xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 6fa87ec10fce41709529abe5b94a6b18ad2062c7)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/FunctionLoweringInfo.h"
36 #include "llvm/CodeGen/GCMetadata.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Intrinsics.h"
76 #include "llvm/IR/IntrinsicsAArch64.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/LLVMContext.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Statepoint.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/Support/AtomicOrdering.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/MathExtras.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Target/TargetIntrinsicInfo.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetOptions.h"
98 #include "llvm/Transforms/Utils/Local.h"
99 #include <cstddef>
100 #include <iterator>
101 #include <limits>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace PatternMatch;
106 using namespace SwitchCG;
107 
108 #define DEBUG_TYPE "isel"
109 
110 /// LimitFloatPrecision - Generate low-precision inline sequences for
111 /// some float libcalls (6, 8 or 12 bits).
112 static unsigned LimitFloatPrecision;
113 
114 static cl::opt<bool>
115     InsertAssertAlign("insert-assert-align", cl::init(true),
116                       cl::desc("Insert the experimental `assertalign` node."),
117                       cl::ReallyHidden);
118 
119 static cl::opt<unsigned, true>
120     LimitFPPrecision("limit-float-precision",
121                      cl::desc("Generate low-precision inline sequences "
122                               "for some float libcalls"),
123                      cl::location(LimitFloatPrecision), cl::Hidden,
124                      cl::init(0));
125 
126 static cl::opt<unsigned> SwitchPeelThreshold(
127     "switch-peel-threshold", cl::Hidden, cl::init(66),
128     cl::desc("Set the case probability threshold for peeling the case from a "
129              "switch statement. A value greater than 100 will void this "
130              "optimization"));
131 
132 // Limit the width of DAG chains. This is important in general to prevent
133 // DAG-based analysis from blowing up. For example, alias analysis and
134 // load clustering may not complete in reasonable time. It is difficult to
135 // recognize and avoid this situation within each individual analysis, and
136 // future analyses are likely to have the same behavior. Limiting DAG width is
137 // the safe approach and will be especially important with global DAGs.
138 //
139 // MaxParallelChains default is arbitrarily high to avoid affecting
140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
141 // sequence over this should have been converted to llvm.memcpy by the
142 // frontend. It is easy to induce this behavior with .ll code such as:
143 // %buffer = alloca [4096 x i8]
144 // %data = load [4096 x i8]* %argPtr
145 // store [4096 x i8] %data, [4096 x i8]* %buffer
146 static const unsigned MaxParallelChains = 64;
147 
148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
149                                       const SDValue *Parts, unsigned NumParts,
150                                       MVT PartVT, EVT ValueVT, const Value *V,
151                                       Optional<CallingConv::ID> CC);
152 
153 /// getCopyFromParts - Create a value that contains the specified legal parts
154 /// combined into the value they represent.  If the parts combine to a type
155 /// larger than ValueVT then AssertOp can be used to specify whether the extra
156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
157 /// (ISD::AssertSext).
158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
159                                 const SDValue *Parts, unsigned NumParts,
160                                 MVT PartVT, EVT ValueVT, const Value *V,
161                                 Optional<CallingConv::ID> CC = None,
162                                 Optional<ISD::NodeType> AssertOp = None) {
163   // Let the target assemble the parts if it wants to
164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
165   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
166                                                    PartVT, ValueVT, CC))
167     return Val;
168 
169   if (ValueVT.isVector())
170     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
171                                   CC);
172 
173   assert(NumParts > 0 && "No parts to assemble!");
174   SDValue Val = Parts[0];
175 
176   if (NumParts > 1) {
177     // Assemble the value from multiple parts.
178     if (ValueVT.isInteger()) {
179       unsigned PartBits = PartVT.getSizeInBits();
180       unsigned ValueBits = ValueVT.getSizeInBits();
181 
182       // Assemble the power of 2 part.
183       unsigned RoundParts =
184           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
185       unsigned RoundBits = PartBits * RoundParts;
186       EVT RoundVT = RoundBits == ValueBits ?
187         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
188       SDValue Lo, Hi;
189 
190       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
191 
192       if (RoundParts > 2) {
193         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
194                               PartVT, HalfVT, V);
195         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
196                               RoundParts / 2, PartVT, HalfVT, V);
197       } else {
198         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
199         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
200       }
201 
202       if (DAG.getDataLayout().isBigEndian())
203         std::swap(Lo, Hi);
204 
205       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
212                               OddVT, V, CC);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (DAG.getDataLayout().isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
222                                          TLI.getShiftAmountTy(
223                                              TotalVT, DAG.getDataLayout())));
224         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
225         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
226       }
227     } else if (PartVT.isFloatingPoint()) {
228       // FP split into multiple FP parts (for ppcf128)
229       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
230              "Unexpected split");
231       SDValue Lo, Hi;
232       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
233       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
234       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
235         std::swap(Lo, Hi);
236       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
237     } else {
238       // FP split into integer parts (soft fp)
239       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
240              !PartVT.isVector() && "Unexpected split");
241       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
242       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
243     }
244   }
245 
246   // There is now one part, held in Val.  Correct it to match ValueVT.
247   // PartEVT is the type of the register class that holds the value.
248   // ValueVT is the type of the inline asm operation.
249   EVT PartEVT = Val.getValueType();
250 
251   if (PartEVT == ValueVT)
252     return Val;
253 
254   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
255       ValueVT.bitsLT(PartEVT)) {
256     // For an FP value in an integer part, we need to truncate to the right
257     // width first.
258     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
259     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
260   }
261 
262   // Handle types that have the same size.
263   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
264     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
265 
266   // Handle types with different sizes.
267   if (PartEVT.isInteger() && ValueVT.isInteger()) {
268     if (ValueVT.bitsLT(PartEVT)) {
269       // For a truncate, see if we have any information to
270       // indicate whether the truncated bits will always be
271       // zero or sign-extension.
272       if (AssertOp)
273         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
274                           DAG.getValueType(ValueVT));
275       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
276     }
277     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
278   }
279 
280   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
281     // FP_ROUND's are always exact here.
282     if (ValueVT.bitsLT(Val.getValueType()))
283       return DAG.getNode(
284           ISD::FP_ROUND, DL, ValueVT, Val,
285           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
286 
287     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
288   }
289 
290   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
291   // then truncating.
292   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
293       ValueVT.bitsLT(PartEVT)) {
294     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
295     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
296   }
297 
298   report_fatal_error("Unknown mismatch in getCopyFromParts!");
299 }
300 
301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
302                                               const Twine &ErrMsg) {
303   const Instruction *I = dyn_cast_or_null<Instruction>(V);
304   if (!V)
305     return Ctx.emitError(ErrMsg);
306 
307   const char *AsmError = ", possible invalid constraint for vector type";
308   if (const CallInst *CI = dyn_cast<CallInst>(I))
309     if (CI->isInlineAsm())
310       return Ctx.emitError(I, ErrMsg + AsmError);
311 
312   return Ctx.emitError(I, ErrMsg);
313 }
314 
315 /// getCopyFromPartsVector - Create a value that contains the specified legal
316 /// parts combined into the value they represent.  If the parts combine to a
317 /// type larger than ValueVT then AssertOp can be used to specify whether the
318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
319 /// ValueVT (ISD::AssertSext).
320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
321                                       const SDValue *Parts, unsigned NumParts,
322                                       MVT PartVT, EVT ValueVT, const Value *V,
323                                       Optional<CallingConv::ID> CallConv) {
324   assert(ValueVT.isVector() && "Not a vector value");
325   assert(NumParts > 0 && "No parts to assemble!");
326   const bool IsABIRegCopy = CallConv.has_value();
327 
328   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
329   SDValue Val = Parts[0];
330 
331   // Handle a multi-element vector.
332   if (NumParts > 1) {
333     EVT IntermediateVT;
334     MVT RegisterVT;
335     unsigned NumIntermediates;
336     unsigned NumRegs;
337 
338     if (IsABIRegCopy) {
339       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
340           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
341           NumIntermediates, RegisterVT);
342     } else {
343       NumRegs =
344           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
345                                      NumIntermediates, RegisterVT);
346     }
347 
348     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
349     NumParts = NumRegs; // Silence a compiler warning.
350     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
351     assert(RegisterVT.getSizeInBits() ==
352            Parts[0].getSimpleValueType().getSizeInBits() &&
353            "Part type sizes don't match!");
354 
355     // Assemble the parts into intermediate operands.
356     SmallVector<SDValue, 8> Ops(NumIntermediates);
357     if (NumIntermediates == NumParts) {
358       // If the register was not expanded, truncate or copy the value,
359       // as appropriate.
360       for (unsigned i = 0; i != NumParts; ++i)
361         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
362                                   PartVT, IntermediateVT, V, CallConv);
363     } else if (NumParts > 0) {
364       // If the intermediate type was expanded, build the intermediate
365       // operands from the parts.
366       assert(NumParts % NumIntermediates == 0 &&
367              "Must expand into a divisible number of parts!");
368       unsigned Factor = NumParts / NumIntermediates;
369       for (unsigned i = 0; i != NumIntermediates; ++i)
370         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
371                                   PartVT, IntermediateVT, V, CallConv);
372     }
373 
374     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
375     // intermediate operands.
376     EVT BuiltVectorTy =
377         IntermediateVT.isVector()
378             ? EVT::getVectorVT(
379                   *DAG.getContext(), IntermediateVT.getScalarType(),
380                   IntermediateVT.getVectorElementCount() * NumParts)
381             : EVT::getVectorVT(*DAG.getContext(),
382                                IntermediateVT.getScalarType(),
383                                NumIntermediates);
384     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
385                                                 : ISD::BUILD_VECTOR,
386                       DL, BuiltVectorTy, Ops);
387   }
388 
389   // There is now one part, held in Val.  Correct it to match ValueVT.
390   EVT PartEVT = Val.getValueType();
391 
392   if (PartEVT == ValueVT)
393     return Val;
394 
395   if (PartEVT.isVector()) {
396     // Vector/Vector bitcast.
397     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
398       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
399 
400     // If the element type of the source/dest vectors are the same, but the
401     // parts vector has more elements than the value vector, then we have a
402     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
403     // elements we want.
404     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
405       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
406               ValueVT.getVectorElementCount().getKnownMinValue()) &&
407              (PartEVT.getVectorElementCount().isScalable() ==
408               ValueVT.getVectorElementCount().isScalable()) &&
409              "Cannot narrow, it would be a lossy transformation");
410       PartEVT =
411           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
412                            ValueVT.getVectorElementCount());
413       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
414                         DAG.getVectorIdxConstant(0, DL));
415       if (PartEVT == ValueVT)
416         return Val;
417     }
418 
419     // Promoted vector extract
420     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
421   }
422 
423   // Trivial bitcast if the types are the same size and the destination
424   // vector type is legal.
425   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
426       TLI.isTypeLegal(ValueVT))
427     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
428 
429   if (ValueVT.getVectorNumElements() != 1) {
430      // Certain ABIs require that vectors are passed as integers. For vectors
431      // are the same size, this is an obvious bitcast.
432      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
433        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
434      } else if (ValueVT.bitsLT(PartEVT)) {
435        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
436        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
437        // Drop the extra bits.
438        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
439        return DAG.getBitcast(ValueVT, Val);
440      }
441 
442      diagnosePossiblyInvalidConstraint(
443          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
444      return DAG.getUNDEF(ValueVT);
445   }
446 
447   // Handle cases such as i8 -> <1 x i1>
448   EVT ValueSVT = ValueVT.getVectorElementType();
449   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
450     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
451       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
452     else
453       Val = ValueVT.isFloatingPoint()
454                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
455                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
456   }
457 
458   return DAG.getBuildVector(ValueVT, DL, Val);
459 }
460 
461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
462                                  SDValue Val, SDValue *Parts, unsigned NumParts,
463                                  MVT PartVT, const Value *V,
464                                  Optional<CallingConv::ID> CallConv);
465 
466 /// getCopyToParts - Create a series of nodes that contain the specified value
467 /// split into legal parts.  If the parts contain more bits than Val, then, for
468 /// integers, ExtendKind can be used to specify how to generate the extra bits.
469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
470                            SDValue *Parts, unsigned NumParts, MVT PartVT,
471                            const Value *V,
472                            Optional<CallingConv::ID> CallConv = None,
473                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
474   // Let the target split the parts if it wants to
475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
477                                       CallConv))
478     return;
479   EVT ValueVT = Val.getValueType();
480 
481   // Handle the vector case separately.
482   if (ValueVT.isVector())
483     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
484                                 CallConv);
485 
486   unsigned PartBits = PartVT.getSizeInBits();
487   unsigned OrigNumParts = NumParts;
488   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
489          "Copying to an illegal type!");
490 
491   if (NumParts == 0)
492     return;
493 
494   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
495   EVT PartEVT = PartVT;
496   if (PartEVT == ValueVT) {
497     assert(NumParts == 1 && "No-op copy with multiple parts!");
498     Parts[0] = Val;
499     return;
500   }
501 
502   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
503     // If the parts cover more bits than the value has, promote the value.
504     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
505       assert(NumParts == 1 && "Do not know what to promote to!");
506       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
507     } else {
508       if (ValueVT.isFloatingPoint()) {
509         // FP values need to be bitcast, then extended if they are being put
510         // into a larger container.
511         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
512         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
513       }
514       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
515              ValueVT.isInteger() &&
516              "Unknown mismatch!");
517       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
518       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
519       if (PartVT == MVT::x86mmx)
520         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
521     }
522   } else if (PartBits == ValueVT.getSizeInBits()) {
523     // Different types of the same size.
524     assert(NumParts == 1 && PartEVT != ValueVT);
525     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
526   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
527     // If the parts cover less bits than value has, truncate the value.
528     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529            ValueVT.isInteger() &&
530            "Unknown mismatch!");
531     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
533     if (PartVT == MVT::x86mmx)
534       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535   }
536 
537   // The value may have changed - recompute ValueVT.
538   ValueVT = Val.getValueType();
539   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
540          "Failed to tile the value with PartVT!");
541 
542   if (NumParts == 1) {
543     if (PartEVT != ValueVT) {
544       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
545                                         "scalar-to-vector conversion failed");
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548 
549     Parts[0] = Val;
550     return;
551   }
552 
553   // Expand the value into multiple parts.
554   if (NumParts & (NumParts - 1)) {
555     // The number of parts is not a power of 2.  Split off and copy the tail.
556     assert(PartVT.isInteger() && ValueVT.isInteger() &&
557            "Do not know what to expand to!");
558     unsigned RoundParts = 1 << Log2_32(NumParts);
559     unsigned RoundBits = RoundParts * PartBits;
560     unsigned OddParts = NumParts - RoundParts;
561     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
562       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
563 
564     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
565                    CallConv);
566 
567     if (DAG.getDataLayout().isBigEndian())
568       // The odd parts were reversed by getCopyToParts - unreverse them.
569       std::reverse(Parts + RoundParts, Parts + NumParts);
570 
571     NumParts = RoundParts;
572     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
573     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
574   }
575 
576   // The number of parts is a power of 2.  Repeatedly bisect the value using
577   // EXTRACT_ELEMENT.
578   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
579                          EVT::getIntegerVT(*DAG.getContext(),
580                                            ValueVT.getSizeInBits()),
581                          Val);
582 
583   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
584     for (unsigned i = 0; i < NumParts; i += StepSize) {
585       unsigned ThisBits = StepSize * PartBits / 2;
586       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
587       SDValue &Part0 = Parts[i];
588       SDValue &Part1 = Parts[i+StepSize/2];
589 
590       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
591                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
592       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
593                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
594 
595       if (ThisBits == PartBits && ThisVT != PartVT) {
596         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
597         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
598       }
599     }
600   }
601 
602   if (DAG.getDataLayout().isBigEndian())
603     std::reverse(Parts, Parts + OrigNumParts);
604 }
605 
606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
607                                      const SDLoc &DL, EVT PartVT) {
608   if (!PartVT.isVector())
609     return SDValue();
610 
611   EVT ValueVT = Val.getValueType();
612   ElementCount PartNumElts = PartVT.getVectorElementCount();
613   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
614 
615   // We only support widening vectors with equivalent element types and
616   // fixed/scalable properties. If a target needs to widen a fixed-length type
617   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
618   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
619       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
620       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
621     return SDValue();
622 
623   // Widening a scalable vector to another scalable vector is done by inserting
624   // the vector into a larger undef one.
625   if (PartNumElts.isScalable())
626     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
627                        Val, DAG.getVectorIdxConstant(0, DL));
628 
629   EVT ElementVT = PartVT.getVectorElementType();
630   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
631   // undef elements.
632   SmallVector<SDValue, 16> Ops;
633   DAG.ExtractVectorElements(Val, Ops);
634   SDValue EltUndef = DAG.getUNDEF(ElementVT);
635   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
636 
637   // FIXME: Use CONCAT for 2x -> 4x.
638   return DAG.getBuildVector(PartVT, DL, Ops);
639 }
640 
641 /// getCopyToPartsVector - Create a series of nodes that contain the specified
642 /// value split into legal parts.
643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
644                                  SDValue Val, SDValue *Parts, unsigned NumParts,
645                                  MVT PartVT, const Value *V,
646                                  Optional<CallingConv::ID> CallConv) {
647   EVT ValueVT = Val.getValueType();
648   assert(ValueVT.isVector() && "Not a vector");
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650   const bool IsABIRegCopy = CallConv.has_value();
651 
652   if (NumParts == 1) {
653     EVT PartEVT = PartVT;
654     if (PartEVT == ValueVT) {
655       // Nothing to do.
656     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
657       // Bitconvert vector->vector case.
658       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
659     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
660       Val = Widened;
661     } else if (PartVT.isVector() &&
662                PartEVT.getVectorElementType().bitsGE(
663                    ValueVT.getVectorElementType()) &&
664                PartEVT.getVectorElementCount() ==
665                    ValueVT.getVectorElementCount()) {
666 
667       // Promoted vector extract
668       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
669     } else if (PartEVT.isVector() &&
670                PartEVT.getVectorElementType() !=
671                    ValueVT.getVectorElementType() &&
672                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
673                    TargetLowering::TypeWidenVector) {
674       // Combination of widening and promotion.
675       EVT WidenVT =
676           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
677                            PartVT.getVectorElementCount());
678       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
679       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
680     } else {
681       if (ValueVT.getVectorElementCount().isScalar()) {
682         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
683                           DAG.getVectorIdxConstant(0, DL));
684       } else {
685         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
686         assert(PartVT.getFixedSizeInBits() > ValueSize &&
687                "lossy conversion of vector to scalar type");
688         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
689         Val = DAG.getBitcast(IntermediateType, Val);
690         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691       }
692     }
693 
694     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
695     Parts[0] = Val;
696     return;
697   }
698 
699   // Handle a multi-element vector.
700   EVT IntermediateVT;
701   MVT RegisterVT;
702   unsigned NumIntermediates;
703   unsigned NumRegs;
704   if (IsABIRegCopy) {
705     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
706         *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT,
707         NumIntermediates, RegisterVT);
708   } else {
709     NumRegs =
710         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
711                                    NumIntermediates, RegisterVT);
712   }
713 
714   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
715   NumParts = NumRegs; // Silence a compiler warning.
716   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
717 
718   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
719          "Mixing scalable and fixed vectors when copying in parts");
720 
721   Optional<ElementCount> DestEltCnt;
722 
723   if (IntermediateVT.isVector())
724     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
725   else
726     DestEltCnt = ElementCount::getFixed(NumIntermediates);
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
730 
731   if (ValueVT == BuiltVectorTy) {
732     // Nothing to do.
733   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
734     // Bitconvert vector->vector case.
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   } else {
737     if (BuiltVectorTy.getVectorElementType().bitsGT(
738             ValueVT.getVectorElementType())) {
739       // Integer promotion.
740       ValueVT = EVT::getVectorVT(*DAG.getContext(),
741                                  BuiltVectorTy.getVectorElementType(),
742                                  ValueVT.getVectorElementCount());
743       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
744     }
745 
746     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
747       Val = Widened;
748     }
749   }
750 
751   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
752 
753   // Split the vector into intermediate operands.
754   SmallVector<SDValue, 8> Ops(NumIntermediates);
755   for (unsigned i = 0; i != NumIntermediates; ++i) {
756     if (IntermediateVT.isVector()) {
757       // This does something sensible for scalable vectors - see the
758       // definition of EXTRACT_SUBVECTOR for further details.
759       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
760       Ops[i] =
761           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
762                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
763     } else {
764       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
765                            DAG.getVectorIdxConstant(i, DL));
766     }
767   }
768 
769   // Split the intermediate operands into legal parts.
770   if (NumParts == NumIntermediates) {
771     // If the register was not expanded, promote or copy the value,
772     // as appropriate.
773     for (unsigned i = 0; i != NumParts; ++i)
774       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
775   } else if (NumParts > 0) {
776     // If the intermediate type was expanded, split each the value into
777     // legal parts.
778     assert(NumIntermediates != 0 && "division by zero");
779     assert(NumParts % NumIntermediates == 0 &&
780            "Must expand into a divisible number of parts!");
781     unsigned Factor = NumParts / NumIntermediates;
782     for (unsigned i = 0; i != NumIntermediates; ++i)
783       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
784                      CallConv);
785   }
786 }
787 
788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
789                            EVT valuevt, Optional<CallingConv::ID> CC)
790     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
791       RegCount(1, regs.size()), CallConv(CC) {}
792 
793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
794                            const DataLayout &DL, unsigned Reg, Type *Ty,
795                            Optional<CallingConv::ID> CC) {
796   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
797 
798   CallConv = CC;
799 
800   for (EVT ValueVT : ValueVTs) {
801     unsigned NumRegs =
802         isABIMangled()
803             ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT)
804             : TLI.getNumRegisters(Context, ValueVT);
805     MVT RegisterVT =
806         isABIMangled()
807             ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT)
808             : TLI.getRegisterType(Context, ValueVT);
809     for (unsigned i = 0; i != NumRegs; ++i)
810       Regs.push_back(Reg + i);
811     RegVTs.push_back(RegisterVT);
812     RegCount.push_back(NumRegs);
813     Reg += NumRegs;
814   }
815 }
816 
817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
818                                       FunctionLoweringInfo &FuncInfo,
819                                       const SDLoc &dl, SDValue &Chain,
820                                       SDValue *Flag, const Value *V) const {
821   // A Value with type {} or [0 x %t] needs no registers.
822   if (ValueVTs.empty())
823     return SDValue();
824 
825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
826 
827   // Assemble the legal parts into the final values.
828   SmallVector<SDValue, 4> Values(ValueVTs.size());
829   SmallVector<SDValue, 8> Parts;
830   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
831     // Copy the legal parts from the registers.
832     EVT ValueVT = ValueVTs[Value];
833     unsigned NumRegs = RegCount[Value];
834     MVT RegisterVT =
835         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
836                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
837                        : RegVTs[Value];
838 
839     Parts.resize(NumRegs);
840     for (unsigned i = 0; i != NumRegs; ++i) {
841       SDValue P;
842       if (!Flag) {
843         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
844       } else {
845         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
846         *Flag = P.getValue(2);
847       }
848 
849       Chain = P.getValue(1);
850       Parts[i] = P;
851 
852       // If the source register was virtual and if we know something about it,
853       // add an assert node.
854       if (!Register::isVirtualRegister(Regs[Part + i]) ||
855           !RegisterVT.isInteger())
856         continue;
857 
858       const FunctionLoweringInfo::LiveOutInfo *LOI =
859         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
860       if (!LOI)
861         continue;
862 
863       unsigned RegSize = RegisterVT.getScalarSizeInBits();
864       unsigned NumSignBits = LOI->NumSignBits;
865       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
866 
867       if (NumZeroBits == RegSize) {
868         // The current value is a zero.
869         // Explicitly express that as it would be easier for
870         // optimizations to kick in.
871         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
872         continue;
873       }
874 
875       // FIXME: We capture more information than the dag can represent.  For
876       // now, just use the tightest assertzext/assertsext possible.
877       bool isSExt;
878       EVT FromVT(MVT::Other);
879       if (NumZeroBits) {
880         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
881         isSExt = false;
882       } else if (NumSignBits > 1) {
883         FromVT =
884             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
885         isSExt = true;
886       } else {
887         continue;
888       }
889       // Add an assertion node.
890       assert(FromVT != MVT::Other);
891       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
892                              RegisterVT, P, DAG.getValueType(FromVT));
893     }
894 
895     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
896                                      RegisterVT, ValueVT, V, CallConv);
897     Part += NumRegs;
898     Parts.clear();
899   }
900 
901   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
902 }
903 
904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
905                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
906                                  const Value *V,
907                                  ISD::NodeType PreferredExtendType) const {
908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
909   ISD::NodeType ExtendKind = PreferredExtendType;
910 
911   // Get the list of the values's legal parts.
912   unsigned NumRegs = Regs.size();
913   SmallVector<SDValue, 8> Parts(NumRegs);
914   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
915     unsigned NumParts = RegCount[Value];
916 
917     MVT RegisterVT =
918         isABIMangled() ? TLI.getRegisterTypeForCallingConv(
919                              *DAG.getContext(), CallConv.value(), RegVTs[Value])
920                        : RegVTs[Value];
921 
922     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
923       ExtendKind = ISD::ZERO_EXTEND;
924 
925     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
926                    NumParts, RegisterVT, V, CallConv, ExtendKind);
927     Part += NumParts;
928   }
929 
930   // Copy the parts into the registers.
931   SmallVector<SDValue, 8> Chains(NumRegs);
932   for (unsigned i = 0; i != NumRegs; ++i) {
933     SDValue Part;
934     if (!Flag) {
935       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
936     } else {
937       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
938       *Flag = Part.getValue(1);
939     }
940 
941     Chains[i] = Part.getValue(0);
942   }
943 
944   if (NumRegs == 1 || Flag)
945     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
946     // flagged to it. That is the CopyToReg nodes and the user are considered
947     // a single scheduling unit. If we create a TokenFactor and return it as
948     // chain, then the TokenFactor is both a predecessor (operand) of the
949     // user as well as a successor (the TF operands are flagged to the user).
950     // c1, f1 = CopyToReg
951     // c2, f2 = CopyToReg
952     // c3     = TokenFactor c1, c2
953     // ...
954     //        = op c3, ..., f2
955     Chain = Chains[NumRegs-1];
956   else
957     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
958 }
959 
960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
961                                         unsigned MatchingIdx, const SDLoc &dl,
962                                         SelectionDAG &DAG,
963                                         std::vector<SDValue> &Ops) const {
964   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
965 
966   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
967   if (HasMatching)
968     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
969   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
970     // Put the register class of the virtual registers in the flag word.  That
971     // way, later passes can recompute register class constraints for inline
972     // assembly as well as normal instructions.
973     // Don't do this for tied operands that can use the regclass information
974     // from the def.
975     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
976     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
977     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
978   }
979 
980   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
981   Ops.push_back(Res);
982 
983   if (Code == InlineAsm::Kind_Clobber) {
984     // Clobbers should always have a 1:1 mapping with registers, and may
985     // reference registers that have illegal (e.g. vector) types. Hence, we
986     // shouldn't try to apply any sort of splitting logic to them.
987     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
988            "No 1:1 mapping from clobbers to regs?");
989     Register SP = TLI.getStackPointerRegisterToSaveRestore();
990     (void)SP;
991     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
992       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
993       assert(
994           (Regs[I] != SP ||
995            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
996           "If we clobbered the stack pointer, MFI should know about it.");
997     }
998     return;
999   }
1000 
1001   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1002     MVT RegisterVT = RegVTs[Value];
1003     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1004                                            RegisterVT);
1005     for (unsigned i = 0; i != NumRegs; ++i) {
1006       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1007       unsigned TheReg = Regs[Reg++];
1008       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1009     }
1010   }
1011 }
1012 
1013 SmallVector<std::pair<unsigned, TypeSize>, 4>
1014 RegsForValue::getRegsAndSizes() const {
1015   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1016   unsigned I = 0;
1017   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1018     unsigned RegCount = std::get<0>(CountAndVT);
1019     MVT RegisterVT = std::get<1>(CountAndVT);
1020     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1021     for (unsigned E = I + RegCount; I != E; ++I)
1022       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1023   }
1024   return OutVec;
1025 }
1026 
1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1028                                const TargetLibraryInfo *li) {
1029   AA = aa;
1030   GFI = gfi;
1031   LibInfo = li;
1032   Context = DAG.getContext();
1033   LPadToCallSiteMap.clear();
1034   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1035 }
1036 
1037 void SelectionDAGBuilder::clear() {
1038   NodeMap.clear();
1039   UnusedArgNodeMap.clear();
1040   PendingLoads.clear();
1041   PendingExports.clear();
1042   PendingConstrainedFP.clear();
1043   PendingConstrainedFPStrict.clear();
1044   CurInst = nullptr;
1045   HasTailCall = false;
1046   SDNodeOrder = LowestSDNodeOrder;
1047   StatepointLowering.clear();
1048 }
1049 
1050 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1051   DanglingDebugInfoMap.clear();
1052 }
1053 
1054 // Update DAG root to include dependencies on Pending chains.
1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1056   SDValue Root = DAG.getRoot();
1057 
1058   if (Pending.empty())
1059     return Root;
1060 
1061   // Add current root to PendingChains, unless we already indirectly
1062   // depend on it.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = Pending.size();
1065     for (; i != e; ++i) {
1066       assert(Pending[i].getNode()->getNumOperands() > 1);
1067       if (Pending[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       Pending.push_back(Root);
1073   }
1074 
1075   if (Pending.size() == 1)
1076     Root = Pending[0];
1077   else
1078     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1079 
1080   DAG.setRoot(Root);
1081   Pending.clear();
1082   return Root;
1083 }
1084 
1085 SDValue SelectionDAGBuilder::getMemoryRoot() {
1086   return updateRoot(PendingLoads);
1087 }
1088 
1089 SDValue SelectionDAGBuilder::getRoot() {
1090   // Chain up all pending constrained intrinsics together with all
1091   // pending loads, by simply appending them to PendingLoads and
1092   // then calling getMemoryRoot().
1093   PendingLoads.reserve(PendingLoads.size() +
1094                        PendingConstrainedFP.size() +
1095                        PendingConstrainedFPStrict.size());
1096   PendingLoads.append(PendingConstrainedFP.begin(),
1097                       PendingConstrainedFP.end());
1098   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1099                       PendingConstrainedFPStrict.end());
1100   PendingConstrainedFP.clear();
1101   PendingConstrainedFPStrict.clear();
1102   return getMemoryRoot();
1103 }
1104 
1105 SDValue SelectionDAGBuilder::getControlRoot() {
1106   // We need to emit pending fpexcept.strict constrained intrinsics,
1107   // so append them to the PendingExports list.
1108   PendingExports.append(PendingConstrainedFPStrict.begin(),
1109                         PendingConstrainedFPStrict.end());
1110   PendingConstrainedFPStrict.clear();
1111   return updateRoot(PendingExports);
1112 }
1113 
1114 void SelectionDAGBuilder::visit(const Instruction &I) {
1115   // Set up outgoing PHI node register values before emitting the terminator.
1116   if (I.isTerminator()) {
1117     HandlePHINodesInSuccessorBlocks(I.getParent());
1118   }
1119 
1120   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1121   if (!isa<DbgInfoIntrinsic>(I))
1122     ++SDNodeOrder;
1123 
1124   CurInst = &I;
1125 
1126   visit(I.getOpcode(), I);
1127 
1128   if (!I.isTerminator() && !HasTailCall &&
1129       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1130     CopyToExportRegsIfNeeded(&I);
1131 
1132   CurInst = nullptr;
1133 }
1134 
1135 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1136   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1137 }
1138 
1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1140   // Note: this doesn't use InstVisitor, because it has to work with
1141   // ConstantExpr's in addition to instructions.
1142   switch (Opcode) {
1143   default: llvm_unreachable("Unknown instruction type encountered!");
1144     // Build the switch statement using the Instruction.def file.
1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1146     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1147 #include "llvm/IR/Instruction.def"
1148   }
1149 }
1150 
1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1152                                                DebugLoc DL, unsigned Order) {
1153   // We treat variadic dbg_values differently at this stage.
1154   if (DI->hasArgList()) {
1155     // For variadic dbg_values we will now insert an undef.
1156     // FIXME: We can potentially recover these!
1157     SmallVector<SDDbgOperand, 2> Locs;
1158     for (const Value *V : DI->getValues()) {
1159       auto Undef = UndefValue::get(V->getType());
1160       Locs.push_back(SDDbgOperand::fromConst(Undef));
1161     }
1162     SDDbgValue *SDV = DAG.getDbgValueList(
1163         DI->getVariable(), DI->getExpression(), Locs, {},
1164         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1165     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1166   } else {
1167     // TODO: Dangling debug info will eventually either be resolved or produce
1168     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1169     // between the original dbg.value location and its resolved DBG_VALUE,
1170     // which we should ideally fill with an extra Undef DBG_VALUE.
1171     assert(DI->getNumVariableLocationOps() == 1 &&
1172            "DbgValueInst without an ArgList should have a single location "
1173            "operand.");
1174     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1175   }
1176 }
1177 
1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1179                                                 const DIExpression *Expr) {
1180   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1181     const DbgValueInst *DI = DDI.getDI();
1182     DIVariable *DanglingVariable = DI->getVariable();
1183     DIExpression *DanglingExpr = DI->getExpression();
1184     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1185       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1186       return true;
1187     }
1188     return false;
1189   };
1190 
1191   for (auto &DDIMI : DanglingDebugInfoMap) {
1192     DanglingDebugInfoVector &DDIV = DDIMI.second;
1193 
1194     // If debug info is to be dropped, run it through final checks to see
1195     // whether it can be salvaged.
1196     for (auto &DDI : DDIV)
1197       if (isMatchingDbgValue(DDI))
1198         salvageUnresolvedDbgValue(DDI);
1199 
1200     erase_if(DDIV, isMatchingDbgValue);
1201   }
1202 }
1203 
1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1205 // generate the debug data structures now that we've seen its definition.
1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1207                                                    SDValue Val) {
1208   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1209   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1210     return;
1211 
1212   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1213   for (auto &DDI : DDIV) {
1214     const DbgValueInst *DI = DDI.getDI();
1215     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1216     assert(DI && "Ill-formed DanglingDebugInfo");
1217     DebugLoc dl = DDI.getdl();
1218     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1219     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1220     DILocalVariable *Variable = DI->getVariable();
1221     DIExpression *Expr = DI->getExpression();
1222     assert(Variable->isValidLocationForIntrinsic(dl) &&
1223            "Expected inlined-at fields to agree");
1224     SDDbgValue *SDV;
1225     if (Val.getNode()) {
1226       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1227       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1228       // we couldn't resolve it directly when examining the DbgValue intrinsic
1229       // in the first place we should not be more successful here). Unless we
1230       // have some test case that prove this to be correct we should avoid
1231       // calling EmitFuncArgumentDbgValue here.
1232       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1233                                     FuncArgumentDbgValueKind::Value, Val)) {
1234         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1235                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1236         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1237         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1238         // inserted after the definition of Val when emitting the instructions
1239         // after ISel. An alternative could be to teach
1240         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1241         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1242                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1243                    << ValSDNodeOrder << "\n");
1244         SDV = getDbgValue(Val, Variable, Expr, dl,
1245                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1246         DAG.AddDbgValue(SDV, false);
1247       } else
1248         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1249                           << "in EmitFuncArgumentDbgValue\n");
1250     } else {
1251       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1252       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1253       auto SDV =
1254           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1255       DAG.AddDbgValue(SDV, false);
1256     }
1257   }
1258   DDIV.clear();
1259 }
1260 
1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1262   // TODO: For the variadic implementation, instead of only checking the fail
1263   // state of `handleDebugValue`, we need know specifically which values were
1264   // invalid, so that we attempt to salvage only those values when processing
1265   // a DIArgList.
1266   assert(!DDI.getDI()->hasArgList() &&
1267          "Not implemented for variadic dbg_values");
1268   Value *V = DDI.getDI()->getValue(0);
1269   DILocalVariable *Var = DDI.getDI()->getVariable();
1270   DIExpression *Expr = DDI.getDI()->getExpression();
1271   DebugLoc DL = DDI.getdl();
1272   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1273   unsigned SDOrder = DDI.getSDNodeOrder();
1274   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1275   // that DW_OP_stack_value is desired.
1276   assert(isa<DbgValueInst>(DDI.getDI()));
1277   bool StackValue = true;
1278 
1279   // Can this Value can be encoded without any further work?
1280   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1281     return;
1282 
1283   // Attempt to salvage back through as many instructions as possible. Bail if
1284   // a non-instruction is seen, such as a constant expression or global
1285   // variable. FIXME: Further work could recover those too.
1286   while (isa<Instruction>(V)) {
1287     Instruction &VAsInst = *cast<Instruction>(V);
1288     // Temporary "0", awaiting real implementation.
1289     SmallVector<uint64_t, 16> Ops;
1290     SmallVector<Value *, 4> AdditionalValues;
1291     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1292                              AdditionalValues);
1293     // If we cannot salvage any further, and haven't yet found a suitable debug
1294     // expression, bail out.
1295     if (!V)
1296       break;
1297 
1298     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1299     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1300     // here for variadic dbg_values, remove that condition.
1301     if (!AdditionalValues.empty())
1302       break;
1303 
1304     // New value and expr now represent this debuginfo.
1305     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1306 
1307     // Some kind of simplification occurred: check whether the operand of the
1308     // salvaged debug expression can be encoded in this DAG.
1309     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1310                          /*IsVariadic=*/false)) {
1311       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1312                         << *DDI.getDI() << "\nBy stripping back to:\n  " << *V);
1313       return;
1314     }
1315   }
1316 
1317   // This was the final opportunity to salvage this debug information, and it
1318   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1319   // any earlier variable location.
1320   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1321   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1322   DAG.AddDbgValue(SDV, false);
1323 
1324   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << *DDI.getDI()
1325                     << "\n");
1326   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1327                     << "\n");
1328 }
1329 
1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1331                                            DILocalVariable *Var,
1332                                            DIExpression *Expr, DebugLoc dl,
1333                                            DebugLoc InstDL, unsigned Order,
1334                                            bool IsVariadic) {
1335   if (Values.empty())
1336     return true;
1337   SmallVector<SDDbgOperand> LocationOps;
1338   SmallVector<SDNode *> Dependencies;
1339   for (const Value *V : Values) {
1340     // Constant value.
1341     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1342         isa<ConstantPointerNull>(V)) {
1343       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1344       continue;
1345     }
1346 
1347     // Look through IntToPtr constants.
1348     if (auto *CE = dyn_cast<ConstantExpr>(V))
1349       if (CE->getOpcode() == Instruction::IntToPtr) {
1350         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1351         continue;
1352       }
1353 
1354     // If the Value is a frame index, we can create a FrameIndex debug value
1355     // without relying on the DAG at all.
1356     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1357       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1358       if (SI != FuncInfo.StaticAllocaMap.end()) {
1359         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1360         continue;
1361       }
1362     }
1363 
1364     // Do not use getValue() in here; we don't want to generate code at
1365     // this point if it hasn't been done yet.
1366     SDValue N = NodeMap[V];
1367     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1368       N = UnusedArgNodeMap[V];
1369     if (N.getNode()) {
1370       // Only emit func arg dbg value for non-variadic dbg.values for now.
1371       if (!IsVariadic &&
1372           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1373                                    FuncArgumentDbgValueKind::Value, N))
1374         return true;
1375       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1376         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1377         // describe stack slot locations.
1378         //
1379         // Consider "int x = 0; int *px = &x;". There are two kinds of
1380         // interesting debug values here after optimization:
1381         //
1382         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1383         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1384         //
1385         // Both describe the direct values of their associated variables.
1386         Dependencies.push_back(N.getNode());
1387         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1388         continue;
1389       }
1390       LocationOps.emplace_back(
1391           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1392       continue;
1393     }
1394 
1395     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1396     // Special rules apply for the first dbg.values of parameter variables in a
1397     // function. Identify them by the fact they reference Argument Values, that
1398     // they're parameters, and they are parameters of the current function. We
1399     // need to let them dangle until they get an SDNode.
1400     bool IsParamOfFunc =
1401         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1402     if (IsParamOfFunc)
1403       return false;
1404 
1405     // The value is not used in this block yet (or it would have an SDNode).
1406     // We still want the value to appear for the user if possible -- if it has
1407     // an associated VReg, we can refer to that instead.
1408     auto VMI = FuncInfo.ValueMap.find(V);
1409     if (VMI != FuncInfo.ValueMap.end()) {
1410       unsigned Reg = VMI->second;
1411       // If this is a PHI node, it may be split up into several MI PHI nodes
1412       // (in FunctionLoweringInfo::set).
1413       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1414                        V->getType(), None);
1415       if (RFV.occupiesMultipleRegs()) {
1416         // FIXME: We could potentially support variadic dbg_values here.
1417         if (IsVariadic)
1418           return false;
1419         unsigned Offset = 0;
1420         unsigned BitsToDescribe = 0;
1421         if (auto VarSize = Var->getSizeInBits())
1422           BitsToDescribe = *VarSize;
1423         if (auto Fragment = Expr->getFragmentInfo())
1424           BitsToDescribe = Fragment->SizeInBits;
1425         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1426           // Bail out if all bits are described already.
1427           if (Offset >= BitsToDescribe)
1428             break;
1429           // TODO: handle scalable vectors.
1430           unsigned RegisterSize = RegAndSize.second;
1431           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1432                                       ? BitsToDescribe - Offset
1433                                       : RegisterSize;
1434           auto FragmentExpr = DIExpression::createFragmentExpression(
1435               Expr, Offset, FragmentSize);
1436           if (!FragmentExpr)
1437             continue;
1438           SDDbgValue *SDV = DAG.getVRegDbgValue(
1439               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1440           DAG.AddDbgValue(SDV, false);
1441           Offset += RegisterSize;
1442         }
1443         return true;
1444       }
1445       // We can use simple vreg locations for variadic dbg_values as well.
1446       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1447       continue;
1448     }
1449     // We failed to create a SDDbgOperand for V.
1450     return false;
1451   }
1452 
1453   // We have created a SDDbgOperand for each Value in Values.
1454   // Should use Order instead of SDNodeOrder?
