xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 70136389788b90c2e6bbaef5ad8bb0285d460068)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RuntimeLibcalls.h"
48 #include "llvm/CodeGen/SelectionDAG.h"
49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
50 #include "llvm/CodeGen/StackMaps.h"
51 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
52 #include "llvm/CodeGen/TargetFrameLowering.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/CodeGen/WinEHFuncInfo.h"
58 #include "llvm/IR/Argument.h"
59 #include "llvm/IR/Attributes.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/CFG.h"
62 #include "llvm/IR/CallingConv.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/ConstantRange.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsAMDGPU.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/InstructionCost.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/TargetParser/Triple.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <cstddef>
106 #include <iterator>
107 #include <limits>
108 #include <optional>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       SDValue InChain,
159                                       std::optional<CallingConv::ID> CC);
160 
161 /// getCopyFromParts - Create a value that contains the specified legal parts
162 /// combined into the value they represent.  If the parts combine to a type
163 /// larger than ValueVT then AssertOp can be used to specify whether the extra
164 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
165 /// (ISD::AssertSext).
166 static SDValue
167 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
168                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
169                  SDValue InChain,
170                  std::optional<CallingConv::ID> CC = std::nullopt,
171                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
172   // Let the target assemble the parts if it wants to
173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
174   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
175                                                    PartVT, ValueVT, CC))
176     return Val;
177 
178   if (ValueVT.isVector())
179     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
180                                   InChain, CC);
181 
182   assert(NumParts > 0 && "No parts to assemble!");
183   SDValue Val = Parts[0];
184 
185   if (NumParts > 1) {
186     // Assemble the value from multiple parts.
187     if (ValueVT.isInteger()) {
188       unsigned PartBits = PartVT.getSizeInBits();
189       unsigned ValueBits = ValueVT.getSizeInBits();
190 
191       // Assemble the power of 2 part.
192       unsigned RoundParts = llvm::bit_floor(NumParts);
193       unsigned RoundBits = PartBits * RoundParts;
194       EVT RoundVT = RoundBits == ValueBits ?
195         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
196       SDValue Lo, Hi;
197 
198       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
199 
200       if (RoundParts > 2) {
201         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
202                               InChain);
203         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
204                               PartVT, HalfVT, V, InChain);
205       } else {
206         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
207         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
208       }
209 
210       if (DAG.getDataLayout().isBigEndian())
211         std::swap(Lo, Hi);
212 
213       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
214 
215       if (RoundParts < NumParts) {
216         // Assemble the trailing non-power-of-2 part.
217         unsigned OddParts = NumParts - RoundParts;
218         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
219         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
220                               OddVT, V, InChain, CC);
221 
222         // Combine the round and odd parts.
223         Lo = Val;
224         if (DAG.getDataLayout().isBigEndian())
225           std::swap(Lo, Hi);
226         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
227         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
228         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                          TLI.getShiftAmountTy(
231                                              TotalVT, DAG.getDataLayout())));
232         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
233         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
234       }
235     } else if (PartVT.isFloatingPoint()) {
236       // FP split into multiple FP parts (for ppcf128)
237       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
238              "Unexpected split");
239       SDValue Lo, Hi;
240       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
241       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
242       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
243         std::swap(Lo, Hi);
244       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
245     } else {
246       // FP split into integer parts (soft fp)
247       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
248              !PartVT.isVector() && "Unexpected split");
249       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
250       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
251                              InChain, CC);
252     }
253   }
254 
255   // There is now one part, held in Val.  Correct it to match ValueVT.
256   // PartEVT is the type of the register class that holds the value.
257   // ValueVT is the type of the inline asm operation.
258   EVT PartEVT = Val.getValueType();
259 
260   if (PartEVT == ValueVT)
261     return Val;
262 
263   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
264       ValueVT.bitsLT(PartEVT)) {
265     // For an FP value in an integer part, we need to truncate to the right
266     // width first.
267     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
268     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
269   }
270 
271   // Handle types that have the same size.
272   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
273     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
274 
275   // Handle types with different sizes.
276   if (PartEVT.isInteger() && ValueVT.isInteger()) {
277     if (ValueVT.bitsLT(PartEVT)) {
278       // For a truncate, see if we have any information to
279       // indicate whether the truncated bits will always be
280       // zero or sign-extension.
281       if (AssertOp)
282         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
283                           DAG.getValueType(ValueVT));
284       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
285     }
286     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
287   }
288 
289   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
290     // FP_ROUND's are always exact here.
291     if (ValueVT.bitsLT(Val.getValueType())) {
292 
293       SDValue NoChange =
294           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
295 
296       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
297               llvm::Attribute::StrictFP)) {
298         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
299                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
300                            NoChange);
301       }
302 
303       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
304     }
305 
306     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
307   }
308 
309   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
310   // then truncating.
311   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
312       ValueVT.bitsLT(PartEVT)) {
313     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
314     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
315   }
316 
317   report_fatal_error("Unknown mismatch in getCopyFromParts!");
318 }
319 
320 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
321                                               const Twine &ErrMsg) {
322   const Instruction *I = dyn_cast_or_null<Instruction>(V);
323   if (!V)
324     return Ctx.emitError(ErrMsg);
325 
326   const char *AsmError = ", possible invalid constraint for vector type";
327   if (const CallInst *CI = dyn_cast<CallInst>(I))
328     if (CI->isInlineAsm())
329       return Ctx.emitError(I, ErrMsg + AsmError);
330 
331   return Ctx.emitError(I, ErrMsg);
332 }
333 
334 /// getCopyFromPartsVector - Create a value that contains the specified legal
335 /// parts combined into the value they represent.  If the parts combine to a
336 /// type larger than ValueVT then AssertOp can be used to specify whether the
337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
338 /// ValueVT (ISD::AssertSext).
339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
340                                       const SDValue *Parts, unsigned NumParts,
341                                       MVT PartVT, EVT ValueVT, const Value *V,
342                                       SDValue InChain,
343                                       std::optional<CallingConv::ID> CallConv) {
344   assert(ValueVT.isVector() && "Not a vector value");
345   assert(NumParts > 0 && "No parts to assemble!");
346   const bool IsABIRegCopy = CallConv.has_value();
347 
348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349   SDValue Val = Parts[0];
350 
351   // Handle a multi-element vector.
352   if (NumParts > 1) {
353     EVT IntermediateVT;
354     MVT RegisterVT;
355     unsigned NumIntermediates;
356     unsigned NumRegs;
357 
358     if (IsABIRegCopy) {
359       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
360           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
361           NumIntermediates, RegisterVT);
362     } else {
363       NumRegs =
364           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
365                                      NumIntermediates, RegisterVT);
366     }
367 
368     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
369     NumParts = NumRegs; // Silence a compiler warning.
370     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
371     assert(RegisterVT.getSizeInBits() ==
372            Parts[0].getSimpleValueType().getSizeInBits() &&
373            "Part type sizes don't match!");
374 
375     // Assemble the parts into intermediate operands.
376     SmallVector<SDValue, 8> Ops(NumIntermediates);
377     if (NumIntermediates == NumParts) {
378       // If the register was not expanded, truncate or copy the value,
379       // as appropriate.
380       for (unsigned i = 0; i != NumParts; ++i)
381         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
382                                   V, InChain, CallConv);
383     } else if (NumParts > 0) {
384       // If the intermediate type was expanded, build the intermediate
385       // operands from the parts.
386       assert(NumParts % NumIntermediates == 0 &&
387              "Must expand into a divisible number of parts!");
388       unsigned Factor = NumParts / NumIntermediates;
389       for (unsigned i = 0; i != NumIntermediates; ++i)
390         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
391                                   IntermediateVT, V, InChain, CallConv);
392     }
393 
394     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
395     // intermediate operands.
396     EVT BuiltVectorTy =
397         IntermediateVT.isVector()
398             ? EVT::getVectorVT(
399                   *DAG.getContext(), IntermediateVT.getScalarType(),
400                   IntermediateVT.getVectorElementCount() * NumParts)
401             : EVT::getVectorVT(*DAG.getContext(),
402                                IntermediateVT.getScalarType(),
403                                NumIntermediates);
404     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405                                                 : ISD::BUILD_VECTOR,
406                       DL, BuiltVectorTy, Ops);
407   }
408 
409   // There is now one part, held in Val.  Correct it to match ValueVT.
410   EVT PartEVT = Val.getValueType();
411 
412   if (PartEVT == ValueVT)
413     return Val;
414 
415   if (PartEVT.isVector()) {
416     // Vector/Vector bitcast.
417     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419 
420     // If the parts vector has more elements than the value vector, then we
421     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
422     // Extract the elements we want.
423     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
424       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
425               ValueVT.getVectorElementCount().getKnownMinValue()) &&
426              (PartEVT.getVectorElementCount().isScalable() ==
427               ValueVT.getVectorElementCount().isScalable()) &&
428              "Cannot narrow, it would be a lossy transformation");
429       PartEVT =
430           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
431                            ValueVT.getVectorElementCount());
432       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
433                         DAG.getVectorIdxConstant(0, DL));
434       if (PartEVT == ValueVT)
435         return Val;
436       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
437         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 
439       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
440       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
441         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442     }
443 
444     // Promoted vector extract
445     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
446   }
447 
448   // Trivial bitcast if the types are the same size and the destination
449   // vector type is legal.
450   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
451       TLI.isTypeLegal(ValueVT))
452     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
453 
454   if (ValueVT.getVectorNumElements() != 1) {
455      // Certain ABIs require that vectors are passed as integers. For vectors
456      // are the same size, this is an obvious bitcast.
457      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
458        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
459      } else if (ValueVT.bitsLT(PartEVT)) {
460        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
461        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462        // Drop the extra bits.
463        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
464        return DAG.getBitcast(ValueVT, Val);
465      }
466 
467      diagnosePossiblyInvalidConstraint(
468          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
469      return DAG.getUNDEF(ValueVT);
470   }
471 
472   // Handle cases such as i8 -> <1 x i1>
473   EVT ValueSVT = ValueVT.getVectorElementType();
474   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
475     unsigned ValueSize = ValueSVT.getSizeInBits();
476     if (ValueSize == PartEVT.getSizeInBits()) {
477       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
478     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
479       // It's possible a scalar floating point type gets softened to integer and
480       // then promoted to a larger integer. If PartEVT is the larger integer
481       // we need to truncate it and then bitcast to the FP type.
482       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
483       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
484       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
485       Val = DAG.getBitcast(ValueSVT, Val);
486     } else {
487       Val = ValueVT.isFloatingPoint()
488                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490     }
491   }
492 
493   return DAG.getBuildVector(ValueVT, DL, Val);
494 }
495 
496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
497                                  SDValue Val, SDValue *Parts, unsigned NumParts,
498                                  MVT PartVT, const Value *V,
499                                  std::optional<CallingConv::ID> CallConv);
500 
501 /// getCopyToParts - Create a series of nodes that contain the specified value
502 /// split into legal parts.  If the parts contain more bits than Val, then, for
503 /// integers, ExtendKind can be used to specify how to generate the extra bits.
504 static void
505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
506                unsigned NumParts, MVT PartVT, const Value *V,
507                std::optional<CallingConv::ID> CallConv = std::nullopt,
508                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
509   // Let the target split the parts if it wants to
510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
511   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
512                                       CallConv))
513     return;
514   EVT ValueVT = Val.getValueType();
515 
516   // Handle the vector case separately.
517   if (ValueVT.isVector())
518     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
519                                 CallConv);
520 
521   unsigned OrigNumParts = NumParts;
522   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
523          "Copying to an illegal type!");
524 
525   if (NumParts == 0)
526     return;
527 
528   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
529   EVT PartEVT = PartVT;
530   if (PartEVT == ValueVT) {
531     assert(NumParts == 1 && "No-op copy with multiple parts!");
532     Parts[0] = Val;
533     return;
534   }
535 
536   unsigned PartBits = PartVT.getSizeInBits();
537   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
538     // If the parts cover more bits than the value has, promote the value.
539     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
540       assert(NumParts == 1 && "Do not know what to promote to!");
541       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
542     } else {
543       if (ValueVT.isFloatingPoint()) {
544         // FP values need to be bitcast, then extended if they are being put
545         // into a larger container.
546         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
547         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
548       }
549       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
550              ValueVT.isInteger() &&
551              "Unknown mismatch!");
552       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
553       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
554       if (PartVT == MVT::x86mmx)
555         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
556     }
557   } else if (PartBits == ValueVT.getSizeInBits()) {
558     // Different types of the same size.
559     assert(NumParts == 1 && PartEVT != ValueVT);
560     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
562     // If the parts cover less bits than value has, truncate the value.
563     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
564            ValueVT.isInteger() &&
565            "Unknown mismatch!");
566     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
567     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
568     if (PartVT == MVT::x86mmx)
569       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
570   }
571 
572   // The value may have changed - recompute ValueVT.
573   ValueVT = Val.getValueType();
574   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
575          "Failed to tile the value with PartVT!");
576 
577   if (NumParts == 1) {
578     if (PartEVT != ValueVT) {
579       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
580                                         "scalar-to-vector conversion failed");
581       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
582     }
583 
584     Parts[0] = Val;
585     return;
586   }
587 
588   // Expand the value into multiple parts.
589   if (NumParts & (NumParts - 1)) {
590     // The number of parts is not a power of 2.  Split off and copy the tail.
591     assert(PartVT.isInteger() && ValueVT.isInteger() &&
592            "Do not know what to expand to!");
593     unsigned RoundParts = llvm::bit_floor(NumParts);
594     unsigned RoundBits = RoundParts * PartBits;
595     unsigned OddParts = NumParts - RoundParts;
596     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
597       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
598 
599     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
600                    CallConv);
601 
602     if (DAG.getDataLayout().isBigEndian())
603       // The odd parts were reversed by getCopyToParts - unreverse them.
604       std::reverse(Parts + RoundParts, Parts + NumParts);
605 
606     NumParts = RoundParts;
607     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
608     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
609   }
610 
611   // The number of parts is a power of 2.  Repeatedly bisect the value using
612   // EXTRACT_ELEMENT.
613   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614                          EVT::getIntegerVT(*DAG.getContext(),
615                                            ValueVT.getSizeInBits()),
616                          Val);
617 
618   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
619     for (unsigned i = 0; i < NumParts; i += StepSize) {
620       unsigned ThisBits = StepSize * PartBits / 2;
621       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
622       SDValue &Part0 = Parts[i];
623       SDValue &Part1 = Parts[i+StepSize/2];
624 
625       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
627       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
628                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
629 
630       if (ThisBits == PartBits && ThisVT != PartVT) {
631         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
632         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
633       }
634     }
635   }
636 
637   if (DAG.getDataLayout().isBigEndian())
638     std::reverse(Parts, Parts + OrigNumParts);
639 }
640 
641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
642                                      const SDLoc &DL, EVT PartVT) {
643   if (!PartVT.isVector())
644     return SDValue();
645 
646   EVT ValueVT = Val.getValueType();
647   EVT PartEVT = PartVT.getVectorElementType();
648   EVT ValueEVT = ValueVT.getVectorElementType();
649   ElementCount PartNumElts = PartVT.getVectorElementCount();
650   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
651 
652   // We only support widening vectors with equivalent element types and
653   // fixed/scalable properties. If a target needs to widen a fixed-length type
654   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
655   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
656       PartNumElts.isScalable() != ValueNumElts.isScalable())
657     return SDValue();
658 
659   // Have a try for bf16 because some targets share its ABI with fp16.
660   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
662            "Cannot widen to illegal type");
663     Val = DAG.getNode(ISD::BITCAST, DL,
664                       ValueVT.changeVectorElementType(MVT::f16), Val);
665   } else if (PartEVT != ValueEVT) {
666     return SDValue();
667   }
668 
669   // Widening a scalable vector to another scalable vector is done by inserting
670   // the vector into a larger undef one.
671   if (PartNumElts.isScalable())
672     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673                        Val, DAG.getVectorIdxConstant(0, DL));
674 
675   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
676   // undef elements.
677   SmallVector<SDValue, 16> Ops;
678   DAG.ExtractVectorElements(Val, Ops);
679   SDValue EltUndef = DAG.getUNDEF(PartEVT);
680   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681 
682   // FIXME: Use CONCAT for 2x -> 4x.
683   return DAG.getBuildVector(PartVT, DL, Ops);
684 }
685 
686 /// getCopyToPartsVector - Create a series of nodes that contain the specified
687 /// value split into legal parts.
688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689                                  SDValue Val, SDValue *Parts, unsigned NumParts,
690                                  MVT PartVT, const Value *V,
691                                  std::optional<CallingConv::ID> CallConv) {
692   EVT ValueVT = Val.getValueType();
693   assert(ValueVT.isVector() && "Not a vector");
694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695   const bool IsABIRegCopy = CallConv.has_value();
696 
697   if (NumParts == 1) {
698     EVT PartEVT = PartVT;
699     if (PartEVT == ValueVT) {
700       // Nothing to do.
701     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702       // Bitconvert vector->vector case.
703       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705       Val = Widened;
706     } else if (PartVT.isVector() &&
707                PartEVT.getVectorElementType().bitsGE(
708                    ValueVT.getVectorElementType()) &&
709                PartEVT.getVectorElementCount() ==
710                    ValueVT.getVectorElementCount()) {
711 
712       // Promoted vector extract
713       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714     } else if (PartEVT.isVector() &&
715                PartEVT.getVectorElementType() !=
716                    ValueVT.getVectorElementType() &&
717                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
718                    TargetLowering::TypeWidenVector) {
719       // Combination of widening and promotion.
720       EVT WidenVT =
721           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
722                            PartVT.getVectorElementCount());
723       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725     } else {
726       // Don't extract an integer from a float vector. This can happen if the
727       // FP type gets softened to integer and then promoted. The promotion
728       // prevents it from being picked up by the earlier bitcast case.
729       if (ValueVT.getVectorElementCount().isScalar() &&
730           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
732                           DAG.getVectorIdxConstant(0, DL));
733       } else {
734         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
735         assert(PartVT.getFixedSizeInBits() > ValueSize &&
736                "lossy conversion of vector to scalar type");
737         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
738         Val = DAG.getBitcast(IntermediateType, Val);
739         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
740       }
741     }
742 
743     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
744     Parts[0] = Val;
745     return;
746   }
747 
748   // Handle a multi-element vector.
749   EVT IntermediateVT;
750   MVT RegisterVT;
751   unsigned NumIntermediates;
752   unsigned NumRegs;
753   if (IsABIRegCopy) {
754     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
755         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
756         RegisterVT);
757   } else {
758     NumRegs =
759         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
760                                    NumIntermediates, RegisterVT);
761   }
762 
763   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
764   NumParts = NumRegs; // Silence a compiler warning.
765   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
766 
767   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
768          "Mixing scalable and fixed vectors when copying in parts");
769 
770   std::optional<ElementCount> DestEltCnt;
771 
772   if (IntermediateVT.isVector())
773     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
774   else
775     DestEltCnt = ElementCount::getFixed(NumIntermediates);
776 
777   EVT BuiltVectorTy = EVT::getVectorVT(
778       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
779 
780   if (ValueVT == BuiltVectorTy) {
781     // Nothing to do.
782   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
783     // Bitconvert vector->vector case.
784     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
785   } else {
786     if (BuiltVectorTy.getVectorElementType().bitsGT(
787             ValueVT.getVectorElementType())) {
788       // Integer promotion.
789       ValueVT = EVT::getVectorVT(*DAG.getContext(),
790                                  BuiltVectorTy.getVectorElementType(),
791                                  ValueVT.getVectorElementCount());
792       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
793     }
794 
795     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
796       Val = Widened;
797     }
798   }
799 
800   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
801 
802   // Split the vector into intermediate operands.
803   SmallVector<SDValue, 8> Ops(NumIntermediates);
804   for (unsigned i = 0; i != NumIntermediates; ++i) {
805     if (IntermediateVT.isVector()) {
806       // This does something sensible for scalable vectors - see the
807       // definition of EXTRACT_SUBVECTOR for further details.
808       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
809       Ops[i] =
810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
811                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
812     } else {
813       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
814                            DAG.getVectorIdxConstant(i, DL));
815     }
816   }
817 
818   // Split the intermediate operands into legal parts.
819   if (NumParts == NumIntermediates) {
820     // If the register was not expanded, promote or copy the value,
821     // as appropriate.
822     for (unsigned i = 0; i != NumParts; ++i)
823       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
824   } else if (NumParts > 0) {
825     // If the intermediate type was expanded, split each the value into
826     // legal parts.
827     assert(NumIntermediates != 0 && "division by zero");
828     assert(NumParts % NumIntermediates == 0 &&
829            "Must expand into a divisible number of parts!");
830     unsigned Factor = NumParts / NumIntermediates;
831     for (unsigned i = 0; i != NumIntermediates; ++i)
832       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
833                      CallConv);
834   }
835 }
836 
837 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
838                            EVT valuevt, std::optional<CallingConv::ID> CC)
839     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
840       RegCount(1, regs.size()), CallConv(CC) {}
841 
842 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
843                            const DataLayout &DL, unsigned Reg, Type *Ty,
844                            std::optional<CallingConv::ID> CC) {
845   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
846 
847   CallConv = CC;
848 
849   for (EVT ValueVT : ValueVTs) {
850     unsigned NumRegs =
851         isABIMangled()
852             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
853             : TLI.getNumRegisters(Context, ValueVT);
854     MVT RegisterVT =
855         isABIMangled()
856             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
857             : TLI.getRegisterType(Context, ValueVT);
858     for (unsigned i = 0; i != NumRegs; ++i)
859       Regs.push_back(Reg + i);
860     RegVTs.push_back(RegisterVT);
861     RegCount.push_back(NumRegs);
862     Reg += NumRegs;
863   }
864 }
865 
866 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
867                                       FunctionLoweringInfo &FuncInfo,
868                                       const SDLoc &dl, SDValue &Chain,
869                                       SDValue *Glue, const Value *V) const {
870   // A Value with type {} or [0 x %t] needs no registers.
871   if (ValueVTs.empty())
872     return SDValue();
873 
874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
875 
876   // Assemble the legal parts into the final values.
877   SmallVector<SDValue, 4> Values(ValueVTs.size());
878   SmallVector<SDValue, 8> Parts;
879   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
880     // Copy the legal parts from the registers.
881     EVT ValueVT = ValueVTs[Value];
882     unsigned NumRegs = RegCount[Value];
883     MVT RegisterVT = isABIMangled()
884                          ? TLI.getRegisterTypeForCallingConv(
885                                *DAG.getContext(), *CallConv, RegVTs[Value])
886                          : RegVTs[Value];
887 
888     Parts.resize(NumRegs);
889     for (unsigned i = 0; i != NumRegs; ++i) {
890       SDValue P;
891       if (!Glue) {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
893       } else {
894         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
895         *Glue = P.getValue(2);
896       }
897 
898       Chain = P.getValue(1);
899       Parts[i] = P;
900 
901       // If the source register was virtual and if we know something about it,
902       // add an assert node.
903       if (!Register::isVirtualRegister(Regs[Part + i]) ||
904           !RegisterVT.isInteger())
905         continue;
906 
907       const FunctionLoweringInfo::LiveOutInfo *LOI =
908         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
909       if (!LOI)
910         continue;
911 
912       unsigned RegSize = RegisterVT.getScalarSizeInBits();
913       unsigned NumSignBits = LOI->NumSignBits;
914       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
915 
916       if (NumZeroBits == RegSize) {
917         // The current value is a zero.
918         // Explicitly express that as it would be easier for
919         // optimizations to kick in.
920         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
921         continue;
922       }
923 
924       // FIXME: We capture more information than the dag can represent.  For
925       // now, just use the tightest assertzext/assertsext possible.
926       bool isSExt;
927       EVT FromVT(MVT::Other);
928       if (NumZeroBits) {
929         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
930         isSExt = false;
931       } else if (NumSignBits > 1) {
932         FromVT =
933             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
934         isSExt = true;
935       } else {
936         continue;
937       }
938       // Add an assertion node.
939       assert(FromVT != MVT::Other);
940       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
941                              RegisterVT, P, DAG.getValueType(FromVT));
942     }
943 
944     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
945                                      RegisterVT, ValueVT, V, Chain, CallConv);
946     Part += NumRegs;
947     Parts.clear();
948   }
949 
950   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
951 }
952 
953 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
954                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
955                                  const Value *V,
956                                  ISD::NodeType PreferredExtendType) const {
957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
958   ISD::NodeType ExtendKind = PreferredExtendType;
959 
960   // Get the list of the values's legal parts.
961   unsigned NumRegs = Regs.size();
962   SmallVector<SDValue, 8> Parts(NumRegs);
963   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
964     unsigned NumParts = RegCount[Value];
965 
966     MVT RegisterVT = isABIMangled()
967                          ? TLI.getRegisterTypeForCallingConv(
968                                *DAG.getContext(), *CallConv, RegVTs[Value])
969                          : RegVTs[Value];
970 
971     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
972       ExtendKind = ISD::ZERO_EXTEND;
973 
974     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
975                    NumParts, RegisterVT, V, CallConv, ExtendKind);
976     Part += NumParts;
977   }
978 
979   // Copy the parts into the registers.
980   SmallVector<SDValue, 8> Chains(NumRegs);
981   for (unsigned i = 0; i != NumRegs; ++i) {
982     SDValue Part;
983     if (!Glue) {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
985     } else {
986       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
987       *Glue = Part.getValue(1);
988     }
989 
990     Chains[i] = Part.getValue(0);
991   }
992 
993   if (NumRegs == 1 || Glue)
994     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
995     // flagged to it. That is the CopyToReg nodes and the user are considered
996     // a single scheduling unit. If we create a TokenFactor and return it as
997     // chain, then the TokenFactor is both a predecessor (operand) of the
998     // user as well as a successor (the TF operands are flagged to the user).
999     // c1, f1 = CopyToReg
1000     // c2, f2 = CopyToReg
1001     // c3     = TokenFactor c1, c2
1002     // ...
1003     //        = op c3, ..., f2
1004     Chain = Chains[NumRegs-1];
1005   else
1006     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1007 }
1008 
1009 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1010                                         unsigned MatchingIdx, const SDLoc &dl,
1011                                         SelectionDAG &DAG,
1012                                         std::vector<SDValue> &Ops) const {
1013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1014 
1015   InlineAsm::Flag Flag(Code, Regs.size());
1016   if (HasMatching)
1017     Flag.setMatchingOp(MatchingIdx);
1018   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1019     // Put the register class of the virtual registers in the flag word.  That
1020     // way, later passes can recompute register class constraints for inline
1021     // assembly as well as normal instructions.
1022     // Don't do this for tied operands that can use the regclass information
1023     // from the def.
1024     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1025     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1026     Flag.setRegClass(RC->getID());
1027   }
1028 
1029   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1030   Ops.push_back(Res);
1031 
1032   if (Code == InlineAsm::Kind::Clobber) {
1033     // Clobbers should always have a 1:1 mapping with registers, and may
1034     // reference registers that have illegal (e.g. vector) types. Hence, we
1035     // shouldn't try to apply any sort of splitting logic to them.
1036     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1037            "No 1:1 mapping from clobbers to regs?");
1038     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1039     (void)SP;
1040     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1041       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1042       assert(
1043           (Regs[I] != SP ||
1044            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1045           "If we clobbered the stack pointer, MFI should know about it.");
1046     }
1047     return;
1048   }
1049 
1050   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1051     MVT RegisterVT = RegVTs[Value];
1052     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1053                                            RegisterVT);
1054     for (unsigned i = 0; i != NumRegs; ++i) {
1055       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1056       unsigned TheReg = Regs[Reg++];
1057       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1058     }
1059   }
1060 }
1061 
1062 SmallVector<std::pair<unsigned, TypeSize>, 4>
1063 RegsForValue::getRegsAndSizes() const {
1064   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1065   unsigned I = 0;
1066   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1067     unsigned RegCount = std::get<0>(CountAndVT);
1068     MVT RegisterVT = std::get<1>(CountAndVT);
1069     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1070     for (unsigned E = I + RegCount; I != E; ++I)
1071       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1072   }
1073   return OutVec;
1074 }
1075 
1076 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1077                                AssumptionCache *ac,
1078                                const TargetLibraryInfo *li) {
1079   AA = aa;
1080   AC = ac;
1081   GFI = gfi;
1082   LibInfo = li;
1083   Context = DAG.getContext();
1084   LPadToCallSiteMap.clear();
1085   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1086   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1087       *DAG.getMachineFunction().getFunction().getParent());
1088 }
1089 
1090 void SelectionDAGBuilder::clear() {
1091   NodeMap.clear();
1092   UnusedArgNodeMap.clear();
1093   PendingLoads.clear();
1094   PendingExports.clear();
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   CurInst = nullptr;
1098   HasTailCall = false;
1099   SDNodeOrder = LowestSDNodeOrder;
1100   StatepointLowering.clear();
1101 }
1102 
1103 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1104   DanglingDebugInfoMap.clear();
1105 }
1106 
1107 // Update DAG root to include dependencies on Pending chains.
1108 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1109   SDValue Root = DAG.getRoot();
1110 
1111   if (Pending.empty())
1112     return Root;
1113 
1114   // Add current root to PendingChains, unless we already indirectly
1115   // depend on it.
1116   if (Root.getOpcode() != ISD::EntryToken) {
1117     unsigned i = 0, e = Pending.size();
1118     for (; i != e; ++i) {
1119       assert(Pending[i].getNode()->getNumOperands() > 1);
1120       if (Pending[i].getNode()->getOperand(0) == Root)
1121         break;  // Don't add the root if we already indirectly depend on it.
1122     }
1123 
1124     if (i == e)
1125       Pending.push_back(Root);
1126   }
1127 
1128   if (Pending.size() == 1)
1129     Root = Pending[0];
1130   else
1131     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1132 
1133   DAG.setRoot(Root);
1134   Pending.clear();
1135   return Root;
1136 }
1137 
1138 SDValue SelectionDAGBuilder::getMemoryRoot() {
1139   return updateRoot(PendingLoads);
1140 }
1141 
1142 SDValue SelectionDAGBuilder::getRoot() {
1143   // Chain up all pending constrained intrinsics together with all
1144   // pending loads, by simply appending them to PendingLoads and
1145   // then calling getMemoryRoot().
1146   PendingLoads.reserve(PendingLoads.size() +
1147                        PendingConstrainedFP.size() +
1148                        PendingConstrainedFPStrict.size());
1149   PendingLoads.append(PendingConstrainedFP.begin(),
1150                       PendingConstrainedFP.end());
1151   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1152                       PendingConstrainedFPStrict.end());
1153   PendingConstrainedFP.clear();
1154   PendingConstrainedFPStrict.clear();
1155   return getMemoryRoot();
1156 }
1157 
1158 SDValue SelectionDAGBuilder::getControlRoot() {
1159   // We need to emit pending fpexcept.strict constrained intrinsics,
1160   // so append them to the PendingExports list.
1161   PendingExports.append(PendingConstrainedFPStrict.begin(),
1162                         PendingConstrainedFPStrict.end());
1163   PendingConstrainedFPStrict.clear();
1164   return updateRoot(PendingExports);
1165 }
1166 
1167 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1168                                              DILocalVariable *Variable,
1169                                              DIExpression *Expression,
1170                                              DebugLoc DL) {
1171   assert(Variable && "Missing variable");
1172 
1173   // Check if address has undef value.
1174   if (!Address || isa<UndefValue>(Address) ||
1175       (Address->use_empty() && !isa<Argument>(Address))) {
1176     LLVM_DEBUG(
1177         dbgs()
1178         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1179     return;
1180   }
1181 
1182   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1183 
1184   SDValue &N = NodeMap[Address];
1185   if (!N.getNode() && isa<Argument>(Address))
1186     // Check unused arguments map.
1187     N = UnusedArgNodeMap[Address];
1188   SDDbgValue *SDV;
1189   if (N.getNode()) {
1190     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1191       Address = BCI->getOperand(0);
1192     // Parameters are handled specially.
1193     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1194     if (IsParameter && FINode) {
1195       // Byval parameter. We have a frame index at this point.
1196       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1197                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1198     } else if (isa<Argument>(Address)) {
1199       // Address is an argument, so try to emit its dbg value using
1200       // virtual register info from the FuncInfo.ValueMap.
1201       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1202                                FuncArgumentDbgValueKind::Declare, N);
1203       return;
1204     } else {
1205       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1206                             true, DL, SDNodeOrder);
1207     }
1208     DAG.AddDbgValue(SDV, IsParameter);
1209   } else {
1210     // If Address is an argument then try to emit its dbg value using
1211     // virtual register info from the FuncInfo.ValueMap.
1212     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1213                                   FuncArgumentDbgValueKind::Declare, N)) {
1214       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1215                         << " (could not emit func-arg dbg_value)\n");
1216     }
1217   }
1218   return;
1219 }
1220 
1221 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1222   // Add SDDbgValue nodes for any var locs here. Do so before updating
1223   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1224   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1225     // Add SDDbgValue nodes for any var locs here. Do so before updating
1226     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1227     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1228          It != End; ++It) {
1229       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1230       dropDanglingDebugInfo(Var, It->Expr);
1231       if (It->Values.isKillLocation(It->Expr)) {
1232         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1233         continue;
1234       }
1235       SmallVector<Value *> Values(It->Values.location_ops());
1236       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1237                             It->Values.hasArgList())) {
1238         SmallVector<Value *, 4> Vals;
1239         for (Value *V : It->Values.location_ops())
1240           Vals.push_back(V);
1241         addDanglingDebugInfo(Vals,
1242                              FnVarLocs->getDILocalVariable(It->VariableID),
1243                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1244       }
1245     }
1246   }
1247 
1248   // We must skip DbgVariableRecords if they've already been processed above as
1249   // we have just emitted the debug values resulting from assignment tracking
1250   // analysis, making any existing DbgVariableRecords redundant (and probably
1251   // less correct). We still need to process DbgLabelRecords. This does sink
1252   // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1253   // be important as it does so deterministcally and ordering between
1254   // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1255   // printing).
1256   bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1257   // Is there is any debug-info attached to this instruction, in the form of
1258   // DbgRecord non-instruction debug-info records.
1259   for (DbgRecord &DR : I.getDbgRecordRange()) {
1260     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1261       assert(DLR->getLabel() && "Missing label");
1262       SDDbgLabel *SDV =
1263           DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1264       DAG.AddDbgLabel(SDV);
1265       continue;
1266     }
1267 
1268     if (SkipDbgVariableRecords)
1269       continue;
1270     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1271     DILocalVariable *Variable = DVR.getVariable();
1272     DIExpression *Expression = DVR.getExpression();
1273     dropDanglingDebugInfo(Variable, Expression);
1274 
1275     if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1276       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1277         continue;
1278       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1279                         << "\n");
1280       handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression,
1281                          DVR.getDebugLoc());
1282       continue;
1283     }
1284 
1285     // A DbgVariableRecord with no locations is a kill location.
1286     SmallVector<Value *, 4> Values(DVR.location_ops());
1287     if (Values.empty()) {
1288       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1289                            SDNodeOrder);
1290       continue;
1291     }
1292 
1293     // A DbgVariableRecord with an undef or absent location is also a kill
1294     // location.
1295     if (llvm::any_of(Values,
1296                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1297       handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(),
1298                            SDNodeOrder);
1299       continue;
1300     }
1301 
1302     bool IsVariadic = DVR.hasArgList();
1303     if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1304                           SDNodeOrder, IsVariadic)) {
1305       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1306                            DVR.getDebugLoc(), SDNodeOrder);
1307     }
1308   }
1309 }
1310 
1311 void SelectionDAGBuilder::visit(const Instruction &I) {
1312   visitDbgInfo(I);
1313 
1314   // Set up outgoing PHI node register values before emitting the terminator.
1315   if (I.isTerminator()) {
1316     HandlePHINodesInSuccessorBlocks(I.getParent());
1317   }
1318 
1319   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1320   if (!isa<DbgInfoIntrinsic>(I))
1321     ++SDNodeOrder;
1322 
1323   CurInst = &I;
1324 
1325   // Set inserted listener only if required.
1326   bool NodeInserted = false;
1327   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1328   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1329   if (PCSectionsMD) {
1330     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1331         DAG, [&](SDNode *) { NodeInserted = true; });
1332   }
1333 
1334   visit(I.getOpcode(), I);
1335 
1336   if (!I.isTerminator() && !HasTailCall &&
1337       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1338     CopyToExportRegsIfNeeded(&I);
1339 
1340   // Handle metadata.
1341   if (PCSectionsMD) {
1342     auto It = NodeMap.find(&I);
1343     if (It != NodeMap.end()) {
1344       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1345     } else if (NodeInserted) {
1346       // This should not happen; if it does, don't let it go unnoticed so we can
1347       // fix it. Relevant visit*() function is probably missing a setValue().
1348       errs() << "warning: loosing !pcsections metadata ["
1349              << I.getModule()->getName() << "]\n";
1350       LLVM_DEBUG(I.dump());
1351       assert(false);
1352     }
1353   }
1354 
1355   CurInst = nullptr;
1356 }
1357 
1358 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1359   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1360 }
1361 
1362 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1363   // Note: this doesn't use InstVisitor, because it has to work with
1364   // ConstantExpr's in addition to instructions.
1365   switch (Opcode) {
1366   default: llvm_unreachable("Unknown instruction type encountered!");
1367     // Build the switch statement using the Instruction.def file.
1368 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1369     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1370 #include "llvm/IR/Instruction.def"
1371   }
1372 }
1373 
1374 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1375                                             DILocalVariable *Variable,
1376                                             DebugLoc DL, unsigned Order,
1377                                             SmallVectorImpl<Value *> &Values,
1378                                             DIExpression *Expression) {
1379   // For variadic dbg_values we will now insert an undef.
1380   // FIXME: We can potentially recover these!
1381   SmallVector<SDDbgOperand, 2> Locs;
1382   for (const Value *V : Values) {
1383     auto *Undef = UndefValue::get(V->getType());
1384     Locs.push_back(SDDbgOperand::fromConst(Undef));
1385   }
1386   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1387                                         /*IsIndirect=*/false, DL, Order,
1388                                         /*IsVariadic=*/true);
1389   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1390   return true;
1391 }
1392 
1393 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1394                                                DILocalVariable *Var,
1395                                                DIExpression *Expr,
1396                                                bool IsVariadic, DebugLoc DL,
1397                                                unsigned Order) {
1398   if (IsVariadic) {
1399     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1400     return;
1401   }
1402   // TODO: Dangling debug info will eventually either be resolved or produce
1403   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1404   // between the original dbg.value location and its resolved DBG_VALUE,
1405   // which we should ideally fill with an extra Undef DBG_VALUE.
1406   assert(Values.size() == 1);
1407   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1408 }
1409 
1410 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1411                                                 const DIExpression *Expr) {
1412   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1413     DIVariable *DanglingVariable = DDI.getVariable();
1414     DIExpression *DanglingExpr = DDI.getExpression();
1415     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1416       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1417                         << printDDI(nullptr, DDI) << "\n");
1418       return true;
1419     }
1420     return false;
1421   };
1422 
1423   for (auto &DDIMI : DanglingDebugInfoMap) {
1424     DanglingDebugInfoVector &DDIV = DDIMI.second;
1425 
1426     // If debug info is to be dropped, run it through final checks to see
1427     // whether it can be salvaged.
1428     for (auto &DDI : DDIV)
1429       if (isMatchingDbgValue(DDI))
1430         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1431 
1432     erase_if(DDIV, isMatchingDbgValue);
1433   }
1434 }
1435 
1436 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1437 // generate the debug data structures now that we've seen its definition.
1438 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1439                                                    SDValue Val) {
1440   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1441   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1442     return;
1443 
1444   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1445   for (auto &DDI : DDIV) {
1446     DebugLoc DL = DDI.getDebugLoc();
1447     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1448     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1449     DILocalVariable *Variable = DDI.getVariable();
1450     DIExpression *Expr = DDI.getExpression();
1451     assert(Variable->isValidLocationForIntrinsic(DL) &&
1452            "Expected inlined-at fields to agree");
1453     SDDbgValue *SDV;
1454     if (Val.getNode()) {
1455       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1456       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1457       // we couldn't resolve it directly when examining the DbgValue intrinsic
1458       // in the first place we should not be more successful here). Unless we
1459       // have some test case that prove this to be correct we should avoid
1460       // calling EmitFuncArgumentDbgValue here.
1461       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1462                                     FuncArgumentDbgValueKind::Value, Val)) {
1463         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1464                           << printDDI(V, DDI) << "\n");
1465         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1466         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1467         // inserted after the definition of Val when emitting the instructions
1468         // after ISel. An alternative could be to teach
1469         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1470         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1471                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1472                    << ValSDNodeOrder << "\n");
1473         SDV = getDbgValue(Val, Variable, Expr, DL,
1474                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1475         DAG.AddDbgValue(SDV, false);
1476       } else
1477         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1478                           << printDDI(V, DDI)
1479                           << " in EmitFuncArgumentDbgValue\n");
1480     } else {
1481       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1482                         << "\n");
1483       auto Undef = UndefValue::get(V->getType());
1484       auto SDV =
1485           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1486       DAG.AddDbgValue(SDV, false);
1487     }
1488   }
1489   DDIV.clear();
1490 }
1491 
1492 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1493                                                     DanglingDebugInfo &DDI) {
1494   // TODO: For the variadic implementation, instead of only checking the fail
1495   // state of `handleDebugValue`, we need know specifically which values were
1496   // invalid, so that we attempt to salvage only those values when processing
1497   // a DIArgList.
1498   const Value *OrigV = V;
1499   DILocalVariable *Var = DDI.getVariable();
1500   DIExpression *Expr = DDI.getExpression();
1501   DebugLoc DL = DDI.getDebugLoc();
1502   unsigned SDOrder = DDI.getSDNodeOrder();
1503 
1504   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1505   // that DW_OP_stack_value is desired.
1506   bool StackValue = true;
1507 
1508   // Can this Value can be encoded without any further work?
1509   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1510     return;
1511 
1512   // Attempt to salvage back through as many instructions as possible. Bail if
1513   // a non-instruction is seen, such as a constant expression or global
1514   // variable. FIXME: Further work could recover those too.
1515   while (isa<Instruction>(V)) {
1516     const Instruction &VAsInst = *cast<const Instruction>(V);
1517     // Temporary "0", awaiting real implementation.
1518     SmallVector<uint64_t, 16> Ops;
1519     SmallVector<Value *, 4> AdditionalValues;
1520     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1521                              Expr->getNumLocationOperands(), Ops,
1522                              AdditionalValues);
1523     // If we cannot salvage any further, and haven't yet found a suitable debug
1524     // expression, bail out.
1525     if (!V)
1526       break;
1527 
1528     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1529     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1530     // here for variadic dbg_values, remove that condition.
1531     if (!AdditionalValues.empty())
1532       break;
1533 
1534     // New value and expr now represent this debuginfo.
1535     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1536 
1537     // Some kind of simplification occurred: check whether the operand of the
1538     // salvaged debug expression can be encoded in this DAG.
1539     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1540       LLVM_DEBUG(
1541           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1542                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1543       return;
1544     }
1545   }
1546 
1547   // This was the final opportunity to salvage this debug information, and it
1548   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1549   // any earlier variable location.
1550   assert(OrigV && "V shouldn't be null");
1551   auto *Undef = UndefValue::get(OrigV->getType());
1552   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1553   DAG.AddDbgValue(SDV, false);
1554   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1555                     << printDDI(OrigV, DDI) << "\n");
1556 }
1557 
1558 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1559                                                DIExpression *Expr,
1560                                                DebugLoc DbgLoc,
1561                                                unsigned Order) {
1562   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1563   DIExpression *NewExpr =
1564       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1565   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1566                    /*IsVariadic*/ false);
1567 }
1568 
1569 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1570                                            DILocalVariable *Var,
1571                                            DIExpression *Expr, DebugLoc DbgLoc,
1572                                            unsigned Order, bool IsVariadic) {
1573   if (Values.empty())
1574     return true;
1575 
1576   // Filter EntryValue locations out early.
1577   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1578     return true;
1579 
1580   SmallVector<SDDbgOperand> LocationOps;
1581   SmallVector<SDNode *> Dependencies;
1582   for (const Value *V : Values) {
1583     // Constant value.
1584     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1585         isa<ConstantPointerNull>(V)) {
1586       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1587       continue;
1588     }
1589 
1590     // Look through IntToPtr constants.
1591     if (auto *CE = dyn_cast<ConstantExpr>(V))
1592       if (CE->getOpcode() == Instruction::IntToPtr) {
1593         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1594         continue;
1595       }
1596 
1597     // If the Value is a frame index, we can create a FrameIndex debug value
1598     // without relying on the DAG at all.
1599     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1600       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1601       if (SI != FuncInfo.StaticAllocaMap.end()) {
1602         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1603         continue;
1604       }
1605     }
1606 
1607     // Do not use getValue() in here; we don't want to generate code at
1608     // this point if it hasn't been done yet.
1609     SDValue N = NodeMap[V];
1610     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1611       N = UnusedArgNodeMap[V];
1612     if (N.getNode()) {
1613       // Only emit func arg dbg value for non-variadic dbg.values for now.
1614       if (!IsVariadic &&
1615           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1616                                    FuncArgumentDbgValueKind::Value, N))
1617         return true;
1618       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1619         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1620         // describe stack slot locations.
1621         //
1622         // Consider "int x = 0; int *px = &x;". There are two kinds of
1623         // interesting debug values here after optimization:
1624         //
1625         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1626         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1627         //
1628         // Both describe the direct values of their associated variables.
1629         Dependencies.push_back(N.getNode());
1630         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1631         continue;
1632       }
1633       LocationOps.emplace_back(
1634           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1635       continue;
1636     }
1637 
1638     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1639     // Special rules apply for the first dbg.values of parameter variables in a
1640     // function. Identify them by the fact they reference Argument Values, that
1641     // they're parameters, and they are parameters of the current function. We
1642     // need to let them dangle until they get an SDNode.
1643     bool IsParamOfFunc =
1644         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1645     if (IsParamOfFunc)
1646       return false;
1647 
1648     // The value is not used in this block yet (or it would have an SDNode).
1649     // We still want the value to appear for the user if possible -- if it has
1650     // an associated VReg, we can refer to that instead.
1651     auto VMI = FuncInfo.ValueMap.find(V);
1652     if (VMI != FuncInfo.ValueMap.end()) {
1653       unsigned Reg = VMI->second;
1654       // If this is a PHI node, it may be split up into several MI PHI nodes
1655       // (in FunctionLoweringInfo::set).
1656       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1657                        V->getType(), std::nullopt);
1658       if (RFV.occupiesMultipleRegs()) {
1659         // FIXME: We could potentially support variadic dbg_values here.
1660         if (IsVariadic)
1661           return false;
1662         unsigned Offset = 0;
1663         unsigned BitsToDescribe = 0;
1664         if (auto VarSize = Var->getSizeInBits())
1665           BitsToDescribe = *VarSize;
1666         if (auto Fragment = Expr->getFragmentInfo())
1667           BitsToDescribe = Fragment->SizeInBits;
1668         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1669           // Bail out if all bits are described already.
1670           if (Offset >= BitsToDescribe)
1671             break;
1672           // TODO: handle scalable vectors.
1673           unsigned RegisterSize = RegAndSize.second;
1674           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1675                                       ? BitsToDescribe - Offset
1676                                       : RegisterSize;
1677           auto FragmentExpr = DIExpression::createFragmentExpression(
1678               Expr, Offset, FragmentSize);
1679           if (!FragmentExpr)
1680             continue;
1681           SDDbgValue *SDV = DAG.getVRegDbgValue(
1682               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1683           DAG.AddDbgValue(SDV, false);
1684           Offset += RegisterSize;
1685         }
1686         return true;
1687       }
1688       // We can use simple vreg locations for variadic dbg_values as well.
1689       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1690       continue;
1691     }
1692     // We failed to create a SDDbgOperand for V.
1693     return false;
1694   }
1695 
1696   // We have created a SDDbgOperand for each Value in Values.
1697   // Should use Order instead of SDNodeOrder?
