1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 // Limit the width of DAG chains. This is important in general to prevent 72 // prevent DAG-based analysis from blowing up. For example, alias analysis and 73 // load clustering may not complete in reasonable time. It is difficult to 74 // recognize and avoid this situation within each individual analysis, and 75 // future analyses are likely to have the same behavior. Limiting DAG width is 76 // the safe approach, and will be especially important with global DAGs. 77 // 78 // MaxParallelChains default is arbitrarily high to avoid affecting 79 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 80 // sequence over this should have been converted to llvm.memcpy by the 81 // frontend. It easy to induce this behavior with .ll code such as: 82 // %buffer = alloca [4096 x i8] 83 // %data = load [4096 x i8]* %argPtr 84 // store [4096 x i8] %data, [4096 x i8]* %buffer 85 static const unsigned MaxParallelChains = 64; 86 87 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 88 const SDValue *Parts, unsigned NumParts, 89 EVT PartVT, EVT ValueVT); 90 91 /// getCopyFromParts - Create a value that contains the specified legal parts 92 /// combined into the value they represent. If the parts combine to a type 93 /// larger then ValueVT then AssertOp can be used to specify whether the extra 94 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 95 /// (ISD::AssertSext). 96 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 97 const SDValue *Parts, 98 unsigned NumParts, EVT PartVT, EVT ValueVT, 99 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 100 if (ValueVT.isVector()) 101 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 102 103 assert(NumParts > 0 && "No parts to assemble!"); 104 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 105 SDValue Val = Parts[0]; 106 107 if (NumParts > 1) { 108 // Assemble the value from multiple parts. 109 if (ValueVT.isInteger()) { 110 unsigned PartBits = PartVT.getSizeInBits(); 111 unsigned ValueBits = ValueVT.getSizeInBits(); 112 113 // Assemble the power of 2 part. 114 unsigned RoundParts = NumParts & (NumParts - 1) ? 115 1 << Log2_32(NumParts) : NumParts; 116 unsigned RoundBits = PartBits * RoundParts; 117 EVT RoundVT = RoundBits == ValueBits ? 118 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 119 SDValue Lo, Hi; 120 121 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 122 123 if (RoundParts > 2) { 124 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 125 PartVT, HalfVT); 126 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 127 RoundParts / 2, PartVT, HalfVT); 128 } else { 129 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 130 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 131 } 132 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 136 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 137 138 if (RoundParts < NumParts) { 139 // Assemble the trailing non-power-of-2 part. 140 unsigned OddParts = NumParts - RoundParts; 141 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 142 Hi = getCopyFromParts(DAG, DL, 143 Parts + RoundParts, OddParts, PartVT, OddVT); 144 145 // Combine the round and odd parts. 146 Lo = Val; 147 if (TLI.isBigEndian()) 148 std::swap(Lo, Hi); 149 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 150 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 151 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 152 DAG.getConstant(Lo.getValueType().getSizeInBits(), 153 TLI.getPointerTy())); 154 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 155 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 156 } 157 } else if (PartVT.isFloatingPoint()) { 158 // FP split into multiple FP parts (for ppcf128) 159 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 160 "Unexpected split"); 161 SDValue Lo, Hi; 162 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 164 if (TLI.isBigEndian()) 165 std::swap(Lo, Hi); 166 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 167 } else { 168 // FP split into integer parts (soft fp) 169 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 170 !PartVT.isVector() && "Unexpected split"); 171 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 172 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 173 } 174 } 175 176 // There is now one part, held in Val. Correct it to match ValueVT. 177 PartVT = Val.getValueType(); 178 179 if (PartVT == ValueVT) 180 return Val; 181 182 if (PartVT.isInteger() && ValueVT.isInteger()) { 183 if (ValueVT.bitsLT(PartVT)) { 184 // For a truncate, see if we have any information to 185 // indicate whether the truncated bits will always be 186 // zero or sign-extension. 187 if (AssertOp != ISD::DELETED_NODE) 188 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 189 DAG.getValueType(ValueVT)); 190 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 191 } 192 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 193 } 194 195 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 196 // FP_ROUND's are always exact here. 197 if (ValueVT.bitsLT(Val.getValueType())) 198 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 199 DAG.getIntPtrConstant(1)); 200 201 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 205 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 206 207 llvm_unreachable("Unknown mismatch!"); 208 return SDValue(); 209 } 210 211 /// getCopyFromParts - Create a value that contains the specified legal parts 212 /// combined into the value they represent. If the parts combine to a type 213 /// larger then ValueVT then AssertOp can be used to specify whether the extra 214 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 215 /// (ISD::AssertSext). 216 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 217 const SDValue *Parts, unsigned NumParts, 218 EVT PartVT, EVT ValueVT) { 219 assert(ValueVT.isVector() && "Not a vector value"); 220 assert(NumParts > 0 && "No parts to assemble!"); 221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 222 SDValue Val = Parts[0]; 223 224 // Handle a multi-element vector. 225 if (NumParts > 1) { 226 EVT IntermediateVT, RegisterVT; 227 unsigned NumIntermediates; 228 unsigned NumRegs = 229 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 230 NumIntermediates, RegisterVT); 231 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 232 NumParts = NumRegs; // Silence a compiler warning. 233 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 234 assert(RegisterVT == Parts[0].getValueType() && 235 "Part type doesn't match part!"); 236 237 // Assemble the parts into intermediate operands. 238 SmallVector<SDValue, 8> Ops(NumIntermediates); 239 if (NumIntermediates == NumParts) { 240 // If the register was not expanded, truncate or copy the value, 241 // as appropriate. 242 for (unsigned i = 0; i != NumParts; ++i) 243 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 244 PartVT, IntermediateVT); 245 } else if (NumParts > 0) { 246 // If the intermediate type was expanded, build the intermediate 247 // operands from the parts. 248 assert(NumParts % NumIntermediates == 0 && 249 "Must expand into a divisible number of parts!"); 250 unsigned Factor = NumParts / NumIntermediates; 251 for (unsigned i = 0; i != NumIntermediates; ++i) 252 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 253 PartVT, IntermediateVT); 254 } 255 256 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 257 // intermediate operands. 258 Val = DAG.getNode(IntermediateVT.isVector() ? 259 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 260 ValueVT, &Ops[0], NumIntermediates); 261 } 262 263 // There is now one part, held in Val. Correct it to match ValueVT. 264 PartVT = Val.getValueType(); 265 266 if (PartVT == ValueVT) 267 return Val; 268 269 if (PartVT.isVector()) { 270 // If the element type of the source/dest vectors are the same, but the 271 // parts vector has more elements than the value vector, then we have a 272 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 273 // elements we want. 274 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 275 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 276 "Cannot narrow, it would be a lossy transformation"); 277 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 278 DAG.getIntPtrConstant(0)); 279 } 280 281 // Vector/Vector bitcast. 282 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 283 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 284 285 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 286 "Cannot handle this kind of promotion"); 287 // Promoted vector extract 288 bool Smaller = ValueVT.bitsLE(PartVT); 289 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 290 DL, ValueVT, Val); 291 292 } 293 294 // Trivial bitcast if the types are the same size and the destination 295 // vector type is legal. 296 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 297 TLI.isTypeLegal(ValueVT)) 298 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 299 300 // Handle cases such as i8 -> <1 x i1> 301 assert(ValueVT.getVectorNumElements() == 1 && 302 "Only trivial scalar-to-vector conversions should get here!"); 303 304 if (ValueVT.getVectorNumElements() == 1 && 305 ValueVT.getVectorElementType() != PartVT) { 306 bool Smaller = ValueVT.bitsLE(PartVT); 307 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 308 DL, ValueVT.getScalarType(), Val); 309 } 310 311 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 312 } 313 314 315 316 317 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 318 SDValue Val, SDValue *Parts, unsigned NumParts, 319 EVT PartVT); 320 321 /// getCopyToParts - Create a series of nodes that contain the specified value 322 /// split into legal parts. If the parts contain more bits than Val, then, for 323 /// integers, ExtendKind can be used to specify how to generate the extra bits. 324 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 325 SDValue Val, SDValue *Parts, unsigned NumParts, 326 EVT PartVT, 327 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 328 EVT ValueVT = Val.getValueType(); 329 330 // Handle the vector case separately. 331 if (ValueVT.isVector()) 332 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 unsigned PartBits = PartVT.getSizeInBits(); 336 unsigned OrigNumParts = NumParts; 337 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 338 339 if (NumParts == 0) 340 return; 341 342 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 343 if (PartVT == ValueVT) { 344 assert(NumParts == 1 && "No-op copy with multiple parts!"); 345 Parts[0] = Val; 346 return; 347 } 348 349 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 350 // If the parts cover more bits than the value has, promote the value. 351 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 352 assert(NumParts == 1 && "Do not know what to promote to!"); 353 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 354 } else { 355 assert(PartVT.isInteger() && ValueVT.isInteger() && 356 "Unknown mismatch!"); 357 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 358 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 359 } 360 } else if (PartBits == ValueVT.getSizeInBits()) { 361 // Different types of the same size. 362 assert(NumParts == 1 && PartVT != ValueVT); 363 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 364 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 365 // If the parts cover less bits than value has, truncate the value. 366 assert(PartVT.isInteger() && ValueVT.isInteger() && 367 "Unknown mismatch!"); 368 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 369 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 370 } 371 372 // The value may have changed - recompute ValueVT. 373 ValueVT = Val.getValueType(); 374 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 375 "Failed to tile the value with PartVT!"); 376 377 if (NumParts == 1) { 378 assert(PartVT == ValueVT && "Type conversion failed!"); 379 Parts[0] = Val; 380 return; 381 } 382 383 // Expand the value into multiple parts. 384 if (NumParts & (NumParts - 1)) { 385 // The number of parts is not a power of 2. Split off and copy the tail. 386 assert(PartVT.isInteger() && ValueVT.isInteger() && 387 "Do not know what to expand to!"); 388 unsigned RoundParts = 1 << Log2_32(NumParts); 389 unsigned RoundBits = RoundParts * PartBits; 390 unsigned OddParts = NumParts - RoundParts; 391 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 392 DAG.getIntPtrConstant(RoundBits)); 393 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 394 395 if (TLI.isBigEndian()) 396 // The odd parts were reversed by getCopyToParts - unreverse them. 397 std::reverse(Parts + RoundParts, Parts + NumParts); 398 399 NumParts = RoundParts; 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 } 403 404 // The number of parts is a power of 2. Repeatedly bisect the value using 405 // EXTRACT_ELEMENT. 406 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 407 EVT::getIntegerVT(*DAG.getContext(), 408 ValueVT.getSizeInBits()), 409 Val); 410 411 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 412 for (unsigned i = 0; i < NumParts; i += StepSize) { 413 unsigned ThisBits = StepSize * PartBits / 2; 414 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 415 SDValue &Part0 = Parts[i]; 416 SDValue &Part1 = Parts[i+StepSize/2]; 417 418 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 419 ThisVT, Part0, DAG.getIntPtrConstant(1)); 420 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 421 ThisVT, Part0, DAG.getIntPtrConstant(0)); 422 423 if (ThisBits == PartBits && ThisVT != PartVT) { 424 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 425 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 426 } 427 } 428 } 429 430 if (TLI.isBigEndian()) 431 std::reverse(Parts, Parts + OrigNumParts); 432 } 433 434 435 /// getCopyToPartsVector - Create a series of nodes that contain the specified 436 /// value split into legal parts. 437 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 438 SDValue Val, SDValue *Parts, unsigned NumParts, 439 EVT PartVT) { 440 EVT ValueVT = Val.getValueType(); 441 assert(ValueVT.isVector() && "Not a vector"); 442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 443 444 if (NumParts == 1) { 445 if (PartVT == ValueVT) { 446 // Nothing to do. 447 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 448 // Bitconvert vector->vector case. 449 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 450 } else if (PartVT.isVector() && 451 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 452 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 453 EVT ElementVT = PartVT.getVectorElementType(); 454 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 455 // undef elements. 456 SmallVector<SDValue, 16> Ops; 457 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 458 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 459 ElementVT, Val, DAG.getIntPtrConstant(i))); 460 461 for (unsigned i = ValueVT.getVectorNumElements(), 462 e = PartVT.getVectorNumElements(); i != e; ++i) 463 Ops.push_back(DAG.getUNDEF(ElementVT)); 464 465 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 466 467 // FIXME: Use CONCAT for 2x -> 4x. 468 469 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 470 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 471 } else if (PartVT.isVector() && 472 PartVT.getVectorElementType().bitsGE( 473 ValueVT.getVectorElementType()) && 474 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 475 476 // Promoted vector extract 477 bool Smaller = PartVT.bitsLE(ValueVT); 478 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 479 DL, PartVT, Val); 480 } else{ 481 // Vector -> scalar conversion. 482 assert(ValueVT.getVectorNumElements() == 1 && 483 "Only trivial vector-to-scalar conversions should get here!"); 484 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 485 PartVT, Val, DAG.getIntPtrConstant(0)); 486 487 bool Smaller = ValueVT.bitsLE(PartVT); 488 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 489 DL, PartVT, Val); 490 } 491 492 Parts[0] = Val; 493 return; 494 } 495 496 // Handle a multi-element vector. 497 EVT IntermediateVT, RegisterVT; 498 unsigned NumIntermediates; 499 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 500 IntermediateVT, 501 NumIntermediates, RegisterVT); 502 unsigned NumElements = ValueVT.getVectorNumElements(); 503 504 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 505 NumParts = NumRegs; // Silence a compiler warning. 506 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 507 508 // Split the vector into intermediate operands. 509 SmallVector<SDValue, 8> Ops(NumIntermediates); 510 for (unsigned i = 0; i != NumIntermediates; ++i) { 511 if (IntermediateVT.isVector()) 512 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 513 IntermediateVT, Val, 514 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 515 else 516 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 517 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 518 } 519 520 // Split the intermediate operands into legal parts. 521 if (NumParts == NumIntermediates) { 522 // If the register was not expanded, promote or copy the value, 523 // as appropriate. 524 for (unsigned i = 0; i != NumParts; ++i) 525 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 526 } else if (NumParts > 0) { 527 // If the intermediate type was expanded, split each the value into 528 // legal parts. 529 assert(NumParts % NumIntermediates == 0 && 530 "Must expand into a divisible number of parts!"); 531 unsigned Factor = NumParts / NumIntermediates; 532 for (unsigned i = 0; i != NumIntermediates; ++i) 533 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 534 } 535 } 536 537 538 539 540 namespace { 541 /// RegsForValue - This struct represents the registers (physical or virtual) 542 /// that a particular set of values is assigned, and the type information 543 /// about the value. The most common situation is to represent one value at a 544 /// time, but struct or array values are handled element-wise as multiple 545 /// values. The splitting of aggregates is performed recursively, so that we 546 /// never have aggregate-typed registers. The values at this point do not 547 /// necessarily have legal types, so each value may require one or more 548 /// registers of some legal type. 549 /// 550 struct RegsForValue { 551 /// ValueVTs - The value types of the values, which may not be legal, and 552 /// may need be promoted or synthesized from one or more registers. 553 /// 554 SmallVector<EVT, 4> ValueVTs; 555 556 /// RegVTs - The value types of the registers. This is the same size as 557 /// ValueVTs and it records, for each value, what the type of the assigned 558 /// register or registers are. (Individual values are never synthesized 559 /// from more than one type of register.) 560 /// 561 /// With virtual registers, the contents of RegVTs is redundant with TLI's 562 /// getRegisterType member function, however when with physical registers 563 /// it is necessary to have a separate record of the types. 564 /// 565 SmallVector<EVT, 4> RegVTs; 566 567 /// Regs - This list holds the registers assigned to the values. 568 /// Each legal or promoted value requires one register, and each 569 /// expanded value requires multiple registers. 570 /// 571 SmallVector<unsigned, 4> Regs; 572 573 RegsForValue() {} 574 575 RegsForValue(const SmallVector<unsigned, 4> ®s, 576 EVT regvt, EVT valuevt) 577 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 578 579 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 580 unsigned Reg, Type *Ty) { 581 ComputeValueVTs(tli, Ty, ValueVTs); 582 583 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 584 EVT ValueVT = ValueVTs[Value]; 585 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 586 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 587 for (unsigned i = 0; i != NumRegs; ++i) 588 Regs.push_back(Reg + i); 589 RegVTs.push_back(RegisterVT); 590 Reg += NumRegs; 591 } 592 } 593 594 /// areValueTypesLegal - Return true if types of all the values are legal. 595 bool areValueTypesLegal(const TargetLowering &TLI) { 596 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 597 EVT RegisterVT = RegVTs[Value]; 598 if (!TLI.isTypeLegal(RegisterVT)) 599 return false; 600 } 601 return true; 602 } 603 604 /// append - Add the specified values to this one. 605 void append(const RegsForValue &RHS) { 606 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 607 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 608 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 609 } 610 611 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 612 /// this value and returns the result as a ValueVTs value. This uses 613 /// Chain/Flag as the input and updates them for the output Chain/Flag. 614 /// If the Flag pointer is NULL, no flag is used. 615 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 616 DebugLoc dl, 617 SDValue &Chain, SDValue *Flag) const; 618 619 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 620 /// specified value into the registers specified by this object. This uses 621 /// Chain/Flag as the input and updates them for the output Chain/Flag. 622 /// If the Flag pointer is NULL, no flag is used. 623 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 624 SDValue &Chain, SDValue *Flag) const; 625 626 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 627 /// operand list. This adds the code marker, matching input operand index 628 /// (if applicable), and includes the number of values added into it. 629 void AddInlineAsmOperands(unsigned Kind, 630 bool HasMatching, unsigned MatchingIdx, 631 SelectionDAG &DAG, 632 std::vector<SDValue> &Ops) const; 633 }; 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVT value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 641 FunctionLoweringInfo &FuncInfo, 642 DebugLoc dl, 643 SDValue &Chain, SDValue *Flag) const { 644 // A Value with type {} or [0 x %t] needs no registers. 645 if (ValueVTs.empty()) 646 return SDValue(); 647 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 650 // Assemble the legal parts into the final values. 651 SmallVector<SDValue, 4> Values(ValueVTs.size()); 652 SmallVector<SDValue, 8> Parts; 653 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 654 // Copy the legal parts from the registers. 655 EVT ValueVT = ValueVTs[Value]; 656 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 657 EVT RegisterVT = RegVTs[Value]; 658 659 Parts.resize(NumRegs); 660 for (unsigned i = 0; i != NumRegs; ++i) { 661 SDValue P; 662 if (Flag == 0) { 663 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 664 } else { 665 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 666 *Flag = P.getValue(2); 667 } 668 669 Chain = P.getValue(1); 670 Parts[i] = P; 671 672 // If the source register was virtual and if we know something about it, 673 // add an assert node. 674 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 675 !RegisterVT.isInteger() || RegisterVT.isVector()) 676 continue; 677 678 const FunctionLoweringInfo::LiveOutInfo *LOI = 679 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 680 if (!LOI) 681 continue; 682 683 unsigned RegSize = RegisterVT.getSizeInBits(); 684 unsigned NumSignBits = LOI->NumSignBits; 685 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 686 687 // FIXME: We capture more information than the dag can represent. For 688 // now, just use the tightest assertzext/assertsext possible. 689 bool isSExt = true; 690 EVT FromVT(MVT::Other); 691 if (NumSignBits == RegSize) 692 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 693 else if (NumZeroBits >= RegSize-1) 694 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 695 else if (NumSignBits > RegSize-8) 696 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 697 else if (NumZeroBits >= RegSize-8) 698 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 699 else if (NumSignBits > RegSize-16) 700 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 701 else if (NumZeroBits >= RegSize-16) 702 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 703 else if (NumSignBits > RegSize-32) 704 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 705 else if (NumZeroBits >= RegSize-32) 706 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 707 else 708 continue; 709 710 // Add an assertion node. 711 assert(FromVT != MVT::Other); 712 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 713 RegisterVT, P, DAG.getValueType(FromVT)); 714 } 715 716 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 717 NumRegs, RegisterVT, ValueVT); 718 Part += NumRegs; 719 Parts.clear(); 720 } 721 722 return DAG.getNode(ISD::MERGE_VALUES, dl, 723 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 724 &Values[0], ValueVTs.size()); 725 } 726 727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 728 /// specified value into the registers specified by this object. This uses 729 /// Chain/Flag as the input and updates them for the output Chain/Flag. 730 /// If the Flag pointer is NULL, no flag is used. 731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 732 SDValue &Chain, SDValue *Flag) const { 733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 734 735 // Get the list of the values's legal parts. 736 unsigned NumRegs = Regs.size(); 737 SmallVector<SDValue, 8> Parts(NumRegs); 738 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 739 EVT ValueVT = ValueVTs[Value]; 740 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 741 EVT RegisterVT = RegVTs[Value]; 742 743 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 744 &Parts[Part], NumParts, RegisterVT); 745 Part += NumParts; 746 } 747 748 // Copy the parts into the registers. 749 SmallVector<SDValue, 8> Chains(NumRegs); 750 for (unsigned i = 0; i != NumRegs; ++i) { 751 SDValue Part; 752 if (Flag == 0) { 753 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 754 } else { 755 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 756 *Flag = Part.getValue(1); 757 } 758 759 Chains[i] = Part.getValue(0); 760 } 761 762 if (NumRegs == 1 || Flag) 763 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 764 // flagged to it. That is the CopyToReg nodes and the user are considered 765 // a single scheduling unit. If we create a TokenFactor and return it as 766 // chain, then the TokenFactor is both a predecessor (operand) of the 767 // user as well as a successor (the TF operands are flagged to the user). 768 // c1, f1 = CopyToReg 769 // c2, f2 = CopyToReg 770 // c3 = TokenFactor c1, c2 771 // ... 772 // = op c3, ..., f2 773 Chain = Chains[NumRegs-1]; 774 else 775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 776 } 777 778 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 779 /// operand list. This adds the code marker and includes the number of 780 /// values added into it. 781 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 782 unsigned MatchingIdx, 783 SelectionDAG &DAG, 784 std::vector<SDValue> &Ops) const { 785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 786 787 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 788 if (HasMatching) 789 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 790 else if (!Regs.empty() && 791 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 792 // Put the register class of the virtual registers in the flag word. That 793 // way, later passes can recompute register class constraints for inline 794 // assembly as well as normal instructions. 795 // Don't do this for tied operands that can use the regclass information 796 // from the def. 797 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 798 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 799 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 800 } 801 802 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 803 Ops.push_back(Res); 804 805 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 806 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 807 EVT RegisterVT = RegVTs[Value]; 808 for (unsigned i = 0; i != NumRegs; ++i) { 809 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 810 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 816 AA = &aa; 817 GFI = gfi; 818 TD = DAG.getTarget().getTargetData(); 819 LPadToCallSiteMap.clear(); 820 } 821 822 /// clear - Clear out the current SelectionDAG and the associated 823 /// state and prepare this SelectionDAGBuilder object to be used 824 /// for a new block. This doesn't clear out information about 825 /// additional blocks that are needed to complete switch lowering 826 /// or PHI node updating; that information is cleared out as it is 827 /// consumed. 828 void SelectionDAGBuilder::clear() { 829 NodeMap.clear(); 830 UnusedArgNodeMap.clear(); 831 PendingLoads.clear(); 832 PendingExports.clear(); 833 CurDebugLoc = DebugLoc(); 834 HasTailCall = false; 835 } 836 837 /// clearDanglingDebugInfo - Clear the dangling debug information 838 /// map. This function is seperated from the clear so that debug 839 /// information that is dangling in a basic block can be properly 840 /// resolved in a different basic block. This allows the 841 /// SelectionDAG to resolve dangling debug information attached 842 /// to PHI nodes. 843 void SelectionDAGBuilder::clearDanglingDebugInfo() { 844 DanglingDebugInfoMap.clear(); 845 } 846 847 /// getRoot - Return the current virtual root of the Selection DAG, 848 /// flushing any PendingLoad items. This must be done before emitting 849 /// a store or any other node that may need to be ordered after any 850 /// prior load instructions. 851 /// 852 SDValue SelectionDAGBuilder::getRoot() { 853 if (PendingLoads.empty()) 854 return DAG.getRoot(); 855 856 if (PendingLoads.size() == 1) { 857 SDValue Root = PendingLoads[0]; 858 DAG.setRoot(Root); 859 PendingLoads.clear(); 860 return Root; 861 } 862 863 // Otherwise, we have to make a token factor node. 864 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 865 &PendingLoads[0], PendingLoads.size()); 866 PendingLoads.clear(); 867 DAG.setRoot(Root); 868 return Root; 869 } 870 871 /// getControlRoot - Similar to getRoot, but instead of flushing all the 872 /// PendingLoad items, flush all the PendingExports items. It is necessary 873 /// to do this before emitting a terminator instruction. 874 /// 875 SDValue SelectionDAGBuilder::getControlRoot() { 876 SDValue Root = DAG.getRoot(); 877 878 if (PendingExports.empty()) 879 return Root; 880 881 // Turn all of the CopyToReg chains into one factored node. 882 if (Root.getOpcode() != ISD::EntryToken) { 883 unsigned i = 0, e = PendingExports.size(); 884 for (; i != e; ++i) { 885 assert(PendingExports[i].getNode()->getNumOperands() > 1); 886 if (PendingExports[i].getNode()->getOperand(0) == Root) 887 break; // Don't add the root if we already indirectly depend on it. 888 } 889 890 if (i == e) 891 PendingExports.push_back(Root); 892 } 893 894 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 895 &PendingExports[0], 896 PendingExports.size()); 897 PendingExports.