1455   assert(!LocationOps.empty());
1456   SDDbgValue *SDV =
1457       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1458                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1459   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1460   return true;
1461 }
1462 
1463 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1464   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1465   for (auto &Pair : DanglingDebugInfoMap)
1466     for (auto &DDI : Pair.second)
1467       salvageUnresolvedDbgValue(DDI);
1468   clearDanglingDebugInfo();
1469 }
1470 
1471 /// getCopyFromRegs - If there was virtual register allocated for the value V
1472 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1473 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1474   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1475   SDValue Result;
1476 
1477   if (It != FuncInfo.ValueMap.end()) {
1478     Register InReg = It->second;
1479 
1480     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1481                      DAG.getDataLayout(), InReg, Ty,
1482                      None); // This is not an ABI copy.
1483     SDValue Chain = DAG.getEntryNode();
1484     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1485                                  V);
1486     resolveDanglingDebugInfo(V, Result);
1487   }
1488 
1489   return Result;
1490 }
1491 
1492 /// getValue - Return an SDValue for the given Value.
1493 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1494   // If we already have an SDValue for this value, use it. It's important
1495   // to do this first, so that we don't create a CopyFromReg if we already
1496   // have a regular SDValue.
1497   SDValue &N = NodeMap[V];
1498   if (N.getNode()) return N;
1499 
1500   // If there's a virtual register allocated and initialized for this
1501   // value, use it.
1502   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1503     return copyFromReg;
1504 
1505   // Otherwise create a new SDValue and remember it.
1506   SDValue Val = getValueImpl(V);
1507   NodeMap[V] = Val;
1508   resolveDanglingDebugInfo(V, Val);
1509   return Val;
1510 }
1511 
1512 /// getNonRegisterValue - Return an SDValue for the given Value, but
1513 /// don't look in FuncInfo.ValueMap for a virtual register.
1514 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1515   // If we already have an SDValue for this value, use it.
1516   SDValue &N = NodeMap[V];
1517   if (N.getNode()) {
1518     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1519       // Remove the debug location from the node as the node is about to be used
1520       // in a location which may differ from the original debug location.  This
1521       // is relevant to Constant and ConstantFP nodes because they can appear
1522       // as constant expressions inside PHI nodes.
1523       N->setDebugLoc(DebugLoc());
1524     }
1525     return N;
1526   }
1527 
1528   // Otherwise create a new SDValue and remember it.
1529   SDValue Val = getValueImpl(V);
1530   NodeMap[V] = Val;
1531   resolveDanglingDebugInfo(V, Val);
1532   return Val;
1533 }
1534 
1535 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1536 /// Create an SDValue for the given value.
1537 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1539 
1540   if (const Constant *C = dyn_cast<Constant>(V)) {
1541     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1542 
1543     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1544       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1545 
1546     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1547       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1548 
1549     if (isa<ConstantPointerNull>(C)) {
1550       unsigned AS = V->getType()->getPointerAddressSpace();
1551       return DAG.getConstant(0, getCurSDLoc(),
1552                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1553     }
1554 
1555     if (match(C, m_VScale(DAG.getDataLayout())))
1556       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1557 
1558     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1559       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1560 
1561     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1562       return DAG.getUNDEF(VT);
1563 
1564     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1565       visit(CE->getOpcode(), *CE);
1566       SDValue N1 = NodeMap[V];
1567       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1568       return N1;
1569     }
1570 
1571     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1572       SmallVector<SDValue, 4> Constants;
1573       for (const Use &U : C->operands()) {
1574         SDNode *Val = getValue(U).getNode();
1575         // If the operand is an empty aggregate, there are no values.
1576         if (!Val) continue;
1577         // Add each leaf value from the operand to the Constants list
1578         // to form a flattened list of all the values.
1579         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1580           Constants.push_back(SDValue(Val, i));
1581       }
1582 
1583       return DAG.getMergeValues(Constants, getCurSDLoc());
1584     }
1585 
1586     if (const ConstantDataSequential *CDS =
1587           dyn_cast<ConstantDataSequential>(C)) {
1588       SmallVector<SDValue, 4> Ops;
1589       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1590         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1591         // Add each leaf value from the operand to the Constants list
1592         // to form a flattened list of all the values.
1593         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1594           Ops.push_back(SDValue(Val, i));
1595       }
1596 
1597       if (isa<ArrayType>(CDS->getType()))
1598         return DAG.getMergeValues(Ops, getCurSDLoc());
1599       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1600     }
1601 
1602     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1603       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1604              "Unknown struct or array constant!");
1605 
1606       SmallVector<EVT, 4> ValueVTs;
1607       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1608       unsigned NumElts = ValueVTs.size();
1609       if (NumElts == 0)
1610         return SDValue(); // empty struct
1611       SmallVector<SDValue, 4> Constants(NumElts);
1612       for (unsigned i = 0; i != NumElts; ++i) {
1613         EVT EltVT = ValueVTs[i];
1614         if (isa<UndefValue>(C))
1615           Constants[i] = DAG.getUNDEF(EltVT);
1616         else if (EltVT.isFloatingPoint())
1617           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1618         else
1619           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1620       }
1621 
1622       return DAG.getMergeValues(Constants, getCurSDLoc());
1623     }
1624 
1625     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1626       return DAG.getBlockAddress(BA, VT);
1627 
1628     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1629       return getValue(Equiv->getGlobalValue());
1630 
1631     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1632       return getValue(NC->getGlobalValue());
1633 
1634     VectorType *VecTy = cast<VectorType>(V->getType());
1635 
1636     // Now that we know the number and type of the elements, get that number of
1637     // elements into the Ops array based on what kind of constant it is.
1638     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1639       SmallVector<SDValue, 16> Ops;
1640       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1641       for (unsigned i = 0; i != NumElements; ++i)
1642         Ops.push_back(getValue(CV->getOperand(i)));
1643 
1644       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1645     }
1646 
1647     if (isa<ConstantAggregateZero>(C)) {
1648       EVT EltVT =
1649           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1650 
1651       SDValue Op;
1652       if (EltVT.isFloatingPoint())
1653         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1654       else
1655         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1656 
1657       if (isa<ScalableVectorType>(VecTy))
1658         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1659 
1660       SmallVector<SDValue, 16> Ops;
1661       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1662       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1663     }
1664 
1665     llvm_unreachable("Unknown vector constant");
1666   }
1667 
1668   // If this is a static alloca, generate it as the frameindex instead of
1669   // computation.
1670   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1671     DenseMap<const AllocaInst*, int>::iterator SI =
1672       FuncInfo.StaticAllocaMap.find(AI);
1673     if (SI != FuncInfo.StaticAllocaMap.end())
1674       return DAG.getFrameIndex(SI->second,
1675                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1676   }
1677 
1678   // If this is an instruction which fast-isel has deferred, select it now.
1679   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1680     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1681 
1682     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1683                      Inst->getType(), None);
1684     SDValue Chain = DAG.getEntryNode();
1685     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1686   }
1687 
1688   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1689     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1690 
1691   if (const auto *BB = dyn_cast<BasicBlock>(V))
1692     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1693 
1694   llvm_unreachable("Can't get register for value!");
1695 }
1696 
1697 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1698   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1699   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1700   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1701   bool IsSEH = isAsynchronousEHPersonality(Pers);
1702   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1703   if (!IsSEH)
1704     CatchPadMBB->setIsEHScopeEntry();
1705   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1706   if (IsMSVCCXX || IsCoreCLR)
1707     CatchPadMBB->setIsEHFuncletEntry();
1708 }
1709 
1710 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1711   // Update machine-CFG edge.
1712   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1713   FuncInfo.MBB->addSuccessor(TargetMBB);
1714   TargetMBB->setIsEHCatchretTarget(true);
1715   DAG.getMachineFunction().setHasEHCatchret(true);
1716 
1717   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1718   bool IsSEH = isAsynchronousEHPersonality(Pers);
1719   if (IsSEH) {
1720     // If this is not a fall-through branch or optimizations are switched off,
1721     // emit the branch.
1722     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1723         TM.getOptLevel() == CodeGenOpt::None)
1724       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1725                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1726     return;
1727   }
1728 
1729   // Figure out the funclet membership for the catchret's successor.
1730   // This will be used by the FuncletLayout pass to determine how to order the
1731   // BB's.
1732   // A 'catchret' returns to the outer scope's color.
1733   Value *ParentPad = I.getCatchSwitchParentPad();
1734   const BasicBlock *SuccessorColor;
1735   if (isa<ConstantTokenNone>(ParentPad))
1736     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1737   else
1738     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1739   assert(SuccessorColor && "No parent funclet for catchret!");
1740   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1741   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1742 
1743   // Create the terminator node.
1744   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1745                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1746                             DAG.getBasicBlock(SuccessorColorMBB));
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1751   // Don't emit any special code for the cleanuppad instruction. It just marks
1752   // the start of an EH scope/funclet.
1753   FuncInfo.MBB->setIsEHScopeEntry();
1754   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1755   if (Pers != EHPersonality::Wasm_CXX) {
1756     FuncInfo.MBB->setIsEHFuncletEntry();
1757     FuncInfo.MBB->setIsCleanupFuncletEntry();
1758   }
1759 }
1760 
1761 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1762 // not match, it is OK to add only the first unwind destination catchpad to the
1763 // successors, because there will be at least one invoke instruction within the
1764 // catch scope that points to the next unwind destination, if one exists, so
1765 // CFGSort cannot mess up with BB sorting order.
1766 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1767 // call within them, and catchpads only consisting of 'catch (...)' have a
1768 // '__cxa_end_catch' call within them, both of which generate invokes in case
1769 // the next unwind destination exists, i.e., the next unwind destination is not
1770 // the caller.)
1771 //
1772 // Having at most one EH pad successor is also simpler and helps later
1773 // transformations.
1774 //
1775 // For example,
1776 // current:
1777 //   invoke void @foo to ... unwind label %catch.dispatch
1778 // catch.dispatch:
1779 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1780 // catch.start:
1781 //   ...
1782 //   ... in this BB or some other child BB dominated by this BB there will be an
1783 //   invoke that points to 'next' BB as an unwind destination
1784 //
1785 // next: ; We don't need to add this to 'current' BB's successor
1786 //   ...
1787 static void findWasmUnwindDestinations(
1788     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1789     BranchProbability Prob,
1790     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1791         &UnwindDests) {
1792   while (EHPadBB) {
1793     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1794     if (isa<CleanupPadInst>(Pad)) {
1795       // Stop on cleanup pads.
1796       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1797       UnwindDests.back().first->setIsEHScopeEntry();
1798       break;
1799     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1800       // Add the catchpad handlers to the possible destinations. We don't
1801       // continue to the unwind destination of the catchswitch for wasm.
1802       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1803         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1804         UnwindDests.back().first->setIsEHScopeEntry();
1805       }
1806       break;
1807     } else {
1808       continue;
1809     }
1810   }
1811 }
1812 
1813 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1814 /// many places it could ultimately go. In the IR, we have a single unwind
1815 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1816 /// This function skips over imaginary basic blocks that hold catchswitch
1817 /// instructions, and finds all the "real" machine
1818 /// basic block destinations. As those destinations may not be successors of
1819 /// EHPadBB, here we also calculate the edge probability to those destinations.
1820 /// The passed-in Prob is the edge probability to EHPadBB.
1821 static void findUnwindDestinations(
1822     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1823     BranchProbability Prob,
1824     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1825         &UnwindDests) {
1826   EHPersonality Personality =
1827     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1828   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1829   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1830   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1831   bool IsSEH = isAsynchronousEHPersonality(Personality);
1832 
1833   if (IsWasmCXX) {
1834     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1835     assert(UnwindDests.size() <= 1 &&
1836            "There should be at most one unwind destination for wasm");
1837     return;
1838   }
1839 
1840   while (EHPadBB) {
1841     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1842     BasicBlock *NewEHPadBB = nullptr;
1843     if (isa<LandingPadInst>(Pad)) {
1844       // Stop on landingpads. They are not funclets.
1845       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1846       break;
1847     } else if (isa<CleanupPadInst>(Pad)) {
1848       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1849       // personalities.
1850       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1851       UnwindDests.back().first->setIsEHScopeEntry();
1852       UnwindDests.back().first->setIsEHFuncletEntry();
1853       break;
1854     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1855       // Add the catchpad handlers to the possible destinations.
1856       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1857         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1858         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1859         if (IsMSVCCXX || IsCoreCLR)
1860           UnwindDests.back().first->setIsEHFuncletEntry();
1861         if (!IsSEH)
1862           UnwindDests.back().first->setIsEHScopeEntry();
1863       }
1864       NewEHPadBB = CatchSwitch->getUnwindDest();
1865     } else {
1866       continue;
1867     }
1868 
1869     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1870     if (BPI && NewEHPadBB)
1871       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1872     EHPadBB = NewEHPadBB;
1873   }
1874 }
1875 
1876 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1877   // Update successor info.
1878   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1879   auto UnwindDest = I.getUnwindDest();
1880   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1881   BranchProbability UnwindDestProb =
1882       (BPI && UnwindDest)
1883           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1884           : BranchProbability::getZero();
1885   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1886   for (auto &UnwindDest : UnwindDests) {
1887     UnwindDest.first->setIsEHPad();
1888     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1889   }
1890   FuncInfo.MBB->normalizeSuccProbs();
1891 
1892   // Create the terminator node.
1893   SDValue Ret =
1894       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1895   DAG.setRoot(Ret);
1896 }
1897 
1898 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1899   report_fatal_error("visitCatchSwitch not yet implemented!");
1900 }
1901 
1902 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1904   auto &DL = DAG.getDataLayout();
1905   SDValue Chain = getControlRoot();
1906   SmallVector<ISD::OutputArg, 8> Outs;
1907   SmallVector<SDValue, 8> OutVals;
1908 
1909   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1910   // lower
1911   //
1912   //   %val = call <ty> @llvm.experimental.deoptimize()
1913   //   ret <ty> %val
1914   //
1915   // differently.
1916   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1917     LowerDeoptimizingReturn();
1918     return;
1919   }
1920 
1921   if (!FuncInfo.CanLowerReturn) {
1922     unsigned DemoteReg = FuncInfo.DemoteRegister;
1923     const Function *F = I.getParent()->getParent();
1924 
1925     // Emit a store of the return value through the virtual register.
1926     // Leave Outs empty so that LowerReturn won't try to load return
1927     // registers the usual way.
1928     SmallVector<EVT, 1> PtrValueVTs;
1929     ComputeValueVTs(TLI, DL,
1930                     F->getReturnType()->getPointerTo(
1931                         DAG.getDataLayout().getAllocaAddrSpace()),
1932                     PtrValueVTs);
1933 
1934     SDValue RetPtr =
1935         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1936     SDValue RetOp = getValue(I.getOperand(0));
1937 
1938     SmallVector<EVT, 4> ValueVTs, MemVTs;
1939     SmallVector<uint64_t, 4> Offsets;
1940     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1941                     &Offsets);
1942     unsigned NumValues = ValueVTs.size();
1943 
1944     SmallVector<SDValue, 4> Chains(NumValues);
1945     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1946     for (unsigned i = 0; i != NumValues; ++i) {
1947       // An aggregate return value cannot wrap around the address space, so
1948       // offsets to its parts don't wrap either.
1949       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1950                                            TypeSize::Fixed(Offsets[i]));
1951 
1952       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1953       if (MemVTs[i] != ValueVTs[i])
1954         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1955       Chains[i] = DAG.getStore(
1956           Chain, getCurSDLoc(), Val,
1957           // FIXME: better loc info would be nice.
1958           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1959           commonAlignment(BaseAlign, Offsets[i]));
1960     }
1961 
1962     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1963                         MVT::Other, Chains);
1964   } else if (I.getNumOperands() != 0) {
1965     SmallVector<EVT, 4> ValueVTs;
1966     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1967     unsigned NumValues = ValueVTs.size();
1968     if (NumValues) {
1969       SDValue RetOp = getValue(I.getOperand(0));
1970 
1971       const Function *F = I.getParent()->getParent();
1972 
1973       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1974           I.getOperand(0)->getType(), F->getCallingConv(),
1975           /*IsVarArg*/ false, DL);
1976 
1977       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1978       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1979         ExtendKind = ISD::SIGN_EXTEND;
1980       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1981         ExtendKind = ISD::ZERO_EXTEND;
1982 
1983       LLVMContext &Context = F->getContext();
1984       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1985 
1986       for (unsigned j = 0; j != NumValues; ++j) {
1987         EVT VT = ValueVTs[j];
1988 
1989         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1990           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1991 
1992         CallingConv::ID CC = F->getCallingConv();
1993 
1994         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1995         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1996         SmallVector<SDValue, 4> Parts(NumParts);
1997         getCopyToParts(DAG, getCurSDLoc(),
1998                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1999                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2000 
2001         // 'inreg' on function refers to return value
2002         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2003         if (RetInReg)
2004           Flags.setInReg();
2005 
2006         if (I.getOperand(0)->getType()->isPointerTy()) {
2007           Flags.setPointer();
2008           Flags.setPointerAddrSpace(
2009               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2010         }
2011 
2012         if (NeedsRegBlock) {
2013           Flags.setInConsecutiveRegs();
2014           if (j == NumValues - 1)
2015             Flags.setInConsecutiveRegsLast();
2016         }
2017 
2018         // Propagate extension type if any
2019         if (ExtendKind == ISD::SIGN_EXTEND)
2020           Flags.setSExt();
2021         else if (ExtendKind == ISD::ZERO_EXTEND)
2022           Flags.setZExt();
2023 
2024         for (unsigned i = 0; i < NumParts; ++i) {
2025           Outs.push_back(ISD::OutputArg(Flags,
2026                                         Parts[i].getValueType().getSimpleVT(),
2027                                         VT, /*isfixed=*/true, 0, 0));
2028           OutVals.push_back(Parts[i]);
2029         }
2030       }
2031     }
2032   }
2033 
2034   // Push in swifterror virtual register as the last element of Outs. This makes
2035   // sure swifterror virtual register will be returned in the swifterror
2036   // physical register.
2037   const Function *F = I.getParent()->getParent();
2038   if (TLI.supportSwiftError() &&
2039       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2040     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2041     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2042     Flags.setSwiftError();
2043     Outs.push_back(ISD::OutputArg(
2044         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2045         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2046     // Create SDNode for the swifterror virtual register.
2047     OutVals.push_back(
2048         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2049                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2050                         EVT(TLI.getPointerTy(DL))));
2051   }
2052 
2053   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2054   CallingConv::ID CallConv =
2055     DAG.getMachineFunction().getFunction().getCallingConv();
2056   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2057       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2058 
2059   // Verify that the target's LowerReturn behaved as expected.
2060   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2061          "LowerReturn didn't return a valid chain!");
2062 
2063   // Update the DAG with the new chain value resulting from return lowering.
2064   DAG.setRoot(Chain);
2065 }
2066 
2067 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2068 /// created for it, emit nodes to copy the value into the virtual
2069 /// registers.
2070 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2071   // Skip empty types
2072   if (V->getType()->isEmptyTy())
2073     return;
2074 
2075   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2076   if (VMI != FuncInfo.ValueMap.end()) {
2077     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2078     CopyValueToVirtualRegister(V, VMI->second);
2079   }
2080 }
2081 
2082 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2083 /// the current basic block, add it to ValueMap now so that we'll get a
2084 /// CopyTo/FromReg.
2085 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2086   // No need to export constants.
2087   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2088 
2089   // Already exported?
2090   if (FuncInfo.isExportedInst(V)) return;
2091 
2092   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2093   CopyValueToVirtualRegister(V, Reg);
2094 }
2095 
2096 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2097                                                      const BasicBlock *FromBB) {
2098   // The operands of the setcc have to be in this block.  We don't know
2099   // how to export them from some other block.
2100   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2101     // Can export from current BB.
2102     if (VI->getParent() == FromBB)
2103       return true;
2104 
2105     // Is already exported, noop.
2106     return FuncInfo.isExportedInst(V);
2107   }
2108 
2109   // If this is an argument, we can export it if the BB is the entry block or
2110   // if it is already exported.
2111   if (isa<Argument>(V)) {
2112     if (FromBB->isEntryBlock())
2113       return true;
2114 
2115     // Otherwise, can only export this if it is already exported.
2116     return FuncInfo.isExportedInst(V);
2117   }
2118 
2119   // Otherwise, constants can always be exported.
2120   return true;
2121 }
2122 
2123 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2124 BranchProbability
2125 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2126                                         const MachineBasicBlock *Dst) const {
2127   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2128   const BasicBlock *SrcBB = Src->getBasicBlock();
2129   const BasicBlock *DstBB = Dst->getBasicBlock();
2130   if (!BPI) {
2131     // If BPI is not available, set the default probability as 1 / N, where N is
2132     // the number of successors.
2133     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2134     return BranchProbability(1, SuccSize);
2135   }
2136   return BPI->getEdgeProbability(SrcBB, DstBB);
2137 }
2138 
2139 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2140                                                MachineBasicBlock *Dst,
2141                                                BranchProbability Prob) {
2142   if (!FuncInfo.BPI)
2143     Src->addSuccessorWithoutProb(Dst);
2144   else {
2145     if (Prob.isUnknown())
2146       Prob = getEdgeProbability(Src, Dst);
2147     Src->addSuccessor(Dst, Prob);
2148   }
2149 }
2150 
2151 static bool InBlock(const Value *V, const BasicBlock *BB) {
2152   if (const Instruction *I = dyn_cast<Instruction>(V))
2153     return I->getParent() == BB;
2154   return true;
2155 }
2156 
2157 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2158 /// This function emits a branch and is used at the leaves of an OR or an
2159 /// AND operator tree.
2160 void
2161 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2162                                                   MachineBasicBlock *TBB,
2163                                                   MachineBasicBlock *FBB,
2164                                                   MachineBasicBlock *CurBB,
2165                                                   MachineBasicBlock *SwitchBB,
2166                                                   BranchProbability TProb,
2167                                                   BranchProbability FProb,
2168                                                   bool InvertCond) {
2169   const BasicBlock *BB = CurBB->getBasicBlock();
2170 
2171   // If the leaf of the tree is a comparison, merge the condition into
2172   // the caseblock.
2173   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2174     // The operands of the cmp have to be in this block.  We don't know
2175     // how to export them from some other block.  If this is the first block
2176     // of the sequence, no exporting is needed.
2177     if (CurBB == SwitchBB ||
2178         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2179          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2180       ISD::CondCode Condition;
2181       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2182         ICmpInst::Predicate Pred =
2183             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2184         Condition = getICmpCondCode(Pred);
2185       } else {
2186         const FCmpInst *FC = cast<FCmpInst>(Cond);
2187         FCmpInst::Predicate Pred =
2188             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2189         Condition = getFCmpCondCode(Pred);
2190         if (TM.Options.NoNaNsFPMath)
2191           Condition = getFCmpCodeWithoutNaN(Condition);
2192       }
2193 
2194       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2195                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2196       SL->SwitchCases.push_back(CB);
2197       return;
2198     }
2199   }
2200 
2201   // Create a CaseBlock record representing this branch.
2202   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2203   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2204                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2205   SL->SwitchCases.push_back(CB);
2206 }
2207 
2208 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2209                                                MachineBasicBlock *TBB,
2210                                                MachineBasicBlock *FBB,
2211                                                MachineBasicBlock *CurBB,
2212                                                MachineBasicBlock *SwitchBB,
2213                                                Instruction::BinaryOps Opc,
2214                                                BranchProbability TProb,
2215                                                BranchProbability FProb,
2216                                                bool InvertCond) {
2217   // Skip over not part of the tree and remember to invert op and operands at
2218   // next level.
2219   Value *NotCond;
2220   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2221       InBlock(NotCond, CurBB->getBasicBlock())) {
2222     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2223                          !InvertCond);
2224     return;
2225   }
2226 
2227   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2228   const Value *BOpOp0, *BOpOp1;
2229   // Compute the effective opcode for Cond, taking into account whether it needs
2230   // to be inverted, e.g.
2231   //   and (not (or A, B)), C
2232   // gets lowered as
2233   //   and (and (not A, not B), C)
2234   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2235   if (BOp) {
2236     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2237                ? Instruction::And
2238                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2239                       ? Instruction::Or
2240                       : (Instruction::BinaryOps)0);
2241     if (InvertCond) {
2242       if (BOpc == Instruction::And)
2243         BOpc = Instruction::Or;
2244       else if (BOpc == Instruction::Or)
2245         BOpc = Instruction::And;
2246     }
2247   }
2248 
2249   // If this node is not part of the or/and tree, emit it as a branch.
2250   // Note that all nodes in the tree should have same opcode.
2251   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2252   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2253       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2254       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2255     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2256                                  TProb, FProb, InvertCond);
2257     return;
2258   }
2259 
2260   //  Create TmpBB after CurBB.
2261   MachineFunction::iterator BBI(CurBB);
2262   MachineFunction &MF = DAG.getMachineFunction();
2263   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2264   CurBB->getParent()->insert(++BBI, TmpBB);
2265 
2266   if (Opc == Instruction::Or) {
2267     // Codegen X | Y as:
2268     // BB1:
2269     //   jmp_if_X TBB
2270     //   jmp TmpBB
2271     // TmpBB:
2272     //   jmp_if_Y TBB
2273     //   jmp FBB
2274     //
2275 
2276     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2277     // The requirement is that
2278     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2279     //     = TrueProb for original BB.
2280     // Assuming the original probabilities are A and B, one choice is to set
2281     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2282     // A/(1+B) and 2B/(1+B). This choice assumes that
2283     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2284     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2285     // TmpBB, but the math is more complicated.
2286 
2287     auto NewTrueProb = TProb / 2;
2288     auto NewFalseProb = TProb / 2 + FProb;
2289     // Emit the LHS condition.
2290     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2291                          NewFalseProb, InvertCond);
2292 
2293     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2294     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2295     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2296     // Emit the RHS condition into TmpBB.
2297     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2298                          Probs[1], InvertCond);
2299   } else {
2300     assert(Opc == Instruction::And && "Unknown merge op!");
2301     // Codegen X & Y as:
2302     // BB1:
2303     //   jmp_if_X TmpBB
2304     //   jmp FBB
2305     // TmpBB:
2306     //   jmp_if_Y TBB
2307     //   jmp FBB
2308     //
2309     //  This requires creation of TmpBB after CurBB.
2310 
2311     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2312     // The requirement is that
2313     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2314     //     = FalseProb for original BB.
2315     // Assuming the original probabilities are A and B, one choice is to set
2316     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2317     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2318     // TrueProb for BB1 * FalseProb for TmpBB.
2319 
2320     auto NewTrueProb = TProb + FProb / 2;
2321     auto NewFalseProb = FProb / 2;
2322     // Emit the LHS condition.
2323     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2324                          NewFalseProb, InvertCond);
2325 
2326     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2327     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2328     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2329     // Emit the RHS condition into TmpBB.
2330     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2331                          Probs[1], InvertCond);
2332   }
2333 }
2334 
2335 /// If the set of cases should be emitted as a series of branches, return true.
2336 /// If we should emit this as a bunch of and/or'd together conditions, return
2337 /// false.
2338 bool
2339 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2340   if (Cases.size() != 2) return true;
2341 
2342   // If this is two comparisons of the same values or'd or and'd together, they
2343   // will get folded into a single comparison, so don't emit two blocks.
2344   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2345        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2346       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2347        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2348     return false;
2349   }
2350 
2351   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2352   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2353   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2354       Cases[0].CC == Cases[1].CC &&
2355       isa<Constant>(Cases[0].CmpRHS) &&
2356       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2357     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2358       return false;
2359     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2360       return false;
2361   }
2362 
2363   return true;
2364 }
2365 
2366 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2367   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2368 
2369   // Update machine-CFG edges.
2370   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2371 
2372   if (I.isUnconditional()) {
2373     // Update machine-CFG edges.
2374     BrMBB->addSuccessor(Succ0MBB);
2375 
2376     // If this is not a fall-through branch or optimizations are switched off,
2377     // emit the branch.
2378     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2379       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2380                               MVT::Other, getControlRoot(),
2381                               DAG.getBasicBlock(Succ0MBB)));
2382 
2383     return;
2384   }
2385 
2386   // If this condition is one of the special cases we handle, do special stuff
2387   // now.
2388   const Value *CondVal = I.getCondition();
2389   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2390 
2391   // If this is a series of conditions that are or'd or and'd together, emit
2392   // this as a sequence of branches instead of setcc's with and/or operations.
2393   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2394   // unpredictable branches, and vector extracts because those jumps are likely
2395   // expensive for any target), this should improve performance.
2396   // For example, instead of something like:
2397   //     cmp A, B
2398   //     C = seteq
2399   //     cmp D, E
2400   //     F = setle
2401   //     or C, F
2402   //     jnz foo
2403   // Emit:
2404   //     cmp A, B
2405   //     je foo
2406   //     cmp D, E
2407   //     jle foo
2408   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2409   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2410       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2411     Value *Vec;
2412     const Value *BOp0, *BOp1;
2413     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2414     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2415       Opcode = Instruction::And;
2416     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2417       Opcode = Instruction::Or;
2418 
2419     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2420                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2421       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2422                            getEdgeProbability(BrMBB, Succ0MBB),
2423                            getEdgeProbability(BrMBB, Succ1MBB),
2424                            /*InvertCond=*/false);
2425       // If the compares in later blocks need to use values not currently
2426       // exported from this block, export them now.  This block should always
2427       // be the first entry.
2428       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2429 
2430       // Allow some cases to be rejected.
2431       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2432         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2433           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2434           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2435         }
2436 
2437         // Emit the branch for this block.
2438         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2439         SL->SwitchCases.erase(SL->SwitchCases.begin());
2440         return;
2441       }
2442 
2443       // Okay, we decided not to do this, remove any inserted MBB's and clear
2444       // SwitchCases.
2445       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2446         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2447 
2448       SL->SwitchCases.clear();
2449     }
2450   }
2451 
2452   // Create a CaseBlock record representing this branch.
2453   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2454                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2455 
2456   // Use visitSwitchCase to actually insert the fast branch sequence for this
2457   // cond branch.
2458   visitSwitchCase(CB, BrMBB);
2459 }
2460 
2461 /// visitSwitchCase - Emits the necessary code to represent a single node in
2462 /// the binary search tree resulting from lowering a switch instruction.
2463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2464                                           MachineBasicBlock *SwitchBB) {
2465   SDValue Cond;
2466   SDValue CondLHS = getValue(CB.CmpLHS);
2467   SDLoc dl = CB.DL;
2468 
2469   if (CB.CC == ISD::SETTRUE) {
2470     // Branch or fall through to TrueBB.
2471     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2472     SwitchBB->normalizeSuccProbs();
2473     if (CB.TrueBB != NextBlock(SwitchBB)) {
2474       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2475                               DAG.getBasicBlock(CB.TrueBB)));
2476     }
2477     return;
2478   }
2479 
2480   auto &TLI = DAG.getTargetLoweringInfo();
2481   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2482 
2483   // Build the setcc now.
2484   if (!CB.CmpMHS) {
2485     // Fold "(X == true)" to X and "(X == false)" to !X to
2486     // handle common cases produced by branch lowering.
2487     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2488         CB.CC == ISD::SETEQ)
2489       Cond = CondLHS;
2490     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2491              CB.CC == ISD::SETEQ) {
2492       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2493       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2494     } else {
2495       SDValue CondRHS = getValue(CB.CmpRHS);
2496 
2497       // If a pointer's DAG type is larger than its memory type then the DAG
2498       // values are zero-extended. This breaks signed comparisons so truncate
2499       // back to the underlying type before doing the compare.
2500       if (CondLHS.getValueType() != MemVT) {
2501         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2502         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2503       }
2504       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2505     }
2506   } else {
2507     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2508 
2509     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2510     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2511 
2512     SDValue CmpOp = getValue(CB.CmpMHS);
2513     EVT VT = CmpOp.getValueType();
2514 
2515     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2516       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2517                           ISD::SETLE);
2518     } else {
2519       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2520                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2521       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2522                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2523     }
2524   }
2525 
2526   // Update successor info
2527   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2528   // TrueBB and FalseBB are always different unless the incoming IR is
2529   // degenerate. This only happens when running llc on weird IR.
2530   if (CB.TrueBB != CB.FalseBB)
2531     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2532   SwitchBB->normalizeSuccProbs();
2533 
2534   // If the lhs block is the next block, invert the condition so that we can
2535   // fall through to the lhs instead of the rhs block.
2536   if (CB.TrueBB == NextBlock(SwitchBB)) {
2537     std::swap(CB.TrueBB, CB.FalseBB);
2538     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2539     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2540   }
2541 
2542   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2543                                MVT::Other, getControlRoot(), Cond,
2544                                DAG.getBasicBlock(CB.TrueBB));
2545 
2546   // Insert the false branch. Do this even if it's a fall through branch,
2547   // this makes it easier to do DAG optimizations which require inverting
2548   // the branch condition.
2549   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2550                        DAG.getBasicBlock(CB.FalseBB));
2551 
2552   DAG.setRoot(BrCond);
2553 }
2554 
2555 /// visitJumpTable - Emit JumpTable node in the current MBB
2556 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2557   // Emit the code for the jump table
2558   assert(JT.Reg != -1U && "Should lower JT Header first!");
2559   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2560   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2561                                      JT.Reg, PTy);
2562   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2563   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2564                                     MVT::Other, Index.getValue(1),
2565                                     Table, Index);
2566   DAG.setRoot(BrJumpTable);
2567 }
2568 
2569 /// visitJumpTableHeader - This function emits necessary code to produce index
2570 /// in the JumpTable from switch case.
2571 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2572                                                JumpTableHeader &JTH,
2573                                                MachineBasicBlock *SwitchBB) {
2574   SDLoc dl = getCurSDLoc();
2575 
2576   // Subtract the lowest switch case value from the value being switched on.
2577   SDValue SwitchOp = getValue(JTH.SValue);
2578   EVT VT = SwitchOp.getValueType();
2579   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2580                             DAG.getConstant(JTH.First, dl, VT));
2581 
2582   // The SDNode we just created, which holds the value being switched on minus
2583   // the smallest case value, needs to be copied to a virtual register so it
2584   // can be used as an index into the jump table in a subsequent basic block.
2585   // This value may be smaller or larger than the target's pointer type, and
2586   // therefore require extension or truncating.
2587   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2588   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2589 
2590   unsigned JumpTableReg =
2591       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2592   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2593                                     JumpTableReg, SwitchOp);
2594   JT.Reg = JumpTableReg;
2595 
2596   if (!JTH.FallthroughUnreachable) {
2597     // Emit the range check for the jump table, and branch to the default block
2598     // for the switch statement if the value being switched on exceeds the
2599     // largest case in the switch.
2600     SDValue CMP = DAG.getSetCC(
2601         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2602                                    Sub.getValueType()),
2603         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2604 
2605     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2606                                  MVT::Other, CopyTo, CMP,
2607                                  DAG.getBasicBlock(JT.Default));
2608 
2609     // Avoid emitting unnecessary branches to the next block.
2610     if (JT.MBB != NextBlock(SwitchBB))
2611       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2612                            DAG.getBasicBlock(JT.MBB));
2613 
2614     DAG.setRoot(BrCond);
2615   } else {
2616     // Avoid emitting unnecessary branches to the next block.
2617     if (JT.MBB != NextBlock(SwitchBB))
2618       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2619                               DAG.getBasicBlock(JT.MBB)));
2620     else
2621       DAG.setRoot(CopyTo);
2622   }
2623 }
2624 
2625 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2626 /// variable if there exists one.
2627 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2628                                  SDValue &Chain) {
2629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2631   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2632   MachineFunction &MF = DAG.getMachineFunction();
2633   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2634   MachineSDNode *Node =
2635       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2636   if (Global) {
2637     MachinePointerInfo MPInfo(Global);
2638     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2639                  MachineMemOperand::MODereferenceable;
2640     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2641         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2642     DAG.setNodeMemRefs(Node, {MemRef});
2643   }
2644   if (PtrTy != PtrMemTy)
2645     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2646   return SDValue(Node, 0);
2647 }
2648 
2649 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2650 /// tail spliced into a stack protector check success bb.
2651 ///
2652 /// For a high level explanation of how this fits into the stack protector
2653 /// generation see the comment on the declaration of class
2654 /// StackProtectorDescriptor.
2655 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2656                                                   MachineBasicBlock *ParentBB) {
2657 
2658   // First create the loads to the guard/stack slot for the comparison.
2659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2660   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2661   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2662 
2663   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2664   int FI = MFI.getStackProtectorIndex();
2665 
2666   SDValue Guard;
2667   SDLoc dl = getCurSDLoc();
2668   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2669   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2670   Align Align =
2671       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2672 
2673   // Generate code to load the content of the guard slot.
2674   SDValue GuardVal = DAG.getLoad(
2675       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2676       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2677       MachineMemOperand::MOVolatile);
2678 
2679   if (TLI.useStackGuardXorFP())
2680     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2681 
2682   // Retrieve guard check function, nullptr if instrumentation is inlined.
2683   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2684     // The target provides a guard check function to validate the guard value.
2685     // Generate a call to that function with the content of the guard slot as
2686     // argument.
2687     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2688     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2689 
2690     TargetLowering::ArgListTy Args;
2691     TargetLowering::ArgListEntry Entry;
2692     Entry.Node = GuardVal;
2693     Entry.Ty = FnTy->getParamType(0);
2694     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2695       Entry.IsInReg = true;
2696     Args.push_back(Entry);
2697 
2698     TargetLowering::CallLoweringInfo CLI(DAG);
2699     CLI.setDebugLoc(getCurSDLoc())
2700         .setChain(DAG.getEntryNode())
2701         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2702                    getValue(GuardCheckFn), std::move(Args));
2703 
2704     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2705     DAG.setRoot(Result.second);
2706     return;
2707   }
2708 
2709   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2710   // Otherwise, emit a volatile load to retrieve the stack guard value.
2711   SDValue Chain = DAG.getEntryNode();
2712   if (TLI.useLoadStackGuardNode()) {
2713     Guard = getLoadStackGuard(DAG, dl, Chain);
2714   } else {
2715     const Value *IRGuard = TLI.getSDagStackGuard(M);
2716     SDValue GuardPtr = getValue(IRGuard);
2717 
2718     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2719                         MachinePointerInfo(IRGuard, 0), Align,
2720                         MachineMemOperand::MOVolatile);
2721   }
2722 
2723   // Perform the comparison via a getsetcc.
2724   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2725                                                         *DAG.getContext(),
2726                                                         Guard.getValueType()),
2727                              Guard, GuardVal, ISD::SETNE);
2728 
2729   // If the guard/stackslot do not equal, branch to failure MBB.
2730   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2731                                MVT::Other, GuardVal.getOperand(0),
2732                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2733   // Otherwise branch to success MBB.
2734   SDValue Br = DAG.getNode(ISD::BR, dl,
2735                            MVT::Other, BrCond,
2736                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2737 
2738   DAG.setRoot(Br);
2739 }
2740 
2741 /// Codegen the failure basic block for a stack protector check.
2742 ///
2743 /// A failure stack protector machine basic block consists simply of a call to
2744 /// __stack_chk_fail().
2745 ///
2746 /// For a high level explanation of how this fits into the stack protector
2747 /// generation see the comment on the declaration of class
2748 /// StackProtectorDescriptor.
2749 void
2750 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2752   TargetLowering::MakeLibCallOptions CallOptions;
2753   CallOptions.setDiscardResult(true);
2754   SDValue Chain =
2755       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2756                       None, CallOptions, getCurSDLoc()).second;
2757   // On PS4/PS5, the "return address" must still be within the calling
2758   // function, even if it's at the very end, so emit an explicit TRAP here.
2759   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2760   if (TM.getTargetTriple().isPS())
2761     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2762   // WebAssembly needs an unreachable instruction after a non-returning call,
2763   // because the function return type can be different from __stack_chk_fail's
2764   // return type (void).
2765   if (TM.getTargetTriple().isWasm())
2766     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2767 
2768   DAG.setRoot(Chain);
2769 }
2770 
2771 /// visitBitTestHeader - This function emits necessary code to produce value
2772 /// suitable for "bit tests"
2773 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2774                                              MachineBasicBlock *SwitchBB) {
2775   SDLoc dl = getCurSDLoc();
2776 
2777   // Subtract the minimum value.
2778   SDValue SwitchOp = getValue(B.SValue);
2779   EVT VT = SwitchOp.getValueType();
2780   SDValue RangeSub =
2781       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2782 
2783   // Determine the type of the test operands.
2784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2785   bool UsePtrType = false;
2786   if (!TLI.isTypeLegal(VT)) {
2787     UsePtrType = true;
2788   } else {
2789     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2790       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2791         // Switch table case range are encoded into series of masks.
2792         // Just use pointer type, it's guaranteed to fit.
2793         UsePtrType = true;
2794         break;
2795       }
2796   }
2797   SDValue Sub = RangeSub;
2798   if (UsePtrType) {
2799     VT = TLI.getPointerTy(DAG.getDataLayout());
2800     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2801   }
2802 
2803   B.RegVT = VT.getSimpleVT();
2804   B.Reg = FuncInfo.CreateReg(B.RegVT);
2805   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2806 
2807   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2808 
2809   if (!B.FallthroughUnreachable)
2810     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2811   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2812   SwitchBB->normalizeSuccProbs();
2813 
2814   SDValue Root = CopyTo;
2815   if (!B.FallthroughUnreachable) {
2816     // Conditional branch to the default block.
2817     SDValue RangeCmp = DAG.getSetCC(dl,
2818         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2819                                RangeSub.getValueType()),
2820         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2821         ISD::SETUGT);
2822 
2823     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2824                        DAG.getBasicBlock(B.Default));
2825   }
2826 
2827   // Avoid emitting unnecessary branches to the next block.
2828   if (MBB != NextBlock(SwitchBB))
2829     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2830 
2831   DAG.setRoot(Root);
2832 }
2833 
2834 /// visitBitTestCase - this function produces one "bit test"
2835 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2836                                            MachineBasicBlock* NextMBB,
2837                                            BranchProbability BranchProbToNext,
2838                                            unsigned Reg,
2839                                            BitTestCase &B,
2840                                            MachineBasicBlock *SwitchBB) {
2841   SDLoc dl = getCurSDLoc();
2842   MVT VT = BB.RegVT;
2843   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2844   SDValue Cmp;
2845   unsigned PopCount = countPopulation(B.Mask);
2846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2847   if (PopCount == 1) {
2848     // Testing for a single bit; just compare the shift count with what it
2849     // would need to be to shift a 1 bit in that position.