1698   assert(!LocationOps.empty());
1699   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1700                                         /*IsIndirect=*/false, DbgLoc,
1701                                         SDNodeOrder, IsVariadic);
1702   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1703   return true;
1704 }
1705 
1706 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1707   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1708   for (auto &Pair : DanglingDebugInfoMap)
1709     for (auto &DDI : Pair.second)
1710       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1711   clearDanglingDebugInfo();
1712 }
1713 
1714 /// getCopyFromRegs - If there was virtual register allocated for the value V
1715 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1716 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1717   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1718   SDValue Result;
1719 
1720   if (It != FuncInfo.ValueMap.end()) {
1721     Register InReg = It->second;
1722 
1723     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1724                      DAG.getDataLayout(), InReg, Ty,
1725                      std::nullopt); // This is not an ABI copy.
1726     SDValue Chain = DAG.getEntryNode();
1727     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1728                                  V);
1729     resolveDanglingDebugInfo(V, Result);
1730   }
1731 
1732   return Result;
1733 }
1734 
1735 /// getValue - Return an SDValue for the given Value.
1736 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1737   // If we already have an SDValue for this value, use it. It's important
1738   // to do this first, so that we don't create a CopyFromReg if we already
1739   // have a regular SDValue.
1740   SDValue &N = NodeMap[V];
1741   if (N.getNode()) return N;
1742 
1743   // If there's a virtual register allocated and initialized for this
1744   // value, use it.
1745   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1746     return copyFromReg;
1747 
1748   // Otherwise create a new SDValue and remember it.
1749   SDValue Val = getValueImpl(V);
1750   NodeMap[V] = Val;
1751   resolveDanglingDebugInfo(V, Val);
1752   return Val;
1753 }
1754 
1755 /// getNonRegisterValue - Return an SDValue for the given Value, but
1756 /// don't look in FuncInfo.ValueMap for a virtual register.
1757 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1758   // If we already have an SDValue for this value, use it.
1759   SDValue &N = NodeMap[V];
1760   if (N.getNode()) {
1761     if (isIntOrFPConstant(N)) {
1762       // Remove the debug location from the node as the node is about to be used
1763       // in a location which may differ from the original debug location.  This
1764       // is relevant to Constant and ConstantFP nodes because they can appear
1765       // as constant expressions inside PHI nodes.
1766       N->setDebugLoc(DebugLoc());
1767     }
1768     return N;
1769   }
1770 
1771   // Otherwise create a new SDValue and remember it.
1772   SDValue Val = getValueImpl(V);
1773   NodeMap[V] = Val;
1774   resolveDanglingDebugInfo(V, Val);
1775   return Val;
1776 }
1777 
1778 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1779 /// Create an SDValue for the given value.
1780 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1782 
1783   if (const Constant *C = dyn_cast<Constant>(V)) {
1784     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1785 
1786     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1787       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1788 
1789     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1790       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1791 
1792     if (isa<ConstantPointerNull>(C)) {
1793       unsigned AS = V->getType()->getPointerAddressSpace();
1794       return DAG.getConstant(0, getCurSDLoc(),
1795                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1796     }
1797 
1798     if (match(C, m_VScale()))
1799       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1800 
1801     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1802       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1803 
1804     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1805       return DAG.getUNDEF(VT);
1806 
1807     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1808       visit(CE->getOpcode(), *CE);
1809       SDValue N1 = NodeMap[V];
1810       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1811       return N1;
1812     }
1813 
1814     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1815       SmallVector<SDValue, 4> Constants;
1816       for (const Use &U : C->operands()) {
1817         SDNode *Val = getValue(U).getNode();
1818         // If the operand is an empty aggregate, there are no values.
1819         if (!Val) continue;
1820         // Add each leaf value from the operand to the Constants list
1821         // to form a flattened list of all the values.
1822         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1823           Constants.push_back(SDValue(Val, i));
1824       }
1825 
1826       return DAG.getMergeValues(Constants, getCurSDLoc());
1827     }
1828 
1829     if (const ConstantDataSequential *CDS =
1830           dyn_cast<ConstantDataSequential>(C)) {
1831       SmallVector<SDValue, 4> Ops;
1832       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1833         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1834         // Add each leaf value from the operand to the Constants list
1835         // to form a flattened list of all the values.
1836         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1837           Ops.push_back(SDValue(Val, i));
1838       }
1839 
1840       if (isa<ArrayType>(CDS->getType()))
1841         return DAG.getMergeValues(Ops, getCurSDLoc());
1842       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1843     }
1844 
1845     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1846       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1847              "Unknown struct or array constant!");
1848 
1849       SmallVector<EVT, 4> ValueVTs;
1850       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1851       unsigned NumElts = ValueVTs.size();
1852       if (NumElts == 0)
1853         return SDValue(); // empty struct
1854       SmallVector<SDValue, 4> Constants(NumElts);
1855       for (unsigned i = 0; i != NumElts; ++i) {
1856         EVT EltVT = ValueVTs[i];
1857         if (isa<UndefValue>(C))
1858           Constants[i] = DAG.getUNDEF(EltVT);
1859         else if (EltVT.isFloatingPoint())
1860           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1861         else
1862           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1863       }
1864 
1865       return DAG.getMergeValues(Constants, getCurSDLoc());
1866     }
1867 
1868     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1869       return DAG.getBlockAddress(BA, VT);
1870 
1871     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1872       return getValue(Equiv->getGlobalValue());
1873 
1874     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1875       return getValue(NC->getGlobalValue());
1876 
1877     if (VT == MVT::aarch64svcount) {
1878       assert(C->isNullValue() && "Can only zero this target type!");
1879       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1880                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1881     }
1882 
1883     VectorType *VecTy = cast<VectorType>(V->getType());
1884 
1885     // Now that we know the number and type of the elements, get that number of
1886     // elements into the Ops array based on what kind of constant it is.
1887     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1888       SmallVector<SDValue, 16> Ops;
1889       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1890       for (unsigned i = 0; i != NumElements; ++i)
1891         Ops.push_back(getValue(CV->getOperand(i)));
1892 
1893       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1894     }
1895 
1896     if (isa<ConstantAggregateZero>(C)) {
1897       EVT EltVT =
1898           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1899 
1900       SDValue Op;
1901       if (EltVT.isFloatingPoint())
1902         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1903       else
1904         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1905 
1906       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1907     }
1908 
1909     llvm_unreachable("Unknown vector constant");
1910   }
1911 
1912   // If this is a static alloca, generate it as the frameindex instead of
1913   // computation.
1914   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1915     DenseMap<const AllocaInst*, int>::iterator SI =
1916       FuncInfo.StaticAllocaMap.find(AI);
1917     if (SI != FuncInfo.StaticAllocaMap.end())
1918       return DAG.getFrameIndex(
1919           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1920   }
1921 
1922   // If this is an instruction which fast-isel has deferred, select it now.
1923   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1924     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1925 
1926     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1927                      Inst->getType(), std::nullopt);
1928     SDValue Chain = DAG.getEntryNode();
1929     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1930   }
1931 
1932   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1933     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1934 
1935   if (const auto *BB = dyn_cast<BasicBlock>(V))
1936     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1937 
1938   llvm_unreachable("Can't get register for value!");
1939 }
1940 
1941 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1942   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1943   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1944   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1945   bool IsSEH = isAsynchronousEHPersonality(Pers);
1946   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1947   if (!IsSEH)
1948     CatchPadMBB->setIsEHScopeEntry();
1949   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1950   if (IsMSVCCXX || IsCoreCLR)
1951     CatchPadMBB->setIsEHFuncletEntry();
1952 }
1953 
1954 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1955   // Update machine-CFG edge.
1956   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1957   FuncInfo.MBB->addSuccessor(TargetMBB);
1958   TargetMBB->setIsEHCatchretTarget(true);
1959   DAG.getMachineFunction().setHasEHCatchret(true);
1960 
1961   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1962   bool IsSEH = isAsynchronousEHPersonality(Pers);
1963   if (IsSEH) {
1964     // If this is not a fall-through branch or optimizations are switched off,
1965     // emit the branch.
1966     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1967         TM.getOptLevel() == CodeGenOptLevel::None)
1968       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1969                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1970     return;
1971   }
1972 
1973   // Figure out the funclet membership for the catchret's successor.
1974   // This will be used by the FuncletLayout pass to determine how to order the
1975   // BB's.
1976   // A 'catchret' returns to the outer scope's color.
1977   Value *ParentPad = I.getCatchSwitchParentPad();
1978   const BasicBlock *SuccessorColor;
1979   if (isa<ConstantTokenNone>(ParentPad))
1980     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1981   else
1982     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1983   assert(SuccessorColor && "No parent funclet for catchret!");
1984   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1985   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1986 
1987   // Create the terminator node.
1988   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1989                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1990                             DAG.getBasicBlock(SuccessorColorMBB));
1991   DAG.setRoot(Ret);
1992 }
1993 
1994 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1995   // Don't emit any special code for the cleanuppad instruction. It just marks
1996   // the start of an EH scope/funclet.
1997   FuncInfo.MBB->setIsEHScopeEntry();
1998   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1999   if (Pers != EHPersonality::Wasm_CXX) {
2000     FuncInfo.MBB->setIsEHFuncletEntry();
2001     FuncInfo.MBB->setIsCleanupFuncletEntry();
2002   }
2003 }
2004 
2005 // In wasm EH, even though a catchpad may not catch an exception if a tag does
2006 // not match, it is OK to add only the first unwind destination catchpad to the
2007 // successors, because there will be at least one invoke instruction within the
2008 // catch scope that points to the next unwind destination, if one exists, so
2009 // CFGSort cannot mess up with BB sorting order.
2010 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
2011 // call within them, and catchpads only consisting of 'catch (...)' have a
2012 // '__cxa_end_catch' call within them, both of which generate invokes in case
2013 // the next unwind destination exists, i.e., the next unwind destination is not
2014 // the caller.)
2015 //
2016 // Having at most one EH pad successor is also simpler and helps later
2017 // transformations.
2018 //
2019 // For example,
2020 // current:
2021 //   invoke void @foo to ... unwind label %catch.dispatch
2022 // catch.dispatch:
2023 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2024 // catch.start:
2025 //   ...
2026 //   ... in this BB or some other child BB dominated by this BB there will be an
2027 //   invoke that points to 'next' BB as an unwind destination
2028 //
2029 // next: ; We don't need to add this to 'current' BB's successor
2030 //   ...
2031 static void findWasmUnwindDestinations(
2032     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2033     BranchProbability Prob,
2034     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2035         &UnwindDests) {
2036   while (EHPadBB) {
2037     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2038     if (isa<CleanupPadInst>(Pad)) {
2039       // Stop on cleanup pads.
2040       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2041       UnwindDests.back().first->setIsEHScopeEntry();
2042       break;
2043     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2044       // Add the catchpad handlers to the possible destinations. We don't
2045       // continue to the unwind destination of the catchswitch for wasm.
2046       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2047         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2048         UnwindDests.back().first->setIsEHScopeEntry();
2049       }
2050       break;
2051     } else {
2052       continue;
2053     }
2054   }
2055 }
2056 
2057 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2058 /// many places it could ultimately go. In the IR, we have a single unwind
2059 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2060 /// This function skips over imaginary basic blocks that hold catchswitch
2061 /// instructions, and finds all the "real" machine
2062 /// basic block destinations. As those destinations may not be successors of
2063 /// EHPadBB, here we also calculate the edge probability to those destinations.
2064 /// The passed-in Prob is the edge probability to EHPadBB.
2065 static void findUnwindDestinations(
2066     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2067     BranchProbability Prob,
2068     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2069         &UnwindDests) {
2070   EHPersonality Personality =
2071     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2072   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2073   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2074   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2075   bool IsSEH = isAsynchronousEHPersonality(Personality);
2076 
2077   if (IsWasmCXX) {
2078     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2079     assert(UnwindDests.size() <= 1 &&
2080            "There should be at most one unwind destination for wasm");
2081     return;
2082   }
2083 
2084   while (EHPadBB) {
2085     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2086     BasicBlock *NewEHPadBB = nullptr;
2087     if (isa<LandingPadInst>(Pad)) {
2088       // Stop on landingpads. They are not funclets.
2089       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2090       break;
2091     } else if (isa<CleanupPadInst>(Pad)) {
2092       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2093       // personalities.
2094       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2095       UnwindDests.back().first->setIsEHScopeEntry();
2096       UnwindDests.back().first->setIsEHFuncletEntry();
2097       break;
2098     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2099       // Add the catchpad handlers to the possible destinations.
2100       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2101         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2102         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2103         if (IsMSVCCXX || IsCoreCLR)
2104           UnwindDests.back().first->setIsEHFuncletEntry();
2105         if (!IsSEH)
2106           UnwindDests.back().first->setIsEHScopeEntry();
2107       }
2108       NewEHPadBB = CatchSwitch->getUnwindDest();
2109     } else {
2110       continue;
2111     }
2112 
2113     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2114     if (BPI && NewEHPadBB)
2115       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2116     EHPadBB = NewEHPadBB;
2117   }
2118 }
2119 
2120 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2121   // Update successor info.
2122   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2123   auto UnwindDest = I.getUnwindDest();
2124   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2125   BranchProbability UnwindDestProb =
2126       (BPI && UnwindDest)
2127           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2128           : BranchProbability::getZero();
2129   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2130   for (auto &UnwindDest : UnwindDests) {
2131     UnwindDest.first->setIsEHPad();
2132     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2133   }
2134   FuncInfo.MBB->normalizeSuccProbs();
2135 
2136   // Create the terminator node.
2137   SDValue Ret =
2138       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2139   DAG.setRoot(Ret);
2140 }
2141 
2142 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2143   report_fatal_error("visitCatchSwitch not yet implemented!");
2144 }
2145 
2146 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2147   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2148   auto &DL = DAG.getDataLayout();
2149   SDValue Chain = getControlRoot();
2150   SmallVector<ISD::OutputArg, 8> Outs;
2151   SmallVector<SDValue, 8> OutVals;
2152 
2153   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2154   // lower
2155   //
2156   //   %val = call <ty> @llvm.experimental.deoptimize()
2157   //   ret <ty> %val
2158   //
2159   // differently.
2160   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2161     LowerDeoptimizingReturn();
2162     return;
2163   }
2164 
2165   if (!FuncInfo.CanLowerReturn) {
2166     unsigned DemoteReg = FuncInfo.DemoteRegister;
2167     const Function *F = I.getParent()->getParent();
2168 
2169     // Emit a store of the return value through the virtual register.
2170     // Leave Outs empty so that LowerReturn won't try to load return
2171     // registers the usual way.
2172     SmallVector<EVT, 1> PtrValueVTs;
2173     ComputeValueVTs(TLI, DL,
2174                     PointerType::get(F->getContext(),
2175                                      DAG.getDataLayout().getAllocaAddrSpace()),
2176                     PtrValueVTs);
2177 
2178     SDValue RetPtr =
2179         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2180     SDValue RetOp = getValue(I.getOperand(0));
2181 
2182     SmallVector<EVT, 4> ValueVTs, MemVTs;
2183     SmallVector<uint64_t, 4> Offsets;
2184     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2185                     &Offsets, 0);
2186     unsigned NumValues = ValueVTs.size();
2187 
2188     SmallVector<SDValue, 4> Chains(NumValues);
2189     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2190     for (unsigned i = 0; i != NumValues; ++i) {
2191       // An aggregate return value cannot wrap around the address space, so
2192       // offsets to its parts don't wrap either.
2193       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2194                                            TypeSize::getFixed(Offsets[i]));
2195 
2196       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2197       if (MemVTs[i] != ValueVTs[i])
2198         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2199       Chains[i] = DAG.getStore(
2200           Chain, getCurSDLoc(), Val,
2201           // FIXME: better loc info would be nice.
2202           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2203           commonAlignment(BaseAlign, Offsets[i]));
2204     }
2205 
2206     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2207                         MVT::Other, Chains);
2208   } else if (I.getNumOperands() != 0) {
2209     SmallVector<EVT, 4> ValueVTs;
2210     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2211     unsigned NumValues = ValueVTs.size();
2212     if (NumValues) {
2213       SDValue RetOp = getValue(I.getOperand(0));
2214 
2215       const Function *F = I.getParent()->getParent();
2216 
2217       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2218           I.getOperand(0)->getType(), F->getCallingConv(),
2219           /*IsVarArg*/ false, DL);
2220 
2221       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2222       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2223         ExtendKind = ISD::SIGN_EXTEND;
2224       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2225         ExtendKind = ISD::ZERO_EXTEND;
2226 
2227       LLVMContext &Context = F->getContext();
2228       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2229 
2230       for (unsigned j = 0; j != NumValues; ++j) {
2231         EVT VT = ValueVTs[j];
2232 
2233         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2234           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2235 
2236         CallingConv::ID CC = F->getCallingConv();
2237 
2238         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2239         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2240         SmallVector<SDValue, 4> Parts(NumParts);
2241         getCopyToParts(DAG, getCurSDLoc(),
2242                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2243                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2244 
2245         // 'inreg' on function refers to return value
2246         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2247         if (RetInReg)
2248           Flags.setInReg();
2249 
2250         if (I.getOperand(0)->getType()->isPointerTy()) {
2251           Flags.setPointer();
2252           Flags.setPointerAddrSpace(
2253               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2254         }
2255 
2256         if (NeedsRegBlock) {
2257           Flags.setInConsecutiveRegs();
2258           if (j == NumValues - 1)
2259             Flags.setInConsecutiveRegsLast();
2260         }
2261 
2262         // Propagate extension type if any
2263         if (ExtendKind == ISD::SIGN_EXTEND)
2264           Flags.setSExt();
2265         else if (ExtendKind == ISD::ZERO_EXTEND)
2266           Flags.setZExt();
2267 
2268         for (unsigned i = 0; i < NumParts; ++i) {
2269           Outs.push_back(ISD::OutputArg(Flags,
2270                                         Parts[i].getValueType().getSimpleVT(),
2271                                         VT, /*isfixed=*/true, 0, 0));
2272           OutVals.push_back(Parts[i]);
2273         }
2274       }
2275     }
2276   }
2277 
2278   // Push in swifterror virtual register as the last element of Outs. This makes
2279   // sure swifterror virtual register will be returned in the swifterror
2280   // physical register.
2281   const Function *F = I.getParent()->getParent();
2282   if (TLI.supportSwiftError() &&
2283       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2284     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2285     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2286     Flags.setSwiftError();
2287     Outs.push_back(ISD::OutputArg(
2288         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2289         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2290     // Create SDNode for the swifterror virtual register.
2291     OutVals.push_back(
2292         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2293                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2294                         EVT(TLI.getPointerTy(DL))));
2295   }
2296 
2297   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2298   CallingConv::ID CallConv =
2299     DAG.getMachineFunction().getFunction().getCallingConv();
2300   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2301       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2302 
2303   // Verify that the target's LowerReturn behaved as expected.
2304   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2305          "LowerReturn didn't return a valid chain!");
2306 
2307   // Update the DAG with the new chain value resulting from return lowering.
2308   DAG.setRoot(Chain);
2309 }
2310 
2311 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2312 /// created for it, emit nodes to copy the value into the virtual
2313 /// registers.
2314 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2315   // Skip empty types
2316   if (V->getType()->isEmptyTy())
2317     return;
2318 
2319   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2320   if (VMI != FuncInfo.ValueMap.end()) {
2321     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2322            "Unused value assigned virtual registers!");
2323     CopyValueToVirtualRegister(V, VMI->second);
2324   }
2325 }
2326 
2327 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2328 /// the current basic block, add it to ValueMap now so that we'll get a
2329 /// CopyTo/FromReg.
2330 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2331   // No need to export constants.
2332   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2333 
2334   // Already exported?
2335   if (FuncInfo.isExportedInst(V)) return;
2336 
2337   Register Reg = FuncInfo.InitializeRegForValue(V);
2338   CopyValueToVirtualRegister(V, Reg);
2339 }
2340 
2341 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2342                                                      const BasicBlock *FromBB) {
2343   // The operands of the setcc have to be in this block.  We don't know
2344   // how to export them from some other block.
2345   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2346     // Can export from current BB.
2347     if (VI->getParent() == FromBB)
2348       return true;
2349 
2350     // Is already exported, noop.
2351     return FuncInfo.isExportedInst(V);
2352   }
2353 
2354   // If this is an argument, we can export it if the BB is the entry block or
2355   // if it is already exported.
2356   if (isa<Argument>(V)) {
2357     if (FromBB->isEntryBlock())
2358       return true;
2359 
2360     // Otherwise, can only export this if it is already exported.
2361     return FuncInfo.isExportedInst(V);
2362   }
2363 
2364   // Otherwise, constants can always be exported.
2365   return true;
2366 }
2367 
2368 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2369 BranchProbability
2370 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2371                                         const MachineBasicBlock *Dst) const {
2372   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2373   const BasicBlock *SrcBB = Src->getBasicBlock();
2374   const BasicBlock *DstBB = Dst->getBasicBlock();
2375   if (!BPI) {
2376     // If BPI is not available, set the default probability as 1 / N, where N is
2377     // the number of successors.
2378     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2379     return BranchProbability(1, SuccSize);
2380   }
2381   return BPI->getEdgeProbability(SrcBB, DstBB);
2382 }
2383 
2384 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2385                                                MachineBasicBlock *Dst,
2386                                                BranchProbability Prob) {
2387   if (!FuncInfo.BPI)
2388     Src->addSuccessorWithoutProb(Dst);
2389   else {
2390     if (Prob.isUnknown())
2391       Prob = getEdgeProbability(Src, Dst);
2392     Src->addSuccessor(Dst, Prob);
2393   }
2394 }
2395 
2396 static bool InBlock(const Value *V, const BasicBlock *BB) {
2397   if (const Instruction *I = dyn_cast<Instruction>(V))
2398     return I->getParent() == BB;
2399   return true;
2400 }
2401 
2402 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2403 /// This function emits a branch and is used at the leaves of an OR or an
2404 /// AND operator tree.
2405 void
2406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2407                                                   MachineBasicBlock *TBB,
2408                                                   MachineBasicBlock *FBB,
2409                                                   MachineBasicBlock *CurBB,
2410                                                   MachineBasicBlock *SwitchBB,
2411                                                   BranchProbability TProb,
2412                                                   BranchProbability FProb,
2413                                                   bool InvertCond) {
2414   const BasicBlock *BB = CurBB->getBasicBlock();
2415 
2416   // If the leaf of the tree is a comparison, merge the condition into
2417   // the caseblock.
2418   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2419     // The operands of the cmp have to be in this block.  We don't know
2420     // how to export them from some other block.  If this is the first block
2421     // of the sequence, no exporting is needed.
2422     if (CurBB == SwitchBB ||
2423         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2424          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2425       ISD::CondCode Condition;
2426       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2427         ICmpInst::Predicate Pred =
2428             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2429         Condition = getICmpCondCode(Pred);
2430       } else {
2431         const FCmpInst *FC = cast<FCmpInst>(Cond);
2432         FCmpInst::Predicate Pred =
2433             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2434         Condition = getFCmpCondCode(Pred);
2435         if (TM.Options.NoNaNsFPMath)
2436           Condition = getFCmpCodeWithoutNaN(Condition);
2437       }
2438 
2439       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2440                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2441       SL->SwitchCases.push_back(CB);
2442       return;
2443     }
2444   }
2445 
2446   // Create a CaseBlock record representing this branch.
2447   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2448   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2449                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2450   SL->SwitchCases.push_back(CB);
2451 }
2452 
2453 // Collect dependencies on V recursively. This is used for the cost analysis in
2454 // `shouldKeepJumpConditionsTogether`.
2455 static bool collectInstructionDeps(
2456     SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V,
2457     SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr,
2458     unsigned Depth = 0) {
2459   // Return false if we have an incomplete count.
2460   if (Depth >= SelectionDAG::MaxRecursionDepth)
2461     return false;
2462 
2463   auto *I = dyn_cast<Instruction>(V);
2464   if (I == nullptr)
2465     return true;
2466 
2467   if (Necessary != nullptr) {
2468     // This instruction is necessary for the other side of the condition so
2469     // don't count it.
2470     if (Necessary->contains(I))
2471       return true;
2472   }
2473 
2474   // Already added this dep.
2475   if (!Deps->try_emplace(I, false).second)
2476     return true;
2477 
2478   for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2479     if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2480                                 Depth + 1))
2481       return false;
2482   return true;
2483 }
2484 
2485 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether(
2486     const FunctionLoweringInfo &FuncInfo, const BranchInst &I,
2487     Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2488     TargetLoweringBase::CondMergingParams Params) const {
2489   if (I.getNumSuccessors() != 2)
2490     return false;
2491 
2492   if (!I.isConditional())
2493     return false;
2494 
2495   if (Params.BaseCost < 0)
2496     return false;
2497 
2498   // Baseline cost.
2499   InstructionCost CostThresh = Params.BaseCost;
2500 
2501   BranchProbabilityInfo *BPI = nullptr;
2502   if (Params.LikelyBias || Params.UnlikelyBias)
2503     BPI = FuncInfo.BPI;
2504   if (BPI != nullptr) {
2505     // See if we are either likely to get an early out or compute both lhs/rhs
2506     // of the condition.
2507     BasicBlock *IfFalse = I.getSuccessor(0);
2508     BasicBlock *IfTrue = I.getSuccessor(1);
2509 
2510     std::optional<bool> Likely;
2511     if (BPI->isEdgeHot(I.getParent(), IfTrue))
2512       Likely = true;
2513     else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2514       Likely = false;
2515 
2516     if (Likely) {
2517       if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2518         // Its likely we will have to compute both lhs and rhs of condition
2519         CostThresh += Params.LikelyBias;
2520       else {
2521         if (Params.UnlikelyBias < 0)
2522           return false;
2523         // Its likely we will get an early out.
2524         CostThresh -= Params.UnlikelyBias;
2525       }
2526     }
2527   }
2528 
2529   if (CostThresh <= 0)
2530     return false;
2531 
2532   // Collect "all" instructions that lhs condition is dependent on.
2533   // Use map for stable iteration (to avoid non-determanism of iteration of
2534   // SmallPtrSet). The `bool` value is just a dummy.
2535   SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps;
2536   collectInstructionDeps(&LhsDeps, Lhs);
2537   // Collect "all" instructions that rhs condition is dependent on AND are
2538   // dependencies of lhs. This gives us an estimate on which instructions we
2539   // stand to save by splitting the condition.
2540   if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2541     return false;
2542   // Add the compare instruction itself unless its a dependency on the LHS.
2543   if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2544     if (!LhsDeps.contains(RhsI))
2545       RhsDeps.try_emplace(RhsI, false);
2546 
2547   const auto &TLI = DAG.getTargetLoweringInfo();
2548   const auto &TTI =
2549       TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction());
2550 
2551   InstructionCost CostOfIncluding = 0;
2552   // See if this instruction will need to computed independently of whether RHS
2553   // is.
2554   Value *BrCond = I.getCondition();
2555   auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2556     for (const auto *U : Ins->users()) {
2557       // If user is independent of RHS calculation we don't need to count it.
2558       if (auto *UIns = dyn_cast<Instruction>(U))
2559         if (UIns != BrCond && !RhsDeps.contains(UIns))
2560           return false;
2561     }
2562     return true;
2563   };
2564 
2565   // Prune instructions from RHS Deps that are dependencies of unrelated
2566   // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2567   // arbitrary and just meant to cap the how much time we spend in the pruning
2568   // loop. Its highly unlikely to come into affect.
2569   const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2570   // Stop after a certain point. No incorrectness from including too many
2571   // instructions.
2572   for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2573     const Instruction *ToDrop = nullptr;
2574     for (const auto &InsPair : RhsDeps) {
2575       if (!ShouldCountInsn(InsPair.first)) {
2576         ToDrop = InsPair.first;
2577         break;
2578       }
2579     }
2580     if (ToDrop == nullptr)
2581       break;
2582     RhsDeps.erase(ToDrop);
2583   }
2584 
2585   for (const auto &InsPair : RhsDeps) {
2586     // Finally accumulate latency that we can only attribute to computing the
2587     // RHS condition. Use latency because we are essentially trying to calculate
2588     // the cost of the dependency chain.
2589     // Possible TODO: We could try to estimate ILP and make this more precise.
2590     CostOfIncluding +=
2591         TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency);
2592 
2593     if (CostOfIncluding > CostThresh)
2594       return false;
2595   }
2596   return true;
2597 }
2598 
2599 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2600                                                MachineBasicBlock *TBB,
2601                                                MachineBasicBlock *FBB,
2602                                                MachineBasicBlock *CurBB,
2603                                                MachineBasicBlock *SwitchBB,
2604                                                Instruction::BinaryOps Opc,
2605                                                BranchProbability TProb,
2606                                                BranchProbability FProb,
2607                                                bool InvertCond) {
2608   // Skip over not part of the tree and remember to invert op and operands at
2609   // next level.
2610   Value *NotCond;
2611   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2612       InBlock(NotCond, CurBB->getBasicBlock())) {
2613     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2614                          !InvertCond);
2615     return;
2616   }
2617 
2618   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2619   const Value *BOpOp0, *BOpOp1;
2620   // Compute the effective opcode for Cond, taking into account whether it needs
2621   // to be inverted, e.g.
2622   //   and (not (or A, B)), C
2623   // gets lowered as
2624   //   and (and (not A, not B), C)
2625   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2626   if (BOp) {
2627     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2628                ? Instruction::And
2629                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2630                       ? Instruction::Or
2631                       : (Instruction::BinaryOps)0);
2632     if (InvertCond) {
2633       if (BOpc == Instruction::And)
2634         BOpc = Instruction::Or;
2635       else if (BOpc == Instruction::Or)
2636         BOpc = Instruction::And;
2637     }
2638   }
2639 
2640   // If this node is not part of the or/and tree, emit it as a branch.
2641   // Note that all nodes in the tree should have same opcode.
2642   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2643   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2644       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2645       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2646     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2647                                  TProb, FProb, InvertCond);
2648     return;
2649   }
2650 
2651   //  Create TmpBB after CurBB.
2652   MachineFunction::iterator BBI(CurBB);
2653   MachineFunction &MF = DAG.getMachineFunction();
2654   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2655   CurBB->getParent()->insert(++BBI, TmpBB);
2656 
2657   if (Opc == Instruction::Or) {
2658     // Codegen X | Y as:
2659     // BB1:
2660     //   jmp_if_X TBB
2661     //   jmp TmpBB
2662     // TmpBB:
2663     //   jmp_if_Y TBB
2664     //   jmp FBB
2665     //
2666 
2667     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2668     // The requirement is that
2669     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2670     //     = TrueProb for original BB.
2671     // Assuming the original probabilities are A and B, one choice is to set
2672     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2673     // A/(1+B) and 2B/(1+B). This choice assumes that
2674     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2675     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2676     // TmpBB, but the math is more complicated.
2677 
2678     auto NewTrueProb = TProb / 2;
2679     auto NewFalseProb = TProb / 2 + FProb;
2680     // Emit the LHS condition.
2681     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2682                          NewFalseProb, InvertCond);
2683 
2684     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2685     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2686     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2687     // Emit the RHS condition into TmpBB.
2688     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2689                          Probs[1], InvertCond);
2690   } else {
2691     assert(Opc == Instruction::And && "Unknown merge op!");
2692     // Codegen X & Y as:
2693     // BB1:
2694     //   jmp_if_X TmpBB
2695     //   jmp FBB
2696     // TmpBB:
2697     //   jmp_if_Y TBB
2698     //   jmp FBB
2699     //
2700     //  This requires creation of TmpBB after CurBB.
2701 
2702     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2703     // The requirement is that
2704     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2705     //     = FalseProb for original BB.
2706     // Assuming the original probabilities are A and B, one choice is to set
2707     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2708     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2709     // TrueProb for BB1 * FalseProb for TmpBB.
2710 
2711     auto NewTrueProb = TProb + FProb / 2;
2712     auto NewFalseProb = FProb / 2;
2713     // Emit the LHS condition.
2714     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2715                          NewFalseProb, InvertCond);
2716 
2717     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2718     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2719     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2720     // Emit the RHS condition into TmpBB.
2721     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2722                          Probs[1], InvertCond);
2723   }
2724 }
2725 
2726 /// If the set of cases should be emitted as a series of branches, return true.
2727 /// If we should emit this as a bunch of and/or'd together conditions, return
2728 /// false.
2729 bool
2730 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2731   if (Cases.size() != 2) return true;
2732 
2733   // If this is two comparisons of the same values or'd or and'd together, they
2734   // will get folded into a single comparison, so don't emit two blocks.
2735   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2736        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2737       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2738        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2739     return false;
2740   }
2741 
2742   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2743   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2744   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2745       Cases[0].CC == Cases[1].CC &&
2746       isa<Constant>(Cases[0].CmpRHS) &&
2747       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2748     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2749       return false;
2750     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2751       return false;
2752   }
2753 
2754   return true;
2755 }
2756 
2757 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2758   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2759 
2760   // Update machine-CFG edges.
2761   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2762 
2763   if (I.isUnconditional()) {
2764     // Update machine-CFG edges.
2765     BrMBB->addSuccessor(Succ0MBB);
2766 
2767     // If this is not a fall-through branch or optimizations are switched off,
2768     // emit the branch.
2769     if (Succ0MBB != NextBlock(BrMBB) ||
2770         TM.getOptLevel() == CodeGenOptLevel::None) {
2771       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2772                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2773       setValue(&I, Br);
2774       DAG.setRoot(Br);
2775     }
2776 
2777     return;
2778   }
2779 
2780   // If this condition is one of the special cases we handle, do special stuff
2781   // now.
2782   const Value *CondVal = I.getCondition();
2783   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2784 
2785   // If this is a series of conditions that are or'd or and'd together, emit
2786   // this as a sequence of branches instead of setcc's with and/or operations.
2787   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2788   // unpredictable branches, and vector extracts because those jumps are likely
2789   // expensive for any target), this should improve performance.
2790   // For example, instead of something like:
2791   //     cmp A, B
2792   //     C = seteq
2793   //     cmp D, E
2794   //     F = setle
2795   //     or C, F
2796   //     jnz foo
2797   // Emit:
2798   //     cmp A, B
2799   //     je foo
2800   //     cmp D, E
2801   //     jle foo
2802   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2803   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2804       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2805     Value *Vec;
2806     const Value *BOp0, *BOp1;
2807     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2808     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2809       Opcode = Instruction::And;
2810     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2811       Opcode = Instruction::Or;
2812 
2813     if (Opcode &&
2814         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2815           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2816         !shouldKeepJumpConditionsTogether(
2817             FuncInfo, I, Opcode, BOp0, BOp1,
2818             DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2819                 Opcode, BOp0, BOp1))) {
2820       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2821                            getEdgeProbability(BrMBB, Succ0MBB),
2822                            getEdgeProbability(BrMBB, Succ1MBB),
2823                            /*InvertCond=*/false);
2824       // If the compares in later blocks need to use values not currently
2825       // exported from this block, export them now.  This block should always
2826       // be the first entry.
2827       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2828 
2829       // Allow some cases to be rejected.
2830       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2831         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2832           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2833           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2834         }
2835 
2836         // Emit the branch for this block.
2837         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2838         SL->SwitchCases.erase(SL->SwitchCases.begin());
2839         return;
2840       }
2841 
2842       // Okay, we decided not to do this, remove any inserted MBB's and clear
2843       // SwitchCases.
2844       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2845         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2846 
2847       SL->SwitchCases.clear();
2848     }
2849   }
2850 
2851   // Create a CaseBlock record representing this branch.
2852   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2853                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2854 
2855   // Use visitSwitchCase to actually insert the fast branch sequence for this
2856   // cond branch.
2857   visitSwitchCase(CB, BrMBB);
2858 }
2859 
2860 /// visitSwitchCase - Emits the necessary code to represent a single node in
2861 /// the binary search tree resulting from lowering a switch instruction.
2862 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2863                                           MachineBasicBlock *SwitchBB) {
2864   SDValue Cond;
2865   SDValue CondLHS = getValue(CB.CmpLHS);
2866   SDLoc dl = CB.DL;
2867 
2868   if (CB.CC == ISD::SETTRUE) {
2869     // Branch or fall through to TrueBB.
2870     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2871     SwitchBB->normalizeSuccProbs();
2872     if (CB.TrueBB != NextBlock(SwitchBB)) {
2873       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2874                               DAG.getBasicBlock(CB.TrueBB)));
2875     }
2876     return;
2877   }
2878 
2879   auto &TLI = DAG.getTargetLoweringInfo();
2880   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2881 
2882   // Build the setcc now.
2883   if (!CB.CmpMHS) {
2884     // Fold "(X == true)" to X and "(X == false)" to !X to
2885     // handle common cases produced by branch lowering.
2886     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2887         CB.CC == ISD::SETEQ)
2888       Cond = CondLHS;
2889     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2890              CB.CC == ISD::SETEQ) {
2891       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2892       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2893     } else {
2894       SDValue CondRHS = getValue(CB.CmpRHS);
2895 
2896       // If a pointer's DAG type is larger than its memory type then the DAG
2897       // values are zero-extended. This breaks signed comparisons so truncate
2898       // back to the underlying type before doing the compare.
2899       if (CondLHS.getValueType() != MemVT) {
2900         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2901         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2902       }
2903       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2904     }
2905   } else {
2906     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2907 
2908     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2909     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2910 
2911     SDValue CmpOp = getValue(CB.CmpMHS);
2912     EVT VT = CmpOp.getValueType();
2913 
2914     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2915       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2916                           ISD::SETLE);
2917     } else {
2918       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2919                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2920       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2921                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2922     }
2923   }
2924 
2925   // Update successor info
2926   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2927   // TrueBB and FalseBB are always different unless the incoming IR is
2928   // degenerate. This only happens when running llc on weird IR.
2929   if (CB.TrueBB != CB.FalseBB)
2930     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2931   SwitchBB->normalizeSuccProbs();
2932 
2933   // If the lhs block is the next block, invert the condition so that we can
2934   // fall through to the lhs instead of the rhs block.
2935   if (CB.TrueBB == NextBlock(SwitchBB)) {
2936     std::swap(CB.TrueBB, CB.FalseBB);
2937     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2938     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2939   }
2940 
2941   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2942                                MVT::Other, getControlRoot(), Cond,
2943                                DAG.getBasicBlock(CB.TrueBB));
2944 
2945   setValue(CurInst, BrCond);
2946 
2947   // Insert the false branch. Do this even if it's a fall through branch,
2948   // this makes it easier to do DAG optimizations which require inverting
2949   // the branch condition.
2950   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2951                        DAG.getBasicBlock(CB.FalseBB));
2952 
2953   DAG.setRoot(BrCond);
2954 }
2955 
2956 /// visitJumpTable - Emit JumpTable node in the current MBB
2957 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2958   // Emit the code for the jump table
2959   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2960   assert(JT.Reg != -1U && "Should lower JT Header first!");
2961   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2962   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2963   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2964   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2965                                     Index.getValue(1), Table, Index);
2966   DAG.setRoot(BrJumpTable);
2967 }
2968 
2969 /// visitJumpTableHeader - This function emits necessary code to produce index
2970 /// in the JumpTable from switch case.
2971 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2972                                                JumpTableHeader &JTH,
2973                                                MachineBasicBlock *SwitchBB) {
2974   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2975   const SDLoc &dl = *JT.SL;
2976 
2977   // Subtract the lowest switch case value from the value being switched on.
2978   SDValue SwitchOp = getValue(JTH.SValue);
2979   EVT VT = SwitchOp.getValueType();
2980   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2981                             DAG.getConstant(JTH.First, dl, VT));
2982 
2983   // The SDNode we just created, which holds the value being switched on minus
2984   // the smallest case value, needs to be copied to a virtual register so it
2985   // can be used as an index into the jump table in a subsequent basic block.
2986   // This value may be smaller or larger than the target's pointer type, and
2987   // therefore require extension or truncating.
2988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2989   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2990 
2991   unsigned JumpTableReg =
2992       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2993   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2994                                     JumpTableReg, SwitchOp);
2995   JT.Reg = JumpTableReg;
2996 
2997   if (!JTH.FallthroughUnreachable) {
2998     // Emit the range check for the jump table, and branch to the default block
2999     // for the switch statement if the value being switched on exceeds the
3000     // largest case in the switch.
3001     SDValue CMP = DAG.getSetCC(
3002         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3003                                    Sub.getValueType()),
3004         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3005 
3006     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3007                                  MVT::Other, CopyTo, CMP,
3008                                  DAG.getBasicBlock(JT.Default));
3009 
3010     // Avoid emitting unnecessary branches to the next block.
3011     if (JT.MBB != NextBlock(SwitchBB))
3012       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3013                            DAG.getBasicBlock(JT.MBB));
3014 
3015     DAG.setRoot(BrCond);
3016   } else {
3017     // Avoid emitting unnecessary branches to the next block.
3018     if (JT.MBB != NextBlock(SwitchBB))
3019       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3020                               DAG.getBasicBlock(JT.MBB)));
3021     else
3022       DAG.setRoot(CopyTo);
3023   }
3024 }
3025 
3026 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3027 /// variable if there exists one.
3028 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
3029                                  SDValue &Chain) {
3030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3031   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3032   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3033   MachineFunction &MF = DAG.getMachineFunction();
3034   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
3035   MachineSDNode *Node =
3036       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3037   if (Global) {
3038     MachinePointerInfo MPInfo(Global);
3039     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
3040                  MachineMemOperand::MODereferenceable;
3041     MachineMemOperand *MemRef = MF.getMachineMemOperand(
3042         MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8),
3043         DAG.getEVTAlign(PtrTy));
3044     DAG.setNodeMemRefs(Node, {MemRef});
3045   }
3046   if (PtrTy != PtrMemTy)
3047     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3048   return SDValue(Node, 0);
3049 }
3050 
3051 /// Codegen a new tail for a stack protector check ParentMBB which has had its
3052 /// tail spliced into a stack protector check success bb.
3053 ///
3054 /// For a high level explanation of how this fits into the stack protector
3055 /// generation see the comment on the declaration of class
3056 /// StackProtectorDescriptor.
3057 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
3058                                                   MachineBasicBlock *ParentBB) {
3059 
3060   // First create the loads to the guard/stack slot for the comparison.
3061   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3062   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3063   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3064 
3065   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3066   int FI = MFI.getStackProtectorIndex();
3067 
3068   SDValue Guard;
3069   SDLoc dl = getCurSDLoc();
3070   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3071   const Module &M = *ParentBB->getParent()->getFunction().getParent();
3072   Align Align =
3073       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
3074 
3075   // Generate code to load the content of the guard slot.
3076   SDValue GuardVal = DAG.getLoad(
3077       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3078       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3079       MachineMemOperand::MOVolatile);
3080 
3081   if (TLI.useStackGuardXorFP())
3082     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3083 
3084   // Retrieve guard check function, nullptr if instrumentation is inlined.
3085   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3086     // The target provides a guard check function to validate the guard value.
3087     // Generate a call to that function with the content of the guard slot as
3088     // argument.
3089     FunctionType *FnTy = GuardCheckFn->getFunctionType();
3090     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3091 
3092     TargetLowering::ArgListTy Args;
3093     TargetLowering::ArgListEntry Entry;
3094     Entry.Node = GuardVal;
3095     Entry.Ty = FnTy->getParamType(0);
3096     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3097       Entry.IsInReg = true;
3098     Args.push_back(Entry);
3099 
3100     TargetLowering::CallLoweringInfo CLI(DAG);
3101     CLI.setDebugLoc(getCurSDLoc())
3102         .setChain(DAG.getEntryNode())
3103         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3104                    getValue(GuardCheckFn), std::move(Args));
3105 
3106     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3107     DAG.setRoot(Result.second);
3108     return;
3109   }
3110 
3111   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3112   // Otherwise, emit a volatile load to retrieve the stack guard value.
3113   SDValue Chain = DAG.getEntryNode();
3114   if (TLI.useLoadStackGuardNode()) {
3115     Guard = getLoadStackGuard(DAG, dl, Chain);
3116   } else {
3117     const Value *IRGuard = TLI.getSDagStackGuard(M);
3118     SDValue GuardPtr = getValue(IRGuard);
3119 
3120     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3121                         MachinePointerInfo(IRGuard, 0), Align,
3122                         MachineMemOperand::MOVolatile);
3123   }
3124 
3125   // Perform the comparison via a getsetcc.
3126   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
3127                                                         *DAG.getContext(),
3128                                                         Guard.getValueType()),
3129                              Guard, GuardVal, ISD::SETNE);
3130 
3131   // If the guard/stackslot do not equal, branch to failure MBB.
3132   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3133                                MVT::Other, GuardVal.getOperand(0),
3134                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3135   // Otherwise branch to success MBB.
3136   SDValue Br = DAG.getNode(ISD::BR, dl,
3137                            MVT::Other, BrCond,
3138                            DAG.getBasicBlock(SPD.getSuccessMBB()));
3139 
3140   DAG.setRoot(Br);
3141 }
3142 
3143 /// Codegen the failure basic block for a stack protector check.
3144 ///
3145 /// A failure stack protector machine basic block consists simply of a call to
3146 /// __stack_chk_fail().
3147 ///
3148 /// For a high level explanation of how this fits into the stack protector
3149 /// generation see the comment on the declaration of class
3150 /// StackProtectorDescriptor.
3151 void
3152 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
3153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3154   TargetLowering::MakeLibCallOptions CallOptions;
3155   CallOptions.setDiscardResult(true);
3156   SDValue Chain =
3157       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3158                       std::nullopt, CallOptions, getCurSDLoc())
3159           .second;
3160   // On PS4/PS5, the "return address" must still be within the calling
3161   // function, even if it's at the very end, so emit an explicit TRAP here.
3162   // Passing 'true' for doesNotReturn above won't generate the trap for us.
3163   if (TM.getTargetTriple().isPS())
3164     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3165   // WebAssembly needs an unreachable instruction after a non-returning call,
3166   // because the function return type can be different from __stack_chk_fail's
3167   // return type (void).
3168   if (TM.getTargetTriple().isWasm())
3169     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3170 
3171   DAG.setRoot(Chain);
3172 }
3173 
3174 /// visitBitTestHeader - This function emits necessary code to produce value
3175 /// suitable for "bit tests"
3176 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3177                                              MachineBasicBlock *SwitchBB) {
3178   SDLoc dl = getCurSDLoc();
3179 
3180   // Subtract the minimum value.
3181   SDValue SwitchOp = getValue(B.SValue);
3182   EVT VT = SwitchOp.getValueType();
3183   SDValue RangeSub =
3184       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3185 
3186   // Determine the type of the test operands.
3187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3188   bool UsePtrType = false;
3189   if (!TLI.isTypeLegal(VT)) {
3190     UsePtrType = true;
3191   } else {
3192     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3193       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3194         // Switch table case range are encoded into series of masks.
3195         // Just use pointer type, it's guaranteed to fit.
3196         UsePtrType = true;
3197         break;
3198       }
3199   }
3200   SDValue Sub = RangeSub;
3201   if (UsePtrType) {
3202     VT = TLI.getPointerTy(DAG.getDataLayout());
3203     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3204   }
3205 
3206   B.RegVT = VT.getSimpleVT();
3207   B.Reg = FuncInfo.CreateReg(B.RegVT);
3208   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3209 
3210   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3211 
3212   if (!B.FallthroughUnreachable)
3213     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3214   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3215   SwitchBB->normalizeSuccProbs();
3216 
3217   SDValue Root = CopyTo;
3218   if (!B.FallthroughUnreachable) {
3219     // Conditional branch to the default block.
3220     SDValue RangeCmp = DAG.getSetCC(dl,
3221         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3222                                RangeSub.getValueType()),
3223         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3224         ISD::SETUGT);
3225 
3226     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3227                        DAG.getBasicBlock(B.Default));
3228   }
3229 
3230   // Avoid emitting unnecessary branches to the next block.
3231   if (MBB != NextBlock(SwitchBB))
3232     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3233 
3234   DAG.setRoot(Root);
3235 }
3236 
3237 /// visitBitTestCase - this function produces one "bit test"
3238 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3239                                            MachineBasicBlock* NextMBB,
3240                                            BranchProbability BranchProbToNext,
3241                                            unsigned Reg,
3242                                            BitTestCase &B,
3243                                            MachineBasicBlock *SwitchBB) {
3244   SDLoc dl = getCurSDLoc();
3245   MVT VT = BB.RegVT;
3246   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3247   SDValue Cmp;
3248   unsigned PopCount = llvm::popcount(B.Mask);
3249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3250   if (PopCount == 1) {
3251     // Testing for a single bit; just compare the shift count with what it
3252     // would need to be to shift a 1 bit in that position.