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 903 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 904 DAG.AssignOrdering(Node, SDNodeOrder); 905 906 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 907 AssignOrderingToNode(Node->getOperand(I).getNode()); 908 } 909 910 void SelectionDAGBuilder::visit(const Instruction &I) { 911 // Set up outgoing PHI node register values before emitting the terminator. 912 if (isa<TerminatorInst>(&I)) 913 HandlePHINodesInSuccessorBlocks(I.getParent()); 914 915 CurDebugLoc = I.getDebugLoc(); 916 917 visit(I.getOpcode(), I); 918 919 if (!isa<TerminatorInst>(&I) && !HasTailCall) 920 CopyToExportRegsIfNeeded(&I); 921 922 CurDebugLoc = DebugLoc(); 923 } 924 925 void SelectionDAGBuilder::visitPHI(const PHINode &) { 926 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 927 } 928 929 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 930 // Note: this doesn't use InstVisitor, because it has to work with 931 // ConstantExpr's in addition to instructions. 932 switch (Opcode) { 933 default: llvm_unreachable("Unknown instruction type encountered!"); 934 // Build the switch statement using the Instruction.def file. 935 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 936 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 937 #include "llvm/Instruction.def" 938 } 939 940 // Assign the ordering to the freshly created DAG nodes. 941 if (NodeMap.count(&I)) { 942 ++SDNodeOrder; 943 AssignOrderingToNode(getValue(&I).getNode()); 944 } 945 } 946 947 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 948 // generate the debug data structures now that we've seen its definition. 949 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 950 SDValue Val) { 951 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 952 if (DDI.getDI()) { 953 const DbgValueInst *DI = DDI.getDI(); 954 DebugLoc dl = DDI.getdl(); 955 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 956 MDNode *Variable = DI->getVariable(); 957 uint64_t Offset = DI->getOffset(); 958 SDDbgValue *SDV; 959 if (Val.getNode()) { 960 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 961 SDV = DAG.getDbgValue(Variable, Val.getNode(), 962 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 963 DAG.AddDbgValue(SDV, Val.getNode(), false); 964 } 965 } else 966 DEBUG(dbgs() << "Dropping debug info for " << DI); 967 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 968 } 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 982 if (It != FuncInfo.ValueMap.end()) { 983 unsigned InReg = It->second; 984 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 985 SDValue Chain = DAG.getEntryNode(); 986 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 987 resolveDanglingDebugInfo(V, N); 988 return N; 989 } 990 991 // Otherwise create a new SDValue and remember it. 992 SDValue Val = getValueImpl(V); 993 NodeMap[V] = Val; 994 resolveDanglingDebugInfo(V, Val); 995 return Val; 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) return N; 1004 1005 // Otherwise create a new SDValue and remember it. 1006 SDValue Val = getValueImpl(V); 1007 NodeMap[V] = Val; 1008 resolveDanglingDebugInfo(V, Val); 1009 return Val; 1010 } 1011 1012 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1013 /// Create an SDValue for the given value. 1014 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1015 if (const Constant *C = dyn_cast<Constant>(V)) { 1016 EVT VT = TLI.getValueType(V->getType(), true); 1017 1018 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1019 return DAG.getConstant(*CI, VT); 1020 1021 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1022 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1023 1024 if (isa<ConstantPointerNull>(C)) 1025 return DAG.getConstant(0, TLI.getPointerTy()); 1026 1027 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1028 return DAG.getConstantFP(*CFP, VT); 1029 1030 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1031 return DAG.getUNDEF(VT); 1032 1033 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1034 visit(CE->getOpcode(), *CE); 1035 SDValue N1 = NodeMap[V]; 1036 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1037 return N1; 1038 } 1039 1040 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1041 SmallVector<SDValue, 4> Constants; 1042 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1043 OI != OE; ++OI) { 1044 SDNode *Val = getValue(*OI).getNode(); 1045 // If the operand is an empty aggregate, there are no values. 1046 if (!Val) continue; 1047 // Add each leaf value from the operand to the Constants list 1048 // to form a flattened list of all the values. 1049 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1050 Constants.push_back(SDValue(Val, i)); 1051 } 1052 1053 return DAG.getMergeValues(&Constants[0], Constants.size(), 1054 getCurDebugLoc()); 1055 } 1056 1057 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1058 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1059 "Unknown struct or array constant!"); 1060 1061 SmallVector<EVT, 4> ValueVTs; 1062 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1063 unsigned NumElts = ValueVTs.size(); 1064 if (NumElts == 0) 1065 return SDValue(); // empty struct 1066 SmallVector<SDValue, 4> Constants(NumElts); 1067 for (unsigned i = 0; i != NumElts; ++i) { 1068 EVT EltVT = ValueVTs[i]; 1069 if (isa<UndefValue>(C)) 1070 Constants[i] = DAG.getUNDEF(EltVT); 1071 else if (EltVT.isFloatingPoint()) 1072 Constants[i] = DAG.getConstantFP(0, EltVT); 1073 else 1074 Constants[i] = DAG.getConstant(0, EltVT); 1075 } 1076 1077 return DAG.getMergeValues(&Constants[0], NumElts, 1078 getCurDebugLoc()); 1079 } 1080 1081 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1082 return DAG.getBlockAddress(BA, VT); 1083 1084 VectorType *VecTy = cast<VectorType>(V->getType()); 1085 unsigned NumElements = VecTy->getNumElements(); 1086 1087 // Now that we know the number and type of the elements, get that number of 1088 // elements into the Ops array based on what kind of constant it is. 1089 SmallVector<SDValue, 16> Ops; 1090 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1091 for (unsigned i = 0; i != NumElements; ++i) 1092 Ops.push_back(getValue(CP->getOperand(i))); 1093 } else { 1094 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1095 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1096 1097 SDValue Op; 1098 if (EltVT.isFloatingPoint()) 1099 Op = DAG.getConstantFP(0, EltVT); 1100 else 1101 Op = DAG.getConstant(0, EltVT); 1102 Ops.assign(NumElements, Op); 1103 } 1104 1105 // Create a BUILD_VECTOR node. 1106 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1107 VT, &Ops[0], Ops.size()); 1108 } 1109 1110 // If this is a static alloca, generate it as the frameindex instead of 1111 // computation. 1112 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1113 DenseMap<const AllocaInst*, int>::iterator SI = 1114 FuncInfo.StaticAllocaMap.find(AI); 1115 if (SI != FuncInfo.StaticAllocaMap.end()) 1116 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1117 } 1118 1119 // If this is an instruction which fast-isel has deferred, select it now. 1120 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1121 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1122 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1123 SDValue Chain = DAG.getEntryNode(); 1124 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1125 } 1126 1127 llvm_unreachable("Can't get register for value!"); 1128 return SDValue(); 1129 } 1130 1131 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1132 SDValue Chain = getControlRoot(); 1133 SmallVector<ISD::OutputArg, 8> Outs; 1134 SmallVector<SDValue, 8> OutVals; 1135 1136 if (!FuncInfo.CanLowerReturn) { 1137 unsigned DemoteReg = FuncInfo.DemoteRegister; 1138 const Function *F = I.getParent()->getParent(); 1139 1140 // Emit a store of the return value through the virtual register. 1141 // Leave Outs empty so that LowerReturn won't try to load return 1142 // registers the usual way. 1143 SmallVector<EVT, 1> PtrValueVTs; 1144 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1145 PtrValueVTs); 1146 1147 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1148 SDValue RetOp = getValue(I.getOperand(0)); 1149 1150 SmallVector<EVT, 4> ValueVTs; 1151 SmallVector<uint64_t, 4> Offsets; 1152 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1153 unsigned NumValues = ValueVTs.size(); 1154 1155 SmallVector<SDValue, 4> Chains(NumValues); 1156 for (unsigned i = 0; i != NumValues; ++i) { 1157 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1158 RetPtr.getValueType(), RetPtr, 1159 DAG.getIntPtrConstant(Offsets[i])); 1160 Chains[i] = 1161 DAG.getStore(Chain, getCurDebugLoc(), 1162 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1163 // FIXME: better loc info would be nice. 1164 Add, MachinePointerInfo(), false, false, 0); 1165 } 1166 1167 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1168 MVT::Other, &Chains[0], NumValues); 1169 } else if (I.getNumOperands() != 0) { 1170 SmallVector<EVT, 4> ValueVTs; 1171 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1172 unsigned NumValues = ValueVTs.size(); 1173 if (NumValues) { 1174 SDValue RetOp = getValue(I.getOperand(0)); 1175 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1176 EVT VT = ValueVTs[j]; 1177 1178 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1179 1180 const Function *F = I.getParent()->getParent(); 1181 if (F->paramHasAttr(0, Attribute::SExt)) 1182 ExtendKind = ISD::SIGN_EXTEND; 1183 else if (F->paramHasAttr(0, Attribute::ZExt)) 1184 ExtendKind = ISD::ZERO_EXTEND; 1185 1186 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1187 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1188 1189 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1190 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1191 SmallVector<SDValue, 4> Parts(NumParts); 1192 getCopyToParts(DAG, getCurDebugLoc(), 1193 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1194 &Parts[0], NumParts, PartVT, ExtendKind); 1195 1196 // 'inreg' on function refers to return value 1197 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1198 if (F->paramHasAttr(0, Attribute::InReg)) 1199 Flags.setInReg(); 1200 1201 // Propagate extension type if any 1202 if (ExtendKind == ISD::SIGN_EXTEND) 1203 Flags.setSExt(); 1204 else if (ExtendKind == ISD::ZERO_EXTEND) 1205 Flags.setZExt(); 1206 1207 for (unsigned i = 0; i < NumParts; ++i) { 1208 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1209 /*isfixed=*/true)); 1210 OutVals.push_back(Parts[i]); 1211 } 1212 } 1213 } 1214 } 1215 1216 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1217 CallingConv::ID CallConv = 1218 DAG.getMachineFunction().getFunction()->getCallingConv(); 1219 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1220 Outs, OutVals, getCurDebugLoc(), DAG); 1221 1222 // Verify that the target's LowerReturn behaved as expected. 1223 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1224 "LowerReturn didn't return a valid chain!"); 1225 1226 // Update the DAG with the new chain value resulting from return lowering. 1227 DAG.setRoot(Chain); 1228 } 1229 1230 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1231 /// created for it, emit nodes to copy the value into the virtual 1232 /// registers. 1233 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1234 // Skip empty types 1235 if (V->getType()->isEmptyTy()) 1236 return; 1237 1238 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1239 if (VMI != FuncInfo.ValueMap.end()) { 1240 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1241 CopyValueToVirtualRegister(V, VMI->second); 1242 } 1243 } 1244 1245 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1246 /// the current basic block, add it to ValueMap now so that we'll get a 1247 /// CopyTo/FromReg. 1248 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1249 // No need to export constants. 1250 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1251 1252 // Already exported? 1253 if (FuncInfo.isExportedInst(V)) return; 1254 1255 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1256 CopyValueToVirtualRegister(V, Reg); 1257 } 1258 1259 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1260 const BasicBlock *FromBB) { 1261 // The operands of the setcc have to be in this block. We don't know 1262 // how to export them from some other block. 1263 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1264 // Can export from current BB. 1265 if (VI->getParent() == FromBB) 1266 return true; 1267 1268 // Is already exported, noop. 1269 return FuncInfo.isExportedInst(V); 1270 } 1271 1272 // If this is an argument, we can export it if the BB is the entry block or 1273 // if it is already exported. 1274 if (isa<Argument>(V)) { 1275 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1276 return true; 1277 1278 // Otherwise, can only export this if it is already exported. 1279 return FuncInfo.isExportedInst(V); 1280 } 1281 1282 // Otherwise, constants can always be exported. 1283 return true; 1284 } 1285 1286 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1287 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1288 MachineBasicBlock *Dst) { 1289 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1290 if (!BPI) 1291 return 0; 1292 const BasicBlock *SrcBB = Src->getBasicBlock(); 1293 const BasicBlock *DstBB = Dst->getBasicBlock(); 1294 return BPI->getEdgeWeight(SrcBB, DstBB); 1295 } 1296 1297 void SelectionDAGBuilder:: 1298 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1299 uint32_t Weight /* = 0 */) { 1300 if (!Weight) 1301 Weight = getEdgeWeight(Src, Dst); 1302 Src->addSuccessor(Dst, Weight); 1303 } 1304 1305 1306 static bool InBlock(const Value *V, const BasicBlock *BB) { 1307 if (const Instruction *I = dyn_cast<Instruction>(V)) 1308 return I->getParent() == BB; 1309 return true; 1310 } 1311 1312 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1313 /// This function emits a branch and is used at the leaves of an OR or an 1314 /// AND operator tree. 1315 /// 1316 void 1317 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1318 MachineBasicBlock *TBB, 1319 MachineBasicBlock *FBB, 1320 MachineBasicBlock *CurBB, 1321 MachineBasicBlock *SwitchBB) { 1322 const BasicBlock *BB = CurBB->getBasicBlock(); 1323 1324 // If the leaf of the tree is a comparison, merge the condition into 1325 // the caseblock. 1326 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1327 // The operands of the cmp have to be in this block. We don't know 1328 // how to export them from some other block. If this is the first block 1329 // of the sequence, no exporting is needed. 1330 if (CurBB == SwitchBB || 1331 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1332 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1333 ISD::CondCode Condition; 1334 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1335 Condition = getICmpCondCode(IC->getPredicate()); 1336 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1337 Condition = getFCmpCondCode(FC->getPredicate()); 1338 } else { 1339 Condition = ISD::SETEQ; // silence warning. 1340 llvm_unreachable("Unknown compare instruction"); 1341 } 1342 1343 CaseBlock CB(Condition, BOp->getOperand(0), 1344 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1345 SwitchCases.push_back(CB); 1346 return; 1347 } 1348 } 1349 1350 // Create a CaseBlock record representing this branch. 1351 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1352 NULL, TBB, FBB, CurBB); 1353 SwitchCases.push_back(CB); 1354 } 1355 1356 /// FindMergedConditions - If Cond is an expression like 1357 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1358 MachineBasicBlock *TBB, 1359 MachineBasicBlock *FBB, 1360 MachineBasicBlock *CurBB, 1361 MachineBasicBlock *SwitchBB, 1362 unsigned Opc) { 1363 // If this node is not part of the or/and tree, emit it as a branch. 1364 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1365 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1366 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1367 BOp->getParent() != CurBB->getBasicBlock() || 1368 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1369 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1370 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1371 return; 1372 } 1373 1374 // Create TmpBB after CurBB. 1375 MachineFunction::iterator BBI = CurBB; 1376 MachineFunction &MF = DAG.getMachineFunction(); 1377 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1378 CurBB->getParent()->insert(++BBI, TmpBB); 1379 1380 if (Opc == Instruction::Or) { 1381 // Codegen X | Y as: 1382 // jmp_if_X TBB 1383 // jmp TmpBB 1384 // TmpBB: 1385 // jmp_if_Y TBB 1386 // jmp FBB 1387 // 1388 1389 // Emit the LHS condition. 1390 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1391 1392 // Emit the RHS condition into TmpBB. 1393 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1394 } else { 1395 assert(Opc == Instruction::And && "Unknown merge op!"); 1396 // Codegen X & Y as: 1397 // jmp_if_X TmpBB 1398 // jmp FBB 1399 // TmpBB: 1400 // jmp_if_Y TBB 1401 // jmp FBB 1402 // 1403 // This requires creation of TmpBB after CurBB. 1404 1405 // Emit the LHS condition. 1406 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1407 1408 // Emit the RHS condition into TmpBB. 1409 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1410 } 1411 } 1412 1413 /// If the set of cases should be emitted as a series of branches, return true. 1414 /// If we should emit this as a bunch of and/or'd together conditions, return 1415 /// false. 1416 bool 1417 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1418 if (Cases.size() != 2) return true; 1419 1420 // If this is two comparisons of the same values or'd or and'd together, they 1421 // will get folded into a single comparison, so don't emit two blocks. 1422 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1423 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1424 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1425 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1426 return false; 1427 } 1428 1429 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1430 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1431 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1432 Cases[0].CC == Cases[1].CC && 1433 isa<Constant>(Cases[0].CmpRHS) && 1434 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1435 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1436 return false; 1437 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1438 return false; 1439 } 1440 1441 return true; 1442 } 1443 1444 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1445 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1446 1447 // Update machine-CFG edges. 1448 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1449 1450 // Figure out which block is immediately after the current one. 1451 MachineBasicBlock *NextBlock = 0; 1452 MachineFunction::iterator BBI = BrMBB; 1453 if (++BBI != FuncInfo.MF->end()) 1454 NextBlock = BBI; 1455 1456 if (I.isUnconditional()) { 1457 // Update machine-CFG edges. 1458 BrMBB->addSuccessor(Succ0MBB); 1459 1460 // If this is not a fall-through branch, emit the branch. 1461 if (Succ0MBB != NextBlock) 1462 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1463 MVT::Other, getControlRoot(), 1464 DAG.getBasicBlock(Succ0MBB))); 1465 1466 return; 1467 } 1468 1469 // If this condition is one of the special cases we handle, do special stuff 1470 // now. 1471 const Value *CondVal = I.getCondition(); 1472 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1473 1474 // If this is a series of conditions that are or'd or and'd together, emit 1475 // this as a sequence of branches instead of setcc's with and/or operations. 1476 // As long as jumps are not expensive, this should improve performance. 1477 // For example, instead of something like: 1478 // cmp A, B 1479 // C = seteq 1480 // cmp D, E 1481 // F = setle 1482 // or C, F 1483 // jnz foo 1484 // Emit: 1485 // cmp A, B 1486 // je foo 1487 // cmp D, E 1488 // jle foo 1489 // 1490 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1491 if (!TLI.isJumpExpensive() && 1492 BOp->hasOneUse() && 1493 (BOp->getOpcode() == Instruction::And || 1494 BOp->getOpcode() == Instruction::Or)) { 1495 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1496 BOp->getOpcode()); 1497 // If the compares in later blocks need to use values not currently 1498 // exported from this block, export them now. This block should always 1499 // be the first entry. 1500 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1501 1502 // Allow some cases to be rejected. 1503 if (ShouldEmitAsBranches(SwitchCases)) { 1504 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1505 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1506 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1507 } 1508 1509 // Emit the branch for this block. 1510 visitSwitchCase(SwitchCases[0], BrMBB); 1511 SwitchCases.erase(SwitchCases.begin()); 1512 return; 1513 } 1514 1515 // Okay, we decided not to do this, remove any inserted MBB's and clear 1516 // SwitchCases. 1517 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1518 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1519 1520 SwitchCases.clear(); 1521 } 1522 } 1523 1524 // Create a CaseBlock record representing this branch. 1525 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1526 NULL, Succ0MBB, Succ1MBB, BrMBB); 1527 1528 // Use visitSwitchCase to actually insert the fast branch sequence for this 1529 // cond branch. 1530 visitSwitchCase(CB, BrMBB); 1531 } 1532 1533 /// visitSwitchCase - Emits the necessary code to represent a single node in 1534 /// the binary search tree resulting from lowering a switch instruction. 1535 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1536 MachineBasicBlock *SwitchBB) { 1537 SDValue Cond; 1538 SDValue CondLHS = getValue(CB.CmpLHS); 1539 DebugLoc dl = getCurDebugLoc(); 1540 1541 // Build the setcc now. 1542 if (CB.CmpMHS == NULL) { 1543 // Fold "(X == true)" to X and "(X == false)" to !X to 1544 // handle common cases produced by branch lowering. 1545 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1546 CB.CC == ISD::SETEQ) 1547 Cond = CondLHS; 1548 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1549 CB.CC == ISD::SETEQ) { 1550 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1551 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1552 } else 1553 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1554 } else { 1555 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1556 1557 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1558 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1559 1560 SDValue CmpOp = getValue(CB.CmpMHS); 1561 EVT VT = CmpOp.getValueType(); 1562 1563 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1564 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1565 ISD::SETLE); 1566 } else { 1567 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1568 VT, CmpOp, DAG.getConstant(Low, VT)); 1569 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1570 DAG.getConstant(High-Low, VT), ISD::SETULE); 1571 } 1572 } 1573 1574 // Update successor info 1575 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1576 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1577 1578 // Set NextBlock to be the MBB immediately after the current one, if any. 1579 // This is used to avoid emitting unnecessary branches to the next block. 1580 MachineBasicBlock *NextBlock = 0; 1581 MachineFunction::iterator BBI = SwitchBB; 1582 if (++BBI != FuncInfo.MF->end()) 1583 NextBlock = BBI; 1584 1585 // If the lhs block is the next block, invert the condition so that we can 1586 // fall through to the lhs instead of the rhs block. 1587 if (CB.TrueBB == NextBlock) { 1588 std::swap(CB.TrueBB, CB.FalseBB); 1589 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1590 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1591 } 1592 1593 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1594 MVT::Other, getControlRoot(), Cond, 1595 DAG.getBasicBlock(CB.TrueBB)); 1596 1597 // Insert the false branch. Do this even if it's a fall through branch, 1598 // this makes it easier to do DAG optimizations which require inverting 1599 // the branch condition. 1600 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1601 DAG.getBasicBlock(CB.FalseBB)); 1602 1603 DAG.setRoot(BrCond); 1604 } 1605 1606 /// visitJumpTable - Emit JumpTable node in the current MBB 1607 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1608 // Emit the code for the jump table 1609 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1610 EVT PTy = TLI.getPointerTy(); 1611 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1612 JT.Reg, PTy); 1613 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1614 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1615 MVT::Other, Index.getValue(1), 1616 Table, Index); 1617 DAG.setRoot(BrJumpTable); 1618 } 1619 1620 /// visitJumpTableHeader - This function emits necessary code to produce index 1621 /// in the JumpTable from switch case. 1622 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1623 JumpTableHeader &JTH, 1624 MachineBasicBlock *SwitchBB) { 1625 // Subtract the lowest switch case value from the value being switched on and 1626 // conditional branch to default mbb if the result is greater than the 1627 // difference between smallest and largest cases. 1628 SDValue SwitchOp = getValue(JTH.SValue); 1629 EVT VT = SwitchOp.getValueType(); 1630 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1631 DAG.getConstant(JTH.First, VT)); 1632 1633 // The SDNode we just created, which holds the value being switched on minus 1634 // the smallest case value, needs to be copied to a virtual register so it 1635 // can be used as an index into the jump table in a subsequent basic block. 1636 // This value may be smaller or larger than the target's pointer type, and 1637 // therefore require extension or truncating. 1638 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1639 1640 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1641 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1642 JumpTableReg, SwitchOp); 1643 JT.Reg = JumpTableReg; 1644 1645 // Emit the range check for the jump table, and branch to the default block 1646 // for the switch statement if the value being switched on exceeds the largest 1647 // case in the switch. 1648 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1649 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1650 DAG.getConstant(JTH.Last-JTH.First,VT), 1651 ISD::SETUGT); 1652 1653 // Set NextBlock to be the MBB immediately after the current one, if any. 1654 // This is used to avoid emitting unnecessary branches to the next block. 1655 MachineBasicBlock *NextBlock = 0; 1656 MachineFunction::iterator BBI = SwitchBB; 1657 1658 if (++BBI != FuncInfo.MF->end()) 1659 NextBlock = BBI; 1660 1661 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1662 MVT::Other, CopyTo, CMP, 1663 DAG.getBasicBlock(JT.Default)); 1664 1665 if (JT.MBB != NextBlock) 1666 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1667 DAG.getBasicBlock(JT.MBB)); 1668 1669 DAG.setRoot(BrCond); 1670 } 1671 1672 /// visitBitTestHeader - This function emits necessary code to produce value 1673 /// suitable for "bit tests" 1674 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1675 MachineBasicBlock *SwitchBB) { 1676 // Subtract the minimum value 1677 SDValue SwitchOp = getValue(B.SValue); 1678 EVT VT = SwitchOp.getValueType(); 1679 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1680 DAG.getConstant(B.First, VT)); 1681 1682 // Check range 1683 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1684 TLI.getSetCCResultType(Sub.getValueType()), 1685 Sub, DAG.getConstant(B.Range, VT), 1686 ISD::SETUGT); 1687 1688 // Determine the type of the test operands. 1689 bool UsePtrType = false; 1690 if (!TLI.isTypeLegal(VT)) 1691 UsePtrType = true; 1692 else { 1693 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1694 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1695 // Switch table case range are encoded into series of masks. 1696 // Just use pointer type, it's guaranteed to fit. 1697 UsePtrType = true; 1698 break; 1699 } 1700 } 1701 if (UsePtrType) { 1702 VT = TLI.getPointerTy(); 1703 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1704 } 1705 1706 B.RegVT = VT; 1707 B.Reg = FuncInfo.CreateReg(VT); 1708 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1709 B.Reg, Sub); 1710 1711 // Set NextBlock to be the MBB immediately after the current one, if any. 1712 // This is used to avoid emitting unnecessary branches to the next block. 1713 MachineBasicBlock *NextBlock = 0; 1714 MachineFunction::iterator BBI = SwitchBB; 1715 if (++BBI != FuncInfo.MF->end()) 1716 NextBlock = BBI; 1717 1718 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1719 1720 addSuccessorWithWeight(SwitchBB, B.Default); 1721 addSuccessorWithWeight(SwitchBB, MBB); 1722 1723 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1724 MVT::Other, CopyTo, RangeCmp, 1725 DAG.getBasicBlock(B.Default)); 1726 1727 if (MBB != NextBlock) 1728 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1729 DAG.getBasicBlock(MBB)); 1730 1731 DAG.setRoot(BrRange); 1732 } 1733 1734 /// visitBitTestCase - this function produces one "bit test" 1735 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1736 MachineBasicBlock* NextMBB, 1737 unsigned Reg, 1738 BitTestCase &B, 1739 MachineBasicBlock *SwitchBB) { 1740 EVT VT = BB.RegVT; 1741 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1742 Reg, VT); 1743 SDValue Cmp; 1744 unsigned PopCount = CountPopulation_64(B.Mask); 1745 if (PopCount == 1) { 1746 // Testing for a single bit; just compare the shift count with what it 1747 // would need to be to shift a 1 bit in that position. 1748 Cmp = DAG.getSetCC(getCurDebugLoc(), 1749 TLI.getSetCCResultType(VT), 1750 ShiftOp, 1751 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1752 ISD::SETEQ); 1753 } else if (PopCount == BB.Range) { 1754 // There is only one zero bit in the range, test for it directly. 