2850     Cmp = DAG.getSetCC(
2851         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2852         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2853         ISD::SETEQ);
2854   } else if (PopCount == BB.Range) {
2855     // There is only one zero bit in the range, test for it directly.
2856     Cmp = DAG.getSetCC(
2857         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2858         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2859         ISD::SETNE);
2860   } else {
2861     // Make desired shift
2862     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2863                                     DAG.getConstant(1, dl, VT), ShiftOp);
2864 
2865     // Emit bit tests and jumps
2866     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2867                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2868     Cmp = DAG.getSetCC(
2869         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2870         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2871   }
2872 
2873   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2874   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2875   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2876   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2877   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2878   // one as they are relative probabilities (and thus work more like weights),
2879   // and hence we need to normalize them to let the sum of them become one.
2880   SwitchBB->normalizeSuccProbs();
2881 
2882   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2883                               MVT::Other, getControlRoot(),
2884                               Cmp, DAG.getBasicBlock(B.TargetBB));
2885 
2886   // Avoid emitting unnecessary branches to the next block.
2887   if (NextMBB != NextBlock(SwitchBB))
2888     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2889                         DAG.getBasicBlock(NextMBB));
2890 
2891   DAG.setRoot(BrAnd);
2892 }
2893 
2894 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2895   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2896 
2897   // Retrieve successors. Look through artificial IR level blocks like
2898   // catchswitch for successors.
2899   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2900   const BasicBlock *EHPadBB = I.getSuccessor(1);
2901 
2902   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2903   // have to do anything here to lower funclet bundles.
2904   assert(!I.hasOperandBundlesOtherThan(
2905              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2906               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2907               LLVMContext::OB_cfguardtarget,
2908               LLVMContext::OB_clang_arc_attachedcall}) &&
2909          "Cannot lower invokes with arbitrary operand bundles yet!");
2910 
2911   const Value *Callee(I.getCalledOperand());
2912   const Function *Fn = dyn_cast<Function>(Callee);
2913   if (isa<InlineAsm>(Callee))
2914     visitInlineAsm(I, EHPadBB);
2915   else if (Fn && Fn->isIntrinsic()) {
2916     switch (Fn->getIntrinsicID()) {
2917     default:
2918       llvm_unreachable("Cannot invoke this intrinsic");
2919     case Intrinsic::donothing:
2920       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2921     case Intrinsic::seh_try_begin:
2922     case Intrinsic::seh_scope_begin:
2923     case Intrinsic::seh_try_end:
2924     case Intrinsic::seh_scope_end:
2925       break;
2926     case Intrinsic::experimental_patchpoint_void:
2927     case Intrinsic::experimental_patchpoint_i64:
2928       visitPatchpoint(I, EHPadBB);
2929       break;
2930     case Intrinsic::experimental_gc_statepoint:
2931       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2932       break;
2933     case Intrinsic::wasm_rethrow: {
2934       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2935       // special because it can be invoked, so we manually lower it to a DAG
2936       // node here.
2937       SmallVector<SDValue, 8> Ops;
2938       Ops.push_back(getRoot()); // inchain
2939       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2940       Ops.push_back(
2941           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2942                                 TLI.getPointerTy(DAG.getDataLayout())));
2943       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2944       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2945       break;
2946     }
2947     }
2948   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2949     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2950     // Eventually we will support lowering the @llvm.experimental.deoptimize
2951     // intrinsic, and right now there are no plans to support other intrinsics
2952     // with deopt state.
2953     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2954   } else {
2955     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2956   }
2957 
2958   // If the value of the invoke is used outside of its defining block, make it
2959   // available as a virtual register.
2960   // We already took care of the exported value for the statepoint instruction
2961   // during call to the LowerStatepoint.
2962   if (!isa<GCStatepointInst>(I)) {
2963     CopyToExportRegsIfNeeded(&I);
2964   }
2965 
2966   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2967   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2968   BranchProbability EHPadBBProb =
2969       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2970           : BranchProbability::getZero();
2971   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2972 
2973   // Update successor info.
2974   addSuccessorWithProb(InvokeMBB, Return);
2975   for (auto &UnwindDest : UnwindDests) {
2976     UnwindDest.first->setIsEHPad();
2977     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2978   }
2979   InvokeMBB->normalizeSuccProbs();
2980 
2981   // Drop into normal successor.
2982   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2983                           DAG.getBasicBlock(Return)));
2984 }
2985 
2986 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2987   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2988 
2989   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2990   // have to do anything here to lower funclet bundles.
2991   assert(!I.hasOperandBundlesOtherThan(
2992              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2993          "Cannot lower callbrs with arbitrary operand bundles yet!");
2994 
2995   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2996   visitInlineAsm(I);
2997   CopyToExportRegsIfNeeded(&I);
2998 
2999   // Retrieve successors.
3000   SmallPtrSet<BasicBlock *, 8> Dests;
3001   Dests.insert(I.getDefaultDest());
3002   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3003 
3004   // Update successor info.
3005   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3006   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3007     BasicBlock *Dest = I.getIndirectDest(i);
3008     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3009     Target->setIsInlineAsmBrIndirectTarget();
3010     Target->setMachineBlockAddressTaken();
3011     Target->setLabelMustBeEmitted();
3012     // Don't add duplicate machine successors.
3013     if (Dests.insert(Dest).second)
3014       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3015   }
3016   CallBrMBB->normalizeSuccProbs();
3017 
3018   // Drop into default successor.
3019   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3020                           MVT::Other, getControlRoot(),
3021                           DAG.getBasicBlock(Return)));
3022 }
3023 
3024 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3025   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3026 }
3027 
3028 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3029   assert(FuncInfo.MBB->isEHPad() &&
3030          "Call to landingpad not in landing pad!");
3031 
3032   // If there aren't registers to copy the values into (e.g., during SjLj
3033   // exceptions), then don't bother to create these DAG nodes.
3034   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3035   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3036   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3037       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3038     return;
3039 
3040   // If landingpad's return type is token type, we don't create DAG nodes
3041   // for its exception pointer and selector value. The extraction of exception
3042   // pointer or selector value from token type landingpads is not currently
3043   // supported.
3044   if (LP.getType()->isTokenTy())
3045     return;
3046 
3047   SmallVector<EVT, 2> ValueVTs;
3048   SDLoc dl = getCurSDLoc();
3049   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3050   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3051 
3052   // Get the two live-in registers as SDValues. The physregs have already been
3053   // copied into virtual registers.
3054   SDValue Ops[2];
3055   if (FuncInfo.ExceptionPointerVirtReg) {
3056     Ops[0] = DAG.getZExtOrTrunc(
3057         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3058                            FuncInfo.ExceptionPointerVirtReg,
3059                            TLI.getPointerTy(DAG.getDataLayout())),
3060         dl, ValueVTs[0]);
3061   } else {
3062     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3063   }
3064   Ops[1] = DAG.getZExtOrTrunc(
3065       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3066                          FuncInfo.ExceptionSelectorVirtReg,
3067                          TLI.getPointerTy(DAG.getDataLayout())),
3068       dl, ValueVTs[1]);
3069 
3070   // Merge into one.
3071   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3072                             DAG.getVTList(ValueVTs), Ops);
3073   setValue(&LP, Res);
3074 }
3075 
3076 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3077                                            MachineBasicBlock *Last) {
3078   // Update JTCases.
3079   for (JumpTableBlock &JTB : SL->JTCases)
3080     if (JTB.first.HeaderBB == First)
3081       JTB.first.HeaderBB = Last;
3082 
3083   // Update BitTestCases.
3084   for (BitTestBlock &BTB : SL->BitTestCases)
3085     if (BTB.Parent == First)
3086       BTB.Parent = Last;
3087 }
3088 
3089 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3090   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3091 
3092   // Update machine-CFG edges with unique successors.
3093   SmallSet<BasicBlock*, 32> Done;
3094   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3095     BasicBlock *BB = I.getSuccessor(i);
3096     bool Inserted = Done.insert(BB).second;
3097     if (!Inserted)
3098         continue;
3099 
3100     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3101     addSuccessorWithProb(IndirectBrMBB, Succ);
3102   }
3103   IndirectBrMBB->normalizeSuccProbs();
3104 
3105   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3106                           MVT::Other, getControlRoot(),
3107                           getValue(I.getAddress())));
3108 }
3109 
3110 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3111   if (!DAG.getTarget().Options.TrapUnreachable)
3112     return;
3113 
3114   // We may be able to ignore unreachable behind a noreturn call.
3115   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3116     const BasicBlock &BB = *I.getParent();
3117     if (&I != &BB.front()) {
3118       BasicBlock::const_iterator PredI =
3119         std::prev(BasicBlock::const_iterator(&I));
3120       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3121         if (Call->doesNotReturn())
3122           return;
3123       }
3124     }
3125   }
3126 
3127   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3128 }
3129 
3130 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3131   SDNodeFlags Flags;
3132   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3133     Flags.copyFMF(*FPOp);
3134 
3135   SDValue Op = getValue(I.getOperand(0));
3136   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3137                                     Op, Flags);
3138   setValue(&I, UnNodeValue);
3139 }
3140 
3141 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3142   SDNodeFlags Flags;
3143   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3144     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3145     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3146   }
3147   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3148     Flags.setExact(ExactOp->isExact());
3149   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3150     Flags.copyFMF(*FPOp);
3151 
3152   SDValue Op1 = getValue(I.getOperand(0));
3153   SDValue Op2 = getValue(I.getOperand(1));
3154   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3155                                      Op1, Op2, Flags);
3156   setValue(&I, BinNodeValue);
3157 }
3158 
3159 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3160   SDValue Op1 = getValue(I.getOperand(0));
3161   SDValue Op2 = getValue(I.getOperand(1));
3162 
3163   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3164       Op1.getValueType(), DAG.getDataLayout());
3165 
3166   // Coerce the shift amount to the right type if we can. This exposes the
3167   // truncate or zext to optimization early.
3168   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3169     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3170            "Unexpected shift type");
3171     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3172   }
3173 
3174   bool nuw = false;
3175   bool nsw = false;
3176   bool exact = false;
3177 
3178   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3179 
3180     if (const OverflowingBinaryOperator *OFBinOp =
3181             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3182       nuw = OFBinOp->hasNoUnsignedWrap();
3183       nsw = OFBinOp->hasNoSignedWrap();
3184     }
3185     if (const PossiblyExactOperator *ExactOp =
3186             dyn_cast<const PossiblyExactOperator>(&I))
3187       exact = ExactOp->isExact();
3188   }
3189   SDNodeFlags Flags;
3190   Flags.setExact(exact);
3191   Flags.setNoSignedWrap(nsw);
3192   Flags.setNoUnsignedWrap(nuw);
3193   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3194                             Flags);
3195   setValue(&I, Res);
3196 }
3197 
3198 void SelectionDAGBuilder::visitSDiv(const User &I) {
3199   SDValue Op1 = getValue(I.getOperand(0));
3200   SDValue Op2 = getValue(I.getOperand(1));
3201 
3202   SDNodeFlags Flags;
3203   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3204                  cast<PossiblyExactOperator>(&I)->isExact());
3205   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3206                            Op2, Flags));
3207 }
3208 
3209 void SelectionDAGBuilder::visitICmp(const User &I) {
3210   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3211   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3212     predicate = IC->getPredicate();
3213   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3214     predicate = ICmpInst::Predicate(IC->getPredicate());
3215   SDValue Op1 = getValue(I.getOperand(0));
3216   SDValue Op2 = getValue(I.getOperand(1));
3217   ISD::CondCode Opcode = getICmpCondCode(predicate);
3218 
3219   auto &TLI = DAG.getTargetLoweringInfo();
3220   EVT MemVT =
3221       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3222 
3223   // If a pointer's DAG type is larger than its memory type then the DAG values
3224   // are zero-extended. This breaks signed comparisons so truncate back to the
3225   // underlying type before doing the compare.
3226   if (Op1.getValueType() != MemVT) {
3227     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3228     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3229   }
3230 
3231   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3232                                                         I.getType());
3233   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3234 }
3235 
3236 void SelectionDAGBuilder::visitFCmp(const User &I) {
3237   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3238   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3239     predicate = FC->getPredicate();
3240   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3241     predicate = FCmpInst::Predicate(FC->getPredicate());
3242   SDValue Op1 = getValue(I.getOperand(0));
3243   SDValue Op2 = getValue(I.getOperand(1));
3244 
3245   ISD::CondCode Condition = getFCmpCondCode(predicate);
3246   auto *FPMO = cast<FPMathOperator>(&I);
3247   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3248     Condition = getFCmpCodeWithoutNaN(Condition);
3249 
3250   SDNodeFlags Flags;
3251   Flags.copyFMF(*FPMO);
3252   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3253 
3254   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3255                                                         I.getType());
3256   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3257 }
3258 
3259 // Check if the condition of the select has one use or two users that are both
3260 // selects with the same condition.
3261 static bool hasOnlySelectUsers(const Value *Cond) {
3262   return llvm::all_of(Cond->users(), [](const Value *V) {
3263     return isa<SelectInst>(V);
3264   });
3265 }
3266 
3267 void SelectionDAGBuilder::visitSelect(const User &I) {
3268   SmallVector<EVT, 4> ValueVTs;
3269   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3270                   ValueVTs);
3271   unsigned NumValues = ValueVTs.size();
3272   if (NumValues == 0) return;
3273 
3274   SmallVector<SDValue, 4> Values(NumValues);
3275   SDValue Cond     = getValue(I.getOperand(0));
3276   SDValue LHSVal   = getValue(I.getOperand(1));
3277   SDValue RHSVal   = getValue(I.getOperand(2));
3278   SmallVector<SDValue, 1> BaseOps(1, Cond);
3279   ISD::NodeType OpCode =
3280       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3281 
3282   bool IsUnaryAbs = false;
3283   bool Negate = false;
3284 
3285   SDNodeFlags Flags;
3286   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3287     Flags.copyFMF(*FPOp);
3288 
3289   // Min/max matching is only viable if all output VTs are the same.
3290   if (all_equal(ValueVTs)) {
3291     EVT VT = ValueVTs[0];
3292     LLVMContext &Ctx = *DAG.getContext();
3293     auto &TLI = DAG.getTargetLoweringInfo();
3294 
3295     // We care about the legality of the operation after it has been type
3296     // legalized.
3297     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3298       VT = TLI.getTypeToTransformTo(Ctx, VT);
3299 
3300     // If the vselect is legal, assume we want to leave this as a vector setcc +
3301     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3302     // min/max is legal on the scalar type.
3303     bool UseScalarMinMax = VT.isVector() &&
3304       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3305 
3306     Value *LHS, *RHS;
3307     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3308     ISD::NodeType Opc = ISD::DELETED_NODE;
3309     switch (SPR.Flavor) {
3310     case SPF_UMAX:    Opc = ISD::UMAX; break;
3311     case SPF_UMIN:    Opc = ISD::UMIN; break;
3312     case SPF_SMAX:    Opc = ISD::SMAX; break;
3313     case SPF_SMIN:    Opc = ISD::SMIN; break;
3314     case SPF_FMINNUM:
3315       switch (SPR.NaNBehavior) {
3316       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3317       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3318       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3319       case SPNB_RETURNS_ANY: {
3320         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3321           Opc = ISD::FMINNUM;
3322         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3323           Opc = ISD::FMINIMUM;
3324         else if (UseScalarMinMax)
3325           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3326             ISD::FMINNUM : ISD::FMINIMUM;
3327         break;
3328       }
3329       }
3330       break;
3331     case SPF_FMAXNUM:
3332       switch (SPR.NaNBehavior) {
3333       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3334       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3335       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3336       case SPNB_RETURNS_ANY:
3337 
3338         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3339           Opc = ISD::FMAXNUM;
3340         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3341           Opc = ISD::FMAXIMUM;
3342         else if (UseScalarMinMax)
3343           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3344             ISD::FMAXNUM : ISD::FMAXIMUM;
3345         break;
3346       }
3347       break;
3348     case SPF_NABS:
3349       Negate = true;
3350       [[fallthrough]];
3351     case SPF_ABS:
3352       IsUnaryAbs = true;
3353       Opc = ISD::ABS;
3354       break;
3355     default: break;
3356     }
3357 
3358     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3359         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3360          (UseScalarMinMax &&
3361           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3362         // If the underlying comparison instruction is used by any other
3363         // instruction, the consumed instructions won't be destroyed, so it is
3364         // not profitable to convert to a min/max.
3365         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3366       OpCode = Opc;
3367       LHSVal = getValue(LHS);
3368       RHSVal = getValue(RHS);
3369       BaseOps.clear();
3370     }
3371 
3372     if (IsUnaryAbs) {
3373       OpCode = Opc;
3374       LHSVal = getValue(LHS);
3375       BaseOps.clear();
3376     }
3377   }
3378 
3379   if (IsUnaryAbs) {
3380     for (unsigned i = 0; i != NumValues; ++i) {
3381       SDLoc dl = getCurSDLoc();
3382       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3383       Values[i] =
3384           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3385       if (Negate)
3386         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3387                                 Values[i]);
3388     }
3389   } else {
3390     for (unsigned i = 0; i != NumValues; ++i) {
3391       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3392       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3393       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3394       Values[i] = DAG.getNode(
3395           OpCode, getCurSDLoc(),
3396           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3397     }
3398   }
3399 
3400   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3401                            DAG.getVTList(ValueVTs), Values));
3402 }
3403 
3404 void SelectionDAGBuilder::visitTrunc(const User &I) {
3405   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3406   SDValue N = getValue(I.getOperand(0));
3407   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3408                                                         I.getType());
3409   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3410 }
3411 
3412 void SelectionDAGBuilder::visitZExt(const User &I) {
3413   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3414   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3415   SDValue N = getValue(I.getOperand(0));
3416   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3417                                                         I.getType());
3418   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3419 }
3420 
3421 void SelectionDAGBuilder::visitSExt(const User &I) {
3422   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3423   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3424   SDValue N = getValue(I.getOperand(0));
3425   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3426                                                         I.getType());
3427   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3428 }
3429 
3430 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3431   // FPTrunc is never a no-op cast, no need to check
3432   SDValue N = getValue(I.getOperand(0));
3433   SDLoc dl = getCurSDLoc();
3434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3435   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3436   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3437                            DAG.getTargetConstant(
3438                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3439 }
3440 
3441 void SelectionDAGBuilder::visitFPExt(const User &I) {
3442   // FPExt is never a no-op cast, no need to check
3443   SDValue N = getValue(I.getOperand(0));
3444   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3445                                                         I.getType());
3446   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3447 }
3448 
3449 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3450   // FPToUI is never a no-op cast, no need to check
3451   SDValue N = getValue(I.getOperand(0));
3452   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3453                                                         I.getType());
3454   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3455 }
3456 
3457 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3458   // FPToSI is never a no-op cast, no need to check
3459   SDValue N = getValue(I.getOperand(0));
3460   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3461                                                         I.getType());
3462   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3463 }
3464 
3465 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3466   // UIToFP is never a no-op cast, no need to check
3467   SDValue N = getValue(I.getOperand(0));
3468   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3469                                                         I.getType());
3470   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3471 }
3472 
3473 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3474   // SIToFP is never a no-op cast, no need to check
3475   SDValue N = getValue(I.getOperand(0));
3476   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3477                                                         I.getType());
3478   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3479 }
3480 
3481 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3482   // What to do depends on the size of the integer and the size of the pointer.
3483   // We can either truncate, zero extend, or no-op, accordingly.
3484   SDValue N = getValue(I.getOperand(0));
3485   auto &TLI = DAG.getTargetLoweringInfo();
3486   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3487                                                         I.getType());
3488   EVT PtrMemVT =
3489       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3490   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3491   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3492   setValue(&I, N);
3493 }
3494 
3495 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3496   // What to do depends on the size of the integer and the size of the pointer.
3497   // We can either truncate, zero extend, or no-op, accordingly.
3498   SDValue N = getValue(I.getOperand(0));
3499   auto &TLI = DAG.getTargetLoweringInfo();
3500   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3501   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3502   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3503   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3504   setValue(&I, N);
3505 }
3506 
3507 void SelectionDAGBuilder::visitBitCast(const User &I) {
3508   SDValue N = getValue(I.getOperand(0));
3509   SDLoc dl = getCurSDLoc();
3510   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3511                                                         I.getType());
3512 
3513   // BitCast assures us that source and destination are the same size so this is
3514   // either a BITCAST or a no-op.
3515   if (DestVT != N.getValueType())
3516     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3517                              DestVT, N)); // convert types.
3518   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3519   // might fold any kind of constant expression to an integer constant and that
3520   // is not what we are looking for. Only recognize a bitcast of a genuine
3521   // constant integer as an opaque constant.
3522   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3523     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3524                                  /*isOpaque*/true));
3525   else
3526     setValue(&I, N);            // noop cast.
3527 }
3528 
3529 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   const Value *SV = I.getOperand(0);
3532   SDValue N = getValue(SV);
3533   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3534 
3535   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3536   unsigned DestAS = I.getType()->getPointerAddressSpace();
3537 
3538   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3539     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3540 
3541   setValue(&I, N);
3542 }
3543 
3544 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3545   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3546   SDValue InVec = getValue(I.getOperand(0));
3547   SDValue InVal = getValue(I.getOperand(1));
3548   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3549                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3550   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3551                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3552                            InVec, InVal, InIdx));
3553 }
3554 
3555 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3557   SDValue InVec = getValue(I.getOperand(0));
3558   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3559                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3560   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3561                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3562                            InVec, InIdx));
3563 }
3564 
3565 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3566   SDValue Src1 = getValue(I.getOperand(0));
3567   SDValue Src2 = getValue(I.getOperand(1));
3568   ArrayRef<int> Mask;
3569   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3570     Mask = SVI->getShuffleMask();
3571   else
3572     Mask = cast<ConstantExpr>(I).getShuffleMask();
3573   SDLoc DL = getCurSDLoc();
3574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3575   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3576   EVT SrcVT = Src1.getValueType();
3577 
3578   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3579       VT.isScalableVector()) {
3580     // Canonical splat form of first element of first input vector.
3581     SDValue FirstElt =
3582         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3583                     DAG.getVectorIdxConstant(0, DL));
3584     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3585     return;
3586   }
3587 
3588   // For now, we only handle splats for scalable vectors.
3589   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3590   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3591   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3592 
3593   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3594   unsigned MaskNumElts = Mask.size();
3595 
3596   if (SrcNumElts == MaskNumElts) {
3597     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3598     return;
3599   }
3600 
3601   // Normalize the shuffle vector since mask and vector length don't match.
3602   if (SrcNumElts < MaskNumElts) {
3603     // Mask is longer than the source vectors. We can use concatenate vector to
3604     // make the mask and vectors lengths match.
3605 
3606     if (MaskNumElts % SrcNumElts == 0) {
3607       // Mask length is a multiple of the source vector length.
3608       // Check if the shuffle is some kind of concatenation of the input
3609       // vectors.
3610       unsigned NumConcat = MaskNumElts / SrcNumElts;
3611       bool IsConcat = true;
3612       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3613       for (unsigned i = 0; i != MaskNumElts; ++i) {
3614         int Idx = Mask[i];
3615         if (Idx < 0)
3616           continue;
3617         // Ensure the indices in each SrcVT sized piece are sequential and that
3618         // the same source is used for the whole piece.
3619         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3620             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3621              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3622           IsConcat = false;
3623           break;
3624         }
3625         // Remember which source this index came from.
3626         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3627       }
3628 
3629       // The shuffle is concatenating multiple vectors together. Just emit
3630       // a CONCAT_VECTORS operation.
3631       if (IsConcat) {
3632         SmallVector<SDValue, 8> ConcatOps;
3633         for (auto Src : ConcatSrcs) {
3634           if (Src < 0)
3635             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3636           else if (Src == 0)
3637             ConcatOps.push_back(Src1);
3638           else
3639             ConcatOps.push_back(Src2);
3640         }
3641         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3642         return;
3643       }
3644     }
3645 
3646     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3647     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3648     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3649                                     PaddedMaskNumElts);
3650 
3651     // Pad both vectors with undefs to make them the same length as the mask.
3652     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3653 
3654     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3655     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3656     MOps1[0] = Src1;
3657     MOps2[0] = Src2;
3658 
3659     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3660     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3661 
3662     // Readjust mask for new input vector length.
3663     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3664     for (unsigned i = 0; i != MaskNumElts; ++i) {
3665       int Idx = Mask[i];
3666       if (Idx >= (int)SrcNumElts)
3667         Idx -= SrcNumElts - PaddedMaskNumElts;
3668       MappedOps[i] = Idx;
3669     }
3670 
3671     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3672 
3673     // If the concatenated vector was padded, extract a subvector with the
3674     // correct number of elements.
3675     if (MaskNumElts != PaddedMaskNumElts)
3676       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3677                            DAG.getVectorIdxConstant(0, DL));
3678 
3679     setValue(&I, Result);
3680     return;
3681   }
3682 
3683   if (SrcNumElts > MaskNumElts) {
3684     // Analyze the access pattern of the vector to see if we can extract
3685     // two subvectors and do the shuffle.
3686     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3687     bool CanExtract = true;
3688     for (int Idx : Mask) {
3689       unsigned Input = 0;
3690       if (Idx < 0)
3691         continue;
3692 
3693       if (Idx >= (int)SrcNumElts) {
3694         Input = 1;
3695         Idx -= SrcNumElts;
3696       }
3697 
3698       // If all the indices come from the same MaskNumElts sized portion of
3699       // the sources we can use extract. Also make sure the extract wouldn't
3700       // extract past the end of the source.
3701       int NewStartIdx = alignDown(Idx, MaskNumElts);
3702       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3703           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3704         CanExtract = false;
3705       // Make sure we always update StartIdx as we use it to track if all
3706       // elements are undef.
3707       StartIdx[Input] = NewStartIdx;
3708     }
3709 
3710     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3711       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3712       return;
3713     }
3714     if (CanExtract) {
3715       // Extract appropriate subvector and generate a vector shuffle
3716       for (unsigned Input = 0; Input < 2; ++Input) {
3717         SDValue &Src = Input == 0 ? Src1 : Src2;
3718         if (StartIdx[Input] < 0)
3719           Src = DAG.getUNDEF(VT);
3720         else {
3721           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3722                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3723         }
3724       }
3725 
3726       // Calculate new mask.
3727       SmallVector<int, 8> MappedOps(Mask);
3728       for (int &Idx : MappedOps) {
3729         if (Idx >= (int)SrcNumElts)
3730           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3731         else if (Idx >= 0)
3732           Idx -= StartIdx[0];
3733       }
3734 
3735       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3736       return;
3737     }
3738   }
3739 
3740   // We can't use either concat vectors or extract subvectors so fall back to
3741   // replacing the shuffle with extract and build vector.
3742   // to insert and build vector.
3743   EVT EltVT = VT.getVectorElementType();
3744   SmallVector<SDValue,8> Ops;
3745   for (int Idx : Mask) {
3746     SDValue Res;
3747 
3748     if (Idx < 0) {
3749       Res = DAG.getUNDEF(EltVT);
3750     } else {
3751       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3752       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3753 
3754       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3755                         DAG.getVectorIdxConstant(Idx, DL));
3756     }
3757 
3758     Ops.push_back(Res);
3759   }
3760 
3761   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3762 }
3763 
3764 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3765   ArrayRef<unsigned> Indices = I.getIndices();
3766   const Value *Op0 = I.getOperand(0);
3767   const Value *Op1 = I.getOperand(1);
3768   Type *AggTy = I.getType();
3769   Type *ValTy = Op1->getType();
3770   bool IntoUndef = isa<UndefValue>(Op0);
3771   bool FromUndef = isa<UndefValue>(Op1);
3772 
3773   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3774 
3775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3776   SmallVector<EVT, 4> AggValueVTs;
3777   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3778   SmallVector<EVT, 4> ValValueVTs;
3779   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3780 
3781   unsigned NumAggValues = AggValueVTs.size();
3782   unsigned NumValValues = ValValueVTs.size();
3783   SmallVector<SDValue, 4> Values(NumAggValues);
3784 
3785   // Ignore an insertvalue that produces an empty object
3786   if (!NumAggValues) {
3787     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3788     return;
3789   }
3790 
3791   SDValue Agg = getValue(Op0);
3792   unsigned i = 0;
3793   // Copy the beginning value(s) from the original aggregate.
3794   for (; i != LinearIndex; ++i)
3795     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3796                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3797   // Copy values from the inserted value(s).
3798   if (NumValValues) {
3799     SDValue Val = getValue(Op1);
3800     for (; i != LinearIndex + NumValValues; ++i)
3801       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3802                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3803   }
3804   // Copy remaining value(s) from the original aggregate.
3805   for (; i != NumAggValues; ++i)
3806     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3807                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3808 
3809   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3810                            DAG.getVTList(AggValueVTs), Values));
3811 }
3812 
3813 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3814   ArrayRef<unsigned> Indices = I.getIndices();
3815   const Value *Op0 = I.getOperand(0);
3816   Type *AggTy = Op0->getType();
3817   Type *ValTy = I.getType();
3818   bool OutOfUndef = isa<UndefValue>(Op0);
3819 
3820   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3821 
3822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3823   SmallVector<EVT, 4> ValValueVTs;
3824   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3825 
3826   unsigned NumValValues = ValValueVTs.size();
3827 
3828   // Ignore a extractvalue that produces an empty object
3829   if (!NumValValues) {
3830     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3831     return;
3832   }
3833 
3834   SmallVector<SDValue, 4> Values(NumValValues);
3835 
3836   SDValue Agg = getValue(Op0);
3837   // Copy out the selected value(s).
3838   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3839     Values[i - LinearIndex] =
3840       OutOfUndef ?
3841         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3842         SDValue(Agg.getNode(), Agg.getResNo() + i);
3843 
3844   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3845                            DAG.getVTList(ValValueVTs), Values));
3846 }
3847 
3848 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3849   Value *Op0 = I.getOperand(0);
3850   // Note that the pointer operand may be a vector of pointers. Take the scalar
3851   // element which holds a pointer.
3852   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3853   SDValue N = getValue(Op0);
3854   SDLoc dl = getCurSDLoc();
3855   auto &TLI = DAG.getTargetLoweringInfo();
3856 
3857   // Normalize Vector GEP - all scalar operands should be converted to the
3858   // splat vector.
3859   bool IsVectorGEP = I.getType()->isVectorTy();
3860   ElementCount VectorElementCount =
3861       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3862                   : ElementCount::getFixed(0);
3863 
3864   if (IsVectorGEP && !N.getValueType().isVector()) {
3865     LLVMContext &Context = *DAG.getContext();
3866     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3867     if (VectorElementCount.isScalable())
3868       N = DAG.getSplatVector(VT, dl, N);
3869     else
3870       N = DAG.getSplatBuildVector(VT, dl, N);
3871   }
3872 
3873   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3874        GTI != E; ++GTI) {
3875     const Value *Idx = GTI.getOperand();
3876     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3877       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3878       if (Field) {
3879         // N = N + Offset
3880         uint64_t Offset =
3881             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3882 
3883         // In an inbounds GEP with an offset that is nonnegative even when
3884         // interpreted as signed, assume there is no unsigned overflow.
3885         SDNodeFlags Flags;
3886         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3887           Flags.setNoUnsignedWrap(true);
3888 
3889         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3890                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3891       }
3892     } else {
3893       // IdxSize is the width of the arithmetic according to IR semantics.
3894       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3895       // (and fix up the result later).
3896       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3897       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3898       TypeSize ElementSize =
3899           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3900       // We intentionally mask away the high bits here; ElementSize may not
3901       // fit in IdxTy.
3902       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3903       bool ElementScalable = ElementSize.isScalable();
3904 
3905       // If this is a scalar constant or a splat vector of constants,
3906       // handle it quickly.
3907       const auto *C = dyn_cast<Constant>(Idx);
3908       if (C && isa<VectorType>(C->getType()))
3909         C = C->getSplatValue();
3910 
3911       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3912       if (CI && CI->isZero())
3913         continue;
3914       if (CI && !ElementScalable) {
3915         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3916         LLVMContext &Context = *DAG.getContext();
3917         SDValue OffsVal;
3918         if (IsVectorGEP)
3919           OffsVal = DAG.getConstant(
3920               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3921         else
3922           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3923 
3924         // In an inbounds GEP with an offset that is nonnegative even when
3925         // interpreted as signed, assume there is no unsigned overflow.
3926         SDNodeFlags Flags;
3927         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3928           Flags.setNoUnsignedWrap(true);
3929 
3930         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3931 
3932         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3933         continue;
3934       }
3935 
3936       // N = N + Idx * ElementMul;
3937       SDValue IdxN = getValue(Idx);
3938 
3939       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3940         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3941                                   VectorElementCount);
3942         if (VectorElementCount.isScalable())
3943           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3944         else
3945           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3946       }
3947 
3948       // If the index is smaller or larger than intptr_t, truncate or extend
3949       // it.
3950       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3951 
3952       if (ElementScalable) {
3953         EVT VScaleTy = N.getValueType().getScalarType();
3954         SDValue VScale = DAG.getNode(
3955             ISD::VSCALE, dl, VScaleTy,
3956             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3957         if (IsVectorGEP)
3958           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3959         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3960       } else {
3961         // If this is a multiply by a power of two, turn it into a shl
3962         // immediately.  This is a very common case.
3963         if (ElementMul != 1) {
3964           if (ElementMul.isPowerOf2()) {
3965             unsigned Amt = ElementMul.logBase2();
3966             IdxN = DAG.getNode(ISD::SHL, dl,
3967                                N.getValueType(), IdxN,
3968                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3969           } else {
3970             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3971                                             IdxN.getValueType());
3972             IdxN = DAG.getNode(ISD::MUL, dl,
3973                                N.getValueType(), IdxN, Scale);
3974           }
3975         }
3976       }
3977 
3978       N = DAG.getNode(ISD::ADD, dl,
3979                       N.getValueType(), N, IdxN);
3980     }
3981   }
3982 
3983   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3984   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3985   if (IsVectorGEP) {
3986     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3987     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3988   }
3989 
3990   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3991     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3992 
3993   setValue(&I, N);
3994 }
3995 
3996 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3997   // If this is a fixed sized alloca in the entry block of the function,
3998   // allocate it statically on the stack.
3999   if (FuncInfo.StaticAllocaMap.count(&I))
4000     return;   // getValue will auto-populate this.
4001 
4002   SDLoc dl = getCurSDLoc();
4003   Type *Ty = I.getAllocatedType();
4004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4005   auto &DL = DAG.getDataLayout();
4006   TypeSize TySize = DL.getTypeAllocSize(Ty);
4007   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4008 
4009   SDValue AllocSize = getValue(I.getArraySize());
4010 
4011   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4012   if (AllocSize.getValueType() != IntPtr)
4013     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4014 
4015   if (TySize.isScalable())
4016     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4017                             DAG.getVScale(dl, IntPtr,
4018                                           APInt(IntPtr.getScalarSizeInBits(),
4019                                                 TySize.getKnownMinValue())));
4020   else
4021     AllocSize =
4022         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4023                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4024 
4025   // Handle alignment.  If the requested alignment is less than or equal to
4026   // the stack alignment, ignore it.  If the size is greater than or equal to
4027   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4028   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4029   if (*Alignment <= StackAlign)
4030     Alignment = None;
4031 
4032   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4033   // Round the size of the allocation up to the stack alignment size
4034   // by add SA-1 to the size. This doesn't overflow because we're computing
4035   // an address inside an alloca.
4036   SDNodeFlags Flags;
4037   Flags.setNoUnsignedWrap(true);
4038   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4039                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4040 
4041   // Mask out the low bits for alignment purposes.
4042   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4043                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4044 
4045   SDValue Ops[] = {
4046       getRoot(), AllocSize,
4047       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4048   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4049   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4050   setValue(&I, DSA);
4051   DAG.setRoot(DSA.getValue(1));
4052 
4053   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4054 }
4055 
4056 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4057   if (I.isAtomic())
4058     return visitAtomicLoad(I);
4059 
4060   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4061   const Value *SV = I.getOperand(0);
4062   if (TLI.supportSwiftError()) {
4063     // Swifterror values can come from either a function parameter with
4064     // swifterror attribute or an alloca with swifterror attribute.
4065     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4066       if (Arg->hasSwiftErrorAttr())
4067         return visitLoadFromSwiftError(I);
4068     }
4069 
4070     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4071       if (Alloca->isSwiftError())
4072         return visitLoadFromSwiftError(I);
4073     }
4074   }
4075 
4076   SDValue Ptr = getValue(SV);
4077 
4078   Type *Ty = I.getType();
4079   Align Alignment = I.getAlign();
4080 
4081   AAMDNodes AAInfo = I.getAAMetadata();
4082   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4083 
4084   SmallVector<EVT, 4> ValueVTs, MemVTs;
4085   SmallVector<uint64_t, 4> Offsets;
4086   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4087   unsigned NumValues = ValueVTs.size();
4088   if (NumValues == 0)
4089     return;
4090 
4091   bool isVolatile = I.isVolatile();
4092   MachineMemOperand::Flags MMOFlags =
4093       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4094 
4095   SDValue Root;
4096   bool ConstantMemory = false;
4097   if (isVolatile)
4098     // Serialize volatile loads with other side effects.
4099     Root = getRoot();
4100   else if (NumValues > MaxParallelChains)
4101     Root = getMemoryRoot();
4102   else if (AA &&
4103            AA->pointsToConstantMemory(MemoryLocation(
4104                SV,
4105                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4106                AAInfo))) {
4107     // Do not serialize (non-volatile) loads of constant memory with anything.
4108     Root = DAG.getEntryNode();
4109     ConstantMemory = true;
4110     MMOFlags |= MachineMemOperand::MOInvariant;
4111 
4112     // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
4113     // but the previous usage implied it did. Probably should check
4114     // isDereferenceableAndAlignedPointer.
4115     MMOFlags |= MachineMemOperand::MODereferenceable;
4116   } else {
4117     // Do not serialize non-volatile loads against each other.
4118     Root = DAG.getRoot();
4119   }
4120 
4121   SDLoc dl = getCurSDLoc();
4122 
4123   if (isVolatile)
4124     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4125 
4126   // An aggregate load cannot wrap around the address space, so offsets to its
4127   // parts don't wrap either.
4128   SDNodeFlags Flags;
4129   Flags.setNoUnsignedWrap(true);
4130 
4131   SmallVector<SDValue, 4> Values(NumValues);
4132   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4133   EVT PtrVT = Ptr.getValueType();
4134 
4135   unsigned ChainI = 0;
4136   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4137     // Serializing loads here may result in excessive register pressure, and
4138     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4139     // could recover a bit by hoisting nodes upward in the chain by recognizing
4140     // they are side-effect free or do not alias. The optimizer should really
4141     // avoid this case by converting large object/array copies to llvm.memcpy
4142     // (MaxParallelChains should always remain as failsafe).
4143     if (ChainI == MaxParallelChains) {
4144       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4145       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4146                                   makeArrayRef(Chains.data(), ChainI));
4147       Root = Chain;
4148       ChainI = 0;
4149     }
4150     SDValue A = DAG.getNode(ISD::ADD, dl,
4151                             PtrVT, Ptr,
4152                             DAG.getConstant(Offsets[i], dl, PtrVT),
4153                             Flags);
4154 
4155     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4156                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4157                             MMOFlags, AAInfo, Ranges);
4158     Chains[ChainI] = L.getValue(1);
4159 
4160     if (MemVTs[i] != ValueVTs[i])
4161       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4162 
4163     Values[i] = L;
4164   }
4165 
4166   if (!ConstantMemory) {
4167     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4168                                 makeArrayRef(Chains.data(), ChainI));
4169     if (isVolatile)
4170       DAG.setRoot(Chain);
4171     else
4172       PendingLoads.push_back(Chain);
4173   }
4174 
4175   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4176                            DAG.getVTList(ValueVTs), Values));
4177 }
4178 
4179 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4180   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4181          "call visitStoreToSwiftError when backend supports swifterror");
4182 
4183   SmallVector<EVT, 4> ValueVTs;
4184   SmallVector<uint64_t, 4> Offsets;
4185   const Value *SrcV = I.getOperand(0);
4186   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4187                   SrcV->getType(), ValueVTs, &Offsets);
4188   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4189          "expect a single EVT for swifterror");
4190 
4191   SDValue Src = getValue(SrcV);
4192   // Create a virtual register, then update the virtual register.
4193   Register VReg =
4194       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4195   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4196   // Chain can be getRoot or getControlRoot.
4197   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4198                                       SDValue(Src.getNode(), Src.getResNo()));
4199   DAG.setRoot(CopyNode);
4200 }
4201 
4202 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4203   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4204          "call visitLoadFromSwiftError when backend supports swifterror");
4205 
4206   assert(!I.isVolatile() &&
4207          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4208          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4209          "Support volatile, non temporal, invariant for load_from_swift_error");
4210 
4211   const Value *SV = I.getOperand(0);
4212   Type *Ty = I.getType();
4213   assert(
4214       (!AA ||
4215        !AA->pointsToConstantMemory(MemoryLocation(
4216            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4217            I.getAAMetadata()))) &&
4218       "load_from_swift_error should not be constant memory");
4219 
4220   SmallVector<EVT, 4> ValueVTs;
4221   SmallVector<uint64_t, 4> Offsets;
4222   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4223                   ValueVTs, &Offsets);
4224   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4225          "expect a single EVT for swifterror");
4226 
4227   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4228   SDValue L = DAG.getCopyFromReg(
4229       getRoot(), getCurSDLoc(),
4230       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4231 
4232   setValue(&I, L);
4233 }
4234 
4235 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4236   if (I.isAtomic())
4237     return visitAtomicStore(I);
4238 
4239   const Value *SrcV = I.getOperand(0);
4240   const Value *PtrV = I.getOperand(1);
4241 
4242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4243   if (TLI.supportSwiftError()) {
4244     // Swifterror values can come from either a function parameter with
4245     // swifterror attribute or an alloca with swifterror attribute.