3253     Cmp = DAG.getSetCC(
3254         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3255         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3256         ISD::SETEQ);
3257   } else if (PopCount == BB.Range) {
3258     // There is only one zero bit in the range, test for it directly.
3259     Cmp = DAG.getSetCC(
3260         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3261         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3262   } else {
3263     // Make desired shift
3264     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3265                                     DAG.getConstant(1, dl, VT), ShiftOp);
3266 
3267     // Emit bit tests and jumps
3268     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3269                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3270     Cmp = DAG.getSetCC(
3271         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3272         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3273   }
3274 
3275   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3276   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3277   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3278   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3279   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3280   // one as they are relative probabilities (and thus work more like weights),
3281   // and hence we need to normalize them to let the sum of them become one.
3282   SwitchBB->normalizeSuccProbs();
3283 
3284   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3285                               MVT::Other, getControlRoot(),
3286                               Cmp, DAG.getBasicBlock(B.TargetBB));
3287 
3288   // Avoid emitting unnecessary branches to the next block.
3289   if (NextMBB != NextBlock(SwitchBB))
3290     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3291                         DAG.getBasicBlock(NextMBB));
3292 
3293   DAG.setRoot(BrAnd);
3294 }
3295 
3296 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3297   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3298 
3299   // Retrieve successors. Look through artificial IR level blocks like
3300   // catchswitch for successors.
3301   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3302   const BasicBlock *EHPadBB = I.getSuccessor(1);
3303   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3304 
3305   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3306   // have to do anything here to lower funclet bundles.
3307   assert(!I.hasOperandBundlesOtherThan(
3308              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3309               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3310               LLVMContext::OB_cfguardtarget,
3311               LLVMContext::OB_clang_arc_attachedcall}) &&
3312          "Cannot lower invokes with arbitrary operand bundles yet!");
3313 
3314   const Value *Callee(I.getCalledOperand());
3315   const Function *Fn = dyn_cast<Function>(Callee);
3316   if (isa<InlineAsm>(Callee))
3317     visitInlineAsm(I, EHPadBB);
3318   else if (Fn && Fn->isIntrinsic()) {
3319     switch (Fn->getIntrinsicID()) {
3320     default:
3321       llvm_unreachable("Cannot invoke this intrinsic");
3322     case Intrinsic::donothing:
3323       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3324     case Intrinsic::seh_try_begin:
3325     case Intrinsic::seh_scope_begin:
3326     case Intrinsic::seh_try_end:
3327     case Intrinsic::seh_scope_end:
3328       if (EHPadMBB)
3329           // a block referenced by EH table
3330           // so dtor-funclet not removed by opts
3331           EHPadMBB->setMachineBlockAddressTaken();
3332       break;
3333     case Intrinsic::experimental_patchpoint_void:
3334     case Intrinsic::experimental_patchpoint:
3335       visitPatchpoint(I, EHPadBB);
3336       break;
3337     case Intrinsic::experimental_gc_statepoint:
3338       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3339       break;
3340     case Intrinsic::wasm_rethrow: {
3341       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3342       // special because it can be invoked, so we manually lower it to a DAG
3343       // node here.
3344       SmallVector<SDValue, 8> Ops;
3345       Ops.push_back(getRoot()); // inchain
3346       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3347       Ops.push_back(
3348           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3349                                 TLI.getPointerTy(DAG.getDataLayout())));
3350       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3351       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3352       break;
3353     }
3354     }
3355   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3356     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3357     // Eventually we will support lowering the @llvm.experimental.deoptimize
3358     // intrinsic, and right now there are no plans to support other intrinsics
3359     // with deopt state.
3360     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3361   } else {
3362     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3363   }
3364 
3365   // If the value of the invoke is used outside of its defining block, make it
3366   // available as a virtual register.
3367   // We already took care of the exported value for the statepoint instruction
3368   // during call to the LowerStatepoint.
3369   if (!isa<GCStatepointInst>(I)) {
3370     CopyToExportRegsIfNeeded(&I);
3371   }
3372 
3373   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3374   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3375   BranchProbability EHPadBBProb =
3376       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3377           : BranchProbability::getZero();
3378   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3379 
3380   // Update successor info.
3381   addSuccessorWithProb(InvokeMBB, Return);
3382   for (auto &UnwindDest : UnwindDests) {
3383     UnwindDest.first->setIsEHPad();
3384     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3385   }
3386   InvokeMBB->normalizeSuccProbs();
3387 
3388   // Drop into normal successor.
3389   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3390                           DAG.getBasicBlock(Return)));
3391 }
3392 
3393 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3394   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3395 
3396   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3397   // have to do anything here to lower funclet bundles.
3398   assert(!I.hasOperandBundlesOtherThan(
3399              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3400          "Cannot lower callbrs with arbitrary operand bundles yet!");
3401 
3402   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3403   visitInlineAsm(I);
3404   CopyToExportRegsIfNeeded(&I);
3405 
3406   // Retrieve successors.
3407   SmallPtrSet<BasicBlock *, 8> Dests;
3408   Dests.insert(I.getDefaultDest());
3409   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3410 
3411   // Update successor info.
3412   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3413   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3414     BasicBlock *Dest = I.getIndirectDest(i);
3415     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3416     Target->setIsInlineAsmBrIndirectTarget();
3417     Target->setMachineBlockAddressTaken();
3418     Target->setLabelMustBeEmitted();
3419     // Don't add duplicate machine successors.
3420     if (Dests.insert(Dest).second)
3421       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3422   }
3423   CallBrMBB->normalizeSuccProbs();
3424 
3425   // Drop into default successor.
3426   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3427                           MVT::Other, getControlRoot(),
3428                           DAG.getBasicBlock(Return)));
3429 }
3430 
3431 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3432   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3433 }
3434 
3435 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3436   assert(FuncInfo.MBB->isEHPad() &&
3437          "Call to landingpad not in landing pad!");
3438 
3439   // If there aren't registers to copy the values into (e.g., during SjLj
3440   // exceptions), then don't bother to create these DAG nodes.
3441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3442   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3443   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3444       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3445     return;
3446 
3447   // If landingpad's return type is token type, we don't create DAG nodes
3448   // for its exception pointer and selector value. The extraction of exception
3449   // pointer or selector value from token type landingpads is not currently
3450   // supported.
3451   if (LP.getType()->isTokenTy())
3452     return;
3453 
3454   SmallVector<EVT, 2> ValueVTs;
3455   SDLoc dl = getCurSDLoc();
3456   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3457   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3458 
3459   // Get the two live-in registers as SDValues. The physregs have already been
3460   // copied into virtual registers.
3461   SDValue Ops[2];
3462   if (FuncInfo.ExceptionPointerVirtReg) {
3463     Ops[0] = DAG.getZExtOrTrunc(
3464         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3465                            FuncInfo.ExceptionPointerVirtReg,
3466                            TLI.getPointerTy(DAG.getDataLayout())),
3467         dl, ValueVTs[0]);
3468   } else {
3469     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3470   }
3471   Ops[1] = DAG.getZExtOrTrunc(
3472       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3473                          FuncInfo.ExceptionSelectorVirtReg,
3474                          TLI.getPointerTy(DAG.getDataLayout())),
3475       dl, ValueVTs[1]);
3476 
3477   // Merge into one.
3478   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3479                             DAG.getVTList(ValueVTs), Ops);
3480   setValue(&LP, Res);
3481 }
3482 
3483 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3484                                            MachineBasicBlock *Last) {
3485   // Update JTCases.
3486   for (JumpTableBlock &JTB : SL->JTCases)
3487     if (JTB.first.HeaderBB == First)
3488       JTB.first.HeaderBB = Last;
3489 
3490   // Update BitTestCases.
3491   for (BitTestBlock &BTB : SL->BitTestCases)
3492     if (BTB.Parent == First)
3493       BTB.Parent = Last;
3494 }
3495 
3496 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3497   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3498 
3499   // Update machine-CFG edges with unique successors.
3500   SmallSet<BasicBlock*, 32> Done;
3501   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3502     BasicBlock *BB = I.getSuccessor(i);
3503     bool Inserted = Done.insert(BB).second;
3504     if (!Inserted)
3505         continue;
3506 
3507     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3508     addSuccessorWithProb(IndirectBrMBB, Succ);
3509   }
3510   IndirectBrMBB->normalizeSuccProbs();
3511 
3512   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3513                           MVT::Other, getControlRoot(),
3514                           getValue(I.getAddress())));
3515 }
3516 
3517 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3518   if (!DAG.getTarget().Options.TrapUnreachable)
3519     return;
3520 
3521   // We may be able to ignore unreachable behind a noreturn call.
3522   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3523     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3524       if (Call->doesNotReturn())
3525         return;
3526     }
3527   }
3528 
3529   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3530 }
3531 
3532 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3533   SDNodeFlags Flags;
3534   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3535     Flags.copyFMF(*FPOp);
3536 
3537   SDValue Op = getValue(I.getOperand(0));
3538   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3539                                     Op, Flags);
3540   setValue(&I, UnNodeValue);
3541 }
3542 
3543 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3544   SDNodeFlags Flags;
3545   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3546     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3547     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3548   }
3549   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3550     Flags.setExact(ExactOp->isExact());
3551   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3552     Flags.setDisjoint(DisjointOp->isDisjoint());
3553   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3554     Flags.copyFMF(*FPOp);
3555 
3556   SDValue Op1 = getValue(I.getOperand(0));
3557   SDValue Op2 = getValue(I.getOperand(1));
3558   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3559                                      Op1, Op2, Flags);
3560   setValue(&I, BinNodeValue);
3561 }
3562 
3563 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3564   SDValue Op1 = getValue(I.getOperand(0));
3565   SDValue Op2 = getValue(I.getOperand(1));
3566 
3567   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3568       Op1.getValueType(), DAG.getDataLayout());
3569 
3570   // Coerce the shift amount to the right type if we can. This exposes the
3571   // truncate or zext to optimization early.
3572   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3573     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3574            "Unexpected shift type");
3575     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3576   }
3577 
3578   bool nuw = false;
3579   bool nsw = false;
3580   bool exact = false;
3581 
3582   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3583 
3584     if (const OverflowingBinaryOperator *OFBinOp =
3585             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3586       nuw = OFBinOp->hasNoUnsignedWrap();
3587       nsw = OFBinOp->hasNoSignedWrap();
3588     }
3589     if (const PossiblyExactOperator *ExactOp =
3590             dyn_cast<const PossiblyExactOperator>(&I))
3591       exact = ExactOp->isExact();
3592   }
3593   SDNodeFlags Flags;
3594   Flags.setExact(exact);
3595   Flags.setNoSignedWrap(nsw);
3596   Flags.setNoUnsignedWrap(nuw);
3597   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3598                             Flags);
3599   setValue(&I, Res);
3600 }
3601 
3602 void SelectionDAGBuilder::visitSDiv(const User &I) {
3603   SDValue Op1 = getValue(I.getOperand(0));
3604   SDValue Op2 = getValue(I.getOperand(1));
3605 
3606   SDNodeFlags Flags;
3607   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3608                  cast<PossiblyExactOperator>(&I)->isExact());
3609   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3610                            Op2, Flags));
3611 }
3612 
3613 void SelectionDAGBuilder::visitICmp(const User &I) {
3614   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3615   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3616     predicate = IC->getPredicate();
3617   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3618     predicate = ICmpInst::Predicate(IC->getPredicate());
3619   SDValue Op1 = getValue(I.getOperand(0));
3620   SDValue Op2 = getValue(I.getOperand(1));
3621   ISD::CondCode Opcode = getICmpCondCode(predicate);
3622 
3623   auto &TLI = DAG.getTargetLoweringInfo();
3624   EVT MemVT =
3625       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3626 
3627   // If a pointer's DAG type is larger than its memory type then the DAG values
3628   // are zero-extended. This breaks signed comparisons so truncate back to the
3629   // underlying type before doing the compare.
3630   if (Op1.getValueType() != MemVT) {
3631     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3632     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3633   }
3634 
3635   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3636                                                         I.getType());
3637   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3638 }
3639 
3640 void SelectionDAGBuilder::visitFCmp(const User &I) {
3641   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3642   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3643     predicate = FC->getPredicate();
3644   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3645     predicate = FCmpInst::Predicate(FC->getPredicate());
3646   SDValue Op1 = getValue(I.getOperand(0));
3647   SDValue Op2 = getValue(I.getOperand(1));
3648 
3649   ISD::CondCode Condition = getFCmpCondCode(predicate);
3650   auto *FPMO = cast<FPMathOperator>(&I);
3651   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3652     Condition = getFCmpCodeWithoutNaN(Condition);
3653 
3654   SDNodeFlags Flags;
3655   Flags.copyFMF(*FPMO);
3656   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3657 
3658   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3659                                                         I.getType());
3660   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3661 }
3662 
3663 // Check if the condition of the select has one use or two users that are both
3664 // selects with the same condition.
3665 static bool hasOnlySelectUsers(const Value *Cond) {
3666   return llvm::all_of(Cond->users(), [](const Value *V) {
3667     return isa<SelectInst>(V);
3668   });
3669 }
3670 
3671 void SelectionDAGBuilder::visitSelect(const User &I) {
3672   SmallVector<EVT, 4> ValueVTs;
3673   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3674                   ValueVTs);
3675   unsigned NumValues = ValueVTs.size();
3676   if (NumValues == 0) return;
3677 
3678   SmallVector<SDValue, 4> Values(NumValues);
3679   SDValue Cond     = getValue(I.getOperand(0));
3680   SDValue LHSVal   = getValue(I.getOperand(1));
3681   SDValue RHSVal   = getValue(I.getOperand(2));
3682   SmallVector<SDValue, 1> BaseOps(1, Cond);
3683   ISD::NodeType OpCode =
3684       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3685 
3686   bool IsUnaryAbs = false;
3687   bool Negate = false;
3688 
3689   SDNodeFlags Flags;
3690   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3691     Flags.copyFMF(*FPOp);
3692 
3693   Flags.setUnpredictable(
3694       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3695 
3696   // Min/max matching is only viable if all output VTs are the same.
3697   if (all_equal(ValueVTs)) {
3698     EVT VT = ValueVTs[0];
3699     LLVMContext &Ctx = *DAG.getContext();
3700     auto &TLI = DAG.getTargetLoweringInfo();
3701 
3702     // We care about the legality of the operation after it has been type
3703     // legalized.
3704     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3705       VT = TLI.getTypeToTransformTo(Ctx, VT);
3706 
3707     // If the vselect is legal, assume we want to leave this as a vector setcc +
3708     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3709     // min/max is legal on the scalar type.
3710     bool UseScalarMinMax = VT.isVector() &&
3711       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3712 
3713     // ValueTracking's select pattern matching does not account for -0.0,
3714     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3715     // -0.0 is less than +0.0.
3716     Value *LHS, *RHS;
3717     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3718     ISD::NodeType Opc = ISD::DELETED_NODE;
3719     switch (SPR.Flavor) {
3720     case SPF_UMAX:    Opc = ISD::UMAX; break;
3721     case SPF_UMIN:    Opc = ISD::UMIN; break;
3722     case SPF_SMAX:    Opc = ISD::SMAX; break;
3723     case SPF_SMIN:    Opc = ISD::SMIN; break;
3724     case SPF_FMINNUM:
3725       switch (SPR.NaNBehavior) {
3726       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3727       case SPNB_RETURNS_NAN: break;
3728       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3729       case SPNB_RETURNS_ANY:
3730         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3731             (UseScalarMinMax &&
3732              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3733           Opc = ISD::FMINNUM;
3734         break;
3735       }
3736       break;
3737     case SPF_FMAXNUM:
3738       switch (SPR.NaNBehavior) {
3739       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3740       case SPNB_RETURNS_NAN: break;
3741       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3742       case SPNB_RETURNS_ANY:
3743         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3744             (UseScalarMinMax &&
3745              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3746           Opc = ISD::FMAXNUM;
3747         break;
3748       }
3749       break;
3750     case SPF_NABS:
3751       Negate = true;
3752       [[fallthrough]];
3753     case SPF_ABS:
3754       IsUnaryAbs = true;
3755       Opc = ISD::ABS;
3756       break;
3757     default: break;
3758     }
3759 
3760     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3761         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3762          (UseScalarMinMax &&
3763           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3764         // If the underlying comparison instruction is used by any other
3765         // instruction, the consumed instructions won't be destroyed, so it is
3766         // not profitable to convert to a min/max.
3767         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3768       OpCode = Opc;
3769       LHSVal = getValue(LHS);
3770       RHSVal = getValue(RHS);
3771       BaseOps.clear();
3772     }
3773 
3774     if (IsUnaryAbs) {
3775       OpCode = Opc;
3776       LHSVal = getValue(LHS);
3777       BaseOps.clear();
3778     }
3779   }
3780 
3781   if (IsUnaryAbs) {
3782     for (unsigned i = 0; i != NumValues; ++i) {
3783       SDLoc dl = getCurSDLoc();
3784       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3785       Values[i] =
3786           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3787       if (Negate)
3788         Values[i] = DAG.getNegative(Values[i], dl, VT);
3789     }
3790   } else {
3791     for (unsigned i = 0; i != NumValues; ++i) {
3792       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3793       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3794       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3795       Values[i] = DAG.getNode(
3796           OpCode, getCurSDLoc(),
3797           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3798     }
3799   }
3800 
3801   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3802                            DAG.getVTList(ValueVTs), Values));
3803 }
3804 
3805 void SelectionDAGBuilder::visitTrunc(const User &I) {
3806   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3807   SDValue N = getValue(I.getOperand(0));
3808   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3809                                                         I.getType());
3810   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3811 }
3812 
3813 void SelectionDAGBuilder::visitZExt(const User &I) {
3814   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3815   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3816   SDValue N = getValue(I.getOperand(0));
3817   auto &TLI = DAG.getTargetLoweringInfo();
3818   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3819 
3820   SDNodeFlags Flags;
3821   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3822     Flags.setNonNeg(PNI->hasNonNeg());
3823 
3824   // Eagerly use nonneg information to canonicalize towards sign_extend if
3825   // that is the target's preference.
3826   // TODO: Let the target do this later.
3827   if (Flags.hasNonNeg() &&
3828       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3829     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3830     return;
3831   }
3832 
3833   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3834 }
3835 
3836 void SelectionDAGBuilder::visitSExt(const User &I) {
3837   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3838   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3839   SDValue N = getValue(I.getOperand(0));
3840   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3841                                                         I.getType());
3842   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3843 }
3844 
3845 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3846   // FPTrunc is never a no-op cast, no need to check
3847   SDValue N = getValue(I.getOperand(0));
3848   SDLoc dl = getCurSDLoc();
3849   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3850   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3851   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3852                            DAG.getTargetConstant(
3853                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3854 }
3855 
3856 void SelectionDAGBuilder::visitFPExt(const User &I) {
3857   // FPExt is never a no-op cast, no need to check
3858   SDValue N = getValue(I.getOperand(0));
3859   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3860                                                         I.getType());
3861   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3862 }
3863 
3864 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3865   // FPToUI is never a no-op cast, no need to check
3866   SDValue N = getValue(I.getOperand(0));
3867   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3868                                                         I.getType());
3869   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3870 }
3871 
3872 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3873   // FPToSI is never a no-op cast, no need to check
3874   SDValue N = getValue(I.getOperand(0));
3875   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3876                                                         I.getType());
3877   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3878 }
3879 
3880 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3881   // UIToFP is never a no-op cast, no need to check
3882   SDValue N = getValue(I.getOperand(0));
3883   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3884                                                         I.getType());
3885   SDNodeFlags Flags;
3886   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3887     Flags.setNonNeg(PNI->hasNonNeg());
3888 
3889   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
3890 }
3891 
3892 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3893   // SIToFP is never a no-op cast, no need to check
3894   SDValue N = getValue(I.getOperand(0));
3895   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3896                                                         I.getType());
3897   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3898 }
3899 
3900 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3901   // What to do depends on the size of the integer and the size of the pointer.
3902   // We can either truncate, zero extend, or no-op, accordingly.
3903   SDValue N = getValue(I.getOperand(0));
3904   auto &TLI = DAG.getTargetLoweringInfo();
3905   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3906                                                         I.getType());
3907   EVT PtrMemVT =
3908       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3909   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3910   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3911   setValue(&I, N);
3912 }
3913 
3914 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3915   // What to do depends on the size of the integer and the size of the pointer.
3916   // We can either truncate, zero extend, or no-op, accordingly.
3917   SDValue N = getValue(I.getOperand(0));
3918   auto &TLI = DAG.getTargetLoweringInfo();
3919   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3920   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3921   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3922   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3923   setValue(&I, N);
3924 }
3925 
3926 void SelectionDAGBuilder::visitBitCast(const User &I) {
3927   SDValue N = getValue(I.getOperand(0));
3928   SDLoc dl = getCurSDLoc();
3929   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3930                                                         I.getType());
3931 
3932   // BitCast assures us that source and destination are the same size so this is
3933   // either a BITCAST or a no-op.
3934   if (DestVT != N.getValueType())
3935     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3936                              DestVT, N)); // convert types.
3937   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3938   // might fold any kind of constant expression to an integer constant and that
3939   // is not what we are looking for. Only recognize a bitcast of a genuine
3940   // constant integer as an opaque constant.
3941   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3942     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3943                                  /*isOpaque*/true));
3944   else
3945     setValue(&I, N);            // noop cast.
3946 }
3947 
3948 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3950   const Value *SV = I.getOperand(0);
3951   SDValue N = getValue(SV);
3952   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3953 
3954   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3955   unsigned DestAS = I.getType()->getPointerAddressSpace();
3956 
3957   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3958     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3959 
3960   setValue(&I, N);
3961 }
3962 
3963 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3965   SDValue InVec = getValue(I.getOperand(0));
3966   SDValue InVal = getValue(I.getOperand(1));
3967   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3968                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3969   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3970                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3971                            InVec, InVal, InIdx));
3972 }
3973 
3974 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3975   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3976   SDValue InVec = getValue(I.getOperand(0));
3977   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3978                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3979   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3980                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3981                            InVec, InIdx));
3982 }
3983 
3984 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3985   SDValue Src1 = getValue(I.getOperand(0));
3986   SDValue Src2 = getValue(I.getOperand(1));
3987   ArrayRef<int> Mask;
3988   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3989     Mask = SVI->getShuffleMask();
3990   else
3991     Mask = cast<ConstantExpr>(I).getShuffleMask();
3992   SDLoc DL = getCurSDLoc();
3993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3994   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3995   EVT SrcVT = Src1.getValueType();
3996 
3997   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3998       VT.isScalableVector()) {
3999     // Canonical splat form of first element of first input vector.
4000     SDValue FirstElt =
4001         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4002                     DAG.getVectorIdxConstant(0, DL));
4003     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4004     return;
4005   }
4006 
4007   // For now, we only handle splats for scalable vectors.
4008   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4009   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4010   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4011 
4012   unsigned SrcNumElts = SrcVT.getVectorNumElements();
4013   unsigned MaskNumElts = Mask.size();
4014 
4015   if (SrcNumElts == MaskNumElts) {
4016     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4017     return;
4018   }
4019 
4020   // Normalize the shuffle vector since mask and vector length don't match.
4021   if (SrcNumElts < MaskNumElts) {
4022     // Mask is longer than the source vectors. We can use concatenate vector to
4023     // make the mask and vectors lengths match.
4024 
4025     if (MaskNumElts % SrcNumElts == 0) {
4026       // Mask length is a multiple of the source vector length.
4027       // Check if the shuffle is some kind of concatenation of the input
4028       // vectors.
4029       unsigned NumConcat = MaskNumElts / SrcNumElts;
4030       bool IsConcat = true;
4031       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4032       for (unsigned i = 0; i != MaskNumElts; ++i) {
4033         int Idx = Mask[i];
4034         if (Idx < 0)
4035           continue;
4036         // Ensure the indices in each SrcVT sized piece are sequential and that
4037         // the same source is used for the whole piece.
4038         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4039             (ConcatSrcs[i / SrcNumElts] >= 0 &&
4040              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4041           IsConcat = false;
4042           break;
4043         }
4044         // Remember which source this index came from.
4045         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4046       }
4047 
4048       // The shuffle is concatenating multiple vectors together. Just emit
4049       // a CONCAT_VECTORS operation.
4050       if (IsConcat) {
4051         SmallVector<SDValue, 8> ConcatOps;
4052         for (auto Src : ConcatSrcs) {
4053           if (Src < 0)
4054             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4055           else if (Src == 0)
4056             ConcatOps.push_back(Src1);
4057           else
4058             ConcatOps.push_back(Src2);
4059         }
4060         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4061         return;
4062       }
4063     }
4064 
4065     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4066     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4067     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4068                                     PaddedMaskNumElts);
4069 
4070     // Pad both vectors with undefs to make them the same length as the mask.
4071     SDValue UndefVal = DAG.getUNDEF(SrcVT);
4072 
4073     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4074     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4075     MOps1[0] = Src1;
4076     MOps2[0] = Src2;
4077 
4078     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4079     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4080 
4081     // Readjust mask for new input vector length.
4082     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4083     for (unsigned i = 0; i != MaskNumElts; ++i) {
4084       int Idx = Mask[i];
4085       if (Idx >= (int)SrcNumElts)
4086         Idx -= SrcNumElts - PaddedMaskNumElts;
4087       MappedOps[i] = Idx;
4088     }
4089 
4090     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4091 
4092     // If the concatenated vector was padded, extract a subvector with the
4093     // correct number of elements.
4094     if (MaskNumElts != PaddedMaskNumElts)
4095       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4096                            DAG.getVectorIdxConstant(0, DL));
4097 
4098     setValue(&I, Result);
4099     return;
4100   }
4101 
4102   if (SrcNumElts > MaskNumElts) {
4103     // Analyze the access pattern of the vector to see if we can extract
4104     // two subvectors and do the shuffle.
4105     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
4106     bool CanExtract = true;
4107     for (int Idx : Mask) {
4108       unsigned Input = 0;
4109       if (Idx < 0)
4110         continue;
4111 
4112       if (Idx >= (int)SrcNumElts) {
4113         Input = 1;
4114         Idx -= SrcNumElts;
4115       }
4116 
4117       // If all the indices come from the same MaskNumElts sized portion of
4118       // the sources we can use extract. Also make sure the extract wouldn't
4119       // extract past the end of the source.
4120       int NewStartIdx = alignDown(Idx, MaskNumElts);
4121       if (NewStartIdx + MaskNumElts > SrcNumElts ||
4122           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4123         CanExtract = false;
4124       // Make sure we always update StartIdx as we use it to track if all
4125       // elements are undef.
4126       StartIdx[Input] = NewStartIdx;
4127     }
4128 
4129     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4130       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4131       return;
4132     }
4133     if (CanExtract) {
4134       // Extract appropriate subvector and generate a vector shuffle
4135       for (unsigned Input = 0; Input < 2; ++Input) {
4136         SDValue &Src = Input == 0 ? Src1 : Src2;
4137         if (StartIdx[Input] < 0)
4138           Src = DAG.getUNDEF(VT);
4139         else {
4140           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4141                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
4142         }
4143       }
4144 
4145       // Calculate new mask.
4146       SmallVector<int, 8> MappedOps(Mask);
4147       for (int &Idx : MappedOps) {
4148         if (Idx >= (int)SrcNumElts)
4149           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4150         else if (Idx >= 0)
4151           Idx -= StartIdx[0];
4152       }
4153 
4154       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4155       return;
4156     }
4157   }
4158 
4159   // We can't use either concat vectors or extract subvectors so fall back to
4160   // replacing the shuffle with extract and build vector.
4161   // to insert and build vector.
4162   EVT EltVT = VT.getVectorElementType();
4163   SmallVector<SDValue,8> Ops;
4164   for (int Idx : Mask) {
4165     SDValue Res;
4166 
4167     if (Idx < 0) {
4168       Res = DAG.getUNDEF(EltVT);
4169     } else {
4170       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4171       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4172 
4173       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4174                         DAG.getVectorIdxConstant(Idx, DL));
4175     }
4176 
4177     Ops.push_back(Res);
4178   }
4179 
4180   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4181 }
4182 
4183 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4184   ArrayRef<unsigned> Indices = I.getIndices();
4185   const Value *Op0 = I.getOperand(0);
4186   const Value *Op1 = I.getOperand(1);
4187   Type *AggTy = I.getType();
4188   Type *ValTy = Op1->getType();
4189   bool IntoUndef = isa<UndefValue>(Op0);
4190   bool FromUndef = isa<UndefValue>(Op1);
4191 
4192   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4193 
4194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4195   SmallVector<EVT, 4> AggValueVTs;
4196   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4197   SmallVector<EVT, 4> ValValueVTs;
4198   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4199 
4200   unsigned NumAggValues = AggValueVTs.size();
4201   unsigned NumValValues = ValValueVTs.size();
4202   SmallVector<SDValue, 4> Values(NumAggValues);
4203 
4204   // Ignore an insertvalue that produces an empty object
4205   if (!NumAggValues) {
4206     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4207     return;
4208   }
4209 
4210   SDValue Agg = getValue(Op0);
4211   unsigned i = 0;
4212   // Copy the beginning value(s) from the original aggregate.
4213   for (; i != LinearIndex; ++i)
4214     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4215                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4216   // Copy values from the inserted value(s).
4217   if (NumValValues) {
4218     SDValue Val = getValue(Op1);
4219     for (; i != LinearIndex + NumValValues; ++i)
4220       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4221                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4222   }
4223   // Copy remaining value(s) from the original aggregate.
4224   for (; i != NumAggValues; ++i)
4225     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4226                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4227 
4228   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4229                            DAG.getVTList(AggValueVTs), Values));
4230 }
4231 
4232 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4233   ArrayRef<unsigned> Indices = I.getIndices();
4234   const Value *Op0 = I.getOperand(0);
4235   Type *AggTy = Op0->getType();
4236   Type *ValTy = I.getType();
4237   bool OutOfUndef = isa<UndefValue>(Op0);
4238 
4239   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4240 
4241   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4242   SmallVector<EVT, 4> ValValueVTs;
4243   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4244 
4245   unsigned NumValValues = ValValueVTs.size();
4246 
4247   // Ignore a extractvalue that produces an empty object
4248   if (!NumValValues) {
4249     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4250     return;
4251   }
4252 
4253   SmallVector<SDValue, 4> Values(NumValValues);
4254 
4255   SDValue Agg = getValue(Op0);
4256   // Copy out the selected value(s).
4257   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4258     Values[i - LinearIndex] =
4259       OutOfUndef ?
4260         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4261         SDValue(Agg.getNode(), Agg.getResNo() + i);
4262 
4263   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4264                            DAG.getVTList(ValValueVTs), Values));
4265 }
4266 
4267 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4268   Value *Op0 = I.getOperand(0);
4269   // Note that the pointer operand may be a vector of pointers. Take the scalar
4270   // element which holds a pointer.
4271   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4272   SDValue N = getValue(Op0);
4273   SDLoc dl = getCurSDLoc();
4274   auto &TLI = DAG.getTargetLoweringInfo();
4275 
4276   // Normalize Vector GEP - all scalar operands should be converted to the
4277   // splat vector.
4278   bool IsVectorGEP = I.getType()->isVectorTy();
4279   ElementCount VectorElementCount =
4280       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4281                   : ElementCount::getFixed(0);
4282 
4283   if (IsVectorGEP && !N.getValueType().isVector()) {
4284     LLVMContext &Context = *DAG.getContext();
4285     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4286     N = DAG.getSplat(VT, dl, N);
4287   }
4288 
4289   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4290        GTI != E; ++GTI) {
4291     const Value *Idx = GTI.getOperand();
4292     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4293       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4294       if (Field) {
4295         // N = N + Offset
4296         uint64_t Offset =
4297             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4298 
4299         // In an inbounds GEP with an offset that is nonnegative even when
4300         // interpreted as signed, assume there is no unsigned overflow.
4301         SDNodeFlags Flags;
4302         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4303           Flags.setNoUnsignedWrap(true);
4304 
4305         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4306                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4307       }
4308     } else {
4309       // IdxSize is the width of the arithmetic according to IR semantics.
4310       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4311       // (and fix up the result later).
4312       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4313       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4314       TypeSize ElementSize =
4315           GTI.getSequentialElementStride(DAG.getDataLayout());
4316       // We intentionally mask away the high bits here; ElementSize may not
4317       // fit in IdxTy.
4318       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4319       bool ElementScalable = ElementSize.isScalable();
4320 
4321       // If this is a scalar constant or a splat vector of constants,
4322       // handle it quickly.
4323       const auto *C = dyn_cast<Constant>(Idx);
4324       if (C && isa<VectorType>(C->getType()))
4325         C = C->getSplatValue();
4326 
4327       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4328       if (CI && CI->isZero())
4329         continue;
4330       if (CI && !ElementScalable) {
4331         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4332         LLVMContext &Context = *DAG.getContext();
4333         SDValue OffsVal;
4334         if (IsVectorGEP)
4335           OffsVal = DAG.getConstant(
4336               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4337         else
4338           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4339 
4340         // In an inbounds GEP with an offset that is nonnegative even when
4341         // interpreted as signed, assume there is no unsigned overflow.
4342         SDNodeFlags Flags;
4343         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4344           Flags.setNoUnsignedWrap(true);
4345 
4346         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4347 
4348         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4349         continue;
4350       }
4351 
4352       // N = N + Idx * ElementMul;
4353       SDValue IdxN = getValue(Idx);
4354 
4355       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4356         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4357                                   VectorElementCount);
4358         IdxN = DAG.getSplat(VT, dl, IdxN);
4359       }
4360 
4361       // If the index is smaller or larger than intptr_t, truncate or extend
4362       // it.
4363       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4364 
4365       if (ElementScalable) {
4366         EVT VScaleTy = N.getValueType().getScalarType();
4367         SDValue VScale = DAG.getNode(
4368             ISD::VSCALE, dl, VScaleTy,
4369             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4370         if (IsVectorGEP)
4371           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4372         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4373       } else {
4374         // If this is a multiply by a power of two, turn it into a shl
4375         // immediately.  This is a very common case.
4376         if (ElementMul != 1) {
4377           if (ElementMul.isPowerOf2()) {
4378             unsigned Amt = ElementMul.logBase2();
4379             IdxN = DAG.getNode(ISD::SHL, dl,
4380                                N.getValueType(), IdxN,
4381                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4382           } else {
4383             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4384                                             IdxN.getValueType());
4385             IdxN = DAG.getNode(ISD::MUL, dl,
4386                                N.getValueType(), IdxN, Scale);
4387           }
4388         }
4389       }
4390 
4391       N = DAG.getNode(ISD::ADD, dl,
4392                       N.getValueType(), N, IdxN);
4393     }
4394   }
4395 
4396   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4397   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4398   if (IsVectorGEP) {
4399     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4400     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4401   }
4402 
4403   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4404     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4405 
4406   setValue(&I, N);
4407 }
4408 
4409 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4410   // If this is a fixed sized alloca in the entry block of the function,
4411   // allocate it statically on the stack.
4412   if (FuncInfo.StaticAllocaMap.count(&I))
4413     return;   // getValue will auto-populate this.
4414 
4415   SDLoc dl = getCurSDLoc();
4416   Type *Ty = I.getAllocatedType();
4417   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4418   auto &DL = DAG.getDataLayout();
4419   TypeSize TySize = DL.getTypeAllocSize(Ty);
4420   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4421 
4422   SDValue AllocSize = getValue(I.getArraySize());
4423 
4424   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4425   if (AllocSize.getValueType() != IntPtr)
4426     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4427 
4428   if (TySize.isScalable())
4429     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4430                             DAG.getVScale(dl, IntPtr,
4431                                           APInt(IntPtr.getScalarSizeInBits(),
4432                                                 TySize.getKnownMinValue())));
4433   else {
4434     SDValue TySizeValue =
4435         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4436     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4437                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4438   }
4439 
4440   // Handle alignment.  If the requested alignment is less than or equal to
4441   // the stack alignment, ignore it.  If the size is greater than or equal to
4442   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4443   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4444   if (*Alignment <= StackAlign)
4445     Alignment = std::nullopt;
4446 
4447   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4448   // Round the size of the allocation up to the stack alignment size
4449   // by add SA-1 to the size. This doesn't overflow because we're computing
4450   // an address inside an alloca.
4451   SDNodeFlags Flags;
4452   Flags.setNoUnsignedWrap(true);
4453   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4454                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4455 
4456   // Mask out the low bits for alignment purposes.
4457   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4458                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4459 
4460   SDValue Ops[] = {
4461       getRoot(), AllocSize,
4462       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4463   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4464   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4465   setValue(&I, DSA);
4466   DAG.setRoot(DSA.getValue(1));
4467 
4468   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4469 }
4470 
4471 static const MDNode *getRangeMetadata(const Instruction &I) {
4472   // If !noundef is not present, then !range violation results in a poison
4473   // value rather than immediate undefined behavior. In theory, transferring
4474   // these annotations to SDAG is fine, but in practice there are key SDAG
4475   // transforms that are known not to be poison-safe, such as folding logical
4476   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4477   // also present.
4478   if (!I.hasMetadata(LLVMContext::MD_noundef))
4479     return nullptr;
4480   return I.getMetadata(LLVMContext::MD_range);
4481 }
4482 
4483 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4484   if (I.isAtomic())
4485     return visitAtomicLoad(I);
4486 
4487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4488   const Value *SV = I.getOperand(0);
4489   if (TLI.supportSwiftError()) {
4490     // Swifterror values can come from either a function parameter with
4491     // swifterror attribute or an alloca with swifterror attribute.
4492     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4493       if (Arg->hasSwiftErrorAttr())
4494         return visitLoadFromSwiftError(I);
4495     }
4496 
4497     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4498       if (Alloca->isSwiftError())
4499         return visitLoadFromSwiftError(I);
4500     }
4501   }
4502 
4503   SDValue Ptr = getValue(SV);
4504 
4505   Type *Ty = I.getType();
4506   SmallVector<EVT, 4> ValueVTs, MemVTs;
4507   SmallVector<TypeSize, 4> Offsets;
4508   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4509   unsigned NumValues = ValueVTs.size();
4510   if (NumValues == 0)
4511     return;
4512 
4513   Align Alignment = I.getAlign();
4514   AAMDNodes AAInfo = I.getAAMetadata();
4515   const MDNode *Ranges = getRangeMetadata(I);
4516   bool isVolatile = I.isVolatile();
4517   MachineMemOperand::Flags MMOFlags =
4518       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4519 
4520   SDValue Root;
4521   bool ConstantMemory = false;
4522   if (isVolatile)
4523     // Serialize volatile loads with other side effects.
4524     Root = getRoot();
4525   else if (NumValues > MaxParallelChains)
4526     Root = getMemoryRoot();
4527   else if (AA &&
4528            AA->pointsToConstantMemory(MemoryLocation(
4529                SV,
4530                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4531                AAInfo))) {
4532     // Do not serialize (non-volatile) loads of constant memory with anything.
4533     Root = DAG.getEntryNode();
4534     ConstantMemory = true;
4535     MMOFlags |= MachineMemOperand::MOInvariant;
4536   } else {
4537     // Do not serialize non-volatile loads against each other.
4538     Root = DAG.getRoot();
4539   }
4540 
4541   SDLoc dl = getCurSDLoc();
4542 
4543   if (isVolatile)
4544     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4545 
4546   SmallVector<SDValue, 4> Values(NumValues);
4547   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4548 
4549   unsigned ChainI = 0;
4550   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4551     // Serializing loads here may result in excessive register pressure, and
4552     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4553     // could recover a bit by hoisting nodes upward in the chain by recognizing
4554     // they are side-effect free or do not alias. The optimizer should really
4555     // avoid this case by converting large object/array copies to llvm.memcpy
4556     // (MaxParallelChains should always remain as failsafe).
4557     if (ChainI == MaxParallelChains) {
4558       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4559       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4560                                   ArrayRef(Chains.data(), ChainI));
4561       Root = Chain;
4562       ChainI = 0;
4563     }
4564 
4565     // TODO: MachinePointerInfo only supports a fixed length offset.
4566     MachinePointerInfo PtrInfo =
4567         !Offsets[i].isScalable() || Offsets[i].isZero()
4568             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4569             : MachinePointerInfo();
4570 
4571     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4572     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4573                             MMOFlags, AAInfo, Ranges);
4574     Chains[ChainI] = L.getValue(1);
4575 
4576     if (MemVTs[i] != ValueVTs[i])
4577       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4578 
4579     Values[i] = L;
4580   }
4581 
4582   if (!ConstantMemory) {
4583     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4584                                 ArrayRef(Chains.data(), ChainI));
4585     if (isVolatile)
4586       DAG.setRoot(Chain);
4587     else
4588       PendingLoads.push_back(Chain);
4589   }
4590 
4591   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4592                            DAG.getVTList(ValueVTs), Values));
4593 }
4594 
4595 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4596   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4597          "call visitStoreToSwiftError when backend supports swifterror");
4598 
4599   SmallVector<EVT, 4> ValueVTs;
4600   SmallVector<uint64_t, 4> Offsets;
4601   const Value *SrcV = I.getOperand(0);
4602   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4603                   SrcV->getType(), ValueVTs, &Offsets, 0);
4604   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4605          "expect a single EVT for swifterror");
4606 
4607   SDValue Src = getValue(SrcV);
4608   // Create a virtual register, then update the virtual register.
4609   Register VReg =
4610       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4611   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4612   // Chain can be getRoot or getControlRoot.
4613   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4614                                       SDValue(Src.getNode(), Src.getResNo()));
4615   DAG.setRoot(CopyNode);
4616 }
4617 
4618 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4619   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4620          "call visitLoadFromSwiftError when backend supports swifterror");
4621 
4622   assert(!I.isVolatile() &&
4623          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4624          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4625          "Support volatile, non temporal, invariant for load_from_swift_error");
4626 
4627   const Value *SV = I.getOperand(0);
4628   Type *Ty = I.getType();
4629   assert(
4630       (!AA ||
4631        !AA->pointsToConstantMemory(MemoryLocation(
4632            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4633            I.getAAMetadata()))) &&
4634       "load_from_swift_error should not be constant memory");
4635 
4636   SmallVector<EVT, 4> ValueVTs;
4637   SmallVector<uint64_t, 4> Offsets;
4638   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4639                   ValueVTs, &Offsets, 0);
4640   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4641          "expect a single EVT for swifterror");
4642 
4643   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4644   SDValue L = DAG.getCopyFromReg(
4645       getRoot(), getCurSDLoc(),
4646       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4647 
4648   setValue(&I, L);
4649 }
4650 
4651 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4652   if (I.isAtomic())
4653     return visitAtomicStore(I);
4654 
4655   const Value *SrcV = I.getOperand(0);
4656   const Value *PtrV = I.getOperand(1);
4657 
4658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4659   if (TLI.supportSwiftError()) {
4660     // Swifterror values can come from either a function parameter with
4661     // swifterror attribute or an alloca with swifterror attribute.
4662     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4663       if (Arg->hasSwiftErrorAttr())
4664         return visitStoreToSwiftError(I);
4665     }
4666 
4667     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4668       if (Alloca->isSwiftError())
4669         return visitStoreToSwiftError(I);
4670     }
4671   }
4672 
4673   SmallVector<EVT, 4> ValueVTs, MemVTs;
4674   SmallVector<TypeSize, 4> Offsets;
4675   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4676                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4677   unsigned NumValues = ValueVTs.size();
4678   if (NumValues == 0)
4679     return;
4680 
4681   // Get the lowered operands. Note that we do this after
4682   // checking if NumResults is zero, because with zero results
4683   // the operands won't have values in the map.
4684   SDValue Src = getValue(SrcV);
4685   SDValue Ptr = getValue(PtrV);
4686 
4687   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4688   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4689   SDLoc dl = getCurSDLoc();
4690   Align Alignment = I.getAlign();
4691   AAMDNodes AAInfo = I.getAAMetadata();
4692 
4693   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4694 
4695   unsigned ChainI = 0;
4696   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4697     // See visitLoad comments.
4698     if (ChainI == MaxParallelChains) {
4699       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4700                                   ArrayRef(Chains.data(), ChainI));
4701       Root = Chain;
4702       ChainI = 0;
4703     }
4704 
4705     // TODO: MachinePointerInfo only supports a fixed length offset.
4706     MachinePointerInfo PtrInfo =
4707         !Offsets[i].isScalable() || Offsets[i].isZero()
4708             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4709             : MachinePointerInfo();
4710 
4711     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4712     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4713     if (MemVTs[i] != ValueVTs[i])
4714       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4715     SDValue St =
4716         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4717     Chains[ChainI] = St;
4718   }
4719 
4720   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4721                                   ArrayRef(Chains.data(), ChainI));
4722   setValue(&I, StoreNode);
4723   DAG.setRoot(StoreNode);
4724 }
4725 
4726 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4727                                            bool IsCompressing) {
4728   SDLoc sdl = getCurSDLoc();
4729 
4730   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4731                                Align &Alignment) {
4732     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4733     Src0 = I.getArgOperand(0);
4734     Ptr = I.getArgOperand(1);
4735     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue();
4736     Mask = I.getArgOperand(3);
4737   };
4738   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4739                                     Align &Alignment) {
4740     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4741     Src0 = I.getArgOperand(0);
4742     Ptr = I.getArgOperand(1);
4743     Mask = I.getArgOperand(2);
4744     Alignment = I.getParamAlign(1).valueOrOne();
4745   };
4746 
4747   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4748   Align Alignment;
4749   if (IsCompressing)
4750     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4751   else
4752     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4753 
4754   SDValue Ptr = getValue(PtrOperand);
4755   SDValue Src0 = getValue(Src0Operand);
4756   SDValue Mask = getValue(MaskOperand);
4757   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4758 
4759   EVT VT = Src0.getValueType();
4760 
4761   auto MMOFlags = MachineMemOperand::MOStore;
4762   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4763     MMOFlags |= MachineMemOperand::MONonTemporal;
4764 
4765   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4766       MachinePointerInfo(PtrOperand), MMOFlags,
4767       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4768   SDValue StoreNode =
4769       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4770                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4771   DAG.setRoot(StoreNode);
4772   setValue(&I, StoreNode);
4773 }
4774 
4775 // Get a uniform base for the Gather/Scatter intrinsic.
4776 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4777 // We try to represent it as a base pointer + vector of indices.
4778 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4779 // The first operand of the GEP may be a single pointer or a vector of pointers
4780 // Example:
4781 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4782 //  or
4783 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4784 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4785 //
4786 // When the first GEP operand is a single pointer - it is the uniform base we
4787 // are looking for. If first operand of the GEP is a splat vector - we
4788 // extract the splat value and use it as a uniform base.
4789 // In all other cases the function returns 'false'.
4790 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4791                            ISD::MemIndexType &IndexType, SDValue &Scale,
4792                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4793                            uint64_t ElemSize) {
4794   SelectionDAG& DAG = SDB->DAG;
4795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4796   const DataLayout &DL = DAG.getDataLayout();
4797 
4798   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4799 
4800   // Handle splat constant pointer.
4801   if (auto *C = dyn_cast<Constant>(Ptr)) {
4802     C = C->getSplatValue();
4803     if (!C)
4804       return false;
4805 
4806     Base = SDB->getValue(C);
4807 
4808     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4809     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4810     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4811     IndexType = ISD::SIGNED_SCALED;
4812     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4813     return true;
4814   }
4815 
4816   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4817   if (!GEP || GEP->getParent() != CurBB)
4818     return false;
4819 
4820   if (GEP->getNumOperands() != 2)
4821     return false;
4822 
4823   const Value *BasePtr = GEP->getPointerOperand();
4824   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4825 
4826   // Make sure the base is scalar and the index is a vector.
4827   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4828     return false;
4829 
4830   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4831   if (ScaleVal.isScalable())
4832     return false;
4833 
4834   // Target may not support the required addressing mode.
