = getValue(I.getArgOperand(0)); 6042 SDValue Op2 = getValue(I.getArgOperand(1)); 6043 SDValue Op3 = getValue(I.getArgOperand(2)); 6044 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6045 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6046 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6047 Align Alignment = std::min(DstAlign, SrcAlign); 6048 bool isVol = MCI.isVolatile(); 6049 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6050 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6051 // node. 6052 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6053 SDValue MC = DAG.getMemcpy( 6054 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6055 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6056 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6057 updateDAGForMaybeTailCall(MC); 6058 return; 6059 } 6060 case Intrinsic::memcpy_inline: { 6061 const auto &MCI = cast<MemCpyInlineInst>(I); 6062 SDValue Dst = getValue(I.getArgOperand(0)); 6063 SDValue Src = getValue(I.getArgOperand(1)); 6064 SDValue Size = getValue(I.getArgOperand(2)); 6065 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6066 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6067 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6068 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6069 Align Alignment = std::min(DstAlign, SrcAlign); 6070 bool isVol = MCI.isVolatile(); 6071 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6072 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6073 // node. 6074 SDValue MC = DAG.getMemcpy( 6075 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6076 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6077 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6078 updateDAGForMaybeTailCall(MC); 6079 return; 6080 } 6081 case Intrinsic::memset: { 6082 const auto &MSI = cast<MemSetInst>(I); 6083 SDValue Op1 = getValue(I.getArgOperand(0)); 6084 SDValue Op2 = getValue(I.getArgOperand(1)); 6085 SDValue Op3 = getValue(I.getArgOperand(2)); 6086 // @llvm.memset defines 0 and 1 to both mean no alignment. 6087 Align Alignment = MSI.getDestAlign().valueOrOne(); 6088 bool isVol = MSI.isVolatile(); 6089 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6090 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6091 SDValue MS = DAG.getMemset( 6092 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6093 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6094 updateDAGForMaybeTailCall(MS); 6095 return; 6096 } 6097 case Intrinsic::memset_inline: { 6098 const auto &MSII = cast<MemSetInlineInst>(I); 6099 SDValue Dst = getValue(I.getArgOperand(0)); 6100 SDValue Value = getValue(I.getArgOperand(1)); 6101 SDValue Size = getValue(I.getArgOperand(2)); 6102 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6103 // @llvm.memset defines 0 and 1 to both mean no alignment. 6104 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6105 bool isVol = MSII.isVolatile(); 6106 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6107 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6108 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6109 /* AlwaysInline */ true, isTC, 6110 MachinePointerInfo(I.getArgOperand(0)), 6111 I.getAAMetadata()); 6112 updateDAGForMaybeTailCall(MC); 6113 return; 6114 } 6115 case Intrinsic::memmove: { 6116 const auto &MMI = cast<MemMoveInst>(I); 6117 SDValue Op1 = getValue(I.getArgOperand(0)); 6118 SDValue Op2 = getValue(I.getArgOperand(1)); 6119 SDValue Op3 = getValue(I.getArgOperand(2)); 6120 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6121 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6122 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6123 Align Alignment = std::min(DstAlign, SrcAlign); 6124 bool isVol = MMI.isVolatile(); 6125 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6126 // FIXME: Support passing different dest/src alignments to the memmove DAG 6127 // node. 6128 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6129 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6130 isTC, MachinePointerInfo(I.getArgOperand(0)), 6131 MachinePointerInfo(I.getArgOperand(1)), 6132 I.getAAMetadata(), AA); 6133 updateDAGForMaybeTailCall(MM); 6134 return; 6135 } 6136 case Intrinsic::memcpy_element_unordered_atomic: { 6137 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6138 SDValue Dst = getValue(MI.getRawDest()); 6139 SDValue Src = getValue(MI.getRawSource()); 6140 SDValue Length = getValue(MI.getLength()); 6141 6142 Type *LengthTy = MI.getLength()->getType(); 6143 unsigned ElemSz = MI.getElementSizeInBytes(); 6144 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6145 SDValue MC = 6146 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6147 isTC, MachinePointerInfo(MI.getRawDest()), 6148 MachinePointerInfo(MI.getRawSource())); 6149 updateDAGForMaybeTailCall(MC); 6150 return; 6151 } 6152 case Intrinsic::memmove_element_unordered_atomic: { 6153 auto &MI = cast<AtomicMemMoveInst>(I); 6154 SDValue Dst = getValue(MI.getRawDest()); 6155 SDValue Src = getValue(MI.getRawSource()); 6156 SDValue Length = getValue(MI.getLength()); 6157 6158 Type *LengthTy = MI.getLength()->getType(); 6159 unsigned ElemSz = MI.getElementSizeInBytes(); 6160 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6161 SDValue MC = 6162 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6163 isTC, MachinePointerInfo(MI.getRawDest()), 6164 MachinePointerInfo(MI.getRawSource())); 6165 updateDAGForMaybeTailCall(MC); 6166 return; 6167 } 6168 case Intrinsic::memset_element_unordered_atomic: { 6169 auto &MI = cast<AtomicMemSetInst>(I); 6170 SDValue Dst = getValue(MI.getRawDest()); 6171 SDValue Val = getValue(MI.getValue()); 6172 SDValue Length = getValue(MI.getLength()); 6173 6174 Type *LengthTy = MI.getLength()->getType(); 6175 unsigned ElemSz = MI.getElementSizeInBytes(); 6176 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6177 SDValue MC = 6178 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6179 isTC, MachinePointerInfo(MI.getRawDest())); 6180 updateDAGForMaybeTailCall(MC); 6181 return; 6182 } 6183 case Intrinsic::call_preallocated_setup: { 6184 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6185 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6186 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6187 getRoot(), SrcValue); 6188 setValue(&I, Res); 6189 DAG.setRoot(Res); 6190 return; 6191 } 6192 case Intrinsic::call_preallocated_arg: { 6193 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6194 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6195 SDValue Ops[3]; 6196 Ops[0] = getRoot(); 6197 Ops[1] = SrcValue; 6198 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6199 MVT::i32); // arg index 6200 SDValue Res = DAG.getNode( 6201 ISD::PREALLOCATED_ARG, sdl, 6202 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6203 setValue(&I, Res); 6204 DAG.setRoot(Res.getValue(1)); 6205 return; 6206 } 6207 case Intrinsic::dbg_declare: { 6208 const auto &DI = cast<DbgDeclareInst>(I); 6209 // Debug intrinsics are handled separately in assignment tracking mode. 6210 // Some intrinsics are handled right after Argument lowering. 6211 if (AssignmentTrackingEnabled || 6212 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6213 return; 6214 // Assume dbg.declare can not currently use DIArgList, i.e. 6215 // it is non-variadic. 6216 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6217 DILocalVariable *Variable = DI.getVariable(); 6218 DIExpression *Expression = DI.getExpression(); 6219 dropDanglingDebugInfo(Variable, Expression); 6220 assert(Variable && "Missing variable"); 6221 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6222 << "\n"); 6223 // Check if address has undef value. 6224 const Value *Address = DI.getVariableLocationOp(0); 6225 if (!Address || isa<UndefValue>(Address) || 6226 (Address->use_empty() && !isa<Argument>(Address))) { 6227 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6228 << " (bad/undef/unused-arg address)\n"); 6229 return; 6230 } 6231 6232 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6233 6234 SDValue &N = NodeMap[Address]; 6235 if (!N.getNode() && isa<Argument>(Address)) 6236 // Check unused arguments map. 6237 N = UnusedArgNodeMap[Address]; 6238 SDDbgValue *SDV; 6239 if (N.getNode()) { 6240 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6241 Address = BCI->getOperand(0); 6242 // Parameters are handled specially. 6243 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6244 if (isParameter && FINode) { 6245 // Byval parameter. We have a frame index at this point. 6246 SDV = 6247 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6248 /*IsIndirect*/ true, dl, SDNodeOrder); 6249 } else if (isa<Argument>(Address)) { 6250 // Address is an argument, so try to emit its dbg value using 6251 // virtual register info from the FuncInfo.ValueMap. 6252 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6253 FuncArgumentDbgValueKind::Declare, N); 6254 return; 6255 } else { 6256 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6257 true, dl, SDNodeOrder); 6258 } 6259 DAG.AddDbgValue(SDV, isParameter); 6260 } else { 6261 // If Address is an argument then try to emit its dbg value using 6262 // virtual register info from the FuncInfo.ValueMap. 6263 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6264 FuncArgumentDbgValueKind::Declare, N)) { 6265 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6266 << " (could not emit func-arg dbg_value)\n"); 6267 } 6268 } 6269 return; 6270 } 6271 case Intrinsic::dbg_label: { 6272 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6273 DILabel *Label = DI.getLabel(); 6274 assert(Label && "Missing label"); 6275 6276 SDDbgLabel *SDV; 6277 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6278 DAG.AddDbgLabel(SDV); 6279 return; 6280 } 6281 case Intrinsic::dbg_assign: { 6282 // Debug intrinsics are handled seperately in assignment tracking mode. 6283 if (AssignmentTrackingEnabled) 6284 return; 6285 // If assignment tracking hasn't been enabled then fall through and treat 6286 // the dbg.assign as a dbg.value. 6287 [[fallthrough]]; 6288 } 6289 case Intrinsic::dbg_value: { 6290 // Debug intrinsics are handled seperately in assignment tracking mode. 6291 if (AssignmentTrackingEnabled) 6292 return; 6293 const DbgValueInst &DI = cast<DbgValueInst>(I); 6294 assert(DI.getVariable() && "Missing variable"); 6295 6296 DILocalVariable *Variable = DI.getVariable(); 6297 DIExpression *Expression = DI.getExpression(); 6298 dropDanglingDebugInfo(Variable, Expression); 6299 6300 if (visitEntryValueDbgValue(DI)) 6301 return; 6302 6303 if (DI.isKillLocation()) { 6304 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6305 return; 6306 } 6307 6308 SmallVector<Value *, 4> Values(DI.getValues()); 6309 if (Values.empty()) 6310 return; 6311 6312 bool IsVariadic = DI.hasArgList(); 6313 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6314 SDNodeOrder, IsVariadic)) 6315 addDanglingDebugInfo(&DI, SDNodeOrder); 6316 return; 6317 } 6318 6319 case Intrinsic::eh_typeid_for: { 6320 // Find the type id for the given typeinfo. 6321 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6322 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6323 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6324 setValue(&I, Res); 6325 return; 6326 } 6327 6328 case Intrinsic::eh_return_i32: 6329 case Intrinsic::eh_return_i64: 6330 DAG.getMachineFunction().setCallsEHReturn(true); 6331 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6332 MVT::Other, 6333 getControlRoot(), 6334 getValue(I.getArgOperand(0)), 6335 getValue(I.getArgOperand(1)))); 6336 return; 6337 case Intrinsic::eh_unwind_init: 6338 DAG.getMachineFunction().setCallsUnwindInit(true); 6339 return; 6340 case Intrinsic::eh_dwarf_cfa: 6341 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6342 TLI.getPointerTy(DAG.getDataLayout()), 6343 getValue(I.getArgOperand(0)))); 6344 return; 6345 case Intrinsic::eh_sjlj_callsite: { 6346 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6347 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6348 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6349 6350 MMI.setCurrentCallSite(CI->getZExtValue()); 6351 return; 6352 } 6353 case Intrinsic::eh_sjlj_functioncontext: { 6354 // Get and store the index of the function context. 6355 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6356 AllocaInst *FnCtx = 6357 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6358 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6359 MFI.setFunctionContextIndex(FI); 6360 return; 6361 } 6362 case Intrinsic::eh_sjlj_setjmp: { 6363 SDValue Ops[2]; 6364 Ops[0] = getRoot(); 6365 Ops[1] = getValue(I.getArgOperand(0)); 6366 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6367 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6368 setValue(&I, Op.getValue(0)); 6369 DAG.setRoot(Op.getValue(1)); 6370 return; 6371 } 6372 case Intrinsic::eh_sjlj_longjmp: 6373 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6374 getRoot(), getValue(I.getArgOperand(0)))); 6375 return; 6376 case Intrinsic::eh_sjlj_setup_dispatch: 6377 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6378 getRoot())); 6379 return; 6380 case Intrinsic::masked_gather: 6381 visitMaskedGather(I); 6382 return; 6383 case Intrinsic::masked_load: 6384 visitMaskedLoad(I); 6385 return; 6386 case Intrinsic::masked_scatter: 6387 visitMaskedScatter(I); 6388 return; 6389 case Intrinsic::masked_store: 6390 visitMaskedStore(I); 6391 return; 6392 case Intrinsic::masked_expandload: 6393 visitMaskedLoad(I, true /* IsExpanding */); 6394 return; 6395 case Intrinsic::masked_compressstore: 6396 visitMaskedStore(I, true /* IsCompressing */); 6397 return; 6398 case Intrinsic::powi: 6399 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6400 getValue(I.getArgOperand(1)), DAG)); 6401 return; 6402 case Intrinsic::log: 6403 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6404 return; 6405 case Intrinsic::log2: 6406 setValue(&I, 6407 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6408 return; 6409 case Intrinsic::log10: 6410 setValue(&I, 6411 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6412 return; 6413 case Intrinsic::exp: 6414 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6415 return; 6416 case Intrinsic::exp2: 6417 setValue(&I, 6418 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6419 return; 6420 case Intrinsic::pow: 6421 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6422 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6423 return; 6424 case Intrinsic::sqrt: 6425 case Intrinsic::fabs: 6426 case Intrinsic::sin: 6427 case Intrinsic::cos: 6428 case Intrinsic::exp10: 6429 case Intrinsic::floor: 6430 case Intrinsic::ceil: 6431 case Intrinsic::trunc: 6432 case Intrinsic::rint: 6433 case Intrinsic::nearbyint: 6434 case Intrinsic::round: 6435 case Intrinsic::roundeven: 6436 case Intrinsic::canonicalize: { 6437 unsigned Opcode; 6438 switch (Intrinsic) { 6439 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6440 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6441 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6442 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6443 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6444 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6445 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6446 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6447 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6448 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6449 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6450 case Intrinsic::round: Opcode = ISD::FROUND; break; 6451 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6452 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6453 } 6454 6455 setValue(&I, DAG.getNode(Opcode, sdl, 6456 getValue(I.getArgOperand(0)).getValueType(), 6457 getValue(I.getArgOperand(0)), Flags)); 6458 return; 6459 } 6460 case Intrinsic::lround: 6461 case Intrinsic::llround: 6462 case Intrinsic::lrint: 6463 case Intrinsic::llrint: { 6464 unsigned Opcode; 6465 switch (Intrinsic) { 6466 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6467 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6468 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6469 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6470 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6471 } 6472 6473 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6474 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6475 getValue(I.getArgOperand(0)))); 6476 return; 6477 } 6478 case Intrinsic::minnum: 6479 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6480 getValue(I.getArgOperand(0)).getValueType(), 6481 getValue(I.getArgOperand(0)), 6482 getValue(I.getArgOperand(1)), Flags)); 6483 return; 6484 case Intrinsic::maxnum: 6485 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6486 getValue(I.getArgOperand(0)).getValueType(), 6487 getValue(I.getArgOperand(0)), 6488 getValue(I.getArgOperand(1)), Flags)); 6489 return; 6490 case Intrinsic::minimum: 6491 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6492 getValue(I.getArgOperand(0)).getValueType(), 6493 getValue(I.getArgOperand(0)), 6494 getValue(I.getArgOperand(1)), Flags)); 6495 return; 6496 case Intrinsic::maximum: 6497 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6498 getValue(I.getArgOperand(0)).getValueType(), 6499 getValue(I.getArgOperand(0)), 6500 getValue(I.getArgOperand(1)), Flags)); 6501 return; 6502 case Intrinsic::copysign: 6503 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6504 getValue(I.getArgOperand(0)).getValueType(), 6505 getValue(I.getArgOperand(0)), 6506 getValue(I.getArgOperand(1)), Flags)); 6507 return; 6508 case Intrinsic::ldexp: 6509 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6510 getValue(I.getArgOperand(0)).getValueType(), 6511 getValue(I.getArgOperand(0)), 6512 getValue(I.getArgOperand(1)), Flags)); 6513 return; 6514 case Intrinsic::frexp: { 6515 SmallVector<EVT, 2> ValueVTs; 6516 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6517 SDVTList VTs = DAG.getVTList(ValueVTs); 6518 setValue(&I, 6519 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6520 return; 6521 } 6522 case Intrinsic::arithmetic_fence: { 6523 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6524 getValue(I.getArgOperand(0)).getValueType(), 6525 getValue(I.getArgOperand(0)), Flags)); 6526 return; 6527 } 6528 case Intrinsic::fma: 6529 setValue(&I, DAG.getNode( 6530 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6531 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6532 getValue(I.getArgOperand(2)), Flags)); 6533 return; 6534 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6535 case Intrinsic::INTRINSIC: 6536 #include "llvm/IR/ConstrainedOps.def" 6537 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6538 return; 6539 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6540 #include "llvm/IR/VPIntrinsics.def" 6541 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6542 return; 6543 case Intrinsic::fptrunc_round: { 6544 // Get the last argument, the metadata and convert it to an integer in the 6545 // call 6546 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6547 std::optional<RoundingMode> RoundMode = 6548 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6549 6550 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6551 6552 // Propagate fast-math-flags from IR to node(s). 6553 SDNodeFlags Flags; 6554 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6555 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6556 6557 SDValue Result; 6558 Result = DAG.getNode( 6559 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6560 DAG.getTargetConstant((int)*RoundMode, sdl, 6561 TLI.getPointerTy(DAG.getDataLayout()))); 6562 setValue(&I, Result); 6563 6564 return; 6565 } 6566 case Intrinsic::fmuladd: { 6567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6568 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6569 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6570 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6571 getValue(I.getArgOperand(0)).getValueType(), 6572 getValue(I.getArgOperand(0)), 6573 getValue(I.getArgOperand(1)), 6574 getValue(I.getArgOperand(2)), Flags)); 6575 } else { 6576 // TODO: Intrinsic calls should have fast-math-flags. 6577 SDValue Mul = DAG.getNode( 6578 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6579 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6580 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6581 getValue(I.getArgOperand(0)).getValueType(), 6582 Mul, getValue(I.getArgOperand(2)), Flags); 6583 setValue(&I, Add); 6584 } 6585 return; 6586 } 6587 case Intrinsic::convert_to_fp16: 6588 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6589 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6590 getValue(I.getArgOperand(0)), 6591 DAG.getTargetConstant(0, sdl, 6592 MVT::i32)))); 6593 return; 6594 case Intrinsic::convert_from_fp16: 6595 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6596 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6597 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6598 getValue(I.getArgOperand(0))))); 6599 return; 6600 case Intrinsic::fptosi_sat: { 6601 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6602 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6603 getValue(I.getArgOperand(0)), 6604 DAG.getValueType(VT.getScalarType()))); 6605 return; 6606 } 6607 case Intrinsic::fptoui_sat: { 6608 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6609 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6610 getValue(I.getArgOperand(0)), 6611 DAG.getValueType(VT.getScalarType()))); 6612 return; 6613 } 6614 case Intrinsic::set_rounding: 6615 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6616 {getRoot(), getValue(I.getArgOperand(0))}); 6617 setValue(&I, Res); 6618 DAG.setRoot(Res.getValue(0)); 6619 return; 6620 case Intrinsic::is_fpclass: { 6621 const DataLayout DLayout = DAG.getDataLayout(); 6622 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6623 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6624 FPClassTest Test = static_cast<FPClassTest>( 6625 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6626 MachineFunction &MF = DAG.getMachineFunction(); 6627 const Function &F = MF.getFunction(); 6628 SDValue Op = getValue(I.getArgOperand(0)); 6629 SDNodeFlags Flags; 6630 Flags.setNoFPExcept( 6631 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6632 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6633 // expansion can use illegal types. Making expansion early allows 6634 // legalizing these types prior to selection. 6635 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6636 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6637 setValue(&I, Result); 6638 return; 6639 } 6640 6641 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6642 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6643 setValue(&I, V); 6644 return; 6645 } 6646 case Intrinsic::get_fpenv: { 6647 const DataLayout DLayout = DAG.getDataLayout(); 6648 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6649 Align TempAlign = DAG.getEVTAlign(EnvVT); 6650 SDValue Chain = getRoot(); 6651 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6652 // and temporary storage in stack. 6653 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6654 Res = DAG.getNode( 6655 ISD::GET_FPENV, sdl, 6656 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6657 MVT::Other), 6658 Chain); 6659 } else { 6660 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6661 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6662 auto MPI = 6663 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6664 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6665 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6666 TempAlign); 6667 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6668 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6669 } 6670 setValue(&I, Res); 6671 DAG.setRoot(Res.getValue(1)); 6672 return; 6673 } 6674 case Intrinsic::set_fpenv: { 6675 const DataLayout DLayout = DAG.getDataLayout(); 6676 SDValue Env = getValue(I.getArgOperand(0)); 6677 EVT EnvVT = Env.getValueType(); 6678 Align TempAlign = DAG.getEVTAlign(EnvVT); 6679 SDValue Chain = getRoot(); 6680 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6681 // environment from memory. 6682 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6683 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6684 } else { 6685 // Allocate space in stack, copy environment bits into it and use this 6686 // memory in SET_FPENV_MEM. 6687 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6688 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6689 auto MPI = 6690 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6691 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6692 MachineMemOperand::MOStore); 6693 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6694 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6695 TempAlign); 6696 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6697 } 6698 DAG.setRoot(Chain); 6699 return; 6700 } 6701 case Intrinsic::reset_fpenv: 6702 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6703 return; 6704 case Intrinsic::get_fpmode: 6705 Res = DAG.getNode( 6706 ISD::GET_FPMODE, sdl, 6707 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6708 MVT::Other), 6709 DAG.getRoot()); 6710 setValue(&I, Res); 6711 DAG.setRoot(Res.getValue(1)); 6712 return; 6713 case Intrinsic::set_fpmode: 6714 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6715 getValue(I.getArgOperand(0))); 6716 DAG.setRoot(Res); 6717 return; 6718 case Intrinsic::reset_fpmode: { 6719 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6720 DAG.setRoot(Res); 6721 return; 6722 } 6723 case Intrinsic::pcmarker: { 6724 SDValue Tmp = getValue(I.getArgOperand(0)); 6725 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6726 return; 6727 } 6728 case Intrinsic::readcyclecounter: { 6729 SDValue Op = getRoot(); 6730 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6731 DAG.getVTList(MVT::i64, MVT::Other), Op); 6732 setValue(&I, Res); 6733 DAG.setRoot(Res.getValue(1)); 6734 return; 6735 } 6736 case Intrinsic::bitreverse: 6737 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6738 getValue(I.getArgOperand(0)).getValueType(), 6739 getValue(I.getArgOperand(0)))); 6740 return; 6741 case Intrinsic::bswap: 6742 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6743 getValue(I.getArgOperand(0)).getValueType(), 6744 getValue(I.getArgOperand(0)))); 6745 return; 6746 case Intrinsic::cttz: { 6747 SDValue Arg = getValue(I.getArgOperand(0)); 6748 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6749 EVT Ty = Arg.getValueType(); 6750 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6751 sdl, Ty, Arg)); 6752 return; 6753 } 6754 case Intrinsic::ctlz: { 6755 SDValue Arg = getValue(I.getArgOperand(0)); 6756 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6757 EVT Ty = Arg.getValueType(); 6758 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6759 sdl, Ty, Arg)); 6760 return; 6761 } 6762 case Intrinsic::ctpop: { 6763 SDValue Arg = getValue(I.getArgOperand(0)); 6764 EVT Ty = Arg.getValueType(); 6765 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6766 return; 6767 } 6768 case Intrinsic::fshl: 6769 case Intrinsic::fshr: { 6770 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6771 SDValue X = getValue(I.getArgOperand(0)); 6772 SDValue Y = getValue(I.getArgOperand(1)); 6773 SDValue Z = getValue(I.getArgOperand(2)); 6774 EVT VT = X.getValueType(); 6775 6776 if (X == Y) { 6777 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6778 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6779 } else { 6780 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6781 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6782 } 6783 return; 6784 } 6785 case Intrinsic::sadd_sat: { 6786 SDValue Op1 = getValue(I.getArgOperand(0)); 6787 SDValue Op2 = getValue(I.getArgOperand(1)); 6788 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6789 return; 6790 } 6791 case Intrinsic::uadd_sat: { 6792 SDValue Op1 = getValue(I.getArgOperand(0)); 6793 SDValue Op2 = getValue(I.getArgOperand(1)); 6794 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6795 return; 6796 } 6797 case Intrinsic::ssub_sat: { 6798 SDValue Op1 = getValue(I.getArgOperand(0)); 6799 SDValue Op2 = getValue(I.getArgOperand(1)); 6800 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6801 return; 6802 } 6803 case Intrinsic::usub_sat: { 6804 SDValue Op1 = getValue(I.getArgOperand(0)); 6805 SDValue Op2 = getValue(I.getArgOperand(1)); 6806 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6807 return; 6808 } 6809 case Intrinsic::sshl_sat: { 6810 SDValue Op1 = getValue(I.getArgOperand(0)); 6811 SDValue Op2 = getValue(I.getArgOperand(1)); 6812 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6813 return; 6814 } 6815 case Intrinsic::ushl_sat: { 6816 SDValue Op1 = getValue(I.getArgOperand(0)); 6817 SDValue Op2 = getValue(I.getArgOperand(1)); 6818 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6819 return; 6820 } 6821 case Intrinsic::smul_fix: 6822 case Intrinsic::umul_fix: 6823 case Intrinsic::smul_fix_sat: 6824 case Intrinsic::umul_fix_sat: { 6825 SDValue Op1 = getValue(I.getArgOperand(0)); 6826 SDValue Op2 = getValue(I.getArgOperand(1)); 6827 SDValue Op3 = getValue(I.getArgOperand(2)); 6828 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6829 Op1.getValueType(), Op1, Op2, Op3)); 6830 return; 6831 } 6832 case Intrinsic::sdiv_fix: 6833 case Intrinsic::udiv_fix: 6834 case Intrinsic::sdiv_fix_sat: 6835 case Intrinsic::udiv_fix_sat: { 6836 SDValue Op1 = getValue(I.getArgOperand(0)); 6837 SDValue Op2 = getValue(I.getArgOperand(1)); 6838 SDValue Op3 = getValue(I.getArgOperand(2)); 6839 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6840 Op1, Op2, Op3, DAG, TLI)); 6841 return; 6842 } 6843 case Intrinsic::smax: { 6844 SDValue Op1 = getValue(I.getArgOperand(0)); 6845 SDValue Op2 = getValue(I.getArgOperand(1)); 6846 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6847 return; 6848 } 6849 case Intrinsic::smin: { 6850 SDValue Op1 = getValue(I.getArgOperand(0)); 6851 SDValue Op2 = getValue(I.getArgOperand(1)); 6852 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6853 return; 6854 } 6855 case Intrinsic::umax: { 6856 SDValue Op1 = getValue(I.getArgOperand(0)); 6857 SDValue Op2 = getValue(I.getArgOperand(1)); 6858 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6859 return; 6860 } 6861 case Intrinsic::umin: { 6862 SDValue Op1 = getValue(I.getArgOperand(0)); 6863 SDValue Op2 = getValue(I.getArgOperand(1)); 6864 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6865 return; 6866 } 6867 case Intrinsic::abs: { 6868 // TODO: Preserve "int min is poison" arg in SDAG? 6869 SDValue Op1 = getValue(I.getArgOperand(0)); 6870 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6871 return; 6872 } 6873 case Intrinsic::stacksave: { 6874 SDValue Op = getRoot(); 6875 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6876 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6877 setValue(&I, Res); 6878 DAG.setRoot(Res.getValue(1)); 6879 return; 6880 } 6881 case Intrinsic::stackrestore: 6882 Res = getValue(I.getArgOperand(0)); 6883 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6884 return; 6885 case Intrinsic::get_dynamic_area_offset: { 6886 SDValue Op = getRoot(); 6887 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6888 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6889 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6890 // target. 