4246     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4247       if (Arg->hasSwiftErrorAttr())
4248         return visitStoreToSwiftError(I);
4249     }
4250 
4251     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4252       if (Alloca->isSwiftError())
4253         return visitStoreToSwiftError(I);
4254     }
4255   }
4256 
4257   SmallVector<EVT, 4> ValueVTs, MemVTs;
4258   SmallVector<uint64_t, 4> Offsets;
4259   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4260                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4261   unsigned NumValues = ValueVTs.size();
4262   if (NumValues == 0)
4263     return;
4264 
4265   // Get the lowered operands. Note that we do this after
4266   // checking if NumResults is zero, because with zero results
4267   // the operands won't have values in the map.
4268   SDValue Src = getValue(SrcV);
4269   SDValue Ptr = getValue(PtrV);
4270 
4271   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4272   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4273   SDLoc dl = getCurSDLoc();
4274   Align Alignment = I.getAlign();
4275   AAMDNodes AAInfo = I.getAAMetadata();
4276 
4277   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4278 
4279   // An aggregate load cannot wrap around the address space, so offsets to its
4280   // parts don't wrap either.
4281   SDNodeFlags Flags;
4282   Flags.setNoUnsignedWrap(true);
4283 
4284   unsigned ChainI = 0;
4285   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4286     // See visitLoad comments.
4287     if (ChainI == MaxParallelChains) {
4288       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4289                                   makeArrayRef(Chains.data(), ChainI));
4290       Root = Chain;
4291       ChainI = 0;
4292     }
4293     SDValue Add =
4294         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4295     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4296     if (MemVTs[i] != ValueVTs[i])
4297       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4298     SDValue St =
4299         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4300                      Alignment, MMOFlags, AAInfo);
4301     Chains[ChainI] = St;
4302   }
4303 
4304   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4305                                   makeArrayRef(Chains.data(), ChainI));
4306   DAG.setRoot(StoreNode);
4307 }
4308 
4309 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4310                                            bool IsCompressing) {
4311   SDLoc sdl = getCurSDLoc();
4312 
4313   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4314                                MaybeAlign &Alignment) {
4315     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4316     Src0 = I.getArgOperand(0);
4317     Ptr = I.getArgOperand(1);
4318     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4319     Mask = I.getArgOperand(3);
4320   };
4321   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4322                                     MaybeAlign &Alignment) {
4323     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4324     Src0 = I.getArgOperand(0);
4325     Ptr = I.getArgOperand(1);
4326     Mask = I.getArgOperand(2);
4327     Alignment = None;
4328   };
4329 
4330   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4331   MaybeAlign Alignment;
4332   if (IsCompressing)
4333     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4334   else
4335     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4336 
4337   SDValue Ptr = getValue(PtrOperand);
4338   SDValue Src0 = getValue(Src0Operand);
4339   SDValue Mask = getValue(MaskOperand);
4340   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4341 
4342   EVT VT = Src0.getValueType();
4343   if (!Alignment)
4344     Alignment = DAG.getEVTAlign(VT);
4345 
4346   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4347       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4348       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4349   SDValue StoreNode =
4350       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4351                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4352   DAG.setRoot(StoreNode);
4353   setValue(&I, StoreNode);
4354 }
4355 
4356 // Get a uniform base for the Gather/Scatter intrinsic.
4357 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4358 // We try to represent it as a base pointer + vector of indices.
4359 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4360 // The first operand of the GEP may be a single pointer or a vector of pointers
4361 // Example:
4362 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4363 //  or
4364 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4365 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4366 //
4367 // When the first GEP operand is a single pointer - it is the uniform base we
4368 // are looking for. If first operand of the GEP is a splat vector - we
4369 // extract the splat value and use it as a uniform base.
4370 // In all other cases the function returns 'false'.
4371 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4372                            ISD::MemIndexType &IndexType, SDValue &Scale,
4373                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4374                            uint64_t ElemSize) {
4375   SelectionDAG& DAG = SDB->DAG;
4376   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4377   const DataLayout &DL = DAG.getDataLayout();
4378 
4379   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4380 
4381   // Handle splat constant pointer.
4382   if (auto *C = dyn_cast<Constant>(Ptr)) {
4383     C = C->getSplatValue();
4384     if (!C)
4385       return false;
4386 
4387     Base = SDB->getValue(C);
4388 
4389     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4390     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4391     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4392     IndexType = ISD::SIGNED_SCALED;
4393     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4394     return true;
4395   }
4396 
4397   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4398   if (!GEP || GEP->getParent() != CurBB)
4399     return false;
4400 
4401   if (GEP->getNumOperands() != 2)
4402     return false;
4403 
4404   const Value *BasePtr = GEP->getPointerOperand();
4405   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4406 
4407   // Make sure the base is scalar and the index is a vector.
4408   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4409     return false;
4410 
4411   Base = SDB->getValue(BasePtr);
4412   Index = SDB->getValue(IndexVal);
4413   IndexType = ISD::SIGNED_SCALED;
4414 
4415   // MGATHER/MSCATTER are only required to support scaling by one or by the
4416   // element size. Other scales may be produced using target-specific DAG
4417   // combines.
4418   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4419   if (ScaleVal != ElemSize && ScaleVal != 1)
4420     return false;
4421 
4422   Scale =
4423       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4424   return true;
4425 }
4426 
4427 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4428   SDLoc sdl = getCurSDLoc();
4429 
4430   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4431   const Value *Ptr = I.getArgOperand(1);
4432   SDValue Src0 = getValue(I.getArgOperand(0));
4433   SDValue Mask = getValue(I.getArgOperand(3));
4434   EVT VT = Src0.getValueType();
4435   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4436                         ->getMaybeAlignValue()
4437                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4439 
4440   SDValue Base;
4441   SDValue Index;
4442   ISD::MemIndexType IndexType;
4443   SDValue Scale;
4444   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4445                                     I.getParent(), VT.getScalarStoreSize());
4446 
4447   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4448   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4449       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4450       // TODO: Make MachineMemOperands aware of scalable
4451       // vectors.
4452       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4453   if (!UniformBase) {
4454     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4455     Index = getValue(Ptr);
4456     IndexType = ISD::SIGNED_SCALED;
4457     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4458   }
4459 
4460   EVT IdxVT = Index.getValueType();
4461   EVT EltTy = IdxVT.getVectorElementType();
4462   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4463     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4464     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4465   }
4466 
4467   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4468   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4469                                          Ops, MMO, IndexType, false);
4470   DAG.setRoot(Scatter);
4471   setValue(&I, Scatter);
4472 }
4473 
4474 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4475   SDLoc sdl = getCurSDLoc();
4476 
4477   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4478                               MaybeAlign &Alignment) {
4479     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4480     Ptr = I.getArgOperand(0);
4481     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4482     Mask = I.getArgOperand(2);
4483     Src0 = I.getArgOperand(3);
4484   };
4485   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4486                                  MaybeAlign &Alignment) {
4487     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4488     Ptr = I.getArgOperand(0);
4489     Alignment = None;
4490     Mask = I.getArgOperand(1);
4491     Src0 = I.getArgOperand(2);
4492   };
4493 
4494   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4495   MaybeAlign Alignment;
4496   if (IsExpanding)
4497     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4498   else
4499     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4500 
4501   SDValue Ptr = getValue(PtrOperand);
4502   SDValue Src0 = getValue(Src0Operand);
4503   SDValue Mask = getValue(MaskOperand);
4504   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4505 
4506   EVT VT = Src0.getValueType();
4507   if (!Alignment)
4508     Alignment = DAG.getEVTAlign(VT);
4509 
4510   AAMDNodes AAInfo = I.getAAMetadata();
4511   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4512 
4513   // Do not serialize masked loads of constant memory with anything.
4514   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4515   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4516 
4517   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4518 
4519   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4520       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4521       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4522 
4523   SDValue Load =
4524       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4525                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4526   if (AddToChain)
4527     PendingLoads.push_back(Load.getValue(1));
4528   setValue(&I, Load);
4529 }
4530 
4531 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4532   SDLoc sdl = getCurSDLoc();
4533 
4534   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4535   const Value *Ptr = I.getArgOperand(0);
4536   SDValue Src0 = getValue(I.getArgOperand(3));
4537   SDValue Mask = getValue(I.getArgOperand(2));
4538 
4539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4540   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4541   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4542                         ->getMaybeAlignValue()
4543                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4544 
4545   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4546 
4547   SDValue Root = DAG.getRoot();
4548   SDValue Base;
4549   SDValue Index;
4550   ISD::MemIndexType IndexType;
4551   SDValue Scale;
4552   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4553                                     I.getParent(), VT.getScalarStoreSize());
4554   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4555   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4556       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4557       // TODO: Make MachineMemOperands aware of scalable
4558       // vectors.
4559       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4560 
4561   if (!UniformBase) {
4562     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4563     Index = getValue(Ptr);
4564     IndexType = ISD::SIGNED_SCALED;
4565     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4566   }
4567 
4568   EVT IdxVT = Index.getValueType();
4569   EVT EltTy = IdxVT.getVectorElementType();
4570   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4571     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4572     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4573   }
4574 
4575   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4576   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4577                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4578 
4579   PendingLoads.push_back(Gather.getValue(1));
4580   setValue(&I, Gather);
4581 }
4582 
4583 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4584   SDLoc dl = getCurSDLoc();
4585   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4586   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4587   SyncScope::ID SSID = I.getSyncScopeID();
4588 
4589   SDValue InChain = getRoot();
4590 
4591   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4592   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4593 
4594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4595   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4596 
4597   MachineFunction &MF = DAG.getMachineFunction();
4598   MachineMemOperand *MMO = MF.getMachineMemOperand(
4599       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4600       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4601       FailureOrdering);
4602 
4603   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4604                                    dl, MemVT, VTs, InChain,
4605                                    getValue(I.getPointerOperand()),
4606                                    getValue(I.getCompareOperand()),
4607                                    getValue(I.getNewValOperand()), MMO);
4608 
4609   SDValue OutChain = L.getValue(2);
4610 
4611   setValue(&I, L);
4612   DAG.setRoot(OutChain);
4613 }
4614 
4615 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4616   SDLoc dl = getCurSDLoc();
4617   ISD::NodeType NT;
4618   switch (I.getOperation()) {
4619   default: llvm_unreachable("Unknown atomicrmw operation");
4620   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4621   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4622   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4623   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4624   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4625   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4626   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4627   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4628   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4629   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4630   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4631   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4632   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4633   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4634   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4635   }
4636   AtomicOrdering Ordering = I.getOrdering();
4637   SyncScope::ID SSID = I.getSyncScopeID();
4638 
4639   SDValue InChain = getRoot();
4640 
4641   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4642   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4643   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4644 
4645   MachineFunction &MF = DAG.getMachineFunction();
4646   MachineMemOperand *MMO = MF.getMachineMemOperand(
4647       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4648       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4649 
4650   SDValue L =
4651     DAG.getAtomic(NT, dl, MemVT, InChain,
4652                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4653                   MMO);
4654 
4655   SDValue OutChain = L.getValue(1);
4656 
4657   setValue(&I, L);
4658   DAG.setRoot(OutChain);
4659 }
4660 
4661 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4662   SDLoc dl = getCurSDLoc();
4663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4664   SDValue Ops[3];
4665   Ops[0] = getRoot();
4666   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4667                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4668   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4669                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4670   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4671 }
4672 
4673 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4674   SDLoc dl = getCurSDLoc();
4675   AtomicOrdering Order = I.getOrdering();
4676   SyncScope::ID SSID = I.getSyncScopeID();
4677 
4678   SDValue InChain = getRoot();
4679 
4680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4681   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4682   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4683 
4684   if (!TLI.supportsUnalignedAtomics() &&
4685       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4686     report_fatal_error("Cannot generate unaligned atomic load");
4687 
4688   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4689 
4690   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4691       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4692       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4693 
4694   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4695 
4696   SDValue Ptr = getValue(I.getPointerOperand());
4697 
4698   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4699     // TODO: Once this is better exercised by tests, it should be merged with
4700     // the normal path for loads to prevent future divergence.
4701     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4702     if (MemVT != VT)
4703       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4704 
4705     setValue(&I, L);
4706     SDValue OutChain = L.getValue(1);
4707     if (!I.isUnordered())
4708       DAG.setRoot(OutChain);
4709     else
4710       PendingLoads.push_back(OutChain);
4711     return;
4712   }
4713 
4714   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4715                             Ptr, MMO);
4716 
4717   SDValue OutChain = L.getValue(1);
4718   if (MemVT != VT)
4719     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4720 
4721   setValue(&I, L);
4722   DAG.setRoot(OutChain);
4723 }
4724 
4725 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4726   SDLoc dl = getCurSDLoc();
4727 
4728   AtomicOrdering Ordering = I.getOrdering();
4729   SyncScope::ID SSID = I.getSyncScopeID();
4730 
4731   SDValue InChain = getRoot();
4732 
4733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4734   EVT MemVT =
4735       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4736 
4737   if (!TLI.supportsUnalignedAtomics() &&
4738       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4739     report_fatal_error("Cannot generate unaligned atomic store");
4740 
4741   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4742 
4743   MachineFunction &MF = DAG.getMachineFunction();
4744   MachineMemOperand *MMO = MF.getMachineMemOperand(
4745       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4746       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4747 
4748   SDValue Val = getValue(I.getValueOperand());
4749   if (Val.getValueType() != MemVT)
4750     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4751   SDValue Ptr = getValue(I.getPointerOperand());
4752 
4753   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4754     // TODO: Once this is better exercised by tests, it should be merged with
4755     // the normal path for stores to prevent future divergence.
4756     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4757     DAG.setRoot(S);
4758     return;
4759   }
4760   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4761                                    Ptr, Val, MMO);
4762 
4763 
4764   DAG.setRoot(OutChain);
4765 }
4766 
4767 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4768 /// node.
4769 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4770                                                unsigned Intrinsic) {
4771   // Ignore the callsite's attributes. A specific call site may be marked with
4772   // readnone, but the lowering code will expect the chain based on the
4773   // definition.
4774   const Function *F = I.getCalledFunction();
4775   bool HasChain = !F->doesNotAccessMemory();
4776   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4777 
4778   // Build the operand list.
4779   SmallVector<SDValue, 8> Ops;
4780   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4781     if (OnlyLoad) {
4782       // We don't need to serialize loads against other loads.
4783       Ops.push_back(DAG.getRoot());
4784     } else {
4785       Ops.push_back(getRoot());
4786     }
4787   }
4788 
4789   // Info is set by getTgtMemIntrinsic
4790   TargetLowering::IntrinsicInfo Info;
4791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4792   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4793                                                DAG.getMachineFunction(),
4794                                                Intrinsic);
4795 
4796   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4797   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4798       Info.opc == ISD::INTRINSIC_W_CHAIN)
4799     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4800                                         TLI.getPointerTy(DAG.getDataLayout())));
4801 
4802   // Add all operands of the call to the operand list.
4803   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4804     const Value *Arg = I.getArgOperand(i);
4805     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4806       Ops.push_back(getValue(Arg));
4807       continue;
4808     }
4809 
4810     // Use TargetConstant instead of a regular constant for immarg.
4811     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4812     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4813       assert(CI->getBitWidth() <= 64 &&
4814              "large intrinsic immediates not handled");
4815       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4816     } else {
4817       Ops.push_back(
4818           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4819     }
4820   }
4821 
4822   SmallVector<EVT, 4> ValueVTs;
4823   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4824 
4825   if (HasChain)
4826     ValueVTs.push_back(MVT::Other);
4827 
4828   SDVTList VTs = DAG.getVTList(ValueVTs);
4829 
4830   // Propagate fast-math-flags from IR to node(s).
4831   SDNodeFlags Flags;
4832   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4833     Flags.copyFMF(*FPMO);
4834   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4835 
4836   // Create the node.
4837   SDValue Result;
4838   if (IsTgtIntrinsic) {
4839     // This is target intrinsic that touches memory
4840     Result =
4841         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4842                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4843                                 Info.align, Info.flags, Info.size,
4844                                 I.getAAMetadata());
4845   } else if (!HasChain) {
4846     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4847   } else if (!I.getType()->isVoidTy()) {
4848     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4849   } else {
4850     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4851   }
4852 
4853   if (HasChain) {
4854     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4855     if (OnlyLoad)
4856       PendingLoads.push_back(Chain);
4857     else
4858       DAG.setRoot(Chain);
4859   }
4860 
4861   if (!I.getType()->isVoidTy()) {
4862     if (!isa<VectorType>(I.getType()))
4863       Result = lowerRangeToAssertZExt(DAG, I, Result);
4864 
4865     MaybeAlign Alignment = I.getRetAlign();
4866     if (!Alignment)
4867       Alignment = F->getAttributes().getRetAlignment();
4868     // Insert `assertalign` node if there's an alignment.
4869     if (InsertAssertAlign && Alignment) {
4870       Result =
4871           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4872     }
4873 
4874     setValue(&I, Result);
4875   }
4876 }
4877 
4878 /// GetSignificand - Get the significand and build it into a floating-point
4879 /// number with exponent of 1:
4880 ///
4881 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4882 ///
4883 /// where Op is the hexadecimal representation of floating point value.
4884 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4885   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4886                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4887   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4888                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4889   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4890 }
4891 
4892 /// GetExponent - Get the exponent:
4893 ///
4894 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4895 ///
4896 /// where Op is the hexadecimal representation of floating point value.
4897 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4898                            const TargetLowering &TLI, const SDLoc &dl) {
4899   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4900                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4901   SDValue t1 = DAG.getNode(
4902       ISD::SRL, dl, MVT::i32, t0,
4903       DAG.getConstant(23, dl,
4904                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4905   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4906                            DAG.getConstant(127, dl, MVT::i32));
4907   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4908 }
4909 
4910 /// getF32Constant - Get 32-bit floating point constant.
4911 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4912                               const SDLoc &dl) {
4913   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4914                            MVT::f32);
4915 }
4916 
4917 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4918                                        SelectionDAG &DAG) {
4919   // TODO: What fast-math-flags should be set on the floating-point nodes?
4920 
4921   //   IntegerPartOfX = ((int32_t)(t0);
4922   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4923 
4924   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4925   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4926   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4927 
4928   //   IntegerPartOfX <<= 23;
4929   IntegerPartOfX =
4930       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4931                   DAG.getConstant(23, dl,
4932                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4933                                       MVT::i32, DAG.getDataLayout())));
4934 
4935   SDValue TwoToFractionalPartOfX;
4936   if (LimitFloatPrecision <= 6) {
4937     // For floating-point precision of 6:
4938     //
4939     //   TwoToFractionalPartOfX =
4940     //     0.997535578f +
4941     //       (0.735607626f + 0.252464424f * x) * x;
4942     //
4943     // error 0.0144103317, which is 6 bits
4944     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4945                              getF32Constant(DAG, 0x3e814304, dl));
4946     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4947                              getF32Constant(DAG, 0x3f3c50c8, dl));
4948     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4949     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4950                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4951   } else if (LimitFloatPrecision <= 12) {
4952     // For floating-point precision of 12:
4953     //
4954     //   TwoToFractionalPartOfX =
4955     //     0.999892986f +
4956     //       (0.696457318f +
4957     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4958     //
4959     // error 0.000107046256, which is 13 to 14 bits
4960     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4961                              getF32Constant(DAG, 0x3da235e3, dl));
4962     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4963                              getF32Constant(DAG, 0x3e65b8f3, dl));
4964     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4965     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4966                              getF32Constant(DAG, 0x3f324b07, dl));
4967     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4968     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4969                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4970   } else { // LimitFloatPrecision <= 18
4971     // For floating-point precision of 18:
4972     //
4973     //   TwoToFractionalPartOfX =
4974     //     0.999999982f +
4975     //       (0.693148872f +
4976     //         (0.240227044f +
4977     //           (0.554906021e-1f +
4978     //             (0.961591928e-2f +
4979     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4980     // error 2.47208000*10^(-7), which is better than 18 bits
4981     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4982                              getF32Constant(DAG, 0x3924b03e, dl));
4983     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4984                              getF32Constant(DAG, 0x3ab24b87, dl));
4985     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4986     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4987                              getF32Constant(DAG, 0x3c1d8c17, dl));
4988     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4989     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4990                              getF32Constant(DAG, 0x3d634a1d, dl));
4991     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4992     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4993                              getF32Constant(DAG, 0x3e75fe14, dl));
4994     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4995     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4996                               getF32Constant(DAG, 0x3f317234, dl));
4997     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4998     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4999                                          getF32Constant(DAG, 0x3f800000, dl));
5000   }
5001 
5002   // Add the exponent into the result in integer domain.
5003   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5004   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5005                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5006 }
5007 
5008 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5009 /// limited-precision mode.
5010 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5011                          const TargetLowering &TLI, SDNodeFlags Flags) {
5012   if (Op.getValueType() == MVT::f32 &&
5013       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5014 
5015     // Put the exponent in the right bit position for later addition to the
5016     // final result:
5017     //
5018     // t0 = Op * log2(e)
5019 
5020     // TODO: What fast-math-flags should be set here?
5021     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5022                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5023     return getLimitedPrecisionExp2(t0, dl, DAG);
5024   }
5025 
5026   // No special expansion.
5027   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5028 }
5029 
5030 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5031 /// limited-precision mode.
5032 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5033                          const TargetLowering &TLI, SDNodeFlags Flags) {
5034   // TODO: What fast-math-flags should be set on the floating-point nodes?
5035 
5036   if (Op.getValueType() == MVT::f32 &&
5037       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5038     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5039 
5040     // Scale the exponent by log(2).
5041     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5042     SDValue LogOfExponent =
5043         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5044                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5045 
5046     // Get the significand and build it into a floating-point number with
5047     // exponent of 1.
5048     SDValue X = GetSignificand(DAG, Op1, dl);
5049 
5050     SDValue LogOfMantissa;
5051     if (LimitFloatPrecision <= 6) {
5052       // For floating-point precision of 6:
5053       //
5054       //   LogofMantissa =
5055       //     -1.1609546f +
5056       //       (1.4034025f - 0.23903021f * x) * x;
5057       //
5058       // error 0.0034276066, which is better than 8 bits
5059       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5060                                getF32Constant(DAG, 0xbe74c456, dl));
5061       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5062                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5063       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5064       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5065                                   getF32Constant(DAG, 0x3f949a29, dl));
5066     } else if (LimitFloatPrecision <= 12) {
5067       // For floating-point precision of 12:
5068       //
5069       //   LogOfMantissa =
5070       //     -1.7417939f +
5071       //       (2.8212026f +
5072       //         (-1.4699568f +
5073       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5074       //
5075       // error 0.000061011436, which is 14 bits
5076       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5077                                getF32Constant(DAG, 0xbd67b6d6, dl));
5078       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5079                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5080       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5081       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5082                                getF32Constant(DAG, 0x3fbc278b, dl));
5083       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5084       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5085                                getF32Constant(DAG, 0x40348e95, dl));
5086       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5087       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5088                                   getF32Constant(DAG, 0x3fdef31a, dl));
5089     } else { // LimitFloatPrecision <= 18
5090       // For floating-point precision of 18:
5091       //
5092       //   LogOfMantissa =
5093       //     -2.1072184f +
5094       //       (4.2372794f +
5095       //         (-3.7029485f +
5096       //           (2.2781945f +
5097       //             (-0.87823314f +
5098       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5099       //
5100       // error 0.0000023660568, which is better than 18 bits
5101       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5102                                getF32Constant(DAG, 0xbc91e5ac, dl));
5103       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5104                                getF32Constant(DAG, 0x3e4350aa, dl));
5105       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5106       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5107                                getF32Constant(DAG, 0x3f60d3e3, dl));
5108       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5109       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5110                                getF32Constant(DAG, 0x4011cdf0, dl));
5111       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5112       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5113                                getF32Constant(DAG, 0x406cfd1c, dl));
5114       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5115       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5116                                getF32Constant(DAG, 0x408797cb, dl));
5117       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5118       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5119                                   getF32Constant(DAG, 0x4006dcab, dl));
5120     }
5121 
5122     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5123   }
5124 
5125   // No special expansion.
5126   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5127 }
5128 
5129 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5130 /// limited-precision mode.
5131 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5132                           const TargetLowering &TLI, SDNodeFlags Flags) {
5133   // TODO: What fast-math-flags should be set on the floating-point nodes?
5134 
5135   if (Op.getValueType() == MVT::f32 &&
5136       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5137     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5138 
5139     // Get the exponent.
5140     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5141 
5142     // Get the significand and build it into a floating-point number with
5143     // exponent of 1.
5144     SDValue X = GetSignificand(DAG, Op1, dl);
5145 
5146     // Different possible minimax approximations of significand in
5147     // floating-point for various degrees of accuracy over [1,2].
5148     SDValue Log2ofMantissa;
5149     if (LimitFloatPrecision <= 6) {
5150       // For floating-point precision of 6:
5151       //
5152       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5153       //
5154       // error 0.0049451742, which is more than 7 bits
5155       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5156                                getF32Constant(DAG, 0xbeb08fe0, dl));
5157       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5158                                getF32Constant(DAG, 0x40019463, dl));
5159       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5160       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5161                                    getF32Constant(DAG, 0x3fd6633d, dl));
5162     } else if (LimitFloatPrecision <= 12) {
5163       // For floating-point precision of 12:
5164       //
5165       //   Log2ofMantissa =
5166       //     -2.51285454f +
5167       //       (4.07009056f +
5168       //         (-2.12067489f +
5169       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5170       //
5171       // error 0.0000876136000, which is better than 13 bits
5172       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5173                                getF32Constant(DAG, 0xbda7262e, dl));
5174       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5175                                getF32Constant(DAG, 0x3f25280b, dl));
5176       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5177       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5178                                getF32Constant(DAG, 0x4007b923, dl));
5179       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5180       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5181                                getF32Constant(DAG, 0x40823e2f, dl));
5182       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5183       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5184                                    getF32Constant(DAG, 0x4020d29c, dl));
5185     } else { // LimitFloatPrecision <= 18
5186       // For floating-point precision of 18:
5187       //
5188       //   Log2ofMantissa =
5189       //     -3.0400495f +
5190       //       (6.1129976f +
5191       //         (-5.3420409f +
5192       //           (3.2865683f +
5193       //             (-1.2669343f +
5194       //               (0.27515199f -
5195       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5196       //
5197       // error 0.0000018516, which is better than 18 bits
5198       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5199                                getF32Constant(DAG, 0xbcd2769e, dl));
5200       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5201                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5202       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5203       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5204                                getF32Constant(DAG, 0x3fa22ae7, dl));
5205       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5206       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5207                                getF32Constant(DAG, 0x40525723, dl));
5208       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5209       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5210                                getF32Constant(DAG, 0x40aaf200, dl));
5211       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5212       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5213                                getF32Constant(DAG, 0x40c39dad, dl));
5214       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5215       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5216                                    getF32Constant(DAG, 0x4042902c, dl));
5217     }
5218 
5219     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5220   }
5221 
5222   // No special expansion.
5223   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5224 }
5225 
5226 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5227 /// limited-precision mode.
5228 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5229                            const TargetLowering &TLI, SDNodeFlags Flags) {
5230   // TODO: What fast-math-flags should be set on the floating-point nodes?
5231 
5232   if (Op.getValueType() == MVT::f32 &&
5233       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5234     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5235 
5236     // Scale the exponent by log10(2) [0.30102999f].
5237     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5238     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5239                                         getF32Constant(DAG, 0x3e9a209a, dl));
5240 
5241     // Get the significand and build it into a floating-point number with
5242     // exponent of 1.
5243     SDValue X = GetSignificand(DAG, Op1, dl);
5244 
5245     SDValue Log10ofMantissa;
5246     if (LimitFloatPrecision <= 6) {
5247       // For floating-point precision of 6:
5248       //
5249       //   Log10ofMantissa =
5250       //     -0.50419619f +
5251       //       (0.60948995f - 0.10380950f * x) * x;
5252       //
5253       // error 0.0014886165, which is 6 bits
5254       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5255                                getF32Constant(DAG, 0xbdd49a13, dl));
5256       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5257                                getF32Constant(DAG, 0x3f1c0789, dl));
5258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5259       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5260                                     getF32Constant(DAG, 0x3f011300, dl));
5261     } else if (LimitFloatPrecision <= 12) {
5262       // For floating-point precision of 12:
5263       //
5264       //   Log10ofMantissa =
5265       //     -0.64831180f +
5266       //       (0.91751397f +
5267       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5268       //
5269       // error 0.00019228036, which is better than 12 bits
5270       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5271                                getF32Constant(DAG, 0x3d431f31, dl));
5272       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5273                                getF32Constant(DAG, 0x3ea21fb2, dl));
5274       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5275       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5276                                getF32Constant(DAG, 0x3f6ae232, dl));
5277       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5278       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5279                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5280     } else { // LimitFloatPrecision <= 18
5281       // For floating-point precision of 18:
5282       //
5283       //   Log10ofMantissa =
5284       //     -0.84299375f +
5285       //       (1.5327582f +
5286       //         (-1.0688956f +
5287       //           (0.49102474f +
5288       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5289       //
5290       // error 0.0000037995730, which is better than 18 bits
5291       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5292                                getF32Constant(DAG, 0x3c5d51ce, dl));
5293       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5294                                getF32Constant(DAG, 0x3e00685a, dl));
5295       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5296       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5297                                getF32Constant(DAG, 0x3efb6798, dl));
5298       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5299       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5300                                getF32Constant(DAG, 0x3f88d192, dl));
5301       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5302       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5303                                getF32Constant(DAG, 0x3fc4316c, dl));
5304       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5305       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5306                                     getF32Constant(DAG, 0x3f57ce70, dl));
5307     }
5308 
5309     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5310   }
5311 
5312   // No special expansion.
5313   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5314 }
5315 
5316 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5317 /// limited-precision mode.
5318 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5319                           const TargetLowering &TLI, SDNodeFlags Flags) {
5320   if (Op.getValueType() == MVT::f32 &&
5321       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5322     return getLimitedPrecisionExp2(Op, dl, DAG);
5323 
5324   // No special expansion.
5325   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5326 }
5327 
5328 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5329 /// limited-precision mode with x == 10.0f.
5330 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5331                          SelectionDAG &DAG, const TargetLowering &TLI,
5332                          SDNodeFlags Flags) {
5333   bool IsExp10 = false;
5334   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5335       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5336     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5337       APFloat Ten(10.0f);
5338       IsExp10 = LHSC->isExactlyValue(Ten);
5339     }
5340   }
5341 
5342   // TODO: What fast-math-flags should be set on the FMUL node?
5343   if (IsExp10) {
5344     // Put the exponent in the right bit position for later addition to the
5345     // final result:
5346     //
5347     //   #define LOG2OF10 3.3219281f
5348     //   t0 = Op * LOG2OF10;
5349     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5350                              getF32Constant(DAG, 0x40549a78, dl));
5351     return getLimitedPrecisionExp2(t0, dl, DAG);
5352   }
5353 
5354   // No special expansion.
5355   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5356 }
5357 
5358 /// ExpandPowI - Expand a llvm.powi intrinsic.
5359 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5360                           SelectionDAG &DAG) {
5361   // If RHS is a constant, we can expand this out to a multiplication tree if
5362   // it's beneficial on the target, otherwise we end up lowering to a call to
5363   // __powidf2 (for example).
5364   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5365     unsigned Val = RHSC->getSExtValue();
5366 
5367     // powi(x, 0) -> 1.0
5368     if (Val == 0)
5369       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5370 
5371     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5372             Val, DAG.shouldOptForSize())) {
5373       // Get the exponent as a positive value.
5374       if ((int)Val < 0)
5375         Val = -Val;
5376       // We use the simple binary decomposition method to generate the multiply
5377       // sequence.  There are more optimal ways to do this (for example,
5378       // powi(x,15) generates one more multiply than it should), but this has
5379       // the benefit of being both really simple and much better than a libcall.
5380       SDValue Res; // Logically starts equal to 1.0
5381       SDValue CurSquare = LHS;
5382       // TODO: Intrinsics should have fast-math-flags that propagate to these
5383       // nodes.
5384       while (Val) {
5385         if (Val & 1) {
5386           if (Res.getNode())
5387             Res =
5388                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5389           else
5390             Res = CurSquare; // 1.0*CurSquare.
5391         }
5392 
5393         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5394                                 CurSquare, CurSquare);
5395         Val >>= 1;
5396       }
5397 
5398       // If the original was negative, invert the result, producing 1/(x*x*x).
5399       if (RHSC->getSExtValue() < 0)
5400         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5401                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5402       return Res;
5403     }
5404   }
5405 
5406   // Otherwise, expand to a libcall.
5407   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5408 }
5409 
5410 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5411                             SDValue LHS, SDValue RHS, SDValue Scale,
5412                             SelectionDAG &DAG, const TargetLowering &TLI) {
5413   EVT VT = LHS.getValueType();
5414   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5415   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5416   LLVMContext &Ctx = *DAG.getContext();
5417 
5418   // If the type is legal but the operation isn't, this node might survive all
5419   // the way to operation legalization. If we end up there and we do not have
5420   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5421   // node.
5422 
5423   // Coax the legalizer into expanding the node during type legalization instead
5424   // by bumping the size by one bit. This will force it to Promote, enabling the
5425   // early expansion and avoiding the need to expand later.
5426 
5427   // We don't have to do this if Scale is 0; that can always be expanded, unless
5428   // it's a saturating signed operation. Those can experience true integer
5429   // division overflow, a case which we must avoid.
5430 
5431   // FIXME: We wouldn't have to do this (or any of the early
5432   // expansion/promotion) if it was possible to expand a libcall of an
5433   // illegal type during operation legalization. But it's not, so things
5434   // get a bit hacky.
5435   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5436   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5437       (TLI.isTypeLegal(VT) ||
5438        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5439     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5440         Opcode, VT, ScaleInt);
5441     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5442       EVT PromVT;
5443       if (VT.isScalarInteger())
5444         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5445       else if (VT.isVector()) {
5446         PromVT = VT.getVectorElementType();
5447         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5448         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5449       } else
5450         llvm_unreachable("Wrong VT for DIVFIX?");
5451       if (Signed) {
5452         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5453         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5454       } else {
5455         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5456         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5457       }
5458       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5459       // For saturating operations, we need to shift up the LHS to get the
5460       // proper saturation width, and then shift down again afterwards.
5461       if (Saturating)
5462         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5463                           DAG.getConstant(1, DL, ShiftTy));
5464       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5465       if (Saturating)
5466         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5467                           DAG.getConstant(1, DL, ShiftTy));
5468       return DAG.getZExtOrTrunc(Res, DL, VT);
5469     }
5470   }
5471 
5472   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5473 }
5474 
5475 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5476 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5477 static void
5478 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5479                      const SDValue &N) {
5480   switch (N.getOpcode()) {
5481   case ISD::CopyFromReg: {
5482     SDValue Op = N.getOperand(1);
5483     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5484                       Op.getValueType().getSizeInBits());
5485     return;
5486   }
5487   case ISD::BITCAST:
5488   case ISD::AssertZext:
5489   case ISD::AssertSext:
5490   case ISD::TRUNCATE:
5491     getUnderlyingArgRegs(Regs, N.getOperand(0));
5492     return;
5493   case ISD::BUILD_PAIR:
5494   case ISD::BUILD_VECTOR:
5495   case ISD::CONCAT_VECTORS:
5496     for (SDValue Op : N->op_values())
5497       getUnderlyingArgRegs(Regs, Op);
5498     return;
5499   default:
5500     return;
5501   }
5502 }
5503 
5504 /// If the DbgValueInst is a dbg_value of a function argument, create the
5505 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5506 /// instruction selection, they will be inserted to the entry BB.
5507 /// We don't currently support this for variadic dbg_values, as they shouldn't
5508 /// appear for function arguments or in the prologue.
5509 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5510     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5511     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5512   const Argument *Arg = dyn_cast<Argument>(V);
5513   if (!Arg)
5514     return false;
5515 
5516   MachineFunction &MF = DAG.getMachineFunction();
5517   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5518 
5519   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5520   // we've been asked to pursue.
5521   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5522                               bool Indirect) {
5523     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5524       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5525       // pointing at the VReg, which will be patched up later.
5526       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5527       auto MIB = BuildMI(MF, DL, Inst);
5528       MIB.addReg(Reg);
5529       MIB.addImm(0);
5530       MIB.addMetadata(Variable);
5531       auto *NewDIExpr = FragExpr;
5532       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5533       // the DIExpression.
5534       if (Indirect)
5535         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5536       MIB.addMetadata(NewDIExpr);
5537       return MIB;
5538     } else {
5539       // Create a completely standard DBG_VALUE.
5540       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5541       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5542     }
5543   };
5544 
5545   if (Kind == FuncArgumentDbgValueKind::Value) {
5546     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5547     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5548     // the entry block.
5549     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5550     if (!IsInEntryBlock)
5551       return false;
5552 
5553     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5554     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5555     // variable that also is a param.
5556     //
5557     // Although, if we are at the top of the entry block already, we can still
5558     // emit using ArgDbgValue. This might catch some situations when the
5559     // dbg.value refers to an argument that isn't used in the entry block, so
5560     // any CopyToReg node would be optimized out and the only way to express
5561     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5562     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5563     // we should only emit as ArgDbgValue if the Variable is an argument to the
5564     // current function, and the dbg.value intrinsic is found in the entry
5565     // block.
5566     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5567         !DL->getInlinedAt();
5568     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5569     if (!IsInPrologue && !VariableIsFunctionInputArg)
5570       return false;
5571 
5572     // Here we assume that a function argument on IR level only can be used to
5573     // describe one input parameter on source level. If we for example have
5574     // source code like this
5575     //
5576     //    struct A { long x, y; };
5577     //    void foo(struct A a, long b) {
5578     //      ...
5579     //      b = a.x;
5580     //      ...
5581     //    }
5582     //
5583     // and IR like this
5584     //
5585     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5586     //  entry:
5587     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5588     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5589     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5590     //    ...
5591     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5592     //    ...
5593     //
5594     // then the last dbg.value is describing a parameter "b" using a value that
5595     // is an argument. But since we already has used %a1 to describe a parameter
5596     // we should not handle that last dbg.value here (that would result in an
5597     // incorrect hoisting of the DBG_VALUE to the function entry).
5598     // Notice that we allow one dbg.value per IR level argument, to accommodate
5599     // for the situation with fragments above.
5600     if (VariableIsFunctionInputArg) {
5601       unsigned ArgNo = Arg->getArgNo();
5602       if (ArgNo >= FuncInfo.DescribedArgs.size())
5603         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5604       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5605         return false;
5606       FuncInfo.DescribedArgs.set(ArgNo);
5607     }
5608   }
5609 
5610   bool IsIndirect = false;
5611   Optional<MachineOperand> Op;
5612   // Some arguments' frame index is recorded during argument lowering.
5613   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5614   if (FI != std::numeric_limits<int>::max())
5615     Op = MachineOperand::CreateFI(FI);
5616 
5617   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5618   if (!Op && N.getNode()) {
5619     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5620     Register Reg;
5621     if (ArgRegsAndSizes.size() == 1)
5622       Reg = ArgRegsAndSizes.front().first;
5623 
5624     if (Reg && Reg.isVirtual()) {
5625       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5626       Register PR = RegInfo.getLiveInPhysReg(Reg);
5627       if (PR)
5628         Reg = PR;
5629     }
5630     if (Reg) {
5631       Op = MachineOperand::CreateReg(Reg, false);
5632       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5633     }
5634   }
5635 
5636   if (!Op && N.getNode()) {
5637     // Check if frame index is available.
5638     SDValue LCandidate = peekThroughBitcasts(N);
5639     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5640       if (FrameIndexSDNode *FINode =
5641           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5642         Op = MachineOperand::CreateFI(FINode->getIndex());
5643   }
5644 
5645   if (!Op) {
5646     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5647     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5648                                          SplitRegs) {
5649       unsigned Offset = 0;
5650       for (const auto &RegAndSize : SplitRegs) {
5651         // If the expression is already a fragment, the current register
5652         // offset+size might extend beyond the fragment. In this case, only
5653         // the register bits that are inside the fragment are relevant.
5654         int RegFragmentSizeInBits = RegAndSize.second;
5655         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5656           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5657           // The register is entirely outside the expression fragment,
5658           // so is irrelevant for debug info.
5659           if (Offset >= ExprFragmentSizeInBits)
5660             break;
5661           // The register is partially outside the expression fragment, only
5662           // the low bits within the fragment are relevant for debug info.
5663           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5664             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5665           }
5666         }
5667 
5668         auto FragmentExpr = DIExpression::createFragmentExpression(
5669             Expr, Offset, RegFragmentSizeInBits);
5670         Offset += RegAndSize.second;
5671         // If a valid fragment expression cannot be created, the variable's
5672         // correct value cannot be determined and so it is set as Undef.
5673         if (!FragmentExpr) {
5674           SDDbgValue *SDV = DAG.getConstantDbgValue(
5675               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5676           DAG.AddDbgValue(SDV, false);
5677           continue;
5678         }
5679         MachineInstr *NewMI =
5680             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5681                              Kind != FuncArgumentDbgValueKind::Value);
5682         FuncInfo.ArgDbgValues.push_back(NewMI);
5683       }
5684     };
5685 
5686     // Check if ValueMap has reg number.
5687     DenseMap<const Value *, Register>::const_iterator
5688       VMI = FuncInfo.ValueMap.find(V);
5689     if (VMI != FuncInfo.ValueMap.end()) {
5690       const auto &TLI = DAG.getTargetLoweringInfo();
5691       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5692                        V->getType(), None);
5693       if (RFV.occupiesMultipleRegs()) {
5694         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5695         return true;
5696       }
5697 
5698       Op = MachineOperand::CreateReg(VMI->second, false);
5699       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5700     } else if (ArgRegsAndSizes.size() > 1) {
5701       // This was split due to the calling convention, and no virtual register
5702       // mapping exists for the value.
5703       splitMultiRegDbgValue(ArgRegsAndSizes);
5704       return true;
5705     }
5706   }
5707 
5708   if (!Op)
5709     return false;
5710 
5711   assert(Variable->isValidLocationForIntrinsic(DL) &&
5712          "Expected inlined-at fields to agree");
5713   MachineInstr *NewMI = nullptr;
5714 
5715   if (Op->isReg())
5716     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5717   else
5718     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5719                     Variable, Expr);
5720 
5721   // Otherwise, use ArgDbgValues.
5722   FuncInfo.ArgDbgValues.push_back(NewMI);
5723   return true;
5724 }
5725 
5726 /// Return the appropriate SDDbgValue based on N.