4835   if (ScaleVal != 1 &&
4836       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4837     return false;
4838 
4839   Base = SDB->getValue(BasePtr);
4840   Index = SDB->getValue(IndexVal);
4841   IndexType = ISD::SIGNED_SCALED;
4842 
4843   Scale =
4844       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4845   return true;
4846 }
4847 
4848 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4849   SDLoc sdl = getCurSDLoc();
4850 
4851   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4852   const Value *Ptr = I.getArgOperand(1);
4853   SDValue Src0 = getValue(I.getArgOperand(0));
4854   SDValue Mask = getValue(I.getArgOperand(3));
4855   EVT VT = Src0.getValueType();
4856   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4857                         ->getMaybeAlignValue()
4858                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4859   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4860 
4861   SDValue Base;
4862   SDValue Index;
4863   ISD::MemIndexType IndexType;
4864   SDValue Scale;
4865   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4866                                     I.getParent(), VT.getScalarStoreSize());
4867 
4868   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4869   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4870       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4871       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4872   if (!UniformBase) {
4873     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4874     Index = getValue(Ptr);
4875     IndexType = ISD::SIGNED_SCALED;
4876     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4877   }
4878 
4879   EVT IdxVT = Index.getValueType();
4880   EVT EltTy = IdxVT.getVectorElementType();
4881   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4882     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4883     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4884   }
4885 
4886   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4887   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4888                                          Ops, MMO, IndexType, false);
4889   DAG.setRoot(Scatter);
4890   setValue(&I, Scatter);
4891 }
4892 
4893 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4894   SDLoc sdl = getCurSDLoc();
4895 
4896   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4897                               Align &Alignment) {
4898     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4899     Ptr = I.getArgOperand(0);
4900     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue();
4901     Mask = I.getArgOperand(2);
4902     Src0 = I.getArgOperand(3);
4903   };
4904   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4905                                  Align &Alignment) {
4906     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4907     Ptr = I.getArgOperand(0);
4908     Alignment = I.getParamAlign(0).valueOrOne();
4909     Mask = I.getArgOperand(1);
4910     Src0 = I.getArgOperand(2);
4911   };
4912 
4913   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4914   Align Alignment;
4915   if (IsExpanding)
4916     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4917   else
4918     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4919 
4920   SDValue Ptr = getValue(PtrOperand);
4921   SDValue Src0 = getValue(Src0Operand);
4922   SDValue Mask = getValue(MaskOperand);
4923   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4924 
4925   EVT VT = Src0.getValueType();
4926   AAMDNodes AAInfo = I.getAAMetadata();
4927   const MDNode *Ranges = getRangeMetadata(I);
4928 
4929   // Do not serialize masked loads of constant memory with anything.
4930   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4931   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4932 
4933   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4934 
4935   auto MMOFlags = MachineMemOperand::MOLoad;
4936   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4937     MMOFlags |= MachineMemOperand::MONonTemporal;
4938 
4939   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4940       MachinePointerInfo(PtrOperand), MMOFlags,
4941       LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
4942 
4943   SDValue Load =
4944       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4945                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4946   if (AddToChain)
4947     PendingLoads.push_back(Load.getValue(1));
4948   setValue(&I, Load);
4949 }
4950 
4951 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4952   SDLoc sdl = getCurSDLoc();
4953 
4954   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4955   const Value *Ptr = I.getArgOperand(0);
4956   SDValue Src0 = getValue(I.getArgOperand(3));
4957   SDValue Mask = getValue(I.getArgOperand(2));
4958 
4959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4960   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4961   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4962                         ->getMaybeAlignValue()
4963                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4964 
4965   const MDNode *Ranges = getRangeMetadata(I);
4966 
4967   SDValue Root = DAG.getRoot();
4968   SDValue Base;
4969   SDValue Index;
4970   ISD::MemIndexType IndexType;
4971   SDValue Scale;
4972   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4973                                     I.getParent(), VT.getScalarStoreSize());
4974   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4975   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4976       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4977       LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
4978       Ranges);
4979 
4980   if (!UniformBase) {
4981     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4982     Index = getValue(Ptr);
4983     IndexType = ISD::SIGNED_SCALED;
4984     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4985   }
4986 
4987   EVT IdxVT = Index.getValueType();
4988   EVT EltTy = IdxVT.getVectorElementType();
4989   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4990     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4991     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4992   }
4993 
4994   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4995   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4996                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4997 
4998   PendingLoads.push_back(Gather.getValue(1));
4999   setValue(&I, Gather);
5000 }
5001 
5002 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5003   SDLoc dl = getCurSDLoc();
5004   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5005   AtomicOrdering FailureOrdering = I.getFailureOrdering();
5006   SyncScope::ID SSID = I.getSyncScopeID();
5007 
5008   SDValue InChain = getRoot();
5009 
5010   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5011   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5012 
5013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5014   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5015 
5016   MachineFunction &MF = DAG.getMachineFunction();
5017   MachineMemOperand *MMO = MF.getMachineMemOperand(
5018       MachinePointerInfo(I.getPointerOperand()), Flags,
5019       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5020       AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering);
5021 
5022   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5023                                    dl, MemVT, VTs, InChain,
5024                                    getValue(I.getPointerOperand()),
5025                                    getValue(I.getCompareOperand()),
5026                                    getValue(I.getNewValOperand()), MMO);
5027 
5028   SDValue OutChain = L.getValue(2);
5029 
5030   setValue(&I, L);
5031   DAG.setRoot(OutChain);
5032 }
5033 
5034 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5035   SDLoc dl = getCurSDLoc();
5036   ISD::NodeType NT;
5037   switch (I.getOperation()) {
5038   default: llvm_unreachable("Unknown atomicrmw operation");
5039   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
5040   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
5041   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
5042   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
5043   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
5044   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
5045   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
5046   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
5047   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
5048   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
5049   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
5050   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
5051   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
5052   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
5053   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
5054   case AtomicRMWInst::UIncWrap:
5055     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5056     break;
5057   case AtomicRMWInst::UDecWrap:
5058     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5059     break;
5060   }
5061   AtomicOrdering Ordering = I.getOrdering();
5062   SyncScope::ID SSID = I.getSyncScopeID();
5063 
5064   SDValue InChain = getRoot();
5065 
5066   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5068   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5069 
5070   MachineFunction &MF = DAG.getMachineFunction();
5071   MachineMemOperand *MMO = MF.getMachineMemOperand(
5072       MachinePointerInfo(I.getPointerOperand()), Flags,
5073       LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT),
5074       AAMDNodes(), nullptr, SSID, Ordering);
5075 
5076   SDValue L =
5077     DAG.getAtomic(NT, dl, MemVT, InChain,
5078                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5079                   MMO);
5080 
5081   SDValue OutChain = L.getValue(1);
5082 
5083   setValue(&I, L);
5084   DAG.setRoot(OutChain);
5085 }
5086 
5087 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5088   SDLoc dl = getCurSDLoc();
5089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5090   SDValue Ops[3];
5091   Ops[0] = getRoot();
5092   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5093                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5094   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5095                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
5096   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5097   setValue(&I, N);
5098   DAG.setRoot(N);
5099 }
5100 
5101 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5102   SDLoc dl = getCurSDLoc();
5103   AtomicOrdering Order = I.getOrdering();
5104   SyncScope::ID SSID = I.getSyncScopeID();
5105 
5106   SDValue InChain = getRoot();
5107 
5108   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5109   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5110   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5111 
5112   if (!TLI.supportsUnalignedAtomics() &&
5113       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5114     report_fatal_error("Cannot generate unaligned atomic load");
5115 
5116   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5117 
5118   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5119       MachinePointerInfo(I.getPointerOperand()), Flags,
5120       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5121       nullptr, SSID, Order);
5122 
5123   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5124 
5125   SDValue Ptr = getValue(I.getPointerOperand());
5126   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
5127                             Ptr, MMO);
5128 
5129   SDValue OutChain = L.getValue(1);
5130   if (MemVT != VT)
5131     L = DAG.getPtrExtOrTrunc(L, dl, VT);
5132 
5133   setValue(&I, L);
5134   DAG.setRoot(OutChain);
5135 }
5136 
5137 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5138   SDLoc dl = getCurSDLoc();
5139 
5140   AtomicOrdering Ordering = I.getOrdering();
5141   SyncScope::ID SSID = I.getSyncScopeID();
5142 
5143   SDValue InChain = getRoot();
5144 
5145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5146   EVT MemVT =
5147       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5148 
5149   if (!TLI.supportsUnalignedAtomics() &&
5150       I.getAlign().value() < MemVT.getSizeInBits() / 8)
5151     report_fatal_error("Cannot generate unaligned atomic store");
5152 
5153   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5154 
5155   MachineFunction &MF = DAG.getMachineFunction();
5156   MachineMemOperand *MMO = MF.getMachineMemOperand(
5157       MachinePointerInfo(I.getPointerOperand()), Flags,
5158       LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(),
5159       nullptr, SSID, Ordering);
5160 
5161   SDValue Val = getValue(I.getValueOperand());
5162   if (Val.getValueType() != MemVT)
5163     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5164   SDValue Ptr = getValue(I.getPointerOperand());
5165 
5166   SDValue OutChain =
5167       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5168 
5169   setValue(&I, OutChain);
5170   DAG.setRoot(OutChain);
5171 }
5172 
5173 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5174 /// node.
5175 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5176                                                unsigned Intrinsic) {
5177   // Ignore the callsite's attributes. A specific call site may be marked with
5178   // readnone, but the lowering code will expect the chain based on the
5179   // definition.
5180   const Function *F = I.getCalledFunction();
5181   bool HasChain = !F->doesNotAccessMemory();
5182   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5183 
5184   // Build the operand list.
5185   SmallVector<SDValue, 8> Ops;
5186   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5187     if (OnlyLoad) {
5188       // We don't need to serialize loads against other loads.
5189       Ops.push_back(DAG.getRoot());
5190     } else {
5191       Ops.push_back(getRoot());
5192     }
5193   }
5194 
5195   // Info is set by getTgtMemIntrinsic
5196   TargetLowering::IntrinsicInfo Info;
5197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5198   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5199                                                DAG.getMachineFunction(),
5200                                                Intrinsic);
5201 
5202   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5203   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5204       Info.opc == ISD::INTRINSIC_W_CHAIN)
5205     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5206                                         TLI.getPointerTy(DAG.getDataLayout())));
5207 
5208   // Add all operands of the call to the operand list.
5209   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5210     const Value *Arg = I.getArgOperand(i);
5211     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5212       Ops.push_back(getValue(Arg));
5213       continue;
5214     }
5215 
5216     // Use TargetConstant instead of a regular constant for immarg.
5217     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5218     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5219       assert(CI->getBitWidth() <= 64 &&
5220              "large intrinsic immediates not handled");
5221       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5222     } else {
5223       Ops.push_back(
5224           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5225     }
5226   }
5227 
5228   SmallVector<EVT, 4> ValueVTs;
5229   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5230 
5231   if (HasChain)
5232     ValueVTs.push_back(MVT::Other);
5233 
5234   SDVTList VTs = DAG.getVTList(ValueVTs);
5235 
5236   // Propagate fast-math-flags from IR to node(s).
5237   SDNodeFlags Flags;
5238   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5239     Flags.copyFMF(*FPMO);
5240   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5241 
5242   // Create the node.
5243   SDValue Result;
5244 
5245   if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5246     auto *Token = Bundle->Inputs[0].get();
5247     SDValue ConvControlToken = getValue(Token);
5248     assert(Ops.back().getValueType() != MVT::Glue &&
5249            "Did not expected another glue node here.");
5250     ConvControlToken =
5251         DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5252     Ops.push_back(ConvControlToken);
5253   }
5254 
5255   // In some cases, custom collection of operands from CallInst I may be needed.
5256   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5257   if (IsTgtIntrinsic) {
5258     // This is target intrinsic that touches memory
5259     //
5260     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5261     //       didn't yield anything useful.
5262     MachinePointerInfo MPI;
5263     if (Info.ptrVal)
5264       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5265     else if (Info.fallbackAddressSpace)
5266       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5267     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5268                                      Info.memVT, MPI, Info.align, Info.flags,
5269                                      Info.size, I.getAAMetadata());
5270   } else if (!HasChain) {
5271     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5272   } else if (!I.getType()->isVoidTy()) {
5273     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5274   } else {
5275     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5276   }
5277 
5278   if (HasChain) {
5279     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5280     if (OnlyLoad)
5281       PendingLoads.push_back(Chain);
5282     else
5283       DAG.setRoot(Chain);
5284   }
5285 
5286   if (!I.getType()->isVoidTy()) {
5287     if (!isa<VectorType>(I.getType()))
5288       Result = lowerRangeToAssertZExt(DAG, I, Result);
5289 
5290     MaybeAlign Alignment = I.getRetAlign();
5291 
5292     // Insert `assertalign` node if there's an alignment.
5293     if (InsertAssertAlign && Alignment) {
5294       Result =
5295           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5296     }
5297 
5298     setValue(&I, Result);
5299   }
5300 }
5301 
5302 /// GetSignificand - Get the significand and build it into a floating-point
5303 /// number with exponent of 1:
5304 ///
5305 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5306 ///
5307 /// where Op is the hexadecimal representation of floating point value.
5308 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5309   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5310                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5311   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5312                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5313   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5314 }
5315 
5316 /// GetExponent - Get the exponent:
5317 ///
5318 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5319 ///
5320 /// where Op is the hexadecimal representation of floating point value.
5321 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5322                            const TargetLowering &TLI, const SDLoc &dl) {
5323   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5324                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5325   SDValue t1 = DAG.getNode(
5326       ISD::SRL, dl, MVT::i32, t0,
5327       DAG.getConstant(23, dl,
5328                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5329   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5330                            DAG.getConstant(127, dl, MVT::i32));
5331   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5332 }
5333 
5334 /// getF32Constant - Get 32-bit floating point constant.
5335 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5336                               const SDLoc &dl) {
5337   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5338                            MVT::f32);
5339 }
5340 
5341 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5342                                        SelectionDAG &DAG) {
5343   // TODO: What fast-math-flags should be set on the floating-point nodes?
5344 
5345   //   IntegerPartOfX = ((int32_t)(t0);
5346   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5347 
5348   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5349   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5350   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5351 
5352   //   IntegerPartOfX <<= 23;
5353   IntegerPartOfX =
5354       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5355                   DAG.getConstant(23, dl,
5356                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5357                                       MVT::i32, DAG.getDataLayout())));
5358 
5359   SDValue TwoToFractionalPartOfX;
5360   if (LimitFloatPrecision <= 6) {
5361     // For floating-point precision of 6:
5362     //
5363     //   TwoToFractionalPartOfX =
5364     //     0.997535578f +
5365     //       (0.735607626f + 0.252464424f * x) * x;
5366     //
5367     // error 0.0144103317, which is 6 bits
5368     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5369                              getF32Constant(DAG, 0x3e814304, dl));
5370     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5371                              getF32Constant(DAG, 0x3f3c50c8, dl));
5372     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5373     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5374                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5375   } else if (LimitFloatPrecision <= 12) {
5376     // For floating-point precision of 12:
5377     //
5378     //   TwoToFractionalPartOfX =
5379     //     0.999892986f +
5380     //       (0.696457318f +
5381     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5382     //
5383     // error 0.000107046256, which is 13 to 14 bits
5384     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5385                              getF32Constant(DAG, 0x3da235e3, dl));
5386     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5387                              getF32Constant(DAG, 0x3e65b8f3, dl));
5388     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5389     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5390                              getF32Constant(DAG, 0x3f324b07, dl));
5391     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5392     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5393                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5394   } else { // LimitFloatPrecision <= 18
5395     // For floating-point precision of 18:
5396     //
5397     //   TwoToFractionalPartOfX =
5398     //     0.999999982f +
5399     //       (0.693148872f +
5400     //         (0.240227044f +
5401     //           (0.554906021e-1f +
5402     //             (0.961591928e-2f +
5403     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5404     // error 2.47208000*10^(-7), which is better than 18 bits
5405     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5406                              getF32Constant(DAG, 0x3924b03e, dl));
5407     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5408                              getF32Constant(DAG, 0x3ab24b87, dl));
5409     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5410     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5411                              getF32Constant(DAG, 0x3c1d8c17, dl));
5412     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5413     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5414                              getF32Constant(DAG, 0x3d634a1d, dl));
5415     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5416     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5417                              getF32Constant(DAG, 0x3e75fe14, dl));
5418     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5419     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5420                               getF32Constant(DAG, 0x3f317234, dl));
5421     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5422     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5423                                          getF32Constant(DAG, 0x3f800000, dl));
5424   }
5425 
5426   // Add the exponent into the result in integer domain.
5427   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5428   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5429                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5430 }
5431 
5432 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5433 /// limited-precision mode.
5434 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5435                          const TargetLowering &TLI, SDNodeFlags Flags) {
5436   if (Op.getValueType() == MVT::f32 &&
5437       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5438 
5439     // Put the exponent in the right bit position for later addition to the
5440     // final result:
5441     //
5442     // t0 = Op * log2(e)
5443 
5444     // TODO: What fast-math-flags should be set here?
5445     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5446                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5447     return getLimitedPrecisionExp2(t0, dl, DAG);
5448   }
5449 
5450   // No special expansion.
5451   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5452 }
5453 
5454 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5455 /// limited-precision mode.
5456 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5457                          const TargetLowering &TLI, SDNodeFlags Flags) {
5458   // TODO: What fast-math-flags should be set on the floating-point nodes?
5459 
5460   if (Op.getValueType() == MVT::f32 &&
5461       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5462     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5463 
5464     // Scale the exponent by log(2).
5465     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5466     SDValue LogOfExponent =
5467         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5468                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5469 
5470     // Get the significand and build it into a floating-point number with
5471     // exponent of 1.
5472     SDValue X = GetSignificand(DAG, Op1, dl);
5473 
5474     SDValue LogOfMantissa;
5475     if (LimitFloatPrecision <= 6) {
5476       // For floating-point precision of 6:
5477       //
5478       //   LogofMantissa =
5479       //     -1.1609546f +
5480       //       (1.4034025f - 0.23903021f * x) * x;
5481       //
5482       // error 0.0034276066, which is better than 8 bits
5483       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5484                                getF32Constant(DAG, 0xbe74c456, dl));
5485       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5486                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5487       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5488       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5489                                   getF32Constant(DAG, 0x3f949a29, dl));
5490     } else if (LimitFloatPrecision <= 12) {
5491       // For floating-point precision of 12:
5492       //
5493       //   LogOfMantissa =
5494       //     -1.7417939f +
5495       //       (2.8212026f +
5496       //         (-1.4699568f +
5497       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5498       //
5499       // error 0.000061011436, which is 14 bits
5500       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5501                                getF32Constant(DAG, 0xbd67b6d6, dl));
5502       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5503                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5504       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5505       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5506                                getF32Constant(DAG, 0x3fbc278b, dl));
5507       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5508       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5509                                getF32Constant(DAG, 0x40348e95, dl));
5510       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5511       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5512                                   getF32Constant(DAG, 0x3fdef31a, dl));
5513     } else { // LimitFloatPrecision <= 18
5514       // For floating-point precision of 18:
5515       //
5516       //   LogOfMantissa =
5517       //     -2.1072184f +
5518       //       (4.2372794f +
5519       //         (-3.7029485f +
5520       //           (2.2781945f +
5521       //             (-0.87823314f +
5522       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5523       //
5524       // error 0.0000023660568, which is better than 18 bits
5525       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5526                                getF32Constant(DAG, 0xbc91e5ac, dl));
5527       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5528                                getF32Constant(DAG, 0x3e4350aa, dl));
5529       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5530       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5531                                getF32Constant(DAG, 0x3f60d3e3, dl));
5532       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5533       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5534                                getF32Constant(DAG, 0x4011cdf0, dl));
5535       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5536       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5537                                getF32Constant(DAG, 0x406cfd1c, dl));
5538       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5539       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5540                                getF32Constant(DAG, 0x408797cb, dl));
5541       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5542       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5543                                   getF32Constant(DAG, 0x4006dcab, dl));
5544     }
5545 
5546     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5547   }
5548 
5549   // No special expansion.
5550   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5551 }
5552 
5553 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5554 /// limited-precision mode.
5555 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5556                           const TargetLowering &TLI, SDNodeFlags Flags) {
5557   // TODO: What fast-math-flags should be set on the floating-point nodes?
5558 
5559   if (Op.getValueType() == MVT::f32 &&
5560       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5561     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5562 
5563     // Get the exponent.
5564     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5565 
5566     // Get the significand and build it into a floating-point number with
5567     // exponent of 1.
5568     SDValue X = GetSignificand(DAG, Op1, dl);
5569 
5570     // Different possible minimax approximations of significand in
5571     // floating-point for various degrees of accuracy over [1,2].
5572     SDValue Log2ofMantissa;
5573     if (LimitFloatPrecision <= 6) {
5574       // For floating-point precision of 6:
5575       //
5576       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5577       //
5578       // error 0.0049451742, which is more than 7 bits
5579       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5580                                getF32Constant(DAG, 0xbeb08fe0, dl));
5581       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5582                                getF32Constant(DAG, 0x40019463, dl));
5583       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5584       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5585                                    getF32Constant(DAG, 0x3fd6633d, dl));
5586     } else if (LimitFloatPrecision <= 12) {
5587       // For floating-point precision of 12:
5588       //
5589       //   Log2ofMantissa =
5590       //     -2.51285454f +
5591       //       (4.07009056f +
5592       //         (-2.12067489f +
5593       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5594       //
5595       // error 0.0000876136000, which is better than 13 bits
5596       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5597                                getF32Constant(DAG, 0xbda7262e, dl));
5598       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5599                                getF32Constant(DAG, 0x3f25280b, dl));
5600       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5601       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5602                                getF32Constant(DAG, 0x4007b923, dl));
5603       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5604       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5605                                getF32Constant(DAG, 0x40823e2f, dl));
5606       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5607       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5608                                    getF32Constant(DAG, 0x4020d29c, dl));
5609     } else { // LimitFloatPrecision <= 18
5610       // For floating-point precision of 18:
5611       //
5612       //   Log2ofMantissa =
5613       //     -3.0400495f +
5614       //       (6.1129976f +
5615       //         (-5.3420409f +
5616       //           (3.2865683f +
5617       //             (-1.2669343f +
5618       //               (0.27515199f -
5619       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5620       //
5621       // error 0.0000018516, which is better than 18 bits
5622       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5623                                getF32Constant(DAG, 0xbcd2769e, dl));
5624       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5625                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5626       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5627       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5628                                getF32Constant(DAG, 0x3fa22ae7, dl));
5629       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5630       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5631                                getF32Constant(DAG, 0x40525723, dl));
5632       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5633       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5634                                getF32Constant(DAG, 0x40aaf200, dl));
5635       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5636       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5637                                getF32Constant(DAG, 0x40c39dad, dl));
5638       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5639       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5640                                    getF32Constant(DAG, 0x4042902c, dl));
5641     }
5642 
5643     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5644   }
5645 
5646   // No special expansion.
5647   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5648 }
5649 
5650 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5651 /// limited-precision mode.
5652 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5653                            const TargetLowering &TLI, SDNodeFlags Flags) {
5654   // TODO: What fast-math-flags should be set on the floating-point nodes?
5655 
5656   if (Op.getValueType() == MVT::f32 &&
5657       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5658     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5659 
5660     // Scale the exponent by log10(2) [0.30102999f].
5661     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5662     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5663                                         getF32Constant(DAG, 0x3e9a209a, dl));
5664 
5665     // Get the significand and build it into a floating-point number with
5666     // exponent of 1.
5667     SDValue X = GetSignificand(DAG, Op1, dl);
5668 
5669     SDValue Log10ofMantissa;
5670     if (LimitFloatPrecision <= 6) {
5671       // For floating-point precision of 6:
5672       //
5673       //   Log10ofMantissa =
5674       //     -0.50419619f +
5675       //       (0.60948995f - 0.10380950f * x) * x;
5676       //
5677       // error 0.0014886165, which is 6 bits
5678       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5679                                getF32Constant(DAG, 0xbdd49a13, dl));
5680       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5681                                getF32Constant(DAG, 0x3f1c0789, dl));
5682       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5683       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5684                                     getF32Constant(DAG, 0x3f011300, dl));
5685     } else if (LimitFloatPrecision <= 12) {
5686       // For floating-point precision of 12:
5687       //
5688       //   Log10ofMantissa =
5689       //     -0.64831180f +
5690       //       (0.91751397f +
5691       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5692       //
5693       // error 0.00019228036, which is better than 12 bits
5694       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5695                                getF32Constant(DAG, 0x3d431f31, dl));
5696       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5697                                getF32Constant(DAG, 0x3ea21fb2, dl));
5698       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5699       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5700                                getF32Constant(DAG, 0x3f6ae232, dl));
5701       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5702       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5703                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5704     } else { // LimitFloatPrecision <= 18
5705       // For floating-point precision of 18:
5706       //
5707       //   Log10ofMantissa =
5708       //     -0.84299375f +
5709       //       (1.5327582f +
5710       //         (-1.0688956f +
5711       //           (0.49102474f +
5712       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5713       //
5714       // error 0.0000037995730, which is better than 18 bits
5715       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5716                                getF32Constant(DAG, 0x3c5d51ce, dl));
5717       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5718                                getF32Constant(DAG, 0x3e00685a, dl));
5719       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5720       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5721                                getF32Constant(DAG, 0x3efb6798, dl));
5722       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5723       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5724                                getF32Constant(DAG, 0x3f88d192, dl));
5725       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5726       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5727                                getF32Constant(DAG, 0x3fc4316c, dl));
5728       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5729       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5730                                     getF32Constant(DAG, 0x3f57ce70, dl));
5731     }
5732 
5733     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5734   }
5735 
5736   // No special expansion.
5737   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5738 }
5739 
5740 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5741 /// limited-precision mode.
5742 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5743                           const TargetLowering &TLI, SDNodeFlags Flags) {
5744   if (Op.getValueType() == MVT::f32 &&
5745       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5746     return getLimitedPrecisionExp2(Op, dl, DAG);
5747 
5748   // No special expansion.
5749   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5750 }
5751 
5752 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5753 /// limited-precision mode with x == 10.0f.
5754 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5755                          SelectionDAG &DAG, const TargetLowering &TLI,
5756                          SDNodeFlags Flags) {
5757   bool IsExp10 = false;
5758   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5759       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5760     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5761       APFloat Ten(10.0f);
5762       IsExp10 = LHSC->isExactlyValue(Ten);
5763     }
5764   }
5765 
5766   // TODO: What fast-math-flags should be set on the FMUL node?
5767   if (IsExp10) {
5768     // Put the exponent in the right bit position for later addition to the
5769     // final result:
5770     //
5771     //   #define LOG2OF10 3.3219281f
5772     //   t0 = Op * LOG2OF10;
5773     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5774                              getF32Constant(DAG, 0x40549a78, dl));
5775     return getLimitedPrecisionExp2(t0, dl, DAG);
5776   }
5777 
5778   // No special expansion.
5779   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5780 }
5781 
5782 /// ExpandPowI - Expand a llvm.powi intrinsic.
5783 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5784                           SelectionDAG &DAG) {
5785   // If RHS is a constant, we can expand this out to a multiplication tree if
5786   // it's beneficial on the target, otherwise we end up lowering to a call to
5787   // __powidf2 (for example).
5788   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5789     unsigned Val = RHSC->getSExtValue();
5790 
5791     // powi(x, 0) -> 1.0
5792     if (Val == 0)
5793       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5794 
5795     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5796             Val, DAG.shouldOptForSize())) {
5797       // Get the exponent as a positive value.
5798       if ((int)Val < 0)
5799         Val = -Val;
5800       // We use the simple binary decomposition method to generate the multiply
5801       // sequence.  There are more optimal ways to do this (for example,
5802       // powi(x,15) generates one more multiply than it should), but this has
5803       // the benefit of being both really simple and much better than a libcall.
5804       SDValue Res; // Logically starts equal to 1.0
5805       SDValue CurSquare = LHS;
5806       // TODO: Intrinsics should have fast-math-flags that propagate to these
5807       // nodes.
5808       while (Val) {
5809         if (Val & 1) {
5810           if (Res.getNode())
5811             Res =
5812                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5813           else
5814             Res = CurSquare; // 1.0*CurSquare.
5815         }
5816 
5817         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5818                                 CurSquare, CurSquare);
5819         Val >>= 1;
5820       }
5821 
5822       // If the original was negative, invert the result, producing 1/(x*x*x).
5823       if (RHSC->getSExtValue() < 0)
5824         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5825                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5826       return Res;
5827     }
5828   }
5829 
5830   // Otherwise, expand to a libcall.
5831   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5832 }
5833 
5834 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5835                             SDValue LHS, SDValue RHS, SDValue Scale,
5836                             SelectionDAG &DAG, const TargetLowering &TLI) {
5837   EVT VT = LHS.getValueType();
5838   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5839   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5840   LLVMContext &Ctx = *DAG.getContext();
5841 
5842   // If the type is legal but the operation isn't, this node might survive all
5843   // the way to operation legalization. If we end up there and we do not have
5844   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5845   // node.
5846 
5847   // Coax the legalizer into expanding the node during type legalization instead
5848   // by bumping the size by one bit. This will force it to Promote, enabling the
5849   // early expansion and avoiding the need to expand later.
5850 
5851   // We don't have to do this if Scale is 0; that can always be expanded, unless
5852   // it's a saturating signed operation. Those can experience true integer
5853   // division overflow, a case which we must avoid.
5854 
5855   // FIXME: We wouldn't have to do this (or any of the early
5856   // expansion/promotion) if it was possible to expand a libcall of an
5857   // illegal type during operation legalization. But it's not, so things
5858   // get a bit hacky.
5859   unsigned ScaleInt = Scale->getAsZExtVal();
5860   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5861       (TLI.isTypeLegal(VT) ||
5862        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5863     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5864         Opcode, VT, ScaleInt);
5865     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5866       EVT PromVT;
5867       if (VT.isScalarInteger())
5868         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5869       else if (VT.isVector()) {
5870         PromVT = VT.getVectorElementType();
5871         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5872         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5873       } else
5874         llvm_unreachable("Wrong VT for DIVFIX?");
5875       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5876       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5877       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5878       // For saturating operations, we need to shift up the LHS to get the
5879       // proper saturation width, and then shift down again afterwards.
5880       if (Saturating)
5881         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5882                           DAG.getConstant(1, DL, ShiftTy));
5883       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5884       if (Saturating)
5885         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5886                           DAG.getConstant(1, DL, ShiftTy));
5887       return DAG.getZExtOrTrunc(Res, DL, VT);
5888     }
5889   }
5890 
5891   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5892 }
5893 
5894 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5895 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5896 static void
5897 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5898                      const SDValue &N) {
5899   switch (N.getOpcode()) {
5900   case ISD::CopyFromReg: {
5901     SDValue Op = N.getOperand(1);
5902     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5903                       Op.getValueType().getSizeInBits());
5904     return;
5905   }
5906   case ISD::BITCAST:
5907   case ISD::AssertZext:
5908   case ISD::AssertSext:
5909   case ISD::TRUNCATE:
5910     getUnderlyingArgRegs(Regs, N.getOperand(0));
5911     return;
5912   case ISD::BUILD_PAIR:
5913   case ISD::BUILD_VECTOR:
5914   case ISD::CONCAT_VECTORS:
5915     for (SDValue Op : N->op_values())
5916       getUnderlyingArgRegs(Regs, Op);
5917     return;
5918   default:
5919     return;
5920   }
5921 }
5922 
5923 /// If the DbgValueInst is a dbg_value of a function argument, create the
5924 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5925 /// instruction selection, they will be inserted to the entry BB.
5926 /// We don't currently support this for variadic dbg_values, as they shouldn't
5927 /// appear for function arguments or in the prologue.
5928 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5929     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5930     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5931   const Argument *Arg = dyn_cast<Argument>(V);
5932   if (!Arg)
5933     return false;
5934 
5935   MachineFunction &MF = DAG.getMachineFunction();
5936   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5937 
5938   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5939   // we've been asked to pursue.
5940   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5941                               bool Indirect) {
5942     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5943       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5944       // pointing at the VReg, which will be patched up later.
5945       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5946       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5947           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5948           /* isKill */ false, /* isDead */ false,
5949           /* isUndef */ false, /* isEarlyClobber */ false,
5950           /* SubReg */ 0, /* isDebug */ true)});
5951 
5952       auto *NewDIExpr = FragExpr;
5953       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5954       // the DIExpression.
5955       if (Indirect)
5956         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5957       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5958       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5959       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5960     } else {
5961       // Create a completely standard DBG_VALUE.
5962       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5963       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5964     }
5965   };
5966 
5967   if (Kind == FuncArgumentDbgValueKind::Value) {
5968     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5969     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5970     // the entry block.
5971     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5972     if (!IsInEntryBlock)
5973       return false;
5974 
5975     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5976     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5977     // variable that also is a param.
5978     //
5979     // Although, if we are at the top of the entry block already, we can still
5980     // emit using ArgDbgValue. This might catch some situations when the
5981     // dbg.value refers to an argument that isn't used in the entry block, so
5982     // any CopyToReg node would be optimized out and the only way to express
5983     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5984     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5985     // we should only emit as ArgDbgValue if the Variable is an argument to the
5986     // current function, and the dbg.value intrinsic is found in the entry
5987     // block.
5988     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5989         !DL->getInlinedAt();
5990     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5991     if (!IsInPrologue && !VariableIsFunctionInputArg)
5992       return false;
5993 
5994     // Here we assume that a function argument on IR level only can be used to
5995     // describe one input parameter on source level. If we for example have
5996     // source code like this
5997     //
5998     //    struct A { long x, y; };
5999     //    void foo(struct A a, long b) {
6000     //      ...
6001     //      b = a.x;
6002     //      ...
6003     //    }
6004     //
6005     // and IR like this
6006     //
6007     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
6008     //  entry:
6009     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6010     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6011     //    call void @llvm.dbg.value(metadata i32 %b, "b",
6012     //    ...
6013     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
6014     //    ...
6015     //
6016     // then the last dbg.value is describing a parameter "b" using a value that
6017     // is an argument. But since we already has used %a1 to describe a parameter
6018     // we should not handle that last dbg.value here (that would result in an
6019     // incorrect hoisting of the DBG_VALUE to the function entry).
6020     // Notice that we allow one dbg.value per IR level argument, to accommodate
6021     // for the situation with fragments above.
6022     // If there is no node for the value being handled, we return true to skip
6023     // the normal generation of debug info, as it would kill existing debug
6024     // info for the parameter in case of duplicates.
6025     if (VariableIsFunctionInputArg) {
6026       unsigned ArgNo = Arg->getArgNo();
6027       if (ArgNo >= FuncInfo.DescribedArgs.size())
6028         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6029       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6030         return !NodeMap[V].getNode();
6031       FuncInfo.DescribedArgs.set(ArgNo);
6032     }
6033   }
6034 
6035   bool IsIndirect = false;
6036   std::optional<MachineOperand> Op;
6037   // Some arguments' frame index is recorded during argument lowering.
6038   int FI = FuncInfo.getArgumentFrameIndex(Arg);
6039   if (FI != std::numeric_limits<int>::max())
6040     Op = MachineOperand::CreateFI(FI);
6041 
6042   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
6043   if (!Op && N.getNode()) {
6044     getUnderlyingArgRegs(ArgRegsAndSizes, N);
6045     Register Reg;
6046     if (ArgRegsAndSizes.size() == 1)
6047       Reg = ArgRegsAndSizes.front().first;
6048 
6049     if (Reg && Reg.isVirtual()) {
6050       MachineRegisterInfo &RegInfo = MF.getRegInfo();
6051       Register PR = RegInfo.getLiveInPhysReg(Reg);
6052       if (PR)
6053         Reg = PR;
6054     }
6055     if (Reg) {
6056       Op = MachineOperand::CreateReg(Reg, false);
6057       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6058     }
6059   }
6060 
6061   if (!Op && N.getNode()) {
6062     // Check if frame index is available.
6063     SDValue LCandidate = peekThroughBitcasts(N);
6064     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6065       if (FrameIndexSDNode *FINode =
6066           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6067         Op = MachineOperand::CreateFI(FINode->getIndex());
6068   }
6069 
6070   if (!Op) {
6071     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6072     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
6073                                          SplitRegs) {
6074       unsigned Offset = 0;
6075       for (const auto &RegAndSize : SplitRegs) {
6076         // If the expression is already a fragment, the current register
6077         // offset+size might extend beyond the fragment. In this case, only
6078         // the register bits that are inside the fragment are relevant.
6079         int RegFragmentSizeInBits = RegAndSize.second;
6080         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6081           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6082           // The register is entirely outside the expression fragment,
6083           // so is irrelevant for debug info.
6084           if (Offset >= ExprFragmentSizeInBits)
6085             break;
6086           // The register is partially outside the expression fragment, only
6087           // the low bits within the fragment are relevant for debug info.
6088           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6089             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6090           }
6091         }
6092 
6093         auto FragmentExpr = DIExpression::createFragmentExpression(
6094             Expr, Offset, RegFragmentSizeInBits);
6095         Offset += RegAndSize.second;
6096         // If a valid fragment expression cannot be created, the variable's
6097         // correct value cannot be determined and so it is set as Undef.
6098         if (!FragmentExpr) {
6099           SDDbgValue *SDV = DAG.getConstantDbgValue(
6100               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
6101           DAG.AddDbgValue(SDV, false);
6102           continue;
6103         }
6104         MachineInstr *NewMI =
6105             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6106                              Kind != FuncArgumentDbgValueKind::Value);
6107         FuncInfo.ArgDbgValues.push_back(NewMI);
6108       }
6109     };
6110 
6111     // Check if ValueMap has reg number.
6112     DenseMap<const Value *, Register>::const_iterator
6113       VMI = FuncInfo.ValueMap.find(V);
6114     if (VMI != FuncInfo.ValueMap.end()) {
6115       const auto &TLI = DAG.getTargetLoweringInfo();
6116       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6117                        V->getType(), std::nullopt);
6118       if (RFV.occupiesMultipleRegs()) {
6119         splitMultiRegDbgValue(RFV.getRegsAndSizes());
6120         return true;
6121       }
6122 
6123       Op = MachineOperand::CreateReg(VMI->second, false);
6124       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6125     } else if (ArgRegsAndSizes.size() > 1) {
6126       // This was split due to the calling convention, and no virtual register
6127       // mapping exists for the value.
6128       splitMultiRegDbgValue(ArgRegsAndSizes);
6129       return true;
6130     }
6131   }
6132 
6133   if (!Op)
6134     return false;
6135 
6136   assert(Variable->isValidLocationForIntrinsic(DL) &&
6137          "Expected inlined-at fields to agree");
6138   MachineInstr *NewMI = nullptr;
6139 
6140   if (Op->isReg())
6141     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6142   else
6143     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6144                     Variable, Expr);
6145 
6146   // Otherwise, use ArgDbgValues.
6147   FuncInfo.ArgDbgValues.push_back(NewMI);
6148   return true;
6149 }
6150 
6151 /// Return the appropriate SDDbgValue based on N.
6152 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6153                                              DILocalVariable *Variable,
6154                                              DIExpression *Expr,
6155                                              const DebugLoc &dl,
6156                                              unsigned DbgSDNodeOrder) {
6157   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6158     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6159     // stack slot locations.
6160     //
6161     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6162     // debug values here after optimization:
6163     //
6164     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
6165     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6166     //
6167     // Both describe the direct values of their associated variables.
6168     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6169                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6170   }
6171   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6172                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6173 }
6174 
6175 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6176   switch (Intrinsic) {
6177   case Intrinsic::smul_fix:
6178     return ISD::SMULFIX;
6179   case Intrinsic::umul_fix:
6180     return ISD::UMULFIX;
6181   case Intrinsic::smul_fix_sat:
6182     return ISD::SMULFIXSAT;
6183   case Intrinsic::umul_fix_sat:
6184     return ISD::UMULFIXSAT;
6185   case Intrinsic::sdiv_fix:
6186     return ISD::SDIVFIX;
6187   case Intrinsic::udiv_fix:
6188     return ISD::UDIVFIX;
6189   case Intrinsic::sdiv_fix_sat:
6190     return ISD::SDIVFIXSAT;
6191   case Intrinsic::udiv_fix_sat:
6192     return ISD::UDIVFIXSAT;
6193   default:
6194     llvm_unreachable("Unhandled fixed point intrinsic");
6195   }
6196 }
6197 
6198 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6199                                            const char *FunctionName) {
6200   assert(FunctionName && "FunctionName must not be nullptr");
6201   SDValue Callee = DAG.getExternalSymbol(
6202       FunctionName,
6203       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6204   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6205 }
6206 
6207 /// Given a @llvm.call.preallocated.setup, return the corresponding
6208 /// preallocated call.
6209 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6210   assert(cast<CallBase>(PreallocatedSetup)
6211                  ->getCalledFunction()
6212                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6213          "expected call_preallocated_setup Value");
6214   for (const auto *U : PreallocatedSetup->users()) {
6215     auto *UseCall = cast<CallBase>(U);
6216     const Function *Fn = UseCall->getCalledFunction();
6217     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6218       return UseCall;
6219     }
6220   }
6221   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6222 }
6223 
6224 /// If DI is a debug value with an EntryValue expression, lower it using the
6225 /// corresponding physical register of the associated Argument value
6226 /// (guaranteed to exist by the verifier).
6227 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6228     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6229     DIExpression *Expr, DebugLoc DbgLoc) {
6230   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6231     return false;
6232 
6233   // These properties are guaranteed by the verifier.
6234   const Argument *Arg = cast<Argument>(Values[0]);
6235   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6236 
6237   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6238   if (ArgIt == FuncInfo.ValueMap.end()) {
6239     LLVM_DEBUG(
6240         dbgs() << "Dropping dbg.value: expression is entry_value but "
6241                   "couldn't find an associated register for the Argument\n");
6242     return true;
6243   }
6244   Register ArgVReg = ArgIt->getSecond();
6245 
6246   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6247     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6248       SDDbgValue *SDV = DAG.getVRegDbgValue(
6249           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6250       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6251       return true;
6252     }
6253   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6254                        "couldn't find a physical register\n");
6255   return true;
6256 }
6257 
6258 /// Lower the call to the specified intrinsic function.
6259 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6260                                                   unsigned Intrinsic) {
6261   SDLoc sdl = getCurSDLoc();
6262   switch (Intrinsic) {
6263   case Intrinsic::experimental_convergence_anchor:
6264     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6265     break;
6266   case Intrinsic::experimental_convergence_entry:
6267     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6268     break;
6269   case Intrinsic::experimental_convergence_loop: {
6270     auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6271     auto *Token = Bundle->Inputs[0].get();
6272     setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6273                              getValue(Token)));
6274     break;
6275   }
6276   }
6277 }
6278 
6279 /// Lower the call to the specified intrinsic function.
6280 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6281                                              unsigned Intrinsic) {
6282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6283   SDLoc sdl = getCurSDLoc();
6284   DebugLoc dl = getCurDebugLoc();
6285   SDValue Res;
6286 
6287   SDNodeFlags Flags;
6288   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6289     Flags.copyFMF(*FPOp);
6290 
6291   switch (Intrinsic) {
6292   default:
6293     // By default, turn this into a target intrinsic node.
6294     visitTargetIntrinsic(I, Intrinsic);
6295     return;
6296   case Intrinsic::vscale: {
6297     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6298     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6299     return;
6300   }
6301   case Intrinsic::vastart:  visitVAStart(I); return;
6302   case Intrinsic::vaend:    visitVAEnd(I); return;
6303   case Intrinsic::vacopy:   visitVACopy(I); return;
6304   case Intrinsic::returnaddress:
6305     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6306                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6307                              getValue(I.getArgOperand(0))));
6308     return;
6309   case Intrinsic::addressofreturnaddress:
6310     setValue(&I,
6311              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6312                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6313     return;
6314   case Intrinsic::sponentry:
6315     setValue(&I,
6316              DAG.getNode(ISD::SPONENTRY, sdl,
6317                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6318     return;
6319   case Intrinsic::frameaddress:
6320     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6321                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6322                              getValue(I.getArgOperand(0))));
6323     return;
6324   case Intrinsic::read_volatile_register:
6325   case Intrinsic::read_register: {
6326     Value *Reg = I.getArgOperand(0);
6327     SDValue Chain = getRoot();
6328     SDValue RegName =
6329         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6330     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6331     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6332       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6333     setValue(&I, Res);
6334     DAG.setRoot(Res.getValue(1));
6335     return;
6336   }
6337   case Intrinsic::write_register: {
6338     Value *Reg = I.getArgOperand(0);
6339     Value *RegValue = I.getArgOperand(1);
6340     SDValue Chain = getRoot();
6341     SDValue RegName =
6342         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6343     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6344                             RegName, getValue(RegValue)));
6345     return;
6346   }
6347   case Intrinsic::memcpy: {
6348     const auto &MCI = cast<MemCpyInst>(I);
6349     SDValue Op1 = getValue(I.getArgOperand(0));
6350     SDValue Op2 = getValue(I.getArgOperand(1));
6351     SDValue Op3 = getValue(I.getArgOperand(2));
6352     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6353     Align DstAlign = MCI.getDestAlign().valueOrOne();
6354     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6355     Align Alignment = std::min(DstAlign, SrcAlign);
6356     bool isVol = MCI.isVolatile();
6357     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6358     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6359     // node.
6360     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6361     SDValue MC = DAG.getMemcpy(
6362         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6363         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6364         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6365     updateDAGForMaybeTailCall(MC);
6366     return;
6367   }
6368   case Intrinsic::memcpy_inline: {
6369     const auto &MCI = cast<MemCpyInlineInst>(I);
6370     SDValue Dst = getValue(I.getArgOperand(0));
6371     SDValue Src = getValue(I.getArgOperand(1));
6372     SDValue Size = getValue(I.getArgOperand(2));
6373     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6374     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6375     Align DstAlign = MCI.getDestAlign().valueOrOne();
6376     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6377     Align Alignment = std::min(DstAlign, SrcAlign);
6378     bool isVol = MCI.isVolatile();
6379     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6380     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6381     // node.
6382     SDValue MC = DAG.getMemcpy(
6383         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6384         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6385         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6386     updateDAGForMaybeTailCall(MC);
6387     return;
6388   }
6389   case Intrinsic::memset: {
6390     const auto &MSI = cast<MemSetInst>(I);
6391     SDValue Op1 = getValue(I.getArgOperand(0));
6392     SDValue Op2 = getValue(I.getArgOperand(1));
6393     SDValue Op3 = getValue(I.getArgOperand(2));
6394     // @llvm.memset defines 0 and 1 to both mean no alignment.
6395     Align Alignment = MSI.getDestAlign().valueOrOne();
6396     bool isVol = MSI.isVolatile();
6397     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6398     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6399     SDValue MS = DAG.getMemset(
6400         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6401         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6402     updateDAGForMaybeTailCall(MS);
6403     return;
6404   }
6405   case Intrinsic::memset_inline: {
6406     const auto &MSII = cast<MemSetInlineInst>(I);
6407     SDValue Dst = getValue(I.getArgOperand(0));
6408     SDValue Value = getValue(I.getArgOperand(1));
6409     SDValue Size = getValue(I.getArgOperand(2));
6410     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6411     // @llvm.memset defines 0 and 1 to both mean no alignment.
6412     Align DstAlign = MSII.getDestAlign().valueOrOne();
6413     bool isVol = MSII.isVolatile();
6414     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6415     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6416     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6417                                /* AlwaysInline */ true, isTC,
6418                                MachinePointerInfo(I.getArgOperand(0)),
6419                                I.getAAMetadata());
6420     updateDAGForMaybeTailCall(MC);
6421     return;
6422   }
6423   case Intrinsic::memmove: {
6424     const auto &MMI = cast<MemMoveInst>(I);
6425     SDValue Op1 = getValue(I.getArgOperand(0));
6426     SDValue Op2 = getValue(I.getArgOperand(1));
6427     SDValue Op3 = getValue(I.getArgOperand(2));
6428     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6429     Align DstAlign = MMI.getDestAlign().valueOrOne();
6430     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6431     Align Alignment = std::min(DstAlign, SrcAlign);
6432     bool isVol = MMI.isVolatile();
6433     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6434     // FIXME: Support passing different dest/src alignments to the memmove DAG
6435     // node.