1755 Cmp = DAG.getSetCC(getCurDebugLoc(), 1756 TLI.getSetCCResultType(VT), 1757 ShiftOp, 1758 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1759 ISD::SETNE); 1760 } else { 1761 // Make desired shift 1762 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1763 DAG.getConstant(1, VT), ShiftOp); 1764 1765 // Emit bit tests and jumps 1766 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1767 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1768 Cmp = DAG.getSetCC(getCurDebugLoc(), 1769 TLI.getSetCCResultType(VT), 1770 AndOp, DAG.getConstant(0, VT), 1771 ISD::SETNE); 1772 } 1773 1774 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1775 addSuccessorWithWeight(SwitchBB, NextMBB); 1776 1777 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1778 MVT::Other, getControlRoot(), 1779 Cmp, DAG.getBasicBlock(B.TargetBB)); 1780 1781 // Set NextBlock to be the MBB immediately after the current one, if any. 1782 // This is used to avoid emitting unnecessary branches to the next block. 1783 MachineBasicBlock *NextBlock = 0; 1784 MachineFunction::iterator BBI = SwitchBB; 1785 if (++BBI != FuncInfo.MF->end()) 1786 NextBlock = BBI; 1787 1788 if (NextMBB != NextBlock) 1789 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1790 DAG.getBasicBlock(NextMBB)); 1791 1792 DAG.setRoot(BrAnd); 1793 } 1794 1795 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1796 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1797 1798 // Retrieve successors. 1799 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1800 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1801 1802 const Value *Callee(I.getCalledValue()); 1803 if (isa<InlineAsm>(Callee)) 1804 visitInlineAsm(&I); 1805 else 1806 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1807 1808 // If the value of the invoke is used outside of its defining block, make it 1809 // available as a virtual register. 1810 CopyToExportRegsIfNeeded(&I); 1811 1812 // Update successor info 1813 InvokeMBB->addSuccessor(Return); 1814 InvokeMBB->addSuccessor(LandingPad); 1815 1816 // Drop into normal successor. 1817 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1818 MVT::Other, getControlRoot(), 1819 DAG.getBasicBlock(Return))); 1820 } 1821 1822 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1823 } 1824 1825 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1826 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1827 } 1828 1829 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1830 assert(FuncInfo.MBB->isLandingPad() && 1831 "Call to landingpad not in landing pad!"); 1832 1833 MachineBasicBlock *MBB = FuncInfo.MBB; 1834 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1835 AddLandingPadInfo(LP, MMI, MBB); 1836 1837 SmallVector<EVT, 2> ValueVTs; 1838 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1839 1840 // Insert the EXCEPTIONADDR instruction. 1841 assert(FuncInfo.MBB->isLandingPad() && 1842 "Call to eh.exception not in landing pad!"); 1843 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1844 SDValue Ops[2]; 1845 Ops[0] = DAG.getRoot(); 1846 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1847 SDValue Chain = Op1.getValue(1); 1848 1849 // Insert the EHSELECTION instruction. 1850 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1851 Ops[0] = Op1; 1852 Ops[1] = Chain; 1853 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1854 Chain = Op2.getValue(1); 1855 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1856 1857 Ops[0] = Op1; 1858 Ops[1] = Op2; 1859 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1860 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1861 &Ops[0], 2); 1862 1863 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1864 setValue(&LP, RetPair.first); 1865 DAG.setRoot(RetPair.second); 1866 } 1867 1868 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1869 /// small case ranges). 1870 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1871 CaseRecVector& WorkList, 1872 const Value* SV, 1873 MachineBasicBlock *Default, 1874 MachineBasicBlock *SwitchBB) { 1875 Case& BackCase = *(CR.Range.second-1); 1876 1877 // Size is the number of Cases represented by this range. 1878 size_t Size = CR.Range.second - CR.Range.first; 1879 if (Size > 3) 1880 return false; 1881 1882 // Get the MachineFunction which holds the current MBB. This is used when 1883 // inserting any additional MBBs necessary to represent the switch. 1884 MachineFunction *CurMF = FuncInfo.MF; 1885 1886 // Figure out which block is immediately after the current one. 1887 MachineBasicBlock *NextBlock = 0; 1888 MachineFunction::iterator BBI = CR.CaseBB; 1889 1890 if (++BBI != FuncInfo.MF->end()) 1891 NextBlock = BBI; 1892 1893 // If any two of the cases has the same destination, and if one value 1894 // is the same as the other, but has one bit unset that the other has set, 1895 // use bit manipulation to do two compares at once. For example: 1896 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1897 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1898 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1899 if (Size == 2 && CR.CaseBB == SwitchBB) { 1900 Case &Small = *CR.Range.first; 1901 Case &Big = *(CR.Range.second-1); 1902 1903 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1904 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1905 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1906 1907 // Check that there is only one bit different. 1908 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1909 (SmallValue | BigValue) == BigValue) { 1910 // Isolate the common bit. 1911 APInt CommonBit = BigValue & ~SmallValue; 1912 assert((SmallValue | CommonBit) == BigValue && 1913 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1914 1915 SDValue CondLHS = getValue(SV); 1916 EVT VT = CondLHS.getValueType(); 1917 DebugLoc DL = getCurDebugLoc(); 1918 1919 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1920 DAG.getConstant(CommonBit, VT)); 1921 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1922 Or, DAG.getConstant(BigValue, VT), 1923 ISD::SETEQ); 1924 1925 // Update successor info. 1926 addSuccessorWithWeight(SwitchBB, Small.BB); 1927 addSuccessorWithWeight(SwitchBB, Default); 1928 1929 // Insert the true branch. 1930 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1931 getControlRoot(), Cond, 1932 DAG.getBasicBlock(Small.BB)); 1933 1934 // Insert the false branch. 1935 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1936 DAG.getBasicBlock(Default)); 1937 1938 DAG.setRoot(BrCond); 1939 return true; 1940 } 1941 } 1942 } 1943 1944 // Rearrange the case blocks so that the last one falls through if possible. 1945 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1946 // The last case block won't fall through into 'NextBlock' if we emit the 1947 // branches in this order. See if rearranging a case value would help. 1948 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1949 if (I->BB == NextBlock) { 1950 std::swap(*I, BackCase); 1951 break; 1952 } 1953 } 1954 } 1955 1956 // Create a CaseBlock record representing a conditional branch to 1957 // the Case's target mbb if the value being switched on SV is equal 1958 // to C. 1959 MachineBasicBlock *CurBlock = CR.CaseBB; 1960 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1961 MachineBasicBlock *FallThrough; 1962 if (I != E-1) { 1963 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1964 CurMF->insert(BBI, FallThrough); 1965 1966 // Put SV in a virtual register to make it available from the new blocks. 1967 ExportFromCurrentBlock(SV); 1968 } else { 1969 // If the last case doesn't match, go to the default block. 1970 FallThrough = Default; 1971 } 1972 1973 const Value *RHS, *LHS, *MHS; 1974 ISD::CondCode CC; 1975 if (I->High == I->Low) { 1976 // This is just small small case range :) containing exactly 1 case 1977 CC = ISD::SETEQ; 1978 LHS = SV; RHS = I->High; MHS = NULL; 1979 } else { 1980 CC = ISD::SETLE; 1981 LHS = I->Low; MHS = SV; RHS = I->High; 1982 } 1983 1984 uint32_t ExtraWeight = I->ExtraWeight; 1985 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 1986 /* me */ CurBlock, 1987 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 1988 1989 // If emitting the first comparison, just call visitSwitchCase to emit the 1990 // code into the current block. Otherwise, push the CaseBlock onto the 1991 // vector to be later processed by SDISel, and insert the node's MBB 1992 // before the next MBB. 1993 if (CurBlock == SwitchBB) 1994 visitSwitchCase(CB, SwitchBB); 1995 else 1996 SwitchCases.push_back(CB); 1997 1998 CurBlock = FallThrough; 1999 } 2000 2001 return true; 2002 } 2003 2004 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2005 return !DisableJumpTables && 2006 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2007 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2008 } 2009 2010 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2011 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2012 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2013 return (LastExt - FirstExt + 1ULL); 2014 } 2015 2016 /// handleJTSwitchCase - Emit jumptable for current switch case range 2017 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2018 CaseRecVector &WorkList, 2019 const Value *SV, 2020 MachineBasicBlock *Default, 2021 MachineBasicBlock *SwitchBB) { 2022 Case& FrontCase = *CR.Range.first; 2023 Case& BackCase = *(CR.Range.second-1); 2024 2025 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2026 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2027 2028 APInt TSize(First.getBitWidth(), 0); 2029 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2030 TSize += I->size(); 2031 2032 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2033 return false; 2034 2035 APInt Range = ComputeRange(First, Last); 2036 // The density is TSize / Range. Require at least 40%. 2037 // It should not be possible for IntTSize to saturate for sane code, but make 2038 // sure we handle Range saturation correctly. 2039 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2040 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2041 if (IntTSize * 10 < IntRange * 4) 2042 return false; 2043 2044 DEBUG(dbgs() << "Lowering jump table\n" 2045 << "First entry: " << First << ". Last entry: " << Last << '\n' 2046 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2047 2048 // Get the MachineFunction which holds the current MBB. This is used when 2049 // inserting any additional MBBs necessary to represent the switch. 2050 MachineFunction *CurMF = FuncInfo.MF; 2051 2052 // Figure out which block is immediately after the current one. 2053 MachineFunction::iterator BBI = CR.CaseBB; 2054 ++BBI; 2055 2056 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2057 2058 // Create a new basic block to hold the code for loading the address 2059 // of the jump table, and jumping to it. Update successor information; 2060 // we will either branch to the default case for the switch, or the jump 2061 // table. 2062 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2063 CurMF->insert(BBI, JumpTableBB); 2064 2065 addSuccessorWithWeight(CR.CaseBB, Default); 2066 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2067 2068 // Build a vector of destination BBs, corresponding to each target 2069 // of the jump table. If the value of the jump table slot corresponds to 2070 // a case statement, push the case's BB onto the vector, otherwise, push 2071 // the default BB. 2072 std::vector<MachineBasicBlock*> DestBBs; 2073 APInt TEI = First; 2074 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2075 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2076 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2077 2078 if (Low.sle(TEI) && TEI.sle(High)) { 2079 DestBBs.push_back(I->BB); 2080 if (TEI==High) 2081 ++I; 2082 } else { 2083 DestBBs.push_back(Default); 2084 } 2085 } 2086 2087 // Update successor info. Add one edge to each unique successor. 2088 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2089 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2090 E = DestBBs.end(); I != E; ++I) { 2091 if (!SuccsHandled[(*I)->getNumber()]) { 2092 SuccsHandled[(*I)->getNumber()] = true; 2093 addSuccessorWithWeight(JumpTableBB, *I); 2094 } 2095 } 2096 2097 // Create a jump table index for this jump table. 2098 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2099 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2100 ->createJumpTableIndex(DestBBs); 2101 2102 // Set the jump table information so that we can codegen it as a second 2103 // MachineBasicBlock 2104 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2105 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2106 if (CR.CaseBB == SwitchBB) 2107 visitJumpTableHeader(JT, JTH, SwitchBB); 2108 2109 JTCases.push_back(JumpTableBlock(JTH, JT)); 2110 return true; 2111 } 2112 2113 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2114 /// 2 subtrees. 2115 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2116 CaseRecVector& WorkList, 2117 const Value* SV, 2118 MachineBasicBlock *Default, 2119 MachineBasicBlock *SwitchBB) { 2120 // Get the MachineFunction which holds the current MBB. This is used when 2121 // inserting any additional MBBs necessary to represent the switch. 2122 MachineFunction *CurMF = FuncInfo.MF; 2123 2124 // Figure out which block is immediately after the current one. 2125 MachineFunction::iterator BBI = CR.CaseBB; 2126 ++BBI; 2127 2128 Case& FrontCase = *CR.Range.first; 2129 Case& BackCase = *(CR.Range.second-1); 2130 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2131 2132 // Size is the number of Cases represented by this range. 2133 unsigned Size = CR.Range.second - CR.Range.first; 2134 2135 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2136 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2137 double FMetric = 0; 2138 CaseItr Pivot = CR.Range.first + Size/2; 2139 2140 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2141 // (heuristically) allow us to emit JumpTable's later. 2142 APInt TSize(First.getBitWidth(), 0); 2143 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2144 I!=E; ++I) 2145 TSize += I->size(); 2146 2147 APInt LSize = FrontCase.size(); 2148 APInt RSize = TSize-LSize; 2149 DEBUG(dbgs() << "Selecting best pivot: \n" 2150 << "First: " << First << ", Last: " << Last <<'\n' 2151 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2152 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2153 J!=E; ++I, ++J) { 2154 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2155 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2156 APInt Range = ComputeRange(LEnd, RBegin); 2157 assert((Range - 2ULL).isNonNegative() && 2158 "Invalid case distance"); 2159 // Use volatile double here to avoid excess precision issues on some hosts, 2160 // e.g. that use 80-bit X87 registers. 2161 volatile double LDensity = 2162 (double)LSize.roundToDouble() / 2163 (LEnd - First + 1ULL).roundToDouble(); 2164 volatile double RDensity = 2165 (double)RSize.roundToDouble() / 2166 (Last - RBegin + 1ULL).roundToDouble(); 2167 double Metric = Range.logBase2()*(LDensity+RDensity); 2168 // Should always split in some non-trivial place 2169 DEBUG(dbgs() <<"=>Step\n" 2170 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2171 << "LDensity: " << LDensity 2172 << ", RDensity: " << RDensity << '\n' 2173 << "Metric: " << Metric << '\n'); 2174 if (FMetric < Metric) { 2175 Pivot = J; 2176 FMetric = Metric; 2177 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2178 } 2179 2180 LSize += J->size(); 2181 RSize -= J->size(); 2182 } 2183 if (areJTsAllowed(TLI)) { 2184 // If our case is dense we *really* should handle it earlier! 2185 assert((FMetric > 0) && "Should handle dense range earlier!"); 2186 } else { 2187 Pivot = CR.Range.first + Size/2; 2188 } 2189 2190 CaseRange LHSR(CR.Range.first, Pivot); 2191 CaseRange RHSR(Pivot, CR.Range.second); 2192 Constant *C = Pivot->Low; 2193 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2194 2195 // We know that we branch to the LHS if the Value being switched on is 2196 // less than the Pivot value, C. We use this to optimize our binary 2197 // tree a bit, by recognizing that if SV is greater than or equal to the 2198 // LHS's Case Value, and that Case Value is exactly one less than the 2199 // Pivot's Value, then we can branch directly to the LHS's Target, 2200 // rather than creating a leaf node for it. 2201 if ((LHSR.second - LHSR.first) == 1 && 2202 LHSR.first->High == CR.GE && 2203 cast<ConstantInt>(C)->getValue() == 2204 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2205 TrueBB = LHSR.first->BB; 2206 } else { 2207 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2208 CurMF->insert(BBI, TrueBB); 2209 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2210 2211 // Put SV in a virtual register to make it available from the new blocks. 2212 ExportFromCurrentBlock(SV); 2213 } 2214 2215 // Similar to the optimization above, if the Value being switched on is 2216 // known to be less than the Constant CR.LT, and the current Case Value 2217 // is CR.LT - 1, then we can branch directly to the target block for 2218 // the current Case Value, rather than emitting a RHS leaf node for it. 2219 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2220 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2221 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2222 FalseBB = RHSR.first->BB; 2223 } else { 2224 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2225 CurMF->insert(BBI, FalseBB); 2226 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2227 2228 // Put SV in a virtual register to make it available from the new blocks. 2229 ExportFromCurrentBlock(SV); 2230 } 2231 2232 // Create a CaseBlock record representing a conditional branch to 2233 // the LHS node if the value being switched on SV is less than C. 2234 // Otherwise, branch to LHS. 2235 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2236 2237 if (CR.CaseBB == SwitchBB) 2238 visitSwitchCase(CB, SwitchBB); 2239 else 2240 SwitchCases.push_back(CB); 2241 2242 return true; 2243 } 2244 2245 /// handleBitTestsSwitchCase - if current case range has few destination and 2246 /// range span less, than machine word bitwidth, encode case range into series 2247 /// of masks and emit bit tests with these masks. 2248 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2249 CaseRecVector& WorkList, 2250 const Value* SV, 2251 MachineBasicBlock* Default, 2252 MachineBasicBlock *SwitchBB){ 2253 EVT PTy = TLI.getPointerTy(); 2254 unsigned IntPtrBits = PTy.getSizeInBits(); 2255 2256 Case& FrontCase = *CR.Range.first; 2257 Case& BackCase = *(CR.Range.second-1); 2258 2259 // Get the MachineFunction which holds the current MBB. This is used when 2260 // inserting any additional MBBs necessary to represent the switch. 2261 MachineFunction *CurMF = FuncInfo.MF; 2262 2263 // If target does not have legal shift left, do not emit bit tests at all. 2264 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2265 return false; 2266 2267 size_t numCmps = 0; 2268 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2269 I!=E; ++I) { 2270 // Single case counts one, case range - two. 2271 numCmps += (I->Low == I->High ? 1 : 2); 2272 } 2273 2274 // Count unique destinations 2275 SmallSet<MachineBasicBlock*, 4> Dests; 2276 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2277 Dests.insert(I->BB); 2278 if (Dests.size() > 3) 2279 // Don't bother the code below, if there are too much unique destinations 2280 return false; 2281 } 2282 DEBUG(dbgs() << "Total number of unique destinations: " 2283 << Dests.size() << '\n' 2284 << "Total number of comparisons: " << numCmps << '\n'); 2285 2286 // Compute span of values. 2287 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2288 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2289 APInt cmpRange = maxValue - minValue; 2290 2291 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2292 << "Low bound: " << minValue << '\n' 2293 << "High bound: " << maxValue << '\n'); 2294 2295 if (cmpRange.uge(IntPtrBits) || 2296 (!(Dests.size() == 1 && numCmps >= 3) && 2297 !(Dests.size() == 2 && numCmps >= 5) && 2298 !(Dests.size() >= 3 && numCmps >= 6))) 2299 return false; 2300 2301 DEBUG(dbgs() << "Emitting bit tests\n"); 2302 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2303 2304 // Optimize the case where all the case values fit in a 2305 // word without having to subtract minValue. In this case, 2306 // we can optimize away the subtraction. 2307 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2308 cmpRange = maxValue; 2309 } else { 2310 lowBound = minValue; 2311 } 2312 2313 CaseBitsVector CasesBits; 2314 unsigned i, count = 0; 2315 2316 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2317 MachineBasicBlock* Dest = I->BB; 2318 for (i = 0; i < count; ++i) 2319 if (Dest == CasesBits[i].BB) 2320 break; 2321 2322 if (i == count) { 2323 assert((count < 3) && "Too much destinations to test!"); 2324 CasesBits.push_back(CaseBits(0, Dest, 0)); 2325 count++; 2326 } 2327 2328 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2329 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2330 2331 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2332 uint64_t hi = (highValue - lowBound).getZExtValue(); 2333 2334 for (uint64_t j = lo; j <= hi; j++) { 2335 CasesBits[i].Mask |= 1ULL << j; 2336 CasesBits[i].Bits++; 2337 } 2338 2339 } 2340 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2341 2342 BitTestInfo BTC; 2343 2344 // Figure out which block is immediately after the current one. 2345 MachineFunction::iterator BBI = CR.CaseBB; 2346 ++BBI; 2347 2348 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2349 2350 DEBUG(dbgs() << "Cases:\n"); 2351 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2352 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2353 << ", Bits: " << CasesBits[i].Bits 2354 << ", BB: " << CasesBits[i].BB << '\n'); 2355 2356 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2357 CurMF->insert(BBI, CaseBB); 2358 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2359 CaseBB, 2360 CasesBits[i].BB)); 2361 2362 // Put SV in a virtual register to make it available from the new blocks. 2363 ExportFromCurrentBlock(SV); 2364 } 2365 2366 BitTestBlock BTB(lowBound, cmpRange, SV, 2367 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2368 CR.CaseBB, Default, BTC); 2369 2370 if (CR.CaseBB == SwitchBB) 2371 visitBitTestHeader(BTB, SwitchBB); 2372 2373 BitTestCases.push_back(BTB); 2374 2375 return true; 2376 } 2377 2378 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2379 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2380 const SwitchInst& SI) { 2381 size_t numCmps = 0; 2382 2383 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2384 // Start with "simple" cases 2385 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2386 BasicBlock *SuccBB = SI.getSuccessor(i); 2387 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2388 2389 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2390 2391 Cases.push_back(Case(SI.getSuccessorValue(i), 2392 SI.getSuccessorValue(i), 2393 SMBB, ExtraWeight)); 2394 } 2395 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2396 2397 // Merge case into clusters 2398 if (Cases.size() >= 2) 2399 // Must recompute end() each iteration because it may be 2400 // invalidated by erase if we hold on to it 2401 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2402 J != Cases.end(); ) { 2403 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2404 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2405 MachineBasicBlock* nextBB = J->BB; 2406 MachineBasicBlock* currentBB = I->BB; 2407 2408 // If the two neighboring cases go to the same destination, merge them 2409 // into a single case. 2410 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2411 I->High = J->High; 2412 J = Cases.erase(J); 2413 2414 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2415 uint32_t CurWeight = currentBB->getBasicBlock() ? 2416 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2417 uint32_t NextWeight = nextBB->getBasicBlock() ? 2418 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2419 2420 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2421 CurWeight + NextWeight); 2422 } 2423 } else { 2424 I = J++; 2425 } 2426 } 2427 2428 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2429 if (I->Low != I->High) 2430 // A range counts double, since it requires two compares. 2431 ++numCmps; 2432 } 2433 2434 return numCmps; 2435 } 2436 2437 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2438 MachineBasicBlock *Last) { 2439 // Update JTCases. 2440 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2441 if (JTCases[i].first.HeaderBB == First) 2442 JTCases[i].first.HeaderBB = Last; 2443 2444 // Update BitTestCases. 2445 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2446 if (BitTestCases[i].Parent == First) 2447 BitTestCases[i].Parent = Last; 2448 } 2449 2450 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2451 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2452 2453 // Figure out which block is immediately after the current one. 2454 MachineBasicBlock *NextBlock = 0; 2455 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2456 2457 // If there is only the default destination, branch to it if it is not the 2458 // next basic block. Otherwise, just fall through. 2459 if (SI.getNumCases() == 1) { 2460 // Update machine-CFG edges. 2461 2462 // If this is not a fall-through branch, emit the branch. 2463 SwitchMBB->addSuccessor(Default); 2464 if (Default != NextBlock) 2465 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2466 MVT::Other, getControlRoot(), 2467 DAG.getBasicBlock(Default))); 2468 2469 return; 2470 } 2471 2472 // If there are any non-default case statements, create a vector of Cases 2473 // representing each one, and sort the vector so that we can efficiently 2474 // create a binary search tree from them. 2475 CaseVector Cases; 2476 size_t numCmps = Clusterify(Cases, SI); 2477 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2478 << ". Total compares: " << numCmps << '\n'); 2479 (void)numCmps; 2480 2481 // Get the Value to be switched on and default basic blocks, which will be 2482 // inserted into CaseBlock records, representing basic blocks in the binary 2483 // search tree. 2484 const Value *SV = SI.getCondition(); 2485 2486 // Push the initial CaseRec onto the worklist 2487 CaseRecVector WorkList; 2488 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2489 CaseRange(Cases.begin(),Cases.end()))); 2490 2491 while (!WorkList.empty()) { 2492 // Grab a record representing a case range to process off the worklist 2493 CaseRec CR = WorkList.back(); 2494 WorkList.pop_back(); 2495 2496 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2497 continue; 2498 2499 // If the range has few cases (two or less) emit a series of specific 2500 // tests. 2501 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2502 continue; 2503 2504 // If the switch has more than 5 blocks, and at least 40% dense, and the 2505 // target supports indirect branches, then emit a jump table rather than 2506 // lowering the switch to a binary tree of conditional branches. 2507 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2508 continue; 2509 2510 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2511 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2512 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2513 } 2514 } 2515 2516 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2517 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2518 2519 // Update machine-CFG edges with unique successors. 2520 SmallVector<BasicBlock*, 32> succs; 2521 succs.reserve(I.getNumSuccessors()); 2522 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2523 succs.push_back(I.getSuccessor(i)); 2524 array_pod_sort(succs.begin(), succs.end()); 2525 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2526 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2527 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2528 addSuccessorWithWeight(IndirectBrMBB, Succ); 2529 } 2530 2531 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2532 MVT::Other, getControlRoot(), 2533 getValue(I.getAddress()))); 2534 } 2535 2536 void SelectionDAGBuilder::visitFSub(const User &I) { 2537 // -0.0 - X --> fneg 2538 Type *Ty = I.getType(); 2539 if (isa<Constant>(I.getOperand(0)) && 2540 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2541 SDValue Op2 = getValue(I.getOperand(1)); 2542 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2543 Op2.getValueType(), Op2)); 2544 return; 2545 } 2546 2547 visitBinary(I, ISD::FSUB); 2548 } 2549 2550 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2551 SDValue Op1 = getValue(I.getOperand(0)); 2552 SDValue Op2 = getValue(I.getOperand(1)); 2553 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2554 Op1.getValueType(), Op1, Op2)); 2555 } 2556 2557 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2558 SDValue Op1 = getValue(I.getOperand(0)); 2559 SDValue Op2 = getValue(I.getOperand(1)); 2560 2561 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2562 2563 // Coerce the shift amount to the right type if we can. 2564 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2565 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2566 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2567 DebugLoc DL = getCurDebugLoc(); 2568 2569 // If the operand is smaller than the shift count type, promote it. 2570 if (ShiftSize > Op2Size) 2571 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2572 2573 // If the operand is larger than the shift count type but the shift 2574 // count type has enough bits to represent any shift value, truncate 2575 // it now. This is a common case and it exposes the truncate to 2576 // optimization early. 2577 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2578 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2579 // Otherwise we'll need to temporarily settle for some other convenient 2580 // type. Type legalization will make adjustments once the shiftee is split. 2581 else 2582 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2583 } 2584 2585 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2586 Op1.getValueType(), Op1, Op2)); 2587 } 2588 2589 void SelectionDAGBuilder::visitSDiv(const User &I) { 2590 SDValue Op1 = getValue(I.getOperand(0)); 2591 SDValue Op2 = getValue(I.getOperand(1)); 2592 2593 // Turn exact SDivs into multiplications. 