5727 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5728                                              DILocalVariable *Variable,
5729                                              DIExpression *Expr,
5730                                              const DebugLoc &dl,
5731                                              unsigned DbgSDNodeOrder) {
5732   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5733     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5734     // stack slot locations.
5735     //
5736     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5737     // debug values here after optimization:
5738     //
5739     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5740     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5741     //
5742     // Both describe the direct values of their associated variables.
5743     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5744                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5745   }
5746   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5747                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5748 }
5749 
5750 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5751   switch (Intrinsic) {
5752   case Intrinsic::smul_fix:
5753     return ISD::SMULFIX;
5754   case Intrinsic::umul_fix:
5755     return ISD::UMULFIX;
5756   case Intrinsic::smul_fix_sat:
5757     return ISD::SMULFIXSAT;
5758   case Intrinsic::umul_fix_sat:
5759     return ISD::UMULFIXSAT;
5760   case Intrinsic::sdiv_fix:
5761     return ISD::SDIVFIX;
5762   case Intrinsic::udiv_fix:
5763     return ISD::UDIVFIX;
5764   case Intrinsic::sdiv_fix_sat:
5765     return ISD::SDIVFIXSAT;
5766   case Intrinsic::udiv_fix_sat:
5767     return ISD::UDIVFIXSAT;
5768   default:
5769     llvm_unreachable("Unhandled fixed point intrinsic");
5770   }
5771 }
5772 
5773 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5774                                            const char *FunctionName) {
5775   assert(FunctionName && "FunctionName must not be nullptr");
5776   SDValue Callee = DAG.getExternalSymbol(
5777       FunctionName,
5778       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5779   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5780 }
5781 
5782 /// Given a @llvm.call.preallocated.setup, return the corresponding
5783 /// preallocated call.
5784 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5785   assert(cast<CallBase>(PreallocatedSetup)
5786                  ->getCalledFunction()
5787                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5788          "expected call_preallocated_setup Value");
5789   for (const auto *U : PreallocatedSetup->users()) {
5790     auto *UseCall = cast<CallBase>(U);
5791     const Function *Fn = UseCall->getCalledFunction();
5792     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5793       return UseCall;
5794     }
5795   }
5796   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5797 }
5798 
5799 /// Lower the call to the specified intrinsic function.
5800 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5801                                              unsigned Intrinsic) {
5802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5803   SDLoc sdl = getCurSDLoc();
5804   DebugLoc dl = getCurDebugLoc();
5805   SDValue Res;
5806 
5807   SDNodeFlags Flags;
5808   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5809     Flags.copyFMF(*FPOp);
5810 
5811   switch (Intrinsic) {
5812   default:
5813     // By default, turn this into a target intrinsic node.
5814     visitTargetIntrinsic(I, Intrinsic);
5815     return;
5816   case Intrinsic::vscale: {
5817     match(&I, m_VScale(DAG.getDataLayout()));
5818     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5819     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5820     return;
5821   }
5822   case Intrinsic::vastart:  visitVAStart(I); return;
5823   case Intrinsic::vaend:    visitVAEnd(I); return;
5824   case Intrinsic::vacopy:   visitVACopy(I); return;
5825   case Intrinsic::returnaddress:
5826     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5827                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5828                              getValue(I.getArgOperand(0))));
5829     return;
5830   case Intrinsic::addressofreturnaddress:
5831     setValue(&I,
5832              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5833                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5834     return;
5835   case Intrinsic::sponentry:
5836     setValue(&I,
5837              DAG.getNode(ISD::SPONENTRY, sdl,
5838                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5839     return;
5840   case Intrinsic::frameaddress:
5841     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5842                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5843                              getValue(I.getArgOperand(0))));
5844     return;
5845   case Intrinsic::read_volatile_register:
5846   case Intrinsic::read_register: {
5847     Value *Reg = I.getArgOperand(0);
5848     SDValue Chain = getRoot();
5849     SDValue RegName =
5850         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5851     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5852     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5853       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5854     setValue(&I, Res);
5855     DAG.setRoot(Res.getValue(1));
5856     return;
5857   }
5858   case Intrinsic::write_register: {
5859     Value *Reg = I.getArgOperand(0);
5860     Value *RegValue = I.getArgOperand(1);
5861     SDValue Chain = getRoot();
5862     SDValue RegName =
5863         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5864     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5865                             RegName, getValue(RegValue)));
5866     return;
5867   }
5868   case Intrinsic::memcpy: {
5869     const auto &MCI = cast<MemCpyInst>(I);
5870     SDValue Op1 = getValue(I.getArgOperand(0));
5871     SDValue Op2 = getValue(I.getArgOperand(1));
5872     SDValue Op3 = getValue(I.getArgOperand(2));
5873     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5874     Align DstAlign = MCI.getDestAlign().valueOrOne();
5875     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5876     Align Alignment = std::min(DstAlign, SrcAlign);
5877     bool isVol = MCI.isVolatile();
5878     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5879     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5880     // node.
5881     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5882     SDValue MC = DAG.getMemcpy(
5883         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5884         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5885         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5886     updateDAGForMaybeTailCall(MC);
5887     return;
5888   }
5889   case Intrinsic::memcpy_inline: {
5890     const auto &MCI = cast<MemCpyInlineInst>(I);
5891     SDValue Dst = getValue(I.getArgOperand(0));
5892     SDValue Src = getValue(I.getArgOperand(1));
5893     SDValue Size = getValue(I.getArgOperand(2));
5894     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5895     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5896     Align DstAlign = MCI.getDestAlign().valueOrOne();
5897     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5898     Align Alignment = std::min(DstAlign, SrcAlign);
5899     bool isVol = MCI.isVolatile();
5900     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5901     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5902     // node.
5903     SDValue MC = DAG.getMemcpy(
5904         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5905         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5906         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5907     updateDAGForMaybeTailCall(MC);
5908     return;
5909   }
5910   case Intrinsic::memset: {
5911     const auto &MSI = cast<MemSetInst>(I);
5912     SDValue Op1 = getValue(I.getArgOperand(0));
5913     SDValue Op2 = getValue(I.getArgOperand(1));
5914     SDValue Op3 = getValue(I.getArgOperand(2));
5915     // @llvm.memset defines 0 and 1 to both mean no alignment.
5916     Align Alignment = MSI.getDestAlign().valueOrOne();
5917     bool isVol = MSI.isVolatile();
5918     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5919     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5920     SDValue MS = DAG.getMemset(
5921         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5922         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5923     updateDAGForMaybeTailCall(MS);
5924     return;
5925   }
5926   case Intrinsic::memset_inline: {
5927     const auto &MSII = cast<MemSetInlineInst>(I);
5928     SDValue Dst = getValue(I.getArgOperand(0));
5929     SDValue Value = getValue(I.getArgOperand(1));
5930     SDValue Size = getValue(I.getArgOperand(2));
5931     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5932     // @llvm.memset defines 0 and 1 to both mean no alignment.
5933     Align DstAlign = MSII.getDestAlign().valueOrOne();
5934     bool isVol = MSII.isVolatile();
5935     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5936     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5937     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5938                                /* AlwaysInline */ true, isTC,
5939                                MachinePointerInfo(I.getArgOperand(0)),
5940                                I.getAAMetadata());
5941     updateDAGForMaybeTailCall(MC);
5942     return;
5943   }
5944   case Intrinsic::memmove: {
5945     const auto &MMI = cast<MemMoveInst>(I);
5946     SDValue Op1 = getValue(I.getArgOperand(0));
5947     SDValue Op2 = getValue(I.getArgOperand(1));
5948     SDValue Op3 = getValue(I.getArgOperand(2));
5949     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5950     Align DstAlign = MMI.getDestAlign().valueOrOne();
5951     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5952     Align Alignment = std::min(DstAlign, SrcAlign);
5953     bool isVol = MMI.isVolatile();
5954     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5955     // FIXME: Support passing different dest/src alignments to the memmove DAG
5956     // node.
5957     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5958     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5959                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5960                                 MachinePointerInfo(I.getArgOperand(1)),
5961                                 I.getAAMetadata(), AA);
5962     updateDAGForMaybeTailCall(MM);
5963     return;
5964   }
5965   case Intrinsic::memcpy_element_unordered_atomic: {
5966     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5967     SDValue Dst = getValue(MI.getRawDest());
5968     SDValue Src = getValue(MI.getRawSource());
5969     SDValue Length = getValue(MI.getLength());
5970 
5971     Type *LengthTy = MI.getLength()->getType();
5972     unsigned ElemSz = MI.getElementSizeInBytes();
5973     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5974     SDValue MC =
5975         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5976                             isTC, MachinePointerInfo(MI.getRawDest()),
5977                             MachinePointerInfo(MI.getRawSource()));
5978     updateDAGForMaybeTailCall(MC);
5979     return;
5980   }
5981   case Intrinsic::memmove_element_unordered_atomic: {
5982     auto &MI = cast<AtomicMemMoveInst>(I);
5983     SDValue Dst = getValue(MI.getRawDest());
5984     SDValue Src = getValue(MI.getRawSource());
5985     SDValue Length = getValue(MI.getLength());
5986 
5987     Type *LengthTy = MI.getLength()->getType();
5988     unsigned ElemSz = MI.getElementSizeInBytes();
5989     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5990     SDValue MC =
5991         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
5992                              isTC, MachinePointerInfo(MI.getRawDest()),
5993                              MachinePointerInfo(MI.getRawSource()));
5994     updateDAGForMaybeTailCall(MC);
5995     return;
5996   }
5997   case Intrinsic::memset_element_unordered_atomic: {
5998     auto &MI = cast<AtomicMemSetInst>(I);
5999     SDValue Dst = getValue(MI.getRawDest());
6000     SDValue Val = getValue(MI.getValue());
6001     SDValue Length = getValue(MI.getLength());
6002 
6003     Type *LengthTy = MI.getLength()->getType();
6004     unsigned ElemSz = MI.getElementSizeInBytes();
6005     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6006     SDValue MC =
6007         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6008                             isTC, MachinePointerInfo(MI.getRawDest()));
6009     updateDAGForMaybeTailCall(MC);
6010     return;
6011   }
6012   case Intrinsic::call_preallocated_setup: {
6013     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6014     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6015     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6016                               getRoot(), SrcValue);
6017     setValue(&I, Res);
6018     DAG.setRoot(Res);
6019     return;
6020   }
6021   case Intrinsic::call_preallocated_arg: {
6022     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6023     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6024     SDValue Ops[3];
6025     Ops[0] = getRoot();
6026     Ops[1] = SrcValue;
6027     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6028                                    MVT::i32); // arg index
6029     SDValue Res = DAG.getNode(
6030         ISD::PREALLOCATED_ARG, sdl,
6031         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6032     setValue(&I, Res);
6033     DAG.setRoot(Res.getValue(1));
6034     return;
6035   }
6036   case Intrinsic::dbg_addr:
6037   case Intrinsic::dbg_declare: {
6038     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6039     // they are non-variadic.
6040     const auto &DI = cast<DbgVariableIntrinsic>(I);
6041     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6042     DILocalVariable *Variable = DI.getVariable();
6043     DIExpression *Expression = DI.getExpression();
6044     dropDanglingDebugInfo(Variable, Expression);
6045     assert(Variable && "Missing variable");
6046     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6047                       << "\n");
6048     // Check if address has undef value.
6049     const Value *Address = DI.getVariableLocationOp(0);
6050     if (!Address || isa<UndefValue>(Address) ||
6051         (Address->use_empty() && !isa<Argument>(Address))) {
6052       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6053                         << " (bad/undef/unused-arg address)\n");
6054       return;
6055     }
6056 
6057     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6058 
6059     // Check if this variable can be described by a frame index, typically
6060     // either as a static alloca or a byval parameter.
6061     int FI = std::numeric_limits<int>::max();
6062     if (const auto *AI =
6063             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6064       if (AI->isStaticAlloca()) {
6065         auto I = FuncInfo.StaticAllocaMap.find(AI);
6066         if (I != FuncInfo.StaticAllocaMap.end())
6067           FI = I->second;
6068       }
6069     } else if (const auto *Arg = dyn_cast<Argument>(
6070                    Address->stripInBoundsConstantOffsets())) {
6071       FI = FuncInfo.getArgumentFrameIndex(Arg);
6072     }
6073 
6074     // llvm.dbg.addr is control dependent and always generates indirect
6075     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6076     // the MachineFunction variable table.
6077     if (FI != std::numeric_limits<int>::max()) {
6078       if (Intrinsic == Intrinsic::dbg_addr) {
6079         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6080             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6081             dl, SDNodeOrder);
6082         DAG.AddDbgValue(SDV, isParameter);
6083       } else {
6084         LLVM_DEBUG(dbgs() << "Skipping " << DI
6085                           << " (variable info stashed in MF side table)\n");
6086       }
6087       return;
6088     }
6089 
6090     SDValue &N = NodeMap[Address];
6091     if (!N.getNode() && isa<Argument>(Address))
6092       // Check unused arguments map.
6093       N = UnusedArgNodeMap[Address];
6094     SDDbgValue *SDV;
6095     if (N.getNode()) {
6096       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6097         Address = BCI->getOperand(0);
6098       // Parameters are handled specially.
6099       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6100       if (isParameter && FINode) {
6101         // Byval parameter. We have a frame index at this point.
6102         SDV =
6103             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6104                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6105       } else if (isa<Argument>(Address)) {
6106         // Address is an argument, so try to emit its dbg value using
6107         // virtual register info from the FuncInfo.ValueMap.
6108         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6109                                  FuncArgumentDbgValueKind::Declare, N);
6110         return;
6111       } else {
6112         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6113                               true, dl, SDNodeOrder);
6114       }
6115       DAG.AddDbgValue(SDV, isParameter);
6116     } else {
6117       // If Address is an argument then try to emit its dbg value using
6118       // virtual register info from the FuncInfo.ValueMap.
6119       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6120                                     FuncArgumentDbgValueKind::Declare, N)) {
6121         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6122                           << " (could not emit func-arg dbg_value)\n");
6123       }
6124     }
6125     return;
6126   }
6127   case Intrinsic::dbg_label: {
6128     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6129     DILabel *Label = DI.getLabel();
6130     assert(Label && "Missing label");
6131 
6132     SDDbgLabel *SDV;
6133     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6134     DAG.AddDbgLabel(SDV);
6135     return;
6136   }
6137   case Intrinsic::dbg_value: {
6138     const DbgValueInst &DI = cast<DbgValueInst>(I);
6139     assert(DI.getVariable() && "Missing variable");
6140 
6141     DILocalVariable *Variable = DI.getVariable();
6142     DIExpression *Expression = DI.getExpression();
6143     dropDanglingDebugInfo(Variable, Expression);
6144     SmallVector<Value *, 4> Values(DI.getValues());
6145     if (Values.empty())
6146       return;
6147 
6148     if (llvm::is_contained(Values, nullptr))
6149       return;
6150 
6151     bool IsVariadic = DI.hasArgList();
6152     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6153                           SDNodeOrder, IsVariadic))
6154       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6155     return;
6156   }
6157 
6158   case Intrinsic::eh_typeid_for: {
6159     // Find the type id for the given typeinfo.
6160     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6161     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6162     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6163     setValue(&I, Res);
6164     return;
6165   }
6166 
6167   case Intrinsic::eh_return_i32:
6168   case Intrinsic::eh_return_i64:
6169     DAG.getMachineFunction().setCallsEHReturn(true);
6170     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6171                             MVT::Other,
6172                             getControlRoot(),
6173                             getValue(I.getArgOperand(0)),
6174                             getValue(I.getArgOperand(1))));
6175     return;
6176   case Intrinsic::eh_unwind_init:
6177     DAG.getMachineFunction().setCallsUnwindInit(true);
6178     return;
6179   case Intrinsic::eh_dwarf_cfa:
6180     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6181                              TLI.getPointerTy(DAG.getDataLayout()),
6182                              getValue(I.getArgOperand(0))));
6183     return;
6184   case Intrinsic::eh_sjlj_callsite: {
6185     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6186     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6187     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6188 
6189     MMI.setCurrentCallSite(CI->getZExtValue());
6190     return;
6191   }
6192   case Intrinsic::eh_sjlj_functioncontext: {
6193     // Get and store the index of the function context.
6194     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6195     AllocaInst *FnCtx =
6196       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6197     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6198     MFI.setFunctionContextIndex(FI);
6199     return;
6200   }
6201   case Intrinsic::eh_sjlj_setjmp: {
6202     SDValue Ops[2];
6203     Ops[0] = getRoot();
6204     Ops[1] = getValue(I.getArgOperand(0));
6205     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6206                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6207     setValue(&I, Op.getValue(0));
6208     DAG.setRoot(Op.getValue(1));
6209     return;
6210   }
6211   case Intrinsic::eh_sjlj_longjmp:
6212     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6213                             getRoot(), getValue(I.getArgOperand(0))));
6214     return;
6215   case Intrinsic::eh_sjlj_setup_dispatch:
6216     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6217                             getRoot()));
6218     return;
6219   case Intrinsic::masked_gather:
6220     visitMaskedGather(I);
6221     return;
6222   case Intrinsic::masked_load:
6223     visitMaskedLoad(I);
6224     return;
6225   case Intrinsic::masked_scatter:
6226     visitMaskedScatter(I);
6227     return;
6228   case Intrinsic::masked_store:
6229     visitMaskedStore(I);
6230     return;
6231   case Intrinsic::masked_expandload:
6232     visitMaskedLoad(I, true /* IsExpanding */);
6233     return;
6234   case Intrinsic::masked_compressstore:
6235     visitMaskedStore(I, true /* IsCompressing */);
6236     return;
6237   case Intrinsic::powi:
6238     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6239                             getValue(I.getArgOperand(1)), DAG));
6240     return;
6241   case Intrinsic::log:
6242     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6243     return;
6244   case Intrinsic::log2:
6245     setValue(&I,
6246              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6247     return;
6248   case Intrinsic::log10:
6249     setValue(&I,
6250              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6251     return;
6252   case Intrinsic::exp:
6253     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6254     return;
6255   case Intrinsic::exp2:
6256     setValue(&I,
6257              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6258     return;
6259   case Intrinsic::pow:
6260     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6261                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6262     return;
6263   case Intrinsic::sqrt:
6264   case Intrinsic::fabs:
6265   case Intrinsic::sin:
6266   case Intrinsic::cos:
6267   case Intrinsic::floor:
6268   case Intrinsic::ceil:
6269   case Intrinsic::trunc:
6270   case Intrinsic::rint:
6271   case Intrinsic::nearbyint:
6272   case Intrinsic::round:
6273   case Intrinsic::roundeven:
6274   case Intrinsic::canonicalize: {
6275     unsigned Opcode;
6276     switch (Intrinsic) {
6277     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6278     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6279     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6280     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6281     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6282     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6283     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6284     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6285     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6286     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6287     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6288     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6289     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6290     }
6291 
6292     setValue(&I, DAG.getNode(Opcode, sdl,
6293                              getValue(I.getArgOperand(0)).getValueType(),
6294                              getValue(I.getArgOperand(0)), Flags));
6295     return;
6296   }
6297   case Intrinsic::lround:
6298   case Intrinsic::llround:
6299   case Intrinsic::lrint:
6300   case Intrinsic::llrint: {
6301     unsigned Opcode;
6302     switch (Intrinsic) {
6303     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6304     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6305     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6306     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6307     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6308     }
6309 
6310     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6311     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6312                              getValue(I.getArgOperand(0))));
6313     return;
6314   }
6315   case Intrinsic::minnum:
6316     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6317                              getValue(I.getArgOperand(0)).getValueType(),
6318                              getValue(I.getArgOperand(0)),
6319                              getValue(I.getArgOperand(1)), Flags));
6320     return;
6321   case Intrinsic::maxnum:
6322     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6323                              getValue(I.getArgOperand(0)).getValueType(),
6324                              getValue(I.getArgOperand(0)),
6325                              getValue(I.getArgOperand(1)), Flags));
6326     return;
6327   case Intrinsic::minimum:
6328     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6329                              getValue(I.getArgOperand(0)).getValueType(),
6330                              getValue(I.getArgOperand(0)),
6331                              getValue(I.getArgOperand(1)), Flags));
6332     return;
6333   case Intrinsic::maximum:
6334     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6335                              getValue(I.getArgOperand(0)).getValueType(),
6336                              getValue(I.getArgOperand(0)),
6337                              getValue(I.getArgOperand(1)), Flags));
6338     return;
6339   case Intrinsic::copysign:
6340     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6341                              getValue(I.getArgOperand(0)).getValueType(),
6342                              getValue(I.getArgOperand(0)),
6343                              getValue(I.getArgOperand(1)), Flags));
6344     return;
6345   case Intrinsic::arithmetic_fence: {
6346     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6347                              getValue(I.getArgOperand(0)).getValueType(),
6348                              getValue(I.getArgOperand(0)), Flags));
6349     return;
6350   }
6351   case Intrinsic::fma:
6352     setValue(&I, DAG.getNode(
6353                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6354                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6355                      getValue(I.getArgOperand(2)), Flags));
6356     return;
6357 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6358   case Intrinsic::INTRINSIC:
6359 #include "llvm/IR/ConstrainedOps.def"
6360     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6361     return;
6362 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6363 #include "llvm/IR/VPIntrinsics.def"
6364     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6365     return;
6366   case Intrinsic::fptrunc_round: {
6367     // Get the last argument, the metadata and convert it to an integer in the
6368     // call
6369     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6370     Optional<RoundingMode> RoundMode =
6371         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6372 
6373     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6374 
6375     // Propagate fast-math-flags from IR to node(s).
6376     SDNodeFlags Flags;
6377     Flags.copyFMF(*cast<FPMathOperator>(&I));
6378     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6379 
6380     SDValue Result;
6381     Result = DAG.getNode(
6382         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6383         DAG.getTargetConstant((int)*RoundMode, sdl,
6384                               TLI.getPointerTy(DAG.getDataLayout())));
6385     setValue(&I, Result);
6386 
6387     return;
6388   }
6389   case Intrinsic::fmuladd: {
6390     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6391     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6392         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6393       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6394                                getValue(I.getArgOperand(0)).getValueType(),
6395                                getValue(I.getArgOperand(0)),
6396                                getValue(I.getArgOperand(1)),
6397                                getValue(I.getArgOperand(2)), Flags));
6398     } else {
6399       // TODO: Intrinsic calls should have fast-math-flags.
6400       SDValue Mul = DAG.getNode(
6401           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6402           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6403       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6404                                 getValue(I.getArgOperand(0)).getValueType(),
6405                                 Mul, getValue(I.getArgOperand(2)), Flags);
6406       setValue(&I, Add);
6407     }
6408     return;
6409   }
6410   case Intrinsic::convert_to_fp16:
6411     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6412                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6413                                          getValue(I.getArgOperand(0)),
6414                                          DAG.getTargetConstant(0, sdl,
6415                                                                MVT::i32))));
6416     return;
6417   case Intrinsic::convert_from_fp16:
6418     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6419                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6420                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6421                                          getValue(I.getArgOperand(0)))));
6422     return;
6423   case Intrinsic::fptosi_sat: {
6424     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6425     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6426                              getValue(I.getArgOperand(0)),
6427                              DAG.getValueType(VT.getScalarType())));
6428     return;
6429   }
6430   case Intrinsic::fptoui_sat: {
6431     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6432     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6433                              getValue(I.getArgOperand(0)),
6434                              DAG.getValueType(VT.getScalarType())));
6435     return;
6436   }
6437   case Intrinsic::set_rounding:
6438     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6439                       {getRoot(), getValue(I.getArgOperand(0))});
6440     setValue(&I, Res);
6441     DAG.setRoot(Res.getValue(0));
6442     return;
6443   case Intrinsic::is_fpclass: {
6444     const DataLayout DLayout = DAG.getDataLayout();
6445     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6446     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6447     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6448     MachineFunction &MF = DAG.getMachineFunction();
6449     const Function &F = MF.getFunction();
6450     SDValue Op = getValue(I.getArgOperand(0));
6451     SDNodeFlags Flags;
6452     Flags.setNoFPExcept(
6453         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6454     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6455     // expansion can use illegal types. Making expansion early allows
6456     // legalizing these types prior to selection.
6457     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6458       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6459       setValue(&I, Result);
6460       return;
6461     }
6462 
6463     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6464     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6465     setValue(&I, V);
6466     return;
6467   }
6468   case Intrinsic::pcmarker: {
6469     SDValue Tmp = getValue(I.getArgOperand(0));
6470     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6471     return;
6472   }
6473   case Intrinsic::readcyclecounter: {
6474     SDValue Op = getRoot();
6475     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6476                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6477     setValue(&I, Res);
6478     DAG.setRoot(Res.getValue(1));
6479     return;
6480   }
6481   case Intrinsic::bitreverse:
6482     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6483                              getValue(I.getArgOperand(0)).getValueType(),
6484                              getValue(I.getArgOperand(0))));
6485     return;
6486   case Intrinsic::bswap:
6487     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6488                              getValue(I.getArgOperand(0)).getValueType(),
6489                              getValue(I.getArgOperand(0))));
6490     return;
6491   case Intrinsic::cttz: {
6492     SDValue Arg = getValue(I.getArgOperand(0));
6493     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6494     EVT Ty = Arg.getValueType();
6495     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6496                              sdl, Ty, Arg));
6497     return;
6498   }
6499   case Intrinsic::ctlz: {
6500     SDValue Arg = getValue(I.getArgOperand(0));
6501     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6502     EVT Ty = Arg.getValueType();
6503     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6504                              sdl, Ty, Arg));
6505     return;
6506   }
6507   case Intrinsic::ctpop: {
6508     SDValue Arg = getValue(I.getArgOperand(0));
6509     EVT Ty = Arg.getValueType();
6510     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6511     return;
6512   }
6513   case Intrinsic::fshl:
6514   case Intrinsic::fshr: {
6515     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6516     SDValue X = getValue(I.getArgOperand(0));
6517     SDValue Y = getValue(I.getArgOperand(1));
6518     SDValue Z = getValue(I.getArgOperand(2));
6519     EVT VT = X.getValueType();
6520 
6521     if (X == Y) {
6522       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6523       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6524     } else {
6525       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6526       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6527     }
6528     return;
6529   }
6530   case Intrinsic::sadd_sat: {
6531     SDValue Op1 = getValue(I.getArgOperand(0));
6532     SDValue Op2 = getValue(I.getArgOperand(1));
6533     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6534     return;
6535   }
6536   case Intrinsic::uadd_sat: {
6537     SDValue Op1 = getValue(I.getArgOperand(0));
6538     SDValue Op2 = getValue(I.getArgOperand(1));
6539     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6540     return;
6541   }
6542   case Intrinsic::ssub_sat: {
6543     SDValue Op1 = getValue(I.getArgOperand(0));
6544     SDValue Op2 = getValue(I.getArgOperand(1));
6545     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6546     return;
6547   }
6548   case Intrinsic::usub_sat: {
6549     SDValue Op1 = getValue(I.getArgOperand(0));
6550     SDValue Op2 = getValue(I.getArgOperand(1));
6551     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6552     return;
6553   }
6554   case Intrinsic::sshl_sat: {
6555     SDValue Op1 = getValue(I.getArgOperand(0));
6556     SDValue Op2 = getValue(I.getArgOperand(1));
6557     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6558     return;
6559   }
6560   case Intrinsic::ushl_sat: {
6561     SDValue Op1 = getValue(I.getArgOperand(0));
6562     SDValue Op2 = getValue(I.getArgOperand(1));
6563     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6564     return;
6565   }
6566   case Intrinsic::smul_fix:
6567   case Intrinsic::umul_fix:
6568   case Intrinsic::smul_fix_sat:
6569   case Intrinsic::umul_fix_sat: {
6570     SDValue Op1 = getValue(I.getArgOperand(0));
6571     SDValue Op2 = getValue(I.getArgOperand(1));
6572     SDValue Op3 = getValue(I.getArgOperand(2));
6573     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6574                              Op1.getValueType(), Op1, Op2, Op3));
6575     return;
6576   }
6577   case Intrinsic::sdiv_fix:
6578   case Intrinsic::udiv_fix:
6579   case Intrinsic::sdiv_fix_sat:
6580   case Intrinsic::udiv_fix_sat: {
6581     SDValue Op1 = getValue(I.getArgOperand(0));
6582     SDValue Op2 = getValue(I.getArgOperand(1));
6583     SDValue Op3 = getValue(I.getArgOperand(2));
6584     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6585                               Op1, Op2, Op3, DAG, TLI));
6586     return;
6587   }
6588   case Intrinsic::smax: {
6589     SDValue Op1 = getValue(I.getArgOperand(0));
6590     SDValue Op2 = getValue(I.getArgOperand(1));
6591     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6592     return;
6593   }
6594   case Intrinsic::smin: {
6595     SDValue Op1 = getValue(I.getArgOperand(0));
6596     SDValue Op2 = getValue(I.getArgOperand(1));
6597     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6598     return;
6599   }
6600   case Intrinsic::umax: {
6601     SDValue Op1 = getValue(I.getArgOperand(0));
6602     SDValue Op2 = getValue(I.getArgOperand(1));
6603     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6604     return;
6605   }
6606   case Intrinsic::umin: {
6607     SDValue Op1 = getValue(I.getArgOperand(0));
6608     SDValue Op2 = getValue(I.getArgOperand(1));
6609     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6610     return;
6611   }
6612   case Intrinsic::abs: {
6613     // TODO: Preserve "int min is poison" arg in SDAG?
6614     SDValue Op1 = getValue(I.getArgOperand(0));
6615     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6616     return;
6617   }
6618   case Intrinsic::stacksave: {
6619     SDValue Op = getRoot();
6620     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6621     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6622     setValue(&I, Res);
6623     DAG.setRoot(Res.getValue(1));
6624     return;
6625   }
6626   case Intrinsic::stackrestore:
6627     Res = getValue(I.getArgOperand(0));
6628     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6629     return;
6630   case Intrinsic::get_dynamic_area_offset: {
6631     SDValue Op = getRoot();
6632     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6633     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6634     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6635     // target.
6636     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6637       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6638                          " intrinsic!");
6639     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6640                       Op);
6641     DAG.setRoot(Op);
6642     setValue(&I, Res);
6643     return;
6644   }
6645   case Intrinsic::stackguard: {
6646     MachineFunction &MF = DAG.getMachineFunction();
6647     const Module &M = *MF.getFunction().getParent();
6648     SDValue Chain = getRoot();
6649     if (TLI.useLoadStackGuardNode()) {
6650       Res = getLoadStackGuard(DAG, sdl, Chain);
6651     } else {
6652       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6653       const Value *Global = TLI.getSDagStackGuard(M);
6654       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6655       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6656                         MachinePointerInfo(Global, 0), Align,
6657                         MachineMemOperand::MOVolatile);
6658     }
6659     if (TLI.useStackGuardXorFP())
6660       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6661     DAG.setRoot(Chain);
6662     setValue(&I, Res);
6663     return;
6664   }
6665   case Intrinsic::stackprotector: {
6666     // Emit code into the DAG to store the stack guard onto the stack.
6667     MachineFunction &MF = DAG.getMachineFunction();
6668     MachineFrameInfo &MFI = MF.getFrameInfo();
6669     SDValue Src, Chain = getRoot();
6670 
6671     if (TLI.useLoadStackGuardNode())
6672       Src = getLoadStackGuard(DAG, sdl, Chain);
6673     else
6674       Src = getValue(I.getArgOperand(0));   // The guard's value.
6675 
6676     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6677 
6678     int FI = FuncInfo.StaticAllocaMap[Slot];
6679     MFI.setStackProtectorIndex(FI);
6680     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6681 
6682     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6683 
6684     // Store the stack protector onto the stack.
6685     Res = DAG.getStore(
6686         Chain, sdl, Src, FIN,
6687         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6688         MaybeAlign(), MachineMemOperand::MOVolatile);
6689     setValue(&I, Res);
6690     DAG.setRoot(Res);
6691     return;
6692   }
6693   case Intrinsic::objectsize:
6694     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6695 
6696   case Intrinsic::is_constant:
6697     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6698 
6699   case Intrinsic::annotation:
6700   case Intrinsic::ptr_annotation:
6701   case Intrinsic::launder_invariant_group:
6702   case Intrinsic::strip_invariant_group:
6703     // Drop the intrinsic, but forward the value
6704     setValue(&I, getValue(I.getOperand(0)));
6705     return;
6706 
6707   case Intrinsic::assume:
6708   case Intrinsic::experimental_noalias_scope_decl:
6709   case Intrinsic::var_annotation:
6710   case Intrinsic::sideeffect:
6711     // Discard annotate attributes, noalias scope declarations, assumptions, and
6712     // artificial side-effects.
6713     return;
6714 
6715   case Intrinsic::codeview_annotation: {
6716     // Emit a label associated with this metadata.
6717     MachineFunction &MF = DAG.getMachineFunction();
6718     MCSymbol *Label =
6719         MF.getMMI().getContext().createTempSymbol("annotation", true);
6720     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6721     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6722     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6723     DAG.setRoot(Res);
6724     return;
6725   }
6726 
6727   case Intrinsic::init_trampoline: {
6728     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6729 
6730     SDValue Ops[6];
6731     Ops[0] = getRoot();
6732     Ops[1] = getValue(I.getArgOperand(0));
6733     Ops[2] = getValue(I.getArgOperand(1));
6734     Ops[3] = getValue(I.getArgOperand(2));
6735     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6736     Ops[5] = DAG.getSrcValue(F);
6737 
6738     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6739 
6740     DAG.setRoot(Res);
6741     return;
6742   }
6743   case Intrinsic::adjust_trampoline:
6744     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6745                              TLI.getPointerTy(DAG.getDataLayout()),
6746                              getValue(I.getArgOperand(0))));
6747     return;
6748   case Intrinsic::gcroot: {
6749     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6750            "only valid in functions with gc specified, enforced by Verifier");
6751     assert(GFI && "implied by previous");
6752     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6753     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6754 
6755     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6756     GFI->addStackRoot(FI->getIndex(), TypeMap);
6757     return;
6758   }
6759   case Intrinsic::gcread:
6760   case Intrinsic::gcwrite:
6761     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6762   case Intrinsic::flt_rounds:
6763     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6764     setValue(&I, Res);
6765     DAG.setRoot(Res.getValue(1));
6766     return;
6767 
6768   case Intrinsic::expect:
6769     // Just replace __builtin_expect(exp, c) with EXP.
6770     setValue(&I, getValue(I.getArgOperand(0)));
6771     return;
6772 
6773   case Intrinsic::ubsantrap:
6774   case Intrinsic::debugtrap:
6775   case Intrinsic::trap: {
6776     StringRef TrapFuncName =
6777         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6778     if (TrapFuncName.empty()) {
6779       switch (Intrinsic) {
6780       case Intrinsic::trap:
6781         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6782         break;
6783       case Intrinsic::debugtrap:
6784         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6785         break;
6786       case Intrinsic::ubsantrap:
6787         DAG.setRoot(DAG.getNode(
6788             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6789             DAG.getTargetConstant(
6790                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6791                 MVT::i32)));
6792         break;
6793       default: llvm_unreachable("unknown trap intrinsic");
6794       }
6795       return;
6796     }
6797     TargetLowering::ArgListTy Args;
6798     if (Intrinsic == Intrinsic::ubsantrap) {
6799       Args.push_back(TargetLoweringBase::ArgListEntry());
6800       Args[0].Val = I.getArgOperand(0);
6801       Args[0].Node = getValue(Args[0].Val);
6802       Args[0].Ty = Args[0].Val->getType();
6803     }
6804 
6805     TargetLowering::CallLoweringInfo CLI(DAG);
6806     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6807         CallingConv::C, I.getType(),
6808         DAG.getExternalSymbol(TrapFuncName.data(),
6809                               TLI.getPointerTy(DAG.getDataLayout())),
6810         std::move(Args));
6811 
6812     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6813     DAG.setRoot(Result.second);
6814     return;
6815   }
6816 
6817   case Intrinsic::uadd_with_overflow:
6818   case Intrinsic::sadd_with_overflow:
6819   case Intrinsic::usub_with_overflow:
6820   case Intrinsic::ssub_with_overflow:
6821   case Intrinsic::umul_with_overflow:
6822   case Intrinsic::smul_with_overflow: {
6823     ISD::NodeType Op;
6824     switch (Intrinsic) {
6825     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6826     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6827     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6828     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6829     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6830     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6831     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6832     }
6833     SDValue Op1 = getValue(I.getArgOperand(0));
6834     SDValue Op2 = getValue(I.getArgOperand(1));
6835 
6836     EVT ResultVT = Op1.getValueType();
6837     EVT OverflowVT = MVT::i1;
6838     if (ResultVT.isVector())
6839       OverflowVT = EVT::getVectorVT(
6840           *Context, OverflowVT, ResultVT.getVectorElementCount());
6841 
6842     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6843     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6844     return;
6845   }
6846   case Intrinsic::prefetch: {
6847     SDValue Ops[5];
6848     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6849     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6850     Ops[0] = DAG.getRoot();
6851     Ops[1] = getValue(I.getArgOperand(0));
6852     Ops[2] = getValue(I.getArgOperand(1));
6853     Ops[3] = getValue(I.getArgOperand(2));
6854     Ops[4] = getValue(I.getArgOperand(3));
6855     SDValue Result = DAG.getMemIntrinsicNode(
6856         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6857         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6858         /* align */ None, Flags);
6859 
6860     // Chain the prefetch in parallell with any pending loads, to stay out of
6861     // the way of later optimizations.
6862     PendingLoads.push_back(Result);
6863     Result = getRoot();
6864     DAG.setRoot(Result);
6865     return;
6866   }
6867   case Intrinsic::lifetime_start:
6868   case Intrinsic::lifetime_end: {
6869     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6870     // Stack coloring is not enabled in O0, discard region information.
6871     if (TM.getOptLevel() == CodeGenOpt::None)
6872       return;
6873 
6874     const int64_t ObjectSize =
6875         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6876     Value *const ObjectPtr = I.getArgOperand(1);
6877     SmallVector<const Value *, 4> Allocas;
6878     getUnderlyingObjects(ObjectPtr, Allocas);
6879 
6880     for (const Value *Alloca : Allocas) {
6881       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6882 
6883       // Could not find an Alloca.
6884       if (!LifetimeObject)
6885         continue;
6886 
6887       // First check that the Alloca is static, otherwise it won't have a
6888       // valid frame index.
6889       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6890       if (SI == FuncInfo.StaticAllocaMap.end())
6891         return;
6892 
6893       const int FrameIndex = SI->second;
6894       int64_t Offset;
6895       if (GetPointerBaseWithConstantOffset(
6896               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6897         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6898       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6899                                 Offset);
6900       DAG.setRoot(Res);
6901     }
6902     return;
6903   }
6904   case Intrinsic::pseudoprobe: {
6905     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6906     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6907     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6908     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6909     DAG.setRoot(Res);
6910     return;
6911   }
6912   case Intrinsic::invariant_start:
6913     // Discard region information.
6914     setValue(&I,
6915              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6916     return;
6917   case Intrinsic::invariant_end:
6918     // Discard region information.
6919     return;
6920   case Intrinsic::clear_cache:
6921     /// FunctionName may be null.
6922     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6923       lowerCallToExternalSymbol(I, FunctionName);
6924     return;
6925   case Intrinsic::donothing:
6926   case Intrinsic::seh_try_begin:
6927   case Intrinsic::seh_scope_begin:
6928   case Intrinsic::seh_try_end:
6929   case Intrinsic::seh_scope_end:
6930     // ignore
6931     return;
6932   case Intrinsic::experimental_stackmap:
6933     visitStackmap(I);
6934     return;
6935   case Intrinsic::experimental_patchpoint_void:
6936   case Intrinsic::experimental_patchpoint_i64:
6937     visitPatchpoint(I);
6938     return;
6939   case Intrinsic::experimental_gc_statepoint:
6940     LowerStatepoint(cast<GCStatepointInst>(I));
6941     return;
6942   case Intrinsic::experimental_gc_result:
6943     visitGCResult(cast<GCResultInst>(I));
6944     return;
6945   case Intrinsic::experimental_gc_relocate:
6946     visitGCRelocate(cast<GCRelocateInst>(I));
6947     return;
6948   case Intrinsic::instrprof_cover:
6949     llvm_unreachable("instrprof failed to lower a cover");
6950   case Intrinsic::instrprof_increment:
6951     llvm_unreachable("instrprof failed to lower an increment");
6952   case Intrinsic::instrprof_value_profile:
6953     llvm_unreachable("instrprof failed to lower a value profiling call");
6954   case Intrinsic::localescape: {
6955     MachineFunction &MF = DAG.getMachineFunction();
6956     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6957 
6958     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6959     // is the same on all targets.
6960     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6961       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6962       if (isa<ConstantPointerNull>(Arg))
6963         continue; // Skip null pointers. They represent a hole in index space.
6964       AllocaInst *Slot = cast<AllocaInst>(Arg);
6965       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6966              "can only escape static allocas");
6967       int FI = FuncInfo.StaticAllocaMap[Slot];
6968       MCSymbol *FrameAllocSym =
6969           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6970               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6971       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6972               TII->get(TargetOpcode::LOCAL_ESCAPE))
6973           .addSym(FrameAllocSym)
6974           .addFrameIndex(FI);
6975     }
6976 
6977     return;
6978   }
6979 
6980   case Intrinsic::localrecover: {
6981     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6982     MachineFunction &MF = DAG.getMachineFunction();
6983 
6984     // Get the symbol that defines the frame offset.
6985     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6986     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6987     unsigned IdxVal =
6988         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6989     MCSymbol *FrameAllocSym =
6990         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6991             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6992 
6993     Value *FP = I.getArgOperand(1);
6994     SDValue FPVal = getValue(FP);
6995     EVT PtrVT = FPVal.getValueType();
6996 
6997     // Create a MCSymbol for the label to avoid any target lowering
6998     // that would make this PC relative.
6999     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7000     SDValue OffsetVal =
7001         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7002 
7003     // Add the offset to the FP.
7004     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7005     setValue(&I, Add);
7006 
7007     return;
7008   }
7009 
7010   case Intrinsic::eh_exceptionpointer:
7011   case Intrinsic::eh_exceptioncode: {
7012     // Get the exception pointer vreg, copy from it, and resize it to fit.
7013     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7014     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7015     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7016     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7017     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7018     if (Intrinsic == Intrinsic::eh_exceptioncode)
7019       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7020     setValue(&I, N);
7021     return;
7022   }
7023   case Intrinsic::xray_customevent: {
7024     // Here we want to make sure that the intrinsic behaves as if it has a
7025     // specific calling convention, and only for x86_64.