6436     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6437     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6438                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6439                                 MachinePointerInfo(I.getArgOperand(1)),
6440                                 I.getAAMetadata(), AA);
6441     updateDAGForMaybeTailCall(MM);
6442     return;
6443   }
6444   case Intrinsic::memcpy_element_unordered_atomic: {
6445     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6446     SDValue Dst = getValue(MI.getRawDest());
6447     SDValue Src = getValue(MI.getRawSource());
6448     SDValue Length = getValue(MI.getLength());
6449 
6450     Type *LengthTy = MI.getLength()->getType();
6451     unsigned ElemSz = MI.getElementSizeInBytes();
6452     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6453     SDValue MC =
6454         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6455                             isTC, MachinePointerInfo(MI.getRawDest()),
6456                             MachinePointerInfo(MI.getRawSource()));
6457     updateDAGForMaybeTailCall(MC);
6458     return;
6459   }
6460   case Intrinsic::memmove_element_unordered_atomic: {
6461     auto &MI = cast<AtomicMemMoveInst>(I);
6462     SDValue Dst = getValue(MI.getRawDest());
6463     SDValue Src = getValue(MI.getRawSource());
6464     SDValue Length = getValue(MI.getLength());
6465 
6466     Type *LengthTy = MI.getLength()->getType();
6467     unsigned ElemSz = MI.getElementSizeInBytes();
6468     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6469     SDValue MC =
6470         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6471                              isTC, MachinePointerInfo(MI.getRawDest()),
6472                              MachinePointerInfo(MI.getRawSource()));
6473     updateDAGForMaybeTailCall(MC);
6474     return;
6475   }
6476   case Intrinsic::memset_element_unordered_atomic: {
6477     auto &MI = cast<AtomicMemSetInst>(I);
6478     SDValue Dst = getValue(MI.getRawDest());
6479     SDValue Val = getValue(MI.getValue());
6480     SDValue Length = getValue(MI.getLength());
6481 
6482     Type *LengthTy = MI.getLength()->getType();
6483     unsigned ElemSz = MI.getElementSizeInBytes();
6484     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6485     SDValue MC =
6486         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6487                             isTC, MachinePointerInfo(MI.getRawDest()));
6488     updateDAGForMaybeTailCall(MC);
6489     return;
6490   }
6491   case Intrinsic::call_preallocated_setup: {
6492     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6493     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6494     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6495                               getRoot(), SrcValue);
6496     setValue(&I, Res);
6497     DAG.setRoot(Res);
6498     return;
6499   }
6500   case Intrinsic::call_preallocated_arg: {
6501     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6502     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6503     SDValue Ops[3];
6504     Ops[0] = getRoot();
6505     Ops[1] = SrcValue;
6506     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6507                                    MVT::i32); // arg index
6508     SDValue Res = DAG.getNode(
6509         ISD::PREALLOCATED_ARG, sdl,
6510         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6511     setValue(&I, Res);
6512     DAG.setRoot(Res.getValue(1));
6513     return;
6514   }
6515   case Intrinsic::dbg_declare: {
6516     const auto &DI = cast<DbgDeclareInst>(I);
6517     // Debug intrinsics are handled separately in assignment tracking mode.
6518     // Some intrinsics are handled right after Argument lowering.
6519     if (AssignmentTrackingEnabled ||
6520         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6521       return;
6522     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6523     DILocalVariable *Variable = DI.getVariable();
6524     DIExpression *Expression = DI.getExpression();
6525     dropDanglingDebugInfo(Variable, Expression);
6526     // Assume dbg.declare can not currently use DIArgList, i.e.
6527     // it is non-variadic.
6528     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6529     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6530                        DI.getDebugLoc());
6531     return;
6532   }
6533   case Intrinsic::dbg_label: {
6534     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6535     DILabel *Label = DI.getLabel();
6536     assert(Label && "Missing label");
6537 
6538     SDDbgLabel *SDV;
6539     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6540     DAG.AddDbgLabel(SDV);
6541     return;
6542   }
6543   case Intrinsic::dbg_assign: {
6544     // Debug intrinsics are handled seperately in assignment tracking mode.
6545     if (AssignmentTrackingEnabled)
6546       return;
6547     // If assignment tracking hasn't been enabled then fall through and treat
6548     // the dbg.assign as a dbg.value.
6549     [[fallthrough]];
6550   }
6551   case Intrinsic::dbg_value: {
6552     // Debug intrinsics are handled seperately in assignment tracking mode.
6553     if (AssignmentTrackingEnabled)
6554       return;
6555     const DbgValueInst &DI = cast<DbgValueInst>(I);
6556     assert(DI.getVariable() && "Missing variable");
6557 
6558     DILocalVariable *Variable = DI.getVariable();
6559     DIExpression *Expression = DI.getExpression();
6560     dropDanglingDebugInfo(Variable, Expression);
6561 
6562     if (DI.isKillLocation()) {
6563       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6564       return;
6565     }
6566 
6567     SmallVector<Value *, 4> Values(DI.getValues());
6568     if (Values.empty())
6569       return;
6570 
6571     bool IsVariadic = DI.hasArgList();
6572     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6573                           SDNodeOrder, IsVariadic))
6574       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6575                            DI.getDebugLoc(), SDNodeOrder);
6576     return;
6577   }
6578 
6579   case Intrinsic::eh_typeid_for: {
6580     // Find the type id for the given typeinfo.
6581     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6582     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6583     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6584     setValue(&I, Res);
6585     return;
6586   }
6587 
6588   case Intrinsic::eh_return_i32:
6589   case Intrinsic::eh_return_i64:
6590     DAG.getMachineFunction().setCallsEHReturn(true);
6591     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6592                             MVT::Other,
6593                             getControlRoot(),
6594                             getValue(I.getArgOperand(0)),
6595                             getValue(I.getArgOperand(1))));
6596     return;
6597   case Intrinsic::eh_unwind_init:
6598     DAG.getMachineFunction().setCallsUnwindInit(true);
6599     return;
6600   case Intrinsic::eh_dwarf_cfa:
6601     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6602                              TLI.getPointerTy(DAG.getDataLayout()),
6603                              getValue(I.getArgOperand(0))));
6604     return;
6605   case Intrinsic::eh_sjlj_callsite: {
6606     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6607     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6608     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6609 
6610     MMI.setCurrentCallSite(CI->getZExtValue());
6611     return;
6612   }
6613   case Intrinsic::eh_sjlj_functioncontext: {
6614     // Get and store the index of the function context.
6615     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6616     AllocaInst *FnCtx =
6617       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6618     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6619     MFI.setFunctionContextIndex(FI);
6620     return;
6621   }
6622   case Intrinsic::eh_sjlj_setjmp: {
6623     SDValue Ops[2];
6624     Ops[0] = getRoot();
6625     Ops[1] = getValue(I.getArgOperand(0));
6626     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6627                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6628     setValue(&I, Op.getValue(0));
6629     DAG.setRoot(Op.getValue(1));
6630     return;
6631   }
6632   case Intrinsic::eh_sjlj_longjmp:
6633     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6634                             getRoot(), getValue(I.getArgOperand(0))));
6635     return;
6636   case Intrinsic::eh_sjlj_setup_dispatch:
6637     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6638                             getRoot()));
6639     return;
6640   case Intrinsic::masked_gather:
6641     visitMaskedGather(I);
6642     return;
6643   case Intrinsic::masked_load:
6644     visitMaskedLoad(I);
6645     return;
6646   case Intrinsic::masked_scatter:
6647     visitMaskedScatter(I);
6648     return;
6649   case Intrinsic::masked_store:
6650     visitMaskedStore(I);
6651     return;
6652   case Intrinsic::masked_expandload:
6653     visitMaskedLoad(I, true /* IsExpanding */);
6654     return;
6655   case Intrinsic::masked_compressstore:
6656     visitMaskedStore(I, true /* IsCompressing */);
6657     return;
6658   case Intrinsic::powi:
6659     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6660                             getValue(I.getArgOperand(1)), DAG));
6661     return;
6662   case Intrinsic::log:
6663     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6664     return;
6665   case Intrinsic::log2:
6666     setValue(&I,
6667              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6668     return;
6669   case Intrinsic::log10:
6670     setValue(&I,
6671              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6672     return;
6673   case Intrinsic::exp:
6674     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6675     return;
6676   case Intrinsic::exp2:
6677     setValue(&I,
6678              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6679     return;
6680   case Intrinsic::pow:
6681     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6682                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6683     return;
6684   case Intrinsic::sqrt:
6685   case Intrinsic::fabs:
6686   case Intrinsic::sin:
6687   case Intrinsic::cos:
6688   case Intrinsic::exp10:
6689   case Intrinsic::floor:
6690   case Intrinsic::ceil:
6691   case Intrinsic::trunc:
6692   case Intrinsic::rint:
6693   case Intrinsic::nearbyint:
6694   case Intrinsic::round:
6695   case Intrinsic::roundeven:
6696   case Intrinsic::canonicalize: {
6697     unsigned Opcode;
6698     switch (Intrinsic) {
6699     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6700     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6701     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6702     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6703     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6704     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6705     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6706     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6707     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6708     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6709     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6710     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6711     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6712     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6713     }
6714 
6715     setValue(&I, DAG.getNode(Opcode, sdl,
6716                              getValue(I.getArgOperand(0)).getValueType(),
6717                              getValue(I.getArgOperand(0)), Flags));
6718     return;
6719   }
6720   case Intrinsic::lround:
6721   case Intrinsic::llround:
6722   case Intrinsic::lrint:
6723   case Intrinsic::llrint: {
6724     unsigned Opcode;
6725     switch (Intrinsic) {
6726     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6727     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6728     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6729     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6730     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6731     }
6732 
6733     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6734     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6735                              getValue(I.getArgOperand(0))));
6736     return;
6737   }
6738   case Intrinsic::minnum:
6739     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6740                              getValue(I.getArgOperand(0)).getValueType(),
6741                              getValue(I.getArgOperand(0)),
6742                              getValue(I.getArgOperand(1)), Flags));
6743     return;
6744   case Intrinsic::maxnum:
6745     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6746                              getValue(I.getArgOperand(0)).getValueType(),
6747                              getValue(I.getArgOperand(0)),
6748                              getValue(I.getArgOperand(1)), Flags));
6749     return;
6750   case Intrinsic::minimum:
6751     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6752                              getValue(I.getArgOperand(0)).getValueType(),
6753                              getValue(I.getArgOperand(0)),
6754                              getValue(I.getArgOperand(1)), Flags));
6755     return;
6756   case Intrinsic::maximum:
6757     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6758                              getValue(I.getArgOperand(0)).getValueType(),
6759                              getValue(I.getArgOperand(0)),
6760                              getValue(I.getArgOperand(1)), Flags));
6761     return;
6762   case Intrinsic::copysign:
6763     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6764                              getValue(I.getArgOperand(0)).getValueType(),
6765                              getValue(I.getArgOperand(0)),
6766                              getValue(I.getArgOperand(1)), Flags));
6767     return;
6768   case Intrinsic::ldexp:
6769     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6770                              getValue(I.getArgOperand(0)).getValueType(),
6771                              getValue(I.getArgOperand(0)),
6772                              getValue(I.getArgOperand(1)), Flags));
6773     return;
6774   case Intrinsic::frexp: {
6775     SmallVector<EVT, 2> ValueVTs;
6776     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6777     SDVTList VTs = DAG.getVTList(ValueVTs);
6778     setValue(&I,
6779              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6780     return;
6781   }
6782   case Intrinsic::arithmetic_fence: {
6783     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6784                              getValue(I.getArgOperand(0)).getValueType(),
6785                              getValue(I.getArgOperand(0)), Flags));
6786     return;
6787   }
6788   case Intrinsic::fma:
6789     setValue(&I, DAG.getNode(
6790                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6791                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6792                      getValue(I.getArgOperand(2)), Flags));
6793     return;
6794 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6795   case Intrinsic::INTRINSIC:
6796 #include "llvm/IR/ConstrainedOps.def"
6797     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6798     return;
6799 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6800 #include "llvm/IR/VPIntrinsics.def"
6801     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6802     return;
6803   case Intrinsic::fptrunc_round: {
6804     // Get the last argument, the metadata and convert it to an integer in the
6805     // call
6806     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6807     std::optional<RoundingMode> RoundMode =
6808         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6809 
6810     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6811 
6812     // Propagate fast-math-flags from IR to node(s).
6813     SDNodeFlags Flags;
6814     Flags.copyFMF(*cast<FPMathOperator>(&I));
6815     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6816 
6817     SDValue Result;
6818     Result = DAG.getNode(
6819         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6820         DAG.getTargetConstant((int)*RoundMode, sdl,
6821                               TLI.getPointerTy(DAG.getDataLayout())));
6822     setValue(&I, Result);
6823 
6824     return;
6825   }
6826   case Intrinsic::fmuladd: {
6827     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6828     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6829         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6830       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6831                                getValue(I.getArgOperand(0)).getValueType(),
6832                                getValue(I.getArgOperand(0)),
6833                                getValue(I.getArgOperand(1)),
6834                                getValue(I.getArgOperand(2)), Flags));
6835     } else {
6836       // TODO: Intrinsic calls should have fast-math-flags.
6837       SDValue Mul = DAG.getNode(
6838           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6839           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6840       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6841                                 getValue(I.getArgOperand(0)).getValueType(),
6842                                 Mul, getValue(I.getArgOperand(2)), Flags);
6843       setValue(&I, Add);
6844     }
6845     return;
6846   }
6847   case Intrinsic::convert_to_fp16:
6848     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6849                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6850                                          getValue(I.getArgOperand(0)),
6851                                          DAG.getTargetConstant(0, sdl,
6852                                                                MVT::i32))));
6853     return;
6854   case Intrinsic::convert_from_fp16:
6855     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6856                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6857                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6858                                          getValue(I.getArgOperand(0)))));
6859     return;
6860   case Intrinsic::fptosi_sat: {
6861     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6862     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6863                              getValue(I.getArgOperand(0)),
6864                              DAG.getValueType(VT.getScalarType())));
6865     return;
6866   }
6867   case Intrinsic::fptoui_sat: {
6868     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6869     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6870                              getValue(I.getArgOperand(0)),
6871                              DAG.getValueType(VT.getScalarType())));
6872     return;
6873   }
6874   case Intrinsic::set_rounding:
6875     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6876                       {getRoot(), getValue(I.getArgOperand(0))});
6877     setValue(&I, Res);
6878     DAG.setRoot(Res.getValue(0));
6879     return;
6880   case Intrinsic::is_fpclass: {
6881     const DataLayout DLayout = DAG.getDataLayout();
6882     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6883     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6884     FPClassTest Test = static_cast<FPClassTest>(
6885         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6886     MachineFunction &MF = DAG.getMachineFunction();
6887     const Function &F = MF.getFunction();
6888     SDValue Op = getValue(I.getArgOperand(0));
6889     SDNodeFlags Flags;
6890     Flags.setNoFPExcept(
6891         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6892     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6893     // expansion can use illegal types. Making expansion early allows
6894     // legalizing these types prior to selection.
6895     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6896       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6897       setValue(&I, Result);
6898       return;
6899     }
6900 
6901     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6902     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6903     setValue(&I, V);
6904     return;
6905   }
6906   case Intrinsic::get_fpenv: {
6907     const DataLayout DLayout = DAG.getDataLayout();
6908     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6909     Align TempAlign = DAG.getEVTAlign(EnvVT);
6910     SDValue Chain = getRoot();
6911     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6912     // and temporary storage in stack.
6913     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6914       Res = DAG.getNode(
6915           ISD::GET_FPENV, sdl,
6916           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6917                         MVT::Other),
6918           Chain);
6919     } else {
6920       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6921       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6922       auto MPI =
6923           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6924       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6925           MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(),
6926           TempAlign);
6927       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6928       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6929     }
6930     setValue(&I, Res);
6931     DAG.setRoot(Res.getValue(1));
6932     return;
6933   }
6934   case Intrinsic::set_fpenv: {
6935     const DataLayout DLayout = DAG.getDataLayout();
6936     SDValue Env = getValue(I.getArgOperand(0));
6937     EVT EnvVT = Env.getValueType();
6938     Align TempAlign = DAG.getEVTAlign(EnvVT);
6939     SDValue Chain = getRoot();
6940     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6941     // environment from memory.
6942     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6943       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6944     } else {
6945       // Allocate space in stack, copy environment bits into it and use this
6946       // memory in SET_FPENV_MEM.
6947       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6948       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6949       auto MPI =
6950           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6951       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6952                            MachineMemOperand::MOStore);
6953       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6954           MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(),
6955           TempAlign);
6956       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6957     }
6958     DAG.setRoot(Chain);
6959     return;
6960   }
6961   case Intrinsic::reset_fpenv:
6962     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6963     return;
6964   case Intrinsic::get_fpmode:
6965     Res = DAG.getNode(
6966         ISD::GET_FPMODE, sdl,
6967         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6968                       MVT::Other),
6969         DAG.getRoot());
6970     setValue(&I, Res);
6971     DAG.setRoot(Res.getValue(1));
6972     return;
6973   case Intrinsic::set_fpmode:
6974     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6975                       getValue(I.getArgOperand(0)));
6976     DAG.setRoot(Res);
6977     return;
6978   case Intrinsic::reset_fpmode: {
6979     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6980     DAG.setRoot(Res);
6981     return;
6982   }
6983   case Intrinsic::pcmarker: {
6984     SDValue Tmp = getValue(I.getArgOperand(0));
6985     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6986     return;
6987   }
6988   case Intrinsic::readcyclecounter: {
6989     SDValue Op = getRoot();
6990     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6991                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6992     setValue(&I, Res);
6993     DAG.setRoot(Res.getValue(1));
6994     return;
6995   }
6996   case Intrinsic::readsteadycounter: {
6997     SDValue Op = getRoot();
6998     Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
6999                       DAG.getVTList(MVT::i64, MVT::Other), Op);
7000     setValue(&I, Res);
7001     DAG.setRoot(Res.getValue(1));
7002     return;
7003   }
7004   case Intrinsic::bitreverse:
7005     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7006                              getValue(I.getArgOperand(0)).getValueType(),
7007                              getValue(I.getArgOperand(0))));
7008     return;
7009   case Intrinsic::bswap:
7010     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7011                              getValue(I.getArgOperand(0)).getValueType(),
7012                              getValue(I.getArgOperand(0))));
7013     return;
7014   case Intrinsic::cttz: {
7015     SDValue Arg = getValue(I.getArgOperand(0));
7016     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7017     EVT Ty = Arg.getValueType();
7018     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7019                              sdl, Ty, Arg));
7020     return;
7021   }
7022   case Intrinsic::ctlz: {
7023     SDValue Arg = getValue(I.getArgOperand(0));
7024     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7025     EVT Ty = Arg.getValueType();
7026     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7027                              sdl, Ty, Arg));
7028     return;
7029   }
7030   case Intrinsic::ctpop: {
7031     SDValue Arg = getValue(I.getArgOperand(0));
7032     EVT Ty = Arg.getValueType();
7033     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7034     return;
7035   }
7036   case Intrinsic::fshl:
7037   case Intrinsic::fshr: {
7038     bool IsFSHL = Intrinsic == Intrinsic::fshl;
7039     SDValue X = getValue(I.getArgOperand(0));
7040     SDValue Y = getValue(I.getArgOperand(1));
7041     SDValue Z = getValue(I.getArgOperand(2));
7042     EVT VT = X.getValueType();
7043 
7044     if (X == Y) {
7045       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7046       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7047     } else {
7048       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7049       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7050     }
7051     return;
7052   }
7053   case Intrinsic::sadd_sat: {
7054     SDValue Op1 = getValue(I.getArgOperand(0));
7055     SDValue Op2 = getValue(I.getArgOperand(1));
7056     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7057     return;
7058   }
7059   case Intrinsic::uadd_sat: {
7060     SDValue Op1 = getValue(I.getArgOperand(0));
7061     SDValue Op2 = getValue(I.getArgOperand(1));
7062     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7063     return;
7064   }
7065   case Intrinsic::ssub_sat: {
7066     SDValue Op1 = getValue(I.getArgOperand(0));
7067     SDValue Op2 = getValue(I.getArgOperand(1));
7068     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7069     return;
7070   }
7071   case Intrinsic::usub_sat: {
7072     SDValue Op1 = getValue(I.getArgOperand(0));
7073     SDValue Op2 = getValue(I.getArgOperand(1));
7074     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7075     return;
7076   }
7077   case Intrinsic::sshl_sat: {
7078     SDValue Op1 = getValue(I.getArgOperand(0));
7079     SDValue Op2 = getValue(I.getArgOperand(1));
7080     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7081     return;
7082   }
7083   case Intrinsic::ushl_sat: {
7084     SDValue Op1 = getValue(I.getArgOperand(0));
7085     SDValue Op2 = getValue(I.getArgOperand(1));
7086     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
7087     return;
7088   }
7089   case Intrinsic::smul_fix:
7090   case Intrinsic::umul_fix:
7091   case Intrinsic::smul_fix_sat:
7092   case Intrinsic::umul_fix_sat: {
7093     SDValue Op1 = getValue(I.getArgOperand(0));
7094     SDValue Op2 = getValue(I.getArgOperand(1));
7095     SDValue Op3 = getValue(I.getArgOperand(2));
7096     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7097                              Op1.getValueType(), Op1, Op2, Op3));
7098     return;
7099   }
7100   case Intrinsic::sdiv_fix:
7101   case Intrinsic::udiv_fix:
7102   case Intrinsic::sdiv_fix_sat:
7103   case Intrinsic::udiv_fix_sat: {
7104     SDValue Op1 = getValue(I.getArgOperand(0));
7105     SDValue Op2 = getValue(I.getArgOperand(1));
7106     SDValue Op3 = getValue(I.getArgOperand(2));
7107     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7108                               Op1, Op2, Op3, DAG, TLI));
7109     return;
7110   }
7111   case Intrinsic::smax: {
7112     SDValue Op1 = getValue(I.getArgOperand(0));
7113     SDValue Op2 = getValue(I.getArgOperand(1));
7114     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7115     return;
7116   }
7117   case Intrinsic::smin: {
7118     SDValue Op1 = getValue(I.getArgOperand(0));
7119     SDValue Op2 = getValue(I.getArgOperand(1));
7120     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7121     return;
7122   }
7123   case Intrinsic::umax: {
7124     SDValue Op1 = getValue(I.getArgOperand(0));
7125     SDValue Op2 = getValue(I.getArgOperand(1));
7126     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7127     return;
7128   }
7129   case Intrinsic::umin: {
7130     SDValue Op1 = getValue(I.getArgOperand(0));
7131     SDValue Op2 = getValue(I.getArgOperand(1));
7132     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7133     return;
7134   }
7135   case Intrinsic::abs: {
7136     // TODO: Preserve "int min is poison" arg in SDAG?
7137     SDValue Op1 = getValue(I.getArgOperand(0));
7138     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7139     return;
7140   }
7141   case Intrinsic::stacksave: {
7142     SDValue Op = getRoot();
7143     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7144     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
7145     setValue(&I, Res);
7146     DAG.setRoot(Res.getValue(1));
7147     return;
7148   }
7149   case Intrinsic::stackrestore:
7150     Res = getValue(I.getArgOperand(0));
7151     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7152     return;
7153   case Intrinsic::get_dynamic_area_offset: {
7154     SDValue Op = getRoot();
7155     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7156     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7157     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
7158     // target.
7159     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
7160       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
7161                          " intrinsic!");
7162     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7163                       Op);
7164     DAG.setRoot(Op);
7165     setValue(&I, Res);
7166     return;
7167   }
7168   case Intrinsic::stackguard: {
7169     MachineFunction &MF = DAG.getMachineFunction();
7170     const Module &M = *MF.getFunction().getParent();
7171     EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7172     SDValue Chain = getRoot();
7173     if (TLI.useLoadStackGuardNode()) {
7174       Res = getLoadStackGuard(DAG, sdl, Chain);
7175       Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7176     } else {
7177       const Value *Global = TLI.getSDagStackGuard(M);
7178       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7179       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7180                         MachinePointerInfo(Global, 0), Align,
7181                         MachineMemOperand::MOVolatile);
7182     }
7183     if (TLI.useStackGuardXorFP())
7184       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7185     DAG.setRoot(Chain);
7186     setValue(&I, Res);
7187     return;
7188   }
7189   case Intrinsic::stackprotector: {
7190     // Emit code into the DAG to store the stack guard onto the stack.
7191     MachineFunction &MF = DAG.getMachineFunction();
7192     MachineFrameInfo &MFI = MF.getFrameInfo();
7193     SDValue Src, Chain = getRoot();
7194 
7195     if (TLI.useLoadStackGuardNode())
7196       Src = getLoadStackGuard(DAG, sdl, Chain);
7197     else
7198       Src = getValue(I.getArgOperand(0));   // The guard's value.
7199 
7200     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7201 
7202     int FI = FuncInfo.StaticAllocaMap[Slot];
7203     MFI.setStackProtectorIndex(FI);
7204     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7205 
7206     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7207 
7208     // Store the stack protector onto the stack.
7209     Res = DAG.getStore(
7210         Chain, sdl, Src, FIN,
7211         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7212         MaybeAlign(), MachineMemOperand::MOVolatile);
7213     setValue(&I, Res);
7214     DAG.setRoot(Res);
7215     return;
7216   }
7217   case Intrinsic::objectsize:
7218     llvm_unreachable("llvm.objectsize.* should have been lowered already");
7219 
7220   case Intrinsic::is_constant:
7221     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7222 
7223   case Intrinsic::annotation:
7224   case Intrinsic::ptr_annotation:
7225   case Intrinsic::launder_invariant_group:
7226   case Intrinsic::strip_invariant_group:
7227     // Drop the intrinsic, but forward the value
7228     setValue(&I, getValue(I.getOperand(0)));
7229     return;
7230 
7231   case Intrinsic::assume:
7232   case Intrinsic::experimental_noalias_scope_decl:
7233   case Intrinsic::var_annotation:
7234   case Intrinsic::sideeffect:
7235     // Discard annotate attributes, noalias scope declarations, assumptions, and
7236     // artificial side-effects.
7237     return;
7238 
7239   case Intrinsic::codeview_annotation: {
7240     // Emit a label associated with this metadata.
7241     MachineFunction &MF = DAG.getMachineFunction();
7242     MCSymbol *Label =
7243         MF.getMMI().getContext().createTempSymbol("annotation", true);
7244     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7245     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7246     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7247     DAG.setRoot(Res);
7248     return;
7249   }
7250 
7251   case Intrinsic::init_trampoline: {
7252     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7253 
7254     SDValue Ops[6];
7255     Ops[0] = getRoot();
7256     Ops[1] = getValue(I.getArgOperand(0));
7257     Ops[2] = getValue(I.getArgOperand(1));
7258     Ops[3] = getValue(I.getArgOperand(2));
7259     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7260     Ops[5] = DAG.getSrcValue(F);
7261 
7262     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7263 
7264     DAG.setRoot(Res);
7265     return;
7266   }
7267   case Intrinsic::adjust_trampoline:
7268     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7269                              TLI.getPointerTy(DAG.getDataLayout()),
7270                              getValue(I.getArgOperand(0))));
7271     return;
7272   case Intrinsic::gcroot: {
7273     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7274            "only valid in functions with gc specified, enforced by Verifier");
7275     assert(GFI && "implied by previous");
7276     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7277     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7278 
7279     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7280     GFI->addStackRoot(FI->getIndex(), TypeMap);
7281     return;
7282   }
7283   case Intrinsic::gcread:
7284   case Intrinsic::gcwrite:
7285     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7286   case Intrinsic::get_rounding:
7287     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7288     setValue(&I, Res);
7289     DAG.setRoot(Res.getValue(1));
7290     return;
7291 
7292   case Intrinsic::expect:
7293     // Just replace __builtin_expect(exp, c) with EXP.
7294     setValue(&I, getValue(I.getArgOperand(0)));
7295     return;
7296 
7297   case Intrinsic::ubsantrap:
7298   case Intrinsic::debugtrap:
7299   case Intrinsic::trap: {
7300     StringRef TrapFuncName =
7301         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7302     if (TrapFuncName.empty()) {
7303       switch (Intrinsic) {
7304       case Intrinsic::trap:
7305         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7306         break;
7307       case Intrinsic::debugtrap:
7308         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7309         break;
7310       case Intrinsic::ubsantrap:
7311         DAG.setRoot(DAG.getNode(
7312             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7313             DAG.getTargetConstant(
7314                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7315                 MVT::i32)));
7316         break;
7317       default: llvm_unreachable("unknown trap intrinsic");
7318       }
7319       return;
7320     }
7321     TargetLowering::ArgListTy Args;
7322     if (Intrinsic == Intrinsic::ubsantrap) {
7323       Args.push_back(TargetLoweringBase::ArgListEntry());
7324       Args[0].Val = I.getArgOperand(0);
7325       Args[0].Node = getValue(Args[0].Val);
7326       Args[0].Ty = Args[0].Val->getType();
7327     }
7328 
7329     TargetLowering::CallLoweringInfo CLI(DAG);
7330     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7331         CallingConv::C, I.getType(),
7332         DAG.getExternalSymbol(TrapFuncName.data(),
7333                               TLI.getPointerTy(DAG.getDataLayout())),
7334         std::move(Args));
7335 
7336     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7337     DAG.setRoot(Result.second);
7338     return;
7339   }
7340 
7341   case Intrinsic::allow_runtime_check:
7342   case Intrinsic::allow_ubsan_check:
7343     setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7344     return;
7345 
7346   case Intrinsic::uadd_with_overflow:
7347   case Intrinsic::sadd_with_overflow:
7348   case Intrinsic::usub_with_overflow:
7349   case Intrinsic::ssub_with_overflow:
7350   case Intrinsic::umul_with_overflow:
7351   case Intrinsic::smul_with_overflow: {
7352     ISD::NodeType Op;
7353     switch (Intrinsic) {
7354     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7355     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7356     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7357     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7358     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7359     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7360     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7361     }
7362     SDValue Op1 = getValue(I.getArgOperand(0));
7363     SDValue Op2 = getValue(I.getArgOperand(1));
7364 
7365     EVT ResultVT = Op1.getValueType();
7366     EVT OverflowVT = MVT::i1;
7367     if (ResultVT.isVector())
7368       OverflowVT = EVT::getVectorVT(
7369           *Context, OverflowVT, ResultVT.getVectorElementCount());
7370 
7371     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7372     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7373     return;
7374   }
7375   case Intrinsic::prefetch: {
7376     SDValue Ops[5];
7377     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7378     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7379     Ops[0] = DAG.getRoot();
7380     Ops[1] = getValue(I.getArgOperand(0));
7381     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7382                                    MVT::i32);
7383     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7384                                    MVT::i32);
7385     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7386                                    MVT::i32);
7387     SDValue Result = DAG.getMemIntrinsicNode(
7388         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7389         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7390         /* align */ std::nullopt, Flags);
7391 
7392     // Chain the prefetch in parallel with any pending loads, to stay out of
7393     // the way of later optimizations.
7394     PendingLoads.push_back(Result);
7395     Result = getRoot();
7396     DAG.setRoot(Result);
7397     return;
7398   }
7399   case Intrinsic::lifetime_start:
7400   case Intrinsic::lifetime_end: {
7401     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7402     // Stack coloring is not enabled in O0, discard region information.
7403     if (TM.getOptLevel() == CodeGenOptLevel::None)
7404       return;
7405 
7406     const int64_t ObjectSize =
7407         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7408     Value *const ObjectPtr = I.getArgOperand(1);
7409     SmallVector<const Value *, 4> Allocas;
7410     getUnderlyingObjects(ObjectPtr, Allocas);
7411 
7412     for (const Value *Alloca : Allocas) {
7413       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7414 
7415       // Could not find an Alloca.
7416       if (!LifetimeObject)
7417         continue;
7418 
7419       // First check that the Alloca is static, otherwise it won't have a
7420       // valid frame index.
7421       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7422       if (SI == FuncInfo.StaticAllocaMap.end())
7423         return;
7424 
7425       const int FrameIndex = SI->second;
7426       int64_t Offset;
7427       if (GetPointerBaseWithConstantOffset(
7428               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7429         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7430       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7431                                 Offset);
7432       DAG.setRoot(Res);
7433     }
7434     return;
7435   }
7436   case Intrinsic::pseudoprobe: {
7437     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7438     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7439     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7440     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7441     DAG.setRoot(Res);
7442     return;
7443   }
7444   case Intrinsic::invariant_start:
7445     // Discard region information.
7446     setValue(&I,
7447              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7448     return;
7449   case Intrinsic::invariant_end:
7450     // Discard region information.
7451     return;
7452   case Intrinsic::clear_cache:
7453     /// FunctionName may be null.
7454     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7455       lowerCallToExternalSymbol(I, FunctionName);
7456     return;
7457   case Intrinsic::donothing:
7458   case Intrinsic::seh_try_begin:
7459   case Intrinsic::seh_scope_begin:
7460   case Intrinsic::seh_try_end:
7461   case Intrinsic::seh_scope_end:
7462     // ignore
7463     return;
7464   case Intrinsic::experimental_stackmap:
7465     visitStackmap(I);
7466     return;
7467   case Intrinsic::experimental_patchpoint_void:
7468   case Intrinsic::experimental_patchpoint:
7469     visitPatchpoint(I);
7470     return;
7471   case Intrinsic::experimental_gc_statepoint:
7472     LowerStatepoint(cast<GCStatepointInst>(I));
7473     return;
7474   case Intrinsic::experimental_gc_result:
7475     visitGCResult(cast<GCResultInst>(I));
7476     return;
7477   case Intrinsic::experimental_gc_relocate:
7478     visitGCRelocate(cast<GCRelocateInst>(I));
7479     return;
7480   case Intrinsic::instrprof_cover:
7481     llvm_unreachable("instrprof failed to lower a cover");
7482   case Intrinsic::instrprof_increment:
7483     llvm_unreachable("instrprof failed to lower an increment");
7484   case Intrinsic::instrprof_timestamp:
7485     llvm_unreachable("instrprof failed to lower a timestamp");
7486   case Intrinsic::instrprof_value_profile:
7487     llvm_unreachable("instrprof failed to lower a value profiling call");
7488   case Intrinsic::instrprof_mcdc_parameters:
7489     llvm_unreachable("instrprof failed to lower mcdc parameters");
7490   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7491     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7492   case Intrinsic::instrprof_mcdc_condbitmap_update:
7493     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7494   case Intrinsic::localescape: {
7495     MachineFunction &MF = DAG.getMachineFunction();
7496     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7497 
7498     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7499     // is the same on all targets.
7500     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7501       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7502       if (isa<ConstantPointerNull>(Arg))
7503         continue; // Skip null pointers. They represent a hole in index space.
7504       AllocaInst *Slot = cast<AllocaInst>(Arg);
7505       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7506              "can only escape static allocas");
7507       int FI = FuncInfo.StaticAllocaMap[Slot];
7508       MCSymbol *FrameAllocSym =
7509           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7510               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7511       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7512               TII->get(TargetOpcode::LOCAL_ESCAPE))
7513           .addSym(FrameAllocSym)
7514           .addFrameIndex(FI);
7515     }
7516 
7517     return;
7518   }
7519 
7520   case Intrinsic::localrecover: {
7521     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7522     MachineFunction &MF = DAG.getMachineFunction();
7523 
7524     // Get the symbol that defines the frame offset.
7525     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7526     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7527     unsigned IdxVal =
7528         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7529     MCSymbol *FrameAllocSym =
7530         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7531             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7532 
7533     Value *FP = I.getArgOperand(1);
7534     SDValue FPVal = getValue(FP);
7535     EVT PtrVT = FPVal.getValueType();
7536 
7537     // Create a MCSymbol for the label to avoid any target lowering
7538     // that would make this PC relative.
7539     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7540     SDValue OffsetVal =
7541         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7542 
7543     // Add the offset to the FP.
7544     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7545     setValue(&I, Add);
7546 
7547     return;
7548   }
7549 
7550   case Intrinsic::eh_exceptionpointer:
7551   case Intrinsic::eh_exceptioncode: {
7552     // Get the exception pointer vreg, copy from it, and resize it to fit.
7553     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7554     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7555     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7556     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7557     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7558     if (Intrinsic == Intrinsic::eh_exceptioncode)
7559       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7560     setValue(&I, N);
7561     return;
7562   }
7563   case Intrinsic::xray_customevent: {
7564     // Here we want to make sure that the intrinsic behaves as if it has a
7565     // specific calling convention.
7566     const auto &Triple = DAG.getTarget().getTargetTriple();
7567     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7568       return;
7569 
7570     SmallVector<SDValue, 8> Ops;
7571 
7572     // We want to say that we always want the arguments in registers.
7573     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7574     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7575     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7576     SDValue Chain = getRoot();
7577     Ops.push_back(LogEntryVal);
7578     Ops.push_back(StrSizeVal);
7579     Ops.push_back(Chain);
7580 
7581     // We need to enforce the calling convention for the callsite, so that
7582     // argument ordering is enforced correctly, and that register allocation can
7583     // see that some registers may be assumed clobbered and have to preserve
7584     // them across calls to the intrinsic.
7585     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7586                                            sdl, NodeTys, Ops);
7587     SDValue patchableNode = SDValue(MN, 0);
7588     DAG.setRoot(patchableNode);
7589     setValue(&I, patchableNode);
7590     return;
7591   }
7592   case Intrinsic::xray_typedevent: {
7593     // Here we want to make sure that the intrinsic behaves as if it has a
7594     // specific calling convention.
7595     const auto &Triple = DAG.getTarget().getTargetTriple();
7596     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7597       return;
7598 
7599     SmallVector<SDValue, 8> Ops;
7600 
7601     // We want to say that we always want the arguments in registers.
7602     // It's unclear to me how manipulating the selection DAG here forces callers
7603     // to provide arguments in registers instead of on the stack.
7604     SDValue LogTypeId = getValue(I.getArgOperand(0));
7605     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7606     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7607     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7608     SDValue Chain = getRoot();
7609     Ops.push_back(LogTypeId);
7610     Ops.push_back(LogEntryVal);
7611     Ops.push_back(StrSizeVal);
7612     Ops.push_back(Chain);
7613 
7614     // We need to enforce the calling convention for the callsite, so that
7615     // argument ordering is enforced correctly, and that register allocation can
7616     // see that some registers may be assumed clobbered and have to preserve
7617     // them across calls to the intrinsic.
7618     MachineSDNode *MN = DAG.getMachineNode(
7619         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7620     SDValue patchableNode = SDValue(MN, 0);
7621     DAG.setRoot(patchableNode);
7622     setValue(&I, patchableNode);
7623     return;
7624   }
7625   case Intrinsic::experimental_deoptimize:
7626     LowerDeoptimizeCall(&I);
7627     return;
7628   case Intrinsic::experimental_stepvector:
7629     visitStepVector(I);
7630     return;
7631   case Intrinsic::vector_reduce_fadd:
7632   case Intrinsic::vector_reduce_fmul:
7633   case Intrinsic::vector_reduce_add:
7634   case Intrinsic::vector_reduce_mul:
7635   case Intrinsic::vector_reduce_and:
7636   case Intrinsic::vector_reduce_or:
7637   case Intrinsic::vector_reduce_xor:
7638   case Intrinsic::vector_reduce_smax:
7639   case Intrinsic::vector_reduce_smin:
7640   case Intrinsic::vector_reduce_umax:
7641   case Intrinsic::vector_reduce_umin:
7642   case Intrinsic::vector_reduce_fmax:
7643   case Intrinsic::vector_reduce_fmin:
7644   case Intrinsic::vector_reduce_fmaximum:
7645   case Intrinsic::vector_reduce_fminimum:
7646     visitVectorReduce(I, Intrinsic);
7647     return;
7648 
7649   case Intrinsic::icall_branch_funnel: {
7650     SmallVector<SDValue, 16> Ops;
7651     Ops.push_back(getValue(I.getArgOperand(0)));
7652 
7653     int64_t Offset;
7654     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7655         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7656     if (!Base)
7657       report_fatal_error(
7658           "llvm.icall.branch.funnel operand must be a GlobalValue");
7659     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7660 
7661     struct BranchFunnelTarget {
7662       int64_t Offset;
7663       SDValue Target;
7664     };
7665     SmallVector<BranchFunnelTarget, 8> Targets;
7666 
7667     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7668       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7669           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7670       if (ElemBase != Base)
7671         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7672                            "to the same GlobalValue");
7673 
7674       SDValue Val = getValue(I.getArgOperand(Op + 1));
7675       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7676       if (!GA)
7677         report_fatal_error(
7678             "llvm.icall.branch.funnel operand must be a GlobalValue");
7679       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7680                                      GA->getGlobal(), sdl, Val.getValueType(),
7681                                      GA->getOffset())});
7682     }
7683     llvm::sort(Targets,
7684                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7685                  return T1.Offset < T2.Offset;
7686                });
7687 
7688     for (auto &T : Targets) {
7689       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7690       Ops.push_back(T.Target);
7691     }
7692 
7693     Ops.push_back(DAG.getRoot()); // Chain
7694     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7695                                  MVT::Other, Ops),
7696               0);
7697     DAG.setRoot(N);
7698     setValue(&I, N);
7699     HasTailCall = true;
7700     return;
7701   }
7702 
7703   case Intrinsic::wasm_landingpad_index:
7704     // Information this intrinsic contained has been transferred to
7705     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7706     // delete it now.
7707     return;
7708 
7709   case Intrinsic::aarch64_settag:
7710   case Intrinsic::aarch64_settag_zero: {
7711     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7712     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7713     SDValue Val = TSI.EmitTargetCodeForSetTag(
7714         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7715         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7716         ZeroMemory);
7717     DAG.setRoot(Val);
7718     setValue(&I, Val);
7719     return;
7720   }
7721   case Intrinsic::amdgcn_cs_chain: {
7722     assert(I.arg_size() == 5 && "Additional args not supported yet");
7723     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7724            "Non-zero flags not supported yet");
7725 
7726     // At this point we don't care if it's amdgpu_cs_chain or
7727     // amdgpu_cs_chain_preserve.
7728     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7729 
7730     Type *RetTy = I.getType();
7731     assert(RetTy->isVoidTy() && "Should not return");
7732 
7733     SDValue Callee = getValue(I.getOperand(0));
7734 
7735     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7736     // We'll also tack the value of the EXEC mask at the end.
7737     TargetLowering::ArgListTy Args;
7738     Args.reserve(3);
7739 
7740     for (unsigned Idx : {2, 3, 1}) {
7741       TargetLowering::ArgListEntry Arg;
7742       Arg.Node = getValue(I.getOperand(Idx));
7743       Arg.Ty = I.getOperand(Idx)->getType();
7744       Arg.setAttributes(&I, Idx);
7745       Args.push_back(Arg);
7746     }
7747 
7748     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7749     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7750     Args[2].IsInReg = true; // EXEC should be inreg
7751 
7752     TargetLowering::CallLoweringInfo CLI(DAG);
7753     CLI.setDebugLoc(getCurSDLoc())
7754         .setChain(getRoot())
7755         .setCallee(CC, RetTy, Callee, std::move(Args))
7756         .setNoReturn(true)
7757         .setTailCall(true)
7758         .setConvergent(I.isConvergent());
7759     CLI.CB = &I;
7760     std::pair<SDValue, SDValue> Result =
7761         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7762     (void)Result;
7763     assert(!Result.first.getNode() && !Result.second.getNode() &&
7764            "Should've lowered as tail call");
7765 
7766     HasTailCall = true;
7767     return;
7768   }
7769   case Intrinsic::ptrmask: {
7770     SDValue Ptr = getValue(I.getOperand(0));
7771     SDValue Mask = getValue(I.getOperand(1));
7772 
7773     EVT PtrVT = Ptr.getValueType();
7774     assert(PtrVT == Mask.getValueType() &&
7775            "Pointers with different index type are not supported by SDAG");
7776     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7777     return;
7778   }
7779   case Intrinsic::threadlocal_address: {
7780     setValue(&I, getValue(I.getOperand(0)));
7781     return;
7782   }
7783   case Intrinsic::get_active_lane_mask: {
7784     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7785     SDValue Index = getValue(I.getOperand(0));
7786     EVT ElementVT = Index.getValueType();
7787 
7788     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7789       visitTargetIntrinsic(I, Intrinsic);
7790       return;
7791     }
7792 
7793     SDValue TripCount = getValue(I.getOperand(1));
7794     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7795                                  CCVT.getVectorElementCount());
7796 
7797     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7798     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7799     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7800     SDValue VectorInduction = DAG.getNode(
7801         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7802     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7803                                  VectorTripCount, ISD::CondCode::SETULT);
7804     setValue(&I, SetCC);
7805     return;
7806   }
7807   case Intrinsic::experimental_get_vector_length: {
7808     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7809            "Expected positive VF");
7810     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7811     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7812 
7813     SDValue Count = getValue(I.getOperand(0));
7814     EVT CountVT = Count.getValueType();
7815 
7816     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7817       visitTargetIntrinsic(I, Intrinsic);
7818       return;
7819     }
7820 
7821     // Expand to a umin between the trip count and the maximum elements the type
7822     // can hold.
7823     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7824 
7825     // Extend the trip count to at least the result VT.
7826     if (CountVT.bitsLT(VT)) {
7827       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7828       CountVT = VT;
7829     }
7830 
7831     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7832                                          ElementCount::get(VF, IsScalable));
7833 
7834     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7835     // Clip to the result type if needed.
7836     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7837 
7838     setValue(&I, Trunc);
7839     return;
7840   }
7841   case Intrinsic::experimental_cttz_elts: {
7842     auto DL = getCurSDLoc();
7843     SDValue Op = getValue(I.getOperand(0));
7844     EVT OpVT = Op.getValueType();
7845 
7846     if (!TLI.shouldExpandCttzElements(OpVT)) {
7847       visitTargetIntrinsic(I, Intrinsic);
7848       return;
7849     }
7850 
7851     if (OpVT.getScalarType() != MVT::i1) {
7852       // Compare the input vector elements to zero & use to count trailing zeros
7853       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7854       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7855                               OpVT.getVectorElementCount());
7856       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7857     }
7858 
7859     // Find the smallest "sensible" element type to use for the expansion.
7860     ConstantRange CR(
7861         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7862     if (OpVT.isScalableVT())
7863       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7864 
7865     // If the zero-is-poison flag is set, we can assume the upper limit
7866     // of the result is VF-1.
7867     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7868       CR = CR.subtract(APInt(64, 1));
7869 
7870     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7871     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7872     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7873 
7874     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7875 
7876     // Create the new vector type & get the vector length
7877     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7878                                  OpVT.getVectorElementCount());
7879 
7880     SDValue VL =
7881         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7882 
7883     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7884     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7885     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7886     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7887     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7888     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7889     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7890 
7891     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7892     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7893 
7894     setValue(&I, Ret);
7895     return;
7896   }
7897   case Intrinsic::vector_insert: {
7898     SDValue Vec = getValue(I.getOperand(0));
7899     SDValue SubVec = getValue(I.getOperand(1));
7900     SDValue Index = getValue(I.getOperand(2));
7901 
7902     // The intrinsic's index type is i64, but the SDNode requires an index type
7903     // suitable for the target. Convert the index as required.
7904     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7905     if (Index.getValueType() != VectorIdxTy)
7906       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7907 
7908     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7909     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7910                              Index));
7911     return;
7912   }
7913   case Intrinsic::vector_extract: {
7914     SDValue Vec = getValue(I.getOperand(0));
7915     SDValue Index = getValue(I.getOperand(1));
7916     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7917 
7918     // The intrinsic's index type is i64, but the SDNode requires an index type
7919     // suitable for the target. Convert the index as required.
7920     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7921     if (Index.getValueType() != VectorIdxTy)
7922       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7923 
7924     setValue(&I,
7925              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7926     return;
7927   }
7928   case Intrinsic::experimental_vector_reverse:
7929     visitVectorReverse(I);
7930     return;
7931   case Intrinsic::experimental_vector_splice:
7932     visitVectorSplice(I);
7933     return;
7934   case Intrinsic::callbr_landingpad:
7935     visitCallBrLandingPad(I);
7936     return;
7937   case Intrinsic::experimental_vector_interleave2:
7938     visitVectorInterleave(I);
7939     return;
7940   case Intrinsic::experimental_vector_deinterleave2:
7941     visitVectorDeinterleave(I);
7942     return;
7943   case Intrinsic::experimental_convergence_anchor:
7944   case Intrinsic::experimental_convergence_entry:
7945   case Intrinsic::experimental_convergence_loop:
7946     visitConvergenceControl(I, Intrinsic);
7947   }
7948 }
7949 
7950 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7951     const ConstrainedFPIntrinsic &FPI) {
7952   SDLoc sdl = getCurSDLoc();
7953 
7954   // We do not need to serialize constrained FP intrinsics against
7955   // each other or against (nonvolatile) loads, so they can be
7956   // chained like loads.