6891 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6892 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6893 " intrinsic!"); 6894 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6895 Op); 6896 DAG.setRoot(Op); 6897 setValue(&I, Res); 6898 return; 6899 } 6900 case Intrinsic::stackguard: { 6901 MachineFunction &MF = DAG.getMachineFunction(); 6902 const Module &M = *MF.getFunction().getParent(); 6903 SDValue Chain = getRoot(); 6904 if (TLI.useLoadStackGuardNode()) { 6905 Res = getLoadStackGuard(DAG, sdl, Chain); 6906 } else { 6907 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6908 const Value *Global = TLI.getSDagStackGuard(M); 6909 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6910 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6911 MachinePointerInfo(Global, 0), Align, 6912 MachineMemOperand::MOVolatile); 6913 } 6914 if (TLI.useStackGuardXorFP()) 6915 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6916 DAG.setRoot(Chain); 6917 setValue(&I, Res); 6918 return; 6919 } 6920 case Intrinsic::stackprotector: { 6921 // Emit code into the DAG to store the stack guard onto the stack. 6922 MachineFunction &MF = DAG.getMachineFunction(); 6923 MachineFrameInfo &MFI = MF.getFrameInfo(); 6924 SDValue Src, Chain = getRoot(); 6925 6926 if (TLI.useLoadStackGuardNode()) 6927 Src = getLoadStackGuard(DAG, sdl, Chain); 6928 else 6929 Src = getValue(I.getArgOperand(0)); // The guard's value. 6930 6931 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6932 6933 int FI = FuncInfo.StaticAllocaMap[Slot]; 6934 MFI.setStackProtectorIndex(FI); 6935 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6936 6937 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6938 6939 // Store the stack protector onto the stack. 6940 Res = DAG.getStore( 6941 Chain, sdl, Src, FIN, 6942 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6943 MaybeAlign(), MachineMemOperand::MOVolatile); 6944 setValue(&I, Res); 6945 DAG.setRoot(Res); 6946 return; 6947 } 6948 case Intrinsic::objectsize: 6949 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6950 6951 case Intrinsic::is_constant: 6952 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6953 6954 case Intrinsic::annotation: 6955 case Intrinsic::ptr_annotation: 6956 case Intrinsic::launder_invariant_group: 6957 case Intrinsic::strip_invariant_group: 6958 // Drop the intrinsic, but forward the value 6959 setValue(&I, getValue(I.getOperand(0))); 6960 return; 6961 6962 case Intrinsic::assume: 6963 case Intrinsic::experimental_noalias_scope_decl: 6964 case Intrinsic::var_annotation: 6965 case Intrinsic::sideeffect: 6966 // Discard annotate attributes, noalias scope declarations, assumptions, and 6967 // artificial side-effects. 6968 return; 6969 6970 case Intrinsic::codeview_annotation: { 6971 // Emit a label associated with this metadata. 6972 MachineFunction &MF = DAG.getMachineFunction(); 6973 MCSymbol *Label = 6974 MF.getMMI().getContext().createTempSymbol("annotation", true); 6975 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6976 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6977 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6978 DAG.setRoot(Res); 6979 return; 6980 } 6981 6982 case Intrinsic::init_trampoline: { 6983 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6984 6985 SDValue Ops[6]; 6986 Ops[0] = getRoot(); 6987 Ops[1] = getValue(I.getArgOperand(0)); 6988 Ops[2] = getValue(I.getArgOperand(1)); 6989 Ops[3] = getValue(I.getArgOperand(2)); 6990 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6991 Ops[5] = DAG.getSrcValue(F); 6992 6993 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6994 6995 DAG.setRoot(Res); 6996 return; 6997 } 6998 case Intrinsic::adjust_trampoline: 6999 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7000 TLI.getPointerTy(DAG.getDataLayout()), 7001 getValue(I.getArgOperand(0)))); 7002 return; 7003 case Intrinsic::gcroot: { 7004 assert(DAG.getMachineFunction().getFunction().hasGC() && 7005 "only valid in functions with gc specified, enforced by Verifier"); 7006 assert(GFI && "implied by previous"); 7007 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7008 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7009 7010 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7011 GFI->addStackRoot(FI->getIndex(), TypeMap); 7012 return; 7013 } 7014 case Intrinsic::gcread: 7015 case Intrinsic::gcwrite: 7016 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7017 case Intrinsic::get_rounding: 7018 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7019 setValue(&I, Res); 7020 DAG.setRoot(Res.getValue(1)); 7021 return; 7022 7023 case Intrinsic::expect: 7024 // Just replace __builtin_expect(exp, c) with EXP. 7025 setValue(&I, getValue(I.getArgOperand(0))); 7026 return; 7027 7028 case Intrinsic::ubsantrap: 7029 case Intrinsic::debugtrap: 7030 case Intrinsic::trap: { 7031 StringRef TrapFuncName = 7032 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7033 if (TrapFuncName.empty()) { 7034 switch (Intrinsic) { 7035 case Intrinsic::trap: 7036 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7037 break; 7038 case Intrinsic::debugtrap: 7039 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7040 break; 7041 case Intrinsic::ubsantrap: 7042 DAG.setRoot(DAG.getNode( 7043 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7044 DAG.getTargetConstant( 7045 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7046 MVT::i32))); 7047 break; 7048 default: llvm_unreachable("unknown trap intrinsic"); 7049 } 7050 return; 7051 } 7052 TargetLowering::ArgListTy Args; 7053 if (Intrinsic == Intrinsic::ubsantrap) { 7054 Args.push_back(TargetLoweringBase::ArgListEntry()); 7055 Args[0].Val = I.getArgOperand(0); 7056 Args[0].Node = getValue(Args[0].Val); 7057 Args[0].Ty = Args[0].Val->getType(); 7058 } 7059 7060 TargetLowering::CallLoweringInfo CLI(DAG); 7061 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7062 CallingConv::C, I.getType(), 7063 DAG.getExternalSymbol(TrapFuncName.data(), 7064 TLI.getPointerTy(DAG.getDataLayout())), 7065 std::move(Args)); 7066 7067 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7068 DAG.setRoot(Result.second); 7069 return; 7070 } 7071 7072 case Intrinsic::uadd_with_overflow: 7073 case Intrinsic::sadd_with_overflow: 7074 case Intrinsic::usub_with_overflow: 7075 case Intrinsic::ssub_with_overflow: 7076 case Intrinsic::umul_with_overflow: 7077 case Intrinsic::smul_with_overflow: { 7078 ISD::NodeType Op; 7079 switch (Intrinsic) { 7080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7081 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7082 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7083 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7084 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7085 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7086 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7087 } 7088 SDValue Op1 = getValue(I.getArgOperand(0)); 7089 SDValue Op2 = getValue(I.getArgOperand(1)); 7090 7091 EVT ResultVT = Op1.getValueType(); 7092 EVT OverflowVT = MVT::i1; 7093 if (ResultVT.isVector()) 7094 OverflowVT = EVT::getVectorVT( 7095 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7096 7097 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7098 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7099 return; 7100 } 7101 case Intrinsic::prefetch: { 7102 SDValue Ops[5]; 7103 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7104 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7105 Ops[0] = DAG.getRoot(); 7106 Ops[1] = getValue(I.getArgOperand(0)); 7107 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7108 MVT::i32); 7109 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7110 MVT::i32); 7111 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7112 MVT::i32); 7113 SDValue Result = DAG.getMemIntrinsicNode( 7114 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7115 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7116 /* align */ std::nullopt, Flags); 7117 7118 // Chain the prefetch in parallell with any pending loads, to stay out of 7119 // the way of later optimizations. 7120 PendingLoads.push_back(Result); 7121 Result = getRoot(); 7122 DAG.setRoot(Result); 7123 return; 7124 } 7125 case Intrinsic::lifetime_start: 7126 case Intrinsic::lifetime_end: { 7127 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7128 // Stack coloring is not enabled in O0, discard region information. 7129 if (TM.getOptLevel() == CodeGenOptLevel::None) 7130 return; 7131 7132 const int64_t ObjectSize = 7133 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7134 Value *const ObjectPtr = I.getArgOperand(1); 7135 SmallVector<const Value *, 4> Allocas; 7136 getUnderlyingObjects(ObjectPtr, Allocas); 7137 7138 for (const Value *Alloca : Allocas) { 7139 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7140 7141 // Could not find an Alloca. 7142 if (!LifetimeObject) 7143 continue; 7144 7145 // First check that the Alloca is static, otherwise it won't have a 7146 // valid frame index. 7147 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7148 if (SI == FuncInfo.StaticAllocaMap.end()) 7149 return; 7150 7151 const int FrameIndex = SI->second; 7152 int64_t Offset; 7153 if (GetPointerBaseWithConstantOffset( 7154 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7155 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7156 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7157 Offset); 7158 DAG.setRoot(Res); 7159 } 7160 return; 7161 } 7162 case Intrinsic::pseudoprobe: { 7163 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7164 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7165 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7166 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7167 DAG.setRoot(Res); 7168 return; 7169 } 7170 case Intrinsic::invariant_start: 7171 // Discard region information. 7172 setValue(&I, 7173 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7174 return; 7175 case Intrinsic::invariant_end: 7176 // Discard region information. 7177 return; 7178 case Intrinsic::clear_cache: 7179 /// FunctionName may be null. 7180 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7181 lowerCallToExternalSymbol(I, FunctionName); 7182 return; 7183 case Intrinsic::donothing: 7184 case Intrinsic::seh_try_begin: 7185 case Intrinsic::seh_scope_begin: 7186 case Intrinsic::seh_try_end: 7187 case Intrinsic::seh_scope_end: 7188 // ignore 7189 return; 7190 case Intrinsic::experimental_stackmap: 7191 visitStackmap(I); 7192 return; 7193 case Intrinsic::experimental_patchpoint_void: 7194 case Intrinsic::experimental_patchpoint_i64: 7195 visitPatchpoint(I); 7196 return; 7197 case Intrinsic::experimental_gc_statepoint: 7198 LowerStatepoint(cast<GCStatepointInst>(I)); 7199 return; 7200 case Intrinsic::experimental_gc_result: 7201 visitGCResult(cast<GCResultInst>(I)); 7202 return; 7203 case Intrinsic::experimental_gc_relocate: 7204 visitGCRelocate(cast<GCRelocateInst>(I)); 7205 return; 7206 case Intrinsic::instrprof_cover: 7207 llvm_unreachable("instrprof failed to lower a cover"); 7208 case Intrinsic::instrprof_increment: 7209 llvm_unreachable("instrprof failed to lower an increment"); 7210 case Intrinsic::instrprof_timestamp: 7211 llvm_unreachable("instrprof failed to lower a timestamp"); 7212 case Intrinsic::instrprof_value_profile: 7213 llvm_unreachable("instrprof failed to lower a value profiling call"); 7214 case Intrinsic::instrprof_mcdc_parameters: 7215 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7216 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7217 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7218 case Intrinsic::instrprof_mcdc_condbitmap_update: 7219 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7220 case Intrinsic::localescape: { 7221 MachineFunction &MF = DAG.getMachineFunction(); 7222 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7223 7224 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7225 // is the same on all targets. 7226 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7227 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7228 if (isa<ConstantPointerNull>(Arg)) 7229 continue; // Skip null pointers. They represent a hole in index space. 7230 AllocaInst *Slot = cast<AllocaInst>(Arg); 7231 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7232 "can only escape static allocas"); 7233 int FI = FuncInfo.StaticAllocaMap[Slot]; 7234 MCSymbol *FrameAllocSym = 7235 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7236 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7237 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7238 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7239 .addSym(FrameAllocSym) 7240 .addFrameIndex(FI); 7241 } 7242 7243 return; 7244 } 7245 7246 case Intrinsic::localrecover: { 7247 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7248 MachineFunction &MF = DAG.getMachineFunction(); 7249 7250 // Get the symbol that defines the frame offset. 7251 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7252 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7253 unsigned IdxVal = 7254 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7255 MCSymbol *FrameAllocSym = 7256 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7257 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7258 7259 Value *FP = I.getArgOperand(1); 7260 SDValue FPVal = getValue(FP); 7261 EVT PtrVT = FPVal.getValueType(); 7262 7263 // Create a MCSymbol for the label to avoid any target lowering 7264 // that would make this PC relative. 7265 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7266 SDValue OffsetVal = 7267 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7268 7269 // Add the offset to the FP. 7270 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7271 setValue(&I, Add); 7272 7273 return; 7274 } 7275 7276 case Intrinsic::eh_exceptionpointer: 7277 case Intrinsic::eh_exceptioncode: { 7278 // Get the exception pointer vreg, copy from it, and resize it to fit. 7279 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7280 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7281 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7282 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7283 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7284 if (Intrinsic == Intrinsic::eh_exceptioncode) 7285 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7286 setValue(&I, N); 7287 return; 7288 } 7289 case Intrinsic::xray_customevent: { 7290 // Here we want to make sure that the intrinsic behaves as if it has a 7291 // specific calling convention. 7292 const auto &Triple = DAG.getTarget().getTargetTriple(); 7293 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7294 return; 7295 7296 SmallVector<SDValue, 8> Ops; 7297 7298 // We want to say that we always want the arguments in registers. 7299 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7300 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7301 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7302 SDValue Chain = getRoot(); 7303 Ops.push_back(LogEntryVal); 7304 Ops.push_back(StrSizeVal); 7305 Ops.push_back(Chain); 7306 7307 // We need to enforce the calling convention for the callsite, so that 7308 // argument ordering is enforced correctly, and that register allocation can 7309 // see that some registers may be assumed clobbered and have to preserve 7310 // them across calls to the intrinsic. 7311 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7312 sdl, NodeTys, Ops); 7313 SDValue patchableNode = SDValue(MN, 0); 7314 DAG.setRoot(patchableNode); 7315 setValue(&I, patchableNode); 7316 return; 7317 } 7318 case Intrinsic::xray_typedevent: { 7319 // Here we want to make sure that the intrinsic behaves as if it has a 7320 // specific calling convention. 7321 const auto &Triple = DAG.getTarget().getTargetTriple(); 7322 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7323 return; 7324 7325 SmallVector<SDValue, 8> Ops; 7326 7327 // We want to say that we always want the arguments in registers. 7328 // It's unclear to me how manipulating the selection DAG here forces callers 7329 // to provide arguments in registers instead of on the stack. 7330 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7331 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7332 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7333 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7334 SDValue Chain = getRoot(); 7335 Ops.push_back(LogTypeId); 7336 Ops.push_back(LogEntryVal); 7337 Ops.push_back(StrSizeVal); 7338 Ops.push_back(Chain); 7339 7340 // We need to enforce the calling convention for the callsite, so that 7341 // argument ordering is enforced correctly, and that register allocation can 7342 // see that some registers may be assumed clobbered and have to preserve 7343 // them across calls to the intrinsic. 7344 MachineSDNode *MN = DAG.getMachineNode( 7345 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7346 SDValue patchableNode = SDValue(MN, 0); 7347 DAG.setRoot(patchableNode); 7348 setValue(&I, patchableNode); 7349 return; 7350 } 7351 case Intrinsic::experimental_deoptimize: 7352 LowerDeoptimizeCall(&I); 7353 return; 7354 case Intrinsic::experimental_stepvector: 7355 visitStepVector(I); 7356 return; 7357 case Intrinsic::vector_reduce_fadd: 7358 case Intrinsic::vector_reduce_fmul: 7359 case Intrinsic::vector_reduce_add: 7360 case Intrinsic::vector_reduce_mul: 7361 case Intrinsic::vector_reduce_and: 7362 case Intrinsic::vector_reduce_or: 7363 case Intrinsic::vector_reduce_xor: 7364 case Intrinsic::vector_reduce_smax: 7365 case Intrinsic::vector_reduce_smin: 7366 case Intrinsic::vector_reduce_umax: 7367 case Intrinsic::vector_reduce_umin: 7368 case Intrinsic::vector_reduce_fmax: 7369 case Intrinsic::vector_reduce_fmin: 7370 case Intrinsic::vector_reduce_fmaximum: 7371 case Intrinsic::vector_reduce_fminimum: 7372 visitVectorReduce(I, Intrinsic); 7373 return; 7374 7375 case Intrinsic::icall_branch_funnel: { 7376 SmallVector<SDValue, 16> Ops; 7377 Ops.push_back(getValue(I.getArgOperand(0))); 7378 7379 int64_t Offset; 7380 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7381 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7382 if (!Base) 7383 report_fatal_error( 7384 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7385 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7386 7387 struct BranchFunnelTarget { 7388 int64_t Offset; 7389 SDValue Target; 7390 }; 7391 SmallVector<BranchFunnelTarget, 8> Targets; 7392 7393 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7394 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7395 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7396 if (ElemBase != Base) 7397 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7398 "to the same GlobalValue"); 7399 7400 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7401 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7402 if (!GA) 7403 report_fatal_error( 7404 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7405 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7406 GA->getGlobal(), sdl, Val.getValueType(), 7407 GA->getOffset())}); 7408 } 7409 llvm::sort(Targets, 7410 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7411 return T1.Offset < T2.Offset; 7412 }); 7413 7414 for (auto &T : Targets) { 7415 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7416 Ops.push_back(T.Target); 7417 } 7418 7419 Ops.push_back(DAG.getRoot()); // Chain 7420 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7421 MVT::Other, Ops), 7422 0); 7423 DAG.setRoot(N); 7424 setValue(&I, N); 7425 HasTailCall = true; 7426 return; 7427 } 7428 7429 case Intrinsic::wasm_landingpad_index: 7430 // Information this intrinsic contained has been transferred to 7431 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7432 // delete it now. 7433 return; 7434 7435 case Intrinsic::aarch64_settag: 7436 case Intrinsic::aarch64_settag_zero: { 7437 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7438 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7439 SDValue Val = TSI.EmitTargetCodeForSetTag( 7440 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7441 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7442 ZeroMemory); 7443 DAG.setRoot(Val); 7444 setValue(&I, Val); 7445 return; 7446 } 7447 case Intrinsic::ptrmask: { 7448 SDValue Ptr = getValue(I.getOperand(0)); 7449 SDValue Mask = getValue(I.getOperand(1)); 7450 7451 EVT PtrVT = Ptr.getValueType(); 7452 assert(PtrVT == Mask.getValueType() && 7453 "Pointers with different index type are not supported by SDAG"); 7454 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7455 return; 7456 } 7457 case Intrinsic::threadlocal_address: { 7458 setValue(&I, getValue(I.getOperand(0))); 7459 return; 7460 } 7461 case Intrinsic::get_active_lane_mask: { 7462 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7463 SDValue Index = getValue(I.getOperand(0)); 7464 EVT ElementVT = Index.getValueType(); 7465 7466 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7467 visitTargetIntrinsic(I, Intrinsic); 7468 return; 7469 } 7470 7471 SDValue TripCount = getValue(I.getOperand(1)); 7472 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7473 CCVT.getVectorElementCount()); 7474 7475 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7476 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7477 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7478 SDValue VectorInduction = DAG.getNode( 7479 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7480 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7481 VectorTripCount, ISD::CondCode::SETULT); 7482 setValue(&I, SetCC); 7483 return; 7484 } 7485 case Intrinsic::experimental_get_vector_length: { 7486 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7487 "Expected positive VF"); 7488 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7489 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7490 7491 SDValue Count = getValue(I.getOperand(0)); 7492 EVT CountVT = Count.getValueType(); 7493 7494 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7495 visitTargetIntrinsic(I, Intrinsic); 7496 return; 7497 } 7498 7499 // Expand to a umin between the trip count and the maximum elements the type 7500 // can hold. 7501 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7502 7503 // Extend the trip count to at least the result VT. 7504 if (CountVT.bitsLT(VT)) { 7505 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7506 CountVT = VT; 7507 } 7508 7509 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7510 ElementCount::get(VF, IsScalable)); 7511 7512 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7513 // Clip to the result type if needed. 7514 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7515 7516 setValue(&I, Trunc); 7517 return; 7518 } 7519 case Intrinsic::experimental_cttz_elts: { 7520 auto DL = getCurSDLoc(); 7521 SDValue Op = getValue(I.getOperand(0)); 7522 EVT OpVT = Op.getValueType(); 7523 7524 if (!TLI.shouldExpandCttzElements(OpVT)) { 7525 visitTargetIntrinsic(I, Intrinsic); 7526 return; 7527 } 7528 7529 if (OpVT.getScalarType() != MVT::i1) { 7530 // Compare the input vector elements to zero & use to count trailing zeros 7531 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7532 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7533 OpVT.getVectorElementCount()); 7534 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7535 } 7536 7537 // Find the smallest "sensible" element type to use for the expansion. 7538 ConstantRange CR( 7539 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7540 if (OpVT.isScalableVT()) 7541 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7542 7543 // If the zero-is-poison flag is set, we can assume the upper limit 7544 // of the result is VF-1. 7545 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7546 CR = CR.subtract(APInt(64, 1)); 7547 7548 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7549 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7550 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7551 7552 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7553 7554 // Create the new vector type & get the vector length 7555 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7556 OpVT.getVectorElementCount()); 7557 7558 SDValue VL = 7559 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7560 7561 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7562 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7563 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7564 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7565 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7566 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7567 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7568 7569 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7570 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7571 7572 setValue(&I, Ret); 7573 return; 7574 } 7575 case Intrinsic::vector_insert: { 7576 SDValue Vec = getValue(I.getOperand(0)); 7577 SDValue SubVec = getValue(I.getOperand(1)); 7578 SDValue Index = getValue(I.getOperand(2)); 7579 7580 // The intrinsic's index type is i64, but the SDNode requires an index type 7581 // suitable for the target. Convert the index as required. 