7026     // FIXME: Support other platforms later.
7027     const auto &Triple = DAG.getTarget().getTargetTriple();
7028     if (Triple.getArch() != Triple::x86_64)
7029       return;
7030 
7031     SmallVector<SDValue, 8> Ops;
7032 
7033     // We want to say that we always want the arguments in registers.
7034     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7035     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7036     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7037     SDValue Chain = getRoot();
7038     Ops.push_back(LogEntryVal);
7039     Ops.push_back(StrSizeVal);
7040     Ops.push_back(Chain);
7041 
7042     // We need to enforce the calling convention for the callsite, so that
7043     // argument ordering is enforced correctly, and that register allocation can
7044     // see that some registers may be assumed clobbered and have to preserve
7045     // them across calls to the intrinsic.
7046     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7047                                            sdl, NodeTys, Ops);
7048     SDValue patchableNode = SDValue(MN, 0);
7049     DAG.setRoot(patchableNode);
7050     setValue(&I, patchableNode);
7051     return;
7052   }
7053   case Intrinsic::xray_typedevent: {
7054     // Here we want to make sure that the intrinsic behaves as if it has a
7055     // specific calling convention, and only for x86_64.
7056     // FIXME: Support other platforms later.
7057     const auto &Triple = DAG.getTarget().getTargetTriple();
7058     if (Triple.getArch() != Triple::x86_64)
7059       return;
7060 
7061     SmallVector<SDValue, 8> Ops;
7062 
7063     // We want to say that we always want the arguments in registers.
7064     // It's unclear to me how manipulating the selection DAG here forces callers
7065     // to provide arguments in registers instead of on the stack.
7066     SDValue LogTypeId = getValue(I.getArgOperand(0));
7067     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7068     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7069     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7070     SDValue Chain = getRoot();
7071     Ops.push_back(LogTypeId);
7072     Ops.push_back(LogEntryVal);
7073     Ops.push_back(StrSizeVal);
7074     Ops.push_back(Chain);
7075 
7076     // We need to enforce the calling convention for the callsite, so that
7077     // argument ordering is enforced correctly, and that register allocation can
7078     // see that some registers may be assumed clobbered and have to preserve
7079     // them across calls to the intrinsic.
7080     MachineSDNode *MN = DAG.getMachineNode(
7081         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7082     SDValue patchableNode = SDValue(MN, 0);
7083     DAG.setRoot(patchableNode);
7084     setValue(&I, patchableNode);
7085     return;
7086   }
7087   case Intrinsic::experimental_deoptimize:
7088     LowerDeoptimizeCall(&I);
7089     return;
7090   case Intrinsic::experimental_stepvector:
7091     visitStepVector(I);
7092     return;
7093   case Intrinsic::vector_reduce_fadd:
7094   case Intrinsic::vector_reduce_fmul:
7095   case Intrinsic::vector_reduce_add:
7096   case Intrinsic::vector_reduce_mul:
7097   case Intrinsic::vector_reduce_and:
7098   case Intrinsic::vector_reduce_or:
7099   case Intrinsic::vector_reduce_xor:
7100   case Intrinsic::vector_reduce_smax:
7101   case Intrinsic::vector_reduce_smin:
7102   case Intrinsic::vector_reduce_umax:
7103   case Intrinsic::vector_reduce_umin:
7104   case Intrinsic::vector_reduce_fmax:
7105   case Intrinsic::vector_reduce_fmin:
7106     visitVectorReduce(I, Intrinsic);
7107     return;
7108 
7109   case Intrinsic::icall_branch_funnel: {
7110     SmallVector<SDValue, 16> Ops;
7111     Ops.push_back(getValue(I.getArgOperand(0)));
7112 
7113     int64_t Offset;
7114     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7115         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7116     if (!Base)
7117       report_fatal_error(
7118           "llvm.icall.branch.funnel operand must be a GlobalValue");
7119     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7120 
7121     struct BranchFunnelTarget {
7122       int64_t Offset;
7123       SDValue Target;
7124     };
7125     SmallVector<BranchFunnelTarget, 8> Targets;
7126 
7127     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7128       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7129           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7130       if (ElemBase != Base)
7131         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7132                            "to the same GlobalValue");
7133 
7134       SDValue Val = getValue(I.getArgOperand(Op + 1));
7135       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7136       if (!GA)
7137         report_fatal_error(
7138             "llvm.icall.branch.funnel operand must be a GlobalValue");
7139       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7140                                      GA->getGlobal(), sdl, Val.getValueType(),
7141                                      GA->getOffset())});
7142     }
7143     llvm::sort(Targets,
7144                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7145                  return T1.Offset < T2.Offset;
7146                });
7147 
7148     for (auto &T : Targets) {
7149       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7150       Ops.push_back(T.Target);
7151     }
7152 
7153     Ops.push_back(DAG.getRoot()); // Chain
7154     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7155                                  MVT::Other, Ops),
7156               0);
7157     DAG.setRoot(N);
7158     setValue(&I, N);
7159     HasTailCall = true;
7160     return;
7161   }
7162 
7163   case Intrinsic::wasm_landingpad_index:
7164     // Information this intrinsic contained has been transferred to
7165     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7166     // delete it now.
7167     return;
7168 
7169   case Intrinsic::aarch64_settag:
7170   case Intrinsic::aarch64_settag_zero: {
7171     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7172     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7173     SDValue Val = TSI.EmitTargetCodeForSetTag(
7174         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7175         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7176         ZeroMemory);
7177     DAG.setRoot(Val);
7178     setValue(&I, Val);
7179     return;
7180   }
7181   case Intrinsic::ptrmask: {
7182     SDValue Ptr = getValue(I.getOperand(0));
7183     SDValue Const = getValue(I.getOperand(1));
7184 
7185     EVT PtrVT = Ptr.getValueType();
7186     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7187                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7188     return;
7189   }
7190   case Intrinsic::threadlocal_address: {
7191     setValue(&I, getValue(I.getOperand(0)));
7192     return;
7193   }
7194   case Intrinsic::get_active_lane_mask: {
7195     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7196     SDValue Index = getValue(I.getOperand(0));
7197     EVT ElementVT = Index.getValueType();
7198 
7199     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7200       visitTargetIntrinsic(I, Intrinsic);
7201       return;
7202     }
7203 
7204     SDValue TripCount = getValue(I.getOperand(1));
7205     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7206 
7207     SDValue VectorIndex, VectorTripCount;
7208     if (VecTy.isScalableVector()) {
7209       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7210       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7211     } else {
7212       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7213       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7214     }
7215     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7216     SDValue VectorInduction = DAG.getNode(
7217         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7218     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7219                                  VectorTripCount, ISD::CondCode::SETULT);
7220     setValue(&I, SetCC);
7221     return;
7222   }
7223   case Intrinsic::vector_insert: {
7224     SDValue Vec = getValue(I.getOperand(0));
7225     SDValue SubVec = getValue(I.getOperand(1));
7226     SDValue Index = getValue(I.getOperand(2));
7227 
7228     // The intrinsic's index type is i64, but the SDNode requires an index type
7229     // suitable for the target. Convert the index as required.
7230     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7231     if (Index.getValueType() != VectorIdxTy)
7232       Index = DAG.getVectorIdxConstant(
7233           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7234 
7235     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7236     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7237                              Index));
7238     return;
7239   }
7240   case Intrinsic::vector_extract: {
7241     SDValue Vec = getValue(I.getOperand(0));
7242     SDValue Index = getValue(I.getOperand(1));
7243     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7244 
7245     // The intrinsic's index type is i64, but the SDNode requires an index type
7246     // suitable for the target. Convert the index as required.
7247     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7248     if (Index.getValueType() != VectorIdxTy)
7249       Index = DAG.getVectorIdxConstant(
7250           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7251 
7252     setValue(&I,
7253              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7254     return;
7255   }
7256   case Intrinsic::experimental_vector_reverse:
7257     visitVectorReverse(I);
7258     return;
7259   case Intrinsic::experimental_vector_splice:
7260     visitVectorSplice(I);
7261     return;
7262   }
7263 }
7264 
7265 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7266     const ConstrainedFPIntrinsic &FPI) {
7267   SDLoc sdl = getCurSDLoc();
7268 
7269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7270   SmallVector<EVT, 4> ValueVTs;
7271   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7272   ValueVTs.push_back(MVT::Other); // Out chain
7273 
7274   // We do not need to serialize constrained FP intrinsics against
7275   // each other or against (nonvolatile) loads, so they can be
7276   // chained like loads.
7277   SDValue Chain = DAG.getRoot();
7278   SmallVector<SDValue, 4> Opers;
7279   Opers.push_back(Chain);
7280   if (FPI.isUnaryOp()) {
7281     Opers.push_back(getValue(FPI.getArgOperand(0)));
7282   } else if (FPI.isTernaryOp()) {
7283     Opers.push_back(getValue(FPI.getArgOperand(0)));
7284     Opers.push_back(getValue(FPI.getArgOperand(1)));
7285     Opers.push_back(getValue(FPI.getArgOperand(2)));
7286   } else {
7287     Opers.push_back(getValue(FPI.getArgOperand(0)));
7288     Opers.push_back(getValue(FPI.getArgOperand(1)));
7289   }
7290 
7291   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7292     assert(Result.getNode()->getNumValues() == 2);
7293 
7294     // Push node to the appropriate list so that future instructions can be
7295     // chained up correctly.
7296     SDValue OutChain = Result.getValue(1);
7297     switch (EB) {
7298     case fp::ExceptionBehavior::ebIgnore:
7299       // The only reason why ebIgnore nodes still need to be chained is that
7300       // they might depend on the current rounding mode, and therefore must
7301       // not be moved across instruction that may change that mode.
7302       [[fallthrough]];
7303     case fp::ExceptionBehavior::ebMayTrap:
7304       // These must not be moved across calls or instructions that may change
7305       // floating-point exception masks.
7306       PendingConstrainedFP.push_back(OutChain);
7307       break;
7308     case fp::ExceptionBehavior::ebStrict:
7309       // These must not be moved across calls or instructions that may change
7310       // floating-point exception masks or read floating-point exception flags.
7311       // In addition, they cannot be optimized out even if unused.
7312       PendingConstrainedFPStrict.push_back(OutChain);
7313       break;
7314     }
7315   };
7316 
7317   SDVTList VTs = DAG.getVTList(ValueVTs);
7318   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7319 
7320   SDNodeFlags Flags;
7321   if (EB == fp::ExceptionBehavior::ebIgnore)
7322     Flags.setNoFPExcept(true);
7323 
7324   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7325     Flags.copyFMF(*FPOp);
7326 
7327   unsigned Opcode;
7328   switch (FPI.getIntrinsicID()) {
7329   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7330 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7331   case Intrinsic::INTRINSIC:                                                   \
7332     Opcode = ISD::STRICT_##DAGN;                                               \
7333     break;
7334 #include "llvm/IR/ConstrainedOps.def"
7335   case Intrinsic::experimental_constrained_fmuladd: {
7336     Opcode = ISD::STRICT_FMA;
7337     // Break fmuladd into fmul and fadd.
7338     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7339         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7340                                         ValueVTs[0])) {
7341       Opers.pop_back();
7342       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7343       pushOutChain(Mul, EB);
7344       Opcode = ISD::STRICT_FADD;
7345       Opers.clear();
7346       Opers.push_back(Mul.getValue(1));
7347       Opers.push_back(Mul.getValue(0));
7348       Opers.push_back(getValue(FPI.getArgOperand(2)));
7349     }
7350     break;
7351   }
7352   }
7353 
7354   // A few strict DAG nodes carry additional operands that are not
7355   // set up by the default code above.
7356   switch (Opcode) {
7357   default: break;
7358   case ISD::STRICT_FP_ROUND:
7359     Opers.push_back(
7360         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7361     break;
7362   case ISD::STRICT_FSETCC:
7363   case ISD::STRICT_FSETCCS: {
7364     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7365     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7366     if (TM.Options.NoNaNsFPMath)
7367       Condition = getFCmpCodeWithoutNaN(Condition);
7368     Opers.push_back(DAG.getCondCode(Condition));
7369     break;
7370   }
7371   }
7372 
7373   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7374   pushOutChain(Result, EB);
7375 
7376   SDValue FPResult = Result.getValue(0);
7377   setValue(&FPI, FPResult);
7378 }
7379 
7380 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7381   Optional<unsigned> ResOPC;
7382   switch (VPIntrin.getIntrinsicID()) {
7383 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7384   case Intrinsic::VPID:                                                        \
7385     ResOPC = ISD::VPSD;                                                        \
7386     break;
7387 #include "llvm/IR/VPIntrinsics.def"
7388   }
7389 
7390   if (!ResOPC)
7391     llvm_unreachable(
7392         "Inconsistency: no SDNode available for this VPIntrinsic!");
7393 
7394   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7395       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7396     if (VPIntrin.getFastMathFlags().allowReassoc())
7397       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7398                                                 : ISD::VP_REDUCE_FMUL;
7399   }
7400 
7401   return *ResOPC;
7402 }
7403 
7404 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7405                                             SmallVector<SDValue, 7> &OpValues,
7406                                             bool IsGather) {
7407   SDLoc DL = getCurSDLoc();
7408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7409   Value *PtrOperand = VPIntrin.getArgOperand(0);
7410   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7411   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7412   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7413   SDValue LD;
7414   bool AddToChain = true;
7415   if (!IsGather) {
7416     // Do not serialize variable-length loads of constant memory with
7417     // anything.
7418     if (!Alignment)
7419       Alignment = DAG.getEVTAlign(VT);
7420     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7421     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7422     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7423     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7424         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7425         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7426     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7427                        MMO, false /*IsExpanding */);
7428   } else {
7429     if (!Alignment)
7430       Alignment = DAG.getEVTAlign(VT.getScalarType());
7431     unsigned AS =
7432         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7433     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7434         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7435         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7436     SDValue Base, Index, Scale;
7437     ISD::MemIndexType IndexType;
7438     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7439                                       this, VPIntrin.getParent(),
7440                                       VT.getScalarStoreSize());
7441     if (!UniformBase) {
7442       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7443       Index = getValue(PtrOperand);
7444       IndexType = ISD::SIGNED_SCALED;
7445       Scale =
7446           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7447     }
7448     EVT IdxVT = Index.getValueType();
7449     EVT EltTy = IdxVT.getVectorElementType();
7450     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7451       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7452       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7453     }
7454     LD = DAG.getGatherVP(
7455         DAG.getVTList(VT, MVT::Other), VT, DL,
7456         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7457         IndexType);
7458   }
7459   if (AddToChain)
7460     PendingLoads.push_back(LD.getValue(1));
7461   setValue(&VPIntrin, LD);
7462 }
7463 
7464 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7465                                               SmallVector<SDValue, 7> &OpValues,
7466                                               bool IsScatter) {
7467   SDLoc DL = getCurSDLoc();
7468   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7469   Value *PtrOperand = VPIntrin.getArgOperand(1);
7470   EVT VT = OpValues[0].getValueType();
7471   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7472   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7473   SDValue ST;
7474   if (!IsScatter) {
7475     if (!Alignment)
7476       Alignment = DAG.getEVTAlign(VT);
7477     SDValue Ptr = OpValues[1];
7478     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7479     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7480         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7481         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7482     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7483                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7484                         /* IsTruncating */ false, /*IsCompressing*/ false);
7485   } else {
7486     if (!Alignment)
7487       Alignment = DAG.getEVTAlign(VT.getScalarType());
7488     unsigned AS =
7489         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7490     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7491         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7492         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7493     SDValue Base, Index, Scale;
7494     ISD::MemIndexType IndexType;
7495     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7496                                       this, VPIntrin.getParent(),
7497                                       VT.getScalarStoreSize());
7498     if (!UniformBase) {
7499       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7500       Index = getValue(PtrOperand);
7501       IndexType = ISD::SIGNED_SCALED;
7502       Scale =
7503           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7504     }
7505     EVT IdxVT = Index.getValueType();
7506     EVT EltTy = IdxVT.getVectorElementType();
7507     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7508       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7509       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7510     }
7511     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7512                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7513                            OpValues[2], OpValues[3]},
7514                           MMO, IndexType);
7515   }
7516   DAG.setRoot(ST);
7517   setValue(&VPIntrin, ST);
7518 }
7519 
7520 void SelectionDAGBuilder::visitVPStridedLoad(
7521     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7522   SDLoc DL = getCurSDLoc();
7523   Value *PtrOperand = VPIntrin.getArgOperand(0);
7524   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7525   if (!Alignment)
7526     Alignment = DAG.getEVTAlign(VT.getScalarType());
7527   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7528   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7529   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7530   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7531   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7532   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7533       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7534       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7535 
7536   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7537                                     OpValues[2], OpValues[3], MMO,
7538                                     false /*IsExpanding*/);
7539 
7540   if (AddToChain)
7541     PendingLoads.push_back(LD.getValue(1));
7542   setValue(&VPIntrin, LD);
7543 }
7544 
7545 void SelectionDAGBuilder::visitVPStridedStore(
7546     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7547   SDLoc DL = getCurSDLoc();
7548   Value *PtrOperand = VPIntrin.getArgOperand(1);
7549   EVT VT = OpValues[0].getValueType();
7550   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7551   if (!Alignment)
7552     Alignment = DAG.getEVTAlign(VT.getScalarType());
7553   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7554   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7555       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7556       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7557 
7558   SDValue ST = DAG.getStridedStoreVP(
7559       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7560       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7561       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7562       /*IsCompressing*/ false);
7563 
7564   DAG.setRoot(ST);
7565   setValue(&VPIntrin, ST);
7566 }
7567 
7568 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7570   SDLoc DL = getCurSDLoc();
7571 
7572   ISD::CondCode Condition;
7573   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7574   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7575   if (IsFP) {
7576     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7577     // flags, but calls that don't return floating-point types can't be
7578     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7579     Condition = getFCmpCondCode(CondCode);
7580     if (TM.Options.NoNaNsFPMath)
7581       Condition = getFCmpCodeWithoutNaN(Condition);
7582   } else {
7583     Condition = getICmpCondCode(CondCode);
7584   }
7585 
7586   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7587   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7588   // #2 is the condition code
7589   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7590   SDValue EVL = getValue(VPIntrin.getOperand(4));
7591   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7592   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7593          "Unexpected target EVL type");
7594   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7595 
7596   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7597                                                         VPIntrin.getType());
7598   setValue(&VPIntrin,
7599            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7600 }
7601 
7602 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7603     const VPIntrinsic &VPIntrin) {
7604   SDLoc DL = getCurSDLoc();
7605   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7606 
7607   auto IID = VPIntrin.getIntrinsicID();
7608 
7609   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7610     return visitVPCmp(*CmpI);
7611 
7612   SmallVector<EVT, 4> ValueVTs;
7613   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7614   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7615   SDVTList VTs = DAG.getVTList(ValueVTs);
7616 
7617   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7618 
7619   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7620   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7621          "Unexpected target EVL type");
7622 
7623   // Request operands.
7624   SmallVector<SDValue, 7> OpValues;
7625   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7626     auto Op = getValue(VPIntrin.getArgOperand(I));
7627     if (I == EVLParamPos)
7628       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7629     OpValues.push_back(Op);
7630   }
7631 
7632   switch (Opcode) {
7633   default: {
7634     SDNodeFlags SDFlags;
7635     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7636       SDFlags.copyFMF(*FPMO);
7637     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7638     setValue(&VPIntrin, Result);
7639     break;
7640   }
7641   case ISD::VP_LOAD:
7642   case ISD::VP_GATHER:
7643     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7644                       Opcode == ISD::VP_GATHER);
7645     break;
7646   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7647     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7648     break;
7649   case ISD::VP_STORE:
7650   case ISD::VP_SCATTER:
7651     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7652     break;
7653   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7654     visitVPStridedStore(VPIntrin, OpValues);
7655     break;
7656   }
7657 }
7658 
7659 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7660                                           const BasicBlock *EHPadBB,
7661                                           MCSymbol *&BeginLabel) {
7662   MachineFunction &MF = DAG.getMachineFunction();
7663   MachineModuleInfo &MMI = MF.getMMI();
7664 
7665   // Insert a label before the invoke call to mark the try range.  This can be
7666   // used to detect deletion of the invoke via the MachineModuleInfo.
7667   BeginLabel = MMI.getContext().createTempSymbol();
7668 
7669   // For SjLj, keep track of which landing pads go with which invokes
7670   // so as to maintain the ordering of pads in the LSDA.
7671   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7672   if (CallSiteIndex) {
7673     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7674     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7675 
7676     // Now that the call site is handled, stop tracking it.
7677     MMI.setCurrentCallSite(0);
7678   }
7679 
7680   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7681 }
7682 
7683 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7684                                         const BasicBlock *EHPadBB,
7685                                         MCSymbol *BeginLabel) {
7686   assert(BeginLabel && "BeginLabel should've been set");
7687 
7688   MachineFunction &MF = DAG.getMachineFunction();
7689   MachineModuleInfo &MMI = MF.getMMI();
7690 
7691   // Insert a label at the end of the invoke call to mark the try range.  This
7692   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7693   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7694   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7695 
7696   // Inform MachineModuleInfo of range.
7697   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7698   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7699   // actually use outlined funclets and their LSDA info style.
7700   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7701     assert(II && "II should've been set");
7702     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7703     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7704   } else if (!isScopedEHPersonality(Pers)) {
7705     assert(EHPadBB);
7706     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7707   }
7708 
7709   return Chain;
7710 }
7711 
7712 std::pair<SDValue, SDValue>
7713 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7714                                     const BasicBlock *EHPadBB) {
7715   MCSymbol *BeginLabel = nullptr;
7716 
7717   if (EHPadBB) {
7718     // Both PendingLoads and PendingExports must be flushed here;
7719     // this call might not return.
7720     (void)getRoot();
7721     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7722     CLI.setChain(getRoot());
7723   }
7724 
7725   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7726   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7727 
7728   assert((CLI.IsTailCall || Result.second.getNode()) &&
7729          "Non-null chain expected with non-tail call!");
7730   assert((Result.second.getNode() || !Result.first.getNode()) &&
7731          "Null value expected with tail call!");
7732 
7733   if (!Result.second.getNode()) {
7734     // As a special case, a null chain means that a tail call has been emitted
7735     // and the DAG root is already updated.
7736     HasTailCall = true;
7737 
7738     // Since there's no actual continuation from this block, nothing can be
7739     // relying on us setting vregs for them.
7740     PendingExports.clear();
7741   } else {
7742     DAG.setRoot(Result.second);
7743   }
7744 
7745   if (EHPadBB) {
7746     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7747                            BeginLabel));
7748   }
7749 
7750   return Result;
7751 }
7752 
7753 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7754                                       bool isTailCall,
7755                                       bool isMustTailCall,
7756                                       const BasicBlock *EHPadBB) {
7757   auto &DL = DAG.getDataLayout();
7758   FunctionType *FTy = CB.getFunctionType();
7759   Type *RetTy = CB.getType();
7760 
7761   TargetLowering::ArgListTy Args;
7762   Args.reserve(CB.arg_size());
7763 
7764   const Value *SwiftErrorVal = nullptr;
7765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7766 
7767   if (isTailCall) {
7768     // Avoid emitting tail calls in functions with the disable-tail-calls
7769     // attribute.
7770     auto *Caller = CB.getParent()->getParent();
7771     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7772         "true" && !isMustTailCall)
7773       isTailCall = false;
7774 
7775     // We can't tail call inside a function with a swifterror argument. Lowering
7776     // does not support this yet. It would have to move into the swifterror
7777     // register before the call.
7778     if (TLI.supportSwiftError() &&
7779         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7780       isTailCall = false;
7781   }
7782 
7783   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7784     TargetLowering::ArgListEntry Entry;
7785     const Value *V = *I;
7786 
7787     // Skip empty types
7788     if (V->getType()->isEmptyTy())
7789       continue;
7790 
7791     SDValue ArgNode = getValue(V);
7792     Entry.Node = ArgNode; Entry.Ty = V->getType();
7793 
7794     Entry.setAttributes(&CB, I - CB.arg_begin());
7795 
7796     // Use swifterror virtual register as input to the call.
7797     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7798       SwiftErrorVal = V;
7799       // We find the virtual register for the actual swifterror argument.
7800       // Instead of using the Value, we use the virtual register instead.
7801       Entry.Node =
7802           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7803                           EVT(TLI.getPointerTy(DL)));
7804     }
7805 
7806     Args.push_back(Entry);
7807 
7808     // If we have an explicit sret argument that is an Instruction, (i.e., it
7809     // might point to function-local memory), we can't meaningfully tail-call.
7810     if (Entry.IsSRet && isa<Instruction>(V))
7811       isTailCall = false;
7812   }
7813 
7814   // If call site has a cfguardtarget operand bundle, create and add an
7815   // additional ArgListEntry.
7816   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7817     TargetLowering::ArgListEntry Entry;
7818     Value *V = Bundle->Inputs[0];
7819     SDValue ArgNode = getValue(V);
7820     Entry.Node = ArgNode;
7821     Entry.Ty = V->getType();
7822     Entry.IsCFGuardTarget = true;
7823     Args.push_back(Entry);
7824   }
7825 
7826   // Check if target-independent constraints permit a tail call here.
7827   // Target-dependent constraints are checked within TLI->LowerCallTo.
7828   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7829     isTailCall = false;
7830 
7831   // Disable tail calls if there is an swifterror argument. Targets have not
7832   // been updated to support tail calls.
7833   if (TLI.supportSwiftError() && SwiftErrorVal)
7834     isTailCall = false;
7835 
7836   TargetLowering::CallLoweringInfo CLI(DAG);
7837   CLI.setDebugLoc(getCurSDLoc())
7838       .setChain(getRoot())
7839       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7840       .setTailCall(isTailCall)
7841       .setConvergent(CB.isConvergent())
7842       .setIsPreallocated(
7843           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7844   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7845 
7846   if (Result.first.getNode()) {
7847     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7848     setValue(&CB, Result.first);
7849   }
7850 
7851   // The last element of CLI.InVals has the SDValue for swifterror return.
7852   // Here we copy it to a virtual register and update SwiftErrorMap for
7853   // book-keeping.
7854   if (SwiftErrorVal && TLI.supportSwiftError()) {
7855     // Get the last element of InVals.
7856     SDValue Src = CLI.InVals.back();
7857     Register VReg =
7858         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7859     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7860     DAG.setRoot(CopyNode);
7861   }
7862 }
7863 
7864 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7865                              SelectionDAGBuilder &Builder) {
7866   // Check to see if this load can be trivially constant folded, e.g. if the
7867   // input is from a string literal.
7868   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7869     // Cast pointer to the type we really want to load.
7870     Type *LoadTy =
7871         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7872     if (LoadVT.isVector())
7873       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7874 
7875     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7876                                          PointerType::getUnqual(LoadTy));
7877 
7878     if (const Constant *LoadCst =
7879             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7880                                          LoadTy, Builder.DAG.getDataLayout()))
7881       return Builder.getValue(LoadCst);
7882   }
7883 
7884   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7885   // still constant memory, the input chain can be the entry node.
7886   SDValue Root;
7887   bool ConstantMemory = false;
7888 
7889   // Do not serialize (non-volatile) loads of constant memory with anything.
7890   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7891     Root = Builder.DAG.getEntryNode();
7892     ConstantMemory = true;
7893   } else {
7894     // Do not serialize non-volatile loads against each other.
7895     Root = Builder.DAG.getRoot();
7896   }
7897 
7898   SDValue Ptr = Builder.getValue(PtrVal);
7899   SDValue LoadVal =
7900       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7901                           MachinePointerInfo(PtrVal), Align(1));
7902 
7903   if (!ConstantMemory)
7904     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7905   return LoadVal;
7906 }
7907 
7908 /// Record the value for an instruction that produces an integer result,
7909 /// converting the type where necessary.
7910 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7911                                                   SDValue Value,
7912                                                   bool IsSigned) {
7913   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7914                                                     I.getType(), true);
7915   if (IsSigned)
7916     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7917   else
7918     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7919   setValue(&I, Value);
7920 }
7921 
7922 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7923 /// true and lower it. Otherwise return false, and it will be lowered like a
7924 /// normal call.
7925 /// The caller already checked that \p I calls the appropriate LibFunc with a
7926 /// correct prototype.
7927 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7928   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7929   const Value *Size = I.getArgOperand(2);
7930   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
7931   if (CSize && CSize->getZExtValue() == 0) {
7932     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7933                                                           I.getType(), true);
7934     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7935     return true;
7936   }
7937 
7938   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7939   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7940       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7941       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7942   if (Res.first.getNode()) {
7943     processIntegerCallValue(I, Res.first, true);
7944     PendingLoads.push_back(Res.second);
7945     return true;
7946   }
7947 
7948   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7949   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7950   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7951     return false;
7952 
7953   // If the target has a fast compare for the given size, it will return a
7954   // preferred load type for that size. Require that the load VT is legal and
7955   // that the target supports unaligned loads of that type. Otherwise, return
7956   // INVALID.
7957   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7958     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7959     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7960     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7961       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7962       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7963       // TODO: Check alignment of src and dest ptrs.
7964       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7965       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7966       if (!TLI.isTypeLegal(LVT) ||
7967           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7968           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7969         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7970     }
7971 
7972     return LVT;
7973   };
7974 
7975   // This turns into unaligned loads. We only do this if the target natively
7976   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7977   // we'll only produce a small number of byte loads.
7978   MVT LoadVT;
7979   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7980   switch (NumBitsToCompare) {
7981   default:
7982     return false;
7983   case 16:
7984     LoadVT = MVT::i16;
7985     break;
7986   case 32:
7987     LoadVT = MVT::i32;
7988     break;
7989   case 64:
7990   case 128:
7991   case 256:
7992     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7993     break;
7994   }
7995 
7996   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7997     return false;
7998 
7999   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8000   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8001 
8002   // Bitcast to a wide integer type if the loads are vectors.
8003   if (LoadVT.isVector()) {
8004     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8005     LoadL = DAG.getBitcast(CmpVT, LoadL);
8006     LoadR = DAG.getBitcast(CmpVT, LoadR);
8007   }
8008 
8009   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8010   processIntegerCallValue(I, Cmp, false);
8011   return true;
8012 }
8013 
8014 /// See if we can lower a memchr call into an optimized form. If so, return
8015 /// true and lower it. Otherwise return false, and it will be lowered like a
8016 /// normal call.
8017 /// The caller already checked that \p I calls the appropriate LibFunc with a
8018 /// correct prototype.
8019 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8020   const Value *Src = I.getArgOperand(0);
8021   const Value *Char = I.getArgOperand(1);
8022   const Value *Length = I.getArgOperand(2);
8023 
8024   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8025   std::pair<SDValue, SDValue> Res =
8026     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8027                                 getValue(Src), getValue(Char), getValue(Length),
8028                                 MachinePointerInfo(Src));
8029   if (Res.first.getNode()) {
8030     setValue(&I, Res.first);
8031     PendingLoads.push_back(Res.second);
8032     return true;
8033   }
8034 
8035   return false;
8036 }
8037 
8038 /// See if we can lower a mempcpy call into an optimized form. If so, return
8039 /// true and lower it. Otherwise return false, and it will be lowered like a
8040 /// normal call.
8041 /// The caller already checked that \p I calls the appropriate LibFunc with a
8042 /// correct prototype.
8043 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8044   SDValue Dst = getValue(I.getArgOperand(0));
8045   SDValue Src = getValue(I.getArgOperand(1));
8046   SDValue Size = getValue(I.getArgOperand(2));
8047 
8048   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8049   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8050   // DAG::getMemcpy needs Alignment to be defined.
8051   Align Alignment = std::min(DstAlign, SrcAlign);
8052 
8053   bool isVol = false;
8054   SDLoc sdl = getCurSDLoc();
8055 
8056   // In the mempcpy context we need to pass in a false value for isTailCall
8057   // because the return pointer needs to be adjusted by the size of
8058   // the copied memory.
8059   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8060   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8061                              /*isTailCall=*/false,
8062                              MachinePointerInfo(I.getArgOperand(0)),
8063                              MachinePointerInfo(I.getArgOperand(1)),
8064                              I.getAAMetadata());
8065   assert(MC.getNode() != nullptr &&
8066          "** memcpy should not be lowered as TailCall in mempcpy context **");
8067   DAG.setRoot(MC);
8068 
8069   // Check if Size needs to be truncated or extended.
8070   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8071 
8072   // Adjust return pointer to point just past the last dst byte.
8073   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8074                                     Dst, Size);
8075   setValue(&I, DstPlusSize);
8076   return true;
8077 }
8078 
8079 /// See if we can lower a strcpy call into an optimized form.  If so, return
8080 /// true and lower it, otherwise return false and it will be lowered like a
8081 /// normal call.
8082 /// The caller already checked that \p I calls the appropriate LibFunc with a
8083 /// correct prototype.
8084 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8085   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8086 
8087   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8088   std::pair<SDValue, SDValue> Res =
8089     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8090                                 getValue(Arg0), getValue(Arg1),
8091                                 MachinePointerInfo(Arg0),
8092                                 MachinePointerInfo(Arg1), isStpcpy);
8093   if (Res.first.getNode()) {
8094     setValue(&I, Res.first);
8095     DAG.setRoot(Res.second);
8096     return true;
8097   }
8098 
8099   return false;
8100 }
8101 
8102 /// See if we can lower a strcmp call into an optimized form.  If so, return
8103 /// true and lower it, otherwise return false and it will be lowered like a
8104 /// normal call.
8105 /// The caller already checked that \p I calls the appropriate LibFunc with a
8106 /// correct prototype.
8107 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8108   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8109 
8110   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8111   std::pair<SDValue, SDValue> Res =
8112     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8113                                 getValue(Arg0), getValue(Arg1),
8114                                 MachinePointerInfo(Arg0),
8115                                 MachinePointerInfo(Arg1));
8116   if (Res.first.getNode()) {
8117     processIntegerCallValue(I, Res.first, true);
8118     PendingLoads.push_back(Res.second);
8119     return true;
8120   }
8121 
8122   return false;
8123 }
8124 
8125 /// See if we can lower a strlen call into an optimized form.  If so, return
8126 /// true and lower it, otherwise return false and it will be lowered like a
8127 /// normal call.
8128 /// The caller already checked that \p I calls the appropriate LibFunc with a
8129 /// correct prototype.
8130 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8131   const Value *Arg0 = I.getArgOperand(0);
8132 
8133   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8134   std::pair<SDValue, SDValue> Res =
8135     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8136                                 getValue(Arg0), MachinePointerInfo(Arg0));
8137   if (Res.first.getNode()) {
8138     processIntegerCallValue(I, Res.first, false);
8139     PendingLoads.push_back(Res.second);
8140     return true;
8141   }
8142 
8143   return false;
8144 }
8145 
8146 /// See if we can lower a strnlen call into an optimized form.  If so, return
8147 /// true and lower it, otherwise return false and it will be lowered like a
8148 /// normal call.
8149 /// The caller already checked that \p I calls the appropriate LibFunc with a
8150 /// correct prototype.
8151 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8152   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8153 
8154   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8155   std::pair<SDValue, SDValue> Res =
8156     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8157                                  getValue(Arg0), getValue(Arg1),
8158                                  MachinePointerInfo(Arg0));
8159   if (Res.first.getNode()) {
8160     processIntegerCallValue(I, Res.first, false);
8161     PendingLoads.push_back(Res.second);
8162     return true;
8163   }
8164 
8165   return false;
8166 }
8167 
8168 /// See if we can lower a unary floating-point operation into an SDNode with
8169 /// the specified Opcode.  If so, return true and lower it, otherwise return
8170 /// false and it will be lowered like a normal call.
8171 /// The caller already checked that \p I calls the appropriate LibFunc with a
8172 /// correct prototype.
8173 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8174                                               unsigned Opcode) {
8175   // We already checked this call's prototype; verify it doesn't modify errno.
8176   if (!I.onlyReadsMemory())
8177     return false;
8178 
8179   SDNodeFlags Flags;
8180   Flags.copyFMF(cast<FPMathOperator>(I));
8181 
8182   SDValue Tmp = getValue(I.getArgOperand(0));
8183   setValue(&I,
8184            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8185   return true;
8186 }
8187 
8188 /// See if we can lower a binary floating-point operation into an SDNode with
8189 /// the specified Opcode. If so, return true and lower it. Otherwise return
8190 /// false, and it will be lowered like a normal call.
8191 /// The caller already checked that \p I calls the appropriate LibFunc with a
8192 /// correct prototype.
8193 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8194                                                unsigned Opcode) {
8195   // We already checked this call's prototype; verify it doesn't modify errno.
8196   if (!I.onlyReadsMemory())
8197     return false;
8198 
8199   SDNodeFlags Flags;
8200   Flags.copyFMF(cast<FPMathOperator>(I));
8201 
8202   SDValue Tmp0 = getValue(I.getArgOperand(0));
8203   SDValue Tmp1 = getValue(I.getArgOperand(1));
8204   EVT VT = Tmp0.getValueType();
8205   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8206   return true;
8207 }
8208 
8209 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8210   // Handle inline assembly differently.
8211   if (I.isInlineAsm()) {
8212     visitInlineAsm(I);
8213     return;
8214   }
8215 
8216   if (Function *F = I.getCalledFunction()) {
8217     diagnoseDontCall(I);
8218 
8219     if (F->isDeclaration()) {
8220       // Is this an LLVM intrinsic or a target-specific intrinsic?
8221       unsigned IID = F->getIntrinsicID();
8222       if (!IID)
8223         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8224           IID = II->getIntrinsicID(F);
8225 
8226       if (IID) {
8227         visitIntrinsicCall(I, IID);
8228         return;
8229       }
8230     }
8231 
8232     // Check for well-known libc/libm calls.  If the function is internal, it
8233     // can't be a library call.  Don't do the check if marked as nobuiltin for
8234     // some reason or the call site requires strict floating point semantics.
8235     LibFunc Func;
8236     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8237         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8238         LibInfo->hasOptimizedCodeGen(Func)) {
8239       switch (Func) {
8240       default: break;
8241       case LibFunc_bcmp:
8242         if (visitMemCmpBCmpCall(I))
8243           return;
8244         break;
8245       case LibFunc_copysign:
8246       case LibFunc_copysignf:
8247       case LibFunc_copysignl:
8248         // We already checked this call's prototype; verify it doesn't modify
8249         // errno.
8250         if (I.onlyReadsMemory()) {
8251           SDValue LHS = getValue(I.getArgOperand(0));
8252           SDValue RHS = getValue(I.getArgOperand(1));
8253           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8254                                    LHS.getValueType(), LHS, RHS));
8255           return;
8256         }
8257         break;
8258       case LibFunc_fabs:
8259       case LibFunc_fabsf:
8260       case LibFunc_fabsl:
8261         if (visitUnaryFloatCall(I, ISD::FABS))
8262           return;
8263         break;
8264       case LibFunc_fmin:
8265       case LibFunc_fminf:
8266       case LibFunc_fminl:
8267         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8268           return;
8269         break;
8270       case LibFunc_fmax:
8271       case LibFunc_fmaxf:
8272       case LibFunc_fmaxl:
8273         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8274           return;
8275         break;
8276       case LibFunc_sin:
8277       case LibFunc_sinf:
8278       case LibFunc_sinl:
8279         if (visitUnaryFloatCall(I, ISD::FSIN))
8280           return;
8281         break;
8282       case LibFunc_cos:
8283       case LibFunc_cosf:
8284       case LibFunc_cosl:
8285         if (visitUnaryFloatCall(I, ISD::FCOS))
8286           return;
8287         break;
8288       case LibFunc_sqrt:
8289       case LibFunc_sqrtf:
8290       case LibFunc_sqrtl:
8291       case LibFunc_sqrt_finite:
8292       case LibFunc_sqrtf_finite:
8293       case LibFunc_sqrtl_finite:
8294         if (visitUnaryFloatCall(I, ISD::FSQRT))
8295           return;
8296         break;
8297       case LibFunc_floor:
8298       case LibFunc_floorf:
8299       case LibFunc_floorl:
8300         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8301           return;
8302         break;
8303       case LibFunc_nearbyint:
8304       case LibFunc_nearbyintf:
8305       case LibFunc_nearbyintl:
8306         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8307           return;
8308         break;
8309       case LibFunc_ceil:
8310       case LibFunc_ceilf:
8311       case LibFunc_ceill:
8312         if (visitUnaryFloatCall(I, ISD::FCEIL))
8313           return;
8314         break;
8315       case LibFunc_rint:
8316       case LibFunc_rintf:
8317       case LibFunc_rintl:
8318         if (visitUnaryFloatCall(I, ISD::FRINT))
8319           return;
8320         break;
8321       case LibFunc_round:
8322       case LibFunc_roundf:
8323       case LibFunc_roundl:
8324         if (visitUnaryFloatCall(I, ISD::FROUND))
8325           return;
8326         break;
8327       case LibFunc_trunc:
8328       case LibFunc_truncf:
8329       case LibFunc_truncl:
8330         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8331           return;
8332         break;
8333       case LibFunc_log2:
8334       case LibFunc_log2f:
8335       case LibFunc_log2l:
8336         if (visitUnaryFloatCall(I, ISD::FLOG2))
8337           return;
8338         break;
8339       case LibFunc_exp2:
8340       case LibFunc_exp2f:
8341       case LibFunc_exp2l:
8342         if (visitUnaryFloatCall(I, ISD::FEXP2))
8343           return;
8344         break;
8345       case LibFunc_memcmp:
8346         if (visitMemCmpBCmpCall(I))
8347           return;
8348         break;
8349       case LibFunc_mempcpy:
8350         if (visitMemPCpyCall(I))
8351           return;
8352         break;
8353       case LibFunc_memchr:
8354         if (visitMemChrCall(I))
8355           return;
8356         break;
8357       case LibFunc_strcpy:
8358         if (visitStrCpyCall(I, false))
8359           return;
8360         break;
8361       case LibFunc_stpcpy:
8362         if (visitStrCpyCall(I, true))
8363           return;
8364         break;
8365       case LibFunc_strcmp:
8366         if (visitStrCmpCall(I))
8367           return;
8368         break;
8369       case LibFunc_strlen:
8370         if (visitStrLenCall(I))
8371           return;
8372         break;
8373       case LibFunc_strnlen:
8374         if (visitStrNLenCall(I))
8375           return;
8376         break;
8377       }
8378     }
8379   }
8380 
8381   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8382   // have to do anything here to lower funclet bundles.