7957   SDValue Chain = DAG.getRoot();
7958   SmallVector<SDValue, 4> Opers;
7959   Opers.push_back(Chain);
7960   if (FPI.isUnaryOp()) {
7961     Opers.push_back(getValue(FPI.getArgOperand(0)));
7962   } else if (FPI.isTernaryOp()) {
7963     Opers.push_back(getValue(FPI.getArgOperand(0)));
7964     Opers.push_back(getValue(FPI.getArgOperand(1)));
7965     Opers.push_back(getValue(FPI.getArgOperand(2)));
7966   } else {
7967     Opers.push_back(getValue(FPI.getArgOperand(0)));
7968     Opers.push_back(getValue(FPI.getArgOperand(1)));
7969   }
7970 
7971   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7972     assert(Result.getNode()->getNumValues() == 2);
7973 
7974     // Push node to the appropriate list so that future instructions can be
7975     // chained up correctly.
7976     SDValue OutChain = Result.getValue(1);
7977     switch (EB) {
7978     case fp::ExceptionBehavior::ebIgnore:
7979       // The only reason why ebIgnore nodes still need to be chained is that
7980       // they might depend on the current rounding mode, and therefore must
7981       // not be moved across instruction that may change that mode.
7982       [[fallthrough]];
7983     case fp::ExceptionBehavior::ebMayTrap:
7984       // These must not be moved across calls or instructions that may change
7985       // floating-point exception masks.
7986       PendingConstrainedFP.push_back(OutChain);
7987       break;
7988     case fp::ExceptionBehavior::ebStrict:
7989       // These must not be moved across calls or instructions that may change
7990       // floating-point exception masks or read floating-point exception flags.
7991       // In addition, they cannot be optimized out even if unused.
7992       PendingConstrainedFPStrict.push_back(OutChain);
7993       break;
7994     }
7995   };
7996 
7997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7998   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7999   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8000   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
8001 
8002   SDNodeFlags Flags;
8003   if (EB == fp::ExceptionBehavior::ebIgnore)
8004     Flags.setNoFPExcept(true);
8005 
8006   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8007     Flags.copyFMF(*FPOp);
8008 
8009   unsigned Opcode;
8010   switch (FPI.getIntrinsicID()) {
8011   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8012 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8013   case Intrinsic::INTRINSIC:                                                   \
8014     Opcode = ISD::STRICT_##DAGN;                                               \
8015     break;
8016 #include "llvm/IR/ConstrainedOps.def"
8017   case Intrinsic::experimental_constrained_fmuladd: {
8018     Opcode = ISD::STRICT_FMA;
8019     // Break fmuladd into fmul and fadd.
8020     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8021         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8022       Opers.pop_back();
8023       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8024       pushOutChain(Mul, EB);
8025       Opcode = ISD::STRICT_FADD;
8026       Opers.clear();
8027       Opers.push_back(Mul.getValue(1));
8028       Opers.push_back(Mul.getValue(0));
8029       Opers.push_back(getValue(FPI.getArgOperand(2)));
8030     }
8031     break;
8032   }
8033   }
8034 
8035   // A few strict DAG nodes carry additional operands that are not
8036   // set up by the default code above.
8037   switch (Opcode) {
8038   default: break;
8039   case ISD::STRICT_FP_ROUND:
8040     Opers.push_back(
8041         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8042     break;
8043   case ISD::STRICT_FSETCC:
8044   case ISD::STRICT_FSETCCS: {
8045     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8046     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8047     if (TM.Options.NoNaNsFPMath)
8048       Condition = getFCmpCodeWithoutNaN(Condition);
8049     Opers.push_back(DAG.getCondCode(Condition));
8050     break;
8051   }
8052   }
8053 
8054   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8055   pushOutChain(Result, EB);
8056 
8057   SDValue FPResult = Result.getValue(0);
8058   setValue(&FPI, FPResult);
8059 }
8060 
8061 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8062   std::optional<unsigned> ResOPC;
8063   switch (VPIntrin.getIntrinsicID()) {
8064   case Intrinsic::vp_ctlz: {
8065     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8066     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8067     break;
8068   }
8069   case Intrinsic::vp_cttz: {
8070     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8071     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8072     break;
8073   }
8074 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
8075   case Intrinsic::VPID:                                                        \
8076     ResOPC = ISD::VPSD;                                                        \
8077     break;
8078 #include "llvm/IR/VPIntrinsics.def"
8079   }
8080 
8081   if (!ResOPC)
8082     llvm_unreachable(
8083         "Inconsistency: no SDNode available for this VPIntrinsic!");
8084 
8085   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8086       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8087     if (VPIntrin.getFastMathFlags().allowReassoc())
8088       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8089                                                 : ISD::VP_REDUCE_FMUL;
8090   }
8091 
8092   return *ResOPC;
8093 }
8094 
8095 void SelectionDAGBuilder::visitVPLoad(
8096     const VPIntrinsic &VPIntrin, EVT VT,
8097     const SmallVectorImpl<SDValue> &OpValues) {
8098   SDLoc DL = getCurSDLoc();
8099   Value *PtrOperand = VPIntrin.getArgOperand(0);
8100   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8101   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8102   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8103   SDValue LD;
8104   // Do not serialize variable-length loads of constant memory with
8105   // anything.
8106   if (!Alignment)
8107     Alignment = DAG.getEVTAlign(VT);
8108   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8109   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8110   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8111   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8112       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8113       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8114   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8115                      MMO, false /*IsExpanding */);
8116   if (AddToChain)
8117     PendingLoads.push_back(LD.getValue(1));
8118   setValue(&VPIntrin, LD);
8119 }
8120 
8121 void SelectionDAGBuilder::visitVPGather(
8122     const VPIntrinsic &VPIntrin, EVT VT,
8123     const SmallVectorImpl<SDValue> &OpValues) {
8124   SDLoc DL = getCurSDLoc();
8125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8126   Value *PtrOperand = VPIntrin.getArgOperand(0);
8127   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8128   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8129   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8130   SDValue LD;
8131   if (!Alignment)
8132     Alignment = DAG.getEVTAlign(VT.getScalarType());
8133   unsigned AS =
8134     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8135   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8136       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8137       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8138   SDValue Base, Index, Scale;
8139   ISD::MemIndexType IndexType;
8140   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8141                                     this, VPIntrin.getParent(),
8142                                     VT.getScalarStoreSize());
8143   if (!UniformBase) {
8144     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8145     Index = getValue(PtrOperand);
8146     IndexType = ISD::SIGNED_SCALED;
8147     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8148   }
8149   EVT IdxVT = Index.getValueType();
8150   EVT EltTy = IdxVT.getVectorElementType();
8151   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8152     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8153     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8154   }
8155   LD = DAG.getGatherVP(
8156       DAG.getVTList(VT, MVT::Other), VT, DL,
8157       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8158       IndexType);
8159   PendingLoads.push_back(LD.getValue(1));
8160   setValue(&VPIntrin, LD);
8161 }
8162 
8163 void SelectionDAGBuilder::visitVPStore(
8164     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8165   SDLoc DL = getCurSDLoc();
8166   Value *PtrOperand = VPIntrin.getArgOperand(1);
8167   EVT VT = OpValues[0].getValueType();
8168   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8169   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8170   SDValue ST;
8171   if (!Alignment)
8172     Alignment = DAG.getEVTAlign(VT);
8173   SDValue Ptr = OpValues[1];
8174   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8175   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8176       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8177       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8178   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8179                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8180                       /* IsTruncating */ false, /*IsCompressing*/ false);
8181   DAG.setRoot(ST);
8182   setValue(&VPIntrin, ST);
8183 }
8184 
8185 void SelectionDAGBuilder::visitVPScatter(
8186     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8187   SDLoc DL = getCurSDLoc();
8188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8189   Value *PtrOperand = VPIntrin.getArgOperand(1);
8190   EVT VT = OpValues[0].getValueType();
8191   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8192   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8193   SDValue ST;
8194   if (!Alignment)
8195     Alignment = DAG.getEVTAlign(VT.getScalarType());
8196   unsigned AS =
8197       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8198   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8199       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8200       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8201   SDValue Base, Index, Scale;
8202   ISD::MemIndexType IndexType;
8203   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
8204                                     this, VPIntrin.getParent(),
8205                                     VT.getScalarStoreSize());
8206   if (!UniformBase) {
8207     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8208     Index = getValue(PtrOperand);
8209     IndexType = ISD::SIGNED_SCALED;
8210     Scale =
8211       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8212   }
8213   EVT IdxVT = Index.getValueType();
8214   EVT EltTy = IdxVT.getVectorElementType();
8215   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8216     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
8217     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8218   }
8219   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8220                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8221                          OpValues[2], OpValues[3]},
8222                         MMO, IndexType);
8223   DAG.setRoot(ST);
8224   setValue(&VPIntrin, ST);
8225 }
8226 
8227 void SelectionDAGBuilder::visitVPStridedLoad(
8228     const VPIntrinsic &VPIntrin, EVT VT,
8229     const SmallVectorImpl<SDValue> &OpValues) {
8230   SDLoc DL = getCurSDLoc();
8231   Value *PtrOperand = VPIntrin.getArgOperand(0);
8232   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8233   if (!Alignment)
8234     Alignment = DAG.getEVTAlign(VT.getScalarType());
8235   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8236   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8237   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8238   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8239   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8240   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8241   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8242       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
8243       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8244 
8245   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8246                                     OpValues[2], OpValues[3], MMO,
8247                                     false /*IsExpanding*/);
8248 
8249   if (AddToChain)
8250     PendingLoads.push_back(LD.getValue(1));
8251   setValue(&VPIntrin, LD);
8252 }
8253 
8254 void SelectionDAGBuilder::visitVPStridedStore(
8255     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8256   SDLoc DL = getCurSDLoc();
8257   Value *PtrOperand = VPIntrin.getArgOperand(1);
8258   EVT VT = OpValues[0].getValueType();
8259   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8260   if (!Alignment)
8261     Alignment = DAG.getEVTAlign(VT.getScalarType());
8262   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8263   unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8264   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8265       MachinePointerInfo(AS), MachineMemOperand::MOStore,
8266       LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8267 
8268   SDValue ST = DAG.getStridedStoreVP(
8269       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8270       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8271       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8272       /*IsCompressing*/ false);
8273 
8274   DAG.setRoot(ST);
8275   setValue(&VPIntrin, ST);
8276 }
8277 
8278 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8279   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8280   SDLoc DL = getCurSDLoc();
8281 
8282   ISD::CondCode Condition;
8283   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8284   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8285   if (IsFP) {
8286     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8287     // flags, but calls that don't return floating-point types can't be
8288     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8289     Condition = getFCmpCondCode(CondCode);
8290     if (TM.Options.NoNaNsFPMath)
8291       Condition = getFCmpCodeWithoutNaN(Condition);
8292   } else {
8293     Condition = getICmpCondCode(CondCode);
8294   }
8295 
8296   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8297   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8298   // #2 is the condition code
8299   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8300   SDValue EVL = getValue(VPIntrin.getOperand(4));
8301   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8302   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8303          "Unexpected target EVL type");
8304   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8305 
8306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8307                                                         VPIntrin.getType());
8308   setValue(&VPIntrin,
8309            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8310 }
8311 
8312 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8313     const VPIntrinsic &VPIntrin) {
8314   SDLoc DL = getCurSDLoc();
8315   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8316 
8317   auto IID = VPIntrin.getIntrinsicID();
8318 
8319   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8320     return visitVPCmp(*CmpI);
8321 
8322   SmallVector<EVT, 4> ValueVTs;
8323   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8324   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8325   SDVTList VTs = DAG.getVTList(ValueVTs);
8326 
8327   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8328 
8329   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8330   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8331          "Unexpected target EVL type");
8332 
8333   // Request operands.
8334   SmallVector<SDValue, 7> OpValues;
8335   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8336     auto Op = getValue(VPIntrin.getArgOperand(I));
8337     if (I == EVLParamPos)
8338       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8339     OpValues.push_back(Op);
8340   }
8341 
8342   switch (Opcode) {
8343   default: {
8344     SDNodeFlags SDFlags;
8345     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8346       SDFlags.copyFMF(*FPMO);
8347     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8348     setValue(&VPIntrin, Result);
8349     break;
8350   }
8351   case ISD::VP_LOAD:
8352     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8353     break;
8354   case ISD::VP_GATHER:
8355     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8356     break;
8357   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8358     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8359     break;
8360   case ISD::VP_STORE:
8361     visitVPStore(VPIntrin, OpValues);
8362     break;
8363   case ISD::VP_SCATTER:
8364     visitVPScatter(VPIntrin, OpValues);
8365     break;
8366   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8367     visitVPStridedStore(VPIntrin, OpValues);
8368     break;
8369   case ISD::VP_FMULADD: {
8370     assert(OpValues.size() == 5 && "Unexpected number of operands");
8371     SDNodeFlags SDFlags;
8372     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8373       SDFlags.copyFMF(*FPMO);
8374     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8375         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8376       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8377     } else {
8378       SDValue Mul = DAG.getNode(
8379           ISD::VP_FMUL, DL, VTs,
8380           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8381       SDValue Add =
8382           DAG.getNode(ISD::VP_FADD, DL, VTs,
8383                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8384       setValue(&VPIntrin, Add);
8385     }
8386     break;
8387   }
8388   case ISD::VP_IS_FPCLASS: {
8389     const DataLayout DLayout = DAG.getDataLayout();
8390     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8391     auto Constant = OpValues[1]->getAsZExtVal();
8392     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8393     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8394                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8395     setValue(&VPIntrin, V);
8396     return;
8397   }
8398   case ISD::VP_INTTOPTR: {
8399     SDValue N = OpValues[0];
8400     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8401     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8402     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8403                                OpValues[2]);
8404     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8405                              OpValues[2]);
8406     setValue(&VPIntrin, N);
8407     break;
8408   }
8409   case ISD::VP_PTRTOINT: {
8410     SDValue N = OpValues[0];
8411     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8412                                                           VPIntrin.getType());
8413     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8414                                        VPIntrin.getOperand(0)->getType());
8415     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8416                                OpValues[2]);
8417     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8418                              OpValues[2]);
8419     setValue(&VPIntrin, N);
8420     break;
8421   }
8422   case ISD::VP_ABS:
8423   case ISD::VP_CTLZ:
8424   case ISD::VP_CTLZ_ZERO_UNDEF:
8425   case ISD::VP_CTTZ:
8426   case ISD::VP_CTTZ_ZERO_UNDEF: {
8427     SDValue Result =
8428         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8429     setValue(&VPIntrin, Result);
8430     break;
8431   }
8432   }
8433 }
8434 
8435 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8436                                           const BasicBlock *EHPadBB,
8437                                           MCSymbol *&BeginLabel) {
8438   MachineFunction &MF = DAG.getMachineFunction();
8439   MachineModuleInfo &MMI = MF.getMMI();
8440 
8441   // Insert a label before the invoke call to mark the try range.  This can be
8442   // used to detect deletion of the invoke via the MachineModuleInfo.
8443   BeginLabel = MMI.getContext().createTempSymbol();
8444 
8445   // For SjLj, keep track of which landing pads go with which invokes
8446   // so as to maintain the ordering of pads in the LSDA.
8447   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8448   if (CallSiteIndex) {
8449     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8450     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8451 
8452     // Now that the call site is handled, stop tracking it.
8453     MMI.setCurrentCallSite(0);
8454   }
8455 
8456   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8457 }
8458 
8459 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8460                                         const BasicBlock *EHPadBB,
8461                                         MCSymbol *BeginLabel) {
8462   assert(BeginLabel && "BeginLabel should've been set");
8463 
8464   MachineFunction &MF = DAG.getMachineFunction();
8465   MachineModuleInfo &MMI = MF.getMMI();
8466 
8467   // Insert a label at the end of the invoke call to mark the try range.  This
8468   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8469   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8470   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8471 
8472   // Inform MachineModuleInfo of range.
8473   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8474   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8475   // actually use outlined funclets and their LSDA info style.
8476   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8477     assert(II && "II should've been set");
8478     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8479     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8480   } else if (!isScopedEHPersonality(Pers)) {
8481     assert(EHPadBB);
8482     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8483   }
8484 
8485   return Chain;
8486 }
8487 
8488 std::pair<SDValue, SDValue>
8489 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8490                                     const BasicBlock *EHPadBB) {
8491   MCSymbol *BeginLabel = nullptr;
8492 
8493   if (EHPadBB) {
8494     // Both PendingLoads and PendingExports must be flushed here;
8495     // this call might not return.
8496     (void)getRoot();
8497     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8498     CLI.setChain(getRoot());
8499   }
8500 
8501   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8502   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8503 
8504   assert((CLI.IsTailCall || Result.second.getNode()) &&
8505          "Non-null chain expected with non-tail call!");
8506   assert((Result.second.getNode() || !Result.first.getNode()) &&
8507          "Null value expected with tail call!");
8508 
8509   if (!Result.second.getNode()) {
8510     // As a special case, a null chain means that a tail call has been emitted
8511     // and the DAG root is already updated.
8512     HasTailCall = true;
8513 
8514     // Since there's no actual continuation from this block, nothing can be
8515     // relying on us setting vregs for them.
8516     PendingExports.clear();
8517   } else {
8518     DAG.setRoot(Result.second);
8519   }
8520 
8521   if (EHPadBB) {
8522     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8523                            BeginLabel));
8524   }
8525 
8526   return Result;
8527 }
8528 
8529 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8530                                       bool isTailCall,
8531                                       bool isMustTailCall,
8532                                       const BasicBlock *EHPadBB) {
8533   auto &DL = DAG.getDataLayout();
8534   FunctionType *FTy = CB.getFunctionType();
8535   Type *RetTy = CB.getType();
8536 
8537   TargetLowering::ArgListTy Args;
8538   Args.reserve(CB.arg_size());
8539 
8540   const Value *SwiftErrorVal = nullptr;
8541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8542 
8543   if (isTailCall) {
8544     // Avoid emitting tail calls in functions with the disable-tail-calls
8545     // attribute.
8546     auto *Caller = CB.getParent()->getParent();
8547     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8548         "true" && !isMustTailCall)
8549       isTailCall = false;
8550 
8551     // We can't tail call inside a function with a swifterror argument. Lowering
8552     // does not support this yet. It would have to move into the swifterror
8553     // register before the call.
8554     if (TLI.supportSwiftError() &&
8555         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8556       isTailCall = false;
8557   }
8558 
8559   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8560     TargetLowering::ArgListEntry Entry;
8561     const Value *V = *I;
8562 
8563     // Skip empty types
8564     if (V->getType()->isEmptyTy())
8565       continue;
8566 
8567     SDValue ArgNode = getValue(V);
8568     Entry.Node = ArgNode; Entry.Ty = V->getType();
8569 
8570     Entry.setAttributes(&CB, I - CB.arg_begin());
8571 
8572     // Use swifterror virtual register as input to the call.
8573     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8574       SwiftErrorVal = V;
8575       // We find the virtual register for the actual swifterror argument.
8576       // Instead of using the Value, we use the virtual register instead.
8577       Entry.Node =
8578           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8579                           EVT(TLI.getPointerTy(DL)));
8580     }
8581 
8582     Args.push_back(Entry);
8583 
8584     // If we have an explicit sret argument that is an Instruction, (i.e., it
8585     // might point to function-local memory), we can't meaningfully tail-call.
8586     if (Entry.IsSRet && isa<Instruction>(V))
8587       isTailCall = false;
8588   }
8589 
8590   // If call site has a cfguardtarget operand bundle, create and add an
8591   // additional ArgListEntry.
8592   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8593     TargetLowering::ArgListEntry Entry;
8594     Value *V = Bundle->Inputs[0];
8595     SDValue ArgNode = getValue(V);
8596     Entry.Node = ArgNode;
8597     Entry.Ty = V->getType();
8598     Entry.IsCFGuardTarget = true;
8599     Args.push_back(Entry);
8600   }
8601 
8602   // Check if target-independent constraints permit a tail call here.
8603   // Target-dependent constraints are checked within TLI->LowerCallTo.
8604   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8605     isTailCall = false;
8606 
8607   // Disable tail calls if there is an swifterror argument. Targets have not
8608   // been updated to support tail calls.
8609   if (TLI.supportSwiftError() && SwiftErrorVal)
8610     isTailCall = false;
8611 
8612   ConstantInt *CFIType = nullptr;
8613   if (CB.isIndirectCall()) {
8614     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8615       if (!TLI.supportKCFIBundles())
8616         report_fatal_error(
8617             "Target doesn't support calls with kcfi operand bundles.");
8618       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8619       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8620     }
8621   }
8622 
8623   SDValue ConvControlToken;
8624   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8625     auto *Token = Bundle->Inputs[0].get();
8626     ConvControlToken = getValue(Token);
8627   }
8628 
8629   TargetLowering::CallLoweringInfo CLI(DAG);
8630   CLI.setDebugLoc(getCurSDLoc())
8631       .setChain(getRoot())
8632       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8633       .setTailCall(isTailCall)
8634       .setConvergent(CB.isConvergent())
8635       .setIsPreallocated(
8636           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8637       .setCFIType(CFIType)
8638       .setConvergenceControlToken(ConvControlToken);
8639   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8640 
8641   if (Result.first.getNode()) {
8642     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8643     setValue(&CB, Result.first);
8644   }
8645 
8646   // The last element of CLI.InVals has the SDValue for swifterror return.
8647   // Here we copy it to a virtual register and update SwiftErrorMap for
8648   // book-keeping.
8649   if (SwiftErrorVal && TLI.supportSwiftError()) {
8650     // Get the last element of InVals.
8651     SDValue Src = CLI.InVals.back();
8652     Register VReg =
8653         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8654     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8655     DAG.setRoot(CopyNode);
8656   }
8657 }
8658 
8659 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8660                              SelectionDAGBuilder &Builder) {
8661   // Check to see if this load can be trivially constant folded, e.g. if the
8662   // input is from a string literal.
8663   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8664     // Cast pointer to the type we really want to load.
8665     Type *LoadTy =
8666         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8667     if (LoadVT.isVector())
8668       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8669 
8670     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8671                                          PointerType::getUnqual(LoadTy));
8672 
8673     if (const Constant *LoadCst =
8674             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8675                                          LoadTy, Builder.DAG.getDataLayout()))
8676       return Builder.getValue(LoadCst);
8677   }
8678 
8679   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8680   // still constant memory, the input chain can be the entry node.
8681   SDValue Root;
8682   bool ConstantMemory = false;
8683 
8684   // Do not serialize (non-volatile) loads of constant memory with anything.
8685   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8686     Root = Builder.DAG.getEntryNode();
8687     ConstantMemory = true;
8688   } else {
8689     // Do not serialize non-volatile loads against each other.
8690     Root = Builder.DAG.getRoot();
8691   }
8692 
8693   SDValue Ptr = Builder.getValue(PtrVal);
8694   SDValue LoadVal =
8695       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8696                           MachinePointerInfo(PtrVal), Align(1));
8697 
8698   if (!ConstantMemory)
8699     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8700   return LoadVal;
8701 }
8702 
8703 /// Record the value for an instruction that produces an integer result,
8704 /// converting the type where necessary.
8705 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8706                                                   SDValue Value,
8707                                                   bool IsSigned) {
8708   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8709                                                     I.getType(), true);
8710   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8711   setValue(&I, Value);
8712 }
8713 
8714 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8715 /// true and lower it. Otherwise return false, and it will be lowered like a
8716 /// normal call.
8717 /// The caller already checked that \p I calls the appropriate LibFunc with a
8718 /// correct prototype.
8719 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8720   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8721   const Value *Size = I.getArgOperand(2);
8722   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8723   if (CSize && CSize->getZExtValue() == 0) {
8724     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8725                                                           I.getType(), true);
8726     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8727     return true;
8728   }
8729 
8730   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8731   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8732       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8733       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8734   if (Res.first.getNode()) {
8735     processIntegerCallValue(I, Res.first, true);
8736     PendingLoads.push_back(Res.second);
8737     return true;
8738   }
8739 
8740   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8741   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8742   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8743     return false;
8744 
8745   // If the target has a fast compare for the given size, it will return a
8746   // preferred load type for that size. Require that the load VT is legal and
8747   // that the target supports unaligned loads of that type. Otherwise, return
8748   // INVALID.
8749   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8750     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8751     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8752     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8753       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8754       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8755       // TODO: Check alignment of src and dest ptrs.
8756       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8757       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8758       if (!TLI.isTypeLegal(LVT) ||
8759           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8760           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8761         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8762     }
8763 
8764     return LVT;
8765   };
8766 
8767   // This turns into unaligned loads. We only do this if the target natively
8768   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8769   // we'll only produce a small number of byte loads.
8770   MVT LoadVT;
8771   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8772   switch (NumBitsToCompare) {
8773   default:
8774     return false;
8775   case 16:
8776     LoadVT = MVT::i16;
8777     break;
8778   case 32:
8779     LoadVT = MVT::i32;
8780     break;
8781   case 64:
8782   case 128:
8783   case 256:
8784     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8785     break;
8786   }
8787 
8788   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8789     return false;
8790 
8791   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8792   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8793 
8794   // Bitcast to a wide integer type if the loads are vectors.
8795   if (LoadVT.isVector()) {
8796     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8797     LoadL = DAG.getBitcast(CmpVT, LoadL);
8798     LoadR = DAG.getBitcast(CmpVT, LoadR);
8799   }
8800 
8801   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8802   processIntegerCallValue(I, Cmp, false);
8803   return true;
8804 }
8805 
8806 /// See if we can lower a memchr call into an optimized form. If so, return
8807 /// true and lower it. Otherwise return false, and it will be lowered like a
8808 /// normal call.
8809 /// The caller already checked that \p I calls the appropriate LibFunc with a
8810 /// correct prototype.
8811 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8812   const Value *Src = I.getArgOperand(0);
8813   const Value *Char = I.getArgOperand(1);
8814   const Value *Length = I.getArgOperand(2);
8815 
8816   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8817   std::pair<SDValue, SDValue> Res =
8818     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8819                                 getValue(Src), getValue(Char), getValue(Length),
8820                                 MachinePointerInfo(Src));
8821   if (Res.first.getNode()) {
8822     setValue(&I, Res.first);
8823     PendingLoads.push_back(Res.second);
8824     return true;
8825   }
8826 
8827   return false;
8828 }
8829 
8830 /// See if we can lower a mempcpy call into an optimized form. If so, return
8831 /// true and lower it. Otherwise return false, and it will be lowered like a
8832 /// normal call.
8833 /// The caller already checked that \p I calls the appropriate LibFunc with a
8834 /// correct prototype.
8835 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8836   SDValue Dst = getValue(I.getArgOperand(0));
8837   SDValue Src = getValue(I.getArgOperand(1));
8838   SDValue Size = getValue(I.getArgOperand(2));
8839 
8840   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8841   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8842   // DAG::getMemcpy needs Alignment to be defined.
8843   Align Alignment = std::min(DstAlign, SrcAlign);
8844 
8845   SDLoc sdl = getCurSDLoc();
8846 
8847   // In the mempcpy context we need to pass in a false value for isTailCall
8848   // because the return pointer needs to be adjusted by the size of
8849   // the copied memory.
8850   SDValue Root = getMemoryRoot();
8851   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8852                              /*isTailCall=*/false,
8853                              MachinePointerInfo(I.getArgOperand(0)),
8854                              MachinePointerInfo(I.getArgOperand(1)),
8855                              I.getAAMetadata());
8856   assert(MC.getNode() != nullptr &&
8857          "** memcpy should not be lowered as TailCall in mempcpy context **");
8858   DAG.setRoot(MC);
8859 
8860   // Check if Size needs to be truncated or extended.
8861   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8862 
8863   // Adjust return pointer to point just past the last dst byte.
8864   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8865                                     Dst, Size);
8866   setValue(&I, DstPlusSize);
8867   return true;
8868 }
8869 
8870 /// See if we can lower a strcpy call into an optimized form.  If so, return
8871 /// true and lower it, otherwise return false and it will be lowered like a
8872 /// normal call.
8873 /// The caller already checked that \p I calls the appropriate LibFunc with a
8874 /// correct prototype.
8875 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8876   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8877 
8878   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8879   std::pair<SDValue, SDValue> Res =
8880     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8881                                 getValue(Arg0), getValue(Arg1),
8882                                 MachinePointerInfo(Arg0),
8883                                 MachinePointerInfo(Arg1), isStpcpy);
8884   if (Res.first.getNode()) {
8885     setValue(&I, Res.first);
8886     DAG.setRoot(Res.second);
8887     return true;
8888   }
8889 
8890   return false;
8891 }
8892 
8893 /// See if we can lower a strcmp call into an optimized form.  If so, return
8894 /// true and lower it, otherwise return false and it will be lowered like a
8895 /// normal call.
8896 /// The caller already checked that \p I calls the appropriate LibFunc with a
8897 /// correct prototype.
8898 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8899   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8900 
8901   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8902   std::pair<SDValue, SDValue> Res =
8903     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8904                                 getValue(Arg0), getValue(Arg1),
8905                                 MachinePointerInfo(Arg0),
8906                                 MachinePointerInfo(Arg1));
8907   if (Res.first.getNode()) {
8908     processIntegerCallValue(I, Res.first, true);
8909     PendingLoads.push_back(Res.second);
8910     return true;
8911   }
8912 
8913   return false;
8914 }
8915 
8916 /// See if we can lower a strlen call into an optimized form.  If so, return
8917 /// true and lower it, otherwise return false and it will be lowered like a
8918 /// normal call.
8919 /// The caller already checked that \p I calls the appropriate LibFunc with a
8920 /// correct prototype.
8921 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8922   const Value *Arg0 = I.getArgOperand(0);
8923 
8924   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8925   std::pair<SDValue, SDValue> Res =
8926     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8927                                 getValue(Arg0), MachinePointerInfo(Arg0));
8928   if (Res.first.getNode()) {
8929     processIntegerCallValue(I, Res.first, false);
8930     PendingLoads.push_back(Res.second);
8931     return true;
8932   }
8933 
8934   return false;
8935 }
8936 
8937 /// See if we can lower a strnlen call into an optimized form.  If so, return
8938 /// true and lower it, otherwise return false and it will be lowered like a
8939 /// normal call.
8940 /// The caller already checked that \p I calls the appropriate LibFunc with a
8941 /// correct prototype.
8942 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8943   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8944 
8945   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8946   std::pair<SDValue, SDValue> Res =
8947     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8948                                  getValue(Arg0), getValue(Arg1),
8949                                  MachinePointerInfo(Arg0));
8950   if (Res.first.getNode()) {
8951     processIntegerCallValue(I, Res.first, false);
8952     PendingLoads.push_back(Res.second);
8953     return true;
8954   }
8955 
8956   return false;
8957 }
8958 
8959 /// See if we can lower a unary floating-point operation into an SDNode with
8960 /// the specified Opcode.  If so, return true and lower it, otherwise return
8961 /// false and it will be lowered like a normal call.
8962 /// The caller already checked that \p I calls the appropriate LibFunc with a
8963 /// correct prototype.
8964 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8965                                               unsigned Opcode) {
8966   // We already checked this call's prototype; verify it doesn't modify errno.
8967   if (!I.onlyReadsMemory())
8968     return false;
8969 
8970   SDNodeFlags Flags;
8971   Flags.copyFMF(cast<FPMathOperator>(I));
8972 
8973   SDValue Tmp = getValue(I.getArgOperand(0));
8974   setValue(&I,
8975            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8976   return true;
8977 }
8978 
8979 /// See if we can lower a binary floating-point operation into an SDNode with
8980 /// the specified Opcode. If so, return true and lower it. Otherwise return
8981 /// false, and it will be lowered like a normal call.
8982 /// The caller already checked that \p I calls the appropriate LibFunc with a
8983 /// correct prototype.
8984 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8985                                                unsigned Opcode) {
8986   // We already checked this call's prototype; verify it doesn't modify errno.
8987   if (!I.onlyReadsMemory())
8988     return false;
8989 
8990   SDNodeFlags Flags;
8991   Flags.copyFMF(cast<FPMathOperator>(I));
8992 
8993   SDValue Tmp0 = getValue(I.getArgOperand(0));
8994   SDValue Tmp1 = getValue(I.getArgOperand(1));
8995   EVT VT = Tmp0.getValueType();
8996   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8997   return true;
8998 }
8999 
9000 void SelectionDAGBuilder::visitCall(const CallInst &I) {
9001   // Handle inline assembly differently.
9002   if (I.isInlineAsm()) {
9003     visitInlineAsm(I);
9004     return;
9005   }
9006 
9007   diagnoseDontCall(I);
9008 
9009   if (Function *F = I.getCalledFunction()) {
9010     if (F->isDeclaration()) {
9011       // Is this an LLVM intrinsic or a target-specific intrinsic?
9012       unsigned IID = F->getIntrinsicID();
9013       if (!IID)
9014         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
9015           IID = II->getIntrinsicID(F);
9016 
9017       if (IID) {
9018         visitIntrinsicCall(I, IID);
9019         return;
9020       }
9021     }
9022 
9023     // Check for well-known libc/libm calls.  If the function is internal, it
9024     // can't be a library call.  Don't do the check if marked as nobuiltin for
9025     // some reason or the call site requires strict floating point semantics.
9026     LibFunc Func;
9027     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
9028         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
9029         LibInfo->hasOptimizedCodeGen(Func)) {
9030       switch (Func) {
9031       default: break;
9032       case LibFunc_bcmp:
9033         if (visitMemCmpBCmpCall(I))
9034           return;
9035         break;
9036       case LibFunc_copysign:
9037       case LibFunc_copysignf:
9038       case LibFunc_copysignl:
9039         // We already checked this call's prototype; verify it doesn't modify
9040         // errno.
9041         if (I.onlyReadsMemory()) {
9042           SDValue LHS = getValue(I.getArgOperand(0));
9043           SDValue RHS = getValue(I.getArgOperand(1));
9044           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
9045                                    LHS.getValueType(), LHS, RHS));
9046           return;
9047         }
9048         break;
9049       case LibFunc_fabs:
9050       case LibFunc_fabsf:
9051       case LibFunc_fabsl:
9052         if (visitUnaryFloatCall(I, ISD::FABS))
9053           return;
9054         break;
9055       case LibFunc_fmin:
9056       case LibFunc_fminf:
9057       case LibFunc_fminl:
9058         if (visitBinaryFloatCall(I, ISD::FMINNUM))
9059           return;
9060         break;
9061       case LibFunc_fmax:
9062       case LibFunc_fmaxf:
9063       case LibFunc_fmaxl:
9064         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
9065           return;
9066         break;
9067       case LibFunc_sin:
9068       case LibFunc_sinf:
9069       case LibFunc_sinl:
9070         if (visitUnaryFloatCall(I, ISD::FSIN))
9071           return;
9072         break;
9073       case LibFunc_cos:
9074       case LibFunc_cosf:
9075       case LibFunc_cosl:
9076         if (visitUnaryFloatCall(I, ISD::FCOS))
9077           return;
9078         break;
9079       case LibFunc_sqrt:
9080       case LibFunc_sqrtf:
9081       case LibFunc_sqrtl:
9082       case LibFunc_sqrt_finite:
9083       case LibFunc_sqrtf_finite:
9084       case LibFunc_sqrtl_finite:
9085         if (visitUnaryFloatCall(I, ISD::FSQRT))
9086           return;
9087         break;
9088       case LibFunc_floor:
9089       case LibFunc_floorf:
9090       case LibFunc_floorl:
9091         if (visitUnaryFloatCall(I, ISD::FFLOOR))
9092           return;
9093         break;
9094       case LibFunc_nearbyint:
9095       case LibFunc_nearbyintf:
9096       case LibFunc_nearbyintl:
9097         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
9098           return;
9099         break;
9100       case LibFunc_ceil:
9101       case LibFunc_ceilf:
9102       case LibFunc_ceill:
9103         if (visitUnaryFloatCall(I, ISD::FCEIL))
9104           return;
9105         break;
9106       case LibFunc_rint:
9107       case LibFunc_rintf:
9108       case LibFunc_rintl:
9109         if (visitUnaryFloatCall(I, ISD::FRINT))
9110           return;
9111         break;
9112       case LibFunc_round:
9113       case LibFunc_roundf:
9114       case LibFunc_roundl:
9115         if (visitUnaryFloatCall(I, ISD::FROUND))
9116           return;
9117         break;
9118       case LibFunc_trunc:
9119       case LibFunc_truncf:
9120       case LibFunc_truncl:
9121         if (visitUnaryFloatCall(I, ISD::FTRUNC))
9122           return;
9123         break;
9124       case LibFunc_log2:
9125       case LibFunc_log2f:
9126       case LibFunc_log2l:
9127         if (visitUnaryFloatCall(I, ISD::FLOG2))
9128           return;
9129         break;
9130       case LibFunc_exp2:
9131       case LibFunc_exp2f:
9132       case LibFunc_exp2l:
9133         if (visitUnaryFloatCall(I, ISD::FEXP2))
9134           return;
9135         break;
9136       case LibFunc_exp10:
9137       case LibFunc_exp10f:
9138       case LibFunc_exp10l:
9139         if (visitUnaryFloatCall(I, ISD::FEXP10))
9140           return;
9141         break;
9142       case LibFunc_ldexp:
9143       case LibFunc_ldexpf:
9144       case LibFunc_ldexpl:
9145         if (visitBinaryFloatCall(I, ISD::FLDEXP))
9146           return;
9147         break;
9148       case LibFunc_memcmp:
9149         if (visitMemCmpBCmpCall(I))
9150           return;
9151         break;
9152       case LibFunc_mempcpy:
9153         if (visitMemPCpyCall(I))
9154           return;
9155         break;
9156       case LibFunc_memchr:
9157         if (visitMemChrCall(I))
9158           return;
9159         break;
9160       case LibFunc_strcpy:
9161         if (visitStrCpyCall(I, false))
9162           return;
9163         break;
9164       case LibFunc_stpcpy:
9165         if (visitStrCpyCall(I, true))
9166           return;
9167         break;
9168       case LibFunc_strcmp:
9169         if (visitStrCmpCall(I))
9170           return;
9171         break;
9172       case LibFunc_strlen:
9173         if (visitStrLenCall(I))
9174           return;
9175         break;
9176       case LibFunc_strnlen:
9177         if (visitStrNLenCall(I))
9178           return;
9179         break;
9180       }
9181     }
9182   }
9183 
9184   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9185   // have to do anything here to lower funclet bundles.
9186   // CFGuardTarget bundles are lowered in LowerCallTo.
9187   assert(!I.hasOperandBundlesOtherThan(
9188              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
9189               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
9190               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi,
9191               LLVMContext::OB_convergencectrl}) &&
9192          "Cannot lower calls with arbitrary operand bundles!");
9193 
9194   SDValue Callee = getValue(I.getCalledOperand());
9195 
9196   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
9197     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9198   else
9199     // Check if we can potentially perform a tail call. More detailed checking
9200     // is be done within LowerCallTo, after more information about the call is
9201     // known.
9202     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9203 }
9204 
9205 namespace {
9206 
9207 /// AsmOperandInfo - This contains information for each constraint that we are
9208 /// lowering.
9209 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9210 public:
9211   /// CallOperand - If this is the result output operand or a clobber
9212   /// this is null, otherwise it is the incoming operand to the CallInst.
9213   /// This gets modified as the asm is processed.
9214   SDValue CallOperand;
9215 
9216   /// AssignedRegs - If this is a register or register class operand, this
9217   /// contains the set of register corresponding to the operand.
9218   RegsForValue AssignedRegs;
9219 
9220   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9221     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9222   }
9223 
9224   /// Whether or not this operand accesses memory
9225   bool hasMemory(const TargetLowering &TLI) const {
9226     // Indirect operand accesses access memory.
9227     if (isIndirect)
9228       return true;
9229 
9230     for (const auto &Code : Codes)
9231       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
9232         return true;
9233 
9234     return false;
9235   }
9236 };
9237 
9238 
9239 } // end anonymous namespace
9240 
9241 /// Make sure that the output operand \p OpInfo and its corresponding input
9242 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9243 /// out).
9244 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9245                                SDISelAsmOperandInfo &MatchingOpInfo,
9246                                SelectionDAG &DAG) {
9247   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9248     return;
9249 
9250   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9251   const auto &TLI = DAG.getTargetLoweringInfo();
9252 
9253   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9254       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9255                                        OpInfo.ConstraintVT);
9256   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9257       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9258                                        MatchingOpInfo.ConstraintVT);
9259   if ((OpInfo.ConstraintVT.isInteger() !=
9260        MatchingOpInfo.ConstraintVT.isInteger()) ||
9261       (MatchRC.second != InputRC.second)) {
9262     // FIXME: error out in a more elegant fashion
9263     report_fatal_error("Unsupported asm: input constraint"
9264                        " with a matching output constraint of"
9265                        " incompatible type!");
9266   }
9267   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9268 }
9269 
9270 /// Get a direct memory input to behave well as an indirect operand.
9271 /// This may introduce stores, hence the need for a \p Chain.
9272 /// \return The (possibly updated) chain.
9273 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9274                                         SDISelAsmOperandInfo &OpInfo,
9275                                         SelectionDAG &DAG) {
9276   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9277 
9278   // If we don't have an indirect input, put it in the constpool if we can,
9279   // otherwise spill it to a stack slot.
9280   // TODO: This isn't quite right. We need to handle these according to
9281   // the addressing mode that the constraint wants. Also, this may take
9282   // an additional register for the computation and we don't want that
9283   // either.
9284 
9285   // If the operand is a float, integer, or vector constant, spill to a
9286   // constant pool entry to get its address.
9287   const Value *OpVal = OpInfo.CallOperandVal;
9288   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9289       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9290     OpInfo.CallOperand = DAG.getConstantPool(
9291         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9292     return Chain;
9293   }
9294 
9295   // Otherwise, create a stack slot and emit a store to it before the asm.
9296   Type *Ty = OpVal->getType();
9297   auto &DL = DAG.getDataLayout();
9298   uint64_t TySize = DL.getTypeAllocSize(Ty);
9299   MachineFunction &MF = DAG.getMachineFunction();
9300   int SSFI = MF.getFrameInfo().CreateStackObject(
9301       TySize, DL.getPrefTypeAlign(Ty), false);
9302   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9303   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9304                             MachinePointerInfo::getFixedStack(MF, SSFI),
9305                             TLI.getMemValueType(DL, Ty));
9306   OpInfo.CallOperand = StackSlot;
9307 
9308   return Chain;
9309 }
9310 
9311 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9312 /// specified operand.  We prefer to assign virtual registers, to allow the
9313 /// register allocator to handle the assignment process.  However, if the asm
9314 /// uses features that we can't model on machineinstrs, we have SDISel do the
9315 /// allocation.  This produces generally horrible, but correct, code.
9316 ///
9317 ///   OpInfo describes the operand
9318 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9319 static std::optional<unsigned>
9320 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9321                      SDISelAsmOperandInfo &OpInfo,
9322                      SDISelAsmOperandInfo &RefOpInfo) {
9323   LLVMContext &Context = *DAG.getContext();
9324   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9325 
9326   MachineFunction &MF = DAG.getMachineFunction();
9327   SmallVector<unsigned, 4> Regs;
9328   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9329 
9330   // No work to do for memory/address operands.
9331   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9332       OpInfo.ConstraintType == TargetLowering::C_Address)
9333     return std::nullopt;
9334 
9335   // If this is a constraint for a single physreg, or a constraint for a
9336   // register class, find it.
9337   unsigned AssignedReg;
9338   const TargetRegisterClass *RC;
9339   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9340       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9341   // RC is unset only on failure. Return immediately.
9342   if (!RC)
9343     return std::nullopt;
9344 
9345   // Get the actual register value type.  This is important, because the user
9346   // may have asked for (e.g.) the AX register in i32 type.  We need to
9347   // remember that AX is actually i16 to get the right extension.
9348   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9349 
9350   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9351     // If this is an FP operand in an integer register (or visa versa), or more
9352     // generally if the operand value disagrees with the register class we plan
9353     // to stick it in, fix the operand type.
9354     //
9355     // If this is an input value, the bitcast to the new type is done now.
9356     // Bitcast for output value is done at the end of visitInlineAsm().
9357     if ((OpInfo.Type == InlineAsm::isOutput ||
9358          OpInfo.Type == InlineAsm::isInput) &&
9359         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9360       // Try to convert to the first EVT that the reg class contains.  If the
9361       // types are identical size, use a bitcast to convert (e.g. two differing
9362       // vector types).  Note: output bitcast is done at the end of
9363       // visitInlineAsm().
9364       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9365         // Exclude indirect inputs while they are unsupported because the code
9366         // to perform the load is missing and thus OpInfo.CallOperand still
9367         // refers to the input address rather than the pointed-to value.
9368         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9369           OpInfo.CallOperand =
9370               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9371         OpInfo.ConstraintVT = RegVT;
9372         // If the operand is an FP value and we want it in integer registers,
9373         // use the corresponding integer type. This turns an f64 value into
9374         // i64, which can be passed with two i32 values on a 32-bit machine.
9375       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9376         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9377         if (OpInfo.Type == InlineAsm::isInput)
9378           OpInfo.CallOperand =
9379               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9380         OpInfo.ConstraintVT = VT;
9381       }
9382     }
9383   }
9384 
9385   // No need to allocate a matching input constraint since the constraint it's
9386   // matching to has already been allocated.
9387   if (OpInfo.isMatchingInputConstraint())
9388     return std::nullopt;
9389 
9390   EVT ValueVT = OpInfo.ConstraintVT;
9391   if (OpInfo.ConstraintVT == MVT::Other)
9392     ValueVT = RegVT;
9393 
9394   // Initialize NumRegs.
9395   unsigned NumRegs = 1;
9396   if (OpInfo.ConstraintVT != MVT::Other)
9397     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9398 
9399   // If this is a constraint for a specific physical register, like {r17},
9400   // assign it now.
9401 
9402   // If this associated to a specific register, initialize iterator to correct
9403   // place. If virtual, make sure we have enough registers
9404 
9405   // Initialize iterator if necessary
9406   TargetRegisterClass::iterator I = RC->begin();
9407   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9408 
9409   // Do not check for single registers.
9410   if (AssignedReg) {
9411     I = std::find(I, RC->end(), AssignedReg);
9412     if (I == RC->end()) {
9413       // RC does not contain the selected register, which indicates a
9414       // mismatch between the register and the required type/bitwidth.
9415       return {AssignedReg};
9416     }
9417   }
9418 
9419   for (; NumRegs; --NumRegs, ++I) {
9420     assert(I != RC->end() && "Ran out of registers to allocate!");
9421     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9422     Regs.push_back(R);
9423   }
9424 
9425   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9426   return std::nullopt;
9427 }
9428 
9429 static unsigned
9430 findMatchingInlineAsmOperand(unsigned OperandNo,
9431                              const std::vector<SDValue> &AsmNodeOperands) {
9432   // Scan until we find the definition we already emitted of this operand.
9433   unsigned CurOp = InlineAsm::Op_FirstOperand;
9434   for (; OperandNo; --OperandNo) {
9435     // Advance to the next operand.
9436     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9437     const InlineAsm::Flag F(OpFlag);
9438     assert(
9439         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9440         "Skipped past definitions?");
9441     CurOp += F.getNumOperandRegisters() + 1;
9442   }
9443   return CurOp;
9444 }
9445 
9446 namespace {
9447 
9448 class ExtraFlags {
9449   unsigned Flags = 0;
9450 
9451 public:
9452   explicit ExtraFlags(const CallBase &Call) {
9453     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9454     if (IA->hasSideEffects())
9455       Flags |= InlineAsm::Extra_HasSideEffects;
9456     if (IA->isAlignStack())
9457       Flags |= InlineAsm::Extra_IsAlignStack;
9458     if (Call.isConvergent())
9459       Flags |= InlineAsm::Extra_IsConvergent;
9460     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9461   }
9462 
9463   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9464     // Ideally, we would only check against memory constraints.  However, the
9465     // meaning of an Other constraint can be target-specific and we can't easily
9466     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9467     // for Other constraints as well.