2594 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2595 // exact bit. 2596 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2597 !isa<ConstantSDNode>(Op1) && 2598 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2599 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2600 else 2601 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2602 Op1, Op2)); 2603 } 2604 2605 void SelectionDAGBuilder::visitICmp(const User &I) { 2606 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2607 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2608 predicate = IC->getPredicate(); 2609 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2610 predicate = ICmpInst::Predicate(IC->getPredicate()); 2611 SDValue Op1 = getValue(I.getOperand(0)); 2612 SDValue Op2 = getValue(I.getOperand(1)); 2613 ISD::CondCode Opcode = getICmpCondCode(predicate); 2614 2615 EVT DestVT = TLI.getValueType(I.getType()); 2616 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2617 } 2618 2619 void SelectionDAGBuilder::visitFCmp(const User &I) { 2620 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2621 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2622 predicate = FC->getPredicate(); 2623 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2624 predicate = FCmpInst::Predicate(FC->getPredicate()); 2625 SDValue Op1 = getValue(I.getOperand(0)); 2626 SDValue Op2 = getValue(I.getOperand(1)); 2627 ISD::CondCode Condition = getFCmpCondCode(predicate); 2628 EVT DestVT = TLI.getValueType(I.getType()); 2629 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2630 } 2631 2632 void SelectionDAGBuilder::visitSelect(const User &I) { 2633 SmallVector<EVT, 4> ValueVTs; 2634 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2635 unsigned NumValues = ValueVTs.size(); 2636 if (NumValues == 0) return; 2637 2638 SmallVector<SDValue, 4> Values(NumValues); 2639 SDValue Cond = getValue(I.getOperand(0)); 2640 SDValue TrueVal = getValue(I.getOperand(1)); 2641 SDValue FalseVal = getValue(I.getOperand(2)); 2642 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2643 ISD::VSELECT : ISD::SELECT; 2644 2645 for (unsigned i = 0; i != NumValues; ++i) 2646 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2647 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2648 Cond, 2649 SDValue(TrueVal.getNode(), 2650 TrueVal.getResNo() + i), 2651 SDValue(FalseVal.getNode(), 2652 FalseVal.getResNo() + i)); 2653 2654 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2655 DAG.getVTList(&ValueVTs[0], NumValues), 2656 &Values[0], NumValues)); 2657 } 2658 2659 void SelectionDAGBuilder::visitTrunc(const User &I) { 2660 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2661 SDValue N = getValue(I.getOperand(0)); 2662 EVT DestVT = TLI.getValueType(I.getType()); 2663 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2664 } 2665 2666 void SelectionDAGBuilder::visitZExt(const User &I) { 2667 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2668 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2669 SDValue N = getValue(I.getOperand(0)); 2670 EVT DestVT = TLI.getValueType(I.getType()); 2671 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2672 } 2673 2674 void SelectionDAGBuilder::visitSExt(const User &I) { 2675 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2676 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2677 SDValue N = getValue(I.getOperand(0)); 2678 EVT DestVT = TLI.getValueType(I.getType()); 2679 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2680 } 2681 2682 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2683 // FPTrunc is never a no-op cast, no need to check 2684 SDValue N = getValue(I.getOperand(0)); 2685 EVT DestVT = TLI.getValueType(I.getType()); 2686 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2687 DestVT, N, DAG.getIntPtrConstant(0))); 2688 } 2689 2690 void SelectionDAGBuilder::visitFPExt(const User &I){ 2691 // FPExt is never a no-op cast, no need to check 2692 SDValue N = getValue(I.getOperand(0)); 2693 EVT DestVT = TLI.getValueType(I.getType()); 2694 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2695 } 2696 2697 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2698 // FPToUI is never a no-op cast, no need to check 2699 SDValue N = getValue(I.getOperand(0)); 2700 EVT DestVT = TLI.getValueType(I.getType()); 2701 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2702 } 2703 2704 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2705 // FPToSI is never a no-op cast, no need to check 2706 SDValue N = getValue(I.getOperand(0)); 2707 EVT DestVT = TLI.getValueType(I.getType()); 2708 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2709 } 2710 2711 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2712 // UIToFP is never a no-op cast, no need to check 2713 SDValue N = getValue(I.getOperand(0)); 2714 EVT DestVT = TLI.getValueType(I.getType()); 2715 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2716 } 2717 2718 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2719 // SIToFP is never a no-op cast, no need to check 2720 SDValue N = getValue(I.getOperand(0)); 2721 EVT DestVT = TLI.getValueType(I.getType()); 2722 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2723 } 2724 2725 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2726 // What to do depends on the size of the integer and the size of the pointer. 2727 // We can either truncate, zero extend, or no-op, accordingly. 2728 SDValue N = getValue(I.getOperand(0)); 2729 EVT DestVT = TLI.getValueType(I.getType()); 2730 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2731 } 2732 2733 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2734 // What to do depends on the size of the integer and the size of the pointer. 2735 // We can either truncate, zero extend, or no-op, accordingly. 2736 SDValue N = getValue(I.getOperand(0)); 2737 EVT DestVT = TLI.getValueType(I.getType()); 2738 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2739 } 2740 2741 void SelectionDAGBuilder::visitBitCast(const User &I) { 2742 SDValue N = getValue(I.getOperand(0)); 2743 EVT DestVT = TLI.getValueType(I.getType()); 2744 2745 // BitCast assures us that source and destination are the same size so this is 2746 // either a BITCAST or a no-op. 2747 if (DestVT != N.getValueType()) 2748 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2749 DestVT, N)); // convert types. 2750 else 2751 setValue(&I, N); // noop cast. 2752 } 2753 2754 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2755 SDValue InVec = getValue(I.getOperand(0)); 2756 SDValue InVal = getValue(I.getOperand(1)); 2757 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2758 TLI.getPointerTy(), 2759 getValue(I.getOperand(2))); 2760 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2761 TLI.getValueType(I.getType()), 2762 InVec, InVal, InIdx)); 2763 } 2764 2765 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2766 SDValue InVec = getValue(I.getOperand(0)); 2767 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2768 TLI.getPointerTy(), 2769 getValue(I.getOperand(1))); 2770 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2771 TLI.getValueType(I.getType()), InVec, InIdx)); 2772 } 2773 2774 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2775 // from SIndx and increasing to the element length (undefs are allowed). 2776 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2777 unsigned MaskNumElts = Mask.size(); 2778 for (unsigned i = 0; i != MaskNumElts; ++i) 2779 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2780 return false; 2781 return true; 2782 } 2783 2784 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2785 SmallVector<int, 8> Mask; 2786 SDValue Src1 = getValue(I.getOperand(0)); 2787 SDValue Src2 = getValue(I.getOperand(1)); 2788 2789 // Convert the ConstantVector mask operand into an array of ints, with -1 2790 // representing undef values. 2791 SmallVector<Constant*, 8> MaskElts; 2792 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2793 unsigned MaskNumElts = MaskElts.size(); 2794 for (unsigned i = 0; i != MaskNumElts; ++i) { 2795 if (isa<UndefValue>(MaskElts[i])) 2796 Mask.push_back(-1); 2797 else 2798 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2799 } 2800 2801 EVT VT = TLI.getValueType(I.getType()); 2802 EVT SrcVT = Src1.getValueType(); 2803 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2804 2805 if (SrcNumElts == MaskNumElts) { 2806 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2807 &Mask[0])); 2808 return; 2809 } 2810 2811 // Normalize the shuffle vector since mask and vector length don't match. 2812 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2813 // Mask is longer than the source vectors and is a multiple of the source 2814 // vectors. We can use concatenate vector to make the mask and vectors 2815 // lengths match. 2816 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2817 // The shuffle is concatenating two vectors together. 2818 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2819 VT, Src1, Src2)); 2820 return; 2821 } 2822 2823 // Pad both vectors with undefs to make them the same length as the mask. 2824 unsigned NumConcat = MaskNumElts / SrcNumElts; 2825 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2826 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2827 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2828 2829 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2830 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2831 MOps1[0] = Src1; 2832 MOps2[0] = Src2; 2833 2834 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2835 getCurDebugLoc(), VT, 2836 &MOps1[0], NumConcat); 2837 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2838 getCurDebugLoc(), VT, 2839 &MOps2[0], NumConcat); 2840 2841 // Readjust mask for new input vector length. 2842 SmallVector<int, 8> MappedOps; 2843 for (unsigned i = 0; i != MaskNumElts; ++i) { 2844 int Idx = Mask[i]; 2845 if (Idx < (int)SrcNumElts) 2846 MappedOps.push_back(Idx); 2847 else 2848 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2849 } 2850 2851 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2852 &MappedOps[0])); 2853 return; 2854 } 2855 2856 if (SrcNumElts > MaskNumElts) { 2857 // Analyze the access pattern of the vector to see if we can extract 2858 // two subvectors and do the shuffle. The analysis is done by calculating 2859 // the range of elements the mask access on both vectors. 2860 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2861 static_cast<int>(SrcNumElts+1)}; 2862 int MaxRange[2] = {-1, -1}; 2863 2864 for (unsigned i = 0; i != MaskNumElts; ++i) { 2865 int Idx = Mask[i]; 2866 int Input = 0; 2867 if (Idx < 0) 2868 continue; 2869 2870 if (Idx >= (int)SrcNumElts) { 2871 Input = 1; 2872 Idx -= SrcNumElts; 2873 } 2874 if (Idx > MaxRange[Input]) 2875 MaxRange[Input] = Idx; 2876 if (Idx < MinRange[Input]) 2877 MinRange[Input] = Idx; 2878 } 2879 2880 // Check if the access is smaller than the vector size and can we find 2881 // a reasonable extract index. 2882 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2883 // Extract. 2884 int StartIdx[2]; // StartIdx to extract from 2885 for (int Input=0; Input < 2; ++Input) { 2886 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2887 RangeUse[Input] = 0; // Unused 2888 StartIdx[Input] = 0; 2889 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2890 // Fits within range but we should see if we can find a good 2891 // start index that is a multiple of the mask length. 2892 if (MaxRange[Input] < (int)MaskNumElts) { 2893 RangeUse[Input] = 1; // Extract from beginning of the vector 2894 StartIdx[Input] = 0; 2895 } else { 2896 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2897 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2898 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2899 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2900 } 2901 } 2902 } 2903 2904 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2905 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2906 return; 2907 } 2908 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2909 // Extract appropriate subvector and generate a vector shuffle 2910 for (int Input=0; Input < 2; ++Input) { 2911 SDValue &Src = Input == 0 ? Src1 : Src2; 2912 if (RangeUse[Input] == 0) 2913 Src = DAG.getUNDEF(VT); 2914 else 2915 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2916 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2917 } 2918 2919 // Calculate new mask. 2920 SmallVector<int, 8> MappedOps; 2921 for (unsigned i = 0; i != MaskNumElts; ++i) { 2922 int Idx = Mask[i]; 2923 if (Idx < 0) 2924 MappedOps.push_back(Idx); 2925 else if (Idx < (int)SrcNumElts) 2926 MappedOps.push_back(Idx - StartIdx[0]); 2927 else 2928 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2929 } 2930 2931 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2932 &MappedOps[0])); 2933 return; 2934 } 2935 } 2936 2937 // We can't use either concat vectors or extract subvectors so fall back to 2938 // replacing the shuffle with extract and build vector. 2939 // to insert and build vector. 2940 EVT EltVT = VT.getVectorElementType(); 2941 EVT PtrVT = TLI.getPointerTy(); 2942 SmallVector<SDValue,8> Ops; 2943 for (unsigned i = 0; i != MaskNumElts; ++i) { 2944 if (Mask[i] < 0) { 2945 Ops.push_back(DAG.getUNDEF(EltVT)); 2946 } else { 2947 int Idx = Mask[i]; 2948 SDValue Res; 2949 2950 if (Idx < (int)SrcNumElts) 2951 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2952 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2953 else 2954 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2955 EltVT, Src2, 2956 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2957 2958 Ops.push_back(Res); 2959 } 2960 } 2961 2962 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2963 VT, &Ops[0], Ops.size())); 2964 } 2965 2966 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2967 const Value *Op0 = I.getOperand(0); 2968 const Value *Op1 = I.getOperand(1); 2969 Type *AggTy = I.getType(); 2970 Type *ValTy = Op1->getType(); 2971 bool IntoUndef = isa<UndefValue>(Op0); 2972 bool FromUndef = isa<UndefValue>(Op1); 2973 2974 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2975 2976 SmallVector<EVT, 4> AggValueVTs; 2977 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2978 SmallVector<EVT, 4> ValValueVTs; 2979 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2980 2981 unsigned NumAggValues = AggValueVTs.size(); 2982 unsigned NumValValues = ValValueVTs.size(); 2983 SmallVector<SDValue, 4> Values(NumAggValues); 2984 2985 SDValue Agg = getValue(Op0); 2986 unsigned i = 0; 2987 // Copy the beginning value(s) from the original aggregate. 2988 for (; i != LinearIndex; ++i) 2989 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2990 SDValue(Agg.getNode(), Agg.getResNo() + i); 2991 // Copy values from the inserted value(s). 2992 if (NumValValues) { 2993 SDValue Val = getValue(Op1); 2994 for (; i != LinearIndex + NumValValues; ++i) 2995 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2996 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2997 } 2998 // Copy remaining value(s) from the original aggregate. 2999 for (; i != NumAggValues; ++i) 3000 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3001 SDValue(Agg.getNode(), Agg.getResNo() + i); 3002 3003 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3004 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3005 &Values[0], NumAggValues)); 3006 } 3007 3008 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3009 const Value *Op0 = I.getOperand(0); 3010 Type *AggTy = Op0->getType(); 3011 Type *ValTy = I.getType(); 3012 bool OutOfUndef = isa<UndefValue>(Op0); 3013 3014 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3015 3016 SmallVector<EVT, 4> ValValueVTs; 3017 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3018 3019 unsigned NumValValues = ValValueVTs.size(); 3020 3021 // Ignore a extractvalue that produces an empty object 3022 if (!NumValValues) { 3023 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3024 return; 3025 } 3026 3027 SmallVector<SDValue, 4> Values(NumValValues); 3028 3029 SDValue Agg = getValue(Op0); 3030 // Copy out the selected value(s). 3031 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3032 Values[i - LinearIndex] = 3033 OutOfUndef ? 3034 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3035 SDValue(Agg.getNode(), Agg.getResNo() + i); 3036 3037 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3038 DAG.getVTList(&ValValueVTs[0], NumValValues), 3039 &Values[0], NumValValues)); 3040 } 3041 3042 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3043 SDValue N = getValue(I.getOperand(0)); 3044 Type *Ty = I.getOperand(0)->getType(); 3045 3046 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3047 OI != E; ++OI) { 3048 const Value *Idx = *OI; 3049 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3050 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3051 if (Field) { 3052 // N = N + Offset 3053 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3054 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3055 DAG.getIntPtrConstant(Offset)); 3056 } 3057 3058 Ty = StTy->getElementType(Field); 3059 } else { 3060 Ty = cast<SequentialType>(Ty)->getElementType(); 3061 3062 // If this is a constant subscript, handle it quickly. 3063 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3064 if (CI->isZero()) continue; 3065 uint64_t Offs = 3066 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3067 SDValue OffsVal; 3068 EVT PTy = TLI.getPointerTy(); 3069 unsigned PtrBits = PTy.getSizeInBits(); 3070 if (PtrBits < 64) 3071 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3072 TLI.getPointerTy(), 3073 DAG.getConstant(Offs, MVT::i64)); 3074 else 3075 OffsVal = DAG.getIntPtrConstant(Offs); 3076 3077 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3078 OffsVal); 3079 continue; 3080 } 3081 3082 // N = N + Idx * ElementSize; 3083 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3084 TD->getTypeAllocSize(Ty)); 3085 SDValue IdxN = getValue(Idx); 3086 3087 // If the index is smaller or larger than intptr_t, truncate or extend 3088 // it. 3089 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3090 3091 // If this is a multiply by a power of two, turn it into a shl 3092 // immediately. This is a very common case. 3093 if (ElementSize != 1) { 3094 if (ElementSize.isPowerOf2()) { 3095 unsigned Amt = ElementSize.logBase2(); 3096 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3097 N.getValueType(), IdxN, 3098 DAG.getConstant(Amt, TLI.getPointerTy())); 3099 } else { 3100 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3101 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3102 N.getValueType(), IdxN, Scale); 3103 } 3104 } 3105 3106 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3107 N.getValueType(), N, IdxN); 3108 } 3109 } 3110 3111 setValue(&I, N); 3112 } 3113 3114 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3115 // If this is a fixed sized alloca in the entry block of the function, 3116 // allocate it statically on the stack. 3117 if (FuncInfo.StaticAllocaMap.count(&I)) 3118 return; // getValue will auto-populate this. 3119 3120 Type *Ty = I.getAllocatedType(); 3121 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3122 unsigned Align = 3123 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3124 I.getAlignment()); 3125 3126 SDValue AllocSize = getValue(I.getArraySize()); 3127 3128 EVT IntPtr = TLI.getPointerTy(); 3129 if (AllocSize.getValueType() != IntPtr) 3130 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3131 3132 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3133 AllocSize, 3134 DAG.getConstant(TySize, IntPtr)); 3135 3136 // Handle alignment. If the requested alignment is less than or equal to 3137 // the stack alignment, ignore it. If the size is greater than or equal to 3138 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3139 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3140 if (Align <= StackAlign) 3141 Align = 0; 3142 3143 // Round the size of the allocation up to the stack alignment size 3144 // by add SA-1 to the size. 3145 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3146 AllocSize.getValueType(), AllocSize, 3147 DAG.getIntPtrConstant(StackAlign-1)); 3148 3149 // Mask out the low bits for alignment purposes. 3150 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3151 AllocSize.getValueType(), AllocSize, 3152 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3153 3154 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3155 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3156 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3157 VTs, Ops, 3); 3158 setValue(&I, DSA); 3159 DAG.setRoot(DSA.getValue(1)); 3160 3161 // Inform the Frame Information that we have just allocated a variable-sized 3162 // object. 3163 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3164 } 3165 3166 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3167 if (I.isAtomic()) 3168 return visitAtomicLoad(I); 3169 3170 const Value *SV = I.getOperand(0); 3171 SDValue Ptr = getValue(SV); 3172 3173 Type *Ty = I.getType(); 3174 3175 bool isVolatile = I.isVolatile(); 3176 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3177 bool isInvariant = I.getMetadata("invariant.load") != 0; 3178 unsigned Alignment = I.getAlignment(); 3179 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3180 3181 SmallVector<EVT, 4> ValueVTs; 3182 SmallVector<uint64_t, 4> Offsets; 3183 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3184 unsigned NumValues = ValueVTs.size(); 3185 if (NumValues == 0) 3186 return; 3187 3188 SDValue Root; 3189 bool ConstantMemory = false; 3190 if (I.isVolatile() || NumValues > MaxParallelChains) 3191 // Serialize volatile loads with other side effects. 3192 Root = getRoot(); 3193 else if (AA->pointsToConstantMemory( 3194 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3195 // Do not serialize (non-volatile) loads of constant memory with anything. 3196 Root = DAG.getEntryNode(); 3197 ConstantMemory = true; 3198 } else { 3199 // Do not serialize non-volatile loads against each other. 3200 Root = DAG.getRoot(); 3201 } 3202 3203 SmallVector<SDValue, 4> Values(NumValues); 3204 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3205 NumValues)); 3206 EVT PtrVT = Ptr.getValueType(); 3207 unsigned ChainI = 0; 3208 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3209 // Serializing loads here may result in excessive register pressure, and 3210 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3211 // could recover a bit by hoisting nodes upward in the chain by recognizing 3212 // they are side-effect free or do not alias. The optimizer should really 3213 // avoid this case by converting large object/array copies to llvm.memcpy 3214 // (MaxParallelChains should always remain as failsafe). 3215 if (ChainI == MaxParallelChains) { 3216 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3217 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3218 MVT::Other, &Chains[0], ChainI); 3219 Root = Chain; 3220 ChainI = 0; 3221 } 3222 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3223 PtrVT, Ptr, 3224 DAG.getConstant(Offsets[i], PtrVT)); 3225 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3226 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3227 isNonTemporal, isInvariant, Alignment, TBAAInfo); 3228 3229 Values[i] = L; 3230 Chains[ChainI] = L.getValue(1); 3231 } 3232 3233 if (!ConstantMemory) { 3234 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3235 MVT::Other, &Chains[0], ChainI); 3236 if (isVolatile) 3237 DAG.setRoot(Chain); 3238 else 3239 PendingLoads.push_back(Chain); 3240 } 3241 3242 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3243 DAG.getVTList(&ValueVTs[0], NumValues), 3244 &Values[0], NumValues)); 3245 } 3246 3247 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3248 if (I.isAtomic()) 3249 return visitAtomicStore(I); 3250 3251 const Value *SrcV = I.getOperand(0); 3252 const Value *PtrV = I.getOperand(1); 3253 3254 SmallVector<EVT, 4> ValueVTs; 3255 SmallVector<uint64_t, 4> Offsets; 3256 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3257 unsigned NumValues = ValueVTs.size(); 3258 if (NumValues == 0) 3259 return; 3260 3261 // Get the lowered operands. Note that we do this after 3262 // checking if NumResults is zero, because with zero results 3263 // the operands won't have values in the map. 3264 SDValue Src = getValue(SrcV); 3265 SDValue Ptr = getValue(PtrV); 3266 3267 SDValue Root = getRoot(); 3268 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3269 NumValues)); 3270 EVT PtrVT = Ptr.getValueType(); 3271 bool isVolatile = I.isVolatile(); 3272 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3273 unsigned Alignment = I.getAlignment(); 3274 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3275 3276 unsigned ChainI = 0; 3277 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3278 // See visitLoad comments. 3279 if (ChainI == MaxParallelChains) { 3280 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3281 MVT::Other, &Chains[0], ChainI); 3282 Root = Chain; 3283 ChainI = 0; 3284 } 3285 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3286 DAG.getConstant(Offsets[i], PtrVT)); 3287 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3288 SDValue(Src.getNode(), Src.getResNo() + i), 3289 Add, MachinePointerInfo(PtrV, Offsets[i]), 3290 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3291 Chains[ChainI] = St; 3292 } 3293 3294 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3295 MVT::Other, &Chains[0], ChainI); 3296 ++SDNodeOrder; 3297 AssignOrderingToNode(StoreNode.getNode()); 3298 DAG.setRoot(StoreNode); 3299 } 3300 3301 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3302 SynchronizationScope Scope, 3303 bool Before, DebugLoc dl, 3304 SelectionDAG &DAG, 3305 const TargetLowering &TLI) { 3306 // Fence, if necessary 3307 if (Before) { 3308 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3309 Order = Release; 3310 else if (Order == Acquire || Order == Monotonic) 3311 return Chain; 3312 } else { 3313 if (Order == AcquireRelease) 3314 Order = Acquire; 3315 else if (Order == Release || Order == Monotonic) 3316 return Chain; 3317 } 3318 SDValue Ops[3]; 3319 Ops[0] = Chain; 3320 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3321 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3322 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3323 } 3324 3325 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3326 DebugLoc dl = getCurDebugLoc(); 3327 AtomicOrdering Order = I.getOrdering(); 3328 SynchronizationScope Scope = I.getSynchScope(); 3329 3330 SDValue InChain = getRoot(); 3331 3332 if (TLI.getInsertFencesForAtomic()) 3333 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3334 DAG, TLI); 3335 3336 SDValue L = 3337 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3338 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3339 InChain, 3340 getValue(I.getPointerOperand()), 3341 getValue(I.getCompareOperand()), 3342 getValue(I.getNewValOperand()), 3343 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3344 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3345 Scope); 3346 3347 SDValue OutChain = L.getValue(1); 3348 3349 if (TLI.getInsertFencesForAtomic()) 3350 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3351 DAG, TLI); 3352 3353 setValue(&I, L); 3354 DAG.setRoot(OutChain); 3355 } 3356 3357 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3358 DebugLoc dl = getCurDebugLoc(); 3359 ISD::NodeType NT; 3360 switch (I.getOperation()) { 3361 default: llvm_unreachable("Unknown atomicrmw operation"); return; 3362 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3363 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3364 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3365 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3366 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3367 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3368 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3369 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3370 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3371 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3372 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3373 } 3374 AtomicOrdering Order = I.getOrdering(); 3375 SynchronizationScope Scope = I.getSynchScope(); 3376 3377 SDValue InChain = getRoot(); 3378 3379 if (TLI.getInsertFencesForAtomic()) 3380 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3381 DAG, TLI); 3382 3383 SDValue L = 3384 DAG.getAtomic(NT, dl, 3385 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3386 InChain, 3387 getValue(I.getPointerOperand()), 3388 getValue(I.getValOperand()), 3389 I.getPointerOperand(), 0 /* Alignment */, 3390 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3391 Scope); 3392 3393 SDValue OutChain = L.getValue(1); 3394 3395 if (TLI.getInsertFencesForAtomic()) 3396 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3397 DAG, TLI); 3398 3399 setValue(&I, L); 3400 DAG.setRoot(OutChain); 3401 } 3402 3403 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3404 DebugLoc dl = getCurDebugLoc(); 3405 SDValue Ops[3]; 3406 Ops[0] = getRoot(); 3407 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3408 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3409 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3410 } 3411 3412 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3413 DebugLoc dl = getCurDebugLoc(); 3414 AtomicOrdering Order = I.getOrdering(); 3415 SynchronizationScope Scope = I.getSynchScope(); 3416 3417 SDValue InChain = getRoot(); 3418 3419 EVT VT = EVT::getEVT(I.getType()); 3420 3421 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3422 report_fatal_error("Cannot generate unaligned atomic load"); 3423 3424 SDValue L = 3425 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3426 getValue(I.getPointerOperand()), 3427 I.getPointerOperand(), I.getAlignment(), 3428 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3429 Scope); 3430 3431 SDValue OutChain = L.getValue(1); 3432 3433 if (TLI.getInsertFencesForAtomic()) 3434 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3435 DAG, TLI); 3436 3437 setValue(&I, L); 3438 DAG.setRoot(OutChain); 3439 } 3440 3441 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3442 DebugLoc dl = getCurDebugLoc(); 3443 3444 AtomicOrdering Order = I.getOrdering(); 3445 SynchronizationScope Scope = I.getSynchScope(); 3446 3447 SDValue InChain = getRoot(); 3448 3449 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3450 3451 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3452 report_fatal_error("Cannot generate unaligned atomic store"); 3453 3454 if (TLI.getInsertFencesForAtomic()) 3455 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3456 DAG, TLI); 3457 3458 SDValue OutChain = 3459 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3460 InChain, 3461 getValue(I.getPointerOperand()), 3462 getValue(I.getValueOperand()), 3463 I.getPointerOperand(), I.getAlignment(), 3464 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3465 Scope); 3466 3467 if (TLI.getInsertFencesForAtomic()) 3468 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3469 DAG, TLI); 3470 3471 DAG.setRoot(OutChain); 3472 } 3473 3474 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3475 /// node. 3476 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3477 unsigned Intrinsic) { 3478 bool HasChain = !I.doesNotAccessMemory(); 3479 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3480 3481 // Build the operand list. 3482 SmallVector<SDValue, 8> Ops; 3483 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3484 if (OnlyLoad) { 3485 // We don't need to serialize loads against other loads. 