7582 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7583 if (Index.getValueType() != VectorIdxTy) 7584 Index = DAG.getVectorIdxConstant( 7585 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7586 7587 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7588 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7589 Index)); 7590 return; 7591 } 7592 case Intrinsic::vector_extract: { 7593 SDValue Vec = getValue(I.getOperand(0)); 7594 SDValue Index = getValue(I.getOperand(1)); 7595 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7596 7597 // The intrinsic's index type is i64, but the SDNode requires an index type 7598 // suitable for the target. Convert the index as required. 7599 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7600 if (Index.getValueType() != VectorIdxTy) 7601 Index = DAG.getVectorIdxConstant( 7602 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7603 7604 setValue(&I, 7605 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7606 return; 7607 } 7608 case Intrinsic::experimental_vector_reverse: 7609 visitVectorReverse(I); 7610 return; 7611 case Intrinsic::experimental_vector_splice: 7612 visitVectorSplice(I); 7613 return; 7614 case Intrinsic::callbr_landingpad: 7615 visitCallBrLandingPad(I); 7616 return; 7617 case Intrinsic::experimental_vector_interleave2: 7618 visitVectorInterleave(I); 7619 return; 7620 case Intrinsic::experimental_vector_deinterleave2: 7621 visitVectorDeinterleave(I); 7622 return; 7623 } 7624 } 7625 7626 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7627 const ConstrainedFPIntrinsic &FPI) { 7628 SDLoc sdl = getCurSDLoc(); 7629 7630 // We do not need to serialize constrained FP intrinsics against 7631 // each other or against (nonvolatile) loads, so they can be 7632 // chained like loads. 7633 SDValue Chain = DAG.getRoot(); 7634 SmallVector<SDValue, 4> Opers; 7635 Opers.push_back(Chain); 7636 if (FPI.isUnaryOp()) { 7637 Opers.push_back(getValue(FPI.getArgOperand(0))); 7638 } else if (FPI.isTernaryOp()) { 7639 Opers.push_back(getValue(FPI.getArgOperand(0))); 7640 Opers.push_back(getValue(FPI.getArgOperand(1))); 7641 Opers.push_back(getValue(FPI.getArgOperand(2))); 7642 } else { 7643 Opers.push_back(getValue(FPI.getArgOperand(0))); 7644 Opers.push_back(getValue(FPI.getArgOperand(1))); 7645 } 7646 7647 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7648 assert(Result.getNode()->getNumValues() == 2); 7649 7650 // Push node to the appropriate list so that future instructions can be 7651 // chained up correctly. 7652 SDValue OutChain = Result.getValue(1); 7653 switch (EB) { 7654 case fp::ExceptionBehavior::ebIgnore: 7655 // The only reason why ebIgnore nodes still need to be chained is that 7656 // they might depend on the current rounding mode, and therefore must 7657 // not be moved across instruction that may change that mode. 7658 [[fallthrough]]; 7659 case fp::ExceptionBehavior::ebMayTrap: 7660 // These must not be moved across calls or instructions that may change 7661 // floating-point exception masks. 7662 PendingConstrainedFP.push_back(OutChain); 7663 break; 7664 case fp::ExceptionBehavior::ebStrict: 7665 // These must not be moved across calls or instructions that may change 7666 // floating-point exception masks or read floating-point exception flags. 7667 // In addition, they cannot be optimized out even if unused. 7668 PendingConstrainedFPStrict.push_back(OutChain); 7669 break; 7670 } 7671 }; 7672 7673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7674 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7675 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7676 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7677 7678 SDNodeFlags Flags; 7679 if (EB == fp::ExceptionBehavior::ebIgnore) 7680 Flags.setNoFPExcept(true); 7681 7682 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7683 Flags.copyFMF(*FPOp); 7684 7685 unsigned Opcode; 7686 switch (FPI.getIntrinsicID()) { 7687 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7688 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7689 case Intrinsic::INTRINSIC: \ 7690 Opcode = ISD::STRICT_##DAGN; \ 7691 break; 7692 #include "llvm/IR/ConstrainedOps.def" 7693 case Intrinsic::experimental_constrained_fmuladd: { 7694 Opcode = ISD::STRICT_FMA; 7695 // Break fmuladd into fmul and fadd. 7696 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7697 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7698 Opers.pop_back(); 7699 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7700 pushOutChain(Mul, EB); 7701 Opcode = ISD::STRICT_FADD; 7702 Opers.clear(); 7703 Opers.push_back(Mul.getValue(1)); 7704 Opers.push_back(Mul.getValue(0)); 7705 Opers.push_back(getValue(FPI.getArgOperand(2))); 7706 } 7707 break; 7708 } 7709 } 7710 7711 // A few strict DAG nodes carry additional operands that are not 7712 // set up by the default code above. 7713 switch (Opcode) { 7714 default: break; 7715 case ISD::STRICT_FP_ROUND: 7716 Opers.push_back( 7717 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7718 break; 7719 case ISD::STRICT_FSETCC: 7720 case ISD::STRICT_FSETCCS: { 7721 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7722 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7723 if (TM.Options.NoNaNsFPMath) 7724 Condition = getFCmpCodeWithoutNaN(Condition); 7725 Opers.push_back(DAG.getCondCode(Condition)); 7726 break; 7727 } 7728 } 7729 7730 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7731 pushOutChain(Result, EB); 7732 7733 SDValue FPResult = Result.getValue(0); 7734 setValue(&FPI, FPResult); 7735 } 7736 7737 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7738 std::optional<unsigned> ResOPC; 7739 switch (VPIntrin.getIntrinsicID()) { 7740 case Intrinsic::vp_ctlz: { 7741 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7742 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7743 break; 7744 } 7745 case Intrinsic::vp_cttz: { 7746 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7747 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7748 break; 7749 } 7750 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7751 case Intrinsic::VPID: \ 7752 ResOPC = ISD::VPSD; \ 7753 break; 7754 #include "llvm/IR/VPIntrinsics.def" 7755 } 7756 7757 if (!ResOPC) 7758 llvm_unreachable( 7759 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7760 7761 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7762 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7763 if (VPIntrin.getFastMathFlags().allowReassoc()) 7764 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7765 : ISD::VP_REDUCE_FMUL; 7766 } 7767 7768 return *ResOPC; 7769 } 7770 7771 void SelectionDAGBuilder::visitVPLoad( 7772 const VPIntrinsic &VPIntrin, EVT VT, 7773 const SmallVectorImpl<SDValue> &OpValues) { 7774 SDLoc DL = getCurSDLoc(); 7775 Value *PtrOperand = VPIntrin.getArgOperand(0); 7776 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7777 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7778 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7779 SDValue LD; 7780 // Do not serialize variable-length loads of constant memory with 7781 // anything. 7782 if (!Alignment) 7783 Alignment = DAG.getEVTAlign(VT); 7784 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7785 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7786 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7787 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7788 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7789 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7790 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7791 MMO, false /*IsExpanding */); 7792 if (AddToChain) 7793 PendingLoads.push_back(LD.getValue(1)); 7794 setValue(&VPIntrin, LD); 7795 } 7796 7797 void SelectionDAGBuilder::visitVPGather( 7798 const VPIntrinsic &VPIntrin, EVT VT, 7799 const SmallVectorImpl<SDValue> &OpValues) { 7800 SDLoc DL = getCurSDLoc(); 7801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7802 Value *PtrOperand = VPIntrin.getArgOperand(0); 7803 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7804 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7805 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7806 SDValue LD; 7807 if (!Alignment) 7808 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7809 unsigned AS = 7810 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7811 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7812 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7813 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7814 SDValue Base, Index, Scale; 7815 ISD::MemIndexType IndexType; 7816 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7817 this, VPIntrin.getParent(), 7818 VT.getScalarStoreSize()); 7819 if (!UniformBase) { 7820 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7821 Index = getValue(PtrOperand); 7822 IndexType = ISD::SIGNED_SCALED; 7823 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7824 } 7825 EVT IdxVT = Index.getValueType(); 7826 EVT EltTy = IdxVT.getVectorElementType(); 7827 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7828 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7829 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7830 } 7831 LD = DAG.getGatherVP( 7832 DAG.getVTList(VT, MVT::Other), VT, DL, 7833 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7834 IndexType); 7835 PendingLoads.push_back(LD.getValue(1)); 7836 setValue(&VPIntrin, LD); 7837 } 7838 7839 void SelectionDAGBuilder::visitVPStore( 7840 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7841 SDLoc DL = getCurSDLoc(); 7842 Value *PtrOperand = VPIntrin.getArgOperand(1); 7843 EVT VT = OpValues[0].getValueType(); 7844 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7845 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7846 SDValue ST; 7847 if (!Alignment) 7848 Alignment = DAG.getEVTAlign(VT); 7849 SDValue Ptr = OpValues[1]; 7850 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7851 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7852 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7853 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7854 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7855 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7856 /* IsTruncating */ false, /*IsCompressing*/ false); 7857 DAG.setRoot(ST); 7858 setValue(&VPIntrin, ST); 7859 } 7860 7861 void SelectionDAGBuilder::visitVPScatter( 7862 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7863 SDLoc DL = getCurSDLoc(); 7864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7865 Value *PtrOperand = VPIntrin.getArgOperand(1); 7866 EVT VT = OpValues[0].getValueType(); 7867 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7868 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7869 SDValue ST; 7870 if (!Alignment) 7871 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7872 unsigned AS = 7873 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7874 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7875 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7876 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7877 SDValue Base, Index, Scale; 7878 ISD::MemIndexType IndexType; 7879 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7880 this, VPIntrin.getParent(), 7881 VT.getScalarStoreSize()); 7882 if (!UniformBase) { 7883 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7884 Index = getValue(PtrOperand); 7885 IndexType = ISD::SIGNED_SCALED; 7886 Scale = 7887 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7888 } 7889 EVT IdxVT = Index.getValueType(); 7890 EVT EltTy = IdxVT.getVectorElementType(); 7891 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7892 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7893 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7894 } 7895 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7896 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7897 OpValues[2], OpValues[3]}, 7898 MMO, IndexType); 7899 DAG.setRoot(ST); 7900 setValue(&VPIntrin, ST); 7901 } 7902 7903 void SelectionDAGBuilder::visitVPStridedLoad( 7904 const VPIntrinsic &VPIntrin, EVT VT, 7905 const SmallVectorImpl<SDValue> &OpValues) { 7906 SDLoc DL = getCurSDLoc(); 7907 Value *PtrOperand = VPIntrin.getArgOperand(0); 7908 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7909 if (!Alignment) 7910 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7911 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7912 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7913 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7914 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7915 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7916 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7917 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7918 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7919 7920 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7921 OpValues[2], OpValues[3], MMO, 7922 false /*IsExpanding*/); 7923 7924 if (AddToChain) 7925 PendingLoads.push_back(LD.getValue(1)); 7926 setValue(&VPIntrin, LD); 7927 } 7928 7929 void SelectionDAGBuilder::visitVPStridedStore( 7930 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7931 SDLoc DL = getCurSDLoc(); 7932 Value *PtrOperand = VPIntrin.getArgOperand(1); 7933 EVT VT = OpValues[0].getValueType(); 7934 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7935 if (!Alignment) 7936 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7937 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7938 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7939 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7940 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7941 7942 SDValue ST = DAG.getStridedStoreVP( 7943 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7944 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7945 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7946 /*IsCompressing*/ false); 7947 7948 DAG.setRoot(ST); 7949 setValue(&VPIntrin, ST); 7950 } 7951 7952 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7954 SDLoc DL = getCurSDLoc(); 7955 7956 ISD::CondCode Condition; 7957 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7958 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7959 if (IsFP) { 7960 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7961 // flags, but calls that don't return floating-point types can't be 7962 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7963 Condition = getFCmpCondCode(CondCode); 7964 if (TM.Options.NoNaNsFPMath) 7965 Condition = getFCmpCodeWithoutNaN(Condition); 7966 } else { 7967 Condition = getICmpCondCode(CondCode); 7968 } 7969 7970 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7971 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7972 // #2 is the condition code 7973 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7974 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7975 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7976 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7977 "Unexpected target EVL type"); 7978 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7979 7980 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7981 VPIntrin.getType()); 7982 setValue(&VPIntrin, 7983 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7984 } 7985 7986 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7987 const VPIntrinsic &VPIntrin) { 7988 SDLoc DL = getCurSDLoc(); 7989 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7990 7991 auto IID = VPIntrin.getIntrinsicID(); 7992 7993 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7994 return visitVPCmp(*CmpI); 7995 7996 SmallVector<EVT, 4> ValueVTs; 7997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7998 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7999 SDVTList VTs = DAG.getVTList(ValueVTs); 8000 8001 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8002 8003 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8004 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8005 "Unexpected target EVL type"); 8006 8007 // Request operands. 8008 SmallVector<SDValue, 7> OpValues; 8009 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8010 auto Op = getValue(VPIntrin.getArgOperand(I)); 8011 if (I == EVLParamPos) 8012 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8013 OpValues.push_back(Op); 8014 } 8015 8016 switch (Opcode) { 8017 default: { 8018 SDNodeFlags SDFlags; 8019 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8020 SDFlags.copyFMF(*FPMO); 8021 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8022 setValue(&VPIntrin, Result); 8023 break; 8024 } 8025 case ISD::VP_LOAD: 8026 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8027 break; 8028 case ISD::VP_GATHER: 8029 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8030 break; 8031 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8032 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8033 break; 8034 case ISD::VP_STORE: 8035 visitVPStore(VPIntrin, OpValues); 8036 break; 8037 case ISD::VP_SCATTER: 8038 visitVPScatter(VPIntrin, OpValues); 8039 break; 8040 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8041 visitVPStridedStore(VPIntrin, OpValues); 8042 break; 8043 case ISD::VP_FMULADD: { 8044 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8045 SDNodeFlags SDFlags; 8046 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8047 SDFlags.copyFMF(*FPMO); 8048 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8049 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8050 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8051 } else { 8052 SDValue Mul = DAG.getNode( 8053 ISD::VP_FMUL, DL, VTs, 8054 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8055 SDValue Add = 8056 DAG.getNode(ISD::VP_FADD, DL, VTs, 8057 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8058 setValue(&VPIntrin, Add); 8059 } 8060 break; 8061 } 8062 case ISD::VP_IS_FPCLASS: { 8063 const DataLayout DLayout = DAG.getDataLayout(); 8064 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8065 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 8066 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8067 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8068 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8069 setValue(&VPIntrin, V); 8070 return; 8071 } 8072 case ISD::VP_INTTOPTR: { 8073 SDValue N = OpValues[0]; 8074 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8075 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8076 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8077 OpValues[2]); 8078 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8079 OpValues[2]); 8080 setValue(&VPIntrin, N); 8081 break; 8082 } 8083 case ISD::VP_PTRTOINT: { 8084 SDValue N = OpValues[0]; 8085 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8086 VPIntrin.getType()); 8087 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8088 VPIntrin.getOperand(0)->getType()); 8089 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8090 OpValues[2]); 8091 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8092 OpValues[2]); 8093 setValue(&VPIntrin, N); 8094 break; 8095 } 8096 case ISD::VP_ABS: 8097 case ISD::VP_CTLZ: 8098 case ISD::VP_CTLZ_ZERO_UNDEF: 8099 case ISD::VP_CTTZ: 8100 case ISD::VP_CTTZ_ZERO_UNDEF: { 8101 SDValue Result = 8102 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8103 setValue(&VPIntrin, Result); 8104 break; 8105 } 8106 } 8107 } 8108 8109 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8110 const BasicBlock *EHPadBB, 8111 MCSymbol *&BeginLabel) { 8112 MachineFunction &MF = DAG.getMachineFunction(); 8113 MachineModuleInfo &MMI = MF.getMMI(); 8114 8115 // Insert a label before the invoke call to mark the try range. This can be 8116 // used to detect deletion of the invoke via the MachineModuleInfo. 8117 BeginLabel = MMI.getContext().createTempSymbol(); 8118 8119 // For SjLj, keep track of which landing pads go with which invokes 8120 // so as to maintain the ordering of pads in the LSDA. 8121 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8122 if (CallSiteIndex) { 8123 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8124 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8125 8126 // Now that the call site is handled, stop tracking it. 8127 MMI.setCurrentCallSite(0); 8128 } 8129 8130 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8131 } 8132 8133 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8134 const BasicBlock *EHPadBB, 8135 MCSymbol *BeginLabel) { 8136 assert(BeginLabel && "BeginLabel should've been set"); 8137 8138 MachineFunction &MF = DAG.getMachineFunction(); 8139 MachineModuleInfo &MMI = MF.getMMI(); 8140 8141 // Insert a label at the end of the invoke call to mark the try range. This 8142 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8143 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8144 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8145 8146 // Inform MachineModuleInfo of range. 8147 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8148 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8149 // actually use outlined funclets and their LSDA info style. 8150 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8151 assert(II && "II should've been set"); 8152 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8153 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8154 } else if (!isScopedEHPersonality(Pers)) { 8155 assert(EHPadBB); 8156 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8157 } 8158 8159 return Chain; 8160 } 8161 8162 std::pair<SDValue, SDValue> 8163 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8164 const BasicBlock *EHPadBB) { 8165 MCSymbol *BeginLabel = nullptr; 8166 8167 if (EHPadBB) { 8168 // Both PendingLoads and PendingExports must be flushed here; 8169 // this call might not return. 8170 (void)getRoot(); 8171 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8172 CLI.setChain(getRoot()); 8173 } 8174 8175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8176 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8177 8178 assert((CLI.IsTailCall || Result.second.getNode()) && 8179 "Non-null chain expected with non-tail call!"); 8180 assert((Result.second.getNode() || !Result.first.getNode()) && 8181 "Null value expected with tail call!"); 8182 8183 if (!Result.second.getNode()) { 8184 // As a special case, a null chain means that a tail call has been emitted 8185 // and the DAG root is already updated. 8186 HasTailCall = true; 8187 8188 // Since there's no actual continuation from this block, nothing can be 8189 // relying on us setting vregs for them. 8190 PendingExports.clear(); 8191 } else { 8192 DAG.setRoot(Result.second); 8193 } 8194 8195 if (EHPadBB) { 8196 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8197 BeginLabel)); 8198 } 8199 8200 return Result; 8201 } 8202 8203 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8204 bool isTailCall, 8205 bool isMustTailCall, 8206 const BasicBlock *EHPadBB) { 8207 auto &DL = DAG.getDataLayout(); 8208 FunctionType *FTy = CB.getFunctionType(); 8209 Type *RetTy = CB.getType(); 8210 8211 TargetLowering::ArgListTy Args; 8212 Args.reserve(CB.arg_size()); 8213 8214 const Value *SwiftErrorVal = nullptr; 8215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8216 8217 if (isTailCall) { 8218 // Avoid emitting tail calls in functions with the disable-tail-calls 8219 // attribute. 8220 auto *Caller = CB.getParent()->getParent(); 8221 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8222 "true" && !isMustTailCall) 8223 isTailCall = false; 8224 8225 // We can't tail call inside a function with a swifterror argument. Lowering 8226 // does not support this yet. It would have to move into the swifterror 8227 // register before the call. 8228 if (TLI.supportSwiftError() && 8229 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8230 isTailCall = false; 8231 } 8232 8233 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8234 TargetLowering::ArgListEntry Entry; 8235 const Value *V = *I; 8236 8237 // Skip empty types 8238 if (V->getType()->isEmptyTy()) 8239 continue; 8240 8241 SDValue ArgNode = getValue(V); 8242 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8243 8244 Entry.setAttributes(&CB, I - CB.arg_begin()); 8245 8246 // Use swifterror virtual register as input to the call. 8247 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8248 SwiftErrorVal = V; 8249 // We find the virtual register for the actual swifterror argument. 8250 // Instead of using the Value, we use the virtual register instead. 8251 Entry.Node = 8252 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8253 EVT(TLI.getPointerTy(DL))); 8254 } 8255 8256 Args.push_back(Entry); 8257 8258 // If we have an explicit sret argument that is an Instruction, (i.e., it 8259 // might point to function-local memory), we can't meaningfully tail-call. 8260 if (Entry.IsSRet && isa<Instruction>(V)) 8261 isTailCall = false; 8262 } 8263 8264 // If call site has a cfguardtarget operand bundle, create and add an 8265 // additional ArgListEntry. 8266 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8267 TargetLowering::ArgListEntry Entry; 8268 Value *V = Bundle->Inputs[0]; 8269 SDValue ArgNode = getValue(V); 8270 Entry.Node = ArgNode; 8271 Entry.Ty = V->getType(); 8272 Entry.IsCFGuardTarget = true; 8273 Args.push_back(Entry); 8274 } 8275 8276 // Check if target-independent constraints permit a tail call here. 8277 // Target-dependent constraints are checked within TLI->LowerCallTo. 8278 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8279 isTailCall = false; 8280 8281 // Disable tail calls if there is an swifterror argument. Targets have not 8282 // been updated to support tail calls. 8283 if (TLI.supportSwiftError() && SwiftErrorVal) 8284 isTailCall = false; 8285 8286 ConstantInt *CFIType = nullptr; 8287 if (CB.isIndirectCall()) { 8288 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8289 if (!TLI.supportKCFIBundles()) 8290 report_fatal_error( 8291 "Target doesn't support calls with kcfi operand bundles."); 8292 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8293 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8294 } 8295 } 8296 8297 TargetLowering::CallLoweringInfo CLI(DAG); 8298 CLI.setDebugLoc(getCurSDLoc()) 8299 .setChain(getRoot()) 8300 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8301 .setTailCall(isTailCall) 8302 .setConvergent(CB.isConvergent()) 8303 .setIsPreallocated( 8304 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8305 .setCFIType(CFIType); 8306 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8307 8308 if (Result.first.getNode()) { 8309 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8310 setValue(&CB, Result.first); 8311 } 8312 8313 // The last element of CLI.InVals has the SDValue for swifterror return. 8314 // Here we copy it to a virtual register and update SwiftErrorMap for 8315 // book-keeping. 8316 if (SwiftErrorVal && TLI.supportSwiftError()) { 8317 // Get the last element of InVals. 8318 SDValue Src = CLI.InVals.back(); 8319 Register VReg = 8320 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8321 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8322 DAG.setRoot(CopyNode); 8323 } 8324 } 8325 8326 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8327 SelectionDAGBuilder &Builder) { 8328 // Check to see if this load can be trivially constant folded, e.g. if the 8329 // input is from a string literal. 8330 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8331 // Cast pointer to the type we really want to load. 8332 Type *LoadTy = 8333 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8334 if (LoadVT.isVector()) 8335 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8336 8337 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8338 PointerType::getUnqual(LoadTy)); 8339 8340 if (const Constant *LoadCst = 8341 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8342 LoadTy, Builder.DAG.getDataLayout())) 8343 return Builder.getValue(LoadCst); 8344 } 8345 8346 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8347 // still constant memory, the input chain can be the entry node. 8348 SDValue Root; 8349 bool ConstantMemory = false; 8350 8351 // Do not serialize (non-volatile) loads of constant memory with anything. 