9468     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9469         OpInfo.ConstraintType == TargetLowering::C_Other) {
9470       if (OpInfo.Type == InlineAsm::isInput)
9471         Flags |= InlineAsm::Extra_MayLoad;
9472       else if (OpInfo.Type == InlineAsm::isOutput)
9473         Flags |= InlineAsm::Extra_MayStore;
9474       else if (OpInfo.Type == InlineAsm::isClobber)
9475         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9476     }
9477   }
9478 
9479   unsigned get() const { return Flags; }
9480 };
9481 
9482 } // end anonymous namespace
9483 
9484 static bool isFunction(SDValue Op) {
9485   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9486     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9487       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9488 
9489       // In normal "call dllimport func" instruction (non-inlineasm) it force
9490       // indirect access by specifing call opcode. And usually specially print
9491       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9492       // not do in this way now. (In fact, this is similar with "Data Access"
9493       // action). So here we ignore dllimport function.
9494       if (Fn && !Fn->hasDLLImportStorageClass())
9495         return true;
9496     }
9497   }
9498   return false;
9499 }
9500 
9501 /// visitInlineAsm - Handle a call to an InlineAsm object.
9502 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9503                                          const BasicBlock *EHPadBB) {
9504   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9505 
9506   /// ConstraintOperands - Information about all of the constraints.
9507   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9508 
9509   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9510   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9511       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9512 
9513   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9514   // AsmDialect, MayLoad, MayStore).
9515   bool HasSideEffect = IA->hasSideEffects();
9516   ExtraFlags ExtraInfo(Call);
9517 
9518   for (auto &T : TargetConstraints) {
9519     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9520     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9521 
9522     if (OpInfo.CallOperandVal)
9523       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9524 
9525     if (!HasSideEffect)
9526       HasSideEffect = OpInfo.hasMemory(TLI);
9527 
9528     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9529     // FIXME: Could we compute this on OpInfo rather than T?
9530 
9531     // Compute the constraint code and ConstraintType to use.
9532     TLI.ComputeConstraintToUse(T, SDValue());
9533 
9534     if (T.ConstraintType == TargetLowering::C_Immediate &&
9535         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9536       // We've delayed emitting a diagnostic like the "n" constraint because
9537       // inlining could cause an integer showing up.
9538       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9539                                           "' expects an integer constant "
9540                                           "expression");
9541 
9542     ExtraInfo.update(T);
9543   }
9544 
9545   // We won't need to flush pending loads if this asm doesn't touch
9546   // memory and is nonvolatile.
9547   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9548 
9549   bool EmitEHLabels = isa<InvokeInst>(Call);
9550   if (EmitEHLabels) {
9551     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9552   }
9553   bool IsCallBr = isa<CallBrInst>(Call);
9554 
9555   if (IsCallBr || EmitEHLabels) {
9556     // If this is a callbr or invoke we need to flush pending exports since
9557     // inlineasm_br and invoke are terminators.
9558     // We need to do this before nodes are glued to the inlineasm_br node.
9559     Chain = getControlRoot();
9560   }
9561 
9562   MCSymbol *BeginLabel = nullptr;
9563   if (EmitEHLabels) {
9564     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9565   }
9566 
9567   int OpNo = -1;
9568   SmallVector<StringRef> AsmStrs;
9569   IA->collectAsmStrs(AsmStrs);
9570 
9571   // Second pass over the constraints: compute which constraint option to use.
9572   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9573     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9574       OpNo++;
9575 
9576     // If this is an output operand with a matching input operand, look up the
9577     // matching input. If their types mismatch, e.g. one is an integer, the
9578     // other is floating point, or their sizes are different, flag it as an
9579     // error.
9580     if (OpInfo.hasMatchingInput()) {
9581       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9582       patchMatchingInput(OpInfo, Input, DAG);
9583     }
9584 
9585     // Compute the constraint code and ConstraintType to use.
9586     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9587 
9588     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9589          OpInfo.Type == InlineAsm::isClobber) ||
9590         OpInfo.ConstraintType == TargetLowering::C_Address)
9591       continue;
9592 
9593     // In Linux PIC model, there are 4 cases about value/label addressing:
9594     //
9595     // 1: Function call or Label jmp inside the module.
9596     // 2: Data access (such as global variable, static variable) inside module.
9597     // 3: Function call or Label jmp outside the module.
9598     // 4: Data access (such as global variable) outside the module.
9599     //
9600     // Due to current llvm inline asm architecture designed to not "recognize"
9601     // the asm code, there are quite troubles for us to treat mem addressing
9602     // differently for same value/adress used in different instuctions.
9603     // For example, in pic model, call a func may in plt way or direclty
9604     // pc-related, but lea/mov a function adress may use got.
9605     //
9606     // Here we try to "recognize" function call for the case 1 and case 3 in
9607     // inline asm. And try to adjust the constraint for them.
9608     //
9609     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9610     // label, so here we don't handle jmp function label now, but we need to
9611     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9612     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9613         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9614         TM.getCodeModel() != CodeModel::Large) {
9615       OpInfo.isIndirect = false;
9616       OpInfo.ConstraintType = TargetLowering::C_Address;
9617     }
9618 
9619     // If this is a memory input, and if the operand is not indirect, do what we
9620     // need to provide an address for the memory input.
9621     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9622         !OpInfo.isIndirect) {
9623       assert((OpInfo.isMultipleAlternative ||
9624               (OpInfo.Type == InlineAsm::isInput)) &&
9625              "Can only indirectify direct input operands!");
9626 
9627       // Memory operands really want the address of the value.
9628       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9629 
9630       // There is no longer a Value* corresponding to this operand.
9631       OpInfo.CallOperandVal = nullptr;
9632 
9633       // It is now an indirect operand.
9634       OpInfo.isIndirect = true;
9635     }
9636 
9637   }
9638 
9639   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9640   std::vector<SDValue> AsmNodeOperands;
9641   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9642   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9643       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9644 
9645   // If we have a !srcloc metadata node associated with it, we want to attach
9646   // this to the ultimately generated inline asm machineinstr.  To do this, we
9647   // pass in the third operand as this (potentially null) inline asm MDNode.
9648   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9649   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9650 
9651   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9652   // bits as operand 3.
9653   AsmNodeOperands.push_back(DAG.getTargetConstant(
9654       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9655 
9656   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9657   // this, assign virtual and physical registers for inputs and otput.
9658   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9659     // Assign Registers.
9660     SDISelAsmOperandInfo &RefOpInfo =
9661         OpInfo.isMatchingInputConstraint()
9662             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9663             : OpInfo;
9664     const auto RegError =
9665         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9666     if (RegError) {
9667       const MachineFunction &MF = DAG.getMachineFunction();
9668       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9669       const char *RegName = TRI.getName(*RegError);
9670       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9671                                    "' allocated for constraint '" +
9672                                    Twine(OpInfo.ConstraintCode) +
9673                                    "' does not match required type");
9674       return;
9675     }
9676 
9677     auto DetectWriteToReservedRegister = [&]() {
9678       const MachineFunction &MF = DAG.getMachineFunction();
9679       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9680       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9681         if (Register::isPhysicalRegister(Reg) &&
9682             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9683           const char *RegName = TRI.getName(Reg);
9684           emitInlineAsmError(Call, "write to reserved register '" +
9685                                        Twine(RegName) + "'");
9686           return true;
9687         }
9688       }
9689       return false;
9690     };
9691     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9692             (OpInfo.Type == InlineAsm::isInput &&
9693              !OpInfo.isMatchingInputConstraint())) &&
9694            "Only address as input operand is allowed.");
9695 
9696     switch (OpInfo.Type) {
9697     case InlineAsm::isOutput:
9698       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9699         const InlineAsm::ConstraintCode ConstraintID =
9700             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9701         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9702                "Failed to convert memory constraint code to constraint id.");
9703 
9704         // Add information to the INLINEASM node to know about this output.
9705         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9706         OpFlags.setMemConstraint(ConstraintID);
9707         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9708                                                         MVT::i32));
9709         AsmNodeOperands.push_back(OpInfo.CallOperand);
9710       } else {
9711         // Otherwise, this outputs to a register (directly for C_Register /
9712         // C_RegisterClass, and a target-defined fashion for
9713         // C_Immediate/C_Other). Find a register that we can use.
9714         if (OpInfo.AssignedRegs.Regs.empty()) {
9715           emitInlineAsmError(
9716               Call, "couldn't allocate output register for constraint '" +
9717                         Twine(OpInfo.ConstraintCode) + "'");
9718           return;
9719         }
9720 
9721         if (DetectWriteToReservedRegister())
9722           return;
9723 
9724         // Add information to the INLINEASM node to know that this register is
9725         // set.
9726         OpInfo.AssignedRegs.AddInlineAsmOperands(
9727             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9728                                   : InlineAsm::Kind::RegDef,
9729             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9730       }
9731       break;
9732 
9733     case InlineAsm::isInput:
9734     case InlineAsm::isLabel: {
9735       SDValue InOperandVal = OpInfo.CallOperand;
9736 
9737       if (OpInfo.isMatchingInputConstraint()) {
9738         // If this is required to match an output register we have already set,
9739         // just use its register.
9740         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9741                                                   AsmNodeOperands);
9742         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9743         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9744           if (OpInfo.isIndirect) {
9745             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9746             emitInlineAsmError(Call, "inline asm not supported yet: "
9747                                      "don't know how to handle tied "
9748                                      "indirect register inputs");
9749             return;
9750           }
9751 
9752           SmallVector<unsigned, 4> Regs;
9753           MachineFunction &MF = DAG.getMachineFunction();
9754           MachineRegisterInfo &MRI = MF.getRegInfo();
9755           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9756           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9757           Register TiedReg = R->getReg();
9758           MVT RegVT = R->getSimpleValueType(0);
9759           const TargetRegisterClass *RC =
9760               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9761               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9762                                       : TRI.getMinimalPhysRegClass(TiedReg);
9763           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9764             Regs.push_back(MRI.createVirtualRegister(RC));
9765 
9766           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9767 
9768           SDLoc dl = getCurSDLoc();
9769           // Use the produced MatchedRegs object to
9770           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9771           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9772                                            OpInfo.getMatchedOperand(), dl, DAG,
9773                                            AsmNodeOperands);
9774           break;
9775         }
9776 
9777         assert(Flag.isMemKind() && "Unknown matching constraint!");
9778         assert(Flag.getNumOperandRegisters() == 1 &&
9779                "Unexpected number of operands");
9780         // Add information to the INLINEASM node to know about this input.
9781         // See InlineAsm.h isUseOperandTiedToDef.
9782         Flag.clearMemConstraint();
9783         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9784         AsmNodeOperands.push_back(DAG.getTargetConstant(
9785             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9786         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9787         break;
9788       }
9789 
9790       // Treat indirect 'X' constraint as memory.
9791       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9792           OpInfo.isIndirect)
9793         OpInfo.ConstraintType = TargetLowering::C_Memory;
9794 
9795       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9796           OpInfo.ConstraintType == TargetLowering::C_Other) {
9797         std::vector<SDValue> Ops;
9798         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9799                                           Ops, DAG);
9800         if (Ops.empty()) {
9801           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9802             if (isa<ConstantSDNode>(InOperandVal)) {
9803               emitInlineAsmError(Call, "value out of range for constraint '" +
9804                                            Twine(OpInfo.ConstraintCode) + "'");
9805               return;
9806             }
9807 
9808           emitInlineAsmError(Call,
9809                              "invalid operand for inline asm constraint '" +
9810                                  Twine(OpInfo.ConstraintCode) + "'");
9811           return;
9812         }
9813 
9814         // Add information to the INLINEASM node to know about this input.
9815         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9816         AsmNodeOperands.push_back(DAG.getTargetConstant(
9817             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9818         llvm::append_range(AsmNodeOperands, Ops);
9819         break;
9820       }
9821 
9822       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9823         assert((OpInfo.isIndirect ||
9824                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9825                "Operand must be indirect to be a mem!");
9826         assert(InOperandVal.getValueType() ==
9827                    TLI.getPointerTy(DAG.getDataLayout()) &&
9828                "Memory operands expect pointer values");
9829 
9830         const InlineAsm::ConstraintCode ConstraintID =
9831             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9832         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9833                "Failed to convert memory constraint code to constraint id.");
9834 
9835         // Add information to the INLINEASM node to know about this input.
9836         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9837         ResOpType.setMemConstraint(ConstraintID);
9838         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9839                                                         getCurSDLoc(),
9840                                                         MVT::i32));
9841         AsmNodeOperands.push_back(InOperandVal);
9842         break;
9843       }
9844 
9845       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9846         const InlineAsm::ConstraintCode ConstraintID =
9847             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9848         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9849                "Failed to convert memory constraint code to constraint id.");
9850 
9851         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9852 
9853         SDValue AsmOp = InOperandVal;
9854         if (isFunction(InOperandVal)) {
9855           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9856           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9857           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9858                                              InOperandVal.getValueType(),
9859                                              GA->getOffset());
9860         }
9861 
9862         // Add information to the INLINEASM node to know about this input.
9863         ResOpType.setMemConstraint(ConstraintID);
9864 
9865         AsmNodeOperands.push_back(
9866             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9867 
9868         AsmNodeOperands.push_back(AsmOp);
9869         break;
9870       }
9871 
9872       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9873               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9874              "Unknown constraint type!");
9875 
9876       // TODO: Support this.
9877       if (OpInfo.isIndirect) {
9878         emitInlineAsmError(
9879             Call, "Don't know how to handle indirect register inputs yet "
9880                   "for constraint '" +
9881                       Twine(OpInfo.ConstraintCode) + "'");
9882         return;
9883       }
9884 
9885       // Copy the input into the appropriate registers.
9886       if (OpInfo.AssignedRegs.Regs.empty()) {
9887         emitInlineAsmError(Call,
9888                            "couldn't allocate input reg for constraint '" +
9889                                Twine(OpInfo.ConstraintCode) + "'");
9890         return;
9891       }
9892 
9893       if (DetectWriteToReservedRegister())
9894         return;
9895 
9896       SDLoc dl = getCurSDLoc();
9897 
9898       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9899                                         &Call);
9900 
9901       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9902                                                0, dl, DAG, AsmNodeOperands);
9903       break;
9904     }
9905     case InlineAsm::isClobber:
9906       // Add the clobbered value to the operand list, so that the register
9907       // allocator is aware that the physreg got clobbered.
9908       if (!OpInfo.AssignedRegs.Regs.empty())
9909         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9910                                                  false, 0, getCurSDLoc(), DAG,
9911                                                  AsmNodeOperands);
9912       break;
9913     }
9914   }
9915 
9916   // Finish up input operands.  Set the input chain and add the flag last.
9917   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9918   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9919 
9920   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9921   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9922                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9923   Glue = Chain.getValue(1);
9924 
9925   // Do additional work to generate outputs.
9926 
9927   SmallVector<EVT, 1> ResultVTs;
9928   SmallVector<SDValue, 1> ResultValues;
9929   SmallVector<SDValue, 8> OutChains;
9930 
9931   llvm::Type *CallResultType = Call.getType();
9932   ArrayRef<Type *> ResultTypes;
9933   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9934     ResultTypes = StructResult->elements();
9935   else if (!CallResultType->isVoidTy())
9936     ResultTypes = ArrayRef(CallResultType);
9937 
9938   auto CurResultType = ResultTypes.begin();
9939   auto handleRegAssign = [&](SDValue V) {
9940     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9941     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9942     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9943     ++CurResultType;
9944     // If the type of the inline asm call site return value is different but has
9945     // same size as the type of the asm output bitcast it.  One example of this
9946     // is for vectors with different width / number of elements.  This can
9947     // happen for register classes that can contain multiple different value
9948     // types.  The preg or vreg allocated may not have the same VT as was
9949     // expected.
9950     //
9951     // This can also happen for a return value that disagrees with the register
9952     // class it is put in, eg. a double in a general-purpose register on a
9953     // 32-bit machine.
9954     if (ResultVT != V.getValueType() &&
9955         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9956       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9957     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9958              V.getValueType().isInteger()) {
9959       // If a result value was tied to an input value, the computed result
9960       // may have a wider width than the expected result.  Extract the
9961       // relevant portion.
9962       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9963     }
9964     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9965     ResultVTs.push_back(ResultVT);
9966     ResultValues.push_back(V);
9967   };
9968 
9969   // Deal with output operands.
9970   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9971     if (OpInfo.Type == InlineAsm::isOutput) {
9972       SDValue Val;
9973       // Skip trivial output operands.
9974       if (OpInfo.AssignedRegs.Regs.empty())
9975         continue;
9976 
9977       switch (OpInfo.ConstraintType) {
9978       case TargetLowering::C_Register:
9979       case TargetLowering::C_RegisterClass:
9980         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9981                                                   Chain, &Glue, &Call);
9982         break;
9983       case TargetLowering::C_Immediate:
9984       case TargetLowering::C_Other:
9985         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9986                                               OpInfo, DAG);
9987         break;
9988       case TargetLowering::C_Memory:
9989         break; // Already handled.
9990       case TargetLowering::C_Address:
9991         break; // Silence warning.
9992       case TargetLowering::C_Unknown:
9993         assert(false && "Unexpected unknown constraint");
9994       }
9995 
9996       // Indirect output manifest as stores. Record output chains.
9997       if (OpInfo.isIndirect) {
9998         const Value *Ptr = OpInfo.CallOperandVal;
9999         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10000         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10001                                      MachinePointerInfo(Ptr));
10002         OutChains.push_back(Store);
10003       } else {
10004         // generate CopyFromRegs to associated registers.
10005         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10006         if (Val.getOpcode() == ISD::MERGE_VALUES) {
10007           for (const SDValue &V : Val->op_values())
10008             handleRegAssign(V);
10009         } else
10010           handleRegAssign(Val);
10011       }
10012     }
10013   }
10014 
10015   // Set results.
10016   if (!ResultValues.empty()) {
10017     assert(CurResultType == ResultTypes.end() &&
10018            "Mismatch in number of ResultTypes");
10019     assert(ResultValues.size() == ResultTypes.size() &&
10020            "Mismatch in number of output operands in asm result");
10021 
10022     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10023                             DAG.getVTList(ResultVTs), ResultValues);
10024     setValue(&Call, V);
10025   }
10026 
10027   // Collect store chains.
10028   if (!OutChains.empty())
10029     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10030 
10031   if (EmitEHLabels) {
10032     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10033   }
10034 
10035   // Only Update Root if inline assembly has a memory effect.
10036   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10037       EmitEHLabels)
10038     DAG.setRoot(Chain);
10039 }
10040 
10041 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10042                                              const Twine &Message) {
10043   LLVMContext &Ctx = *DAG.getContext();
10044   Ctx.emitError(&Call, Message);
10045 
10046   // Make sure we leave the DAG in a valid state
10047   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10048   SmallVector<EVT, 1> ValueVTs;
10049   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10050 
10051   if (ValueVTs.empty())
10052     return;
10053 
10054   SmallVector<SDValue, 1> Ops;
10055   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
10056     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
10057 
10058   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10059 }
10060 
10061 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10062   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10063                           MVT::Other, getRoot(),
10064                           getValue(I.getArgOperand(0)),
10065                           DAG.getSrcValue(I.getArgOperand(0))));
10066 }
10067 
10068 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10070   const DataLayout &DL = DAG.getDataLayout();
10071   SDValue V = DAG.getVAArg(
10072       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10073       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10074       DL.getABITypeAlign(I.getType()).value());
10075   DAG.setRoot(V.getValue(1));
10076 
10077   if (I.getType()->isPointerTy())
10078     V = DAG.getPtrExtOrTrunc(
10079         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10080   setValue(&I, V);
10081 }
10082 
10083 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10084   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10085                           MVT::Other, getRoot(),
10086                           getValue(I.getArgOperand(0)),
10087                           DAG.getSrcValue(I.getArgOperand(0))));
10088 }
10089 
10090 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10091   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10092                           MVT::Other, getRoot(),
10093                           getValue(I.getArgOperand(0)),
10094                           getValue(I.getArgOperand(1)),
10095                           DAG.getSrcValue(I.getArgOperand(0)),
10096                           DAG.getSrcValue(I.getArgOperand(1))));
10097 }
10098 
10099 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
10100                                                     const Instruction &I,
10101                                                     SDValue Op) {
10102   const MDNode *Range = getRangeMetadata(I);
10103   if (!Range)
10104     return Op;
10105 
10106   ConstantRange CR = getConstantRangeFromMetadata(*Range);
10107   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
10108     return Op;
10109 
10110   APInt Lo = CR.getUnsignedMin();
10111   if (!Lo.isMinValue())
10112     return Op;
10113 
10114   APInt Hi = CR.getUnsignedMax();
10115   unsigned Bits = std::max(Hi.getActiveBits(),
10116                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10117 
10118   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10119 
10120   SDLoc SL = getCurSDLoc();
10121 
10122   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10123                              DAG.getValueType(SmallVT));
10124   unsigned NumVals = Op.getNode()->getNumValues();
10125   if (NumVals == 1)
10126     return ZExt;
10127 
10128   SmallVector<SDValue, 4> Ops;
10129 
10130   Ops.push_back(ZExt);
10131   for (unsigned I = 1; I != NumVals; ++I)
10132     Ops.push_back(Op.getValue(I));
10133 
10134   return DAG.getMergeValues(Ops, SL);
10135 }
10136 
10137 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10138 /// the call being lowered.
10139 ///
10140 /// This is a helper for lowering intrinsics that follow a target calling
10141 /// convention or require stack pointer adjustment. Only a subset of the
10142 /// intrinsic's operands need to participate in the calling convention.
10143 void SelectionDAGBuilder::populateCallLoweringInfo(
10144     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
10145     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10146     AttributeSet RetAttrs, bool IsPatchPoint) {
10147   TargetLowering::ArgListTy Args;
10148   Args.reserve(NumArgs);
10149 
10150   // Populate the argument list.
10151   // Attributes for args start at offset 1, after the return attribute.
10152   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10153        ArgI != ArgE; ++ArgI) {
10154     const Value *V = Call->getOperand(ArgI);
10155 
10156     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10157 
10158     TargetLowering::ArgListEntry Entry;
10159     Entry.Node = getValue(V);
10160     Entry.Ty = V->getType();
10161     Entry.setAttributes(Call, ArgI);
10162     Args.push_back(Entry);
10163   }
10164 
10165   CLI.setDebugLoc(getCurSDLoc())
10166       .setChain(getRoot())
10167       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10168                  RetAttrs)
10169       .setDiscardResult(Call->use_empty())
10170       .setIsPatchPoint(IsPatchPoint)
10171       .setIsPreallocated(
10172           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10173 }
10174 
10175 /// Add a stack map intrinsic call's live variable operands to a stackmap
10176 /// or patchpoint target node's operand list.
10177 ///
10178 /// Constants are converted to TargetConstants purely as an optimization to
10179 /// avoid constant materialization and register allocation.
10180 ///
10181 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10182 /// generate addess computation nodes, and so FinalizeISel can convert the
10183 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10184 /// address materialization and register allocation, but may also be required
10185 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10186 /// alloca in the entry block, then the runtime may assume that the alloca's
10187 /// StackMap location can be read immediately after compilation and that the
10188 /// location is valid at any point during execution (this is similar to the
10189 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10190 /// only available in a register, then the runtime would need to trap when
10191 /// execution reaches the StackMap in order to read the alloca's location.
10192 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10193                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
10194                                 SelectionDAGBuilder &Builder) {
10195   SelectionDAG &DAG = Builder.DAG;
10196   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10197     SDValue Op = Builder.getValue(Call.getArgOperand(I));
10198 
10199     // Things on the stack are pointer-typed, meaning that they are already
10200     // legal and can be emitted directly to target nodes.
10201     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
10202       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10203     } else {
10204       // Otherwise emit a target independent node to be legalised.
10205       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10206     }
10207   }
10208 }
10209 
10210 /// Lower llvm.experimental.stackmap.
10211 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10212   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10213   //                                  [live variables...])
10214 
10215   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10216 
10217   SDValue Chain, InGlue, Callee;
10218   SmallVector<SDValue, 32> Ops;
10219 
10220   SDLoc DL = getCurSDLoc();
10221   Callee = getValue(CI.getCalledOperand());
10222 
10223   // The stackmap intrinsic only records the live variables (the arguments
10224   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10225   // intrinsic, this won't be lowered to a function call. This means we don't
10226   // have to worry about calling conventions and target specific lowering code.
10227   // Instead we perform the call lowering right here.
10228   //
10229   // chain, flag = CALLSEQ_START(chain, 0, 0)
10230   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10231   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10232   //
10233   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10234   InGlue = Chain.getValue(1);
10235 
10236   // Add the STACKMAP operands, starting with DAG house-keeping.
10237   Ops.push_back(Chain);
10238   Ops.push_back(InGlue);
10239 
10240   // Add the <id>, <numShadowBytes> operands.
10241   //
10242   // These do not require legalisation, and can be emitted directly to target
10243   // constant nodes.
10244   SDValue ID = getValue(CI.getArgOperand(0));
10245   assert(ID.getValueType() == MVT::i64);
10246   SDValue IDConst =
10247       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10248   Ops.push_back(IDConst);
10249 
10250   SDValue Shad = getValue(CI.getArgOperand(1));
10251   assert(Shad.getValueType() == MVT::i32);
10252   SDValue ShadConst =
10253       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10254   Ops.push_back(ShadConst);
10255 
10256   // Add the live variables.
10257   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10258 
10259   // Create the STACKMAP node.
10260   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10261   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10262   InGlue = Chain.getValue(1);
10263 
10264   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10265 
10266   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10267 
10268   // Set the root to the target-lowered call chain.
10269   DAG.setRoot(Chain);
10270 
10271   // Inform the Frame Information that we have a stackmap in this function.
10272   FuncInfo.MF->getFrameInfo().setHasStackMap();
10273 }
10274 
10275 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10276 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10277                                           const BasicBlock *EHPadBB) {
10278   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10279   //                                         i32 <numBytes>,
10280   //                                         i8* <target>,
10281   //                                         i32 <numArgs>,
10282   //                                         [Args...],
10283   //                                         [live variables...])
10284 
10285   CallingConv::ID CC = CB.getCallingConv();
10286   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10287   bool HasDef = !CB.getType()->isVoidTy();
10288   SDLoc dl = getCurSDLoc();
10289   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10290 
10291   // Handle immediate and symbolic callees.
10292   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10293     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10294                                    /*isTarget=*/true);
10295   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10296     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10297                                          SDLoc(SymbolicCallee),
10298                                          SymbolicCallee->getValueType(0));
10299 
10300   // Get the real number of arguments participating in the call <numArgs>
10301   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10302   unsigned NumArgs = NArgVal->getAsZExtVal();
10303 
10304   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10305   // Intrinsics include all meta-operands up to but not including CC.
10306   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10307   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10308          "Not enough arguments provided to the patchpoint intrinsic");
10309 
10310   // For AnyRegCC the arguments are lowered later on manually.
10311   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10312   Type *ReturnTy =
10313       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10314 
10315   TargetLowering::CallLoweringInfo CLI(DAG);
10316   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10317                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10318   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10319 
10320   SDNode *CallEnd = Result.second.getNode();
10321   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10322     CallEnd = CallEnd->getOperand(0).getNode();
10323 
10324   /// Get a call instruction from the call sequence chain.
10325   /// Tail calls are not allowed.
10326   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10327          "Expected a callseq node.");
10328   SDNode *Call = CallEnd->getOperand(0).getNode();
10329   bool HasGlue = Call->getGluedNode();
10330 
10331   // Replace the target specific call node with the patchable intrinsic.
10332   SmallVector<SDValue, 8> Ops;
10333 
10334   // Push the chain.
10335   Ops.push_back(*(Call->op_begin()));
10336 
10337   // Optionally, push the glue (if any).
10338   if (HasGlue)
10339     Ops.push_back(*(Call->op_end() - 1));
10340 
10341   // Push the register mask info.
10342   if (HasGlue)
10343     Ops.push_back(*(Call->op_end() - 2));
10344   else
10345     Ops.push_back(*(Call->op_end() - 1));
10346 
10347   // Add the <id> and <numBytes> constants.
10348   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10349   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10350   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10351   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10352 
10353   // Add the callee.
10354   Ops.push_back(Callee);
10355 
10356   // Adjust <numArgs> to account for any arguments that have been passed on the
10357   // stack instead.
10358   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10359   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10360   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10361   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10362 
10363   // Add the calling convention
10364   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10365 
10366   // Add the arguments we omitted previously. The register allocator should
10367   // place these in any free register.
10368   if (IsAnyRegCC)
10369     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10370       Ops.push_back(getValue(CB.getArgOperand(i)));
10371 
10372   // Push the arguments from the call instruction.
10373   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10374   Ops.append(Call->op_begin() + 2, e);
10375 
10376   // Push live variables for the stack map.
10377   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10378 
10379   SDVTList NodeTys;
10380   if (IsAnyRegCC && HasDef) {
10381     // Create the return types based on the intrinsic definition
10382     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10383     SmallVector<EVT, 3> ValueVTs;
10384     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10385     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10386 
10387     // There is always a chain and a glue type at the end
10388     ValueVTs.push_back(MVT::Other);
10389     ValueVTs.push_back(MVT::Glue);
10390     NodeTys = DAG.getVTList(ValueVTs);
10391   } else
10392     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10393 
10394   // Replace the target specific call node with a PATCHPOINT node.
10395   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10396 
10397   // Update the NodeMap.
10398   if (HasDef) {
10399     if (IsAnyRegCC)
10400       setValue(&CB, SDValue(PPV.getNode(), 0));
10401     else
10402       setValue(&CB, Result.first);
10403   }
10404 
10405   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10406   // call sequence. Furthermore the location of the chain and glue can change
10407   // when the AnyReg calling convention is used and the intrinsic returns a
10408   // value.
10409   if (IsAnyRegCC && HasDef) {
10410     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10411     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10412     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10413   } else
10414     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10415   DAG.DeleteNode(Call);
10416 
10417   // Inform the Frame Information that we have a patchpoint in this function.
10418   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10419 }
10420 
10421 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10422                                             unsigned Intrinsic) {
10423   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10424   SDValue Op1 = getValue(I.getArgOperand(0));
10425   SDValue Op2;
10426   if (I.arg_size() > 1)
10427     Op2 = getValue(I.getArgOperand(1));
10428   SDLoc dl = getCurSDLoc();
10429   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10430   SDValue Res;
10431   SDNodeFlags SDFlags;
10432   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10433     SDFlags.copyFMF(*FPMO);
10434 
10435   switch (Intrinsic) {
10436   case Intrinsic::vector_reduce_fadd:
10437     if (SDFlags.hasAllowReassociation())
10438       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10439                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10440                         SDFlags);
10441     else
10442       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10443     break;
10444   case Intrinsic::vector_reduce_fmul:
10445     if (SDFlags.hasAllowReassociation())
10446       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10447                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10448                         SDFlags);
10449     else
10450       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10451     break;
10452   case Intrinsic::vector_reduce_add:
10453     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10454     break;
10455   case Intrinsic::vector_reduce_mul:
10456     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10457     break;
10458   case Intrinsic::vector_reduce_and:
10459     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10460     break;
10461   case Intrinsic::vector_reduce_or:
10462     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10463     break;
10464   case Intrinsic::vector_reduce_xor:
10465     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10466     break;
10467   case Intrinsic::vector_reduce_smax:
10468     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10469     break;
10470   case Intrinsic::vector_reduce_smin:
10471     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10472     break;
10473   case Intrinsic::vector_reduce_umax:
10474     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10475     break;
10476   case Intrinsic::vector_reduce_umin:
10477     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10478     break;
10479   case Intrinsic::vector_reduce_fmax:
10480     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10481     break;
10482   case Intrinsic::vector_reduce_fmin:
10483     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10484     break;
10485   case Intrinsic::vector_reduce_fmaximum:
10486     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10487     break;
10488   case Intrinsic::vector_reduce_fminimum:
10489     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10490     break;
10491   default:
10492     llvm_unreachable("Unhandled vector reduce intrinsic");
10493   }
10494   setValue(&I, Res);
10495 }
10496 
10497 /// Returns an AttributeList representing the attributes applied to the return
10498 /// value of the given call.
10499 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10500   SmallVector<Attribute::AttrKind, 2> Attrs;
10501   if (CLI.RetSExt)
10502     Attrs.push_back(Attribute::SExt);
10503   if (CLI.RetZExt)
10504     Attrs.push_back(Attribute::ZExt);
10505   if (CLI.IsInReg)
10506     Attrs.push_back(Attribute::InReg);
10507 
10508   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10509                             Attrs);
10510 }
10511 
10512 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10513 /// implementation, which just calls LowerCall.
10514 /// FIXME: When all targets are
10515 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10516 std::pair<SDValue, SDValue>
10517 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10518   // Handle the incoming return values from the call.
10519   CLI.Ins.clear();
10520   Type *OrigRetTy = CLI.RetTy;
10521   SmallVector<EVT, 4> RetTys;
10522   SmallVector<TypeSize, 4> Offsets;
10523   auto &DL = CLI.DAG.getDataLayout();
10524   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
10525 
10526   if (CLI.IsPostTypeLegalization) {
10527     // If we are lowering a libcall after legalization, split the return type.
10528     SmallVector<EVT, 4> OldRetTys;
10529     SmallVector<TypeSize, 4> OldOffsets;
10530     RetTys.swap(OldRetTys);
10531     Offsets.swap(OldOffsets);
10532 
10533     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10534       EVT RetVT = OldRetTys[i];
10535       uint64_t Offset = OldOffsets[i];
10536       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10537       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10538       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10539       RetTys.append(NumRegs, RegisterVT);
10540       for (unsigned j = 0; j != NumRegs; ++j)
10541         Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
10542     }
10543   }
10544 
10545   SmallVector<ISD::OutputArg, 4> Outs;
10546   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10547 
10548   bool CanLowerReturn =
10549       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10550                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10551 
10552   SDValue DemoteStackSlot;
10553   int DemoteStackIdx = -100;
10554   if (!CanLowerReturn) {
10555     // FIXME: equivalent assert?
10556     // assert(!CS.hasInAllocaArgument() &&
10557     //        "sret demotion is incompatible with inalloca");
10558     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10559     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10560     MachineFunction &MF = CLI.DAG.getMachineFunction();
10561     DemoteStackIdx =
10562         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10563     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10564                                               DL.getAllocaAddrSpace());
10565 
10566     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10567     ArgListEntry Entry;
10568     Entry.Node = DemoteStackSlot;
10569     Entry.Ty = StackSlotPtrType;
10570     Entry.IsSExt = false;
10571     Entry.IsZExt = false;
10572     Entry.IsInReg = false;
10573     Entry.IsSRet = true;
10574     Entry.IsNest = false;
10575     Entry.IsByVal = false;
10576     Entry.IsByRef = false;
10577     Entry.IsReturned = false;
10578     Entry.IsSwiftSelf = false;
10579     Entry.IsSwiftAsync = false;
10580     Entry.IsSwiftError = false;
10581     Entry.IsCFGuardTarget = false;
10582     Entry.Alignment = Alignment;
10583     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10584     CLI.NumFixedArgs += 1;
10585     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10586     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10587 
10588     // sret demotion isn't compatible with tail-calls, since the sret argument
10589     // points into the callers stack frame.
10590     CLI.IsTailCall = false;
10591   } else {
10592     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10593         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10594     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10595       ISD::ArgFlagsTy Flags;
10596       if (NeedsRegBlock) {
10597         Flags.setInConsecutiveRegs();
10598         if (I == RetTys.size() - 1)
10599           Flags.setInConsecutiveRegsLast();
10600       }
10601       EVT VT = RetTys[I];
10602       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10603                                                      CLI.CallConv, VT);
10604       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10605                                                        CLI.CallConv, VT);
10606       for (unsigned i = 0; i != NumRegs; ++i) {
10607         ISD::InputArg MyFlags;
10608         MyFlags.Flags = Flags;
10609         MyFlags.VT = RegisterVT;
10610         MyFlags.ArgVT = VT;
10611         MyFlags.Used = CLI.IsReturnValueUsed;
10612         if (CLI.RetTy->isPointerTy()) {
10613           MyFlags.Flags.setPointer();
10614           MyFlags.Flags.setPointerAddrSpace(
10615               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10616         }
10617         if (CLI.RetSExt)
10618           MyFlags.Flags.setSExt();
10619         if (CLI.RetZExt)
10620           MyFlags.Flags.setZExt();
10621         if (CLI.IsInReg)
10622           MyFlags.Flags.setInReg();
10623         CLI.Ins.push_back(MyFlags);
10624       }
10625     }
10626   }
10627 
10628   // We push in swifterror return as the last element of CLI.Ins.
10629   ArgListTy &Args = CLI.getArgs();
10630   if (supportSwiftError()) {
10631     for (const ArgListEntry &Arg : Args) {
10632       if (Arg.IsSwiftError) {
10633         ISD::InputArg MyFlags;
10634         MyFlags.VT = getPointerTy(DL);
10635         MyFlags.ArgVT = EVT(getPointerTy(DL));
10636         MyFlags.Flags.setSwiftError();
10637         CLI.Ins.push_back(MyFlags);
10638       }
10639     }
10640   }
10641 
10642   // Handle all of the outgoing arguments.
10643   CLI.Outs.clear();
10644   CLI.OutVals.clear();
10645   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10646     SmallVector<EVT, 4> ValueVTs;
10647     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10648     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10649     Type *FinalType = Args[i].Ty;
10650     if (Args[i].IsByVal)
10651       FinalType = Args[i].IndirectType;
10652     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10653         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10654     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10655          ++Value) {
10656       EVT VT = ValueVTs[Value];
10657       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10658       SDValue Op = SDValue(Args[i].Node.getNode(),
10659                            Args[i].Node.getResNo() + Value);
10660       ISD::ArgFlagsTy Flags;
10661 
10662       // Certain targets (such as MIPS), may have a different ABI alignment
10663       // for a type depending on the context. Give the target a chance to
10664       // specify the alignment it wants.
10665       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10666       Flags.setOrigAlign(OriginalAlignment);
10667 
10668       if (Args[i].Ty->isPointerTy()) {
10669         Flags.setPointer();
10670         Flags.setPointerAddrSpace(
10671             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10672       }
10673       if (Args[i].IsZExt)
10674         Flags.setZExt();
10675       if (Args[i].IsSExt)
10676         Flags.setSExt();
10677       if (Args[i].IsInReg) {
10678         // If we are using vectorcall calling convention, a structure that is
10679         // passed InReg - is surely an HVA
10680         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10681             isa<StructType>(FinalType)) {
10682           // The first value of a structure is marked
10683           if (0 == Value)
10684             Flags.setHvaStart();
10685           Flags.setHva();
10686         }
10687         // Set InReg Flag
10688         Flags.setInReg();
10689       }
10690       if (Args[i].IsSRet)
10691         Flags.setSRet();
10692       if (Args[i].IsSwiftSelf)
10693         Flags.setSwiftSelf();
10694       if (Args[i].IsSwiftAsync)
10695         Flags.setSwiftAsync();
10696       if (Args[i].IsSwiftError)
10697         Flags.setSwiftError();
10698       if (Args[i].IsCFGuardTarget)
10699         Flags.setCFGuardTarget();
10700       if (Args[i].IsByVal)
10701         Flags.setByVal();
10702       if (Args[i].IsByRef)
10703         Flags.setByRef();
10704       if (Args[i].IsPreallocated) {
10705         Flags.setPreallocated();
10706         // Set the byval flag for CCAssignFn callbacks that don't know about
10707         // preallocated.  This way we can know how many bytes we should've
10708         // allocated and how many bytes a callee cleanup function will pop.  If
10709         // we port preallocated to more targets, we'll have to add custom
10710         // preallocated handling in the various CC lowering callbacks.
10711         Flags.setByVal();
10712       }
10713       if (Args[i].IsInAlloca) {
10714         Flags.setInAlloca();
10715         // Set the byval flag for CCAssignFn callbacks that don't know about
10716         // inalloca.  This way we can know how many bytes we should've allocated
10717         // and how many bytes a callee cleanup function will pop.  If we port
10718         // inalloca to more targets, we'll have to add custom inalloca handling
10719         // in the various CC lowering callbacks.
10720         Flags.setByVal();
10721       }
10722       Align MemAlign;
10723       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10724         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10725         Flags.setByValSize(FrameSize);
10726 
10727         // info is not there but there are cases it cannot get right.
10728         if (auto MA = Args[i].Alignment)
10729           MemAlign = *MA;
10730         else
10731           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10732       } else if (auto MA = Args[i].Alignment) {
10733         MemAlign = *MA;
10734       } else {
10735         MemAlign = OriginalAlignment;
10736       }
10737       Flags.setMemAlign(MemAlign);
10738       if (Args[i].IsNest)
10739         Flags.setNest();
10740       if (NeedsRegBlock)
10741         Flags.setInConsecutiveRegs();
10742 
10743       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10744                                                  CLI.CallConv, VT);
10745       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10746                                                         CLI.CallConv, VT);
10747       SmallVector<SDValue, 4> Parts(NumParts);
10748       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10749 
10750       if (Args[i].IsSExt)
10751         ExtendKind = ISD::SIGN_EXTEND;
10752       else if (Args[i].IsZExt)
10753         ExtendKind = ISD::ZERO_EXTEND;
10754 
10755       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10756       // for now.
10757       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10758           CanLowerReturn) {
10759         assert((CLI.RetTy == Args[i].Ty ||
10760                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10761                  CLI.RetTy->getPointerAddressSpace() ==
10762                      Args[i].Ty->getPointerAddressSpace())) &&
10763                RetTys.size() == NumValues && "unexpected use of 'returned'");
10764         // Before passing 'returned' to the target lowering code, ensure that
10765         // either the register MVT and the actual EVT are the same size or that
10766         // the return value and argument are extended in the same way; in these
10767         // cases it's safe to pass the argument register value unchanged as the
10768         // return register value (although it's at the target's option whether
10769         // to do so)
10770         // TODO: allow code generation to take advantage of partially preserved
10771         // registers rather than clobbering the entire register when the
10772         // parameter extension method is not compatible with the return
10773         // extension method
10774         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10775             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10776              CLI.RetZExt == Args[i].IsZExt))
10777           Flags.setReturned();
10778       }
10779 
10780       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10781                      CLI.CallConv, ExtendKind);
10782 
10783       for (unsigned j = 0; j != NumParts; ++j) {
10784         // if it isn't first piece, alignment must be 1
10785         // For scalable vectors the scalable part is currently handled
10786         // by individual targets, so we just use the known minimum size here.
10787         ISD::OutputArg MyFlags(
10788             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10789             i < CLI.NumFixedArgs, i,
10790             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10791         if (NumParts > 1 && j == 0)
10792           MyFlags.Flags.setSplit();
10793         else if (j != 0) {
10794           MyFlags.Flags.setOrigAlign(Align(1));
10795           if (j == NumParts - 1)
10796             MyFlags.Flags.setSplitEnd();
10797         }
10798 
10799         CLI.Outs.push_back(MyFlags);
10800         CLI.OutVals.push_back(Parts[j]);
10801       }
10802 
10803       if (NeedsRegBlock && Value == NumValues - 1)
10804         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10805     }
10806   }
10807 
10808   SmallVector<SDValue, 4> InVals;
10809   CLI.Chain = LowerCall(CLI, InVals);
10810 
10811   // Update CLI.InVals to use outside of this function.
10812   CLI.InVals = InVals;
10813 
10814   // Verify that the target's LowerCall behaved as expected.
10815   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10816          "LowerCall didn't return a valid chain!");
10817   assert((!CLI.IsTailCall || InVals.empty()) &&
10818          "LowerCall emitted a return value for a tail call!");
10819   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10820          "LowerCall didn't emit the correct number of values!");
10821 
10822   // For a tail call, the return value is merely live-out and there aren't
10823   // any nodes in the DAG representing it. Return a special value to
10824   // indicate that a tail call has been emitted and no more Instructions
10825   // should be processed in the current block.
10826   if (CLI.IsTailCall) {
10827     CLI.DAG.setRoot(CLI.Chain);
10828     return std::make_pair(SDValue(), SDValue());
10829   }
10830 
10831 #ifndef NDEBUG
10832   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10833     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10834     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10835            "LowerCall emitted a value with the wrong type!");
10836   }
10837 #endif
10838 
10839   SmallVector<SDValue, 4> ReturnValues;
10840   if (!CanLowerReturn) {
10841     // The instruction result is the result of loading from the
10842     // hidden sret parameter.
10843     SmallVector<EVT, 1> PVTs;
10844     Type *PtrRetTy =
10845         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10846 
10847     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10848     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10849     EVT PtrVT = PVTs[0];
10850 
10851     unsigned NumValues = RetTys.size();
10852     ReturnValues.resize(NumValues);
10853     SmallVector<SDValue, 4> Chains(NumValues);
10854 
10855     // An aggregate return value cannot wrap around the address space, so
10856     // offsets to its parts don't wrap either.
10857     SDNodeFlags Flags;
10858     Flags.setNoUnsignedWrap(true);
10859 
10860     MachineFunction &MF = CLI.DAG.getMachineFunction();
10861     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10862     for (unsigned i = 0; i < NumValues; ++i) {
10863       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10864                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10865                                                         PtrVT), Flags);
10866       SDValue L = CLI.DAG.getLoad(
10867           RetTys[i], CLI.DL, CLI.Chain, Add,
10868           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10869                                             DemoteStackIdx, Offsets[i]),
10870           HiddenSRetAlign);
10871       ReturnValues[i] = L;
10872       Chains[i] = L.getValue(1);
10873     }
10874 
10875     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10876   } else {
10877     // Collect the legal value parts into potentially illegal values
10878     // that correspond to the original function's return values.
10879     std::optional<ISD::NodeType> AssertOp;
10880     if (CLI.RetSExt)
10881       AssertOp = ISD::AssertSext;
10882     else if (CLI.RetZExt)
10883       AssertOp = ISD::AssertZext;
10884     unsigned CurReg = 0;
10885     for (EVT VT : RetTys) {
10886       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10887                                                      CLI.CallConv, VT);
10888       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10889                                                        CLI.CallConv, VT);
10890 
10891       ReturnValues.push_back(getCopyFromParts(
10892           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10893           CLI.Chain, CLI.CallConv, AssertOp));
10894       CurReg += NumRegs;
10895     }
10896 
10897     // For a function returning void, there is no return value. We can't create
10898     // such a node, so we just return a null return value in that case. In
10899     // that case, nothing will actually look at the value.
10900     if (ReturnValues.empty())
10901       return std::make_pair(SDValue(), CLI.Chain);
10902   }
10903 
10904   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10905                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10906   return std::make_pair(Res, CLI.Chain);
10907 }
10908 
10909 /// Places new result values for the node in Results (their number
10910 /// and types must exactly match those of the original return values of
10911 /// the node), or leaves Results empty, which indicates that the node is not
10912 /// to be custom lowered after all.
10913 void TargetLowering::LowerOperationWrapper(SDNode *N,
10914                                            SmallVectorImpl<SDValue> &Results,
10915                                            SelectionDAG &DAG) const {
10916   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10917 
10918   if (!Res.getNode())
10919     return;
10920 
10921   // If the original node has one result, take the return value from
10922   // LowerOperation as is. It might not be result number 0.
10923   if (N->getNumValues() == 1) {
10924     Results.push_back(Res);
10925     return;
10926   }
10927 
10928   // If the original node has multiple results, then the return node should
10929   // have the same number of results.
10930   assert((N->getNumValues() == Res->getNumValues()) &&
10931       "Lowering returned the wrong number of results!");
10932 
10933   // Places new result values base on N result number.
10934   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10935     Results.push_back(Res.getValue(I));
10936 }
10937 
10938 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10939   llvm_unreachable("LowerOperation not implemented for this target!");
10940 }
10941 
10942 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10943                                                      unsigned Reg,
10944                                                      ISD::NodeType ExtendType) {
10945   SDValue Op = getNonRegisterValue(V);
10946   assert((Op.getOpcode() != ISD::CopyFromReg ||
10947           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10948          "Copy from a reg to the same reg!");
10949   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10950 
10951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10952   // If this is an InlineAsm we have to match the registers required, not the
10953   // notional registers required by the type.
10954 
10955   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10956                    std::nullopt); // This is not an ABI copy.