8383   // CFGuardTarget bundles are lowered in LowerCallTo.
8384   assert(!I.hasOperandBundlesOtherThan(
8385              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8386               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8387               LLVMContext::OB_clang_arc_attachedcall}) &&
8388          "Cannot lower calls with arbitrary operand bundles!");
8389 
8390   SDValue Callee = getValue(I.getCalledOperand());
8391 
8392   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8393     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8394   else
8395     // Check if we can potentially perform a tail call. More detailed checking
8396     // is be done within LowerCallTo, after more information about the call is
8397     // known.
8398     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8399 }
8400 
8401 namespace {
8402 
8403 /// AsmOperandInfo - This contains information for each constraint that we are
8404 /// lowering.
8405 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8406 public:
8407   /// CallOperand - If this is the result output operand or a clobber
8408   /// this is null, otherwise it is the incoming operand to the CallInst.
8409   /// This gets modified as the asm is processed.
8410   SDValue CallOperand;
8411 
8412   /// AssignedRegs - If this is a register or register class operand, this
8413   /// contains the set of register corresponding to the operand.
8414   RegsForValue AssignedRegs;
8415 
8416   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8417     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8418   }
8419 
8420   /// Whether or not this operand accesses memory
8421   bool hasMemory(const TargetLowering &TLI) const {
8422     // Indirect operand accesses access memory.
8423     if (isIndirect)
8424       return true;
8425 
8426     for (const auto &Code : Codes)
8427       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8428         return true;
8429 
8430     return false;
8431   }
8432 };
8433 
8434 
8435 } // end anonymous namespace
8436 
8437 /// Make sure that the output operand \p OpInfo and its corresponding input
8438 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8439 /// out).
8440 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8441                                SDISelAsmOperandInfo &MatchingOpInfo,
8442                                SelectionDAG &DAG) {
8443   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8444     return;
8445 
8446   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8447   const auto &TLI = DAG.getTargetLoweringInfo();
8448 
8449   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8450       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8451                                        OpInfo.ConstraintVT);
8452   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8453       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8454                                        MatchingOpInfo.ConstraintVT);
8455   if ((OpInfo.ConstraintVT.isInteger() !=
8456        MatchingOpInfo.ConstraintVT.isInteger()) ||
8457       (MatchRC.second != InputRC.second)) {
8458     // FIXME: error out in a more elegant fashion
8459     report_fatal_error("Unsupported asm: input constraint"
8460                        " with a matching output constraint of"
8461                        " incompatible type!");
8462   }
8463   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8464 }
8465 
8466 /// Get a direct memory input to behave well as an indirect operand.
8467 /// This may introduce stores, hence the need for a \p Chain.
8468 /// \return The (possibly updated) chain.
8469 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8470                                         SDISelAsmOperandInfo &OpInfo,
8471                                         SelectionDAG &DAG) {
8472   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8473 
8474   // If we don't have an indirect input, put it in the constpool if we can,
8475   // otherwise spill it to a stack slot.
8476   // TODO: This isn't quite right. We need to handle these according to
8477   // the addressing mode that the constraint wants. Also, this may take
8478   // an additional register for the computation and we don't want that
8479   // either.
8480 
8481   // If the operand is a float, integer, or vector constant, spill to a
8482   // constant pool entry to get its address.
8483   const Value *OpVal = OpInfo.CallOperandVal;
8484   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8485       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8486     OpInfo.CallOperand = DAG.getConstantPool(
8487         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8488     return Chain;
8489   }
8490 
8491   // Otherwise, create a stack slot and emit a store to it before the asm.
8492   Type *Ty = OpVal->getType();
8493   auto &DL = DAG.getDataLayout();
8494   uint64_t TySize = DL.getTypeAllocSize(Ty);
8495   MachineFunction &MF = DAG.getMachineFunction();
8496   int SSFI = MF.getFrameInfo().CreateStackObject(
8497       TySize, DL.getPrefTypeAlign(Ty), false);
8498   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8499   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8500                             MachinePointerInfo::getFixedStack(MF, SSFI),
8501                             TLI.getMemValueType(DL, Ty));
8502   OpInfo.CallOperand = StackSlot;
8503 
8504   return Chain;
8505 }
8506 
8507 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8508 /// specified operand.  We prefer to assign virtual registers, to allow the
8509 /// register allocator to handle the assignment process.  However, if the asm
8510 /// uses features that we can't model on machineinstrs, we have SDISel do the
8511 /// allocation.  This produces generally horrible, but correct, code.
8512 ///
8513 ///   OpInfo describes the operand
8514 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8515 static llvm::Optional<unsigned>
8516 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8517                      SDISelAsmOperandInfo &OpInfo,
8518                      SDISelAsmOperandInfo &RefOpInfo) {
8519   LLVMContext &Context = *DAG.getContext();
8520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8521 
8522   MachineFunction &MF = DAG.getMachineFunction();
8523   SmallVector<unsigned, 4> Regs;
8524   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8525 
8526   // No work to do for memory/address operands.
8527   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8528       OpInfo.ConstraintType == TargetLowering::C_Address)
8529     return None;
8530 
8531   // If this is a constraint for a single physreg, or a constraint for a
8532   // register class, find it.
8533   unsigned AssignedReg;
8534   const TargetRegisterClass *RC;
8535   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8536       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8537   // RC is unset only on failure. Return immediately.
8538   if (!RC)
8539     return None;
8540 
8541   // Get the actual register value type.  This is important, because the user
8542   // may have asked for (e.g.) the AX register in i32 type.  We need to
8543   // remember that AX is actually i16 to get the right extension.
8544   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8545 
8546   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8547     // If this is an FP operand in an integer register (or visa versa), or more
8548     // generally if the operand value disagrees with the register class we plan
8549     // to stick it in, fix the operand type.
8550     //
8551     // If this is an input value, the bitcast to the new type is done now.
8552     // Bitcast for output value is done at the end of visitInlineAsm().
8553     if ((OpInfo.Type == InlineAsm::isOutput ||
8554          OpInfo.Type == InlineAsm::isInput) &&
8555         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8556       // Try to convert to the first EVT that the reg class contains.  If the
8557       // types are identical size, use a bitcast to convert (e.g. two differing
8558       // vector types).  Note: output bitcast is done at the end of
8559       // visitInlineAsm().
8560       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8561         // Exclude indirect inputs while they are unsupported because the code
8562         // to perform the load is missing and thus OpInfo.CallOperand still
8563         // refers to the input address rather than the pointed-to value.
8564         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8565           OpInfo.CallOperand =
8566               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8567         OpInfo.ConstraintVT = RegVT;
8568         // If the operand is an FP value and we want it in integer registers,
8569         // use the corresponding integer type. This turns an f64 value into
8570         // i64, which can be passed with two i32 values on a 32-bit machine.
8571       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8572         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8573         if (OpInfo.Type == InlineAsm::isInput)
8574           OpInfo.CallOperand =
8575               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8576         OpInfo.ConstraintVT = VT;
8577       }
8578     }
8579   }
8580 
8581   // No need to allocate a matching input constraint since the constraint it's
8582   // matching to has already been allocated.
8583   if (OpInfo.isMatchingInputConstraint())
8584     return None;
8585 
8586   EVT ValueVT = OpInfo.ConstraintVT;
8587   if (OpInfo.ConstraintVT == MVT::Other)
8588     ValueVT = RegVT;
8589 
8590   // Initialize NumRegs.
8591   unsigned NumRegs = 1;
8592   if (OpInfo.ConstraintVT != MVT::Other)
8593     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8594 
8595   // If this is a constraint for a specific physical register, like {r17},
8596   // assign it now.
8597 
8598   // If this associated to a specific register, initialize iterator to correct
8599   // place. If virtual, make sure we have enough registers
8600 
8601   // Initialize iterator if necessary
8602   TargetRegisterClass::iterator I = RC->begin();
8603   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8604 
8605   // Do not check for single registers.
8606   if (AssignedReg) {
8607     I = std::find(I, RC->end(), AssignedReg);
8608     if (I == RC->end()) {
8609       // RC does not contain the selected register, which indicates a
8610       // mismatch between the register and the required type/bitwidth.
8611       return {AssignedReg};
8612     }
8613   }
8614 
8615   for (; NumRegs; --NumRegs, ++I) {
8616     assert(I != RC->end() && "Ran out of registers to allocate!");
8617     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8618     Regs.push_back(R);
8619   }
8620 
8621   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8622   return None;
8623 }
8624 
8625 static unsigned
8626 findMatchingInlineAsmOperand(unsigned OperandNo,
8627                              const std::vector<SDValue> &AsmNodeOperands) {
8628   // Scan until we find the definition we already emitted of this operand.
8629   unsigned CurOp = InlineAsm::Op_FirstOperand;
8630   for (; OperandNo; --OperandNo) {
8631     // Advance to the next operand.
8632     unsigned OpFlag =
8633         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8634     assert((InlineAsm::isRegDefKind(OpFlag) ||
8635             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8636             InlineAsm::isMemKind(OpFlag)) &&
8637            "Skipped past definitions?");
8638     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8639   }
8640   return CurOp;
8641 }
8642 
8643 namespace {
8644 
8645 class ExtraFlags {
8646   unsigned Flags = 0;
8647 
8648 public:
8649   explicit ExtraFlags(const CallBase &Call) {
8650     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8651     if (IA->hasSideEffects())
8652       Flags |= InlineAsm::Extra_HasSideEffects;
8653     if (IA->isAlignStack())
8654       Flags |= InlineAsm::Extra_IsAlignStack;
8655     if (Call.isConvergent())
8656       Flags |= InlineAsm::Extra_IsConvergent;
8657     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8658   }
8659 
8660   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8661     // Ideally, we would only check against memory constraints.  However, the
8662     // meaning of an Other constraint can be target-specific and we can't easily
8663     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8664     // for Other constraints as well.
8665     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8666         OpInfo.ConstraintType == TargetLowering::C_Other) {
8667       if (OpInfo.Type == InlineAsm::isInput)
8668         Flags |= InlineAsm::Extra_MayLoad;
8669       else if (OpInfo.Type == InlineAsm::isOutput)
8670         Flags |= InlineAsm::Extra_MayStore;
8671       else if (OpInfo.Type == InlineAsm::isClobber)
8672         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8673     }
8674   }
8675 
8676   unsigned get() const { return Flags; }
8677 };
8678 
8679 } // end anonymous namespace
8680 
8681 /// visitInlineAsm - Handle a call to an InlineAsm object.
8682 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8683                                          const BasicBlock *EHPadBB) {
8684   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8685 
8686   /// ConstraintOperands - Information about all of the constraints.
8687   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8688 
8689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8690   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8691       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8692 
8693   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8694   // AsmDialect, MayLoad, MayStore).
8695   bool HasSideEffect = IA->hasSideEffects();
8696   ExtraFlags ExtraInfo(Call);
8697 
8698   for (auto &T : TargetConstraints) {
8699     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8700     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8701 
8702     if (OpInfo.CallOperandVal)
8703       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8704 
8705     if (!HasSideEffect)
8706       HasSideEffect = OpInfo.hasMemory(TLI);
8707 
8708     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8709     // FIXME: Could we compute this on OpInfo rather than T?
8710 
8711     // Compute the constraint code and ConstraintType to use.
8712     TLI.ComputeConstraintToUse(T, SDValue());
8713 
8714     if (T.ConstraintType == TargetLowering::C_Immediate &&
8715         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8716       // We've delayed emitting a diagnostic like the "n" constraint because
8717       // inlining could cause an integer showing up.
8718       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8719                                           "' expects an integer constant "
8720                                           "expression");
8721 
8722     ExtraInfo.update(T);
8723   }
8724 
8725   // We won't need to flush pending loads if this asm doesn't touch
8726   // memory and is nonvolatile.
8727   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8728 
8729   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8730   if (EmitEHLabels) {
8731     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8732   }
8733   bool IsCallBr = isa<CallBrInst>(Call);
8734 
8735   if (IsCallBr || EmitEHLabels) {
8736     // If this is a callbr or invoke we need to flush pending exports since
8737     // inlineasm_br and invoke are terminators.
8738     // We need to do this before nodes are glued to the inlineasm_br node.
8739     Chain = getControlRoot();
8740   }
8741 
8742   MCSymbol *BeginLabel = nullptr;
8743   if (EmitEHLabels) {
8744     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8745   }
8746 
8747   // Second pass over the constraints: compute which constraint option to use.
8748   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8749     // If this is an output operand with a matching input operand, look up the
8750     // matching input. If their types mismatch, e.g. one is an integer, the
8751     // other is floating point, or their sizes are different, flag it as an
8752     // error.
8753     if (OpInfo.hasMatchingInput()) {
8754       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8755       patchMatchingInput(OpInfo, Input, DAG);
8756     }
8757 
8758     // Compute the constraint code and ConstraintType to use.
8759     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8760 
8761     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8762          OpInfo.Type == InlineAsm::isClobber) ||
8763         OpInfo.ConstraintType == TargetLowering::C_Address)
8764       continue;
8765 
8766     // If this is a memory input, and if the operand is not indirect, do what we
8767     // need to provide an address for the memory input.
8768     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8769         !OpInfo.isIndirect) {
8770       assert((OpInfo.isMultipleAlternative ||
8771               (OpInfo.Type == InlineAsm::isInput)) &&
8772              "Can only indirectify direct input operands!");
8773 
8774       // Memory operands really want the address of the value.
8775       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8776 
8777       // There is no longer a Value* corresponding to this operand.
8778       OpInfo.CallOperandVal = nullptr;
8779 
8780       // It is now an indirect operand.
8781       OpInfo.isIndirect = true;
8782     }
8783 
8784   }
8785 
8786   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8787   std::vector<SDValue> AsmNodeOperands;
8788   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8789   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8790       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8791 
8792   // If we have a !srcloc metadata node associated with it, we want to attach
8793   // this to the ultimately generated inline asm machineinstr.  To do this, we
8794   // pass in the third operand as this (potentially null) inline asm MDNode.
8795   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8796   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8797 
8798   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8799   // bits as operand 3.
8800   AsmNodeOperands.push_back(DAG.getTargetConstant(
8801       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8802 
8803   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8804   // this, assign virtual and physical registers for inputs and otput.
8805   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8806     // Assign Registers.
8807     SDISelAsmOperandInfo &RefOpInfo =
8808         OpInfo.isMatchingInputConstraint()
8809             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8810             : OpInfo;
8811     const auto RegError =
8812         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8813     if (RegError) {
8814       const MachineFunction &MF = DAG.getMachineFunction();
8815       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8816       const char *RegName = TRI.getName(RegError.value());
8817       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8818                                    "' allocated for constraint '" +
8819                                    Twine(OpInfo.ConstraintCode) +
8820                                    "' does not match required type");
8821       return;
8822     }
8823 
8824     auto DetectWriteToReservedRegister = [&]() {
8825       const MachineFunction &MF = DAG.getMachineFunction();
8826       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8827       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8828         if (Register::isPhysicalRegister(Reg) &&
8829             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8830           const char *RegName = TRI.getName(Reg);
8831           emitInlineAsmError(Call, "write to reserved register '" +
8832                                        Twine(RegName) + "'");
8833           return true;
8834         }
8835       }
8836       return false;
8837     };
8838     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
8839             (OpInfo.Type == InlineAsm::isInput &&
8840              !OpInfo.isMatchingInputConstraint())) &&
8841            "Only address as input operand is allowed.");
8842 
8843     switch (OpInfo.Type) {
8844     case InlineAsm::isOutput:
8845       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8846         unsigned ConstraintID =
8847             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8848         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8849                "Failed to convert memory constraint code to constraint id.");
8850 
8851         // Add information to the INLINEASM node to know about this output.
8852         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8853         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8854         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8855                                                         MVT::i32));
8856         AsmNodeOperands.push_back(OpInfo.CallOperand);
8857       } else {
8858         // Otherwise, this outputs to a register (directly for C_Register /
8859         // C_RegisterClass, and a target-defined fashion for
8860         // C_Immediate/C_Other). Find a register that we can use.
8861         if (OpInfo.AssignedRegs.Regs.empty()) {
8862           emitInlineAsmError(
8863               Call, "couldn't allocate output register for constraint '" +
8864                         Twine(OpInfo.ConstraintCode) + "'");
8865           return;
8866         }
8867 
8868         if (DetectWriteToReservedRegister())
8869           return;
8870 
8871         // Add information to the INLINEASM node to know that this register is
8872         // set.
8873         OpInfo.AssignedRegs.AddInlineAsmOperands(
8874             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8875                                   : InlineAsm::Kind_RegDef,
8876             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8877       }
8878       break;
8879 
8880     case InlineAsm::isInput:
8881     case InlineAsm::isLabel: {
8882       SDValue InOperandVal = OpInfo.CallOperand;
8883 
8884       if (OpInfo.isMatchingInputConstraint()) {
8885         // If this is required to match an output register we have already set,
8886         // just use its register.
8887         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8888                                                   AsmNodeOperands);
8889         unsigned OpFlag =
8890           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8891         if (InlineAsm::isRegDefKind(OpFlag) ||
8892             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8893           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8894           if (OpInfo.isIndirect) {
8895             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8896             emitInlineAsmError(Call, "inline asm not supported yet: "
8897                                      "don't know how to handle tied "
8898                                      "indirect register inputs");
8899             return;
8900           }
8901 
8902           SmallVector<unsigned, 4> Regs;
8903           MachineFunction &MF = DAG.getMachineFunction();
8904           MachineRegisterInfo &MRI = MF.getRegInfo();
8905           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8906           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8907           Register TiedReg = R->getReg();
8908           MVT RegVT = R->getSimpleValueType(0);
8909           const TargetRegisterClass *RC =
8910               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8911               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8912                                       : TRI.getMinimalPhysRegClass(TiedReg);
8913           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8914           for (unsigned i = 0; i != NumRegs; ++i)
8915             Regs.push_back(MRI.createVirtualRegister(RC));
8916 
8917           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8918 
8919           SDLoc dl = getCurSDLoc();
8920           // Use the produced MatchedRegs object to
8921           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8922           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8923                                            true, OpInfo.getMatchedOperand(), dl,
8924                                            DAG, AsmNodeOperands);
8925           break;
8926         }
8927 
8928         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8929         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8930                "Unexpected number of operands");
8931         // Add information to the INLINEASM node to know about this input.
8932         // See InlineAsm.h isUseOperandTiedToDef.
8933         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8934         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8935                                                     OpInfo.getMatchedOperand());
8936         AsmNodeOperands.push_back(DAG.getTargetConstant(
8937             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8938         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8939         break;
8940       }
8941 
8942       // Treat indirect 'X' constraint as memory.
8943       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8944           OpInfo.isIndirect)
8945         OpInfo.ConstraintType = TargetLowering::C_Memory;
8946 
8947       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8948           OpInfo.ConstraintType == TargetLowering::C_Other) {
8949         std::vector<SDValue> Ops;
8950         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8951                                           Ops, DAG);
8952         if (Ops.empty()) {
8953           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8954             if (isa<ConstantSDNode>(InOperandVal)) {
8955               emitInlineAsmError(Call, "value out of range for constraint '" +
8956                                            Twine(OpInfo.ConstraintCode) + "'");
8957               return;
8958             }
8959 
8960           emitInlineAsmError(Call,
8961                              "invalid operand for inline asm constraint '" +
8962                                  Twine(OpInfo.ConstraintCode) + "'");
8963           return;
8964         }
8965 
8966         // Add information to the INLINEASM node to know about this input.
8967         unsigned ResOpType =
8968           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8969         AsmNodeOperands.push_back(DAG.getTargetConstant(
8970             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8971         llvm::append_range(AsmNodeOperands, Ops);
8972         break;
8973       }
8974 
8975       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8976           OpInfo.ConstraintType == TargetLowering::C_Address) {
8977         assert((OpInfo.isIndirect ||
8978                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
8979                "Operand must be indirect to be a mem!");
8980         assert(InOperandVal.getValueType() ==
8981                    TLI.getPointerTy(DAG.getDataLayout()) &&
8982                "Memory operands expect pointer values");
8983 
8984         unsigned ConstraintID =
8985             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8986         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8987                "Failed to convert memory constraint code to constraint id.");
8988 
8989         // Add information to the INLINEASM node to know about this input.
8990         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8991         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8992         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8993                                                         getCurSDLoc(),
8994                                                         MVT::i32));
8995         AsmNodeOperands.push_back(InOperandVal);
8996         break;
8997       }
8998 
8999       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9000               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9001              "Unknown constraint type!");
9002 
9003       // TODO: Support this.
9004       if (OpInfo.isIndirect) {
9005         emitInlineAsmError(
9006             Call, "Don't know how to handle indirect register inputs yet "
9007                   "for constraint '" +
9008                       Twine(OpInfo.ConstraintCode) + "'");
9009         return;
9010       }
9011 
9012       // Copy the input into the appropriate registers.
9013       if (OpInfo.AssignedRegs.Regs.empty()) {
9014         emitInlineAsmError(Call,
9015                            "couldn't allocate input reg for constraint '" +
9016                                Twine(OpInfo.ConstraintCode) + "'");
9017         return;
9018       }
9019 
9020       if (DetectWriteToReservedRegister())
9021         return;
9022 
9023       SDLoc dl = getCurSDLoc();
9024 
9025       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9026                                         &Call);
9027 
9028       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9029                                                dl, DAG, AsmNodeOperands);
9030       break;
9031     }
9032     case InlineAsm::isClobber:
9033       // Add the clobbered value to the operand list, so that the register
9034       // allocator is aware that the physreg got clobbered.
9035       if (!OpInfo.AssignedRegs.Regs.empty())
9036         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9037                                                  false, 0, getCurSDLoc(), DAG,
9038                                                  AsmNodeOperands);
9039       break;
9040     }
9041   }
9042 
9043   // Finish up input operands.  Set the input chain and add the flag last.
9044   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9045   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9046 
9047   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9048   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9049                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9050   Flag = Chain.getValue(1);
9051 
9052   // Do additional work to generate outputs.
9053 
9054   SmallVector<EVT, 1> ResultVTs;
9055   SmallVector<SDValue, 1> ResultValues;
9056   SmallVector<SDValue, 8> OutChains;
9057 
9058   llvm::Type *CallResultType = Call.getType();
9059   ArrayRef<Type *> ResultTypes;
9060   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9061     ResultTypes = StructResult->elements();
9062   else if (!CallResultType->isVoidTy())
9063     ResultTypes = makeArrayRef(CallResultType);
9064 
9065   auto CurResultType = ResultTypes.begin();
9066   auto handleRegAssign = [&](SDValue V) {
9067     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9068     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9069     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9070     ++CurResultType;
9071     // If the type of the inline asm call site return value is different but has
9072     // same size as the type of the asm output bitcast it.  One example of this
9073     // is for vectors with different width / number of elements.  This can
9074     // happen for register classes that can contain multiple different value
9075     // types.  The preg or vreg allocated may not have the same VT as was
9076     // expected.
9077     //
9078     // This can also happen for a return value that disagrees with the register
9079     // class it is put in, eg. a double in a general-purpose register on a
9080     // 32-bit machine.
9081     if (ResultVT != V.getValueType() &&
9082         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9083       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9084     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9085              V.getValueType().isInteger()) {
9086       // If a result value was tied to an input value, the computed result
9087       // may have a wider width than the expected result.  Extract the
9088       // relevant portion.
9089       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9090     }
9091     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9092     ResultVTs.push_back(ResultVT);
9093     ResultValues.push_back(V);
9094   };
9095 
9096   // Deal with output operands.
9097   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9098     if (OpInfo.Type == InlineAsm::isOutput) {
9099       SDValue Val;
9100       // Skip trivial output operands.
9101       if (OpInfo.AssignedRegs.Regs.empty())
9102         continue;
9103 
9104       switch (OpInfo.ConstraintType) {
9105       case TargetLowering::C_Register:
9106       case TargetLowering::C_RegisterClass:
9107         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9108                                                   Chain, &Flag, &Call);
9109         break;
9110       case TargetLowering::C_Immediate:
9111       case TargetLowering::C_Other:
9112         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9113                                               OpInfo, DAG);
9114         break;
9115       case TargetLowering::C_Memory:
9116         break; // Already handled.
9117       case TargetLowering::C_Address:
9118         break; // Silence warning.
9119       case TargetLowering::C_Unknown:
9120         assert(false && "Unexpected unknown constraint");
9121       }
9122 
9123       // Indirect output manifest as stores. Record output chains.
9124       if (OpInfo.isIndirect) {
9125         const Value *Ptr = OpInfo.CallOperandVal;
9126         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9127         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9128                                      MachinePointerInfo(Ptr));
9129         OutChains.push_back(Store);
9130       } else {
9131         // generate CopyFromRegs to associated registers.
9132         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9133         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9134           for (const SDValue &V : Val->op_values())
9135             handleRegAssign(V);
9136         } else
9137           handleRegAssign(Val);
9138       }
9139     }
9140   }
9141 
9142   // Set results.
9143   if (!ResultValues.empty()) {
9144     assert(CurResultType == ResultTypes.end() &&
9145            "Mismatch in number of ResultTypes");
9146     assert(ResultValues.size() == ResultTypes.size() &&
9147            "Mismatch in number of output operands in asm result");
9148 
9149     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9150                             DAG.getVTList(ResultVTs), ResultValues);
9151     setValue(&Call, V);
9152   }
9153 
9154   // Collect store chains.
9155   if (!OutChains.empty())
9156     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9157 
9158   if (EmitEHLabels) {
9159     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9160   }
9161 
9162   // Only Update Root if inline assembly has a memory effect.
9163   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9164       EmitEHLabels)
9165     DAG.setRoot(Chain);
9166 }
9167 
9168 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9169                                              const Twine &Message) {
9170   LLVMContext &Ctx = *DAG.getContext();
9171   Ctx.emitError(&Call, Message);
9172 
9173   // Make sure we leave the DAG in a valid state
9174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9175   SmallVector<EVT, 1> ValueVTs;
9176   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9177 
9178   if (ValueVTs.empty())
9179     return;
9180 
9181   SmallVector<SDValue, 1> Ops;
9182   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9183     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9184 
9185   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9186 }
9187 
9188 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9189   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9190                           MVT::Other, getRoot(),
9191                           getValue(I.getArgOperand(0)),
9192                           DAG.getSrcValue(I.getArgOperand(0))));
9193 }
9194 
9195 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9196   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9197   const DataLayout &DL = DAG.getDataLayout();
9198   SDValue V = DAG.getVAArg(
9199       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9200       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9201       DL.getABITypeAlign(I.getType()).value());
9202   DAG.setRoot(V.getValue(1));
9203 
9204   if (I.getType()->isPointerTy())
9205     V = DAG.getPtrExtOrTrunc(
9206         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9207   setValue(&I, V);
9208 }
9209 
9210 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9211   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9212                           MVT::Other, getRoot(),
9213                           getValue(I.getArgOperand(0)),
9214                           DAG.getSrcValue(I.getArgOperand(0))));
9215 }
9216 
9217 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9218   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9219                           MVT::Other, getRoot(),
9220                           getValue(I.getArgOperand(0)),
9221                           getValue(I.getArgOperand(1)),
9222                           DAG.getSrcValue(I.getArgOperand(0)),
9223                           DAG.getSrcValue(I.getArgOperand(1))));
9224 }
9225 
9226 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9227                                                     const Instruction &I,
9228                                                     SDValue Op) {
9229   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9230   if (!Range)
9231     return Op;
9232 
9233   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9234   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9235     return Op;
9236 
9237   APInt Lo = CR.getUnsignedMin();
9238   if (!Lo.isMinValue())
9239     return Op;
9240 
9241   APInt Hi = CR.getUnsignedMax();
9242   unsigned Bits = std::max(Hi.getActiveBits(),
9243                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9244 
9245   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9246 
9247   SDLoc SL = getCurSDLoc();
9248 
9249   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9250                              DAG.getValueType(SmallVT));
9251   unsigned NumVals = Op.getNode()->getNumValues();
9252   if (NumVals == 1)
9253     return ZExt;
9254 
9255   SmallVector<SDValue, 4> Ops;
9256 
9257   Ops.push_back(ZExt);
9258   for (unsigned I = 1; I != NumVals; ++I)
9259     Ops.push_back(Op.getValue(I));
9260 
9261   return DAG.getMergeValues(Ops, SL);
9262 }
9263 
9264 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9265 /// the call being lowered.
9266 ///
9267 /// This is a helper for lowering intrinsics that follow a target calling
9268 /// convention or require stack pointer adjustment. Only a subset of the
9269 /// intrinsic's operands need to participate in the calling convention.
9270 void SelectionDAGBuilder::populateCallLoweringInfo(
9271     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9272     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9273     bool IsPatchPoint) {
9274   TargetLowering::ArgListTy Args;
9275   Args.reserve(NumArgs);
9276 
9277   // Populate the argument list.
9278   // Attributes for args start at offset 1, after the return attribute.
9279   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9280        ArgI != ArgE; ++ArgI) {
9281     const Value *V = Call->getOperand(ArgI);
9282 
9283     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9284 
9285     TargetLowering::ArgListEntry Entry;
9286     Entry.Node = getValue(V);
9287     Entry.Ty = V->getType();
9288     Entry.setAttributes(Call, ArgI);
9289     Args.push_back(Entry);
9290   }
9291 
9292   CLI.setDebugLoc(getCurSDLoc())
9293       .setChain(getRoot())
9294       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9295       .setDiscardResult(Call->use_empty())
9296       .setIsPatchPoint(IsPatchPoint)
9297       .setIsPreallocated(
9298           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9299 }
9300 
9301 /// Add a stack map intrinsic call's live variable operands to a stackmap
9302 /// or patchpoint target node's operand list.
9303 ///
9304 /// Constants are converted to TargetConstants purely as an optimization to
9305 /// avoid constant materialization and register allocation.
9306 ///
9307 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9308 /// generate addess computation nodes, and so FinalizeISel can convert the
9309 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9310 /// address materialization and register allocation, but may also be required
9311 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9312 /// alloca in the entry block, then the runtime may assume that the alloca's
9313 /// StackMap location can be read immediately after compilation and that the
9314 /// location is valid at any point during execution (this is similar to the
9315 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9316 /// only available in a register, then the runtime would need to trap when
9317 /// execution reaches the StackMap in order to read the alloca's location.
9318 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9319                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9320                                 SelectionDAGBuilder &Builder) {
9321   SelectionDAG &DAG = Builder.DAG;
9322   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9323     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9324 
9325     // Things on the stack are pointer-typed, meaning that they are already
9326     // legal and can be emitted directly to target nodes.
9327     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9328       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9329     } else {
9330       // Otherwise emit a target independent node to be legalised.
9331       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9332     }
9333   }
9334 }
9335 
9336 /// Lower llvm.experimental.stackmap.
9337 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9338   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9339   //                                  [live variables...])
9340 
9341   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9342 
9343   SDValue Chain, InFlag, Callee, NullPtr;
9344   SmallVector<SDValue, 32> Ops;
9345 
9346   SDLoc DL = getCurSDLoc();
9347   Callee = getValue(CI.getCalledOperand());
9348   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9349 
9350   // The stackmap intrinsic only records the live variables (the arguments
9351   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9352   // intrinsic, this won't be lowered to a function call. This means we don't
9353   // have to worry about calling conventions and target specific lowering code.
9354   // Instead we perform the call lowering right here.
9355   //
9356   // chain, flag = CALLSEQ_START(chain, 0, 0)
9357   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9358   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9359   //
9360   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9361   InFlag = Chain.getValue(1);
9362 
9363   // Add the STACKMAP operands, starting with DAG house-keeping.
9364   Ops.push_back(Chain);
9365   Ops.push_back(InFlag);
9366 
9367   // Add the <id>, <numShadowBytes> operands.
9368   //
9369   // These do not require legalisation, and can be emitted directly to target
9370   // constant nodes.
9371   SDValue ID = getValue(CI.getArgOperand(0));
9372   assert(ID.getValueType() == MVT::i64);
9373   SDValue IDConst = DAG.getTargetConstant(
9374       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9375   Ops.push_back(IDConst);
9376 
9377   SDValue Shad = getValue(CI.getArgOperand(1));
9378   assert(Shad.getValueType() == MVT::i32);
9379   SDValue ShadConst = DAG.getTargetConstant(
9380       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9381   Ops.push_back(ShadConst);
9382 
9383   // Add the live variables.
9384   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9385 
9386   // Create the STACKMAP node.
9387   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9388   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9389   InFlag = Chain.getValue(1);
9390 
9391   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9392 
9393   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9394 
9395   // Set the root to the target-lowered call chain.
9396   DAG.setRoot(Chain);
9397 
9398   // Inform the Frame Information that we have a stackmap in this function.
9399   FuncInfo.MF->getFrameInfo().setHasStackMap();
9400 }
9401 
9402 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9403 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9404                                           const BasicBlock *EHPadBB) {
9405   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9406   //                                                 i32 <numBytes>,
9407   //                                                 i8* <target>,
9408   //                                                 i32 <numArgs>,
9409   //                                                 [Args...],
9410   //                                                 [live variables...])
9411 
9412   CallingConv::ID CC = CB.getCallingConv();
9413   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9414   bool HasDef = !CB.getType()->isVoidTy();
9415   SDLoc dl = getCurSDLoc();
9416   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9417 
9418   // Handle immediate and symbolic callees.
9419   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9420     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9421                                    /*isTarget=*/true);
9422   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9423     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9424                                          SDLoc(SymbolicCallee),
9425                                          SymbolicCallee->getValueType(0));
9426 
9427   // Get the real number of arguments participating in the call <numArgs>
9428   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9429   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9430 
9431   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9432   // Intrinsics include all meta-operands up to but not including CC.
9433   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9434   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9435          "Not enough arguments provided to the patchpoint intrinsic");
9436 
9437   // For AnyRegCC the arguments are lowered later on manually.
9438   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9439   Type *ReturnTy =
9440       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9441 
9442   TargetLowering::CallLoweringInfo CLI(DAG);
9443   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9444                            ReturnTy, true);
9445   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9446 
9447   SDNode *CallEnd = Result.second.getNode();
9448   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9449     CallEnd = CallEnd->getOperand(0).getNode();
9450 
9451   /// Get a call instruction from the call sequence chain.
9452   /// Tail calls are not allowed.
9453   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9454          "Expected a callseq node.");
9455   SDNode *Call = CallEnd->getOperand(0).getNode();
9456   bool HasGlue = Call->getGluedNode();
9457 
9458   // Replace the target specific call node with the patchable intrinsic.
9459   SmallVector<SDValue, 8> Ops;
9460 
9461   // Push the chain.
9462   Ops.push_back(*(Call->op_begin()));
9463 
9464   // Optionally, push the glue (if any).
9465   if (HasGlue)
9466     Ops.push_back(*(Call->op_end() - 1));
9467 
9468   // Push the register mask info.
9469   if (HasGlue)
9470     Ops.push_back(*(Call->op_end() - 2));
9471   else
9472     Ops.push_back(*(Call->op_end() - 1));
9473 
9474   // Add the <id> and <numBytes> constants.
9475   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9476   Ops.push_back(DAG.getTargetConstant(
9477                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9478   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9479   Ops.push_back(DAG.getTargetConstant(
9480                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9481                   MVT::i32));
9482 
9483   // Add the callee.
9484   Ops.push_back(Callee);
9485 
9486   // Adjust <numArgs> to account for any arguments that have been passed on the
9487   // stack instead.
9488   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9489   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9490   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9491   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9492 
9493   // Add the calling convention
9494   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9495 
9496   // Add the arguments we omitted previously. The register allocator should
9497   // place these in any free register.
9498   if (IsAnyRegCC)
9499     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9500       Ops.push_back(getValue(CB.getArgOperand(i)));
9501 
9502   // Push the arguments from the call instruction.
9503   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9504   Ops.append(Call->op_begin() + 2, e);
9505 
9506   // Push live variables for the stack map.
9507   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9508 
9509   SDVTList NodeTys;
9510   if (IsAnyRegCC && HasDef) {
9511     // Create the return types based on the intrinsic definition
9512     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9513     SmallVector<EVT, 3> ValueVTs;
9514     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9515     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9516 
9517     // There is always a chain and a glue type at the end
9518     ValueVTs.push_back(MVT::Other);
9519     ValueVTs.push_back(MVT::Glue);
9520     NodeTys = DAG.getVTList(ValueVTs);
9521   } else
9522     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9523 
9524   // Replace the target specific call node with a PATCHPOINT node.
9525   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9526 
9527   // Update the NodeMap.
9528   if (HasDef) {
9529     if (IsAnyRegCC)
9530       setValue(&CB, SDValue(PPV.getNode(), 0));
9531     else
9532       setValue(&CB, Result.first);
9533   }
9534 
9535   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9536   // call sequence. Furthermore the location of the chain and glue can change
9537   // when the AnyReg calling convention is used and the intrinsic returns a
9538   // value.
9539   if (IsAnyRegCC && HasDef) {
9540     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9541     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9542     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9543   } else
9544     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9545   DAG.DeleteNode(Call);
9546 
9547   // Inform the Frame Information that we have a patchpoint in this function.
9548   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9549 }
9550 
9551 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9552                                             unsigned Intrinsic) {
9553   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9554   SDValue Op1 = getValue(I.getArgOperand(0));
9555   SDValue Op2;
9556   if (I.arg_size() > 1)
9557     Op2 = getValue(I.getArgOperand(1));
9558   SDLoc dl = getCurSDLoc();
9559   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9560   SDValue Res;
9561   SDNodeFlags SDFlags;
9562   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9563     SDFlags.copyFMF(*FPMO);
9564 
9565   switch (Intrinsic) {
9566   case Intrinsic::vector_reduce_fadd:
9567     if (SDFlags.hasAllowReassociation())
9568       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9569                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9570                         SDFlags);
9571     else
9572       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9573     break;
9574   case Intrinsic::vector_reduce_fmul:
9575     if (SDFlags.hasAllowReassociation())
9576       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9577                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9578                         SDFlags);
9579     else
9580       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9581     break;
9582   case Intrinsic::vector_reduce_add:
9583     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9584     break;
9585   case Intrinsic::vector_reduce_mul:
9586     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9587     break;
9588   case Intrinsic::vector_reduce_and:
9589     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9590     break;
9591   case Intrinsic::vector_reduce_or:
9592     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9593     break;
9594   case Intrinsic::vector_reduce_xor:
9595     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9596     break;
9597   case Intrinsic::vector_reduce_smax:
9598     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9599     break;
9600   case Intrinsic::vector_reduce_smin:
9601     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9602     break;
9603   case Intrinsic::vector_reduce_umax:
9604     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9605     break;
9606   case Intrinsic::vector_reduce_umin:
9607     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9608     break;
9609   case Intrinsic::vector_reduce_fmax:
9610     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9611     break;
9612   case Intrinsic::vector_reduce_fmin:
9613     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9614     break;
9615   default:
9616     llvm_unreachable("Unhandled vector reduce intrinsic");
9617   }
9618   setValue(&I, Res);
9619 }
9620 
9621 /// Returns an AttributeList representing the attributes applied to the return
9622 /// value of the given call.
9623 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9624   SmallVector<Attribute::AttrKind, 2> Attrs;
9625   if (CLI.RetSExt)
9626     Attrs.push_back(Attribute::SExt);
9627   if (CLI.RetZExt)
9628     Attrs.push_back(Attribute::ZExt);
9629   if (CLI.IsInReg)
9630     Attrs.push_back(Attribute::InReg);
9631 
9632   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9633                             Attrs);
9634 }
9635 
9636 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9637 /// implementation, which just calls LowerCall.
9638 /// FIXME: When all targets are
9639 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9640 std::pair<SDValue, SDValue>
9641 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9642   // Handle the incoming return values from the call.
9643   CLI.Ins.clear();
9644   Type *OrigRetTy = CLI.RetTy;
9645   SmallVector<EVT, 4> RetTys;
9646   SmallVector<uint64_t, 4> Offsets;
9647   auto &DL = CLI.DAG.getDataLayout();
9648   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9649 
9650   if (CLI.IsPostTypeLegalization) {
9651     // If we are lowering a libcall after legalization, split the return type.
9652     SmallVector<EVT, 4> OldRetTys;
9653     SmallVector<uint64_t, 4> OldOffsets;
9654     RetTys.swap(OldRetTys);
9655     Offsets.swap(OldOffsets);
9656 
9657     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9658       EVT RetVT = OldRetTys[i];
9659       uint64_t Offset = OldOffsets[i];
9660       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9661       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9662       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9663       RetTys.append(NumRegs, RegisterVT);
9664       for (unsigned j = 0; j != NumRegs; ++j)
9665         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9666     }
9667   }
9668 
9669   SmallVector<ISD::OutputArg, 4> Outs;
9670   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9671 
9672   bool CanLowerReturn =
9673       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9674                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9675 
9676   SDValue DemoteStackSlot;
9677   int DemoteStackIdx = -100;
9678   if (!CanLowerReturn) {
9679     // FIXME: equivalent assert?
9680     // assert(!CS.hasInAllocaArgument() &&
9681     //        "sret demotion is incompatible with inalloca");
9682     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9683     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9684     MachineFunction &MF = CLI.DAG.getMachineFunction();
9685     DemoteStackIdx =
9686         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9687     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9688                                               DL.getAllocaAddrSpace());
9689 
9690     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9691     ArgListEntry Entry;
9692     Entry.Node = DemoteStackSlot;
9693     Entry.Ty = StackSlotPtrType;
9694     Entry.IsSExt = false;
9695     Entry.IsZExt = false;
9696     Entry.IsInReg = false;
9697     Entry.IsSRet = true;
9698     Entry.IsNest = false;
9699     Entry.IsByVal = false;
9700     Entry.IsByRef = false;
9701     Entry.IsReturned = false;
9702     Entry.IsSwiftSelf = false;
9703     Entry.IsSwiftAsync = false;
9704     Entry.IsSwiftError = false;
9705     Entry.IsCFGuardTarget = false;
9706     Entry.Alignment = Alignment;
9707     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9708     CLI.NumFixedArgs += 1;
9709     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9710 
9711     // sret demotion isn't compatible with tail-calls, since the sret argument
9712     // points into the callers stack frame.