3486 Ops.push_back(DAG.getRoot()); 3487 } else { 3488 Ops.push_back(getRoot()); 3489 } 3490 } 3491 3492 // Info is set by getTgtMemInstrinsic 3493 TargetLowering::IntrinsicInfo Info; 3494 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3495 3496 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3497 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3498 Info.opc == ISD::INTRINSIC_W_CHAIN) 3499 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3500 3501 // Add all operands of the call to the operand list. 3502 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3503 SDValue Op = getValue(I.getArgOperand(i)); 3504 assert(TLI.isTypeLegal(Op.getValueType()) && 3505 "Intrinsic uses a non-legal type?"); 3506 Ops.push_back(Op); 3507 } 3508 3509 SmallVector<EVT, 4> ValueVTs; 3510 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3511 #ifndef NDEBUG 3512 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3513 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3514 "Intrinsic uses a non-legal type?"); 3515 } 3516 #endif // NDEBUG 3517 3518 if (HasChain) 3519 ValueVTs.push_back(MVT::Other); 3520 3521 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3522 3523 // Create the node. 3524 SDValue Result; 3525 if (IsTgtIntrinsic) { 3526 // This is target intrinsic that touches memory 3527 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3528 VTs, &Ops[0], Ops.size(), 3529 Info.memVT, 3530 MachinePointerInfo(Info.ptrVal, Info.offset), 3531 Info.align, Info.vol, 3532 Info.readMem, Info.writeMem); 3533 } else if (!HasChain) { 3534 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3535 VTs, &Ops[0], Ops.size()); 3536 } else if (!I.getType()->isVoidTy()) { 3537 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3538 VTs, &Ops[0], Ops.size()); 3539 } else { 3540 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3541 VTs, &Ops[0], Ops.size()); 3542 } 3543 3544 if (HasChain) { 3545 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3546 if (OnlyLoad) 3547 PendingLoads.push_back(Chain); 3548 else 3549 DAG.setRoot(Chain); 3550 } 3551 3552 if (!I.getType()->isVoidTy()) { 3553 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3554 EVT VT = TLI.getValueType(PTy); 3555 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3556 } 3557 3558 setValue(&I, Result); 3559 } 3560 } 3561 3562 /// GetSignificand - Get the significand and build it into a floating-point 3563 /// number with exponent of 1: 3564 /// 3565 /// Op = (Op & 0x007fffff) | 0x3f800000; 3566 /// 3567 /// where Op is the hexidecimal representation of floating point value. 3568 static SDValue 3569 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3570 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3571 DAG.getConstant(0x007fffff, MVT::i32)); 3572 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3573 DAG.getConstant(0x3f800000, MVT::i32)); 3574 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3575 } 3576 3577 /// GetExponent - Get the exponent: 3578 /// 3579 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3580 /// 3581 /// where Op is the hexidecimal representation of floating point value. 3582 static SDValue 3583 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3584 DebugLoc dl) { 3585 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3586 DAG.getConstant(0x7f800000, MVT::i32)); 3587 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3588 DAG.getConstant(23, TLI.getPointerTy())); 3589 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3590 DAG.getConstant(127, MVT::i32)); 3591 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3592 } 3593 3594 /// getF32Constant - Get 32-bit floating point constant. 3595 static SDValue 3596 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3597 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3598 } 3599 3600 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3601 const char * 3602 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3603 SDValue Op1 = getValue(I.getArgOperand(0)); 3604 SDValue Op2 = getValue(I.getArgOperand(1)); 3605 3606 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3607 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3608 return 0; 3609 } 3610 3611 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3612 /// limited-precision mode. 3613 void 3614 SelectionDAGBuilder::visitExp(const CallInst &I) { 3615 SDValue result; 3616 DebugLoc dl = getCurDebugLoc(); 3617 3618 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3619 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3620 SDValue Op = getValue(I.getArgOperand(0)); 3621 3622 // Put the exponent in the right bit position for later addition to the 3623 // final result: 3624 // 3625 // #define LOG2OFe 1.4426950f 3626 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3627 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3628 getF32Constant(DAG, 0x3fb8aa3b)); 3629 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3630 3631 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3632 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3633 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3634 3635 // IntegerPartOfX <<= 23; 3636 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3637 DAG.getConstant(23, TLI.getPointerTy())); 3638 3639 if (LimitFloatPrecision <= 6) { 3640 // For floating-point precision of 6: 3641 // 3642 // TwoToFractionalPartOfX = 3643 // 0.997535578f + 3644 // (0.735607626f + 0.252464424f * x) * x; 3645 // 3646 // error 0.0144103317, which is 6 bits 3647 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3648 getF32Constant(DAG, 0x3e814304)); 3649 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3650 getF32Constant(DAG, 0x3f3c50c8)); 3651 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3652 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3653 getF32Constant(DAG, 0x3f7f5e7e)); 3654 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3655 3656 // Add the exponent into the result in integer domain. 3657 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3658 TwoToFracPartOfX, IntegerPartOfX); 3659 3660 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3661 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3662 // For floating-point precision of 12: 3663 // 3664 // TwoToFractionalPartOfX = 3665 // 0.999892986f + 3666 // (0.696457318f + 3667 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3668 // 3669 // 0.000107046256 error, which is 13 to 14 bits 3670 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3671 getF32Constant(DAG, 0x3da235e3)); 3672 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3673 getF32Constant(DAG, 0x3e65b8f3)); 3674 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3675 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3676 getF32Constant(DAG, 0x3f324b07)); 3677 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3678 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3679 getF32Constant(DAG, 0x3f7ff8fd)); 3680 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3681 3682 // Add the exponent into the result in integer domain. 3683 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3684 TwoToFracPartOfX, IntegerPartOfX); 3685 3686 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3687 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3688 // For floating-point precision of 18: 3689 // 3690 // TwoToFractionalPartOfX = 3691 // 0.999999982f + 3692 // (0.693148872f + 3693 // (0.240227044f + 3694 // (0.554906021e-1f + 3695 // (0.961591928e-2f + 3696 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3697 // 3698 // error 2.47208000*10^(-7), which is better than 18 bits 3699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3700 getF32Constant(DAG, 0x3924b03e)); 3701 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3702 getF32Constant(DAG, 0x3ab24b87)); 3703 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3704 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3705 getF32Constant(DAG, 0x3c1d8c17)); 3706 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3707 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3708 getF32Constant(DAG, 0x3d634a1d)); 3709 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3710 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3711 getF32Constant(DAG, 0x3e75fe14)); 3712 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3713 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3714 getF32Constant(DAG, 0x3f317234)); 3715 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3716 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3717 getF32Constant(DAG, 0x3f800000)); 3718 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3719 MVT::i32, t13); 3720 3721 // Add the exponent into the result in integer domain. 3722 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3723 TwoToFracPartOfX, IntegerPartOfX); 3724 3725 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3726 } 3727 } else { 3728 // No special expansion. 3729 result = DAG.getNode(ISD::FEXP, dl, 3730 getValue(I.getArgOperand(0)).getValueType(), 3731 getValue(I.getArgOperand(0))); 3732 } 3733 3734 setValue(&I, result); 3735 } 3736 3737 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3738 /// limited-precision mode. 3739 void 3740 SelectionDAGBuilder::visitLog(const CallInst &I) { 3741 SDValue result; 3742 DebugLoc dl = getCurDebugLoc(); 3743 3744 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3745 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3746 SDValue Op = getValue(I.getArgOperand(0)); 3747 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3748 3749 // Scale the exponent by log(2) [0.69314718f]. 3750 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3751 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3752 getF32Constant(DAG, 0x3f317218)); 3753 3754 // Get the significand and build it into a floating-point number with 3755 // exponent of 1. 3756 SDValue X = GetSignificand(DAG, Op1, dl); 3757 3758 if (LimitFloatPrecision <= 6) { 3759 // For floating-point precision of 6: 3760 // 3761 // LogofMantissa = 3762 // -1.1609546f + 3763 // (1.4034025f - 0.23903021f * x) * x; 3764 // 3765 // error 0.0034276066, which is better than 8 bits 3766 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3767 getF32Constant(DAG, 0xbe74c456)); 3768 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3769 getF32Constant(DAG, 0x3fb3a2b1)); 3770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3771 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3772 getF32Constant(DAG, 0x3f949a29)); 3773 3774 result = DAG.getNode(ISD::FADD, dl, 3775 MVT::f32, LogOfExponent, LogOfMantissa); 3776 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3777 // For floating-point precision of 12: 3778 // 3779 // LogOfMantissa = 3780 // -1.7417939f + 3781 // (2.8212026f + 3782 // (-1.4699568f + 3783 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3784 // 3785 // error 0.000061011436, which is 14 bits 3786 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3787 getF32Constant(DAG, 0xbd67b6d6)); 3788 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3789 getF32Constant(DAG, 0x3ee4f4b8)); 3790 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3791 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3792 getF32Constant(DAG, 0x3fbc278b)); 3793 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3794 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3795 getF32Constant(DAG, 0x40348e95)); 3796 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3797 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3798 getF32Constant(DAG, 0x3fdef31a)); 3799 3800 result = DAG.getNode(ISD::FADD, dl, 3801 MVT::f32, LogOfExponent, LogOfMantissa); 3802 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3803 // For floating-point precision of 18: 3804 // 3805 // LogOfMantissa = 3806 // -2.1072184f + 3807 // (4.2372794f + 3808 // (-3.7029485f + 3809 // (2.2781945f + 3810 // (-0.87823314f + 3811 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3812 // 3813 // error 0.0000023660568, which is better than 18 bits 3814 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3815 getF32Constant(DAG, 0xbc91e5ac)); 3816 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3817 getF32Constant(DAG, 0x3e4350aa)); 3818 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3819 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3820 getF32Constant(DAG, 0x3f60d3e3)); 3821 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3822 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3823 getF32Constant(DAG, 0x4011cdf0)); 3824 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3825 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3826 getF32Constant(DAG, 0x406cfd1c)); 3827 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3828 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3829 getF32Constant(DAG, 0x408797cb)); 3830 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3831 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3832 getF32Constant(DAG, 0x4006dcab)); 3833 3834 result = DAG.getNode(ISD::FADD, dl, 3835 MVT::f32, LogOfExponent, LogOfMantissa); 3836 } 3837 } else { 3838 // No special expansion. 3839 result = DAG.getNode(ISD::FLOG, dl, 3840 getValue(I.getArgOperand(0)).getValueType(), 3841 getValue(I.getArgOperand(0))); 3842 } 3843 3844 setValue(&I, result); 3845 } 3846 3847 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3848 /// limited-precision mode. 3849 void 3850 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3851 SDValue result; 3852 DebugLoc dl = getCurDebugLoc(); 3853 3854 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3855 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3856 SDValue Op = getValue(I.getArgOperand(0)); 3857 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3858 3859 // Get the exponent. 3860 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3861 3862 // Get the significand and build it into a floating-point number with 3863 // exponent of 1. 3864 SDValue X = GetSignificand(DAG, Op1, dl); 3865 3866 // Different possible minimax approximations of significand in 3867 // floating-point for various degrees of accuracy over [1,2]. 3868 if (LimitFloatPrecision <= 6) { 3869 // For floating-point precision of 6: 3870 // 3871 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3872 // 3873 // error 0.0049451742, which is more than 7 bits 3874 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3875 getF32Constant(DAG, 0xbeb08fe0)); 3876 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3877 getF32Constant(DAG, 0x40019463)); 3878 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3879 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3880 getF32Constant(DAG, 0x3fd6633d)); 3881 3882 result = DAG.getNode(ISD::FADD, dl, 3883 MVT::f32, LogOfExponent, Log2ofMantissa); 3884 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3885 // For floating-point precision of 12: 3886 // 3887 // Log2ofMantissa = 3888 // -2.51285454f + 3889 // (4.07009056f + 3890 // (-2.12067489f + 3891 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3892 // 3893 // error 0.0000876136000, which is better than 13 bits 3894 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3895 getF32Constant(DAG, 0xbda7262e)); 3896 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3897 getF32Constant(DAG, 0x3f25280b)); 3898 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3899 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3900 getF32Constant(DAG, 0x4007b923)); 3901 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3902 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3903 getF32Constant(DAG, 0x40823e2f)); 3904 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3905 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3906 getF32Constant(DAG, 0x4020d29c)); 3907 3908 result = DAG.getNode(ISD::FADD, dl, 3909 MVT::f32, LogOfExponent, Log2ofMantissa); 3910 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3911 // For floating-point precision of 18: 3912 // 3913 // Log2ofMantissa = 3914 // -3.0400495f + 3915 // (6.1129976f + 3916 // (-5.3420409f + 3917 // (3.2865683f + 3918 // (-1.2669343f + 3919 // (0.27515199f - 3920 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3921 // 3922 // error 0.0000018516, which is better than 18 bits 3923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3924 getF32Constant(DAG, 0xbcd2769e)); 3925 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3926 getF32Constant(DAG, 0x3e8ce0b9)); 3927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3928 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3929 getF32Constant(DAG, 0x3fa22ae7)); 3930 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3931 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3932 getF32Constant(DAG, 0x40525723)); 3933 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3934 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3935 getF32Constant(DAG, 0x40aaf200)); 3936 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3937 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3938 getF32Constant(DAG, 0x40c39dad)); 3939 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3940 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3941 getF32Constant(DAG, 0x4042902c)); 3942 3943 result = DAG.getNode(ISD::FADD, dl, 3944 MVT::f32, LogOfExponent, Log2ofMantissa); 3945 } 3946 } else { 3947 // No special expansion. 3948 result = DAG.getNode(ISD::FLOG2, dl, 3949 getValue(I.getArgOperand(0)).getValueType(), 3950 getValue(I.getArgOperand(0))); 3951 } 3952 3953 setValue(&I, result); 3954 } 3955 3956 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3957 /// limited-precision mode. 3958 void 3959 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3960 SDValue result; 3961 DebugLoc dl = getCurDebugLoc(); 3962 3963 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3964 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3965 SDValue Op = getValue(I.getArgOperand(0)); 3966 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3967 3968 // Scale the exponent by log10(2) [0.30102999f]. 3969 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3970 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3971 getF32Constant(DAG, 0x3e9a209a)); 3972 3973 // Get the significand and build it into a floating-point number with 3974 // exponent of 1. 3975 SDValue X = GetSignificand(DAG, Op1, dl); 3976 3977 if (LimitFloatPrecision <= 6) { 3978 // For floating-point precision of 6: 3979 // 3980 // Log10ofMantissa = 3981 // -0.50419619f + 3982 // (0.60948995f - 0.10380950f * x) * x; 3983 // 3984 // error 0.0014886165, which is 6 bits 3985 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3986 getF32Constant(DAG, 0xbdd49a13)); 3987 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3988 getF32Constant(DAG, 0x3f1c0789)); 3989 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3990 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3991 getF32Constant(DAG, 0x3f011300)); 3992 3993 result = DAG.getNode(ISD::FADD, dl, 3994 MVT::f32, LogOfExponent, Log10ofMantissa); 3995 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3996 // For floating-point precision of 12: 3997 // 3998 // Log10ofMantissa = 3999 // -0.64831180f + 4000 // (0.91751397f + 4001 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4002 // 4003 // error 0.00019228036, which is better than 12 bits 4004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4005 getF32Constant(DAG, 0x3d431f31)); 4006 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4007 getF32Constant(DAG, 0x3ea21fb2)); 4008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4009 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4010 getF32Constant(DAG, 0x3f6ae232)); 4011 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4012 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4013 getF32Constant(DAG, 0x3f25f7c3)); 4014 4015 result = DAG.getNode(ISD::FADD, dl, 4016 MVT::f32, LogOfExponent, Log10ofMantissa); 4017 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4018 // For floating-point precision of 18: 4019 // 4020 // Log10ofMantissa = 4021 // -0.84299375f + 4022 // (1.5327582f + 4023 // (-1.0688956f + 4024 // (0.49102474f + 4025 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4026 // 4027 // error 0.0000037995730, which is better than 18 bits 4028 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4029 getF32Constant(DAG, 0x3c5d51ce)); 4030 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4031 getF32Constant(DAG, 0x3e00685a)); 4032 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4033 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4034 getF32Constant(DAG, 0x3efb6798)); 4035 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4036 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4037 getF32Constant(DAG, 0x3f88d192)); 4038 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4039 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4040 getF32Constant(DAG, 0x3fc4316c)); 4041 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4042 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4043 getF32Constant(DAG, 0x3f57ce70)); 4044 4045 result = DAG.getNode(ISD::FADD, dl, 4046 MVT::f32, LogOfExponent, Log10ofMantissa); 4047 } 4048 } else { 4049 // No special expansion. 4050 result = DAG.getNode(ISD::FLOG10, dl, 4051 getValue(I.getArgOperand(0)).getValueType(), 4052 getValue(I.getArgOperand(0))); 4053 } 4054 4055 setValue(&I, result); 4056 } 4057 4058 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4059 /// limited-precision mode. 4060 void 4061 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4062 SDValue result; 4063 DebugLoc dl = getCurDebugLoc(); 4064 4065 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4066 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4067 SDValue Op = getValue(I.getArgOperand(0)); 4068 4069 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4070 4071 // FractionalPartOfX = x - (float)IntegerPartOfX; 4072 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4073 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4074 4075 // IntegerPartOfX <<= 23; 4076 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4077 DAG.getConstant(23, TLI.getPointerTy())); 4078 4079 if (LimitFloatPrecision <= 6) { 4080 // For floating-point precision of 6: 4081 // 4082 // TwoToFractionalPartOfX = 4083 // 0.997535578f + 4084 // (0.735607626f + 0.252464424f * x) * x; 4085 // 4086 // error 0.0144103317, which is 6 bits 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4088 getF32Constant(DAG, 0x3e814304)); 4089 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4090 getF32Constant(DAG, 0x3f3c50c8)); 4091 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4092 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4093 getF32Constant(DAG, 0x3f7f5e7e)); 4094 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4095 SDValue TwoToFractionalPartOfX = 4096 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4097 4098 result = DAG.getNode(ISD::BITCAST, dl, 4099 MVT::f32, TwoToFractionalPartOfX); 4100 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4101 // For floating-point precision of 12: 4102 // 4103 // TwoToFractionalPartOfX = 4104 // 0.999892986f + 4105 // (0.696457318f + 4106 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4107 // 4108 // error 0.000107046256, which is 13 to 14 bits 4109 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4110 getF32Constant(DAG, 0x3da235e3)); 4111 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4112 getF32Constant(DAG, 0x3e65b8f3)); 4113 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4114 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4115 getF32Constant(DAG, 0x3f324b07)); 4116 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4117 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4118 getF32Constant(DAG, 0x3f7ff8fd)); 4119 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4120 SDValue TwoToFractionalPartOfX = 4121 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4122 4123 result = DAG.getNode(ISD::BITCAST, dl, 4124 MVT::f32, TwoToFractionalPartOfX); 4125 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4126 // For floating-point precision of 18: 4127 // 4128 // TwoToFractionalPartOfX = 4129 // 0.999999982f + 4130 // (0.693148872f + 4131 // (0.240227044f + 4132 // (0.554906021e-1f + 4133 // (0.961591928e-2f + 4134 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4135 // error 2.47208000*10^(-7), which is better than 18 bits 4136 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4137 getF32Constant(DAG, 0x3924b03e)); 4138 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4139 getF32Constant(DAG, 0x3ab24b87)); 4140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4142 getF32Constant(DAG, 0x3c1d8c17)); 4143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4144 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4145 getF32Constant(DAG, 0x3d634a1d)); 4146 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4147 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4148 getF32Constant(DAG, 0x3e75fe14)); 4149 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4150 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4151 getF32Constant(DAG, 0x3f317234)); 4152 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4153 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4154 getF32Constant(DAG, 0x3f800000)); 4155 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4156 SDValue TwoToFractionalPartOfX = 4157 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4158 4159 result = DAG.getNode(ISD::BITCAST, dl, 4160 MVT::f32, TwoToFractionalPartOfX); 4161 } 4162 } else { 4163 // No special expansion. 4164 result = DAG.getNode(ISD::FEXP2, dl, 4165 getValue(I.getArgOperand(0)).getValueType(), 4166 getValue(I.getArgOperand(0))); 4167 } 4168 4169 setValue(&I, result); 4170 } 4171 4172 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4173 /// limited-precision mode with x == 10.0f. 4174 void 4175 SelectionDAGBuilder::visitPow(const CallInst &I) { 4176 SDValue result; 4177 const Value *Val = I.getArgOperand(0); 4178 DebugLoc dl = getCurDebugLoc(); 4179 bool IsExp10 = false; 4180 4181 if (getValue(Val).getValueType() == MVT::f32 && 4182 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4184 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4185 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4186 APFloat Ten(10.0f); 4187 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4188 } 4189 } 4190 } 4191 4192 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4193 SDValue Op = getValue(I.getArgOperand(1)); 4194 4195 // Put the exponent in the right bit position for later addition to the 4196 // final result: 4197 // 4198 // #define LOG2OF10 3.3219281f 4199 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4200 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4201 getF32Constant(DAG, 0x40549a78)); 4202 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4203 4204 // FractionalPartOfX = x - (float)IntegerPartOfX; 4205 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4206 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4207 4208 // IntegerPartOfX <<= 23; 4209 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4210 DAG.getConstant(23, TLI.getPointerTy())); 4211 4212 if (LimitFloatPrecision <= 6) { 4213 // For floating-point precision of 6: 4214 // 4215 // twoToFractionalPartOfX = 4216 // 0.997535578f + 4217 // (0.735607626f + 0.252464424f * x) * x; 4218 // 4219 // error 0.0144103317, which is 6 bits 4220 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4221 getF32Constant(DAG, 0x3e814304)); 4222 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4223 getF32Constant(DAG, 0x3f3c50c8)); 4224 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4225 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4226 getF32Constant(DAG, 0x3f7f5e7e)); 4227 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4228 SDValue TwoToFractionalPartOfX = 4229 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4230 4231 result = DAG.getNode(ISD::BITCAST, dl, 4232 MVT::f32, TwoToFractionalPartOfX); 4233 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4234 // For floating-point precision of 12: 4235 // 4236 // TwoToFractionalPartOfX = 4237 // 0.999892986f + 4238 // (0.696457318f + 4239 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4240 // 4241 // error 0.000107046256, which is 13 to 14 bits 4242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4243 getF32Constant(DAG, 0x3da235e3)); 4244 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4245 getF32Constant(DAG, 0x3e65b8f3)); 4246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4248 getF32Constant(DAG, 0x3f324b07)); 4249 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4250 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4251 getF32Constant(DAG, 0x3f7ff8fd)); 4252 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4253 SDValue TwoToFractionalPartOfX = 4254 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4255 4256 result = DAG.getNode(ISD::BITCAST, dl, 4257 MVT::f32, TwoToFractionalPartOfX); 4258 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4259 // For floating-point precision of 18: 4260 // 4261 // TwoToFractionalPartOfX = 4262 // 0.999999982f + 4263 // (0.693148872f + 4264 // (0.240227044f + 4265 // (0.554906021e-1f + 4266 // (0.961591928e-2f + 4267 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4268 // error 2.47208000*10^(-7), which is better than 18 bits 4269 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4270 getF32Constant(DAG, 0x3924b03e)); 4271 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4272 getF32Constant(DAG, 0x3ab24b87)); 4273 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4274 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4275 getF32Constant(DAG, 0x3c1d8c17)); 4276 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4277 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4278 getF32Constant(DAG, 0x3d634a1d)); 4279 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4280 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4281 getF32Constant(DAG, 0x3e75fe14)); 4282 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4283 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4284 getF32Constant(DAG, 0x3f317234)); 4285 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4286 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4287 getF32Constant(DAG, 0x3f800000)); 4288 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4289 SDValue TwoToFractionalPartOfX = 4290 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4291 4292 result = DAG.getNode(ISD::BITCAST, dl, 4293 MVT::f32, TwoToFractionalPartOfX); 4294 } 4295 } else { 4296 // No special expansion. 