8352 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8353 Root = Builder.DAG.getEntryNode(); 8354 ConstantMemory = true; 8355 } else { 8356 // Do not serialize non-volatile loads against each other. 8357 Root = Builder.DAG.getRoot(); 8358 } 8359 8360 SDValue Ptr = Builder.getValue(PtrVal); 8361 SDValue LoadVal = 8362 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8363 MachinePointerInfo(PtrVal), Align(1)); 8364 8365 if (!ConstantMemory) 8366 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8367 return LoadVal; 8368 } 8369 8370 /// Record the value for an instruction that produces an integer result, 8371 /// converting the type where necessary. 8372 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8373 SDValue Value, 8374 bool IsSigned) { 8375 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8376 I.getType(), true); 8377 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8378 setValue(&I, Value); 8379 } 8380 8381 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8382 /// true and lower it. Otherwise return false, and it will be lowered like a 8383 /// normal call. 8384 /// The caller already checked that \p I calls the appropriate LibFunc with a 8385 /// correct prototype. 8386 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8387 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8388 const Value *Size = I.getArgOperand(2); 8389 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8390 if (CSize && CSize->getZExtValue() == 0) { 8391 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8392 I.getType(), true); 8393 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8394 return true; 8395 } 8396 8397 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8398 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8399 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8400 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8401 if (Res.first.getNode()) { 8402 processIntegerCallValue(I, Res.first, true); 8403 PendingLoads.push_back(Res.second); 8404 return true; 8405 } 8406 8407 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8408 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8409 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8410 return false; 8411 8412 // If the target has a fast compare for the given size, it will return a 8413 // preferred load type for that size. Require that the load VT is legal and 8414 // that the target supports unaligned loads of that type. Otherwise, return 8415 // INVALID. 8416 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8418 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8419 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8420 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8421 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8422 // TODO: Check alignment of src and dest ptrs. 8423 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8424 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8425 if (!TLI.isTypeLegal(LVT) || 8426 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8427 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8428 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8429 } 8430 8431 return LVT; 8432 }; 8433 8434 // This turns into unaligned loads. We only do this if the target natively 8435 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8436 // we'll only produce a small number of byte loads. 8437 MVT LoadVT; 8438 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8439 switch (NumBitsToCompare) { 8440 default: 8441 return false; 8442 case 16: 8443 LoadVT = MVT::i16; 8444 break; 8445 case 32: 8446 LoadVT = MVT::i32; 8447 break; 8448 case 64: 8449 case 128: 8450 case 256: 8451 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8452 break; 8453 } 8454 8455 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8456 return false; 8457 8458 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8459 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8460 8461 // Bitcast to a wide integer type if the loads are vectors. 8462 if (LoadVT.isVector()) { 8463 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8464 LoadL = DAG.getBitcast(CmpVT, LoadL); 8465 LoadR = DAG.getBitcast(CmpVT, LoadR); 8466 } 8467 8468 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8469 processIntegerCallValue(I, Cmp, false); 8470 return true; 8471 } 8472 8473 /// See if we can lower a memchr call into an optimized form. If so, return 8474 /// true and lower it. Otherwise return false, and it will be lowered like a 8475 /// normal call. 8476 /// The caller already checked that \p I calls the appropriate LibFunc with a 8477 /// correct prototype. 8478 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8479 const Value *Src = I.getArgOperand(0); 8480 const Value *Char = I.getArgOperand(1); 8481 const Value *Length = I.getArgOperand(2); 8482 8483 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8484 std::pair<SDValue, SDValue> Res = 8485 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8486 getValue(Src), getValue(Char), getValue(Length), 8487 MachinePointerInfo(Src)); 8488 if (Res.first.getNode()) { 8489 setValue(&I, Res.first); 8490 PendingLoads.push_back(Res.second); 8491 return true; 8492 } 8493 8494 return false; 8495 } 8496 8497 /// See if we can lower a mempcpy call into an optimized form. If so, return 8498 /// true and lower it. Otherwise return false, and it will be lowered like a 8499 /// normal call. 8500 /// The caller already checked that \p I calls the appropriate LibFunc with a 8501 /// correct prototype. 8502 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8503 SDValue Dst = getValue(I.getArgOperand(0)); 8504 SDValue Src = getValue(I.getArgOperand(1)); 8505 SDValue Size = getValue(I.getArgOperand(2)); 8506 8507 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8508 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8509 // DAG::getMemcpy needs Alignment to be defined. 8510 Align Alignment = std::min(DstAlign, SrcAlign); 8511 8512 SDLoc sdl = getCurSDLoc(); 8513 8514 // In the mempcpy context we need to pass in a false value for isTailCall 8515 // because the return pointer needs to be adjusted by the size of 8516 // the copied memory. 8517 SDValue Root = getMemoryRoot(); 8518 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8519 /*isTailCall=*/false, 8520 MachinePointerInfo(I.getArgOperand(0)), 8521 MachinePointerInfo(I.getArgOperand(1)), 8522 I.getAAMetadata()); 8523 assert(MC.getNode() != nullptr && 8524 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8525 DAG.setRoot(MC); 8526 8527 // Check if Size needs to be truncated or extended. 8528 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8529 8530 // Adjust return pointer to point just past the last dst byte. 8531 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8532 Dst, Size); 8533 setValue(&I, DstPlusSize); 8534 return true; 8535 } 8536 8537 /// See if we can lower a strcpy call into an optimized form. If so, return 8538 /// true and lower it, otherwise return false and it will be lowered like a 8539 /// normal call. 8540 /// The caller already checked that \p I calls the appropriate LibFunc with a 8541 /// correct prototype. 8542 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8543 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8544 8545 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8546 std::pair<SDValue, SDValue> Res = 8547 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8548 getValue(Arg0), getValue(Arg1), 8549 MachinePointerInfo(Arg0), 8550 MachinePointerInfo(Arg1), isStpcpy); 8551 if (Res.first.getNode()) { 8552 setValue(&I, Res.first); 8553 DAG.setRoot(Res.second); 8554 return true; 8555 } 8556 8557 return false; 8558 } 8559 8560 /// See if we can lower a strcmp call into an optimized form. If so, return 8561 /// true and lower it, otherwise return false and it will be lowered like a 8562 /// normal call. 8563 /// The caller already checked that \p I calls the appropriate LibFunc with a 8564 /// correct prototype. 8565 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8566 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8567 8568 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8569 std::pair<SDValue, SDValue> Res = 8570 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8571 getValue(Arg0), getValue(Arg1), 8572 MachinePointerInfo(Arg0), 8573 MachinePointerInfo(Arg1)); 8574 if (Res.first.getNode()) { 8575 processIntegerCallValue(I, Res.first, true); 8576 PendingLoads.push_back(Res.second); 8577 return true; 8578 } 8579 8580 return false; 8581 } 8582 8583 /// See if we can lower a strlen call into an optimized form. If so, return 8584 /// true and lower it, otherwise return false and it will be lowered like a 8585 /// normal call. 8586 /// The caller already checked that \p I calls the appropriate LibFunc with a 8587 /// correct prototype. 8588 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8589 const Value *Arg0 = I.getArgOperand(0); 8590 8591 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8592 std::pair<SDValue, SDValue> Res = 8593 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8594 getValue(Arg0), MachinePointerInfo(Arg0)); 8595 if (Res.first.getNode()) { 8596 processIntegerCallValue(I, Res.first, false); 8597 PendingLoads.push_back(Res.second); 8598 return true; 8599 } 8600 8601 return false; 8602 } 8603 8604 /// See if we can lower a strnlen call into an optimized form. If so, return 8605 /// true and lower it, otherwise return false and it will be lowered like a 8606 /// normal call. 8607 /// The caller already checked that \p I calls the appropriate LibFunc with a 8608 /// correct prototype. 8609 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8610 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8611 8612 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8613 std::pair<SDValue, SDValue> Res = 8614 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8615 getValue(Arg0), getValue(Arg1), 8616 MachinePointerInfo(Arg0)); 8617 if (Res.first.getNode()) { 8618 processIntegerCallValue(I, Res.first, false); 8619 PendingLoads.push_back(Res.second); 8620 return true; 8621 } 8622 8623 return false; 8624 } 8625 8626 /// See if we can lower a unary floating-point operation into an SDNode with 8627 /// the specified Opcode. If so, return true and lower it, otherwise return 8628 /// false and it will be lowered like a normal call. 8629 /// The caller already checked that \p I calls the appropriate LibFunc with a 8630 /// correct prototype. 8631 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8632 unsigned Opcode) { 8633 // We already checked this call's prototype; verify it doesn't modify errno. 8634 if (!I.onlyReadsMemory()) 8635 return false; 8636 8637 SDNodeFlags Flags; 8638 Flags.copyFMF(cast<FPMathOperator>(I)); 8639 8640 SDValue Tmp = getValue(I.getArgOperand(0)); 8641 setValue(&I, 8642 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8643 return true; 8644 } 8645 8646 /// See if we can lower a binary floating-point operation into an SDNode with 8647 /// the specified Opcode. If so, return true and lower it. Otherwise return 8648 /// false, and it will be lowered like a normal call. 8649 /// The caller already checked that \p I calls the appropriate LibFunc with a 8650 /// correct prototype. 8651 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8652 unsigned Opcode) { 8653 // We already checked this call's prototype; verify it doesn't modify errno. 8654 if (!I.onlyReadsMemory()) 8655 return false; 8656 8657 SDNodeFlags Flags; 8658 Flags.copyFMF(cast<FPMathOperator>(I)); 8659 8660 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8661 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8662 EVT VT = Tmp0.getValueType(); 8663 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8664 return true; 8665 } 8666 8667 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8668 // Handle inline assembly differently. 8669 if (I.isInlineAsm()) { 8670 visitInlineAsm(I); 8671 return; 8672 } 8673 8674 diagnoseDontCall(I); 8675 8676 if (Function *F = I.getCalledFunction()) { 8677 if (F->isDeclaration()) { 8678 // Is this an LLVM intrinsic or a target-specific intrinsic? 8679 unsigned IID = F->getIntrinsicID(); 8680 if (!IID) 8681 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8682 IID = II->getIntrinsicID(F); 8683 8684 if (IID) { 8685 visitIntrinsicCall(I, IID); 8686 return; 8687 } 8688 } 8689 8690 // Check for well-known libc/libm calls. If the function is internal, it 8691 // can't be a library call. Don't do the check if marked as nobuiltin for 8692 // some reason or the call site requires strict floating point semantics. 8693 LibFunc Func; 8694 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8695 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8696 LibInfo->hasOptimizedCodeGen(Func)) { 8697 switch (Func) { 8698 default: break; 8699 case LibFunc_bcmp: 8700 if (visitMemCmpBCmpCall(I)) 8701 return; 8702 break; 8703 case LibFunc_copysign: 8704 case LibFunc_copysignf: 8705 case LibFunc_copysignl: 8706 // We already checked this call's prototype; verify it doesn't modify 8707 // errno. 8708 if (I.onlyReadsMemory()) { 8709 SDValue LHS = getValue(I.getArgOperand(0)); 8710 SDValue RHS = getValue(I.getArgOperand(1)); 8711 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8712 LHS.getValueType(), LHS, RHS)); 8713 return; 8714 } 8715 break; 8716 case LibFunc_fabs: 8717 case LibFunc_fabsf: 8718 case LibFunc_fabsl: 8719 if (visitUnaryFloatCall(I, ISD::FABS)) 8720 return; 8721 break; 8722 case LibFunc_fmin: 8723 case LibFunc_fminf: 8724 case LibFunc_fminl: 8725 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8726 return; 8727 break; 8728 case LibFunc_fmax: 8729 case LibFunc_fmaxf: 8730 case LibFunc_fmaxl: 8731 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8732 return; 8733 break; 8734 case LibFunc_sin: 8735 case LibFunc_sinf: 8736 case LibFunc_sinl: 8737 if (visitUnaryFloatCall(I, ISD::FSIN)) 8738 return; 8739 break; 8740 case LibFunc_cos: 8741 case LibFunc_cosf: 8742 case LibFunc_cosl: 8743 if (visitUnaryFloatCall(I, ISD::FCOS)) 8744 return; 8745 break; 8746 case LibFunc_sqrt: 8747 case LibFunc_sqrtf: 8748 case LibFunc_sqrtl: 8749 case LibFunc_sqrt_finite: 8750 case LibFunc_sqrtf_finite: 8751 case LibFunc_sqrtl_finite: 8752 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8753 return; 8754 break; 8755 case LibFunc_floor: 8756 case LibFunc_floorf: 8757 case LibFunc_floorl: 8758 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8759 return; 8760 break; 8761 case LibFunc_nearbyint: 8762 case LibFunc_nearbyintf: 8763 case LibFunc_nearbyintl: 8764 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8765 return; 8766 break; 8767 case LibFunc_ceil: 8768 case LibFunc_ceilf: 8769 case LibFunc_ceill: 8770 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8771 return; 8772 break; 8773 case LibFunc_rint: 8774 case LibFunc_rintf: 8775 case LibFunc_rintl: 8776 if (visitUnaryFloatCall(I, ISD::FRINT)) 8777 return; 8778 break; 8779 case LibFunc_round: 8780 case LibFunc_roundf: 8781 case LibFunc_roundl: 8782 if (visitUnaryFloatCall(I, ISD::FROUND)) 8783 return; 8784 break; 8785 case LibFunc_trunc: 8786 case LibFunc_truncf: 8787 case LibFunc_truncl: 8788 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8789 return; 8790 break; 8791 case LibFunc_log2: 8792 case LibFunc_log2f: 8793 case LibFunc_log2l: 8794 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8795 return; 8796 break; 8797 case LibFunc_exp2: 8798 case LibFunc_exp2f: 8799 case LibFunc_exp2l: 8800 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8801 return; 8802 break; 8803 case LibFunc_exp10: 8804 case LibFunc_exp10f: 8805 case LibFunc_exp10l: 8806 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8807 return; 8808 break; 8809 case LibFunc_ldexp: 8810 case LibFunc_ldexpf: 8811 case LibFunc_ldexpl: 8812 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8813 return; 8814 break; 8815 case LibFunc_memcmp: 8816 if (visitMemCmpBCmpCall(I)) 8817 return; 8818 break; 8819 case LibFunc_mempcpy: 8820 if (visitMemPCpyCall(I)) 8821 return; 8822 break; 8823 case LibFunc_memchr: 8824 if (visitMemChrCall(I)) 8825 return; 8826 break; 8827 case LibFunc_strcpy: 8828 if (visitStrCpyCall(I, false)) 8829 return; 8830 break; 8831 case LibFunc_stpcpy: 8832 if (visitStrCpyCall(I, true)) 8833 return; 8834 break; 8835 case LibFunc_strcmp: 8836 if (visitStrCmpCall(I)) 8837 return; 8838 break; 8839 case LibFunc_strlen: 8840 if (visitStrLenCall(I)) 8841 return; 8842 break; 8843 case LibFunc_strnlen: 8844 if (visitStrNLenCall(I)) 8845 return; 8846 break; 8847 } 8848 } 8849 } 8850 8851 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8852 // have to do anything here to lower funclet bundles. 8853 // CFGuardTarget bundles are lowered in LowerCallTo. 8854 assert(!I.hasOperandBundlesOtherThan( 8855 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8856 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8857 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8858 "Cannot lower calls with arbitrary operand bundles!"); 8859 8860 SDValue Callee = getValue(I.getCalledOperand()); 8861 8862 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8863 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8864 else 8865 // Check if we can potentially perform a tail call. More detailed checking 8866 // is be done within LowerCallTo, after more information about the call is 8867 // known. 8868 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8869 } 8870 8871 namespace { 8872 8873 /// AsmOperandInfo - This contains information for each constraint that we are 8874 /// lowering. 8875 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8876 public: 8877 /// CallOperand - If this is the result output operand or a clobber 8878 /// this is null, otherwise it is the incoming operand to the CallInst. 8879 /// This gets modified as the asm is processed. 8880 SDValue CallOperand; 8881 8882 /// AssignedRegs - If this is a register or register class operand, this 8883 /// contains the set of register corresponding to the operand. 8884 RegsForValue AssignedRegs; 8885 8886 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8887 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8888 } 8889 8890 /// Whether or not this operand accesses memory 8891 bool hasMemory(const TargetLowering &TLI) const { 8892 // Indirect operand accesses access memory. 8893 if (isIndirect) 8894 return true; 8895 8896 for (const auto &Code : Codes) 8897 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8898 return true; 8899 8900 return false; 8901 } 8902 }; 8903 8904 8905 } // end anonymous namespace 8906 8907 /// Make sure that the output operand \p OpInfo and its corresponding input 8908 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8909 /// out). 8910 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8911 SDISelAsmOperandInfo &MatchingOpInfo, 8912 SelectionDAG &DAG) { 8913 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8914 return; 8915 8916 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8917 const auto &TLI = DAG.getTargetLoweringInfo(); 8918 8919 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8920 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8921 OpInfo.ConstraintVT); 8922 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8923 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8924 MatchingOpInfo.ConstraintVT); 8925 if ((OpInfo.ConstraintVT.isInteger() != 8926 MatchingOpInfo.ConstraintVT.isInteger()) || 8927 (MatchRC.second != InputRC.second)) { 8928 // FIXME: error out in a more elegant fashion 8929 report_fatal_error("Unsupported asm: input constraint" 8930 " with a matching output constraint of" 8931 " incompatible type!"); 8932 } 8933 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8934 } 8935 8936 /// Get a direct memory input to behave well as an indirect operand. 8937 /// This may introduce stores, hence the need for a \p Chain. 8938 /// \return The (possibly updated) chain. 8939 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8940 SDISelAsmOperandInfo &OpInfo, 8941 SelectionDAG &DAG) { 8942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8943 8944 // If we don't have an indirect input, put it in the constpool if we can, 8945 // otherwise spill it to a stack slot. 8946 // TODO: This isn't quite right. We need to handle these according to 8947 // the addressing mode that the constraint wants. Also, this may take 8948 // an additional register for the computation and we don't want that 8949 // either. 8950 8951 // If the operand is a float, integer, or vector constant, spill to a 8952 // constant pool entry to get its address. 8953 const Value *OpVal = OpInfo.CallOperandVal; 8954 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8955 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8956 OpInfo.CallOperand = DAG.getConstantPool( 8957 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8958 return Chain; 8959 } 8960 8961 // Otherwise, create a stack slot and emit a store to it before the asm. 8962 Type *Ty = OpVal->getType(); 8963 auto &DL = DAG.getDataLayout(); 8964 uint64_t TySize = DL.getTypeAllocSize(Ty); 8965 MachineFunction &MF = DAG.getMachineFunction(); 8966 int SSFI = MF.getFrameInfo().CreateStackObject( 8967 TySize, DL.getPrefTypeAlign(Ty), false); 8968 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8969 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8970 MachinePointerInfo::getFixedStack(MF, SSFI), 8971 TLI.getMemValueType(DL, Ty)); 8972 OpInfo.CallOperand = StackSlot; 8973 8974 return Chain; 8975 } 8976 8977 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8978 /// specified operand. We prefer to assign virtual registers, to allow the 8979 /// register allocator to handle the assignment process. However, if the asm 8980 /// uses features that we can't model on machineinstrs, we have SDISel do the 8981 /// allocation. This produces generally horrible, but correct, code. 8982 /// 8983 /// OpInfo describes the operand 8984 /// RefOpInfo describes the matching operand if any, the operand otherwise 8985 static std::optional<unsigned> 8986 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8987 SDISelAsmOperandInfo &OpInfo, 8988 SDISelAsmOperandInfo &RefOpInfo) { 8989 LLVMContext &Context = *DAG.getContext(); 8990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8991 8992 MachineFunction &MF = DAG.getMachineFunction(); 8993 SmallVector<unsigned, 4> Regs; 8994 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8995 8996 // No work to do for memory/address operands. 8997 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8998 OpInfo.ConstraintType == TargetLowering::C_Address) 8999 return std::nullopt; 9000 9001 // If this is a constraint for a single physreg, or a constraint for a 9002 // register class, find it. 9003 unsigned AssignedReg; 9004 const TargetRegisterClass *RC; 9005 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9006 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9007 // RC is unset only on failure. Return immediately. 9008 if (!RC) 9009 return std::nullopt; 9010 9011 // Get the actual register value type. This is important, because the user 9012 // may have asked for (e.g.) the AX register in i32 type. We need to 9013 // remember that AX is actually i16 to get the right extension. 9014 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9015 9016 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9017 // If this is an FP operand in an integer register (or visa versa), or more 9018 // generally if the operand value disagrees with the register class we plan 9019 // to stick it in, fix the operand type. 9020 // 9021 // If this is an input value, the bitcast to the new type is done now. 9022 // Bitcast for output value is done at the end of visitInlineAsm(). 9023 if ((OpInfo.Type == InlineAsm::isOutput || 9024 OpInfo.Type == InlineAsm::isInput) && 9025 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9026 // Try to convert to the first EVT that the reg class contains. If the 9027 // types are identical size, use a bitcast to convert (e.g. two differing 9028 // vector types). Note: output bitcast is done at the end of 9029 // visitInlineAsm(). 9030 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9031 // Exclude indirect inputs while they are unsupported because the code 9032 // to perform the load is missing and thus OpInfo.CallOperand still 9033 // refers to the input address rather than the pointed-to value. 9034 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9035 OpInfo.CallOperand = 9036 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9037 OpInfo.ConstraintVT = RegVT; 9038 // If the operand is an FP value and we want it in integer registers, 9039 // use the corresponding integer type. This turns an f64 value into 9040 // i64, which can be passed with two i32 values on a 32-bit machine. 9041 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9042 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9043 if (OpInfo.Type == InlineAsm::isInput) 9044 OpInfo.CallOperand = 9045 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9046 OpInfo.ConstraintVT = VT; 9047 } 9048 } 9049 } 9050 9051 // No need to allocate a matching input constraint since the constraint it's 9052 // matching to has already been allocated. 9053 if (OpInfo.isMatchingInputConstraint()) 9054 return std::nullopt; 9055 9056 EVT ValueVT = OpInfo.ConstraintVT; 9057 if (OpInfo.ConstraintVT == MVT::Other) 9058 ValueVT = RegVT; 9059 9060 // Initialize NumRegs. 9061 unsigned NumRegs = 1; 9062 if (OpInfo.ConstraintVT != MVT::Other) 9063 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9064 9065 // If this is a constraint for a specific physical register, like {r17}, 9066 // assign it now. 9067 9068 // If this associated to a specific register, initialize iterator to correct 9069 // place. If virtual, make sure we have enough registers 9070 9071 // Initialize iterator if necessary 9072 TargetRegisterClass::iterator I = RC->begin(); 9073 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9074 9075 // Do not check for single registers. 9076 if (AssignedReg) { 9077 I = std::find(I, RC->end(), AssignedReg); 9078 if (I == RC->end()) { 9079 // RC does not contain the selected register, which indicates a 9080 // mismatch between the register and the required type/bitwidth. 9081 return {AssignedReg}; 9082 } 9083 } 9084 9085 for (; NumRegs; --NumRegs, ++I) { 9086 assert(I != RC->end() && "Ran out of registers to allocate!"); 9087 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9088 Regs.push_back(R); 9089 } 9090 9091 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9092 return std::nullopt; 9093 } 9094 9095 static unsigned 9096 findMatchingInlineAsmOperand(unsigned OperandNo, 9097 const std::vector<SDValue> &AsmNodeOperands) { 9098 // Scan until we find the definition we already emitted of this operand. 9099 unsigned CurOp = InlineAsm::Op_FirstOperand; 9100 for (; OperandNo; --OperandNo) { 9101 // Advance to the next operand. 9102 unsigned OpFlag = 9103 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9104 const InlineAsm::Flag F(OpFlag); 9105 assert( 9106 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9107 "Skipped past definitions?"); 9108 CurOp += F.getNumOperandRegisters() + 1; 9109 } 9110 return CurOp; 9111 } 9112 9113 namespace { 9114 9115 class ExtraFlags { 9116 unsigned Flags = 0; 9117 9118 public: 9119 explicit ExtraFlags(const CallBase &Call) { 9120 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9121 if (IA->hasSideEffects()) 9122 Flags |= InlineAsm::Extra_HasSideEffects; 9123 if (IA->isAlignStack()) 9124 Flags |= InlineAsm::Extra_IsAlignStack; 9125 if (Call.isConvergent()) 9126 Flags |= InlineAsm::Extra_IsConvergent; 9127 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9128 } 9129 9130 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9131 // Ideally, we would only check against memory constraints. However, the 9132 // meaning of an Other constraint can be target-specific and we can't easily 9133 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9134 // for Other constraints as well. 9135 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9136 OpInfo.ConstraintType == TargetLowering::C_Other) { 9137 if (OpInfo.Type == InlineAsm::isInput) 9138 Flags |= InlineAsm::Extra_MayLoad; 9139 else if (OpInfo.Type == InlineAsm::isOutput) 9140 Flags |= InlineAsm::Extra_MayStore; 9141 else if (OpInfo.Type == InlineAsm::isClobber) 9142 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9143 } 9144 } 9145 9146 unsigned get() const { return Flags; } 9147 }; 9148 9149 } // end anonymous namespace 9150 9151 static bool isFunction(SDValue Op) { 9152 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9153 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9154 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9155 9156 // In normal "call dllimport func" instruction (non-inlineasm) it force 9157 // indirect access by specifing call opcode. And usually specially print 9158 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9159 // not do in this way now. (In fact, this is similar with "Data Access" 9160 // action). So here we ignore dllimport function. 