10957   SDValue Chain = DAG.getEntryNode();
10958 
10959   if (ExtendType == ISD::ANY_EXTEND) {
10960     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10961     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10962       ExtendType = PreferredExtendIt->second;
10963   }
10964   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10965   PendingExports.push_back(Chain);
10966 }
10967 
10968 #include "llvm/CodeGen/SelectionDAGISel.h"
10969 
10970 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10971 /// entry block, return true.  This includes arguments used by switches, since
10972 /// the switch may expand into multiple basic blocks.
10973 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10974   // With FastISel active, we may be splitting blocks, so force creation
10975   // of virtual registers for all non-dead arguments.
10976   if (FastISel)
10977     return A->use_empty();
10978 
10979   const BasicBlock &Entry = A->getParent()->front();
10980   for (const User *U : A->users())
10981     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10982       return false;  // Use not in entry block.
10983 
10984   return true;
10985 }
10986 
10987 using ArgCopyElisionMapTy =
10988     DenseMap<const Argument *,
10989              std::pair<const AllocaInst *, const StoreInst *>>;
10990 
10991 /// Scan the entry block of the function in FuncInfo for arguments that look
10992 /// like copies into a local alloca. Record any copied arguments in
10993 /// ArgCopyElisionCandidates.
10994 static void
10995 findArgumentCopyElisionCandidates(const DataLayout &DL,
10996                                   FunctionLoweringInfo *FuncInfo,
10997                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10998   // Record the state of every static alloca used in the entry block. Argument
10999   // allocas are all used in the entry block, so we need approximately as many
11000   // entries as we have arguments.
11001   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11002   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
11003   unsigned NumArgs = FuncInfo->Fn->arg_size();
11004   StaticAllocas.reserve(NumArgs * 2);
11005 
11006   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11007     if (!V)
11008       return nullptr;
11009     V = V->stripPointerCasts();
11010     const auto *AI = dyn_cast<AllocaInst>(V);
11011     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11012       return nullptr;
11013     auto Iter = StaticAllocas.insert({AI, Unknown});
11014     return &Iter.first->second;
11015   };
11016 
11017   // Look for stores of arguments to static allocas. Look through bitcasts and
11018   // GEPs to handle type coercions, as long as the alloca is fully initialized
11019   // by the store. Any non-store use of an alloca escapes it and any subsequent
11020   // unanalyzed store might write it.
11021   // FIXME: Handle structs initialized with multiple stores.
11022   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11023     // Look for stores, and handle non-store uses conservatively.
11024     const auto *SI = dyn_cast<StoreInst>(&I);
11025     if (!SI) {
11026       // We will look through cast uses, so ignore them completely.
11027       if (I.isCast())
11028         continue;
11029       // Ignore debug info and pseudo op intrinsics, they don't escape or store
11030       // to allocas.
11031       if (I.isDebugOrPseudoInst())
11032         continue;
11033       // This is an unknown instruction. Assume it escapes or writes to all
11034       // static alloca operands.
11035       for (const Use &U : I.operands()) {
11036         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11037           *Info = StaticAllocaInfo::Clobbered;
11038       }
11039       continue;
11040     }
11041 
11042     // If the stored value is a static alloca, mark it as escaped.
11043     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11044       *Info = StaticAllocaInfo::Clobbered;
11045 
11046     // Check if the destination is a static alloca.
11047     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11048     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11049     if (!Info)
11050       continue;
11051     const AllocaInst *AI = cast<AllocaInst>(Dst);
11052 
11053     // Skip allocas that have been initialized or clobbered.
11054     if (*Info != StaticAllocaInfo::Unknown)
11055       continue;
11056 
11057     // Check if the stored value is an argument, and that this store fully
11058     // initializes the alloca.
11059     // If the argument type has padding bits we can't directly forward a pointer
11060     // as the upper bits may contain garbage.
11061     // Don't elide copies from the same argument twice.
11062     const Value *Val = SI->getValueOperand()->stripPointerCasts();
11063     const auto *Arg = dyn_cast<Argument>(Val);
11064     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11065         Arg->getType()->isEmptyTy() ||
11066         DL.getTypeStoreSize(Arg->getType()) !=
11067             DL.getTypeAllocSize(AI->getAllocatedType()) ||
11068         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11069         ArgCopyElisionCandidates.count(Arg)) {
11070       *Info = StaticAllocaInfo::Clobbered;
11071       continue;
11072     }
11073 
11074     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11075                       << '\n');
11076 
11077     // Mark this alloca and store for argument copy elision.
11078     *Info = StaticAllocaInfo::Elidable;
11079     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11080 
11081     // Stop scanning if we've seen all arguments. This will happen early in -O0
11082     // builds, which is useful, because -O0 builds have large entry blocks and
11083     // many allocas.
11084     if (ArgCopyElisionCandidates.size() == NumArgs)
11085       break;
11086   }
11087 }
11088 
11089 /// Try to elide argument copies from memory into a local alloca. Succeeds if
11090 /// ArgVal is a load from a suitable fixed stack object.
11091 static void tryToElideArgumentCopy(
11092     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
11093     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11094     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11095     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11096     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11097   // Check if this is a load from a fixed stack object.
11098   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11099   if (!LNode)
11100     return;
11101   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11102   if (!FINode)
11103     return;
11104 
11105   // Check that the fixed stack object is the right size and alignment.
11106   // Look at the alignment that the user wrote on the alloca instead of looking
11107   // at the stack object.
11108   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11109   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11110   const AllocaInst *AI = ArgCopyIter->second.first;
11111   int FixedIndex = FINode->getIndex();
11112   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11113   int OldIndex = AllocaIndex;
11114   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11115   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11116     LLVM_DEBUG(
11117         dbgs() << "  argument copy elision failed due to bad fixed stack "
11118                   "object size\n");
11119     return;
11120   }
11121   Align RequiredAlignment = AI->getAlign();
11122   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11123     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
11124                          "greater than stack argument alignment ("
11125                       << DebugStr(RequiredAlignment) << " vs "
11126                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11127     return;
11128   }
11129 
11130   // Perform the elision. Delete the old stack object and replace its only use
11131   // in the variable info map. Mark the stack object as mutable.
11132   LLVM_DEBUG({
11133     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11134            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
11135            << '\n';
11136   });
11137   MFI.RemoveStackObject(OldIndex);
11138   MFI.setIsImmutableObjectIndex(FixedIndex, false);
11139   AllocaIndex = FixedIndex;
11140   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11141   for (SDValue ArgVal : ArgVals)
11142     Chains.push_back(ArgVal.getValue(1));
11143 
11144   // Avoid emitting code for the store implementing the copy.
11145   const StoreInst *SI = ArgCopyIter->second.second;
11146   ElidedArgCopyInstrs.insert(SI);
11147 
11148   // Check for uses of the argument again so that we can avoid exporting ArgVal
11149   // if it is't used by anything other than the store.
11150   for (const Value *U : Arg.users()) {
11151     if (U != SI) {
11152       ArgHasUses = true;
11153       break;
11154     }
11155   }
11156 }
11157 
11158 void SelectionDAGISel::LowerArguments(const Function &F) {
11159   SelectionDAG &DAG = SDB->DAG;
11160   SDLoc dl = SDB->getCurSDLoc();
11161   const DataLayout &DL = DAG.getDataLayout();
11162   SmallVector<ISD::InputArg, 16> Ins;
11163 
11164   // In Naked functions we aren't going to save any registers.
11165   if (F.hasFnAttribute(Attribute::Naked))
11166     return;
11167 
11168   if (!FuncInfo->CanLowerReturn) {
11169     // Put in an sret pointer parameter before all the other parameters.
11170     SmallVector<EVT, 1> ValueVTs;
11171     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11172                     PointerType::get(F.getContext(),
11173                                      DAG.getDataLayout().getAllocaAddrSpace()),
11174                     ValueVTs);
11175 
11176     // NOTE: Assuming that a pointer will never break down to more than one VT
11177     // or one register.
11178     ISD::ArgFlagsTy Flags;
11179     Flags.setSRet();
11180     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
11181     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
11182                          ISD::InputArg::NoArgIndex, 0);
11183     Ins.push_back(RetArg);
11184   }
11185 
11186   // Look for stores of arguments to static allocas. Mark such arguments with a
11187   // flag to ask the target to give us the memory location of that argument if
11188   // available.
11189   ArgCopyElisionMapTy ArgCopyElisionCandidates;
11190   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
11191                                     ArgCopyElisionCandidates);
11192 
11193   // Set up the incoming argument description vector.
11194   for (const Argument &Arg : F.args()) {
11195     unsigned ArgNo = Arg.getArgNo();
11196     SmallVector<EVT, 4> ValueVTs;
11197     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11198     bool isArgValueUsed = !Arg.use_empty();
11199     unsigned PartBase = 0;
11200     Type *FinalType = Arg.getType();
11201     if (Arg.hasAttribute(Attribute::ByVal))
11202       FinalType = Arg.getParamByValType();
11203     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11204         FinalType, F.getCallingConv(), F.isVarArg(), DL);
11205     for (unsigned Value = 0, NumValues = ValueVTs.size();
11206          Value != NumValues; ++Value) {
11207       EVT VT = ValueVTs[Value];
11208       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
11209       ISD::ArgFlagsTy Flags;
11210 
11211 
11212       if (Arg.getType()->isPointerTy()) {
11213         Flags.setPointer();
11214         Flags.setPointerAddrSpace(
11215             cast<PointerType>(Arg.getType())->getAddressSpace());
11216       }
11217       if (Arg.hasAttribute(Attribute::ZExt))
11218         Flags.setZExt();
11219       if (Arg.hasAttribute(Attribute::SExt))
11220         Flags.setSExt();
11221       if (Arg.hasAttribute(Attribute::InReg)) {
11222         // If we are using vectorcall calling convention, a structure that is
11223         // passed InReg - is surely an HVA
11224         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11225             isa<StructType>(Arg.getType())) {
11226           // The first value of a structure is marked
11227           if (0 == Value)
11228             Flags.setHvaStart();
11229           Flags.setHva();
11230         }
11231         // Set InReg Flag
11232         Flags.setInReg();
11233       }
11234       if (Arg.hasAttribute(Attribute::StructRet))
11235         Flags.setSRet();
11236       if (Arg.hasAttribute(Attribute::SwiftSelf))
11237         Flags.setSwiftSelf();
11238       if (Arg.hasAttribute(Attribute::SwiftAsync))
11239         Flags.setSwiftAsync();
11240       if (Arg.hasAttribute(Attribute::SwiftError))
11241         Flags.setSwiftError();
11242       if (Arg.hasAttribute(Attribute::ByVal))
11243         Flags.setByVal();
11244       if (Arg.hasAttribute(Attribute::ByRef))
11245         Flags.setByRef();
11246       if (Arg.hasAttribute(Attribute::InAlloca)) {
11247         Flags.setInAlloca();
11248         // Set the byval flag for CCAssignFn callbacks that don't know about
11249         // inalloca.  This way we can know how many bytes we should've allocated
11250         // and how many bytes a callee cleanup function will pop.  If we port
11251         // inalloca to more targets, we'll have to add custom inalloca handling
11252         // in the various CC lowering callbacks.
11253         Flags.setByVal();
11254       }
11255       if (Arg.hasAttribute(Attribute::Preallocated)) {
11256         Flags.setPreallocated();
11257         // Set the byval flag for CCAssignFn callbacks that don't know about
11258         // preallocated.  This way we can know how many bytes we should've
11259         // allocated and how many bytes a callee cleanup function will pop.  If
11260         // we port preallocated to more targets, we'll have to add custom
11261         // preallocated handling in the various CC lowering callbacks.
11262         Flags.setByVal();
11263       }
11264 
11265       // Certain targets (such as MIPS), may have a different ABI alignment
11266       // for a type depending on the context. Give the target a chance to
11267       // specify the alignment it wants.
11268       const Align OriginalAlignment(
11269           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11270       Flags.setOrigAlign(OriginalAlignment);
11271 
11272       Align MemAlign;
11273       Type *ArgMemTy = nullptr;
11274       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11275           Flags.isByRef()) {
11276         if (!ArgMemTy)
11277           ArgMemTy = Arg.getPointeeInMemoryValueType();
11278 
11279         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11280 
11281         // For in-memory arguments, size and alignment should be passed from FE.
11282         // BE will guess if this info is not there but there are cases it cannot
11283         // get right.
11284         if (auto ParamAlign = Arg.getParamStackAlign())
11285           MemAlign = *ParamAlign;
11286         else if ((ParamAlign = Arg.getParamAlign()))
11287           MemAlign = *ParamAlign;
11288         else
11289           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11290         if (Flags.isByRef())
11291           Flags.setByRefSize(MemSize);
11292         else
11293           Flags.setByValSize(MemSize);
11294       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11295         MemAlign = *ParamAlign;
11296       } else {
11297         MemAlign = OriginalAlignment;
11298       }
11299       Flags.setMemAlign(MemAlign);
11300 
11301       if (Arg.hasAttribute(Attribute::Nest))
11302         Flags.setNest();
11303       if (NeedsRegBlock)
11304         Flags.setInConsecutiveRegs();
11305       if (ArgCopyElisionCandidates.count(&Arg))
11306         Flags.setCopyElisionCandidate();
11307       if (Arg.hasAttribute(Attribute::Returned))
11308         Flags.setReturned();
11309 
11310       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11311           *CurDAG->getContext(), F.getCallingConv(), VT);
11312       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11313           *CurDAG->getContext(), F.getCallingConv(), VT);
11314       for (unsigned i = 0; i != NumRegs; ++i) {
11315         // For scalable vectors, use the minimum size; individual targets
11316         // are responsible for handling scalable vector arguments and
11317         // return values.
11318         ISD::InputArg MyFlags(
11319             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11320             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11321         if (NumRegs > 1 && i == 0)
11322           MyFlags.Flags.setSplit();
11323         // if it isn't first piece, alignment must be 1
11324         else if (i > 0) {
11325           MyFlags.Flags.setOrigAlign(Align(1));
11326           if (i == NumRegs - 1)
11327             MyFlags.Flags.setSplitEnd();
11328         }
11329         Ins.push_back(MyFlags);
11330       }
11331       if (NeedsRegBlock && Value == NumValues - 1)
11332         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11333       PartBase += VT.getStoreSize().getKnownMinValue();
11334     }
11335   }
11336 
11337   // Call the target to set up the argument values.
11338   SmallVector<SDValue, 8> InVals;
11339   SDValue NewRoot = TLI->LowerFormalArguments(
11340       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11341 
11342   // Verify that the target's LowerFormalArguments behaved as expected.
11343   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11344          "LowerFormalArguments didn't return a valid chain!");
11345   assert(InVals.size() == Ins.size() &&
11346          "LowerFormalArguments didn't emit the correct number of values!");
11347   LLVM_DEBUG({
11348     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11349       assert(InVals[i].getNode() &&
11350              "LowerFormalArguments emitted a null value!");
11351       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11352              "LowerFormalArguments emitted a value with the wrong type!");
11353     }
11354   });
11355 
11356   // Update the DAG with the new chain value resulting from argument lowering.
11357   DAG.setRoot(NewRoot);
11358 
11359   // Set up the argument values.
11360   unsigned i = 0;
11361   if (!FuncInfo->CanLowerReturn) {
11362     // Create a virtual register for the sret pointer, and put in a copy
11363     // from the sret argument into it.
11364     SmallVector<EVT, 1> ValueVTs;
11365     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11366                     PointerType::get(F.getContext(),
11367                                      DAG.getDataLayout().getAllocaAddrSpace()),
11368                     ValueVTs);
11369     MVT VT = ValueVTs[0].getSimpleVT();
11370     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11371     std::optional<ISD::NodeType> AssertOp;
11372     SDValue ArgValue =
11373         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11374                          F.getCallingConv(), AssertOp);
11375 
11376     MachineFunction& MF = SDB->DAG.getMachineFunction();
11377     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11378     Register SRetReg =
11379         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11380     FuncInfo->DemoteRegister = SRetReg;
11381     NewRoot =
11382         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11383     DAG.setRoot(NewRoot);
11384 
11385     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11386     ++i;
11387   }
11388 
11389   SmallVector<SDValue, 4> Chains;
11390   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11391   for (const Argument &Arg : F.args()) {
11392     SmallVector<SDValue, 4> ArgValues;
11393     SmallVector<EVT, 4> ValueVTs;
11394     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11395     unsigned NumValues = ValueVTs.size();
11396     if (NumValues == 0)
11397       continue;
11398 
11399     bool ArgHasUses = !Arg.use_empty();
11400 
11401     // Elide the copying store if the target loaded this argument from a
11402     // suitable fixed stack object.
11403     if (Ins[i].Flags.isCopyElisionCandidate()) {
11404       unsigned NumParts = 0;
11405       for (EVT VT : ValueVTs)
11406         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11407                                                        F.getCallingConv(), VT);
11408 
11409       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11410                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11411                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11412     }
11413 
11414     // If this argument is unused then remember its value. It is used to generate
11415     // debugging information.
11416     bool isSwiftErrorArg =
11417         TLI->supportSwiftError() &&
11418         Arg.hasAttribute(Attribute::SwiftError);
11419     if (!ArgHasUses && !isSwiftErrorArg) {
11420       SDB->setUnusedArgValue(&Arg, InVals[i]);
11421 
11422       // Also remember any frame index for use in FastISel.
11423       if (FrameIndexSDNode *FI =
11424           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11425         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11426     }
11427 
11428     for (unsigned Val = 0; Val != NumValues; ++Val) {
11429       EVT VT = ValueVTs[Val];
11430       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11431                                                       F.getCallingConv(), VT);
11432       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11433           *CurDAG->getContext(), F.getCallingConv(), VT);
11434 
11435       // Even an apparent 'unused' swifterror argument needs to be returned. So
11436       // we do generate a copy for it that can be used on return from the
11437       // function.
11438       if (ArgHasUses || isSwiftErrorArg) {
11439         std::optional<ISD::NodeType> AssertOp;
11440         if (Arg.hasAttribute(Attribute::SExt))
11441           AssertOp = ISD::AssertSext;
11442         else if (Arg.hasAttribute(Attribute::ZExt))
11443           AssertOp = ISD::AssertZext;
11444 
11445         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11446                                              PartVT, VT, nullptr, NewRoot,
11447                                              F.getCallingConv(), AssertOp));
11448       }
11449 
11450       i += NumParts;
11451     }
11452 
11453     // We don't need to do anything else for unused arguments.
11454     if (ArgValues.empty())
11455       continue;
11456 
11457     // Note down frame index.
11458     if (FrameIndexSDNode *FI =
11459         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11460       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11461 
11462     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11463                                      SDB->getCurSDLoc());
11464 
11465     SDB->setValue(&Arg, Res);
11466     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11467       // We want to associate the argument with the frame index, among
11468       // involved operands, that correspond to the lowest address. The
11469       // getCopyFromParts function, called earlier, is swapping the order of
11470       // the operands to BUILD_PAIR depending on endianness. The result of
11471       // that swapping is that the least significant bits of the argument will
11472       // be in the first operand of the BUILD_PAIR node, and the most
11473       // significant bits will be in the second operand.
11474       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11475       if (LoadSDNode *LNode =
11476           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11477         if (FrameIndexSDNode *FI =
11478             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11479           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11480     }
11481 
11482     // Analyses past this point are naive and don't expect an assertion.
11483     if (Res.getOpcode() == ISD::AssertZext)
11484       Res = Res.getOperand(0);
11485 
11486     // Update the SwiftErrorVRegDefMap.
11487     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11488       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11489       if (Register::isVirtualRegister(Reg))
11490         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11491                                    Reg);
11492     }
11493 
11494     // If this argument is live outside of the entry block, insert a copy from
11495     // wherever we got it to the vreg that other BB's will reference it as.
11496     if (Res.getOpcode() == ISD::CopyFromReg) {
11497       // If we can, though, try to skip creating an unnecessary vreg.
11498       // FIXME: This isn't very clean... it would be nice to make this more
11499       // general.
11500       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11501       if (Register::isVirtualRegister(Reg)) {
11502         FuncInfo->ValueMap[&Arg] = Reg;
11503         continue;
11504       }
11505     }
11506     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11507       FuncInfo->InitializeRegForValue(&Arg);
11508       SDB->CopyToExportRegsIfNeeded(&Arg);
11509     }
11510   }
11511 
11512   if (!Chains.empty()) {
11513     Chains.push_back(NewRoot);
11514     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11515   }
11516 
11517   DAG.setRoot(NewRoot);
11518 
11519   assert(i == InVals.size() && "Argument register count mismatch!");
11520 
11521   // If any argument copy elisions occurred and we have debug info, update the
11522   // stale frame indices used in the dbg.declare variable info table.
11523   if (!ArgCopyElisionFrameIndexMap.empty()) {
11524     for (MachineFunction::VariableDbgInfo &VI :
11525          MF->getInStackSlotVariableDbgInfo()) {
11526       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11527       if (I != ArgCopyElisionFrameIndexMap.end())
11528         VI.updateStackSlot(I->second);
11529     }
11530   }
11531 
11532   // Finally, if the target has anything special to do, allow it to do so.
11533   emitFunctionEntryCode();
11534 }
11535 
11536 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11537 /// ensure constants are generated when needed.  Remember the virtual registers
11538 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11539 /// directly add them, because expansion might result in multiple MBB's for one
11540 /// BB.  As such, the start of the BB might correspond to a different MBB than
11541 /// the end.
11542 void
11543 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11544   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11545 
11546   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11547 
11548   // Check PHI nodes in successors that expect a value to be available from this
11549   // block.
11550   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11551     if (!isa<PHINode>(SuccBB->begin())) continue;
11552     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11553 
11554     // If this terminator has multiple identical successors (common for
11555     // switches), only handle each succ once.
11556     if (!SuccsHandled.insert(SuccMBB).second)
11557       continue;
11558 
11559     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11560 
11561     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11562     // nodes and Machine PHI nodes, but the incoming operands have not been
11563     // emitted yet.
11564     for (const PHINode &PN : SuccBB->phis()) {
11565       // Ignore dead phi's.
11566       if (PN.use_empty())
11567         continue;
11568 
11569       // Skip empty types
11570       if (PN.getType()->isEmptyTy())
11571         continue;
11572 
11573       unsigned Reg;
11574       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11575 
11576       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11577         unsigned &RegOut = ConstantsOut[C];
11578         if (RegOut == 0) {
11579           RegOut = FuncInfo.CreateRegs(C);
11580           // We need to zero/sign extend ConstantInt phi operands to match
11581           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11582           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11583           if (auto *CI = dyn_cast<ConstantInt>(C))
11584             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11585                                                     : ISD::ZERO_EXTEND;
11586           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11587         }
11588         Reg = RegOut;
11589       } else {
11590         DenseMap<const Value *, Register>::iterator I =
11591           FuncInfo.ValueMap.find(PHIOp);
11592         if (I != FuncInfo.ValueMap.end())
11593           Reg = I->second;
11594         else {
11595           assert(isa<AllocaInst>(PHIOp) &&
11596                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11597                  "Didn't codegen value into a register!??");
11598           Reg = FuncInfo.CreateRegs(PHIOp);
11599           CopyValueToVirtualRegister(PHIOp, Reg);
11600         }
11601       }
11602 
11603       // Remember that this register needs to added to the machine PHI node as
11604       // the input for this MBB.
11605       SmallVector<EVT, 4> ValueVTs;
11606       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11607       for (EVT VT : ValueVTs) {
11608         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11609         for (unsigned i = 0; i != NumRegisters; ++i)
11610           FuncInfo.PHINodesToUpdate.push_back(
11611               std::make_pair(&*MBBI++, Reg + i));
11612         Reg += NumRegisters;
11613       }
11614     }
11615   }
11616 
11617   ConstantsOut.clear();
11618 }
11619 
11620 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11621   MachineFunction::iterator I(MBB);
11622   if (++I == FuncInfo.MF->end())
11623     return nullptr;
11624   return &*I;
11625 }
11626 
11627 /// During lowering new call nodes can be created (such as memset, etc.).
11628 /// Those will become new roots of the current DAG, but complications arise
11629 /// when they are tail calls. In such cases, the call lowering will update
11630 /// the root, but the builder still needs to know that a tail call has been
11631 /// lowered in order to avoid generating an additional return.
11632 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11633   // If the node is null, we do have a tail call.
11634   if (MaybeTC.getNode() != nullptr)
11635     DAG.setRoot(MaybeTC);
11636   else
11637     HasTailCall = true;
11638 }
11639 
11640 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11641                                         MachineBasicBlock *SwitchMBB,
11642                                         MachineBasicBlock *DefaultMBB) {
11643   MachineFunction *CurMF = FuncInfo.MF;
11644   MachineBasicBlock *NextMBB = nullptr;
11645   MachineFunction::iterator BBI(W.MBB);
11646   if (++BBI != FuncInfo.MF->end())
11647     NextMBB = &*BBI;
11648 
11649   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11650 
11651   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11652 
11653   if (Size == 2 && W.MBB == SwitchMBB) {
11654     // If any two of the cases has the same destination, and if one value
11655     // is the same as the other, but has one bit unset that the other has set,
11656     // use bit manipulation to do two compares at once.  For example:
11657     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11658     // TODO: This could be extended to merge any 2 cases in switches with 3
11659     // cases.
11660     // TODO: Handle cases where W.CaseBB != SwitchBB.
11661     CaseCluster &Small = *W.FirstCluster;
11662     CaseCluster &Big = *W.LastCluster;
11663 
11664     if (Small.Low == Small.High && Big.Low == Big.High &&
11665         Small.MBB == Big.MBB) {
11666       const APInt &SmallValue = Small.Low->getValue();
11667       const APInt &BigValue = Big.Low->getValue();
11668 
11669       // Check that there is only one bit different.
11670       APInt CommonBit = BigValue ^ SmallValue;
11671       if (CommonBit.isPowerOf2()) {
11672         SDValue CondLHS = getValue(Cond);
11673         EVT VT = CondLHS.getValueType();
11674         SDLoc DL = getCurSDLoc();
11675 
11676         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11677                                  DAG.getConstant(CommonBit, DL, VT));
11678         SDValue Cond = DAG.getSetCC(
11679             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11680             ISD::SETEQ);
11681 
11682         // Update successor info.
11683         // Both Small and Big will jump to Small.BB, so we sum up the
11684         // probabilities.
11685         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11686         if (BPI)
11687           addSuccessorWithProb(
11688               SwitchMBB, DefaultMBB,
11689               // The default destination is the first successor in IR.
11690               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11691         else
11692           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11693 
11694         // Insert the true branch.
11695         SDValue BrCond =
11696             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11697                         DAG.getBasicBlock(Small.MBB));
11698         // Insert the false branch.
11699         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11700                              DAG.getBasicBlock(DefaultMBB));
11701 
11702         DAG.setRoot(BrCond);
11703         return;
11704       }
11705     }
11706   }
11707 
11708   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11709     // Here, we order cases by probability so the most likely case will be
11710     // checked first. However, two clusters can have the same probability in
11711     // which case their relative ordering is non-deterministic. So we use Low
11712     // as a tie-breaker as clusters are guaranteed to never overlap.
11713     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11714                [](const CaseCluster &a, const CaseCluster &b) {
11715       return a.Prob != b.Prob ?
11716              a.Prob > b.Prob :
11717              a.Low->getValue().slt(b.Low->getValue());
11718     });
11719 
11720     // Rearrange the case blocks so that the last one falls through if possible
11721     // without changing the order of probabilities.
11722     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11723       --I;
11724       if (I->Prob > W.LastCluster->Prob)
11725         break;
11726       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11727         std::swap(*I, *W.LastCluster);
11728         break;
11729       }
11730     }
11731   }
11732 
11733   // Compute total probability.
11734   BranchProbability DefaultProb = W.DefaultProb;
11735   BranchProbability UnhandledProbs = DefaultProb;
11736   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11737     UnhandledProbs += I->Prob;
11738 
11739   MachineBasicBlock *CurMBB = W.MBB;
11740   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11741     bool FallthroughUnreachable = false;
11742     MachineBasicBlock *Fallthrough;
11743     if (I == W.LastCluster) {
11744       // For the last cluster, fall through to the default destination.
11745       Fallthrough = DefaultMBB;
11746       FallthroughUnreachable = isa<UnreachableInst>(
11747           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11748     } else {
11749       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11750       CurMF->insert(BBI, Fallthrough);
11751       // Put Cond in a virtual register to make it available from the new blocks.
11752       ExportFromCurrentBlock(Cond);
11753     }
11754     UnhandledProbs -= I->Prob;
11755 
11756     switch (I->Kind) {
11757       case CC_JumpTable: {
11758         // FIXME: Optimize away range check based on pivot comparisons.
11759         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11760         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11761 
11762         // The jump block hasn't been inserted yet; insert it here.
11763         MachineBasicBlock *JumpMBB = JT->MBB;
11764         CurMF->insert(BBI, JumpMBB);
11765 
11766         auto JumpProb = I->Prob;
11767         auto FallthroughProb = UnhandledProbs;
11768 
11769         // If the default statement is a target of the jump table, we evenly
11770         // distribute the default probability to successors of CurMBB. Also
11771         // update the probability on the edge from JumpMBB to Fallthrough.
11772         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11773                                               SE = JumpMBB->succ_end();
11774              SI != SE; ++SI) {
11775           if (*SI == DefaultMBB) {
11776             JumpProb += DefaultProb / 2;
11777             FallthroughProb -= DefaultProb / 2;
11778             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11779             JumpMBB->normalizeSuccProbs();
11780             break;
11781           }
11782         }
11783 
11784         // If the default clause is unreachable, propagate that knowledge into
11785         // JTH->FallthroughUnreachable which will use it to suppress the range
11786         // check.
11787         //
11788         // However, don't do this if we're doing branch target enforcement,
11789         // because a table branch _without_ a range check can be a tempting JOP
11790         // gadget - out-of-bounds inputs that are impossible in correct
11791         // execution become possible again if an attacker can influence the
11792         // control flow. So if an attacker doesn't already have a BTI bypass
11793         // available, we don't want them to be able to get one out of this
11794         // table branch.
11795         if (FallthroughUnreachable) {
11796           Function &CurFunc = CurMF->getFunction();
11797           bool HasBranchTargetEnforcement = false;
11798           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11799             HasBranchTargetEnforcement =
11800                 CurFunc.getFnAttribute("branch-target-enforcement")
11801                     .getValueAsBool();
11802           } else {
11803             HasBranchTargetEnforcement =
11804                 CurMF->getMMI().getModule()->getModuleFlag(
11805                     "branch-target-enforcement");
11806           }
11807           if (!HasBranchTargetEnforcement)
11808             JTH->FallthroughUnreachable = true;
11809         }
11810 
11811         if (!JTH->FallthroughUnreachable)
11812           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11813         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11814         CurMBB->normalizeSuccProbs();
11815 
11816         // The jump table header will be inserted in our current block, do the
11817         // range check, and fall through to our fallthrough block.
11818         JTH->HeaderBB = CurMBB;
11819         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11820 
11821         // If we're in the right place, emit the jump table header right now.
11822         if (CurMBB == SwitchMBB) {
11823           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11824           JTH->Emitted = true;
11825         }
11826         break;
11827       }
11828       case CC_BitTests: {
11829         // FIXME: Optimize away range check based on pivot comparisons.
11830         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11831 
11832         // The bit test blocks haven't been inserted yet; insert them here.
11833         for (BitTestCase &BTC : BTB->Cases)
11834           CurMF->insert(BBI, BTC.ThisBB);
11835 
11836         // Fill in fields of the BitTestBlock.
11837         BTB->Parent = CurMBB;
11838         BTB->Default = Fallthrough;
11839 
11840         BTB->DefaultProb = UnhandledProbs;
11841         // If the cases in bit test don't form a contiguous range, we evenly
11842         // distribute the probability on the edge to Fallthrough to two
11843         // successors of CurMBB.
11844         if (!BTB->ContiguousRange) {
11845           BTB->Prob += DefaultProb / 2;
11846           BTB->DefaultProb -= DefaultProb / 2;
11847         }
11848 
11849         if (FallthroughUnreachable)
11850           BTB->FallthroughUnreachable = true;
11851 
11852         // If we're in the right place, emit the bit test header right now.
11853         if (CurMBB == SwitchMBB) {
11854           visitBitTestHeader(*BTB, SwitchMBB);
11855           BTB->Emitted = true;
11856         }
11857         break;
11858       }
11859       case CC_Range: {
11860         const Value *RHS, *LHS, *MHS;
11861         ISD::CondCode CC;
11862         if (I->Low == I->High) {
11863           // Check Cond == I->Low.
11864           CC = ISD::SETEQ;
11865           LHS = Cond;
11866           RHS=I->Low;
11867           MHS = nullptr;
11868         } else {
11869           // Check I->Low <= Cond <= I->High.
11870           CC = ISD::SETLE;
11871           LHS = I->Low;
11872           MHS = Cond;
11873           RHS = I->High;
11874         }
11875 
11876         // If Fallthrough is unreachable, fold away the comparison.
11877         if (FallthroughUnreachable)
11878           CC = ISD::SETTRUE;
11879 
11880         // The false probability is the sum of all unhandled cases.
11881         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11882                      getCurSDLoc(), I->Prob, UnhandledProbs);
11883 
11884         if (CurMBB == SwitchMBB)
11885           visitSwitchCase(CB, SwitchMBB);
11886         else
11887           SL->SwitchCases.push_back(CB);
11888 
11889         break;
11890       }
11891     }
11892     CurMBB = Fallthrough;
11893   }
11894 }
11895 
11896 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11897                                         const SwitchWorkListItem &W,
11898                                         Value *Cond,
11899                                         MachineBasicBlock *SwitchMBB) {
11900   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11901          "Clusters not sorted?");
11902   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11903 
11904   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11905       SL->computeSplitWorkItemInfo(W);
11906 
11907   // Use the first element on the right as pivot since we will make less-than
11908   // comparisons against it.
11909   CaseClusterIt PivotCluster = FirstRight;
11910   assert(PivotCluster > W.FirstCluster);
11911   assert(PivotCluster <= W.LastCluster);
11912 
11913   CaseClusterIt FirstLeft = W.FirstCluster;
11914   CaseClusterIt LastRight = W.LastCluster;
11915 
11916   const ConstantInt *Pivot = PivotCluster->Low;
11917 
11918   // New blocks will be inserted immediately after the current one.
11919   MachineFunction::iterator BBI(W.MBB);
11920   ++BBI;
11921 
11922   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11923   // we can branch to its destination directly if it's squeezed exactly in
11924   // between the known lower bound and Pivot - 1.
11925   MachineBasicBlock *LeftMBB;
11926   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11927       FirstLeft->Low == W.GE &&
11928       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11929     LeftMBB = FirstLeft->MBB;
11930   } else {
11931     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11932     FuncInfo.MF->insert(BBI, LeftMBB);
11933     WorkList.push_back(
11934         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11935     // Put Cond in a virtual register to make it available from the new blocks.
11936     ExportFromCurrentBlock(Cond);
11937   }
11938 
11939   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11940   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11941   // directly if RHS.High equals the current upper bound.
11942   MachineBasicBlock *RightMBB;
11943   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11944       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11945     RightMBB = FirstRight->MBB;
11946   } else {
11947     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11948     FuncInfo.MF->insert(BBI, RightMBB);
11949     WorkList.push_back(
11950         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11951     // Put Cond in a virtual register to make it available from the new blocks.
11952     ExportFromCurrentBlock(Cond);
11953   }
11954 
11955   // Create the CaseBlock record that will be used to lower the branch.
11956   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11957                getCurSDLoc(), LeftProb, RightProb);
11958 
11959   if (W.MBB == SwitchMBB)
11960     visitSwitchCase(CB, SwitchMBB);
11961   else
11962     SL->SwitchCases.push_back(CB);
11963 }
11964 
11965 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11966 // from the swith statement.
11967 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11968                                             BranchProbability PeeledCaseProb) {
11969   if (PeeledCaseProb == BranchProbability::getOne())
11970     return BranchProbability::getZero();
11971   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11972 
11973   uint32_t Numerator = CaseProb.getNumerator();
11974   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11975   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11976 }
11977 
11978 // Try to peel the top probability case if it exceeds the threshold.
11979 // Return current MachineBasicBlock for the switch statement if the peeling
11980 // does not occur.
11981 // If the peeling is performed, return the newly created MachineBasicBlock
11982 // for the peeled switch statement. Also update Clusters to remove the peeled
11983 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11984 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11985     const SwitchInst &SI, CaseClusterVector &Clusters,
11986     BranchProbability &PeeledCaseProb) {
11987   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11988   // Don't perform if there is only one cluster or optimizing for size.
11989   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11990       TM.getOptLevel() == CodeGenOptLevel::None ||
11991       SwitchMBB->getParent()->getFunction().hasMinSize())
11992     return SwitchMBB;
11993 
11994   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11995   unsigned PeeledCaseIndex = 0;
11996   bool SwitchPeeled = false;
11997   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11998     CaseCluster &CC = Clusters[Index];
11999     if (CC.Prob < TopCaseProb)
12000       continue;
12001     TopCaseProb = CC.Prob;
12002     PeeledCaseIndex = Index;
12003     SwitchPeeled = true;
12004   }
12005   if (!SwitchPeeled)
12006     return SwitchMBB;
12007 
12008   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12009                     << TopCaseProb << "\n");
12010 
12011   // Record the MBB for the peeled switch statement.
12012   MachineFunction::iterator BBI(SwitchMBB);
12013   ++BBI;
12014   MachineBasicBlock *PeeledSwitchMBB =
12015       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12016   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12017 
12018   ExportFromCurrentBlock(SI.getCondition());
12019   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12020   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12021                           nullptr,   nullptr,      TopCaseProb.getCompl()};
12022   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12023 
12024   Clusters.erase(PeeledCaseIt);
12025   for (CaseCluster &CC : Clusters) {
12026     LLVM_DEBUG(
12027         dbgs() << "Scale the probablity for one cluster, before scaling: "
12028                << CC.Prob << "\n");
12029     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12030     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12031   }
12032   PeeledCaseProb = TopCaseProb;
12033   return PeeledSwitchMBB;
12034 }
12035 
12036 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12037   // Extract cases from the switch.
12038   BranchProbabilityInfo *BPI = FuncInfo.BPI;
12039   CaseClusterVector Clusters;
12040   Clusters.reserve(SI.getNumCases());
12041   for (auto I : SI.cases()) {
12042     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
12043     const ConstantInt *CaseVal = I.getCaseValue();
12044     BranchProbability Prob =
12045         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12046             : BranchProbability(1, SI.getNumCases() + 1);
12047     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12048   }
12049 
12050   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
12051 
12052   // Cluster adjacent cases with the same destination. We do this at all
12053   // optimization levels because it's cheap to do and will make codegen faster
12054   // if there are many clusters.
12055   sortAndRangeify(Clusters);
12056 
12057   // The branch probablity of the peeled case.
12058   BranchProbability PeeledCaseProb = BranchProbability::getZero();
12059   MachineBasicBlock *PeeledSwitchMBB =
12060       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12061 
12062   // If there is only the default destination, jump there directly.
12063   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12064   if (Clusters.empty()) {
12065     assert(PeeledSwitchMBB == SwitchMBB);
12066     SwitchMBB->addSuccessor(DefaultMBB);
12067     if (DefaultMBB != NextBlock(SwitchMBB)) {
12068       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12069                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12070     }
12071     return;
12072   }
12073 
12074   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12075                      DAG.getBFI());
12076   SL->findBitTestClusters(Clusters, &SI);
12077 
12078   LLVM_DEBUG({
12079     dbgs() << "Case clusters: ";
12080     for (const CaseCluster &C : Clusters) {
12081       if (C.Kind == CC_JumpTable)
12082         dbgs() << "JT:";
12083       if (C.Kind == CC_BitTests)
12084         dbgs() << "BT:";
12085 
12086       C.Low->getValue().print(dbgs(), true);
12087       if (C.Low != C.High) {
12088         dbgs() << '-';
12089         C.High->getValue().print(dbgs(), true);
12090       }
12091       dbgs() << ' ';
12092     }
12093     dbgs() << '\n';
12094   });
12095 
12096   assert(!Clusters.empty());
12097   SwitchWorkList WorkList;
12098   CaseClusterIt First = Clusters.begin();
12099   CaseClusterIt Last = Clusters.end() - 1;
12100   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12101   // Scale the branchprobability for DefaultMBB if the peel occurs and
12102   // DefaultMBB is not replaced.
12103   if (PeeledCaseProb != BranchProbability::getZero() &&
12104       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
12105     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12106   WorkList.push_back(
12107       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12108 
12109   while (!WorkList.empty()) {
12110     SwitchWorkListItem W = WorkList.pop_back_val();
12111     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12112 
12113     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12114         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12115       // For optimized builds, lower large range as a balanced binary tree.
12116       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12117       continue;
12118     }
12119 
12120     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12121   }
12122 }
12123 
12124 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12126   auto DL = getCurSDLoc();
12127   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12128   setValue(&I, DAG.getStepVector(DL, ResultVT));
12129 }
12130 
12131 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12132   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12133   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12134 
12135   SDLoc DL = getCurSDLoc();
12136   SDValue V = getValue(I.getOperand(0));
12137   assert(VT == V.getValueType() && "Malformed vector.reverse!");
12138 
12139   if (VT.isScalableVector()) {
12140     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12141     return;
12142   }
12143 
12144   // Use VECTOR_SHUFFLE for the fixed-length vector
12145   // to maintain existing behavior.
12146   SmallVector<int, 8> Mask;
12147   unsigned NumElts = VT.getVectorMinNumElements();
12148   for (unsigned i = 0; i != NumElts; ++i)
12149     Mask.push_back(NumElts - 1 - i);
12150 
12151   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12152 }
12153 
12154 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
12155   auto DL = getCurSDLoc();
12156   SDValue InVec = getValue(I.getOperand(0));
12157   EVT OutVT =
12158       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
12159 
12160   unsigned OutNumElts = OutVT.getVectorMinNumElements();
12161 
12162   // ISD Node needs the input vectors split into two equal parts
12163   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12164                            DAG.getVectorIdxConstant(0, DL));
12165   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12166                            DAG.getVectorIdxConstant(OutNumElts, DL));
12167 
12168   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12169   // legalisation and combines.
12170   if (OutVT.isFixedLengthVector()) {
12171     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12172                                         createStrideMask(0, 2, OutNumElts));
12173     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
12174                                        createStrideMask(1, 2, OutNumElts));
12175     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12176     setValue(&I, Res);
12177     return;
12178   }
12179 
12180   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12181                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
12182   setValue(&I, Res);
12183 }
12184 
12185 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
12186   auto DL = getCurSDLoc();
12187   EVT InVT = getValue(I.getOperand(0)).getValueType();
12188   SDValue InVec0 = getValue(I.getOperand(0));
12189   SDValue InVec1 = getValue(I.getOperand(1));
12190   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12191   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12192 
12193   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
12194   // legalisation and combines.
12195   if (OutVT.isFixedLengthVector()) {
12196     unsigned NumElts = InVT.getVectorMinNumElements();
12197     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
12198     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12199                                       createInterleaveMask(NumElts, 2)));
12200     return;
12201   }
12202 
12203   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
12204                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
12205   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
12206                     Res.getValue(1));
12207   setValue(&I, Res);
12208 }
12209 
12210 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12211   SmallVector<EVT, 4> ValueVTs;
12212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12213                   ValueVTs);
12214   unsigned NumValues = ValueVTs.size();
12215   if (NumValues == 0) return;
12216 
12217   SmallVector<SDValue, 4> Values(NumValues);
12218   SDValue Op = getValue(I.getOperand(0));
12219 
12220   for (unsigned i = 0; i != NumValues; ++i)
12221     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12222                             SDValue(Op.getNode(), Op.getResNo() + i));
12223 
12224   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12225                            DAG.getVTList(ValueVTs), Values));
12226 }
12227 
12228 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12230   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12231 
12232   SDLoc DL = getCurSDLoc();
12233   SDValue V1 = getValue(I.getOperand(0));
12234   SDValue V2 = getValue(I.getOperand(1));
12235   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
12236 
12237   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12238   if (VT.isScalableVector()) {
12239     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12240     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12241                              DAG.getConstant(Imm, DL, IdxVT)));
12242     return;
12243   }
12244 
12245   unsigned NumElts = VT.getVectorNumElements();
12246 
12247   uint64_t Idx = (NumElts + Imm) % NumElts;
12248 
12249   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12250   SmallVector<int, 8> Mask;
12251   for (unsigned i = 0; i < NumElts; ++i)
12252     Mask.push_back(Idx + i);
12253   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12254 }
12255 
12256 // Consider the following MIR after SelectionDAG, which produces output in
12257 // phyregs in the first case or virtregs in the second case.
12258 //
12259 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12260 // %5:gr32 = COPY $ebx
12261 // %6:gr32 = COPY $edx
12262 // %1:gr32 = COPY %6:gr32
12263 // %0:gr32 = COPY %5:gr32
12264 //
12265 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12266 // %1:gr32 = COPY %6:gr32
12267 // %0:gr32 = COPY %5:gr32
12268 //
12269 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12270 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12271 //
12272 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12273 // to a single virtreg (such as %0). The remaining outputs monotonically
12274 // increase in virtreg number from there. If a callbr has no outputs, then it
12275 // should not have a corresponding callbr landingpad; in fact, the callbr
12276 // landingpad would not even be able to refer to such a callbr.
12277 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12278   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12279   // There is definitely at least one copy.
12280   assert(MI->getOpcode() == TargetOpcode::COPY &&
12281          "start of copy chain MUST be COPY");
12282   Reg = MI->getOperand(1).getReg();
12283   MI = MRI.def_begin(Reg)->getParent();
12284   // There may be an optional second copy.
12285   if (MI->getOpcode() == TargetOpcode::COPY) {
12286     assert(Reg.isVirtual() && "expected COPY of virtual register");
12287     Reg = MI->getOperand(1).getReg();
12288     assert(Reg.isPhysical() && "expected COPY of physical register");
12289     MI = MRI.def_begin(Reg)->getParent();
12290   }
12291   // The start of the chain must be an INLINEASM_BR.
12292   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12293          "end of copy chain MUST be INLINEASM_BR");
12294   return Reg;
12295 }
12296 
12297 // We must do this walk rather than the simpler
12298 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12299 // otherwise we will end up with copies of virtregs only valid along direct
12300 // edges.
12301 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12302   SmallVector<EVT, 8> ResultVTs;
12303   SmallVector<SDValue, 8> ResultValues;
12304   const auto *CBR =
12305       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12306 
12307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12308   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12309   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12310 
12311   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12312   SDValue Chain = DAG.getRoot();
12313 
12314   // Re-parse the asm constraints string.
12315   TargetLowering::AsmOperandInfoVector TargetConstraints =
12316       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12317   for (auto &T : TargetConstraints) {
12318     SDISelAsmOperandInfo OpInfo(T);
12319     if (OpInfo.Type != InlineAsm::isOutput)
12320       continue;
12321 
12322     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12323     // individual constraint.
12324     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12325 
12326     switch (OpInfo.ConstraintType) {
12327     case TargetLowering::C_Register:
12328     case TargetLowering::C_RegisterClass: {
12329       // Fill in OpInfo.AssignedRegs.Regs.
12330       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12331 
12332       // getRegistersForValue may produce 1 to many registers based on whether
12333       // the OpInfo.ConstraintVT is legal on the target or not.
12334       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12335         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12336         if (Register::isPhysicalRegister(OriginalDef))
12337           FuncInfo.MBB->addLiveIn(OriginalDef);
12338         // Update the assigned registers to use the original defs.
12339         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12340       }
12341 
12342       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12343           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12344       ResultValues.push_back(V);
12345       ResultVTs.push_back(OpInfo.ConstraintVT);
12346       break;
12347     }
12348     case TargetLowering::C_Other: {
12349       SDValue Flag;
12350       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12351                                                   OpInfo, DAG);
12352       ++InitialDef;
12353       ResultValues.push_back(V);
12354       ResultVTs.push_back(OpInfo.ConstraintVT);
12355       break;
12356     }
12357     default:
12358       break;
12359     }
12360   }
12361   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12362                           DAG.getVTList(ResultVTs), ResultValues);
12363   setValue(&I, V);
12364 }
12365