4297 result = DAG.getNode(ISD::FPOW, dl, 4298 getValue(I.getArgOperand(0)).getValueType(), 4299 getValue(I.getArgOperand(0)), 4300 getValue(I.getArgOperand(1))); 4301 } 4302 4303 setValue(&I, result); 4304 } 4305 4306 4307 /// ExpandPowI - Expand a llvm.powi intrinsic. 4308 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4309 SelectionDAG &DAG) { 4310 // If RHS is a constant, we can expand this out to a multiplication tree, 4311 // otherwise we end up lowering to a call to __powidf2 (for example). When 4312 // optimizing for size, we only want to do this if the expansion would produce 4313 // a small number of multiplies, otherwise we do the full expansion. 4314 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4315 // Get the exponent as a positive value. 4316 unsigned Val = RHSC->getSExtValue(); 4317 if ((int)Val < 0) Val = -Val; 4318 4319 // powi(x, 0) -> 1.0 4320 if (Val == 0) 4321 return DAG.getConstantFP(1.0, LHS.getValueType()); 4322 4323 const Function *F = DAG.getMachineFunction().getFunction(); 4324 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4325 // If optimizing for size, don't insert too many multiplies. This 4326 // inserts up to 5 multiplies. 4327 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4328 // We use the simple binary decomposition method to generate the multiply 4329 // sequence. There are more optimal ways to do this (for example, 4330 // powi(x,15) generates one more multiply than it should), but this has 4331 // the benefit of being both really simple and much better than a libcall. 4332 SDValue Res; // Logically starts equal to 1.0 4333 SDValue CurSquare = LHS; 4334 while (Val) { 4335 if (Val & 1) { 4336 if (Res.getNode()) 4337 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4338 else 4339 Res = CurSquare; // 1.0*CurSquare. 4340 } 4341 4342 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4343 CurSquare, CurSquare); 4344 Val >>= 1; 4345 } 4346 4347 // If the original was negative, invert the result, producing 1/(x*x*x). 4348 if (RHSC->getSExtValue() < 0) 4349 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4350 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4351 return Res; 4352 } 4353 } 4354 4355 // Otherwise, expand to a libcall. 4356 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4357 } 4358 4359 // getTruncatedArgReg - Find underlying register used for an truncated 4360 // argument. 4361 static unsigned getTruncatedArgReg(const SDValue &N) { 4362 if (N.getOpcode() != ISD::TRUNCATE) 4363 return 0; 4364 4365 const SDValue &Ext = N.getOperand(0); 4366 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4367 const SDValue &CFR = Ext.getOperand(0); 4368 if (CFR.getOpcode() == ISD::CopyFromReg) 4369 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4370 else 4371 if (CFR.getOpcode() == ISD::TRUNCATE) 4372 return getTruncatedArgReg(CFR); 4373 } 4374 return 0; 4375 } 4376 4377 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4378 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4379 /// At the end of instruction selection, they will be inserted to the entry BB. 4380 bool 4381 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4382 int64_t Offset, 4383 const SDValue &N) { 4384 const Argument *Arg = dyn_cast<Argument>(V); 4385 if (!Arg) 4386 return false; 4387 4388 MachineFunction &MF = DAG.getMachineFunction(); 4389 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4390 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4391 4392 // Ignore inlined function arguments here. 4393 DIVariable DV(Variable); 4394 if (DV.isInlinedFnArgument(MF.getFunction())) 4395 return false; 4396 4397 unsigned Reg = 0; 4398 // Some arguments' frame index is recorded during argument lowering. 4399 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4400 if (Offset) 4401 Reg = TRI->getFrameRegister(MF); 4402 4403 if (!Reg && N.getNode()) { 4404 if (N.getOpcode() == ISD::CopyFromReg) 4405 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4406 else 4407 Reg = getTruncatedArgReg(N); 4408 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4409 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4410 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4411 if (PR) 4412 Reg = PR; 4413 } 4414 } 4415 4416 if (!Reg) { 4417 // Check if ValueMap has reg number. 4418 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4419 if (VMI != FuncInfo.ValueMap.end()) 4420 Reg = VMI->second; 4421 } 4422 4423 if (!Reg && N.getNode()) { 4424 // Check if frame index is available. 4425 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4426 if (FrameIndexSDNode *FINode = 4427 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4428 Reg = TRI->getFrameRegister(MF); 4429 Offset = FINode->getIndex(); 4430 } 4431 } 4432 4433 if (!Reg) 4434 return false; 4435 4436 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4437 TII->get(TargetOpcode::DBG_VALUE)) 4438 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4439 FuncInfo.ArgDbgValues.push_back(&*MIB); 4440 return true; 4441 } 4442 4443 // VisualStudio defines setjmp as _setjmp 4444 #if defined(_MSC_VER) && defined(setjmp) && \ 4445 !defined(setjmp_undefined_for_msvc) 4446 # pragma push_macro("setjmp") 4447 # undef setjmp 4448 # define setjmp_undefined_for_msvc 4449 #endif 4450 4451 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4452 /// we want to emit this as a call to a named external function, return the name 4453 /// otherwise lower it and return null. 4454 const char * 4455 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4456 DebugLoc dl = getCurDebugLoc(); 4457 SDValue Res; 4458 4459 switch (Intrinsic) { 4460 default: 4461 // By default, turn this into a target intrinsic node. 4462 visitTargetIntrinsic(I, Intrinsic); 4463 return 0; 4464 case Intrinsic::vastart: visitVAStart(I); return 0; 4465 case Intrinsic::vaend: visitVAEnd(I); return 0; 4466 case Intrinsic::vacopy: visitVACopy(I); return 0; 4467 case Intrinsic::returnaddress: 4468 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4469 getValue(I.getArgOperand(0)))); 4470 return 0; 4471 case Intrinsic::frameaddress: 4472 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4473 getValue(I.getArgOperand(0)))); 4474 return 0; 4475 case Intrinsic::setjmp: 4476 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4477 case Intrinsic::longjmp: 4478 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4479 case Intrinsic::memcpy: { 4480 // Assert for address < 256 since we support only user defined address 4481 // spaces. 4482 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4483 < 256 && 4484 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4485 < 256 && 4486 "Unknown address space"); 4487 SDValue Op1 = getValue(I.getArgOperand(0)); 4488 SDValue Op2 = getValue(I.getArgOperand(1)); 4489 SDValue Op3 = getValue(I.getArgOperand(2)); 4490 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4491 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4492 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4493 MachinePointerInfo(I.getArgOperand(0)), 4494 MachinePointerInfo(I.getArgOperand(1)))); 4495 return 0; 4496 } 4497 case Intrinsic::memset: { 4498 // Assert for address < 256 since we support only user defined address 4499 // spaces. 4500 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4501 < 256 && 4502 "Unknown address space"); 4503 SDValue Op1 = getValue(I.getArgOperand(0)); 4504 SDValue Op2 = getValue(I.getArgOperand(1)); 4505 SDValue Op3 = getValue(I.getArgOperand(2)); 4506 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4507 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4508 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4509 MachinePointerInfo(I.getArgOperand(0)))); 4510 return 0; 4511 } 4512 case Intrinsic::memmove: { 4513 // Assert for address < 256 since we support only user defined address 4514 // spaces. 4515 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4516 < 256 && 4517 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4518 < 256 && 4519 "Unknown address space"); 4520 SDValue Op1 = getValue(I.getArgOperand(0)); 4521 SDValue Op2 = getValue(I.getArgOperand(1)); 4522 SDValue Op3 = getValue(I.getArgOperand(2)); 4523 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4524 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4525 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4526 MachinePointerInfo(I.getArgOperand(0)), 4527 MachinePointerInfo(I.getArgOperand(1)))); 4528 return 0; 4529 } 4530 case Intrinsic::dbg_declare: { 4531 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4532 MDNode *Variable = DI.getVariable(); 4533 const Value *Address = DI.getAddress(); 4534 if (!Address || !DIVariable(Variable).Verify()) 4535 return 0; 4536 4537 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4538 // but do not always have a corresponding SDNode built. The SDNodeOrder 4539 // absolute, but not relative, values are different depending on whether 4540 // debug info exists. 4541 ++SDNodeOrder; 4542 4543 // Check if address has undef value. 4544 if (isa<UndefValue>(Address) || 4545 (Address->use_empty() && !isa<Argument>(Address))) { 4546 DEBUG(dbgs() << "Dropping debug info for " << DI); 4547 return 0; 4548 } 4549 4550 SDValue &N = NodeMap[Address]; 4551 if (!N.getNode() && isa<Argument>(Address)) 4552 // Check unused arguments map. 4553 N = UnusedArgNodeMap[Address]; 4554 SDDbgValue *SDV; 4555 if (N.getNode()) { 4556 // Parameters are handled specially. 4557 bool isParameter = 4558 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4559 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4560 Address = BCI->getOperand(0); 4561 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4562 4563 if (isParameter && !AI) { 4564 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4565 if (FINode) 4566 // Byval parameter. We have a frame index at this point. 4567 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4568 0, dl, SDNodeOrder); 4569 else { 4570 // Address is an argument, so try to emit its dbg value using 4571 // virtual register info from the FuncInfo.ValueMap. 4572 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4573 return 0; 4574 } 4575 } else if (AI) 4576 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4577 0, dl, SDNodeOrder); 4578 else { 4579 // Can't do anything with other non-AI cases yet. 4580 DEBUG(dbgs() << "Dropping debug info for " << DI); 4581 return 0; 4582 } 4583 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4584 } else { 4585 // If Address is an argument then try to emit its dbg value using 4586 // virtual register info from the FuncInfo.ValueMap. 4587 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4588 // If variable is pinned by a alloca in dominating bb then 4589 // use StaticAllocaMap. 4590 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4591 if (AI->getParent() != DI.getParent()) { 4592 DenseMap<const AllocaInst*, int>::iterator SI = 4593 FuncInfo.StaticAllocaMap.find(AI); 4594 if (SI != FuncInfo.StaticAllocaMap.end()) { 4595 SDV = DAG.getDbgValue(Variable, SI->second, 4596 0, dl, SDNodeOrder); 4597 DAG.AddDbgValue(SDV, 0, false); 4598 return 0; 4599 } 4600 } 4601 } 4602 DEBUG(dbgs() << "Dropping debug info for " << DI); 4603 } 4604 } 4605 return 0; 4606 } 4607 case Intrinsic::dbg_value: { 4608 const DbgValueInst &DI = cast<DbgValueInst>(I); 4609 if (!DIVariable(DI.getVariable()).Verify()) 4610 return 0; 4611 4612 MDNode *Variable = DI.getVariable(); 4613 uint64_t Offset = DI.getOffset(); 4614 const Value *V = DI.getValue(); 4615 if (!V) 4616 return 0; 4617 4618 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4619 // but do not always have a corresponding SDNode built. The SDNodeOrder 4620 // absolute, but not relative, values are different depending on whether 4621 // debug info exists. 4622 ++SDNodeOrder; 4623 SDDbgValue *SDV; 4624 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4625 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4626 DAG.AddDbgValue(SDV, 0, false); 4627 } else { 4628 // Do not use getValue() in here; we don't want to generate code at 4629 // this point if it hasn't been done yet. 4630 SDValue N = NodeMap[V]; 4631 if (!N.getNode() && isa<Argument>(V)) 4632 // Check unused arguments map. 4633 N = UnusedArgNodeMap[V]; 4634 if (N.getNode()) { 4635 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4636 SDV = DAG.getDbgValue(Variable, N.getNode(), 4637 N.getResNo(), Offset, dl, SDNodeOrder); 4638 DAG.AddDbgValue(SDV, N.getNode(), false); 4639 } 4640 } else if (!V->use_empty() ) { 4641 // Do not call getValue(V) yet, as we don't want to generate code. 4642 // Remember it for later. 4643 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4644 DanglingDebugInfoMap[V] = DDI; 4645 } else { 4646 // We may expand this to cover more cases. One case where we have no 4647 // data available is an unreferenced parameter. 4648 DEBUG(dbgs() << "Dropping debug info for " << DI); 4649 } 4650 } 4651 4652 // Build a debug info table entry. 4653 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4654 V = BCI->getOperand(0); 4655 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4656 // Don't handle byval struct arguments or VLAs, for example. 4657 if (!AI) 4658 return 0; 4659 DenseMap<const AllocaInst*, int>::iterator SI = 4660 FuncInfo.StaticAllocaMap.find(AI); 4661 if (SI == FuncInfo.StaticAllocaMap.end()) 4662 return 0; // VLAs. 4663 int FI = SI->second; 4664 4665 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4666 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4667 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4668 return 0; 4669 } 4670 case Intrinsic::eh_exception: { 4671 // Insert the EXCEPTIONADDR instruction. 4672 assert(FuncInfo.MBB->isLandingPad() && 4673 "Call to eh.exception not in landing pad!"); 4674 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4675 SDValue Ops[1]; 4676 Ops[0] = DAG.getRoot(); 4677 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4678 setValue(&I, Op); 4679 DAG.setRoot(Op.getValue(1)); 4680 return 0; 4681 } 4682 4683 case Intrinsic::eh_selector: { 4684 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4685 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4686 if (CallMBB->isLandingPad()) 4687 AddCatchInfo(I, &MMI, CallMBB); 4688 else { 4689 #ifndef NDEBUG 4690 FuncInfo.CatchInfoLost.insert(&I); 4691 #endif 4692 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4693 unsigned Reg = TLI.getExceptionSelectorRegister(); 4694 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4695 } 4696 4697 // Insert the EHSELECTION instruction. 4698 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4699 SDValue Ops[2]; 4700 Ops[0] = getValue(I.getArgOperand(0)); 4701 Ops[1] = getRoot(); 4702 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4703 DAG.setRoot(Op.getValue(1)); 4704 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4705 return 0; 4706 } 4707 4708 case Intrinsic::eh_typeid_for: { 4709 // Find the type id for the given typeinfo. 4710 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4711 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4712 Res = DAG.getConstant(TypeID, MVT::i32); 4713 setValue(&I, Res); 4714 return 0; 4715 } 4716 4717 case Intrinsic::eh_return_i32: 4718 case Intrinsic::eh_return_i64: 4719 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4720 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4721 MVT::Other, 4722 getControlRoot(), 4723 getValue(I.getArgOperand(0)), 4724 getValue(I.getArgOperand(1)))); 4725 return 0; 4726 case Intrinsic::eh_unwind_init: 4727 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4728 return 0; 4729 case Intrinsic::eh_dwarf_cfa: { 4730 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4731 TLI.getPointerTy()); 4732 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4733 TLI.getPointerTy(), 4734 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4735 TLI.getPointerTy()), 4736 CfaArg); 4737 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4738 TLI.getPointerTy(), 4739 DAG.getConstant(0, TLI.getPointerTy())); 4740 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4741 FA, Offset)); 4742 return 0; 4743 } 4744 case Intrinsic::eh_sjlj_callsite: { 4745 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4746 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4747 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4748 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4749 4750 MMI.setCurrentCallSite(CI->getZExtValue()); 4751 return 0; 4752 } 4753 case Intrinsic::eh_sjlj_functioncontext: { 4754 // Get and store the index of the function context. 4755 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4756 AllocaInst *FnCtx = 4757 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4758 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4759 MFI->setFunctionContextIndex(FI); 4760 return 0; 4761 } 4762 case Intrinsic::eh_sjlj_setjmp: { 4763 SDValue Ops[2]; 4764 Ops[0] = getRoot(); 4765 Ops[1] = getValue(I.getArgOperand(0)); 4766 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4767 DAG.getVTList(MVT::i32, MVT::Other), 4768 Ops, 2); 4769 setValue(&I, Op.getValue(0)); 4770 DAG.setRoot(Op.getValue(1)); 4771 return 0; 4772 } 4773 case Intrinsic::eh_sjlj_longjmp: { 4774 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4775 getRoot(), getValue(I.getArgOperand(0)))); 4776 return 0; 4777 } 4778 case Intrinsic::eh_sjlj_dispatch_setup: { 4779 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4780 getRoot(), getValue(I.getArgOperand(0)))); 4781 return 0; 4782 } 4783 4784 case Intrinsic::x86_mmx_pslli_w: 4785 case Intrinsic::x86_mmx_pslli_d: 4786 case Intrinsic::x86_mmx_pslli_q: 4787 case Intrinsic::x86_mmx_psrli_w: 4788 case Intrinsic::x86_mmx_psrli_d: 4789 case Intrinsic::x86_mmx_psrli_q: 4790 case Intrinsic::x86_mmx_psrai_w: 4791 case Intrinsic::x86_mmx_psrai_d: { 4792 SDValue ShAmt = getValue(I.getArgOperand(1)); 4793 if (isa<ConstantSDNode>(ShAmt)) { 4794 visitTargetIntrinsic(I, Intrinsic); 4795 return 0; 4796 } 4797 unsigned NewIntrinsic = 0; 4798 EVT ShAmtVT = MVT::v2i32; 4799 switch (Intrinsic) { 4800 case Intrinsic::x86_mmx_pslli_w: 4801 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4802 break; 4803 case Intrinsic::x86_mmx_pslli_d: 4804 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4805 break; 4806 case Intrinsic::x86_mmx_pslli_q: 4807 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4808 break; 4809 case Intrinsic::x86_mmx_psrli_w: 4810 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4811 break; 4812 case Intrinsic::x86_mmx_psrli_d: 4813 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4814 break; 4815 case Intrinsic::x86_mmx_psrli_q: 4816 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4817 break; 4818 case Intrinsic::x86_mmx_psrai_w: 4819 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4820 break; 4821 case Intrinsic::x86_mmx_psrai_d: 4822 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4823 break; 4824 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4825 } 4826 4827 // The vector shift intrinsics with scalars uses 32b shift amounts but 4828 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4829 // to be zero. 4830 // We must do this early because v2i32 is not a legal type. 4831 DebugLoc dl = getCurDebugLoc(); 4832 SDValue ShOps[2]; 4833 ShOps[0] = ShAmt; 4834 ShOps[1] = DAG.getConstant(0, MVT::i32); 4835 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4836 EVT DestVT = TLI.getValueType(I.getType()); 4837 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4838 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4839 DAG.getConstant(NewIntrinsic, MVT::i32), 4840 getValue(I.getArgOperand(0)), ShAmt); 4841 setValue(&I, Res); 4842 return 0; 4843 } 4844 case Intrinsic::convertff: 4845 case Intrinsic::convertfsi: 4846 case Intrinsic::convertfui: 4847 case Intrinsic::convertsif: 4848 case Intrinsic::convertuif: 4849 case Intrinsic::convertss: 4850 case Intrinsic::convertsu: 4851 case Intrinsic::convertus: 4852 case Intrinsic::convertuu: { 4853 ISD::CvtCode Code = ISD::CVT_INVALID; 4854 switch (Intrinsic) { 4855 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4856 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4857 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4858 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4859 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4860 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4861 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4862 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4863 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4864 } 4865 EVT DestVT = TLI.getValueType(I.getType()); 4866 const Value *Op1 = I.getArgOperand(0); 4867 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4868 DAG.getValueType(DestVT), 4869 DAG.getValueType(getValue(Op1).getValueType()), 4870 getValue(I.getArgOperand(1)), 4871 getValue(I.getArgOperand(2)), 4872 Code); 4873 setValue(&I, Res); 4874 return 0; 4875 } 4876 case Intrinsic::sqrt: 4877 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4878 getValue(I.getArgOperand(0)).getValueType(), 4879 getValue(I.getArgOperand(0)))); 4880 return 0; 4881 case Intrinsic::powi: 4882 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4883 getValue(I.getArgOperand(1)), DAG)); 4884 return 0; 4885 case Intrinsic::sin: 4886 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4887 getValue(I.getArgOperand(0)).getValueType(), 4888 getValue(I.getArgOperand(0)))); 4889 return 0; 4890 case Intrinsic::cos: 4891 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4892 getValue(I.getArgOperand(0)).getValueType(), 4893 getValue(I.getArgOperand(0)))); 4894 return 0; 4895 case Intrinsic::log: 4896 visitLog(I); 4897 return 0; 4898 case Intrinsic::log2: 4899 visitLog2(I); 4900 return 0; 4901 case Intrinsic::log10: 4902 visitLog10(I); 4903 return 0; 4904 case Intrinsic::exp: 4905 visitExp(I); 4906 return 0; 4907 case Intrinsic::exp2: 4908 visitExp2(I); 4909 return 0; 4910 case Intrinsic::pow: 4911 visitPow(I); 4912 return 0; 4913 case Intrinsic::fma: 4914 setValue(&I, DAG.getNode(ISD::FMA, dl, 4915 getValue(I.getArgOperand(0)).getValueType(), 4916 getValue(I.getArgOperand(0)), 4917 getValue(I.getArgOperand(1)), 4918 getValue(I.getArgOperand(2)))); 4919 return 0; 4920 case Intrinsic::convert_to_fp16: 4921 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4922 MVT::i16, getValue(I.getArgOperand(0)))); 4923 return 0; 4924 case Intrinsic::convert_from_fp16: 4925 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4926 MVT::f32, getValue(I.getArgOperand(0)))); 4927 return 0; 4928 case Intrinsic::pcmarker: { 4929 SDValue Tmp = getValue(I.getArgOperand(0)); 4930 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4931 return 0; 4932 } 4933 case Intrinsic::readcyclecounter: { 4934 SDValue Op = getRoot(); 4935 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4936 DAG.getVTList(MVT::i64, MVT::Other), 4937 &Op, 1); 4938 setValue(&I, Res); 4939 DAG.setRoot(Res.getValue(1)); 4940 return 0; 4941 } 4942 case Intrinsic::bswap: 4943 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4944 getValue(I.getArgOperand(0)).getValueType(), 4945 getValue(I.getArgOperand(0)))); 4946 return 0; 4947 case Intrinsic::cttz: { 4948 SDValue Arg = getValue(I.getArgOperand(0)); 4949 EVT Ty = Arg.getValueType(); 4950 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4951 return 0; 4952 } 4953 case Intrinsic::ctlz: { 4954 SDValue Arg = getValue(I.getArgOperand(0)); 4955 EVT Ty = Arg.getValueType(); 4956 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4957 return 0; 4958 } 4959 case Intrinsic::ctpop: { 4960 SDValue Arg = getValue(I.getArgOperand(0)); 4961 EVT Ty = Arg.getValueType(); 4962 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4963 return 0; 4964 } 4965 case Intrinsic::stacksave: { 4966 SDValue Op = getRoot(); 4967 Res = DAG.getNode(ISD::STACKSAVE, dl, 4968 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4969 setValue(&I, Res); 4970 DAG.setRoot(Res.getValue(1)); 4971 return 0; 4972 } 4973 case Intrinsic::stackrestore: { 4974 Res = getValue(I.getArgOperand(0)); 4975 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4976 return 0; 4977 } 4978 case Intrinsic::stackprotector: { 4979 // Emit code into the DAG to store the stack guard onto the stack. 4980 MachineFunction &MF = DAG.getMachineFunction(); 4981 MachineFrameInfo *MFI = MF.getFrameInfo(); 4982 EVT PtrTy = TLI.getPointerTy(); 4983 4984 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4985 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4986 4987 int FI = FuncInfo.StaticAllocaMap[Slot]; 4988 MFI->setStackProtectorIndex(FI); 4989 4990 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4991 4992 // Store the stack protector onto the stack. 4993 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4994 MachinePointerInfo::getFixedStack(FI), 4995 true, false, 0); 4996 setValue(&I, Res); 4997 DAG.setRoot(Res); 4998 return 0; 4999 } 5000 case Intrinsic::objectsize: { 5001 // If we don't know by now, we're never going to know. 5002 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5003 5004 assert(CI && "Non-constant type in __builtin_object_size?"); 5005 5006 SDValue Arg = getValue(I.getCalledValue()); 5007 EVT Ty = Arg.getValueType(); 5008 5009 if (CI->isZero()) 5010 Res = DAG.getConstant(-1ULL, Ty); 5011 else 5012 Res = DAG.getConstant(0, Ty); 5013 5014 setValue(&I, Res); 5015 return 0; 5016 } 5017 case Intrinsic::var_annotation: 5018 // Discard annotate attributes 5019 return 0; 5020 5021 case Intrinsic::init_trampoline: { 5022 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5023 5024 SDValue Ops[6]; 5025 Ops[0] = getRoot(); 5026 Ops[1] = getValue(I.getArgOperand(0)); 5027 Ops[2] = getValue(I.getArgOperand(1)); 5028 Ops[3] = getValue(I.getArgOperand(2)); 5029 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5030 Ops[5] = DAG.getSrcValue(F); 5031 5032 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5033 5034 DAG.setRoot(Res); 5035 return 0; 5036 } 5037 case Intrinsic::adjust_trampoline: { 5038 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5039 TLI.getPointerTy(), 5040 getValue(I.getArgOperand(0)))); 5041 return 0; 5042 } 5043 case Intrinsic::gcroot: 5044 if (GFI) { 5045 const Value *Alloca = I.getArgOperand(0); 5046 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5047 5048 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5049 GFI->addStackRoot(FI->getIndex(), TypeMap); 5050 } 5051 return 0; 5052 case Intrinsic::gcread: 5053 case Intrinsic::gcwrite: 5054 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5055 return 0; 5056 case Intrinsic::flt_rounds: 5057 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5058 return 0; 5059 5060 case Intrinsic::expect: { 5061 // Just replace __builtin_expect(exp, c) with EXP. 5062 setValue(&I, getValue(I.getArgOperand(0))); 5063 return 0; 5064 } 5065 5066 case Intrinsic::trap: { 5067 StringRef TrapFuncName = getTrapFunctionName(); 5068 if (TrapFuncName.empty()) { 5069 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5070 return 0; 5071 } 5072 TargetLowering::ArgListTy Args; 5073 std::pair<SDValue, SDValue> Result = 5074 TLI.LowerCallTo(getRoot(), I.getType(), 5075 false, false, false, false, 0, CallingConv::C, 5076 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5077 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5078 Args, DAG, getCurDebugLoc()); 5079 DAG.setRoot(Result.second); 5080 return 0; 5081 } 5082 case Intrinsic::uadd_with_overflow: 5083 return implVisitAluOverflow(I, ISD::UADDO); 5084 case Intrinsic::sadd_with_overflow: 5085 return implVisitAluOverflow(I, ISD::SADDO); 5086 case Intrinsic::usub_with_overflow: 5087 return implVisitAluOverflow(I, ISD::USUBO); 5088 case Intrinsic::ssub_with_overflow: 5089 return implVisitAluOverflow(I, ISD::SSUBO); 5090 case Intrinsic::umul_with_overflow: 5091 return implVisitAluOverflow(I, ISD::UMULO); 5092 case Intrinsic::smul_with_overflow: 5093 return implVisitAluOverflow(I, ISD::SMULO); 5094 5095 case Intrinsic::prefetch: { 5096 SDValue Ops[5]; 5097 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5098 Ops[0] = getRoot(); 5099 Ops[1] = getValue(I.getArgOperand(0)); 5100 Ops[2] = getValue(I.getArgOperand(1)); 5101 Ops[3] = getValue(I.getArgOperand(2)); 5102 Ops[4] = getValue(I.getArgOperand(3)); 5103 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5104 DAG.getVTList(MVT::Other), 5105 &Ops[0], 5, 5106 EVT::getIntegerVT(*Context, 8), 5107 MachinePointerInfo(I.getArgOperand(0)), 5108 0, /* align */ 5109 false, /* volatile */ 5110 rw==0, /* read */ 5111 rw==1)); /* write */ 5112 return 0; 5113 } 5114 5115 case Intrinsic::invariant_start: 5116 case Intrinsic::lifetime_start: 5117 // Discard region information. 5118 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5119 return 0; 5120 case Intrinsic::invariant_end: 5121 case Intrinsic::lifetime_end: 5122 // Discard region information. 5123 return 0; 5124 } 5125 } 5126 5127 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5128 bool isTailCall, 5129 MachineBasicBlock *LandingPad) { 5130 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5131 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5132 Type *RetTy = FTy->getReturnType(); 5133 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5134 MCSymbol *BeginLabel = 0; 5135 5136 TargetLowering::ArgListTy Args; 5137 TargetLowering::ArgListEntry Entry; 5138 Args.reserve(CS.arg_size()); 5139 5140 // Check whether the function can return without sret-demotion. 