9161 if (Fn && !Fn->hasDLLImportStorageClass()) 9162 return true; 9163 } 9164 } 9165 return false; 9166 } 9167 9168 /// visitInlineAsm - Handle a call to an InlineAsm object. 9169 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9170 const BasicBlock *EHPadBB) { 9171 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9172 9173 /// ConstraintOperands - Information about all of the constraints. 9174 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9175 9176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9177 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9178 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9179 9180 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9181 // AsmDialect, MayLoad, MayStore). 9182 bool HasSideEffect = IA->hasSideEffects(); 9183 ExtraFlags ExtraInfo(Call); 9184 9185 for (auto &T : TargetConstraints) { 9186 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9187 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9188 9189 if (OpInfo.CallOperandVal) 9190 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9191 9192 if (!HasSideEffect) 9193 HasSideEffect = OpInfo.hasMemory(TLI); 9194 9195 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9196 // FIXME: Could we compute this on OpInfo rather than T? 9197 9198 // Compute the constraint code and ConstraintType to use. 9199 TLI.ComputeConstraintToUse(T, SDValue()); 9200 9201 if (T.ConstraintType == TargetLowering::C_Immediate && 9202 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9203 // We've delayed emitting a diagnostic like the "n" constraint because 9204 // inlining could cause an integer showing up. 9205 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9206 "' expects an integer constant " 9207 "expression"); 9208 9209 ExtraInfo.update(T); 9210 } 9211 9212 // We won't need to flush pending loads if this asm doesn't touch 9213 // memory and is nonvolatile. 9214 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9215 9216 bool EmitEHLabels = isa<InvokeInst>(Call); 9217 if (EmitEHLabels) { 9218 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9219 } 9220 bool IsCallBr = isa<CallBrInst>(Call); 9221 9222 if (IsCallBr || EmitEHLabels) { 9223 // If this is a callbr or invoke we need to flush pending exports since 9224 // inlineasm_br and invoke are terminators. 9225 // We need to do this before nodes are glued to the inlineasm_br node. 9226 Chain = getControlRoot(); 9227 } 9228 9229 MCSymbol *BeginLabel = nullptr; 9230 if (EmitEHLabels) { 9231 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9232 } 9233 9234 int OpNo = -1; 9235 SmallVector<StringRef> AsmStrs; 9236 IA->collectAsmStrs(AsmStrs); 9237 9238 // Second pass over the constraints: compute which constraint option to use. 9239 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9240 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9241 OpNo++; 9242 9243 // If this is an output operand with a matching input operand, look up the 9244 // matching input. If their types mismatch, e.g. one is an integer, the 9245 // other is floating point, or their sizes are different, flag it as an 9246 // error. 9247 if (OpInfo.hasMatchingInput()) { 9248 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9249 patchMatchingInput(OpInfo, Input, DAG); 9250 } 9251 9252 // Compute the constraint code and ConstraintType to use. 9253 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9254 9255 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9256 OpInfo.Type == InlineAsm::isClobber) || 9257 OpInfo.ConstraintType == TargetLowering::C_Address) 9258 continue; 9259 9260 // In Linux PIC model, there are 4 cases about value/label addressing: 9261 // 9262 // 1: Function call or Label jmp inside the module. 9263 // 2: Data access (such as global variable, static variable) inside module. 9264 // 3: Function call or Label jmp outside the module. 9265 // 4: Data access (such as global variable) outside the module. 9266 // 9267 // Due to current llvm inline asm architecture designed to not "recognize" 9268 // the asm code, there are quite troubles for us to treat mem addressing 9269 // differently for same value/adress used in different instuctions. 9270 // For example, in pic model, call a func may in plt way or direclty 9271 // pc-related, but lea/mov a function adress may use got. 9272 // 9273 // Here we try to "recognize" function call for the case 1 and case 3 in 9274 // inline asm. And try to adjust the constraint for them. 9275 // 9276 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9277 // label, so here we don't handle jmp function label now, but we need to 9278 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9279 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9280 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9281 TM.getCodeModel() != CodeModel::Large) { 9282 OpInfo.isIndirect = false; 9283 OpInfo.ConstraintType = TargetLowering::C_Address; 9284 } 9285 9286 // If this is a memory input, and if the operand is not indirect, do what we 9287 // need to provide an address for the memory input. 9288 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9289 !OpInfo.isIndirect) { 9290 assert((OpInfo.isMultipleAlternative || 9291 (OpInfo.Type == InlineAsm::isInput)) && 9292 "Can only indirectify direct input operands!"); 9293 9294 // Memory operands really want the address of the value. 9295 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9296 9297 // There is no longer a Value* corresponding to this operand. 9298 OpInfo.CallOperandVal = nullptr; 9299 9300 // It is now an indirect operand. 9301 OpInfo.isIndirect = true; 9302 } 9303 9304 } 9305 9306 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9307 std::vector<SDValue> AsmNodeOperands; 9308 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9309 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9310 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9311 9312 // If we have a !srcloc metadata node associated with it, we want to attach 9313 // this to the ultimately generated inline asm machineinstr. To do this, we 9314 // pass in the third operand as this (potentially null) inline asm MDNode. 9315 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9316 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9317 9318 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9319 // bits as operand 3. 9320 AsmNodeOperands.push_back(DAG.getTargetConstant( 9321 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9322 9323 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9324 // this, assign virtual and physical registers for inputs and otput. 9325 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9326 // Assign Registers. 9327 SDISelAsmOperandInfo &RefOpInfo = 9328 OpInfo.isMatchingInputConstraint() 9329 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9330 : OpInfo; 9331 const auto RegError = 9332 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9333 if (RegError) { 9334 const MachineFunction &MF = DAG.getMachineFunction(); 9335 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9336 const char *RegName = TRI.getName(*RegError); 9337 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9338 "' allocated for constraint '" + 9339 Twine(OpInfo.ConstraintCode) + 9340 "' does not match required type"); 9341 return; 9342 } 9343 9344 auto DetectWriteToReservedRegister = [&]() { 9345 const MachineFunction &MF = DAG.getMachineFunction(); 9346 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9347 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9348 if (Register::isPhysicalRegister(Reg) && 9349 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9350 const char *RegName = TRI.getName(Reg); 9351 emitInlineAsmError(Call, "write to reserved register '" + 9352 Twine(RegName) + "'"); 9353 return true; 9354 } 9355 } 9356 return false; 9357 }; 9358 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9359 (OpInfo.Type == InlineAsm::isInput && 9360 !OpInfo.isMatchingInputConstraint())) && 9361 "Only address as input operand is allowed."); 9362 9363 switch (OpInfo.Type) { 9364 case InlineAsm::isOutput: 9365 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9366 const InlineAsm::ConstraintCode ConstraintID = 9367 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9368 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9369 "Failed to convert memory constraint code to constraint id."); 9370 9371 // Add information to the INLINEASM node to know about this output. 9372 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9373 OpFlags.setMemConstraint(ConstraintID); 9374 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9375 MVT::i32)); 9376 AsmNodeOperands.push_back(OpInfo.CallOperand); 9377 } else { 9378 // Otherwise, this outputs to a register (directly for C_Register / 9379 // C_RegisterClass, and a target-defined fashion for 9380 // C_Immediate/C_Other). Find a register that we can use. 9381 if (OpInfo.AssignedRegs.Regs.empty()) { 9382 emitInlineAsmError( 9383 Call, "couldn't allocate output register for constraint '" + 9384 Twine(OpInfo.ConstraintCode) + "'"); 9385 return; 9386 } 9387 9388 if (DetectWriteToReservedRegister()) 9389 return; 9390 9391 // Add information to the INLINEASM node to know that this register is 9392 // set. 9393 OpInfo.AssignedRegs.AddInlineAsmOperands( 9394 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9395 : InlineAsm::Kind::RegDef, 9396 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9397 } 9398 break; 9399 9400 case InlineAsm::isInput: 9401 case InlineAsm::isLabel: { 9402 SDValue InOperandVal = OpInfo.CallOperand; 9403 9404 if (OpInfo.isMatchingInputConstraint()) { 9405 // If this is required to match an output register we have already set, 9406 // just use its register. 9407 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9408 AsmNodeOperands); 9409 InlineAsm::Flag Flag( 9410 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9411 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9412 if (OpInfo.isIndirect) { 9413 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9414 emitInlineAsmError(Call, "inline asm not supported yet: " 9415 "don't know how to handle tied " 9416 "indirect register inputs"); 9417 return; 9418 } 9419 9420 SmallVector<unsigned, 4> Regs; 9421 MachineFunction &MF = DAG.getMachineFunction(); 9422 MachineRegisterInfo &MRI = MF.getRegInfo(); 9423 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9424 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9425 Register TiedReg = R->getReg(); 9426 MVT RegVT = R->getSimpleValueType(0); 9427 const TargetRegisterClass *RC = 9428 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9429 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9430 : TRI.getMinimalPhysRegClass(TiedReg); 9431 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9432 Regs.push_back(MRI.createVirtualRegister(RC)); 9433 9434 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9435 9436 SDLoc dl = getCurSDLoc(); 9437 // Use the produced MatchedRegs object to 9438 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9439 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9440 OpInfo.getMatchedOperand(), dl, DAG, 9441 AsmNodeOperands); 9442 break; 9443 } 9444 9445 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9446 assert(Flag.getNumOperandRegisters() == 1 && 9447 "Unexpected number of operands"); 9448 // Add information to the INLINEASM node to know about this input. 9449 // See InlineAsm.h isUseOperandTiedToDef. 9450 Flag.clearMemConstraint(); 9451 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9452 AsmNodeOperands.push_back(DAG.getTargetConstant( 9453 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9454 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9455 break; 9456 } 9457 9458 // Treat indirect 'X' constraint as memory. 9459 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9460 OpInfo.isIndirect) 9461 OpInfo.ConstraintType = TargetLowering::C_Memory; 9462 9463 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9464 OpInfo.ConstraintType == TargetLowering::C_Other) { 9465 std::vector<SDValue> Ops; 9466 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9467 Ops, DAG); 9468 if (Ops.empty()) { 9469 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9470 if (isa<ConstantSDNode>(InOperandVal)) { 9471 emitInlineAsmError(Call, "value out of range for constraint '" + 9472 Twine(OpInfo.ConstraintCode) + "'"); 9473 return; 9474 } 9475 9476 emitInlineAsmError(Call, 9477 "invalid operand for inline asm constraint '" + 9478 Twine(OpInfo.ConstraintCode) + "'"); 9479 return; 9480 } 9481 9482 // Add information to the INLINEASM node to know about this input. 9483 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9484 AsmNodeOperands.push_back(DAG.getTargetConstant( 9485 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9486 llvm::append_range(AsmNodeOperands, Ops); 9487 break; 9488 } 9489 9490 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9491 assert((OpInfo.isIndirect || 9492 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9493 "Operand must be indirect to be a mem!"); 9494 assert(InOperandVal.getValueType() == 9495 TLI.getPointerTy(DAG.getDataLayout()) && 9496 "Memory operands expect pointer values"); 9497 9498 const InlineAsm::ConstraintCode ConstraintID = 9499 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9500 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9501 "Failed to convert memory constraint code to constraint id."); 9502 9503 // Add information to the INLINEASM node to know about this input. 9504 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9505 ResOpType.setMemConstraint(ConstraintID); 9506 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9507 getCurSDLoc(), 9508 MVT::i32)); 9509 AsmNodeOperands.push_back(InOperandVal); 9510 break; 9511 } 9512 9513 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9514 const InlineAsm::ConstraintCode ConstraintID = 9515 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9516 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9517 "Failed to convert memory constraint code to constraint id."); 9518 9519 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9520 9521 SDValue AsmOp = InOperandVal; 9522 if (isFunction(InOperandVal)) { 9523 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9524 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9525 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9526 InOperandVal.getValueType(), 9527 GA->getOffset()); 9528 } 9529 9530 // Add information to the INLINEASM node to know about this input. 9531 ResOpType.setMemConstraint(ConstraintID); 9532 9533 AsmNodeOperands.push_back( 9534 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9535 9536 AsmNodeOperands.push_back(AsmOp); 9537 break; 9538 } 9539 9540 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9541 OpInfo.ConstraintType == TargetLowering::C_Register) && 9542 "Unknown constraint type!"); 9543 9544 // TODO: Support this. 9545 if (OpInfo.isIndirect) { 9546 emitInlineAsmError( 9547 Call, "Don't know how to handle indirect register inputs yet " 9548 "for constraint '" + 9549 Twine(OpInfo.ConstraintCode) + "'"); 9550 return; 9551 } 9552 9553 // Copy the input into the appropriate registers. 9554 if (OpInfo.AssignedRegs.Regs.empty()) { 9555 emitInlineAsmError(Call, 9556 "couldn't allocate input reg for constraint '" + 9557 Twine(OpInfo.ConstraintCode) + "'"); 9558 return; 9559 } 9560 9561 if (DetectWriteToReservedRegister()) 9562 return; 9563 9564 SDLoc dl = getCurSDLoc(); 9565 9566 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9567 &Call); 9568 9569 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9570 0, dl, DAG, AsmNodeOperands); 9571 break; 9572 } 9573 case InlineAsm::isClobber: 9574 // Add the clobbered value to the operand list, so that the register 9575 // allocator is aware that the physreg got clobbered. 9576 if (!OpInfo.AssignedRegs.Regs.empty()) 9577 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9578 false, 0, getCurSDLoc(), DAG, 9579 AsmNodeOperands); 9580 break; 9581 } 9582 } 9583 9584 // Finish up input operands. Set the input chain and add the flag last. 9585 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9586 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9587 9588 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9589 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9590 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9591 Glue = Chain.getValue(1); 9592 9593 // Do additional work to generate outputs. 9594 9595 SmallVector<EVT, 1> ResultVTs; 9596 SmallVector<SDValue, 1> ResultValues; 9597 SmallVector<SDValue, 8> OutChains; 9598 9599 llvm::Type *CallResultType = Call.getType(); 9600 ArrayRef<Type *> ResultTypes; 9601 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9602 ResultTypes = StructResult->elements(); 9603 else if (!CallResultType->isVoidTy()) 9604 ResultTypes = ArrayRef(CallResultType); 9605 9606 auto CurResultType = ResultTypes.begin(); 9607 auto handleRegAssign = [&](SDValue V) { 9608 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9609 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9610 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9611 ++CurResultType; 9612 // If the type of the inline asm call site return value is different but has 9613 // same size as the type of the asm output bitcast it. One example of this 9614 // is for vectors with different width / number of elements. This can 9615 // happen for register classes that can contain multiple different value 9616 // types. The preg or vreg allocated may not have the same VT as was 9617 // expected. 9618 // 9619 // This can also happen for a return value that disagrees with the register 9620 // class it is put in, eg. a double in a general-purpose register on a 9621 // 32-bit machine. 9622 if (ResultVT != V.getValueType() && 9623 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9624 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9625 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9626 V.getValueType().isInteger()) { 9627 // If a result value was tied to an input value, the computed result 9628 // may have a wider width than the expected result. Extract the 9629 // relevant portion. 9630 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9631 } 9632 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9633 ResultVTs.push_back(ResultVT); 9634 ResultValues.push_back(V); 9635 }; 9636 9637 // Deal with output operands. 9638 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9639 if (OpInfo.Type == InlineAsm::isOutput) { 9640 SDValue Val; 9641 // Skip trivial output operands. 9642 if (OpInfo.AssignedRegs.Regs.empty()) 9643 continue; 9644 9645 switch (OpInfo.ConstraintType) { 9646 case TargetLowering::C_Register: 9647 case TargetLowering::C_RegisterClass: 9648 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9649 Chain, &Glue, &Call); 9650 break; 9651 case TargetLowering::C_Immediate: 9652 case TargetLowering::C_Other: 9653 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9654 OpInfo, DAG); 9655 break; 9656 case TargetLowering::C_Memory: 9657 break; // Already handled. 9658 case TargetLowering::C_Address: 9659 break; // Silence warning. 9660 case TargetLowering::C_Unknown: 9661 assert(false && "Unexpected unknown constraint"); 9662 } 9663 9664 // Indirect output manifest as stores. Record output chains. 9665 if (OpInfo.isIndirect) { 9666 const Value *Ptr = OpInfo.CallOperandVal; 9667 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9668 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9669 MachinePointerInfo(Ptr)); 9670 OutChains.push_back(Store); 9671 } else { 9672 // generate CopyFromRegs to associated registers. 9673 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9674 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9675 for (const SDValue &V : Val->op_values()) 9676 handleRegAssign(V); 9677 } else 9678 handleRegAssign(Val); 9679 } 9680 } 9681 } 9682 9683 // Set results. 9684 if (!ResultValues.empty()) { 9685 assert(CurResultType == ResultTypes.end() && 9686 "Mismatch in number of ResultTypes"); 9687 assert(ResultValues.size() == ResultTypes.size() && 9688 "Mismatch in number of output operands in asm result"); 9689 9690 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9691 DAG.getVTList(ResultVTs), ResultValues); 9692 setValue(&Call, V); 9693 } 9694 9695 // Collect store chains. 9696 if (!OutChains.empty()) 9697 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9698 9699 if (EmitEHLabels) { 9700 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9701 } 9702 9703 // Only Update Root if inline assembly has a memory effect. 9704 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9705 EmitEHLabels) 9706 DAG.setRoot(Chain); 9707 } 9708 9709 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9710 const Twine &Message) { 9711 LLVMContext &Ctx = *DAG.getContext(); 9712 Ctx.emitError(&Call, Message); 9713 9714 // Make sure we leave the DAG in a valid state 9715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9716 SmallVector<EVT, 1> ValueVTs; 9717 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9718 9719 if (ValueVTs.empty()) 9720 return; 9721 9722 SmallVector<SDValue, 1> Ops; 9723 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9724 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9725 9726 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9727 } 9728 9729 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9730 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9731 MVT::Other, getRoot(), 9732 getValue(I.getArgOperand(0)), 9733 DAG.getSrcValue(I.getArgOperand(0)))); 9734 } 9735 9736 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9738 const DataLayout &DL = DAG.getDataLayout(); 9739 SDValue V = DAG.getVAArg( 9740 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9741 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9742 DL.getABITypeAlign(I.getType()).value()); 9743 DAG.setRoot(V.getValue(1)); 9744 9745 if (I.getType()->isPointerTy()) 9746 V = DAG.getPtrExtOrTrunc( 9747 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9748 setValue(&I, V); 9749 } 9750 9751 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9752 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9753 MVT::Other, getRoot(), 9754 getValue(I.getArgOperand(0)), 9755 DAG.getSrcValue(I.getArgOperand(0)))); 9756 } 9757 9758 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9759 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9760 MVT::Other, getRoot(), 9761 getValue(I.getArgOperand(0)), 9762 getValue(I.getArgOperand(1)), 9763 DAG.getSrcValue(I.getArgOperand(0)), 9764 DAG.getSrcValue(I.getArgOperand(1)))); 9765 } 9766 9767 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9768 const Instruction &I, 9769 SDValue Op) { 9770 const MDNode *Range = getRangeMetadata(I); 9771 if (!Range) 9772 return Op; 9773 9774 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9775 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9776 return Op; 9777 9778 APInt Lo = CR.getUnsignedMin(); 9779 if (!Lo.isMinValue()) 9780 return Op; 9781 9782 APInt Hi = CR.getUnsignedMax(); 9783 unsigned Bits = std::max(Hi.getActiveBits(), 9784 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9785 9786 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9787 9788 SDLoc SL = getCurSDLoc(); 9789 9790 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9791 DAG.getValueType(SmallVT)); 9792 unsigned NumVals = Op.getNode()->getNumValues(); 9793 if (NumVals == 1) 9794 return ZExt; 9795 9796 SmallVector<SDValue, 4> Ops; 9797 9798 Ops.push_back(ZExt); 9799 for (unsigned I = 1; I != NumVals; ++I) 9800 Ops.push_back(Op.getValue(I)); 9801 9802 return DAG.getMergeValues(Ops, SL); 9803 } 9804 9805 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9806 /// the call being lowered. 9807 /// 9808 /// This is a helper for lowering intrinsics that follow a target calling 9809 /// convention or require stack pointer adjustment. Only a subset of the 9810 /// intrinsic's operands need to participate in the calling convention. 9811 void SelectionDAGBuilder::populateCallLoweringInfo( 9812 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9813 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9814 AttributeSet RetAttrs, bool IsPatchPoint) { 9815 TargetLowering::ArgListTy Args; 9816 Args.reserve(NumArgs); 9817 9818 // Populate the argument list. 9819 // Attributes for args start at offset 1, after the return attribute. 9820 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9821 ArgI != ArgE; ++ArgI) { 9822 const Value *V = Call->getOperand(ArgI); 9823 9824 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9825 9826 TargetLowering::ArgListEntry Entry; 9827 Entry.Node = getValue(V); 9828 Entry.Ty = V->getType(); 9829 Entry.setAttributes(Call, ArgI); 9830 Args.push_back(Entry); 9831 } 9832 9833 CLI.setDebugLoc(getCurSDLoc()) 9834 .setChain(getRoot()) 9835 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9836 RetAttrs) 9837 .setDiscardResult(Call->use_empty()) 9838 .setIsPatchPoint(IsPatchPoint) 9839 .setIsPreallocated( 9840 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9841 } 9842 9843 /// Add a stack map intrinsic call's live variable operands to a stackmap 9844 /// or patchpoint target node's operand list. 9845 /// 9846 /// Constants are converted to TargetConstants purely as an optimization to 9847 /// avoid constant materialization and register allocation. 9848 /// 9849 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9850 /// generate addess computation nodes, and so FinalizeISel can convert the 9851 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9852 /// address materialization and register allocation, but may also be required 9853 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9854 /// alloca in the entry block, then the runtime may assume that the alloca's 9855 /// StackMap location can be read immediately after compilation and that the 9856 /// location is valid at any point during execution (this is similar to the 9857 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9858 /// only available in a register, then the runtime would need to trap when 9859 /// execution reaches the StackMap in order to read the alloca's location. 9860 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9861 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9862 SelectionDAGBuilder &Builder) { 9863 SelectionDAG &DAG = Builder.DAG; 9864 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9865 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9866 9867 // Things on the stack are pointer-typed, meaning that they are already 9868 // legal and can be emitted directly to target nodes. 9869 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9870 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9871 } else { 9872 // Otherwise emit a target independent node to be legalised. 9873 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9874 } 9875 } 9876 } 9877 9878 /// Lower llvm.experimental.stackmap. 9879 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9880 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9881 // [live variables...]) 9882 9883 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9884 9885 SDValue Chain, InGlue, Callee; 9886 SmallVector<SDValue, 32> Ops; 9887 9888 SDLoc DL = getCurSDLoc(); 9889 Callee = getValue(CI.getCalledOperand()); 9890 9891 // The stackmap intrinsic only records the live variables (the arguments 9892 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9893 // intrinsic, this won't be lowered to a function call. This means we don't 9894 // have to worry about calling conventions and target specific lowering code. 9895 // Instead we perform the call lowering right here. 9896 // 9897 // chain, flag = CALLSEQ_START(chain, 0, 0) 9898 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9899 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9900 // 9901 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9902 InGlue = Chain.getValue(1); 9903 9904 // Add the STACKMAP operands, starting with DAG house-keeping. 9905 Ops.push_back(Chain); 9906 Ops.push_back(InGlue); 9907 9908 // Add the <id>, <numShadowBytes> operands. 9909 // 9910 // These do not require legalisation, and can be emitted directly to target 9911 // constant nodes. 9912 SDValue ID = getValue(CI.getArgOperand(0)); 9913 assert(ID.getValueType() == MVT::i64); 9914 SDValue IDConst = DAG.getTargetConstant( 9915 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9916 Ops.push_back(IDConst); 9917 9918 SDValue Shad = getValue(CI.getArgOperand(1)); 9919 assert(Shad.getValueType() == MVT::i32); 9920 SDValue ShadConst = DAG.getTargetConstant( 9921 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9922 Ops.push_back(ShadConst); 9923 9924 // Add the live variables. 9925 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9926 9927 // Create the STACKMAP node. 9928 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9929 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9930 InGlue = Chain.getValue(1); 9931 9932 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9933 9934 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9935 9936 // Set the root to the target-lowered call chain. 9937 DAG.setRoot(Chain); 9938 9939 // Inform the Frame Information that we have a stackmap in this function. 9940 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9941 } 9942 9943 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9944 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9945 const BasicBlock *EHPadBB) { 9946 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9947 // i32 <numBytes>, 9948 // i8* <target>, 9949 // i32 <numArgs>, 9950 // [Args...], 9951 // [live variables...]) 9952 9953 CallingConv::ID CC = CB.getCallingConv(); 9954 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9955 bool HasDef = !CB.getType()->isVoidTy(); 9956 SDLoc dl = getCurSDLoc(); 9957 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9958 9959 // Handle immediate and symbolic callees. 9960 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9961 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9962 /*isTarget=*/true); 9963 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9964 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9965 SDLoc(SymbolicCallee), 9966 SymbolicCallee->getValueType(0)); 9967 9968 // Get the real number of arguments participating in the call <numArgs> 9969 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9970 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9971 9972 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9973 // Intrinsics include all meta-operands up to but not including CC. 9974 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9975 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9976 "Not enough arguments provided to the patchpoint intrinsic"); 9977 9978 // For AnyRegCC the arguments are lowered later on manually. 9979 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9980 Type *ReturnTy = 9981 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9982 9983 TargetLowering::CallLoweringInfo CLI(DAG); 9984 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9985 ReturnTy, CB.getAttributes().getRetAttrs(), true); 9986 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9987 9988 SDNode *CallEnd = Result.second.getNode(); 9989 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9990 CallEnd = CallEnd->getOperand(0).getNode(); 9991 9992 /// Get a call instruction from the call sequence chain. 9993 /// Tail calls are not allowed. 9994 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9995 "Expected a callseq node."); 9996 SDNode *Call = CallEnd->getOperand(0).getNode(); 9997 bool HasGlue = Call->getGluedNode(); 9998 9999 // Replace the target specific call node with the patchable intrinsic. 10000 SmallVector<SDValue, 8> Ops; 10001 10002 // Push the chain. 10003 Ops.push_back(*(Call->op_begin())); 10004 10005 // Optionally, push the glue (if any). 10006 if (HasGlue) 10007 Ops.push_back(*(Call->op_end() - 1)); 10008 10009 // Push the register mask info. 10010 if (HasGlue) 10011 Ops.push_back(*(Call->op_end() - 2)); 10012 else 10013 Ops.push_back(*(Call->op_end() - 1)); 10014 10015 // Add the <id> and <numBytes> constants. 10016 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10017 Ops.push_back(DAG.getTargetConstant( 10018 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 10019 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10020 Ops.push_back(DAG.getTargetConstant( 10021 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 10022 MVT::i32)); 10023 10024 // Add the callee. 10025 Ops.push_back(Callee); 10026 10027 // Adjust <numArgs> to account for any arguments that have been passed on the 10028 // stack instead. 10029 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10030 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10031 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10032 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10033 10034 // Add the calling convention 10035 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10036 10037 // Add the arguments we omitted previously. The register allocator should 10038 // place these in any free register. 10039 if (IsAnyRegCC) 10040 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10041 Ops.push_back(getValue(CB.getArgOperand(i))); 10042 10043 // Push the arguments from the call instruction. 10044 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10045 Ops.append(Call->op_begin() + 2, e); 10046 10047 // Push live variables for the stack map. 10048 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10049 10050 SDVTList NodeTys; 10051 if (IsAnyRegCC && HasDef) { 10052 // Create the return types based on the intrinsic definition 10053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10054 SmallVector<EVT, 3> ValueVTs; 10055 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10056 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10057 10058 // There is always a chain and a glue type at the end 10059 ValueVTs.push_back(MVT::Other); 10060 ValueVTs.push_back(MVT::Glue); 10061 NodeTys = DAG.getVTList(ValueVTs); 10062 } else 10063 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10064 10065 // Replace the target specific call node with a PATCHPOINT node. 10066 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10067 10068 // Update the NodeMap. 10069 if (HasDef) { 10070 if (IsAnyRegCC) 10071 setValue(&CB, SDValue(PPV.getNode(), 0)); 10072 else 10073 setValue(&CB, Result.first); 10074 } 10075 10076 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10077 // call sequence. Furthermore the location of the chain and glue can change 10078 // when the AnyReg calling convention is used and the intrinsic returns a 10079 // value. 10080 if (IsAnyRegCC && HasDef) { 10081 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10082 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10083 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10084 } else 10085 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10086 DAG.DeleteNode(Call); 10087 10088 // Inform the Frame Information that we have a patchpoint in this function. 10089 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10090 } 10091 10092 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10093 unsigned Intrinsic) { 10094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10095 SDValue Op1 = getValue(I.getArgOperand(0)); 10096 SDValue Op2; 10097 if (I.arg_size() > 1) 10098 Op2 = getValue(I.getArgOperand(1)); 10099 SDLoc dl = getCurSDLoc(); 10100 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10101 SDValue Res; 10102 SDNodeFlags SDFlags; 10103 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10104 SDFlags.copyFMF(*FPMO); 10105 10106 switch (Intrinsic) { 10107 case Intrinsic::vector_reduce_fadd: 10108 if (SDFlags.hasAllowReassociation()) 10109 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10110 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10111 SDFlags); 10112 else 10113 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10114 break; 10115 case Intrinsic::vector_reduce_fmul: 10116 if (SDFlags.hasAllowReassociation()) 10117 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10118 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10119 SDFlags); 10120 else 10121 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10122 break; 10123 case Intrinsic::vector_reduce_add: 10124 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10125 break; 10126 case Intrinsic::vector_reduce_mul: 10127 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10128 break; 10129 case Intrinsic::vector_reduce_and: 10130 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10131 break; 10132 case Intrinsic::vector_reduce_or: 10133 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10134 break; 10135 case Intrinsic::vector_reduce_xor: 10136 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10137 break; 10138 case Intrinsic::vector_reduce_smax: 10139 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10140 break; 10141 case Intrinsic::vector_reduce_smin: 10142 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10143 break; 10144 case Intrinsic::vector_reduce_umax: 10145 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10146 break; 10147 case Intrinsic::vector_reduce_umin: 10148 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10149 break; 10150 case Intrinsic::vector_reduce_fmax: 10151 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10152 break; 10153 case Intrinsic::vector_reduce_fmin: 10154 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10155 break; 10156 case Intrinsic::vector_reduce_fmaximum: 10157 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10158 break; 10159 case Intrinsic::vector_reduce_fminimum: 10160 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10161 break; 10162 default: 10163 llvm_unreachable("Unhandled vector reduce intrinsic"); 10164 } 10165 setValue(&I, Res); 10166 } 10167 10168 /// Returns an AttributeList representing the attributes applied to the return 10169 /// value of the given call. 10170 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10171 SmallVector<Attribute::AttrKind, 2> Attrs; 10172 if (CLI.RetSExt) 10173 Attrs.push_back(Attribute::SExt); 10174 if (CLI.RetZExt) 10175 Attrs.push_back(Attribute::ZExt); 10176 if (CLI.IsInReg) 10177 Attrs.push_back(Attribute::InReg); 10178 10179 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10180 Attrs); 10181 } 10182 10183 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10184 /// implementation, which just calls LowerCall. 10185 /// FIXME: When all targets are 10186 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10187 std::pair<SDValue, SDValue> 10188 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10189 // Handle the incoming return values from the call. 10190 CLI.Ins.clear(); 10191 Type *OrigRetTy = CLI.RetTy; 10192 SmallVector<EVT, 4> RetTys; 10193 SmallVector<uint64_t, 4> Offsets; 10194 auto &DL = CLI.DAG.getDataLayout(); 10195 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10196 10197 if (CLI.IsPostTypeLegalization) { 10198 // If we are lowering a libcall after legalization, split the return type. 10199 SmallVector<EVT, 4> OldRetTys; 10200 SmallVector<uint64_t, 4> OldOffsets; 10201 RetTys.swap(OldRetTys); 10202 Offsets.swap(OldOffsets); 10203 10204 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10205 EVT RetVT = OldRetTys[i]; 10206 uint64_t Offset = OldOffsets[i]; 10207 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10208 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10209 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10210 RetTys.append(NumRegs, RegisterVT); 10211 for (unsigned j = 0; j != NumRegs; ++j) 10212 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10213 } 10214 } 10215 10216 SmallVector<ISD::OutputArg, 4> Outs; 10217 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10218 10219 bool CanLowerReturn = 10220 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10221 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10222 10223 SDValue DemoteStackSlot; 10224 int DemoteStackIdx = -100; 10225 if (!CanLowerReturn) { 10226 // FIXME: equivalent assert? 10227 // assert(!CS.hasInAllocaArgument() && 10228 // "sret demotion is incompatible with inalloca"); 10229 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10230 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10231 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10232 DemoteStackIdx = 10233 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10234 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10235 DL.getAllocaAddrSpace()); 10236 10237 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10238 ArgListEntry Entry; 10239 Entry.Node = DemoteStackSlot; 10240 Entry.Ty = StackSlotPtrType; 10241 Entry.IsSExt = false; 10242 Entry.IsZExt = false; 10243 Entry.IsInReg = false; 10244 Entry.IsSRet = true; 10245 Entry.IsNest = false; 10246 Entry.IsByVal = false; 10247 Entry.IsByRef = false; 10248 Entry.IsReturned = false; 10249 Entry.IsSwiftSelf = false; 10250 Entry.IsSwiftAsync = false; 10251 Entry.IsSwiftError = false; 10252 Entry.IsCFGuardTarget = false; 10253 Entry.Alignment = Alignment; 10254 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10255 CLI.NumFixedArgs += 1; 10256 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10257 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10258 10259 // sret demotion isn't compatible with tail-calls, since the sret argument 10260 // points into the callers stack frame. 10261 CLI.IsTailCall = false; 10262 } else { 10263 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10264 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10265 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10266 ISD::ArgFlagsTy Flags; 10267 if (NeedsRegBlock) { 10268 Flags.setInConsecutiveRegs(); 10269 if (I == RetTys.size() - 1) 10270 Flags.setInConsecutiveRegsLast(); 10271 } 10272 EVT VT = RetTys[I]; 10273 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10274 CLI.CallConv, VT); 10275 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10276 CLI.CallConv, VT); 10277 for (unsigned i = 0; i != NumRegs; ++i) { 10278 ISD::InputArg MyFlags; 10279 MyFlags.Flags = Flags; 10280 MyFlags.VT = RegisterVT; 10281 MyFlags.ArgVT = VT; 10282 MyFlags.Used = CLI.IsReturnValueUsed; 10283 if (CLI.RetTy->isPointerTy()) { 10284 MyFlags.Flags.setPointer(); 10285 MyFlags.Flags.setPointerAddrSpace( 10286 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10287 } 10288 if (CLI.RetSExt) 10289 MyFlags.Flags.setSExt(); 10290 if (CLI.RetZExt) 10291 MyFlags.Flags.setZExt(); 10292 if (CLI.IsInReg) 10293 MyFlags.Flags.setInReg(); 10294 CLI.Ins.push_back(MyFlags); 10295 } 10296 } 10297 } 10298 10299 // We push in swifterror return as the last element of CLI.Ins. 10300 ArgListTy &Args = CLI.getArgs(); 10301 if (supportSwiftError()) { 10302 for (const ArgListEntry &Arg : Args) { 10303 if (Arg.IsSwiftError) { 10304 ISD::InputArg MyFlags; 10305 MyFlags.VT = getPointerTy(DL); 10306 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10307 MyFlags.Flags.setSwiftError(); 10308 CLI.Ins.push_back(MyFlags); 10309 } 10310 } 10311 } 10312 10313 // Handle all of the outgoing arguments. 10314 CLI.Outs.clear(); 10315 CLI.OutVals.clear(); 10316 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10317 SmallVector<EVT, 4> ValueVTs; 10318 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10319 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10320 Type *FinalType = Args[i].Ty; 10321 if (Args[i].IsByVal) 10322 FinalType = Args[i].IndirectType; 10323 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10324 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10325 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10326 ++Value) { 10327 EVT VT = ValueVTs[Value]; 10328 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10329 SDValue Op = SDValue(Args[i].Node.getNode(), 10330 Args[i].Node.getResNo() + Value); 10331 ISD::ArgFlagsTy Flags; 10332 10333 // Certain targets (such as MIPS), may have a different ABI alignment 10334 // for a type depending on the context. Give the target a chance to 10335 // specify the alignment it wants. 10336 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10337 Flags.setOrigAlign(OriginalAlignment); 10338 10339 if (Args[i].Ty->isPointerTy()) { 10340 Flags.setPointer(); 10341 Flags.setPointerAddrSpace( 10342 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10343 } 10344 if (Args[i].IsZExt) 10345 Flags.setZExt(); 10346 if (Args[i].IsSExt) 10347 Flags.setSExt(); 10348 if (Args[i].IsInReg) { 10349 // If we are using vectorcall calling convention, a structure that is 10350 // passed InReg - is surely an HVA 10351 if (CLI.CallConv == CallingConv::X86_VectorCall && 10352 isa<StructType>(FinalType)) { 10353 // The first value of a structure is marked 10354 if (0 == Value) 10355 Flags.setHvaStart(); 10356 Flags.setHva(); 10357 } 10358 // Set InReg Flag 10359 Flags.setInReg(); 10360 } 10361 if (Args[i].IsSRet) 10362 Flags.setSRet(); 10363 if (Args[i].IsSwiftSelf) 10364 Flags.setSwiftSelf(); 10365 if (Args[i].IsSwiftAsync) 10366 Flags.setSwiftAsync(); 10367 if (Args[i].IsSwiftError) 10368 Flags.setSwiftError(); 10369 if (Args[i].IsCFGuardTarget) 10370 Flags.setCFGuardTarget(); 10371 if (Args[i].IsByVal) 10372 Flags.setByVal(); 10373 if (Args[i].IsByRef) 10374 Flags.setByRef(); 10375 if (Args[i].IsPreallocated) { 10376 Flags.setPreallocated(); 10377 // Set the byval flag for CCAssignFn callbacks that don't know about 10378 // preallocated. This way we can know how many bytes we should've 10379 // allocated and how many bytes a callee cleanup function will pop. If 10380 // we port preallocated to more targets, we'll have to add custom 10381 // preallocated handling in the various CC lowering callbacks. 10382 Flags.setByVal(); 10383 } 10384 if (Args[i].IsInAlloca) { 10385 Flags.setInAlloca(); 10386 // Set the byval flag for CCAssignFn callbacks that don't know about 10387 // inalloca. This way we can know how many bytes we should've allocated 10388 // and how many bytes a callee cleanup function will pop. If we port 10389 // inalloca to more targets, we'll have to add custom inalloca handling 10390 // in the various CC lowering callbacks. 10391 Flags.setByVal(); 10392 } 10393 Align MemAlign; 10394 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10395 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10396 Flags.setByValSize(FrameSize); 10397 10398 // info is not there but there are cases it cannot get right. 10399 if (auto MA = Args[i].Alignment) 10400 MemAlign = *MA; 10401 else 10402 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10403 } else if (auto MA = Args[i].Alignment) { 10404 MemAlign = *MA; 10405 } else { 10406 MemAlign = OriginalAlignment; 10407 } 10408 Flags.setMemAlign(MemAlign); 10409 if (Args[i].IsNest) 10410 Flags.setNest(); 10411 if (NeedsRegBlock) 10412 Flags.setInConsecutiveRegs(); 10413 10414 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10415 CLI.CallConv, VT); 10416 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10417 CLI.CallConv, VT); 10418 SmallVector<SDValue, 4> Parts(NumParts); 10419 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10420 10421 if (Args[i].IsSExt) 10422 ExtendKind = ISD::SIGN_EXTEND; 10423 else if (Args[i].IsZExt) 10424 ExtendKind = ISD::ZERO_EXTEND; 10425 10426 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10427 // for now. 10428 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10429 CanLowerReturn) { 10430 assert((CLI.RetTy == Args[i].Ty || 10431 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10432 CLI.RetTy->getPointerAddressSpace() == 10433 Args[i].Ty->getPointerAddressSpace())) && 10434 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10435 // Before passing 'returned' to the target lowering code, ensure that 10436 // either the register MVT and the actual EVT are the same size or that 10437 // the return value and argument are extended in the same way; in these 10438 // cases it's safe to pass the argument register value unchanged as the 10439 // return register value (although it's at the target's option whether 10440 // to do so) 10441 // TODO: allow code generation to take advantage of partially preserved 10442 // registers rather than clobbering the entire register when the 10443 // parameter extension method is not compatible with the return 10444 // extension method 10445 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10446 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10447 CLI.RetZExt == Args[i].IsZExt)) 10448 Flags.setReturned(); 10449 } 10450 10451 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10452 CLI.CallConv, ExtendKind); 10453 10454 for (unsigned j = 0; j != NumParts; ++j) { 10455 // if it isn't first piece, alignment must be 1 10456 // For scalable vectors the scalable part is currently handled 10457 // by individual targets, so we just use the known minimum size here. 10458 ISD::OutputArg MyFlags( 10459 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10460 i < CLI.NumFixedArgs, i, 10461 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10462 if (NumParts > 1 && j == 0) 10463 MyFlags.Flags.setSplit(); 10464 else if (j != 0) { 10465 MyFlags.Flags.setOrigAlign(Align(1)); 10466 if (j == NumParts - 1) 10467 MyFlags.Flags.setSplitEnd(); 10468 } 10469 10470 CLI.Outs.push_back(MyFlags); 10471 CLI.OutVals.push_back(Parts[j]); 10472 } 10473 10474 if (NeedsRegBlock && Value == NumValues - 1) 10475 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10476 } 10477 } 10478 10479 SmallVector<SDValue, 4> InVals; 10480 CLI.Chain = LowerCall(CLI, InVals); 10481 10482 // Update CLI.InVals to use outside of this function. 10483 CLI.InVals = InVals; 10484 10485 // Verify that the target's LowerCall behaved as expected. 10486 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10487 "LowerCall didn't return a valid chain!"); 10488 assert((!CLI.IsTailCall || InVals.empty()) && 10489 "LowerCall emitted a return value for a tail call!"); 10490 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10491 "LowerCall didn't emit the correct number of values!"); 10492 10493 // For a tail call, the return value is merely live-out and there aren't 10494 // any nodes in the DAG representing it. Return a special value to 10495 // indicate that a tail call has been emitted and no more Instructions 10496 // should be processed in the current block. 10497 if (CLI.IsTailCall) { 10498 CLI.DAG.setRoot(CLI.Chain); 10499 return std::make_pair(SDValue(), SDValue()); 10500 } 10501 10502 #ifndef NDEBUG 10503 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10504 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10505 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10506 "LowerCall emitted a value with the wrong type!"); 10507 } 10508 #endif 10509 10510 SmallVector<SDValue, 4> ReturnValues; 10511 if (!CanLowerReturn) { 10512 // The instruction result is the result of loading from the 10513 // hidden sret parameter. 10514 SmallVector<EVT, 1> PVTs; 10515 Type *PtrRetTy = 10516 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10517 10518 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10519 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10520 EVT PtrVT = PVTs[0]; 10521 10522 unsigned NumValues = RetTys.size(); 10523 ReturnValues.resize(NumValues); 10524 SmallVector<SDValue, 4> Chains(NumValues); 10525 10526 // An aggregate return value cannot wrap around the address space, so 10527 // offsets to its parts don't wrap either. 10528 SDNodeFlags Flags; 10529 Flags.setNoUnsignedWrap(true); 10530 10531 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10532 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10533 for (unsigned i = 0; i < NumValues; ++i) { 10534 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10535 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10536 PtrVT), Flags); 10537 SDValue L = CLI.DAG.getLoad( 10538 RetTys[i], CLI.DL, CLI.Chain, Add, 10539 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10540 DemoteStackIdx, Offsets[i]), 10541 HiddenSRetAlign); 10542 ReturnValues[i] = L; 10543 Chains[i] = L.getValue(1); 10544 } 10545 10546 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10547 } else { 10548 // Collect the legal value parts into potentially illegal values 10549 // that correspond to the original function's return values. 10550 std::optional<ISD::NodeType> AssertOp; 10551 if (CLI.RetSExt) 10552 AssertOp = ISD::AssertSext; 10553 else if (CLI.RetZExt) 10554 AssertOp = ISD::AssertZext; 10555 unsigned CurReg = 0; 10556 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10557 EVT VT = RetTys[I]; 10558 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10559 CLI.CallConv, VT); 10560 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10561 CLI.CallConv, VT); 10562 10563 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10564 NumRegs, RegisterVT, VT, nullptr, 10565 CLI.CallConv, AssertOp)); 10566 CurReg += NumRegs; 10567 } 10568 10569 // For a function returning void, there is no return value. We can't create 10570 // such a node, so we just return a null return value in that case. In 10571 // that case, nothing will actually look at the value. 10572 if (ReturnValues.empty()) 10573 return std::make_pair(SDValue(), CLI.Chain); 10574 } 10575 10576 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10577 CLI.DAG.getVTList(RetTys), ReturnValues); 10578 return std::make_pair(Res, CLI.Chain); 10579 } 10580 10581 /// Places new result values for the node in Results (their number 10582 /// and types must exactly match those of the original return values of 10583 /// the node), or leaves Results empty, which indicates that the node is not 10584 /// to be custom lowered after all. 10585 void TargetLowering::LowerOperationWrapper(SDNode *N, 10586 SmallVectorImpl<SDValue> &Results, 10587 SelectionDAG &DAG) const { 10588 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10589 10590 if (!Res.getNode()) 10591 return; 10592 10593 // If the original node has one result, take the return value from 10594 // LowerOperation as is. It might not be result number 0. 10595 if (N->getNumValues() == 1) { 10596 Results.push_back(Res); 10597 return; 10598 } 10599 10600 // If the original node has multiple results, then the return node should 10601 // have the same number of results. 10602 assert((N->getNumValues() == Res->getNumValues()) && 10603 "Lowering returned the wrong number of results!"); 10604 10605 // Places new result values base on N result number. 10606 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10607 Results.push_back(Res.getValue(I)); 10608 } 10609 10610 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10611 llvm_unreachable("LowerOperation not implemented for this target!"); 10612 } 10613 10614 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10615 unsigned Reg, 10616 ISD::NodeType ExtendType) { 10617 SDValue Op = getNonRegisterValue(V); 10618 assert((Op.getOpcode() != ISD::CopyFromReg || 10619 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10620 "Copy from a reg to the same reg!"); 10621 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10622 10623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10624 // If this is an InlineAsm we have to match the registers required, not the 10625 // notional registers required by the type. 10626 10627 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10628 std::nullopt); // This is not an ABI copy. 10629 SDValue Chain = DAG.getEntryNode(); 10630 10631 if (ExtendType == ISD::ANY_EXTEND) { 10632 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10633 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10634 ExtendType = PreferredExtendIt->second; 10635 } 10636 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10637 PendingExports.push_back(Chain); 10638 } 10639 10640 #include "llvm/CodeGen/SelectionDAGISel.h" 10641 10642 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10643 /// entry block, return true. This includes arguments used by switches, since 10644 /// the switch may expand into multiple basic blocks. 