5141 SmallVector<ISD::OutputArg, 4> Outs; 5142 SmallVector<uint64_t, 4> Offsets; 5143 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5144 Outs, TLI, &Offsets); 5145 5146 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5147 DAG.getMachineFunction(), 5148 FTy->isVarArg(), Outs, 5149 FTy->getContext()); 5150 5151 SDValue DemoteStackSlot; 5152 int DemoteStackIdx = -100; 5153 5154 if (!CanLowerReturn) { 5155 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5156 FTy->getReturnType()); 5157 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5158 FTy->getReturnType()); 5159 MachineFunction &MF = DAG.getMachineFunction(); 5160 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5161 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5162 5163 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5164 Entry.Node = DemoteStackSlot; 5165 Entry.Ty = StackSlotPtrType; 5166 Entry.isSExt = false; 5167 Entry.isZExt = false; 5168 Entry.isInReg = false; 5169 Entry.isSRet = true; 5170 Entry.isNest = false; 5171 Entry.isByVal = false; 5172 Entry.Alignment = Align; 5173 Args.push_back(Entry); 5174 RetTy = Type::getVoidTy(FTy->getContext()); 5175 } 5176 5177 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5178 i != e; ++i) { 5179 const Value *V = *i; 5180 5181 // Skip empty types 5182 if (V->getType()->isEmptyTy()) 5183 continue; 5184 5185 SDValue ArgNode = getValue(V); 5186 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5187 5188 unsigned attrInd = i - CS.arg_begin() + 1; 5189 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5190 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5191 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5192 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5193 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5194 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5195 Entry.Alignment = CS.getParamAlignment(attrInd); 5196 Args.push_back(Entry); 5197 } 5198 5199 if (LandingPad) { 5200 // Insert a label before the invoke call to mark the try range. This can be 5201 // used to detect deletion of the invoke via the MachineModuleInfo. 5202 BeginLabel = MMI.getContext().CreateTempSymbol(); 5203 5204 // For SjLj, keep track of which landing pads go with which invokes 5205 // so as to maintain the ordering of pads in the LSDA. 5206 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5207 if (CallSiteIndex) { 5208 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5209 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5210 5211 // Now that the call site is handled, stop tracking it. 5212 MMI.setCurrentCallSite(0); 5213 } 5214 5215 // Both PendingLoads and PendingExports must be flushed here; 5216 // this call might not return. 5217 (void)getRoot(); 5218 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5219 } 5220 5221 // Check if target-independent constraints permit a tail call here. 5222 // Target-dependent constraints are checked within TLI.LowerCallTo. 5223 if (isTailCall && 5224 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5225 isTailCall = false; 5226 5227 // If there's a possibility that fast-isel has already selected some amount 5228 // of the current basic block, don't emit a tail call. 5229 if (isTailCall && EnableFastISel) 5230 isTailCall = false; 5231 5232 std::pair<SDValue,SDValue> Result = 5233 TLI.LowerCallTo(getRoot(), RetTy, 5234 CS.paramHasAttr(0, Attribute::SExt), 5235 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5236 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5237 CS.getCallingConv(), 5238 isTailCall, 5239 !CS.getInstruction()->use_empty(), 5240 Callee, Args, DAG, getCurDebugLoc()); 5241 assert((isTailCall || Result.second.getNode()) && 5242 "Non-null chain expected with non-tail call!"); 5243 assert((Result.second.getNode() || !Result.first.getNode()) && 5244 "Null value expected with tail call!"); 5245 if (Result.first.getNode()) { 5246 setValue(CS.getInstruction(), Result.first); 5247 } else if (!CanLowerReturn && Result.second.getNode()) { 5248 // The instruction result is the result of loading from the 5249 // hidden sret parameter. 5250 SmallVector<EVT, 1> PVTs; 5251 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5252 5253 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5254 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5255 EVT PtrVT = PVTs[0]; 5256 unsigned NumValues = Outs.size(); 5257 SmallVector<SDValue, 4> Values(NumValues); 5258 SmallVector<SDValue, 4> Chains(NumValues); 5259 5260 for (unsigned i = 0; i < NumValues; ++i) { 5261 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5262 DemoteStackSlot, 5263 DAG.getConstant(Offsets[i], PtrVT)); 5264 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5265 Add, 5266 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5267 false, false, false, 1); 5268 Values[i] = L; 5269 Chains[i] = L.getValue(1); 5270 } 5271 5272 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5273 MVT::Other, &Chains[0], NumValues); 5274 PendingLoads.push_back(Chain); 5275 5276 // Collect the legal value parts into potentially illegal values 5277 // that correspond to the original function's return values. 5278 SmallVector<EVT, 4> RetTys; 5279 RetTy = FTy->getReturnType(); 5280 ComputeValueVTs(TLI, RetTy, RetTys); 5281 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5282 SmallVector<SDValue, 4> ReturnValues; 5283 unsigned CurReg = 0; 5284 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5285 EVT VT = RetTys[I]; 5286 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5287 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5288 5289 SDValue ReturnValue = 5290 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5291 RegisterVT, VT, AssertOp); 5292 ReturnValues.push_back(ReturnValue); 5293 CurReg += NumRegs; 5294 } 5295 5296 setValue(CS.getInstruction(), 5297 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5298 DAG.getVTList(&RetTys[0], RetTys.size()), 5299 &ReturnValues[0], ReturnValues.size())); 5300 } 5301 5302 // Assign order to nodes here. If the call does not produce a result, it won't 5303 // be mapped to a SDNode and visit() will not assign it an order number. 5304 if (!Result.second.getNode()) { 5305 // As a special case, a null chain means that a tail call has been emitted and 5306 // the DAG root is already updated. 5307 HasTailCall = true; 5308 ++SDNodeOrder; 5309 AssignOrderingToNode(DAG.getRoot().getNode()); 5310 } else { 5311 DAG.setRoot(Result.second); 5312 ++SDNodeOrder; 5313 AssignOrderingToNode(Result.second.getNode()); 5314 } 5315 5316 if (LandingPad) { 5317 // Insert a label at the end of the invoke call to mark the try range. This 5318 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5319 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5320 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5321 5322 // Inform MachineModuleInfo of range. 5323 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5324 } 5325 } 5326 5327 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5328 /// value is equal or not-equal to zero. 5329 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5330 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5331 UI != E; ++UI) { 5332 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5333 if (IC->isEquality()) 5334 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5335 if (C->isNullValue()) 5336 continue; 5337 // Unknown instruction. 5338 return false; 5339 } 5340 return true; 5341 } 5342 5343 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5344 Type *LoadTy, 5345 SelectionDAGBuilder &Builder) { 5346 5347 // Check to see if this load can be trivially constant folded, e.g. if the 5348 // input is from a string literal. 5349 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5350 // Cast pointer to the type we really want to load. 5351 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5352 PointerType::getUnqual(LoadTy)); 5353 5354 if (const Constant *LoadCst = 5355 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5356 Builder.TD)) 5357 return Builder.getValue(LoadCst); 5358 } 5359 5360 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5361 // still constant memory, the input chain can be the entry node. 5362 SDValue Root; 5363 bool ConstantMemory = false; 5364 5365 // Do not serialize (non-volatile) loads of constant memory with anything. 5366 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5367 Root = Builder.DAG.getEntryNode(); 5368 ConstantMemory = true; 5369 } else { 5370 // Do not serialize non-volatile loads against each other. 5371 Root = Builder.DAG.getRoot(); 5372 } 5373 5374 SDValue Ptr = Builder.getValue(PtrVal); 5375 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5376 Ptr, MachinePointerInfo(PtrVal), 5377 false /*volatile*/, 5378 false /*nontemporal*/, 5379 false /*isinvariant*/, 1 /* align=1 */); 5380 5381 if (!ConstantMemory) 5382 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5383 return LoadVal; 5384 } 5385 5386 5387 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5388 /// If so, return true and lower it, otherwise return false and it will be 5389 /// lowered like a normal call. 5390 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5391 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5392 if (I.getNumArgOperands() != 3) 5393 return false; 5394 5395 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5396 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5397 !I.getArgOperand(2)->getType()->isIntegerTy() || 5398 !I.getType()->isIntegerTy()) 5399 return false; 5400 5401 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5402 5403 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5404 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5405 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5406 bool ActuallyDoIt = true; 5407 MVT LoadVT; 5408 Type *LoadTy; 5409 switch (Size->getZExtValue()) { 5410 default: 5411 LoadVT = MVT::Other; 5412 LoadTy = 0; 5413 ActuallyDoIt = false; 5414 break; 5415 case 2: 5416 LoadVT = MVT::i16; 5417 LoadTy = Type::getInt16Ty(Size->getContext()); 5418 break; 5419 case 4: 5420 LoadVT = MVT::i32; 5421 LoadTy = Type::getInt32Ty(Size->getContext()); 5422 break; 5423 case 8: 5424 LoadVT = MVT::i64; 5425 LoadTy = Type::getInt64Ty(Size->getContext()); 5426 break; 5427 /* 5428 case 16: 5429 LoadVT = MVT::v4i32; 5430 LoadTy = Type::getInt32Ty(Size->getContext()); 5431 LoadTy = VectorType::get(LoadTy, 4); 5432 break; 5433 */ 5434 } 5435 5436 // This turns into unaligned loads. We only do this if the target natively 5437 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5438 // we'll only produce a small number of byte loads. 5439 5440 // Require that we can find a legal MVT, and only do this if the target 5441 // supports unaligned loads of that type. Expanding into byte loads would 5442 // bloat the code. 5443 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5444 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5445 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5446 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5447 ActuallyDoIt = false; 5448 } 5449 5450 if (ActuallyDoIt) { 5451 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5452 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5453 5454 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5455 ISD::SETNE); 5456 EVT CallVT = TLI.getValueType(I.getType(), true); 5457 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5458 return true; 5459 } 5460 } 5461 5462 5463 return false; 5464 } 5465 5466 5467 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5468 // Handle inline assembly differently. 5469 if (isa<InlineAsm>(I.getCalledValue())) { 5470 visitInlineAsm(&I); 5471 return; 5472 } 5473 5474 // See if any floating point values are being passed to this function. This is 5475 // used to emit an undefined reference to fltused on Windows. 5476 FunctionType *FT = 5477 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5478 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5479 if (FT->isVarArg() && 5480 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5481 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5482 Type* T = I.getArgOperand(i)->getType(); 5483 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5484 i != e; ++i) { 5485 if (!i->isFloatingPointTy()) continue; 5486 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5487 break; 5488 } 5489 } 5490 } 5491 5492 const char *RenameFn = 0; 5493 if (Function *F = I.getCalledFunction()) { 5494 if (F->isDeclaration()) { 5495 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5496 if (unsigned IID = II->getIntrinsicID(F)) { 5497 RenameFn = visitIntrinsicCall(I, IID); 5498 if (!RenameFn) 5499 return; 5500 } 5501 } 5502 if (unsigned IID = F->getIntrinsicID()) { 5503 RenameFn = visitIntrinsicCall(I, IID); 5504 if (!RenameFn) 5505 return; 5506 } 5507 } 5508 5509 // Check for well-known libc/libm calls. If the function is internal, it 5510 // can't be a library call. 5511 if (!F->hasLocalLinkage() && F->hasName()) { 5512 StringRef Name = F->getName(); 5513 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5514 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5515 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5516 I.getType() == I.getArgOperand(0)->getType() && 5517 I.getType() == I.getArgOperand(1)->getType()) { 5518 SDValue LHS = getValue(I.getArgOperand(0)); 5519 SDValue RHS = getValue(I.getArgOperand(1)); 5520 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5521 LHS.getValueType(), LHS, RHS)); 5522 return; 5523 } 5524 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5525 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5526 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5527 I.getType() == I.getArgOperand(0)->getType()) { 5528 SDValue Tmp = getValue(I.getArgOperand(0)); 5529 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5530 Tmp.getValueType(), Tmp)); 5531 return; 5532 } 5533 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5534 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5535 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5536 I.getType() == I.getArgOperand(0)->getType() && 5537 I.onlyReadsMemory()) { 5538 SDValue Tmp = getValue(I.getArgOperand(0)); 5539 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5540 Tmp.getValueType(), Tmp)); 5541 return; 5542 } 5543 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5544 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5545 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5546 I.getType() == I.getArgOperand(0)->getType() && 5547 I.onlyReadsMemory()) { 5548 SDValue Tmp = getValue(I.getArgOperand(0)); 5549 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5550 Tmp.getValueType(), Tmp)); 5551 return; 5552 } 5553 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5554 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5555 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5556 I.getType() == I.getArgOperand(0)->getType() && 5557 I.onlyReadsMemory()) { 5558 SDValue Tmp = getValue(I.getArgOperand(0)); 5559 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5560 Tmp.getValueType(), Tmp)); 5561 return; 5562 } 5563 } else if (Name == "memcmp") { 5564 if (visitMemCmpCall(I)) 5565 return; 5566 } 5567 } 5568 } 5569 5570 SDValue Callee; 5571 if (!RenameFn) 5572 Callee = getValue(I.getCalledValue()); 5573 else 5574 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5575 5576 // Check if we can potentially perform a tail call. More detailed checking is 5577 // be done within LowerCallTo, after more information about the call is known. 5578 LowerCallTo(&I, Callee, I.isTailCall()); 5579 } 5580 5581 namespace { 5582 5583 /// AsmOperandInfo - This contains information for each constraint that we are 5584 /// lowering. 5585 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5586 public: 5587 /// CallOperand - If this is the result output operand or a clobber 5588 /// this is null, otherwise it is the incoming operand to the CallInst. 5589 /// This gets modified as the asm is processed. 5590 SDValue CallOperand; 5591 5592 /// AssignedRegs - If this is a register or register class operand, this 5593 /// contains the set of register corresponding to the operand. 5594 RegsForValue AssignedRegs; 5595 5596 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5597 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5598 } 5599 5600 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5601 /// busy in OutputRegs/InputRegs. 5602 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5603 std::set<unsigned> &OutputRegs, 5604 std::set<unsigned> &InputRegs, 5605 const TargetRegisterInfo &TRI) const { 5606 if (isOutReg) { 5607 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5608 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5609 } 5610 if (isInReg) { 5611 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5612 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5613 } 5614 } 5615 5616 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5617 /// corresponds to. If there is no Value* for this operand, it returns 5618 /// MVT::Other. 5619 EVT getCallOperandValEVT(LLVMContext &Context, 5620 const TargetLowering &TLI, 5621 const TargetData *TD) const { 5622 if (CallOperandVal == 0) return MVT::Other; 5623 5624 if (isa<BasicBlock>(CallOperandVal)) 5625 return TLI.getPointerTy(); 5626 5627 llvm::Type *OpTy = CallOperandVal->getType(); 5628 5629 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5630 // If this is an indirect operand, the operand is a pointer to the 5631 // accessed type. 5632 if (isIndirect) { 5633 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5634 if (!PtrTy) 5635 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5636 OpTy = PtrTy->getElementType(); 5637 } 5638 5639 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5640 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5641 if (STy->getNumElements() == 1) 5642 OpTy = STy->getElementType(0); 5643 5644 // If OpTy is not a single value, it may be a struct/union that we 5645 // can tile with integers. 5646 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5647 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5648 switch (BitSize) { 5649 default: break; 5650 case 1: 5651 case 8: 5652 case 16: 5653 case 32: 5654 case 64: 5655 case 128: 5656 OpTy = IntegerType::get(Context, BitSize); 5657 break; 5658 } 5659 } 5660 5661 return TLI.getValueType(OpTy, true); 5662 } 5663 5664 private: 5665 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5666 /// specified set. 5667 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5668 const TargetRegisterInfo &TRI) { 5669 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5670 Regs.insert(Reg); 5671 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5672 for (; *Aliases; ++Aliases) 5673 Regs.insert(*Aliases); 5674 } 5675 }; 5676 5677 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5678 5679 } // end anonymous namespace 5680 5681 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5682 /// specified operand. We prefer to assign virtual registers, to allow the 5683 /// register allocator to handle the assignment process. However, if the asm 5684 /// uses features that we can't model on machineinstrs, we have SDISel do the 5685 /// allocation. This produces generally horrible, but correct, code. 5686 /// 5687 /// OpInfo describes the operand. 5688 /// Input and OutputRegs are the set of already allocated physical registers. 5689 /// 5690 static void GetRegistersForValue(SelectionDAG &DAG, 5691 const TargetLowering &TLI, 5692 DebugLoc DL, 5693 SDISelAsmOperandInfo &OpInfo, 5694 std::set<unsigned> &OutputRegs, 5695 std::set<unsigned> &InputRegs) { 5696 LLVMContext &Context = *DAG.getContext(); 5697 5698 // Compute whether this value requires an input register, an output register, 5699 // or both. 5700 bool isOutReg = false; 5701 bool isInReg = false; 5702 switch (OpInfo.Type) { 5703 case InlineAsm::isOutput: 5704 isOutReg = true; 5705 5706 // If there is an input constraint that matches this, we need to reserve 5707 // the input register so no other inputs allocate to it. 5708 isInReg = OpInfo.hasMatchingInput(); 5709 break; 5710 case InlineAsm::isInput: 5711 isInReg = true; 5712 isOutReg = false; 5713 break; 5714 case InlineAsm::isClobber: 5715 isOutReg = true; 5716 isInReg = true; 5717 break; 5718 } 5719 5720 5721 MachineFunction &MF = DAG.getMachineFunction(); 5722 SmallVector<unsigned, 4> Regs; 5723 5724 // If this is a constraint for a single physreg, or a constraint for a 5725 // register class, find it. 5726 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5727 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5728 OpInfo.ConstraintVT); 5729 5730 unsigned NumRegs = 1; 5731 if (OpInfo.ConstraintVT != MVT::Other) { 5732 // If this is a FP input in an integer register (or visa versa) insert a bit 5733 // cast of the input value. More generally, handle any case where the input 5734 // value disagrees with the register class we plan to stick this in. 5735 if (OpInfo.Type == InlineAsm::isInput && 5736 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5737 // Try to convert to the first EVT that the reg class contains. If the 5738 // types are identical size, use a bitcast to convert (e.g. two differing 5739 // vector types). 5740 EVT RegVT = *PhysReg.second->vt_begin(); 5741 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5742 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5743 RegVT, OpInfo.CallOperand); 5744 OpInfo.ConstraintVT = RegVT; 5745 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5746 // If the input is a FP value and we want it in FP registers, do a 5747 // bitcast to the corresponding integer type. This turns an f64 value 5748 // into i64, which can be passed with two i32 values on a 32-bit 5749 // machine. 5750 RegVT = EVT::getIntegerVT(Context, 5751 OpInfo.ConstraintVT.getSizeInBits()); 5752 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5753 RegVT, OpInfo.CallOperand); 5754 OpInfo.ConstraintVT = RegVT; 5755 } 5756 } 5757 5758 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5759 } 5760 5761 EVT RegVT; 5762 EVT ValueVT = OpInfo.ConstraintVT; 5763 5764 // If this is a constraint for a specific physical register, like {r17}, 5765 // assign it now. 5766 if (unsigned AssignedReg = PhysReg.first) { 5767 const TargetRegisterClass *RC = PhysReg.second; 5768 if (OpInfo.ConstraintVT == MVT::Other) 5769 ValueVT = *RC->vt_begin(); 5770 5771 // Get the actual register value type. This is important, because the user 5772 // may have asked for (e.g.) the AX register in i32 type. We need to 5773 // remember that AX is actually i16 to get the right extension. 5774 RegVT = *RC->vt_begin(); 5775 5776 // This is a explicit reference to a physical register. 5777 Regs.push_back(AssignedReg); 5778 5779 // If this is an expanded reference, add the rest of the regs to Regs. 5780 if (NumRegs != 1) { 5781 TargetRegisterClass::iterator I = RC->begin(); 5782 for (; *I != AssignedReg; ++I) 5783 assert(I != RC->end() && "Didn't find reg!"); 5784 5785 // Already added the first reg. 5786 --NumRegs; ++I; 5787 for (; NumRegs; --NumRegs, ++I) { 5788 assert(I != RC->end() && "Ran out of registers to allocate!"); 5789 Regs.push_back(*I); 5790 } 5791 } 5792 5793 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5794 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5795 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5796 return; 5797 } 5798 5799 // Otherwise, if this was a reference to an LLVM register class, create vregs 5800 // for this reference. 5801 if (const TargetRegisterClass *RC = PhysReg.second) { 5802 RegVT = *RC->vt_begin(); 5803 if (OpInfo.ConstraintVT == MVT::Other) 5804 ValueVT = RegVT; 5805 5806 // Create the appropriate number of virtual registers. 5807 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5808 for (; NumRegs; --NumRegs) 5809 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5810 5811 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5812 return; 5813 } 5814 5815 // Otherwise, we couldn't allocate enough registers for this. 5816 } 5817 5818 /// visitInlineAsm - Handle a call to an InlineAsm object. 5819 /// 5820 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5821 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5822 5823 /// ConstraintOperands - Information about all of the constraints. 5824 SDISelAsmOperandInfoVector ConstraintOperands; 5825 5826 std::set<unsigned> OutputRegs, InputRegs; 5827 5828 TargetLowering::AsmOperandInfoVector 5829 TargetConstraints = TLI.ParseConstraints(CS); 5830 5831 bool hasMemory = false; 5832 5833 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5834 unsigned ResNo = 0; // ResNo - The result number of the next output. 5835 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5836 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5837 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5838 5839 EVT OpVT = MVT::Other; 5840 5841 // Compute the value type for each operand. 5842 switch (OpInfo.Type) { 5843 case InlineAsm::isOutput: 5844 // Indirect outputs just consume an argument. 5845 if (OpInfo.isIndirect) { 5846 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5847 break; 5848 } 5849 5850 // The return value of the call is this value. As such, there is no 5851 // corresponding argument. 5852 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5853 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5854 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5855 } else { 5856 assert(ResNo == 0 && "Asm only has one result!"); 5857 OpVT = TLI.getValueType(CS.getType()); 5858 } 5859 ++ResNo; 5860 break; 5861 case InlineAsm::isInput: 5862 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5863 break; 5864 case InlineAsm::isClobber: 5865 // Nothing to do. 5866 break; 5867 } 5868 5869 // If this is an input or an indirect output, process the call argument. 5870 // BasicBlocks are labels, currently appearing only in asm's. 5871 if (OpInfo.CallOperandVal) { 5872 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5873 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5874 } else { 5875 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5876 } 5877 5878 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5879 } 5880 5881 OpInfo.ConstraintVT = OpVT; 5882 5883 // Indirect operand accesses access memory. 5884 if (OpInfo.isIndirect) 5885 hasMemory = true; 5886 else { 5887 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5888 TargetLowering::ConstraintType 5889 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5890 if (CType == TargetLowering::C_Memory) { 5891 hasMemory = true; 5892 break; 5893 } 5894 } 5895 } 5896 } 5897 5898 SDValue Chain, Flag; 5899 5900 // We won't need to flush pending loads if this asm doesn't touch 5901 // memory and is nonvolatile. 5902 if (hasMemory || IA->hasSideEffects()) 5903 Chain = getRoot(); 5904 else 5905 Chain = DAG.getRoot(); 5906 5907 // Second pass over the constraints: compute which constraint option to use 5908 // and assign registers to constraints that want a specific physreg. 5909 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5910 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5911 5912 // If this is an output operand with a matching input operand, look up the 5913 // matching input. If their types mismatch, e.g. one is an integer, the 5914 // other is floating point, or their sizes are different, flag it as an 5915 // error. 5916 if (OpInfo.hasMatchingInput()) { 5917 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5918 5919 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5920 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5921 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5922 OpInfo.ConstraintVT); 5923 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5924 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5925 Input.ConstraintVT); 5926 if ((OpInfo.ConstraintVT.isInteger() != 5927 Input.ConstraintVT.isInteger()) || 5928 (MatchRC.second != InputRC.second)) { 5929 report_fatal_error("Unsupported asm: input constraint" 5930 " with a matching output constraint of" 5931 " incompatible type!"); 5932 } 5933 Input.ConstraintVT = OpInfo.ConstraintVT; 5934 } 5935 } 5936 5937 // Compute the constraint code and ConstraintType to use. 5938 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5939 5940 // If this is a memory input, and if the operand is not indirect, do what we 5941 // need to to provide an address for the memory input. 5942 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5943 !OpInfo.isIndirect) { 5944 assert((OpInfo.isMultipleAlternative || 5945 (OpInfo.Type == InlineAsm::isInput)) && 5946 "Can only indirectify direct input operands!"); 5947 5948 // Memory operands really want the address of the value. If we don't have 5949 // an indirect input, put it in the constpool if we can, otherwise spill 5950 // it to a stack slot. 5951 // TODO: This isn't quite right. We need to handle these according to 5952 // the addressing mode that the constraint wants. Also, this may take 5953 // an additional register for the computation and we don't want that 5954 // either. 5955 5956 // If the operand is a float, integer, or vector constant, spill to a 5957 // constant pool entry to get its address. 5958 const Value *OpVal = OpInfo.CallOperandVal; 5959 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5960 isa<ConstantVector>(OpVal)) { 5961 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5962 TLI.getPointerTy()); 5963 } else { 5964 // Otherwise, create a stack slot and emit a store to it before the 5965 // asm. 5966 Type *Ty = OpVal->getType(); 5967 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5968 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5969 MachineFunction &MF = DAG.getMachineFunction(); 5970 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5971 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5972 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5973 OpInfo.CallOperand, StackSlot, 5974 MachinePointerInfo::getFixedStack(SSFI), 5975 false, false, 0); 5976 OpInfo.CallOperand = StackSlot; 5977 } 5978 5979 // There is no longer a Value* corresponding to this operand. 5980 OpInfo.CallOperandVal = 0; 5981 5982 // It is now an indirect operand. 5983 OpInfo.isIndirect = true; 5984 } 5985 5986 // If this constraint is for a specific register, allocate it before 5987 // anything else. 5988 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5989 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5990 InputRegs); 5991 } 5992 5993 // Second pass - Loop over all of the operands, assigning virtual or physregs 5994 // to register class operands. 