10645 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10646 // With FastISel active, we may be splitting blocks, so force creation 10647 // of virtual registers for all non-dead arguments. 10648 if (FastISel) 10649 return A->use_empty(); 10650 10651 const BasicBlock &Entry = A->getParent()->front(); 10652 for (const User *U : A->users()) 10653 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10654 return false; // Use not in entry block. 10655 10656 return true; 10657 } 10658 10659 using ArgCopyElisionMapTy = 10660 DenseMap<const Argument *, 10661 std::pair<const AllocaInst *, const StoreInst *>>; 10662 10663 /// Scan the entry block of the function in FuncInfo for arguments that look 10664 /// like copies into a local alloca. Record any copied arguments in 10665 /// ArgCopyElisionCandidates. 10666 static void 10667 findArgumentCopyElisionCandidates(const DataLayout &DL, 10668 FunctionLoweringInfo *FuncInfo, 10669 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10670 // Record the state of every static alloca used in the entry block. Argument 10671 // allocas are all used in the entry block, so we need approximately as many 10672 // entries as we have arguments. 10673 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10674 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10675 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10676 StaticAllocas.reserve(NumArgs * 2); 10677 10678 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10679 if (!V) 10680 return nullptr; 10681 V = V->stripPointerCasts(); 10682 const auto *AI = dyn_cast<AllocaInst>(V); 10683 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10684 return nullptr; 10685 auto Iter = StaticAllocas.insert({AI, Unknown}); 10686 return &Iter.first->second; 10687 }; 10688 10689 // Look for stores of arguments to static allocas. Look through bitcasts and 10690 // GEPs to handle type coercions, as long as the alloca is fully initialized 10691 // by the store. Any non-store use of an alloca escapes it and any subsequent 10692 // unanalyzed store might write it. 10693 // FIXME: Handle structs initialized with multiple stores. 10694 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10695 // Look for stores, and handle non-store uses conservatively. 10696 const auto *SI = dyn_cast<StoreInst>(&I); 10697 if (!SI) { 10698 // We will look through cast uses, so ignore them completely. 10699 if (I.isCast()) 10700 continue; 10701 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10702 // to allocas. 10703 if (I.isDebugOrPseudoInst()) 10704 continue; 10705 // This is an unknown instruction. Assume it escapes or writes to all 10706 // static alloca operands. 10707 for (const Use &U : I.operands()) { 10708 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10709 *Info = StaticAllocaInfo::Clobbered; 10710 } 10711 continue; 10712 } 10713 10714 // If the stored value is a static alloca, mark it as escaped. 10715 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10716 *Info = StaticAllocaInfo::Clobbered; 10717 10718 // Check if the destination is a static alloca. 10719 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10720 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10721 if (!Info) 10722 continue; 10723 const AllocaInst *AI = cast<AllocaInst>(Dst); 10724 10725 // Skip allocas that have been initialized or clobbered. 10726 if (*Info != StaticAllocaInfo::Unknown) 10727 continue; 10728 10729 // Check if the stored value is an argument, and that this store fully 10730 // initializes the alloca. 10731 // If the argument type has padding bits we can't directly forward a pointer 10732 // as the upper bits may contain garbage. 10733 // Don't elide copies from the same argument twice. 10734 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10735 const auto *Arg = dyn_cast<Argument>(Val); 10736 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10737 Arg->getType()->isEmptyTy() || 10738 DL.getTypeStoreSize(Arg->getType()) != 10739 DL.getTypeAllocSize(AI->getAllocatedType()) || 10740 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10741 ArgCopyElisionCandidates.count(Arg)) { 10742 *Info = StaticAllocaInfo::Clobbered; 10743 continue; 10744 } 10745 10746 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10747 << '\n'); 10748 10749 // Mark this alloca and store for argument copy elision. 10750 *Info = StaticAllocaInfo::Elidable; 10751 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10752 10753 // Stop scanning if we've seen all arguments. This will happen early in -O0 10754 // builds, which is useful, because -O0 builds have large entry blocks and 10755 // many allocas. 10756 if (ArgCopyElisionCandidates.size() == NumArgs) 10757 break; 10758 } 10759 } 10760 10761 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10762 /// ArgVal is a load from a suitable fixed stack object. 10763 static void tryToElideArgumentCopy( 10764 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10765 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10766 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10767 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10768 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10769 // Check if this is a load from a fixed stack object. 10770 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10771 if (!LNode) 10772 return; 10773 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10774 if (!FINode) 10775 return; 10776 10777 // Check that the fixed stack object is the right size and alignment. 10778 // Look at the alignment that the user wrote on the alloca instead of looking 10779 // at the stack object. 10780 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10781 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10782 const AllocaInst *AI = ArgCopyIter->second.first; 10783 int FixedIndex = FINode->getIndex(); 10784 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10785 int OldIndex = AllocaIndex; 10786 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10787 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10788 LLVM_DEBUG( 10789 dbgs() << " argument copy elision failed due to bad fixed stack " 10790 "object size\n"); 10791 return; 10792 } 10793 Align RequiredAlignment = AI->getAlign(); 10794 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10795 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10796 "greater than stack argument alignment (" 10797 << DebugStr(RequiredAlignment) << " vs " 10798 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10799 return; 10800 } 10801 10802 // Perform the elision. Delete the old stack object and replace its only use 10803 // in the variable info map. Mark the stack object as mutable. 10804 LLVM_DEBUG({ 10805 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10806 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10807 << '\n'; 10808 }); 10809 MFI.RemoveStackObject(OldIndex); 10810 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10811 AllocaIndex = FixedIndex; 10812 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10813 for (SDValue ArgVal : ArgVals) 10814 Chains.push_back(ArgVal.getValue(1)); 10815 10816 // Avoid emitting code for the store implementing the copy. 10817 const StoreInst *SI = ArgCopyIter->second.second; 10818 ElidedArgCopyInstrs.insert(SI); 10819 10820 // Check for uses of the argument again so that we can avoid exporting ArgVal 10821 // if it is't used by anything other than the store. 10822 for (const Value *U : Arg.users()) { 10823 if (U != SI) { 10824 ArgHasUses = true; 10825 break; 10826 } 10827 } 10828 } 10829 10830 void SelectionDAGISel::LowerArguments(const Function &F) { 10831 SelectionDAG &DAG = SDB->DAG; 10832 SDLoc dl = SDB->getCurSDLoc(); 10833 const DataLayout &DL = DAG.getDataLayout(); 10834 SmallVector<ISD::InputArg, 16> Ins; 10835 10836 // In Naked functions we aren't going to save any registers. 10837 if (F.hasFnAttribute(Attribute::Naked)) 10838 return; 10839 10840 if (!FuncInfo->CanLowerReturn) { 10841 // Put in an sret pointer parameter before all the other parameters. 10842 SmallVector<EVT, 1> ValueVTs; 10843 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10844 PointerType::get(F.getContext(), 10845 DAG.getDataLayout().getAllocaAddrSpace()), 10846 ValueVTs); 10847 10848 // NOTE: Assuming that a pointer will never break down to more than one VT 10849 // or one register. 10850 ISD::ArgFlagsTy Flags; 10851 Flags.setSRet(); 10852 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10853 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10854 ISD::InputArg::NoArgIndex, 0); 10855 Ins.push_back(RetArg); 10856 } 10857 10858 // Look for stores of arguments to static allocas. Mark such arguments with a 10859 // flag to ask the target to give us the memory location of that argument if 10860 // available. 10861 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10862 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10863 ArgCopyElisionCandidates); 10864 10865 // Set up the incoming argument description vector. 10866 for (const Argument &Arg : F.args()) { 10867 unsigned ArgNo = Arg.getArgNo(); 10868 SmallVector<EVT, 4> ValueVTs; 10869 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10870 bool isArgValueUsed = !Arg.use_empty(); 10871 unsigned PartBase = 0; 10872 Type *FinalType = Arg.getType(); 10873 if (Arg.hasAttribute(Attribute::ByVal)) 10874 FinalType = Arg.getParamByValType(); 10875 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10876 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10877 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10878 Value != NumValues; ++Value) { 10879 EVT VT = ValueVTs[Value]; 10880 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10881 ISD::ArgFlagsTy Flags; 10882 10883 10884 if (Arg.getType()->isPointerTy()) { 10885 Flags.setPointer(); 10886 Flags.setPointerAddrSpace( 10887 cast<PointerType>(Arg.getType())->getAddressSpace()); 10888 } 10889 if (Arg.hasAttribute(Attribute::ZExt)) 10890 Flags.setZExt(); 10891 if (Arg.hasAttribute(Attribute::SExt)) 10892 Flags.setSExt(); 10893 if (Arg.hasAttribute(Attribute::InReg)) { 10894 // If we are using vectorcall calling convention, a structure that is 10895 // passed InReg - is surely an HVA 10896 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10897 isa<StructType>(Arg.getType())) { 10898 // The first value of a structure is marked 10899 if (0 == Value) 10900 Flags.setHvaStart(); 10901 Flags.setHva(); 10902 } 10903 // Set InReg Flag 10904 Flags.setInReg(); 10905 } 10906 if (Arg.hasAttribute(Attribute::StructRet)) 10907 Flags.setSRet(); 10908 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10909 Flags.setSwiftSelf(); 10910 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10911 Flags.setSwiftAsync(); 10912 if (Arg.hasAttribute(Attribute::SwiftError)) 10913 Flags.setSwiftError(); 10914 if (Arg.hasAttribute(Attribute::ByVal)) 10915 Flags.setByVal(); 10916 if (Arg.hasAttribute(Attribute::ByRef)) 10917 Flags.setByRef(); 10918 if (Arg.hasAttribute(Attribute::InAlloca)) { 10919 Flags.setInAlloca(); 10920 // Set the byval flag for CCAssignFn callbacks that don't know about 10921 // inalloca. This way we can know how many bytes we should've allocated 10922 // and how many bytes a callee cleanup function will pop. If we port 10923 // inalloca to more targets, we'll have to add custom inalloca handling 10924 // in the various CC lowering callbacks. 10925 Flags.setByVal(); 10926 } 10927 if (Arg.hasAttribute(Attribute::Preallocated)) { 10928 Flags.setPreallocated(); 10929 // Set the byval flag for CCAssignFn callbacks that don't know about 10930 // preallocated. This way we can know how many bytes we should've 10931 // allocated and how many bytes a callee cleanup function will pop. If 10932 // we port preallocated to more targets, we'll have to add custom 10933 // preallocated handling in the various CC lowering callbacks. 10934 Flags.setByVal(); 10935 } 10936 10937 // Certain targets (such as MIPS), may have a different ABI alignment 10938 // for a type depending on the context. Give the target a chance to 10939 // specify the alignment it wants. 10940 const Align OriginalAlignment( 10941 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10942 Flags.setOrigAlign(OriginalAlignment); 10943 10944 Align MemAlign; 10945 Type *ArgMemTy = nullptr; 10946 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10947 Flags.isByRef()) { 10948 if (!ArgMemTy) 10949 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10950 10951 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10952 10953 // For in-memory arguments, size and alignment should be passed from FE. 10954 // BE will guess if this info is not there but there are cases it cannot 10955 // get right. 10956 if (auto ParamAlign = Arg.getParamStackAlign()) 10957 MemAlign = *ParamAlign; 10958 else if ((ParamAlign = Arg.getParamAlign())) 10959 MemAlign = *ParamAlign; 10960 else 10961 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10962 if (Flags.isByRef()) 10963 Flags.setByRefSize(MemSize); 10964 else 10965 Flags.setByValSize(MemSize); 10966 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10967 MemAlign = *ParamAlign; 10968 } else { 10969 MemAlign = OriginalAlignment; 10970 } 10971 Flags.setMemAlign(MemAlign); 10972 10973 if (Arg.hasAttribute(Attribute::Nest)) 10974 Flags.setNest(); 10975 if (NeedsRegBlock) 10976 Flags.setInConsecutiveRegs(); 10977 if (ArgCopyElisionCandidates.count(&Arg)) 10978 Flags.setCopyElisionCandidate(); 10979 if (Arg.hasAttribute(Attribute::Returned)) 10980 Flags.setReturned(); 10981 10982 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10983 *CurDAG->getContext(), F.getCallingConv(), VT); 10984 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10985 *CurDAG->getContext(), F.getCallingConv(), VT); 10986 for (unsigned i = 0; i != NumRegs; ++i) { 10987 // For scalable vectors, use the minimum size; individual targets 10988 // are responsible for handling scalable vector arguments and 10989 // return values. 10990 ISD::InputArg MyFlags( 10991 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10992 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10993 if (NumRegs > 1 && i == 0) 10994 MyFlags.Flags.setSplit(); 10995 // if it isn't first piece, alignment must be 1 10996 else if (i > 0) { 10997 MyFlags.Flags.setOrigAlign(Align(1)); 10998 if (i == NumRegs - 1) 10999 MyFlags.Flags.setSplitEnd(); 11000 } 11001 Ins.push_back(MyFlags); 11002 } 11003 if (NeedsRegBlock && Value == NumValues - 1) 11004 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11005 PartBase += VT.getStoreSize().getKnownMinValue(); 11006 } 11007 } 11008 11009 // Call the target to set up the argument values. 11010 SmallVector<SDValue, 8> InVals; 11011 SDValue NewRoot = TLI->LowerFormalArguments( 11012 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11013 11014 // Verify that the target's LowerFormalArguments behaved as expected. 11015 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11016 "LowerFormalArguments didn't return a valid chain!"); 11017 assert(InVals.size() == Ins.size() && 11018 "LowerFormalArguments didn't emit the correct number of values!"); 11019 LLVM_DEBUG({ 11020 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11021 assert(InVals[i].getNode() && 11022 "LowerFormalArguments emitted a null value!"); 11023 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11024 "LowerFormalArguments emitted a value with the wrong type!"); 11025 } 11026 }); 11027 11028 // Update the DAG with the new chain value resulting from argument lowering. 11029 DAG.setRoot(NewRoot); 11030 11031 // Set up the argument values. 11032 unsigned i = 0; 11033 if (!FuncInfo->CanLowerReturn) { 11034 // Create a virtual register for the sret pointer, and put in a copy 11035 // from the sret argument into it. 11036 SmallVector<EVT, 1> ValueVTs; 11037 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11038 PointerType::get(F.getContext(), 11039 DAG.getDataLayout().getAllocaAddrSpace()), 11040 ValueVTs); 11041 MVT VT = ValueVTs[0].getSimpleVT(); 11042 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11043 std::optional<ISD::NodeType> AssertOp; 11044 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 11045 nullptr, F.getCallingConv(), AssertOp); 11046 11047 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11048 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11049 Register SRetReg = 11050 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11051 FuncInfo->DemoteRegister = SRetReg; 11052 NewRoot = 11053 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11054 DAG.setRoot(NewRoot); 11055 11056 // i indexes lowered arguments. Bump it past the hidden sret argument. 11057 ++i; 11058 } 11059 11060 SmallVector<SDValue, 4> Chains; 11061 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11062 for (const Argument &Arg : F.args()) { 11063 SmallVector<SDValue, 4> ArgValues; 11064 SmallVector<EVT, 4> ValueVTs; 11065 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11066 unsigned NumValues = ValueVTs.size(); 11067 if (NumValues == 0) 11068 continue; 11069 11070 bool ArgHasUses = !Arg.use_empty(); 11071 11072 // Elide the copying store if the target loaded this argument from a 11073 // suitable fixed stack object. 11074 if (Ins[i].Flags.isCopyElisionCandidate()) { 11075 unsigned NumParts = 0; 11076 for (EVT VT : ValueVTs) 11077 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11078 F.getCallingConv(), VT); 11079 11080 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11081 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11082 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11083 } 11084 11085 // If this argument is unused then remember its value. It is used to generate 11086 // debugging information. 11087 bool isSwiftErrorArg = 11088 TLI->supportSwiftError() && 11089 Arg.hasAttribute(Attribute::SwiftError); 11090 if (!ArgHasUses && !isSwiftErrorArg) { 11091 SDB->setUnusedArgValue(&Arg, InVals[i]); 11092 11093 // Also remember any frame index for use in FastISel. 11094 if (FrameIndexSDNode *FI = 11095 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11096 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11097 } 11098 11099 for (unsigned Val = 0; Val != NumValues; ++Val) { 11100 EVT VT = ValueVTs[Val]; 11101 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11102 F.getCallingConv(), VT); 11103 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11104 *CurDAG->getContext(), F.getCallingConv(), VT); 11105 11106 // Even an apparent 'unused' swifterror argument needs to be returned. So 11107 // we do generate a copy for it that can be used on return from the 11108 // function. 11109 if (ArgHasUses || isSwiftErrorArg) { 11110 std::optional<ISD::NodeType> AssertOp; 11111 if (Arg.hasAttribute(Attribute::SExt)) 11112 AssertOp = ISD::AssertSext; 11113 else if (Arg.hasAttribute(Attribute::ZExt)) 11114 AssertOp = ISD::AssertZext; 11115 11116 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11117 PartVT, VT, nullptr, 11118 F.getCallingConv(), AssertOp)); 11119 } 11120 11121 i += NumParts; 11122 } 11123 11124 // We don't need to do anything else for unused arguments. 11125 if (ArgValues.empty()) 11126 continue; 11127 11128 // Note down frame index. 11129 if (FrameIndexSDNode *FI = 11130 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11131 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11132 11133 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11134 SDB->getCurSDLoc()); 11135 11136 SDB->setValue(&Arg, Res); 11137 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11138 // We want to associate the argument with the frame index, among 11139 // involved operands, that correspond to the lowest address. The 11140 // getCopyFromParts function, called earlier, is swapping the order of 11141 // the operands to BUILD_PAIR depending on endianness. The result of 11142 // that swapping is that the least significant bits of the argument will 11143 // be in the first operand of the BUILD_PAIR node, and the most 11144 // significant bits will be in the second operand. 11145 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11146 if (LoadSDNode *LNode = 11147 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11148 if (FrameIndexSDNode *FI = 11149 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11150 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11151 } 11152 11153 // Analyses past this point are naive and don't expect an assertion. 11154 if (Res.getOpcode() == ISD::AssertZext) 11155 Res = Res.getOperand(0); 11156 11157 // Update the SwiftErrorVRegDefMap. 11158 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11159 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11160 if (Register::isVirtualRegister(Reg)) 11161 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11162 Reg); 11163 } 11164 11165 // If this argument is live outside of the entry block, insert a copy from 11166 // wherever we got it to the vreg that other BB's will reference it as. 11167 if (Res.getOpcode() == ISD::CopyFromReg) { 11168 // If we can, though, try to skip creating an unnecessary vreg. 11169 // FIXME: This isn't very clean... it would be nice to make this more 11170 // general. 11171 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11172 if (Register::isVirtualRegister(Reg)) { 11173 FuncInfo->ValueMap[&Arg] = Reg; 11174 continue; 11175 } 11176 } 11177 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11178 FuncInfo->InitializeRegForValue(&Arg); 11179 SDB->CopyToExportRegsIfNeeded(&Arg); 11180 } 11181 } 11182 11183 if (!Chains.empty()) { 11184 Chains.push_back(NewRoot); 11185 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11186 } 11187 11188 DAG.setRoot(NewRoot); 11189 11190 assert(i == InVals.size() && "Argument register count mismatch!"); 11191 11192 // If any argument copy elisions occurred and we have debug info, update the 11193 // stale frame indices used in the dbg.declare variable info table. 11194 if (!ArgCopyElisionFrameIndexMap.empty()) { 11195 for (MachineFunction::VariableDbgInfo &VI : 11196 MF->getInStackSlotVariableDbgInfo()) { 11197 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11198 if (I != ArgCopyElisionFrameIndexMap.end()) 11199 VI.updateStackSlot(I->second); 11200 } 11201 } 11202 11203 // Finally, if the target has anything special to do, allow it to do so. 11204 emitFunctionEntryCode(); 11205 } 11206 11207 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11208 /// ensure constants are generated when needed. Remember the virtual registers 11209 /// that need to be added to the Machine PHI nodes as input. We cannot just 11210 /// directly add them, because expansion might result in multiple MBB's for one 11211 /// BB. As such, the start of the BB might correspond to a different MBB than 11212 /// the end. 11213 void 11214 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11215 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11216 11217 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11218 11219 // Check PHI nodes in successors that expect a value to be available from this 11220 // block. 11221 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11222 if (!isa<PHINode>(SuccBB->begin())) continue; 11223 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11224 11225 // If this terminator has multiple identical successors (common for 11226 // switches), only handle each succ once. 11227 if (!SuccsHandled.insert(SuccMBB).second) 11228 continue; 11229 11230 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11231 11232 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11233 // nodes and Machine PHI nodes, but the incoming operands have not been 11234 // emitted yet. 11235 for (const PHINode &PN : SuccBB->phis()) { 11236 // Ignore dead phi's. 11237 if (PN.use_empty()) 11238 continue; 11239 11240 // Skip empty types 11241 if (PN.getType()->isEmptyTy()) 11242 continue; 11243 11244 unsigned Reg; 11245 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11246 11247 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11248 unsigned &RegOut = ConstantsOut[C]; 11249 if (RegOut == 0) { 11250 RegOut = FuncInfo.CreateRegs(C); 11251 // We need to zero/sign extend ConstantInt phi operands to match 11252 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11253 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11254 if (auto *CI = dyn_cast<ConstantInt>(C)) 11255 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11256 : ISD::ZERO_EXTEND; 11257 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11258 } 11259 Reg = RegOut; 11260 } else { 11261 DenseMap<const Value *, Register>::iterator I = 11262 FuncInfo.ValueMap.find(PHIOp); 11263 if (I != FuncInfo.ValueMap.end()) 11264 Reg = I->second; 11265 else { 11266 assert(isa<AllocaInst>(PHIOp) && 11267 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11268 "Didn't codegen value into a register!??"); 11269 Reg = FuncInfo.CreateRegs(PHIOp); 11270 CopyValueToVirtualRegister(PHIOp, Reg); 11271 } 11272 } 11273 11274 // Remember that this register needs to added to the machine PHI node as 11275 // the input for this MBB. 11276 SmallVector<EVT, 4> ValueVTs; 11277 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11278 for (EVT VT : ValueVTs) { 11279 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11280 for (unsigned i = 0; i != NumRegisters; ++i) 11281 FuncInfo.PHINodesToUpdate.push_back( 11282 std::make_pair(&*MBBI++, Reg + i)); 11283 Reg += NumRegisters; 11284 } 11285 } 11286 } 11287 11288 ConstantsOut.clear(); 11289 } 11290 11291 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11292 MachineFunction::iterator I(MBB); 11293 if (++I == FuncInfo.MF->end()) 11294 return nullptr; 11295 return &*I; 11296 } 11297 11298 /// During lowering new call nodes can be created (such as memset, etc.). 11299 /// Those will become new roots of the current DAG, but complications arise 11300 /// when they are tail calls. In such cases, the call lowering will update 11301 /// the root, but the builder still needs to know that a tail call has been 11302 /// lowered in order to avoid generating an additional return. 11303 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11304 // If the node is null, we do have a tail call. 11305 if (MaybeTC.getNode() != nullptr) 11306 DAG.setRoot(MaybeTC); 11307 else 11308 HasTailCall = true; 11309 } 11310 11311 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11312 MachineBasicBlock *SwitchMBB, 11313 MachineBasicBlock *DefaultMBB) { 11314 MachineFunction *CurMF = FuncInfo.MF; 11315 MachineBasicBlock *NextMBB = nullptr; 11316 MachineFunction::iterator BBI(W.MBB); 11317 if (++BBI != FuncInfo.MF->end()) 11318 NextMBB = &*BBI; 11319 11320 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11321 11322 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11323 11324 if (Size == 2 && W.MBB == SwitchMBB) { 11325 // If any two of the cases has the same destination, and if one value 11326 // is the same as the other, but has one bit unset that the other has set, 11327 // use bit manipulation to do two compares at once. For example: 11328 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11329 // TODO: This could be extended to merge any 2 cases in switches with 3 11330 // cases. 11331 // TODO: Handle cases where W.CaseBB != SwitchBB. 11332 CaseCluster &Small = *W.FirstCluster; 11333 CaseCluster &Big = *W.LastCluster; 11334 11335 if (Small.Low == Small.High && Big.Low == Big.High && 11336 Small.MBB == Big.MBB) { 11337 const APInt &SmallValue = Small.Low->getValue(); 11338 const APInt &BigValue = Big.Low->getValue(); 11339 11340 // Check that there is only one bit different. 11341 APInt CommonBit = BigValue ^ SmallValue; 11342 if (CommonBit.isPowerOf2()) { 11343 SDValue CondLHS = getValue(Cond); 11344 EVT VT = CondLHS.getValueType(); 11345 SDLoc DL = getCurSDLoc(); 11346 11347 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11348 DAG.getConstant(CommonBit, DL, VT)); 11349 SDValue Cond = DAG.getSetCC( 11350 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11351 ISD::SETEQ); 11352 11353 // Update successor info. 11354 // Both Small and Big will jump to Small.BB, so we sum up the 11355 // probabilities. 11356 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11357 if (BPI) 11358 addSuccessorWithProb( 11359 SwitchMBB, DefaultMBB, 11360 // The default destination is the first successor in IR. 11361 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11362 else 11363 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11364 11365 // Insert the true branch. 11366 SDValue BrCond = 11367 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11368 DAG.getBasicBlock(Small.MBB)); 11369 // Insert the false branch. 11370 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11371 DAG.getBasicBlock(DefaultMBB)); 11372 11373 DAG.setRoot(BrCond); 11374 return; 11375 } 11376 } 11377 } 11378 11379 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11380 // Here, we order cases by probability so the most likely case will be 11381 // checked first. However, two clusters can have the same probability in 11382 // which case their relative ordering is non-deterministic. So we use Low 11383 // as a tie-breaker as clusters are guaranteed to never overlap. 11384 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11385 [](const CaseCluster &a, const CaseCluster &b) { 11386 return a.Prob != b.Prob ? 11387 a.Prob > b.Prob : 11388 a.Low->getValue().slt(b.Low->getValue()); 11389 }); 11390 11391 // Rearrange the case blocks so that the last one falls through if possible 11392 // without changing the order of probabilities. 11393 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11394 --I; 11395 if (I->Prob > W.LastCluster->Prob) 11396 break; 11397 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11398 std::swap(*I, *W.LastCluster); 11399 break; 11400 } 11401 } 11402 } 11403 11404 // Compute total probability. 11405 BranchProbability DefaultProb = W.DefaultProb; 11406 BranchProbability UnhandledProbs = DefaultProb; 11407 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11408 UnhandledProbs += I->Prob; 11409 11410 MachineBasicBlock *CurMBB = W.MBB; 11411 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11412 bool FallthroughUnreachable = false; 11413 MachineBasicBlock *Fallthrough; 11414 if (I == W.LastCluster) { 11415 // For the last cluster, fall through to the default destination. 11416 Fallthrough = DefaultMBB; 11417 FallthroughUnreachable = isa<UnreachableInst>( 11418 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11419 } else { 11420 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11421 CurMF->insert(BBI, Fallthrough); 11422 // Put Cond in a virtual register to make it available from the new blocks. 11423 ExportFromCurrentBlock(Cond); 11424 } 11425 UnhandledProbs -= I->Prob; 11426 11427 switch (I->Kind) { 11428 case CC_JumpTable: { 11429 // FIXME: Optimize away range check based on pivot comparisons. 11430 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11431 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11432 11433 // The jump block hasn't been inserted yet; insert it here. 11434 MachineBasicBlock *JumpMBB = JT->MBB; 11435 CurMF->insert(BBI, JumpMBB); 11436 11437 auto JumpProb = I->Prob; 11438 auto FallthroughProb = UnhandledProbs; 11439 11440 // If the default statement is a target of the jump table, we evenly 11441 // distribute the default probability to successors of CurMBB. Also 11442 // update the probability on the edge from JumpMBB to Fallthrough. 11443 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11444 SE = JumpMBB->succ_end(); 11445 SI != SE; ++SI) { 11446 if (*SI == DefaultMBB) { 11447 JumpProb += DefaultProb / 2; 11448 FallthroughProb -= DefaultProb / 2; 11449 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11450 JumpMBB->normalizeSuccProbs(); 11451 break; 11452 } 11453 } 11454 11455 // If the default clause is unreachable, propagate that knowledge into 11456 // JTH->FallthroughUnreachable which will use it to suppress the range 11457 // check. 11458 // 11459 // However, don't do this if we're doing branch target enforcement, 11460 // because a table branch _without_ a range check can be a tempting JOP 11461 // gadget - out-of-bounds inputs that are impossible in correct 11462 // execution become possible again if an attacker can influence the 11463 // control flow. So if an attacker doesn't already have a BTI bypass 11464 // available, we don't want them to be able to get one out of this 11465 // table branch. 11466 if (FallthroughUnreachable) { 11467 Function &CurFunc = CurMF->getFunction(); 11468 bool HasBranchTargetEnforcement = false; 11469 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11470 HasBranchTargetEnforcement = 11471 CurFunc.getFnAttribute("branch-target-enforcement") 11472 .getValueAsBool(); 11473 } else { 11474 HasBranchTargetEnforcement = 11475 CurMF->getMMI().getModule()->getModuleFlag( 11476 "branch-target-enforcement"); 11477 } 11478 if (!HasBranchTargetEnforcement) 11479 JTH->FallthroughUnreachable = true; 11480 } 11481 11482 if (!JTH->FallthroughUnreachable) 11483 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11484 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11485 CurMBB->normalizeSuccProbs(); 11486 11487 // The jump table header will be inserted in our current block, do the 11488 // range check, and fall through to our fallthrough block. 11489 JTH->HeaderBB = CurMBB; 11490 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11491 11492 // If we're in the right place, emit the jump table header right now. 11493 if (CurMBB == SwitchMBB) { 11494 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11495 JTH->Emitted = true; 11496 } 11497 break; 11498 } 11499 case CC_BitTests: { 11500 // FIXME: Optimize away range check based on pivot comparisons. 11501 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11502 11503 // The bit test blocks haven't been inserted yet; insert them here. 11504 for (BitTestCase &BTC : BTB->Cases) 11505 CurMF->insert(BBI, BTC.ThisBB); 11506 11507 // Fill in fields of the BitTestBlock. 11508 BTB->Parent = CurMBB; 11509 BTB->Default = Fallthrough; 11510 11511 BTB->DefaultProb = UnhandledProbs; 11512 // If the cases in bit test don't form a contiguous range, we evenly 11513 // distribute the probability on the edge to Fallthrough to two 11514 // successors of CurMBB. 11515 if (!BTB->ContiguousRange) { 11516 BTB->Prob += DefaultProb / 2; 11517 BTB->DefaultProb -= DefaultProb / 2; 11518 } 11519 11520 if (FallthroughUnreachable) 11521 BTB->FallthroughUnreachable = true; 11522 11523 // If we're in the right place, emit the bit test header right now. 11524 if (CurMBB == SwitchMBB) { 11525 visitBitTestHeader(*BTB, SwitchMBB); 11526 BTB->Emitted = true; 11527 } 11528 break; 11529 } 11530 case CC_Range: { 11531 const Value *RHS, *LHS, *MHS; 11532 ISD::CondCode CC; 11533 if (I->Low == I->High) { 11534 // Check Cond == I->Low. 11535 CC = ISD::SETEQ; 11536 LHS = Cond; 11537 RHS=I->Low; 11538 MHS = nullptr; 11539 } else { 11540 // Check I->Low <= Cond <= I->High. 11541 CC = ISD::SETLE; 11542 LHS = I->Low; 11543 MHS = Cond; 11544 RHS = I->High; 11545 } 11546 11547 // If Fallthrough is unreachable, fold away the comparison. 11548 if (FallthroughUnreachable) 11549 CC = ISD::SETTRUE; 11550 11551 // The false probability is the sum of all unhandled cases. 11552 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11553 getCurSDLoc(), I->Prob, UnhandledProbs); 11554 11555 if (CurMBB == SwitchMBB) 11556 visitSwitchCase(CB, SwitchMBB); 11557 else 11558 SL->SwitchCases.push_back(CB); 11559 11560 break; 11561 } 11562 } 11563 CurMBB = Fallthrough; 11564 } 11565 } 11566 11567 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11568 CaseClusterIt First, 11569 CaseClusterIt Last) { 11570 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11571 if (X.Prob != CC.Prob) 11572 return X.Prob > CC.Prob; 11573 11574 // Ties are broken by comparing the case value. 11575 return X.Low->getValue().slt(CC.Low->getValue()); 11576 }); 11577 } 11578 11579 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11580 const SwitchWorkListItem &W, 11581 Value *Cond, 11582 MachineBasicBlock *SwitchMBB) { 11583 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11584 "Clusters not sorted?"); 11585 11586 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11587 11588 // Balance the tree based on branch probabilities to create a near-optimal (in 11589 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11590 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11591 CaseClusterIt LastLeft = W.FirstCluster; 11592 CaseClusterIt FirstRight = W.LastCluster; 11593 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11594 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11595 11596 // Move LastLeft and FirstRight towards each other from opposite directions to 11597 // find a partitioning of the clusters which balances the probability on both 11598 // sides. If LeftProb and RightProb are equal, alternate which side is 11599 // taken to ensure 0-probability nodes are distributed evenly. 11600 unsigned I = 0; 11601 while (LastLeft + 1 < FirstRight) { 11602 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11603 LeftProb += (++LastLeft)->Prob; 11604 else 11605 RightProb += (--FirstRight)->Prob; 11606 I++; 11607 } 11608 11609 while (true) { 11610 // Our binary search tree differs from a typical BST in that ours can have up 11611 // to three values in each leaf. The pivot selection above doesn't take that 11612 // into account, which means the tree might require more nodes and be less 11613 // efficient. We compensate for this here. 11614 11615 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11616 unsigned NumRight = W.LastCluster - FirstRight + 1; 11617 11618 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11619 // If one side has less than 3 clusters, and the other has more than 3, 11620 // consider taking a cluster from the other side. 11621 11622 if (NumLeft < NumRight) { 11623 // Consider moving the first cluster on the right to the left side. 11624 CaseCluster &CC = *FirstRight; 11625 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11626 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11627 if (LeftSideRank <= RightSideRank) { 11628 // Moving the cluster to the left does not demote it. 11629 ++LastLeft; 11630 ++FirstRight; 11631 continue; 11632 } 11633 } else { 11634 assert(NumRight < NumLeft); 11635 // Consider moving the last element on the left to the right side. 11636 CaseCluster &CC = *LastLeft; 11637 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11638 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11639 if (RightSideRank <= LeftSideRank) { 11640 // Moving the cluster to the right does not demot it. 11641 --LastLeft; 11642 --FirstRight; 11643 continue; 11644 } 11645 } 11646 } 11647 break; 11648 } 11649 11650 assert(LastLeft + 1 == FirstRight); 11651 assert(LastLeft >= W.FirstCluster); 11652 assert(FirstRight <= W.LastCluster); 11653 11654 // Use the first element on the right as pivot since we will make less-than 11655 // comparisons against it. 11656 CaseClusterIt PivotCluster = FirstRight; 11657 assert(PivotCluster > W.FirstCluster); 11658 assert(PivotCluster <= W.LastCluster); 11659 11660 CaseClusterIt FirstLeft = W.FirstCluster; 11661 CaseClusterIt LastRight = W.LastCluster; 11662 11663 const ConstantInt *Pivot = PivotCluster->Low; 11664 11665 // New blocks will be inserted immediately after the current one. 11666 MachineFunction::iterator BBI(W.MBB); 11667 ++BBI; 11668 11669 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11670 // we can branch to its destination directly if it's squeezed exactly in 11671 // between the known lower bound and Pivot - 1. 11672 MachineBasicBlock *LeftMBB; 11673 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11674 FirstLeft->Low == W.GE && 11675 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11676 LeftMBB = FirstLeft->MBB; 11677 } else { 11678 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11679 FuncInfo.MF->insert(BBI, LeftMBB); 11680 WorkList.push_back( 11681 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11682 // Put Cond in a virtual register to make it available from the new blocks. 11683 ExportFromCurrentBlock(Cond); 11684 } 11685 11686 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11687 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11688 // directly if RHS.High equals the current upper bound. 11689 MachineBasicBlock *RightMBB; 11690 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11691 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11692 RightMBB = FirstRight->MBB; 11693 } else { 11694 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11695 FuncInfo.MF->insert(BBI, RightMBB); 11696 WorkList.push_back( 11697 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11698 // Put Cond in a virtual register to make it available from the new blocks. 11699 ExportFromCurrentBlock(Cond); 11700 } 11701 11702 // Create the CaseBlock record that will be used to lower the branch. 11703 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11704 getCurSDLoc(), LeftProb, RightProb); 11705 11706 if (W.MBB == SwitchMBB) 11707 visitSwitchCase(CB, SwitchMBB); 11708 else 11709 SL->SwitchCases.push_back(CB); 11710 } 11711 11712 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11713 // from the swith statement. 11714 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11715 BranchProbability PeeledCaseProb) { 11716 if (PeeledCaseProb == BranchProbability::getOne()) 11717 return BranchProbability::getZero(); 11718 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11719 11720 uint32_t Numerator = CaseProb.getNumerator(); 11721 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11722 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11723 } 11724 11725 // Try to peel the top probability case if it exceeds the threshold. 11726 // Return current MachineBasicBlock for the switch statement if the peeling 11727 // does not occur. 11728 // If the peeling is performed, return the newly created MachineBasicBlock 11729 // for the peeled switch statement. Also update Clusters to remove the peeled 11730 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11731 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11732 const SwitchInst &SI, CaseClusterVector &Clusters, 11733 BranchProbability &PeeledCaseProb) { 11734 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11735 // Don't perform if there is only one cluster or optimizing for size. 11736 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11737 TM.getOptLevel() == CodeGenOptLevel::None || 11738 SwitchMBB->getParent()->getFunction().hasMinSize()) 11739 return SwitchMBB; 11740 11741 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11742 unsigned PeeledCaseIndex = 0; 11743 bool SwitchPeeled = false; 11744 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11745 CaseCluster &CC = Clusters[Index]; 11746 if (CC.Prob < TopCaseProb) 11747 continue; 11748 TopCaseProb = CC.Prob; 11749 PeeledCaseIndex = Index; 11750 SwitchPeeled = true; 11751 } 11752 if (!SwitchPeeled) 11753 return SwitchMBB; 11754 11755 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11756 << TopCaseProb << "\n"); 11757 11758 // Record the MBB for the peeled switch statement. 11759 MachineFunction::iterator BBI(SwitchMBB); 11760 ++BBI; 11761 MachineBasicBlock *PeeledSwitchMBB = 11762 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11763 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11764 11765 ExportFromCurrentBlock(SI.getCondition()); 11766 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11767 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11768 nullptr, nullptr, TopCaseProb.getCompl()}; 11769 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11770 11771 Clusters.erase(PeeledCaseIt); 11772 for (CaseCluster &CC : Clusters) { 11773 LLVM_DEBUG( 11774 dbgs() << "Scale the probablity for one cluster, before scaling: " 11775 << CC.Prob << "\n"); 11776 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11777 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11778 } 11779 PeeledCaseProb = TopCaseProb; 11780 return PeeledSwitchMBB; 11781 } 11782 11783 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11784 // Extract cases from the switch. 11785 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11786 CaseClusterVector Clusters; 11787 Clusters.reserve(SI.getNumCases()); 11788 for (auto I : SI.cases()) { 11789 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11790 const ConstantInt *CaseVal = I.getCaseValue(); 11791 BranchProbability Prob = 11792 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11793 : BranchProbability(1, SI.getNumCases() + 1); 11794 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11795 } 11796 11797 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11798 11799 // Cluster adjacent cases with the same destination. We do this at all 11800 // optimization levels because it's cheap to do and will make codegen faster 11801 // if there are many clusters. 11802 sortAndRangeify(Clusters); 11803 11804 // The branch probablity of the peeled case. 11805 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11806 MachineBasicBlock *PeeledSwitchMBB = 11807 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11808 11809 // If there is only the default destination, jump there directly. 11810 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11811 if (Clusters.empty()) { 11812 assert(PeeledSwitchMBB == SwitchMBB); 11813 SwitchMBB->addSuccessor(DefaultMBB); 11814 if (DefaultMBB != NextBlock(SwitchMBB)) { 11815 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11816 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11817 } 11818 return; 11819 } 11820 11821 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11822 SL->findBitTestClusters(Clusters, &SI); 11823 11824 LLVM_DEBUG({ 11825 dbgs() << "Case clusters: "; 11826 for (const CaseCluster &C : Clusters) { 11827 if (C.Kind == CC_JumpTable) 11828 dbgs() << "JT:"; 11829 if (C.Kind == CC_BitTests) 11830 dbgs() << "BT:"; 11831 11832 C.Low->getValue().print(dbgs(), true); 11833 if (C.Low != C.High) { 11834 dbgs() << '-'; 11835 C.High->getValue().print(dbgs(), true); 11836 } 11837 dbgs() << ' '; 11838 } 11839 dbgs() << '\n'; 11840 }); 11841 11842 assert(!Clusters.empty()); 11843 SwitchWorkList WorkList; 11844 CaseClusterIt First = Clusters.begin(); 11845 CaseClusterIt Last = Clusters.end() - 1; 11846 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11847 // Scale the branchprobability for DefaultMBB if the peel occurs and 11848 // DefaultMBB is not replaced. 11849 if (PeeledCaseProb != BranchProbability::getZero() && 11850 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11851 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11852 WorkList.push_back( 11853 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11854 11855 while (!WorkList.empty()) { 11856 SwitchWorkListItem W = WorkList.pop_back_val(); 11857 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11858 11859 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11860 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11861 // For optimized builds, lower large range as a balanced binary tree. 11862 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11863 continue; 11864 } 11865 11866 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11867 } 11868 } 11869 11870 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11872 auto DL = getCurSDLoc(); 11873 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11874 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11875 } 11876 11877 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11879 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11880 11881 SDLoc DL = getCurSDLoc(); 11882 SDValue V = getValue(I.getOperand(0)); 11883 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11884 11885 if (VT.isScalableVector()) { 11886 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11887 return; 11888 } 11889 11890 // Use VECTOR_SHUFFLE for the fixed-length vector 11891 // to maintain existing behavior. 11892 SmallVector<int, 8> Mask; 11893 unsigned NumElts = VT.getVectorMinNumElements(); 11894 for (unsigned i = 0; i != NumElts; ++i) 11895 Mask.push_back(NumElts - 1 - i); 11896 11897 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11898 } 11899 11900 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11901 auto DL = getCurSDLoc(); 11902 SDValue InVec = getValue(I.getOperand(0)); 11903 EVT OutVT = 11904 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11905 11906 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11907 11908 // ISD Node needs the input vectors split into two equal parts 11909 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11910 DAG.getVectorIdxConstant(0, DL)); 11911 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11912 DAG.getVectorIdxConstant(OutNumElts, DL)); 11913 11914 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11915 // legalisation and combines. 11916 if (OutVT.isFixedLengthVector()) { 11917 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11918 createStrideMask(0, 2, OutNumElts)); 11919 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11920 createStrideMask(1, 2, OutNumElts)); 11921 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11922 setValue(&I, Res); 11923 return; 11924 } 11925 11926 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11927 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11928 setValue(&I, Res); 11929 } 11930 11931 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11932 auto DL = getCurSDLoc(); 11933 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11934 SDValue InVec0 = getValue(I.getOperand(0)); 11935 SDValue InVec1 = getValue(I.getOperand(1)); 11936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11937 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11938 11939 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11940 // legalisation and combines. 11941 if (OutVT.isFixedLengthVector()) { 11942 unsigned NumElts = InVT.getVectorMinNumElements(); 11943 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11944 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11945 createInterleaveMask(NumElts, 2))); 11946 return; 11947 } 11948 11949 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11950 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11951 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11952 Res.getValue(1)); 11953 setValue(&I, Res); 11954 } 11955 11956 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11957 SmallVector<EVT, 4> ValueVTs; 11958 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11959 ValueVTs); 11960 unsigned NumValues = ValueVTs.size(); 11961 if (NumValues == 0) return; 11962 11963 SmallVector<SDValue, 4> Values(NumValues); 11964 SDValue Op = getValue(I.getOperand(0)); 11965 11966 for (unsigned i = 0; i != NumValues; ++i) 11967 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11968 SDValue(Op.getNode(), Op.getResNo() + i)); 11969 11970 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11971 DAG.getVTList(ValueVTs), Values)); 11972 } 11973 11974 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11976 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11977 11978 SDLoc DL = getCurSDLoc(); 11979 SDValue V1 = getValue(I.getOperand(0)); 11980 SDValue V2 = getValue(I.getOperand(1)); 11981 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11982 11983 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11984 if (VT.isScalableVector()) { 11985 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11986 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11987 DAG.getConstant(Imm, DL, IdxVT))); 11988 return; 11989 } 11990 11991 unsigned NumElts = VT.getVectorNumElements(); 11992 11993 uint64_t Idx = (NumElts + Imm) % NumElts; 11994 11995 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11996 SmallVector<int, 8> Mask; 11997 for (unsigned i = 0; i < NumElts; ++i) 11998 Mask.push_back(Idx + i); 11999 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12000 } 12001 12002 // Consider the following MIR after SelectionDAG, which produces output in 12003 // phyregs in the first case or virtregs in the second case. 12004 // 12005 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12006 // %5:gr32 = COPY $ebx 12007 // %6:gr32 = COPY $edx 12008 // %1:gr32 = COPY %6:gr32 12009 // %0:gr32 = COPY %5:gr32 12010 // 12011 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12012 // %1:gr32 = COPY %6:gr32 12013 // %0:gr32 = COPY %5:gr32 12014 // 12015 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12016 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12017 // 12018 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12019 // to a single virtreg (such as %0). The remaining outputs monotonically 12020 // increase in virtreg number from there. If a callbr has no outputs, then it 12021 // should not have a corresponding callbr landingpad; in fact, the callbr 12022 // landingpad would not even be able to refer to such a callbr. 12023 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12024 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12025 // There is definitely at least one copy. 12026 assert(MI->getOpcode() == TargetOpcode::COPY && 12027 "start of copy chain MUST be COPY"); 12028 Reg = MI->getOperand(1).getReg(); 12029 MI = MRI.def_begin(Reg)->getParent(); 12030 // There may be an optional second copy. 12031 if (MI->getOpcode() == TargetOpcode::COPY) { 12032 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12033 Reg = MI->getOperand(1).getReg(); 12034 assert(Reg.isPhysical() && "expected COPY of physical register"); 12035 MI = MRI.def_begin(Reg)->getParent(); 12036 } 12037 // The start of the chain must be an INLINEASM_BR. 12038 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12039 "end of copy chain MUST be INLINEASM_BR"); 12040 return Reg; 12041 } 12042 12043 // We must do this walk rather than the simpler 12044 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12045 // otherwise we will end up with copies of virtregs only valid along direct 12046 // edges. 12047 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12048 SmallVector<EVT, 8> ResultVTs; 12049 SmallVector<SDValue, 8> ResultValues; 12050 const auto *CBR = 12051 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12052 12053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12054 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12055 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12056 12057 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12058 SDValue Chain = DAG.getRoot(); 12059 12060 // Re-parse the asm constraints string. 12061 TargetLowering::AsmOperandInfoVector TargetConstraints = 12062 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12063 for (auto &T : TargetConstraints) { 12064 SDISelAsmOperandInfo OpInfo(T); 12065 if (OpInfo.Type != InlineAsm::isOutput) 12066 continue; 12067 12068 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12069 // individual constraint. 12070 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12071 12072 switch (OpInfo.ConstraintType) { 12073 case TargetLowering::C_Register: 12074 case TargetLowering::C_RegisterClass: { 12075 // Fill in OpInfo.AssignedRegs.Regs. 12076 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12077 12078 // getRegistersForValue may produce 1 to many registers based on whether 12079 // the OpInfo.ConstraintVT is legal on the target or not. 12080 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12081 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12082 if (Register::isPhysicalRegister(OriginalDef)) 12083 FuncInfo.MBB->addLiveIn(OriginalDef); 12084 // Update the assigned registers to use the original defs. 12085 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12086 } 12087 12088 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12089 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12090 ResultValues.push_back(V); 12091 ResultVTs.push_back(OpInfo.ConstraintVT); 12092 break; 12093 } 12094 case TargetLowering::C_Other: { 12095 SDValue Flag; 12096 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12097 OpInfo, DAG); 12098 ++InitialDef; 12099 ResultValues.push_back(V); 12100 ResultVTs.push_back(OpInfo.ConstraintVT); 12101 break; 12102 } 12103 default: 12104 break; 12105 } 12106 } 12107 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12108 DAG.getVTList(ResultVTs), ResultValues); 12109 setValue(&I, V); 12110 } 12111