5995 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5996 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5997 5998 // C_Register operands have already been allocated, Other/Memory don't need 5999 // to be. 6000 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6001 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6002 InputRegs); 6003 } 6004 6005 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6006 std::vector<SDValue> AsmNodeOperands; 6007 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6008 AsmNodeOperands.push_back( 6009 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6010 TLI.getPointerTy())); 6011 6012 // If we have a !srcloc metadata node associated with it, we want to attach 6013 // this to the ultimately generated inline asm machineinstr. To do this, we 6014 // pass in the third operand as this (potentially null) inline asm MDNode. 6015 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6016 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6017 6018 // Remember the HasSideEffect and AlignStack bits as operand 3. 6019 unsigned ExtraInfo = 0; 6020 if (IA->hasSideEffects()) 6021 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6022 if (IA->isAlignStack()) 6023 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6024 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6025 TLI.getPointerTy())); 6026 6027 // Loop over all of the inputs, copying the operand values into the 6028 // appropriate registers and processing the output regs. 6029 RegsForValue RetValRegs; 6030 6031 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6032 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6033 6034 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6035 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6036 6037 switch (OpInfo.Type) { 6038 case InlineAsm::isOutput: { 6039 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6040 OpInfo.ConstraintType != TargetLowering::C_Register) { 6041 // Memory output, or 'other' output (e.g. 'X' constraint). 6042 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6043 6044 // Add information to the INLINEASM node to know about this output. 6045 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6046 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6047 TLI.getPointerTy())); 6048 AsmNodeOperands.push_back(OpInfo.CallOperand); 6049 break; 6050 } 6051 6052 // Otherwise, this is a register or register class output. 6053 6054 // Copy the output from the appropriate register. Find a register that 6055 // we can use. 6056 if (OpInfo.AssignedRegs.Regs.empty()) 6057 report_fatal_error("Couldn't allocate output reg for constraint '" + 6058 Twine(OpInfo.ConstraintCode) + "'!"); 6059 6060 // If this is an indirect operand, store through the pointer after the 6061 // asm. 6062 if (OpInfo.isIndirect) { 6063 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6064 OpInfo.CallOperandVal)); 6065 } else { 6066 // This is the result value of the call. 6067 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6068 // Concatenate this output onto the outputs list. 6069 RetValRegs.append(OpInfo.AssignedRegs); 6070 } 6071 6072 // Add information to the INLINEASM node to know that this register is 6073 // set. 6074 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6075 InlineAsm::Kind_RegDefEarlyClobber : 6076 InlineAsm::Kind_RegDef, 6077 false, 6078 0, 6079 DAG, 6080 AsmNodeOperands); 6081 break; 6082 } 6083 case InlineAsm::isInput: { 6084 SDValue InOperandVal = OpInfo.CallOperand; 6085 6086 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6087 // If this is required to match an output register we have already set, 6088 // just use its register. 6089 unsigned OperandNo = OpInfo.getMatchedOperand(); 6090 6091 // Scan until we find the definition we already emitted of this operand. 6092 // When we find it, create a RegsForValue operand. 6093 unsigned CurOp = InlineAsm::Op_FirstOperand; 6094 for (; OperandNo; --OperandNo) { 6095 // Advance to the next operand. 6096 unsigned OpFlag = 6097 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6098 assert((InlineAsm::isRegDefKind(OpFlag) || 6099 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6100 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6101 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6102 } 6103 6104 unsigned OpFlag = 6105 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6106 if (InlineAsm::isRegDefKind(OpFlag) || 6107 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6108 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6109 if (OpInfo.isIndirect) { 6110 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6111 LLVMContext &Ctx = *DAG.getContext(); 6112 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6113 " don't know how to handle tied " 6114 "indirect register inputs"); 6115 } 6116 6117 RegsForValue MatchedRegs; 6118 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6119 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6120 MatchedRegs.RegVTs.push_back(RegVT); 6121 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6122 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6123 i != e; ++i) 6124 MatchedRegs.Regs.push_back 6125 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6126 6127 // Use the produced MatchedRegs object to 6128 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6129 Chain, &Flag); 6130 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6131 true, OpInfo.getMatchedOperand(), 6132 DAG, AsmNodeOperands); 6133 break; 6134 } 6135 6136 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6137 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6138 "Unexpected number of operands"); 6139 // Add information to the INLINEASM node to know about this input. 6140 // See InlineAsm.h isUseOperandTiedToDef. 6141 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6142 OpInfo.getMatchedOperand()); 6143 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6144 TLI.getPointerTy())); 6145 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6146 break; 6147 } 6148 6149 // Treat indirect 'X' constraint as memory. 6150 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6151 OpInfo.isIndirect) 6152 OpInfo.ConstraintType = TargetLowering::C_Memory; 6153 6154 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6155 std::vector<SDValue> Ops; 6156 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6157 Ops, DAG); 6158 if (Ops.empty()) 6159 report_fatal_error("Invalid operand for inline asm constraint '" + 6160 Twine(OpInfo.ConstraintCode) + "'!"); 6161 6162 // Add information to the INLINEASM node to know about this input. 6163 unsigned ResOpType = 6164 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6165 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6166 TLI.getPointerTy())); 6167 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6168 break; 6169 } 6170 6171 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6172 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6173 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6174 "Memory operands expect pointer values"); 6175 6176 // Add information to the INLINEASM node to know about this input. 6177 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6178 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6179 TLI.getPointerTy())); 6180 AsmNodeOperands.push_back(InOperandVal); 6181 break; 6182 } 6183 6184 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6185 OpInfo.ConstraintType == TargetLowering::C_Register) && 6186 "Unknown constraint type!"); 6187 assert(!OpInfo.isIndirect && 6188 "Don't know how to handle indirect register inputs yet!"); 6189 6190 // Copy the input into the appropriate registers. 6191 if (OpInfo.AssignedRegs.Regs.empty()) 6192 report_fatal_error("Couldn't allocate input reg for constraint '" + 6193 Twine(OpInfo.ConstraintCode) + "'!"); 6194 6195 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6196 Chain, &Flag); 6197 6198 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6199 DAG, AsmNodeOperands); 6200 break; 6201 } 6202 case InlineAsm::isClobber: { 6203 // Add the clobbered value to the operand list, so that the register 6204 // allocator is aware that the physreg got clobbered. 6205 if (!OpInfo.AssignedRegs.Regs.empty()) 6206 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6207 false, 0, DAG, 6208 AsmNodeOperands); 6209 break; 6210 } 6211 } 6212 } 6213 6214 // Finish up input operands. Set the input chain and add the flag last. 6215 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6216 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6217 6218 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6219 DAG.getVTList(MVT::Other, MVT::Glue), 6220 &AsmNodeOperands[0], AsmNodeOperands.size()); 6221 Flag = Chain.getValue(1); 6222 6223 // If this asm returns a register value, copy the result from that register 6224 // and set it as the value of the call. 6225 if (!RetValRegs.Regs.empty()) { 6226 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6227 Chain, &Flag); 6228 6229 // FIXME: Why don't we do this for inline asms with MRVs? 6230 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6231 EVT ResultType = TLI.getValueType(CS.getType()); 6232 6233 // If any of the results of the inline asm is a vector, it may have the 6234 // wrong width/num elts. This can happen for register classes that can 6235 // contain multiple different value types. The preg or vreg allocated may 6236 // not have the same VT as was expected. Convert it to the right type 6237 // with bit_convert. 6238 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6239 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6240 ResultType, Val); 6241 6242 } else if (ResultType != Val.getValueType() && 6243 ResultType.isInteger() && Val.getValueType().isInteger()) { 6244 // If a result value was tied to an input value, the computed result may 6245 // have a wider width than the expected result. Extract the relevant 6246 // portion. 6247 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6248 } 6249 6250 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6251 } 6252 6253 setValue(CS.getInstruction(), Val); 6254 // Don't need to use this as a chain in this case. 6255 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6256 return; 6257 } 6258 6259 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6260 6261 // Process indirect outputs, first output all of the flagged copies out of 6262 // physregs. 6263 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6264 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6265 const Value *Ptr = IndirectStoresToEmit[i].second; 6266 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6267 Chain, &Flag); 6268 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6269 } 6270 6271 // Emit the non-flagged stores from the physregs. 6272 SmallVector<SDValue, 8> OutChains; 6273 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6274 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6275 StoresToEmit[i].first, 6276 getValue(StoresToEmit[i].second), 6277 MachinePointerInfo(StoresToEmit[i].second), 6278 false, false, 0); 6279 OutChains.push_back(Val); 6280 } 6281 6282 if (!OutChains.empty()) 6283 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6284 &OutChains[0], OutChains.size()); 6285 6286 DAG.setRoot(Chain); 6287 } 6288 6289 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6290 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6291 MVT::Other, getRoot(), 6292 getValue(I.getArgOperand(0)), 6293 DAG.getSrcValue(I.getArgOperand(0)))); 6294 } 6295 6296 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6297 const TargetData &TD = *TLI.getTargetData(); 6298 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6299 getRoot(), getValue(I.getOperand(0)), 6300 DAG.getSrcValue(I.getOperand(0)), 6301 TD.getABITypeAlignment(I.getType())); 6302 setValue(&I, V); 6303 DAG.setRoot(V.getValue(1)); 6304 } 6305 6306 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6307 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6308 MVT::Other, getRoot(), 6309 getValue(I.getArgOperand(0)), 6310 DAG.getSrcValue(I.getArgOperand(0)))); 6311 } 6312 6313 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6314 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6315 MVT::Other, getRoot(), 6316 getValue(I.getArgOperand(0)), 6317 getValue(I.getArgOperand(1)), 6318 DAG.getSrcValue(I.getArgOperand(0)), 6319 DAG.getSrcValue(I.getArgOperand(1)))); 6320 } 6321 6322 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6323 /// implementation, which just calls LowerCall. 6324 /// FIXME: When all targets are 6325 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6326 std::pair<SDValue, SDValue> 6327 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6328 bool RetSExt, bool RetZExt, bool isVarArg, 6329 bool isInreg, unsigned NumFixedArgs, 6330 CallingConv::ID CallConv, bool isTailCall, 6331 bool isReturnValueUsed, 6332 SDValue Callee, 6333 ArgListTy &Args, SelectionDAG &DAG, 6334 DebugLoc dl) const { 6335 // Handle all of the outgoing arguments. 6336 SmallVector<ISD::OutputArg, 32> Outs; 6337 SmallVector<SDValue, 32> OutVals; 6338 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6339 SmallVector<EVT, 4> ValueVTs; 6340 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6341 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6342 Value != NumValues; ++Value) { 6343 EVT VT = ValueVTs[Value]; 6344 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6345 SDValue Op = SDValue(Args[i].Node.getNode(), 6346 Args[i].Node.getResNo() + Value); 6347 ISD::ArgFlagsTy Flags; 6348 unsigned OriginalAlignment = 6349 getTargetData()->getABITypeAlignment(ArgTy); 6350 6351 if (Args[i].isZExt) 6352 Flags.setZExt(); 6353 if (Args[i].isSExt) 6354 Flags.setSExt(); 6355 if (Args[i].isInReg) 6356 Flags.setInReg(); 6357 if (Args[i].isSRet) 6358 Flags.setSRet(); 6359 if (Args[i].isByVal) { 6360 Flags.setByVal(); 6361 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6362 Type *ElementTy = Ty->getElementType(); 6363 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6364 // For ByVal, alignment should come from FE. BE will guess if this 6365 // info is not there but there are cases it cannot get right. 6366 unsigned FrameAlign; 6367 if (Args[i].Alignment) 6368 FrameAlign = Args[i].Alignment; 6369 else 6370 FrameAlign = getByValTypeAlignment(ElementTy); 6371 Flags.setByValAlign(FrameAlign); 6372 } 6373 if (Args[i].isNest) 6374 Flags.setNest(); 6375 Flags.setOrigAlign(OriginalAlignment); 6376 6377 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6378 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6379 SmallVector<SDValue, 4> Parts(NumParts); 6380 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6381 6382 if (Args[i].isSExt) 6383 ExtendKind = ISD::SIGN_EXTEND; 6384 else if (Args[i].isZExt) 6385 ExtendKind = ISD::ZERO_EXTEND; 6386 6387 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6388 PartVT, ExtendKind); 6389 6390 for (unsigned j = 0; j != NumParts; ++j) { 6391 // if it isn't first piece, alignment must be 1 6392 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6393 i < NumFixedArgs); 6394 if (NumParts > 1 && j == 0) 6395 MyFlags.Flags.setSplit(); 6396 else if (j != 0) 6397 MyFlags.Flags.setOrigAlign(1); 6398 6399 Outs.push_back(MyFlags); 6400 OutVals.push_back(Parts[j]); 6401 } 6402 } 6403 } 6404 6405 // Handle the incoming return values from the call. 6406 SmallVector<ISD::InputArg, 32> Ins; 6407 SmallVector<EVT, 4> RetTys; 6408 ComputeValueVTs(*this, RetTy, RetTys); 6409 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6410 EVT VT = RetTys[I]; 6411 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6412 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6413 for (unsigned i = 0; i != NumRegs; ++i) { 6414 ISD::InputArg MyFlags; 6415 MyFlags.VT = RegisterVT.getSimpleVT(); 6416 MyFlags.Used = isReturnValueUsed; 6417 if (RetSExt) 6418 MyFlags.Flags.setSExt(); 6419 if (RetZExt) 6420 MyFlags.Flags.setZExt(); 6421 if (isInreg) 6422 MyFlags.Flags.setInReg(); 6423 Ins.push_back(MyFlags); 6424 } 6425 } 6426 6427 SmallVector<SDValue, 4> InVals; 6428 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6429 Outs, OutVals, Ins, dl, DAG, InVals); 6430 6431 // Verify that the target's LowerCall behaved as expected. 6432 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6433 "LowerCall didn't return a valid chain!"); 6434 assert((!isTailCall || InVals.empty()) && 6435 "LowerCall emitted a return value for a tail call!"); 6436 assert((isTailCall || InVals.size() == Ins.size()) && 6437 "LowerCall didn't emit the correct number of values!"); 6438 6439 // For a tail call, the return value is merely live-out and there aren't 6440 // any nodes in the DAG representing it. Return a special value to 6441 // indicate that a tail call has been emitted and no more Instructions 6442 // should be processed in the current block. 6443 if (isTailCall) { 6444 DAG.setRoot(Chain); 6445 return std::make_pair(SDValue(), SDValue()); 6446 } 6447 6448 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6449 assert(InVals[i].getNode() && 6450 "LowerCall emitted a null value!"); 6451 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6452 "LowerCall emitted a value with the wrong type!"); 6453 }); 6454 6455 // Collect the legal value parts into potentially illegal values 6456 // that correspond to the original function's return values. 6457 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6458 if (RetSExt) 6459 AssertOp = ISD::AssertSext; 6460 else if (RetZExt) 6461 AssertOp = ISD::AssertZext; 6462 SmallVector<SDValue, 4> ReturnValues; 6463 unsigned CurReg = 0; 6464 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6465 EVT VT = RetTys[I]; 6466 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6467 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6468 6469 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6470 NumRegs, RegisterVT, VT, 6471 AssertOp)); 6472 CurReg += NumRegs; 6473 } 6474 6475 // For a function returning void, there is no return value. We can't create 6476 // such a node, so we just return a null return value in that case. In 6477 // that case, nothing will actually look at the value. 6478 if (ReturnValues.empty()) 6479 return std::make_pair(SDValue(), Chain); 6480 6481 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6482 DAG.getVTList(&RetTys[0], RetTys.size()), 6483 &ReturnValues[0], ReturnValues.size()); 6484 return std::make_pair(Res, Chain); 6485 } 6486 6487 void TargetLowering::LowerOperationWrapper(SDNode *N, 6488 SmallVectorImpl<SDValue> &Results, 6489 SelectionDAG &DAG) const { 6490 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6491 if (Res.getNode()) 6492 Results.push_back(Res); 6493 } 6494 6495 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6496 llvm_unreachable("LowerOperation not implemented for this target!"); 6497 return SDValue(); 6498 } 6499 6500 void 6501 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6502 SDValue Op = getNonRegisterValue(V); 6503 assert((Op.getOpcode() != ISD::CopyFromReg || 6504 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6505 "Copy from a reg to the same reg!"); 6506 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6507 6508 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6509 SDValue Chain = DAG.getEntryNode(); 6510 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6511 PendingExports.push_back(Chain); 6512 } 6513 6514 #include "llvm/CodeGen/SelectionDAGISel.h" 6515 6516 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6517 /// entry block, return true. This includes arguments used by switches, since 6518 /// the switch may expand into multiple basic blocks. 6519 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6520 // With FastISel active, we may be splitting blocks, so force creation 6521 // of virtual registers for all non-dead arguments. 6522 if (EnableFastISel) 6523 return A->use_empty(); 6524 6525 const BasicBlock *Entry = A->getParent()->begin(); 6526 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6527 UI != E; ++UI) { 6528 const User *U = *UI; 6529 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6530 return false; // Use not in entry block. 6531 } 6532 return true; 6533 } 6534 6535 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6536 // If this is the entry block, emit arguments. 6537 const Function &F = *LLVMBB->getParent(); 6538 SelectionDAG &DAG = SDB->DAG; 6539 DebugLoc dl = SDB->getCurDebugLoc(); 6540 const TargetData *TD = TLI.getTargetData(); 6541 SmallVector<ISD::InputArg, 16> Ins; 6542 6543 // Check whether the function can return without sret-demotion. 6544 SmallVector<ISD::OutputArg, 4> Outs; 6545 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6546 Outs, TLI); 6547 6548 if (!FuncInfo->CanLowerReturn) { 6549 // Put in an sret pointer parameter before all the other parameters. 6550 SmallVector<EVT, 1> ValueVTs; 6551 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6552 6553 // NOTE: Assuming that a pointer will never break down to more than one VT 6554 // or one register. 6555 ISD::ArgFlagsTy Flags; 6556 Flags.setSRet(); 6557 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6558 ISD::InputArg RetArg(Flags, RegisterVT, true); 6559 Ins.push_back(RetArg); 6560 } 6561 6562 // Set up the incoming argument description vector. 6563 unsigned Idx = 1; 6564 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6565 I != E; ++I, ++Idx) { 6566 SmallVector<EVT, 4> ValueVTs; 6567 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6568 bool isArgValueUsed = !I->use_empty(); 6569 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6570 Value != NumValues; ++Value) { 6571 EVT VT = ValueVTs[Value]; 6572 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6573 ISD::ArgFlagsTy Flags; 6574 unsigned OriginalAlignment = 6575 TD->getABITypeAlignment(ArgTy); 6576 6577 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6578 Flags.setZExt(); 6579 if (F.paramHasAttr(Idx, Attribute::SExt)) 6580 Flags.setSExt(); 6581 if (F.paramHasAttr(Idx, Attribute::InReg)) 6582 Flags.setInReg(); 6583 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6584 Flags.setSRet(); 6585 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6586 Flags.setByVal(); 6587 PointerType *Ty = cast<PointerType>(I->getType()); 6588 Type *ElementTy = Ty->getElementType(); 6589 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6590 // For ByVal, alignment should be passed from FE. BE will guess if 6591 // this info is not there but there are cases it cannot get right. 6592 unsigned FrameAlign; 6593 if (F.getParamAlignment(Idx)) 6594 FrameAlign = F.getParamAlignment(Idx); 6595 else 6596 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6597 Flags.setByValAlign(FrameAlign); 6598 } 6599 if (F.paramHasAttr(Idx, Attribute::Nest)) 6600 Flags.setNest(); 6601 Flags.setOrigAlign(OriginalAlignment); 6602 6603 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6604 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6605 for (unsigned i = 0; i != NumRegs; ++i) { 6606 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6607 if (NumRegs > 1 && i == 0) 6608 MyFlags.Flags.setSplit(); 6609 // if it isn't first piece, alignment must be 1 6610 else if (i > 0) 6611 MyFlags.Flags.setOrigAlign(1); 6612 Ins.push_back(MyFlags); 6613 } 6614 } 6615 } 6616 6617 // Call the target to set up the argument values. 6618 SmallVector<SDValue, 8> InVals; 6619 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6620 F.isVarArg(), Ins, 6621 dl, DAG, InVals); 6622 6623 // Verify that the target's LowerFormalArguments behaved as expected. 6624 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6625 "LowerFormalArguments didn't return a valid chain!"); 6626 assert(InVals.size() == Ins.size() && 6627 "LowerFormalArguments didn't emit the correct number of values!"); 6628 DEBUG({ 6629 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6630 assert(InVals[i].getNode() && 6631 "LowerFormalArguments emitted a null value!"); 6632 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6633 "LowerFormalArguments emitted a value with the wrong type!"); 6634 } 6635 }); 6636 6637 // Update the DAG with the new chain value resulting from argument lowering. 6638 DAG.setRoot(NewRoot); 6639 6640 // Set up the argument values. 6641 unsigned i = 0; 6642 Idx = 1; 6643 if (!FuncInfo->CanLowerReturn) { 6644 // Create a virtual register for the sret pointer, and put in a copy 6645 // from the sret argument into it. 6646 SmallVector<EVT, 1> ValueVTs; 6647 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6648 EVT VT = ValueVTs[0]; 6649 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6650 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6651 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6652 RegVT, VT, AssertOp); 6653 6654 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6655 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6656 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6657 FuncInfo->DemoteRegister = SRetReg; 6658 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6659 SRetReg, ArgValue); 6660 DAG.setRoot(NewRoot); 6661 6662 // i indexes lowered arguments. Bump it past the hidden sret argument. 6663 // Idx indexes LLVM arguments. Don't touch it. 6664 ++i; 6665 } 6666 6667 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6668 ++I, ++Idx) { 6669 SmallVector<SDValue, 4> ArgValues; 6670 SmallVector<EVT, 4> ValueVTs; 6671 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6672 unsigned NumValues = ValueVTs.size(); 6673 6674 // If this argument is unused then remember its value. It is used to generate 6675 // debugging information. 6676 if (I->use_empty() && NumValues) 6677 SDB->setUnusedArgValue(I, InVals[i]); 6678 6679 for (unsigned Val = 0; Val != NumValues; ++Val) { 6680 EVT VT = ValueVTs[Val]; 6681 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6682 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6683 6684 if (!I->use_empty()) { 6685 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6686 if (F.paramHasAttr(Idx, Attribute::SExt)) 6687 AssertOp = ISD::AssertSext; 6688 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6689 AssertOp = ISD::AssertZext; 6690 6691 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6692 NumParts, PartVT, VT, 6693 AssertOp)); 6694 } 6695 6696 i += NumParts; 6697 } 6698 6699 // We don't need to do anything else for unused arguments. 6700 if (ArgValues.empty()) 6701 continue; 6702 6703 // Note down frame index. 6704 if (FrameIndexSDNode *FI = 6705 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6706 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6707 6708 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6709 SDB->getCurDebugLoc()); 6710 6711 SDB->setValue(I, Res); 6712 if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6713 if (LoadSDNode *LNode = 6714 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6715 if (FrameIndexSDNode *FI = 6716 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6717 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6718 } 6719 6720 // If this argument is live outside of the entry block, insert a copy from 6721 // wherever we got it to the vreg that other BB's will reference it as. 6722 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6723 // If we can, though, try to skip creating an unnecessary vreg. 6724 // FIXME: This isn't very clean... it would be nice to make this more 6725 // general. It's also subtly incompatible with the hacks FastISel 6726 // uses with vregs. 6727 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6728 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6729 FuncInfo->ValueMap[I] = Reg; 6730 continue; 6731 } 6732 } 6733 if (!isOnlyUsedInEntryBlock(I)) { 6734 FuncInfo->InitializeRegForValue(I); 6735 SDB->CopyToExportRegsIfNeeded(I); 6736 } 6737 } 6738 6739 assert(i == InVals.size() && "Argument register count mismatch!"); 6740 6741 // Finally, if the target has anything special to do, allow it to do so. 6742 // FIXME: this should insert code into the DAG! 6743 EmitFunctionEntryCode(); 6744 } 6745 6746 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6747 /// ensure constants are generated when needed. Remember the virtual registers 6748 /// that need to be added to the Machine PHI nodes as input. We cannot just 6749 /// directly add them, because expansion might result in multiple MBB's for one 6750 /// BB. As such, the start of the BB might correspond to a different MBB than 6751 /// the end. 6752 /// 6753 void 6754 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6755 const TerminatorInst *TI = LLVMBB->getTerminator(); 6756 6757 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6758 6759 // Check successor nodes' PHI nodes that expect a constant to be available 6760 // from this block. 6761 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6762 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6763 if (!isa<PHINode>(SuccBB->begin())) continue; 6764 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6765 6766 // If this terminator has multiple identical successors (common for 6767 // switches), only handle each succ once. 6768 if (!SuccsHandled.insert(SuccMBB)) continue; 6769 6770 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6771 6772 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6773 // nodes and Machine PHI nodes, but the incoming operands have not been 6774 // emitted yet. 6775 for (BasicBlock::const_iterator I = SuccBB->begin(); 6776 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6777 // Ignore dead phi's. 6778 if (PN->use_empty()) continue; 6779 6780 // Skip empty types 6781 if (PN->getType()->isEmptyTy()) 6782 continue; 6783 6784 unsigned Reg; 6785 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6786 6787 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6788 unsigned &RegOut = ConstantsOut[C]; 6789 if (RegOut == 0) { 6790 RegOut = FuncInfo.CreateRegs(C->getType()); 6791 CopyValueToVirtualRegister(C, RegOut); 6792 } 6793 Reg = RegOut; 6794 } else { 6795 DenseMap<const Value *, unsigned>::iterator I = 6796 FuncInfo.ValueMap.find(PHIOp); 6797 if (I != FuncInfo.ValueMap.end()) 6798 Reg = I->second; 6799 else { 6800 assert(isa<AllocaInst>(PHIOp) && 6801 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6802 "Didn't codegen value into a register!??"); 6803 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6804 CopyValueToVirtualRegister(PHIOp, Reg); 6805 } 6806 } 6807 6808 // Remember that this register needs to added to the machine PHI node as 6809 // the input for this MBB. 6810 SmallVector<EVT, 4> ValueVTs; 6811 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6812 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6813 EVT VT = ValueVTs[vti]; 6814 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6815 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6816 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6817 Reg += NumRegisters; 6818 } 6819 } 6820 } 6821 ConstantsOut.clear(); 6822 } 6823