9713     CLI.IsTailCall = false;
9714   } else {
9715     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9716         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9717     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9718       ISD::ArgFlagsTy Flags;
9719       if (NeedsRegBlock) {
9720         Flags.setInConsecutiveRegs();
9721         if (I == RetTys.size() - 1)
9722           Flags.setInConsecutiveRegsLast();
9723       }
9724       EVT VT = RetTys[I];
9725       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9726                                                      CLI.CallConv, VT);
9727       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9728                                                        CLI.CallConv, VT);
9729       for (unsigned i = 0; i != NumRegs; ++i) {
9730         ISD::InputArg MyFlags;
9731         MyFlags.Flags = Flags;
9732         MyFlags.VT = RegisterVT;
9733         MyFlags.ArgVT = VT;
9734         MyFlags.Used = CLI.IsReturnValueUsed;
9735         if (CLI.RetTy->isPointerTy()) {
9736           MyFlags.Flags.setPointer();
9737           MyFlags.Flags.setPointerAddrSpace(
9738               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9739         }
9740         if (CLI.RetSExt)
9741           MyFlags.Flags.setSExt();
9742         if (CLI.RetZExt)
9743           MyFlags.Flags.setZExt();
9744         if (CLI.IsInReg)
9745           MyFlags.Flags.setInReg();
9746         CLI.Ins.push_back(MyFlags);
9747       }
9748     }
9749   }
9750 
9751   // We push in swifterror return as the last element of CLI.Ins.
9752   ArgListTy &Args = CLI.getArgs();
9753   if (supportSwiftError()) {
9754     for (const ArgListEntry &Arg : Args) {
9755       if (Arg.IsSwiftError) {
9756         ISD::InputArg MyFlags;
9757         MyFlags.VT = getPointerTy(DL);
9758         MyFlags.ArgVT = EVT(getPointerTy(DL));
9759         MyFlags.Flags.setSwiftError();
9760         CLI.Ins.push_back(MyFlags);
9761       }
9762     }
9763   }
9764 
9765   // Handle all of the outgoing arguments.
9766   CLI.Outs.clear();
9767   CLI.OutVals.clear();
9768   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9769     SmallVector<EVT, 4> ValueVTs;
9770     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9771     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9772     Type *FinalType = Args[i].Ty;
9773     if (Args[i].IsByVal)
9774       FinalType = Args[i].IndirectType;
9775     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9776         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9777     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9778          ++Value) {
9779       EVT VT = ValueVTs[Value];
9780       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9781       SDValue Op = SDValue(Args[i].Node.getNode(),
9782                            Args[i].Node.getResNo() + Value);
9783       ISD::ArgFlagsTy Flags;
9784 
9785       // Certain targets (such as MIPS), may have a different ABI alignment
9786       // for a type depending on the context. Give the target a chance to
9787       // specify the alignment it wants.
9788       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9789       Flags.setOrigAlign(OriginalAlignment);
9790 
9791       if (Args[i].Ty->isPointerTy()) {
9792         Flags.setPointer();
9793         Flags.setPointerAddrSpace(
9794             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9795       }
9796       if (Args[i].IsZExt)
9797         Flags.setZExt();
9798       if (Args[i].IsSExt)
9799         Flags.setSExt();
9800       if (Args[i].IsInReg) {
9801         // If we are using vectorcall calling convention, a structure that is
9802         // passed InReg - is surely an HVA
9803         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9804             isa<StructType>(FinalType)) {
9805           // The first value of a structure is marked
9806           if (0 == Value)
9807             Flags.setHvaStart();
9808           Flags.setHva();
9809         }
9810         // Set InReg Flag
9811         Flags.setInReg();
9812       }
9813       if (Args[i].IsSRet)
9814         Flags.setSRet();
9815       if (Args[i].IsSwiftSelf)
9816         Flags.setSwiftSelf();
9817       if (Args[i].IsSwiftAsync)
9818         Flags.setSwiftAsync();
9819       if (Args[i].IsSwiftError)
9820         Flags.setSwiftError();
9821       if (Args[i].IsCFGuardTarget)
9822         Flags.setCFGuardTarget();
9823       if (Args[i].IsByVal)
9824         Flags.setByVal();
9825       if (Args[i].IsByRef)
9826         Flags.setByRef();
9827       if (Args[i].IsPreallocated) {
9828         Flags.setPreallocated();
9829         // Set the byval flag for CCAssignFn callbacks that don't know about
9830         // preallocated.  This way we can know how many bytes we should've
9831         // allocated and how many bytes a callee cleanup function will pop.  If
9832         // we port preallocated to more targets, we'll have to add custom
9833         // preallocated handling in the various CC lowering callbacks.
9834         Flags.setByVal();
9835       }
9836       if (Args[i].IsInAlloca) {
9837         Flags.setInAlloca();
9838         // Set the byval flag for CCAssignFn callbacks that don't know about
9839         // inalloca.  This way we can know how many bytes we should've allocated
9840         // and how many bytes a callee cleanup function will pop.  If we port
9841         // inalloca to more targets, we'll have to add custom inalloca handling
9842         // in the various CC lowering callbacks.
9843         Flags.setByVal();
9844       }
9845       Align MemAlign;
9846       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9847         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9848         Flags.setByValSize(FrameSize);
9849 
9850         // info is not there but there are cases it cannot get right.
9851         if (auto MA = Args[i].Alignment)
9852           MemAlign = *MA;
9853         else
9854           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9855       } else if (auto MA = Args[i].Alignment) {
9856         MemAlign = *MA;
9857       } else {
9858         MemAlign = OriginalAlignment;
9859       }
9860       Flags.setMemAlign(MemAlign);
9861       if (Args[i].IsNest)
9862         Flags.setNest();
9863       if (NeedsRegBlock)
9864         Flags.setInConsecutiveRegs();
9865 
9866       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9867                                                  CLI.CallConv, VT);
9868       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9869                                                         CLI.CallConv, VT);
9870       SmallVector<SDValue, 4> Parts(NumParts);
9871       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9872 
9873       if (Args[i].IsSExt)
9874         ExtendKind = ISD::SIGN_EXTEND;
9875       else if (Args[i].IsZExt)
9876         ExtendKind = ISD::ZERO_EXTEND;
9877 
9878       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9879       // for now.
9880       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9881           CanLowerReturn) {
9882         assert((CLI.RetTy == Args[i].Ty ||
9883                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9884                  CLI.RetTy->getPointerAddressSpace() ==
9885                      Args[i].Ty->getPointerAddressSpace())) &&
9886                RetTys.size() == NumValues && "unexpected use of 'returned'");
9887         // Before passing 'returned' to the target lowering code, ensure that
9888         // either the register MVT and the actual EVT are the same size or that
9889         // the return value and argument are extended in the same way; in these
9890         // cases it's safe to pass the argument register value unchanged as the
9891         // return register value (although it's at the target's option whether
9892         // to do so)
9893         // TODO: allow code generation to take advantage of partially preserved
9894         // registers rather than clobbering the entire register when the
9895         // parameter extension method is not compatible with the return
9896         // extension method
9897         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9898             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9899              CLI.RetZExt == Args[i].IsZExt))
9900           Flags.setReturned();
9901       }
9902 
9903       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9904                      CLI.CallConv, ExtendKind);
9905 
9906       for (unsigned j = 0; j != NumParts; ++j) {
9907         // if it isn't first piece, alignment must be 1
9908         // For scalable vectors the scalable part is currently handled
9909         // by individual targets, so we just use the known minimum size here.
9910         ISD::OutputArg MyFlags(
9911             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9912             i < CLI.NumFixedArgs, i,
9913             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9914         if (NumParts > 1 && j == 0)
9915           MyFlags.Flags.setSplit();
9916         else if (j != 0) {
9917           MyFlags.Flags.setOrigAlign(Align(1));
9918           if (j == NumParts - 1)
9919             MyFlags.Flags.setSplitEnd();
9920         }
9921 
9922         CLI.Outs.push_back(MyFlags);
9923         CLI.OutVals.push_back(Parts[j]);
9924       }
9925 
9926       if (NeedsRegBlock && Value == NumValues - 1)
9927         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9928     }
9929   }
9930 
9931   SmallVector<SDValue, 4> InVals;
9932   CLI.Chain = LowerCall(CLI, InVals);
9933 
9934   // Update CLI.InVals to use outside of this function.
9935   CLI.InVals = InVals;
9936 
9937   // Verify that the target's LowerCall behaved as expected.
9938   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9939          "LowerCall didn't return a valid chain!");
9940   assert((!CLI.IsTailCall || InVals.empty()) &&
9941          "LowerCall emitted a return value for a tail call!");
9942   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9943          "LowerCall didn't emit the correct number of values!");
9944 
9945   // For a tail call, the return value is merely live-out and there aren't
9946   // any nodes in the DAG representing it. Return a special value to
9947   // indicate that a tail call has been emitted and no more Instructions
9948   // should be processed in the current block.
9949   if (CLI.IsTailCall) {
9950     CLI.DAG.setRoot(CLI.Chain);
9951     return std::make_pair(SDValue(), SDValue());
9952   }
9953 
9954 #ifndef NDEBUG
9955   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9956     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9957     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9958            "LowerCall emitted a value with the wrong type!");
9959   }
9960 #endif
9961 
9962   SmallVector<SDValue, 4> ReturnValues;
9963   if (!CanLowerReturn) {
9964     // The instruction result is the result of loading from the
9965     // hidden sret parameter.
9966     SmallVector<EVT, 1> PVTs;
9967     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9968 
9969     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9970     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9971     EVT PtrVT = PVTs[0];
9972 
9973     unsigned NumValues = RetTys.size();
9974     ReturnValues.resize(NumValues);
9975     SmallVector<SDValue, 4> Chains(NumValues);
9976 
9977     // An aggregate return value cannot wrap around the address space, so
9978     // offsets to its parts don't wrap either.
9979     SDNodeFlags Flags;
9980     Flags.setNoUnsignedWrap(true);
9981 
9982     MachineFunction &MF = CLI.DAG.getMachineFunction();
9983     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9984     for (unsigned i = 0; i < NumValues; ++i) {
9985       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9986                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9987                                                         PtrVT), Flags);
9988       SDValue L = CLI.DAG.getLoad(
9989           RetTys[i], CLI.DL, CLI.Chain, Add,
9990           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9991                                             DemoteStackIdx, Offsets[i]),
9992           HiddenSRetAlign);
9993       ReturnValues[i] = L;
9994       Chains[i] = L.getValue(1);
9995     }
9996 
9997     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9998   } else {
9999     // Collect the legal value parts into potentially illegal values
10000     // that correspond to the original function's return values.
10001     Optional<ISD::NodeType> AssertOp;
10002     if (CLI.RetSExt)
10003       AssertOp = ISD::AssertSext;
10004     else if (CLI.RetZExt)
10005       AssertOp = ISD::AssertZext;
10006     unsigned CurReg = 0;
10007     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10008       EVT VT = RetTys[I];
10009       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10010                                                      CLI.CallConv, VT);
10011       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10012                                                        CLI.CallConv, VT);
10013 
10014       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10015                                               NumRegs, RegisterVT, VT, nullptr,
10016                                               CLI.CallConv, AssertOp));
10017       CurReg += NumRegs;
10018     }
10019 
10020     // For a function returning void, there is no return value. We can't create
10021     // such a node, so we just return a null return value in that case. In
10022     // that case, nothing will actually look at the value.
10023     if (ReturnValues.empty())
10024       return std::make_pair(SDValue(), CLI.Chain);
10025   }
10026 
10027   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10028                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10029   return std::make_pair(Res, CLI.Chain);
10030 }
10031 
10032 /// Places new result values for the node in Results (their number
10033 /// and types must exactly match those of the original return values of
10034 /// the node), or leaves Results empty, which indicates that the node is not
10035 /// to be custom lowered after all.
10036 void TargetLowering::LowerOperationWrapper(SDNode *N,
10037                                            SmallVectorImpl<SDValue> &Results,
10038                                            SelectionDAG &DAG) const {
10039   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10040 
10041   if (!Res.getNode())
10042     return;
10043 
10044   // If the original node has one result, take the return value from
10045   // LowerOperation as is. It might not be result number 0.
10046   if (N->getNumValues() == 1) {
10047     Results.push_back(Res);
10048     return;
10049   }
10050 
10051   // If the original node has multiple results, then the return node should
10052   // have the same number of results.
10053   assert((N->getNumValues() == Res->getNumValues()) &&
10054       "Lowering returned the wrong number of results!");
10055 
10056   // Places new result values base on N result number.
10057   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10058     Results.push_back(Res.getValue(I));
10059 }
10060 
10061 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10062   llvm_unreachable("LowerOperation not implemented for this target!");
10063 }
10064 
10065 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10066                                                      unsigned Reg,
10067                                                      ISD::NodeType ExtendType) {
10068   SDValue Op = getNonRegisterValue(V);
10069   assert((Op.getOpcode() != ISD::CopyFromReg ||
10070           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10071          "Copy from a reg to the same reg!");
10072   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10073 
10074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10075   // If this is an InlineAsm we have to match the registers required, not the
10076   // notional registers required by the type.
10077 
10078   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10079                    None); // This is not an ABI copy.
10080   SDValue Chain = DAG.getEntryNode();
10081 
10082   if (ExtendType == ISD::ANY_EXTEND) {
10083     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10084     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10085       ExtendType = PreferredExtendIt->second;
10086   }
10087   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10088   PendingExports.push_back(Chain);
10089 }
10090 
10091 #include "llvm/CodeGen/SelectionDAGISel.h"
10092 
10093 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10094 /// entry block, return true.  This includes arguments used by switches, since
10095 /// the switch may expand into multiple basic blocks.
10096 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10097   // With FastISel active, we may be splitting blocks, so force creation
10098   // of virtual registers for all non-dead arguments.
10099   if (FastISel)
10100     return A->use_empty();
10101 
10102   const BasicBlock &Entry = A->getParent()->front();
10103   for (const User *U : A->users())
10104     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10105       return false;  // Use not in entry block.
10106 
10107   return true;
10108 }
10109 
10110 using ArgCopyElisionMapTy =
10111     DenseMap<const Argument *,
10112              std::pair<const AllocaInst *, const StoreInst *>>;
10113 
10114 /// Scan the entry block of the function in FuncInfo for arguments that look
10115 /// like copies into a local alloca. Record any copied arguments in
10116 /// ArgCopyElisionCandidates.
10117 static void
10118 findArgumentCopyElisionCandidates(const DataLayout &DL,
10119                                   FunctionLoweringInfo *FuncInfo,
10120                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10121   // Record the state of every static alloca used in the entry block. Argument
10122   // allocas are all used in the entry block, so we need approximately as many
10123   // entries as we have arguments.
10124   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10125   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10126   unsigned NumArgs = FuncInfo->Fn->arg_size();
10127   StaticAllocas.reserve(NumArgs * 2);
10128 
10129   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10130     if (!V)
10131       return nullptr;
10132     V = V->stripPointerCasts();
10133     const auto *AI = dyn_cast<AllocaInst>(V);
10134     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10135       return nullptr;
10136     auto Iter = StaticAllocas.insert({AI, Unknown});
10137     return &Iter.first->second;
10138   };
10139 
10140   // Look for stores of arguments to static allocas. Look through bitcasts and
10141   // GEPs to handle type coercions, as long as the alloca is fully initialized
10142   // by the store. Any non-store use of an alloca escapes it and any subsequent
10143   // unanalyzed store might write it.
10144   // FIXME: Handle structs initialized with multiple stores.
10145   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10146     // Look for stores, and handle non-store uses conservatively.
10147     const auto *SI = dyn_cast<StoreInst>(&I);
10148     if (!SI) {
10149       // We will look through cast uses, so ignore them completely.
10150       if (I.isCast())
10151         continue;
10152       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10153       // to allocas.
10154       if (I.isDebugOrPseudoInst())
10155         continue;
10156       // This is an unknown instruction. Assume it escapes or writes to all
10157       // static alloca operands.
10158       for (const Use &U : I.operands()) {
10159         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10160           *Info = StaticAllocaInfo::Clobbered;
10161       }
10162       continue;
10163     }
10164 
10165     // If the stored value is a static alloca, mark it as escaped.
10166     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10167       *Info = StaticAllocaInfo::Clobbered;
10168 
10169     // Check if the destination is a static alloca.
10170     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10171     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10172     if (!Info)
10173       continue;
10174     const AllocaInst *AI = cast<AllocaInst>(Dst);
10175 
10176     // Skip allocas that have been initialized or clobbered.
10177     if (*Info != StaticAllocaInfo::Unknown)
10178       continue;
10179 
10180     // Check if the stored value is an argument, and that this store fully
10181     // initializes the alloca.
10182     // If the argument type has padding bits we can't directly forward a pointer
10183     // as the upper bits may contain garbage.
10184     // Don't elide copies from the same argument twice.
10185     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10186     const auto *Arg = dyn_cast<Argument>(Val);
10187     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10188         Arg->getType()->isEmptyTy() ||
10189         DL.getTypeStoreSize(Arg->getType()) !=
10190             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10191         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10192         ArgCopyElisionCandidates.count(Arg)) {
10193       *Info = StaticAllocaInfo::Clobbered;
10194       continue;
10195     }
10196 
10197     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10198                       << '\n');
10199 
10200     // Mark this alloca and store for argument copy elision.
10201     *Info = StaticAllocaInfo::Elidable;
10202     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10203 
10204     // Stop scanning if we've seen all arguments. This will happen early in -O0
10205     // builds, which is useful, because -O0 builds have large entry blocks and
10206     // many allocas.
10207     if (ArgCopyElisionCandidates.size() == NumArgs)
10208       break;
10209   }
10210 }
10211 
10212 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10213 /// ArgVal is a load from a suitable fixed stack object.
10214 static void tryToElideArgumentCopy(
10215     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10216     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10217     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10218     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10219     SDValue ArgVal, bool &ArgHasUses) {
10220   // Check if this is a load from a fixed stack object.
10221   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10222   if (!LNode)
10223     return;
10224   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10225   if (!FINode)
10226     return;
10227 
10228   // Check that the fixed stack object is the right size and alignment.
10229   // Look at the alignment that the user wrote on the alloca instead of looking
10230   // at the stack object.
10231   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10232   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10233   const AllocaInst *AI = ArgCopyIter->second.first;
10234   int FixedIndex = FINode->getIndex();
10235   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10236   int OldIndex = AllocaIndex;
10237   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10238   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10239     LLVM_DEBUG(
10240         dbgs() << "  argument copy elision failed due to bad fixed stack "
10241                   "object size\n");
10242     return;
10243   }
10244   Align RequiredAlignment = AI->getAlign();
10245   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10246     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10247                          "greater than stack argument alignment ("
10248                       << DebugStr(RequiredAlignment) << " vs "
10249                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10250     return;
10251   }
10252 
10253   // Perform the elision. Delete the old stack object and replace its only use
10254   // in the variable info map. Mark the stack object as mutable.
10255   LLVM_DEBUG({
10256     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10257            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10258            << '\n';
10259   });
10260   MFI.RemoveStackObject(OldIndex);
10261   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10262   AllocaIndex = FixedIndex;
10263   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10264   Chains.push_back(ArgVal.getValue(1));
10265 
10266   // Avoid emitting code for the store implementing the copy.
10267   const StoreInst *SI = ArgCopyIter->second.second;
10268   ElidedArgCopyInstrs.insert(SI);
10269 
10270   // Check for uses of the argument again so that we can avoid exporting ArgVal
10271   // if it is't used by anything other than the store.
10272   for (const Value *U : Arg.users()) {
10273     if (U != SI) {
10274       ArgHasUses = true;
10275       break;
10276     }
10277   }
10278 }
10279 
10280 void SelectionDAGISel::LowerArguments(const Function &F) {
10281   SelectionDAG &DAG = SDB->DAG;
10282   SDLoc dl = SDB->getCurSDLoc();
10283   const DataLayout &DL = DAG.getDataLayout();
10284   SmallVector<ISD::InputArg, 16> Ins;
10285 
10286   // In Naked functions we aren't going to save any registers.
10287   if (F.hasFnAttribute(Attribute::Naked))
10288     return;
10289 
10290   if (!FuncInfo->CanLowerReturn) {
10291     // Put in an sret pointer parameter before all the other parameters.
10292     SmallVector<EVT, 1> ValueVTs;
10293     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10294                     F.getReturnType()->getPointerTo(
10295                         DAG.getDataLayout().getAllocaAddrSpace()),
10296                     ValueVTs);
10297 
10298     // NOTE: Assuming that a pointer will never break down to more than one VT
10299     // or one register.
10300     ISD::ArgFlagsTy Flags;
10301     Flags.setSRet();
10302     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10303     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10304                          ISD::InputArg::NoArgIndex, 0);
10305     Ins.push_back(RetArg);
10306   }
10307 
10308   // Look for stores of arguments to static allocas. Mark such arguments with a
10309   // flag to ask the target to give us the memory location of that argument if
10310   // available.
10311   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10312   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10313                                     ArgCopyElisionCandidates);
10314 
10315   // Set up the incoming argument description vector.
10316   for (const Argument &Arg : F.args()) {
10317     unsigned ArgNo = Arg.getArgNo();
10318     SmallVector<EVT, 4> ValueVTs;
10319     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10320     bool isArgValueUsed = !Arg.use_empty();
10321     unsigned PartBase = 0;
10322     Type *FinalType = Arg.getType();
10323     if (Arg.hasAttribute(Attribute::ByVal))
10324       FinalType = Arg.getParamByValType();
10325     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10326         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10327     for (unsigned Value = 0, NumValues = ValueVTs.size();
10328          Value != NumValues; ++Value) {
10329       EVT VT = ValueVTs[Value];
10330       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10331       ISD::ArgFlagsTy Flags;
10332 
10333 
10334       if (Arg.getType()->isPointerTy()) {
10335         Flags.setPointer();
10336         Flags.setPointerAddrSpace(
10337             cast<PointerType>(Arg.getType())->getAddressSpace());
10338       }
10339       if (Arg.hasAttribute(Attribute::ZExt))
10340         Flags.setZExt();
10341       if (Arg.hasAttribute(Attribute::SExt))
10342         Flags.setSExt();
10343       if (Arg.hasAttribute(Attribute::InReg)) {
10344         // If we are using vectorcall calling convention, a structure that is
10345         // passed InReg - is surely an HVA
10346         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10347             isa<StructType>(Arg.getType())) {
10348           // The first value of a structure is marked
10349           if (0 == Value)
10350             Flags.setHvaStart();
10351           Flags.setHva();
10352         }
10353         // Set InReg Flag
10354         Flags.setInReg();
10355       }
10356       if (Arg.hasAttribute(Attribute::StructRet))
10357         Flags.setSRet();
10358       if (Arg.hasAttribute(Attribute::SwiftSelf))
10359         Flags.setSwiftSelf();
10360       if (Arg.hasAttribute(Attribute::SwiftAsync))
10361         Flags.setSwiftAsync();
10362       if (Arg.hasAttribute(Attribute::SwiftError))
10363         Flags.setSwiftError();
10364       if (Arg.hasAttribute(Attribute::ByVal))
10365         Flags.setByVal();
10366       if (Arg.hasAttribute(Attribute::ByRef))
10367         Flags.setByRef();
10368       if (Arg.hasAttribute(Attribute::InAlloca)) {
10369         Flags.setInAlloca();
10370         // Set the byval flag for CCAssignFn callbacks that don't know about
10371         // inalloca.  This way we can know how many bytes we should've allocated
10372         // and how many bytes a callee cleanup function will pop.  If we port
10373         // inalloca to more targets, we'll have to add custom inalloca handling
10374         // in the various CC lowering callbacks.
10375         Flags.setByVal();
10376       }
10377       if (Arg.hasAttribute(Attribute::Preallocated)) {
10378         Flags.setPreallocated();
10379         // Set the byval flag for CCAssignFn callbacks that don't know about
10380         // preallocated.  This way we can know how many bytes we should've
10381         // allocated and how many bytes a callee cleanup function will pop.  If
10382         // we port preallocated to more targets, we'll have to add custom
10383         // preallocated handling in the various CC lowering callbacks.
10384         Flags.setByVal();
10385       }
10386 
10387       // Certain targets (such as MIPS), may have a different ABI alignment
10388       // for a type depending on the context. Give the target a chance to
10389       // specify the alignment it wants.
10390       const Align OriginalAlignment(
10391           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10392       Flags.setOrigAlign(OriginalAlignment);
10393 
10394       Align MemAlign;
10395       Type *ArgMemTy = nullptr;
10396       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10397           Flags.isByRef()) {
10398         if (!ArgMemTy)
10399           ArgMemTy = Arg.getPointeeInMemoryValueType();
10400 
10401         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10402 
10403         // For in-memory arguments, size and alignment should be passed from FE.
10404         // BE will guess if this info is not there but there are cases it cannot
10405         // get right.
10406         if (auto ParamAlign = Arg.getParamStackAlign())
10407           MemAlign = *ParamAlign;
10408         else if ((ParamAlign = Arg.getParamAlign()))
10409           MemAlign = *ParamAlign;
10410         else
10411           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10412         if (Flags.isByRef())
10413           Flags.setByRefSize(MemSize);
10414         else
10415           Flags.setByValSize(MemSize);
10416       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10417         MemAlign = *ParamAlign;
10418       } else {
10419         MemAlign = OriginalAlignment;
10420       }
10421       Flags.setMemAlign(MemAlign);
10422 
10423       if (Arg.hasAttribute(Attribute::Nest))
10424         Flags.setNest();
10425       if (NeedsRegBlock)
10426         Flags.setInConsecutiveRegs();
10427       if (ArgCopyElisionCandidates.count(&Arg))
10428         Flags.setCopyElisionCandidate();
10429       if (Arg.hasAttribute(Attribute::Returned))
10430         Flags.setReturned();
10431 
10432       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10433           *CurDAG->getContext(), F.getCallingConv(), VT);
10434       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10435           *CurDAG->getContext(), F.getCallingConv(), VT);
10436       for (unsigned i = 0; i != NumRegs; ++i) {
10437         // For scalable vectors, use the minimum size; individual targets
10438         // are responsible for handling scalable vector arguments and
10439         // return values.
10440         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10441                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10442         if (NumRegs > 1 && i == 0)
10443           MyFlags.Flags.setSplit();
10444         // if it isn't first piece, alignment must be 1
10445         else if (i > 0) {
10446           MyFlags.Flags.setOrigAlign(Align(1));
10447           if (i == NumRegs - 1)
10448             MyFlags.Flags.setSplitEnd();
10449         }
10450         Ins.push_back(MyFlags);
10451       }
10452       if (NeedsRegBlock && Value == NumValues - 1)
10453         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10454       PartBase += VT.getStoreSize().getKnownMinSize();
10455     }
10456   }
10457 
10458   // Call the target to set up the argument values.
10459   SmallVector<SDValue, 8> InVals;
10460   SDValue NewRoot = TLI->LowerFormalArguments(
10461       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10462 
10463   // Verify that the target's LowerFormalArguments behaved as expected.
10464   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10465          "LowerFormalArguments didn't return a valid chain!");
10466   assert(InVals.size() == Ins.size() &&
10467          "LowerFormalArguments didn't emit the correct number of values!");
10468   LLVM_DEBUG({
10469     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10470       assert(InVals[i].getNode() &&
10471              "LowerFormalArguments emitted a null value!");
10472       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10473              "LowerFormalArguments emitted a value with the wrong type!");
10474     }
10475   });
10476 
10477   // Update the DAG with the new chain value resulting from argument lowering.
10478   DAG.setRoot(NewRoot);
10479 
10480   // Set up the argument values.
10481   unsigned i = 0;
10482   if (!FuncInfo->CanLowerReturn) {
10483     // Create a virtual register for the sret pointer, and put in a copy
10484     // from the sret argument into it.
10485     SmallVector<EVT, 1> ValueVTs;
10486     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10487                     F.getReturnType()->getPointerTo(
10488                         DAG.getDataLayout().getAllocaAddrSpace()),
10489                     ValueVTs);
10490     MVT VT = ValueVTs[0].getSimpleVT();
10491     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10492     Optional<ISD::NodeType> AssertOp;
10493     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10494                                         nullptr, F.getCallingConv(), AssertOp);
10495 
10496     MachineFunction& MF = SDB->DAG.getMachineFunction();
10497     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10498     Register SRetReg =
10499         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10500     FuncInfo->DemoteRegister = SRetReg;
10501     NewRoot =
10502         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10503     DAG.setRoot(NewRoot);
10504 
10505     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10506     ++i;
10507   }
10508 
10509   SmallVector<SDValue, 4> Chains;
10510   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10511   for (const Argument &Arg : F.args()) {
10512     SmallVector<SDValue, 4> ArgValues;
10513     SmallVector<EVT, 4> ValueVTs;
10514     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10515     unsigned NumValues = ValueVTs.size();
10516     if (NumValues == 0)
10517       continue;
10518 
10519     bool ArgHasUses = !Arg.use_empty();
10520 
10521     // Elide the copying store if the target loaded this argument from a
10522     // suitable fixed stack object.
10523     if (Ins[i].Flags.isCopyElisionCandidate()) {
10524       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10525                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10526                              InVals[i], ArgHasUses);
10527     }
10528 
10529     // If this argument is unused then remember its value. It is used to generate
10530     // debugging information.
10531     bool isSwiftErrorArg =
10532         TLI->supportSwiftError() &&
10533         Arg.hasAttribute(Attribute::SwiftError);
10534     if (!ArgHasUses && !isSwiftErrorArg) {
10535       SDB->setUnusedArgValue(&Arg, InVals[i]);
10536 
10537       // Also remember any frame index for use in FastISel.
10538       if (FrameIndexSDNode *FI =
10539           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10540         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10541     }
10542 
10543     for (unsigned Val = 0; Val != NumValues; ++Val) {
10544       EVT VT = ValueVTs[Val];
10545       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10546                                                       F.getCallingConv(), VT);
10547       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10548           *CurDAG->getContext(), F.getCallingConv(), VT);
10549 
10550       // Even an apparent 'unused' swifterror argument needs to be returned. So
10551       // we do generate a copy for it that can be used on return from the
10552       // function.
10553       if (ArgHasUses || isSwiftErrorArg) {
10554         Optional<ISD::NodeType> AssertOp;
10555         if (Arg.hasAttribute(Attribute::SExt))
10556           AssertOp = ISD::AssertSext;
10557         else if (Arg.hasAttribute(Attribute::ZExt))
10558           AssertOp = ISD::AssertZext;
10559 
10560         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10561                                              PartVT, VT, nullptr,
10562                                              F.getCallingConv(), AssertOp));
10563       }
10564 
10565       i += NumParts;
10566     }
10567 
10568     // We don't need to do anything else for unused arguments.
10569     if (ArgValues.empty())
10570       continue;
10571 
10572     // Note down frame index.
10573     if (FrameIndexSDNode *FI =
10574         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10575       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10576 
10577     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10578                                      SDB->getCurSDLoc());
10579 
10580     SDB->setValue(&Arg, Res);
10581     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10582       // We want to associate the argument with the frame index, among
10583       // involved operands, that correspond to the lowest address. The
10584       // getCopyFromParts function, called earlier, is swapping the order of
10585       // the operands to BUILD_PAIR depending on endianness. The result of
10586       // that swapping is that the least significant bits of the argument will
10587       // be in the first operand of the BUILD_PAIR node, and the most
10588       // significant bits will be in the second operand.
10589       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10590       if (LoadSDNode *LNode =
10591           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10592         if (FrameIndexSDNode *FI =
10593             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10594           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10595     }
10596 
10597     // Analyses past this point are naive and don't expect an assertion.
10598     if (Res.getOpcode() == ISD::AssertZext)
10599       Res = Res.getOperand(0);
10600 
10601     // Update the SwiftErrorVRegDefMap.
10602     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10603       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10604       if (Register::isVirtualRegister(Reg))
10605         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10606                                    Reg);
10607     }
10608 
10609     // If this argument is live outside of the entry block, insert a copy from
10610     // wherever we got it to the vreg that other BB's will reference it as.
10611     if (Res.getOpcode() == ISD::CopyFromReg) {
10612       // If we can, though, try to skip creating an unnecessary vreg.
10613       // FIXME: This isn't very clean... it would be nice to make this more
10614       // general.
10615       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10616       if (Register::isVirtualRegister(Reg)) {
10617         FuncInfo->ValueMap[&Arg] = Reg;
10618         continue;
10619       }
10620     }
10621     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10622       FuncInfo->InitializeRegForValue(&Arg);
10623       SDB->CopyToExportRegsIfNeeded(&Arg);
10624     }
10625   }
10626 
10627   if (!Chains.empty()) {
10628     Chains.push_back(NewRoot);
10629     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10630   }
10631 
10632   DAG.setRoot(NewRoot);
10633 
10634   assert(i == InVals.size() && "Argument register count mismatch!");
10635 
10636   // If any argument copy elisions occurred and we have debug info, update the
10637   // stale frame indices used in the dbg.declare variable info table.
10638   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10639   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10640     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10641       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10642       if (I != ArgCopyElisionFrameIndexMap.end())
10643         VI.Slot = I->second;
10644     }
10645   }
10646 
10647   // Finally, if the target has anything special to do, allow it to do so.
10648   emitFunctionEntryCode();
10649 }
10650 
10651 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10652 /// ensure constants are generated when needed.  Remember the virtual registers
10653 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10654 /// directly add them, because expansion might result in multiple MBB's for one
10655 /// BB.  As such, the start of the BB might correspond to a different MBB than
10656 /// the end.
10657 void
10658 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10660   const Instruction *TI = LLVMBB->getTerminator();
10661 
10662   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10663 
10664   // Check PHI nodes in successors that expect a value to be available from this
10665   // block.
10666   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10667     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10668     if (!isa<PHINode>(SuccBB->begin())) continue;
10669     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10670 
10671     // If this terminator has multiple identical successors (common for
10672     // switches), only handle each succ once.
10673     if (!SuccsHandled.insert(SuccMBB).second)
10674       continue;
10675 
10676     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10677 
10678     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10679     // nodes and Machine PHI nodes, but the incoming operands have not been
10680     // emitted yet.
10681     for (const PHINode &PN : SuccBB->phis()) {
10682       // Ignore dead phi's.
10683       if (PN.use_empty())
10684         continue;
10685 
10686       // Skip empty types
10687       if (PN.getType()->isEmptyTy())
10688         continue;
10689 
10690       unsigned Reg;
10691       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10692 
10693       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10694         unsigned &RegOut = ConstantsOut[C];
10695         if (RegOut == 0) {
10696           RegOut = FuncInfo.CreateRegs(C);
10697           // We need to zero/sign extend ConstantInt phi operands to match
10698           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10699           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10700           if (auto *CI = dyn_cast<ConstantInt>(C))
10701             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10702                                                     : ISD::ZERO_EXTEND;
10703           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10704         }
10705         Reg = RegOut;
10706       } else {
10707         DenseMap<const Value *, Register>::iterator I =
10708           FuncInfo.ValueMap.find(PHIOp);
10709         if (I != FuncInfo.ValueMap.end())
10710           Reg = I->second;
10711         else {
10712           assert(isa<AllocaInst>(PHIOp) &&
10713                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10714                  "Didn't codegen value into a register!??");
10715           Reg = FuncInfo.CreateRegs(PHIOp);
10716           CopyValueToVirtualRegister(PHIOp, Reg);
10717         }
10718       }
10719 
10720       // Remember that this register needs to added to the machine PHI node as
10721       // the input for this MBB.
10722       SmallVector<EVT, 4> ValueVTs;
10723       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10724       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10725         EVT VT = ValueVTs[vti];
10726         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10727         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10728           FuncInfo.PHINodesToUpdate.push_back(
10729               std::make_pair(&*MBBI++, Reg + i));
10730         Reg += NumRegisters;
10731       }
10732     }
10733   }
10734 
10735   ConstantsOut.clear();
10736 }
10737 
10738 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10739   MachineFunction::iterator I(MBB);
10740   if (++I == FuncInfo.MF->end())
10741     return nullptr;
10742   return &*I;
10743 }
10744 
10745 /// During lowering new call nodes can be created (such as memset, etc.).
10746 /// Those will become new roots of the current DAG, but complications arise
10747 /// when they are tail calls. In such cases, the call lowering will update
10748 /// the root, but the builder still needs to know that a tail call has been
10749 /// lowered in order to avoid generating an additional return.
10750 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10751   // If the node is null, we do have a tail call.
10752   if (MaybeTC.getNode() != nullptr)
10753     DAG.setRoot(MaybeTC);
10754   else
10755     HasTailCall = true;
10756 }
10757 
10758 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10759                                         MachineBasicBlock *SwitchMBB,
10760                                         MachineBasicBlock *DefaultMBB) {
10761   MachineFunction *CurMF = FuncInfo.MF;
10762   MachineBasicBlock *NextMBB = nullptr;
10763   MachineFunction::iterator BBI(W.MBB);
10764   if (++BBI != FuncInfo.MF->end())
10765     NextMBB = &*BBI;
10766 
10767   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10768 
10769   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10770 
10771   if (Size == 2 && W.MBB == SwitchMBB) {
10772     // If any two of the cases has the same destination, and if one value
10773     // is the same as the other, but has one bit unset that the other has set,
10774     // use bit manipulation to do two compares at once.  For example:
10775     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10776     // TODO: This could be extended to merge any 2 cases in switches with 3
10777     // cases.
10778     // TODO: Handle cases where W.CaseBB != SwitchBB.
10779     CaseCluster &Small = *W.FirstCluster;
10780     CaseCluster &Big = *W.LastCluster;
10781 
10782     if (Small.Low == Small.High && Big.Low == Big.High &&
10783         Small.MBB == Big.MBB) {
10784       const APInt &SmallValue = Small.Low->getValue();
10785       const APInt &BigValue = Big.Low->getValue();
10786 
10787       // Check that there is only one bit different.
10788       APInt CommonBit = BigValue ^ SmallValue;
10789       if (CommonBit.isPowerOf2()) {
10790         SDValue CondLHS = getValue(Cond);
10791         EVT VT = CondLHS.getValueType();
10792         SDLoc DL = getCurSDLoc();
10793 
10794         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10795                                  DAG.getConstant(CommonBit, DL, VT));
10796         SDValue Cond = DAG.getSetCC(
10797             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10798             ISD::SETEQ);
10799 
10800         // Update successor info.
10801         // Both Small and Big will jump to Small.BB, so we sum up the
10802         // probabilities.
10803         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10804         if (BPI)
10805           addSuccessorWithProb(
10806               SwitchMBB, DefaultMBB,
10807               // The default destination is the first successor in IR.
10808               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10809         else
10810           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10811 
10812         // Insert the true branch.
10813         SDValue BrCond =
10814             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10815                         DAG.getBasicBlock(Small.MBB));
10816         // Insert the false branch.
10817         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10818                              DAG.getBasicBlock(DefaultMBB));
10819 
10820         DAG.setRoot(BrCond);
10821         return;
10822       }
10823     }
10824   }
10825 
10826   if (TM.getOptLevel() != CodeGenOpt::None) {
10827     // Here, we order cases by probability so the most likely case will be
10828     // checked first. However, two clusters can have the same probability in
10829     // which case their relative ordering is non-deterministic. So we use Low
10830     // as a tie-breaker as clusters are guaranteed to never overlap.
10831     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10832                [](const CaseCluster &a, const CaseCluster &b) {
10833       return a.Prob != b.Prob ?
10834              a.Prob > b.Prob :
10835              a.Low->getValue().slt(b.Low->getValue());
10836     });
10837 
10838     // Rearrange the case blocks so that the last one falls through if possible
10839     // without changing the order of probabilities.
10840     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10841       --I;
10842       if (I->Prob > W.LastCluster->Prob)
10843         break;
10844       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10845         std::swap(*I, *W.LastCluster);
10846         break;
10847       }
10848     }
10849   }
10850 
10851   // Compute total probability.
10852   BranchProbability DefaultProb = W.DefaultProb;
10853   BranchProbability UnhandledProbs = DefaultProb;
10854   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10855     UnhandledProbs += I->Prob;
10856 
10857   MachineBasicBlock *CurMBB = W.MBB;
10858   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10859     bool FallthroughUnreachable = false;
10860     MachineBasicBlock *Fallthrough;
10861     if (I == W.LastCluster) {
10862       // For the last cluster, fall through to the default destination.
10863       Fallthrough = DefaultMBB;
10864       FallthroughUnreachable = isa<UnreachableInst>(
10865           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10866     } else {
10867       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10868       CurMF->insert(BBI, Fallthrough);
10869       // Put Cond in a virtual register to make it available from the new blocks.
10870       ExportFromCurrentBlock(Cond);
10871     }
10872     UnhandledProbs -= I->Prob;
10873 
10874     switch (I->Kind) {
10875       case CC_JumpTable: {
10876         // FIXME: Optimize away range check based on pivot comparisons.
10877         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10878         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10879 
10880         // The jump block hasn't been inserted yet; insert it here.
10881         MachineBasicBlock *JumpMBB = JT->MBB;
10882         CurMF->insert(BBI, JumpMBB);
10883 
10884         auto JumpProb = I->Prob;
10885         auto FallthroughProb = UnhandledProbs;
10886 
10887         // If the default statement is a target of the jump table, we evenly
10888         // distribute the default probability to successors of CurMBB. Also
10889         // update the probability on the edge from JumpMBB to Fallthrough.
10890         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10891                                               SE = JumpMBB->succ_end();
10892              SI != SE; ++SI) {
10893           if (*SI == DefaultMBB) {
10894             JumpProb += DefaultProb / 2;
10895             FallthroughProb -= DefaultProb / 2;
10896             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10897             JumpMBB->normalizeSuccProbs();
10898             break;
10899           }
10900         }
10901 
10902         if (FallthroughUnreachable)
10903           JTH->FallthroughUnreachable = true;
10904 
10905         if (!JTH->FallthroughUnreachable)
10906           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10907         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10908         CurMBB->normalizeSuccProbs();
10909 
10910         // The jump table header will be inserted in our current block, do the
10911         // range check, and fall through to our fallthrough block.
10912         JTH->HeaderBB = CurMBB;
10913         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10914 
10915         // If we're in the right place, emit the jump table header right now.
10916         if (CurMBB == SwitchMBB) {
10917           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10918           JTH->Emitted = true;
10919         }
10920         break;
10921       }
10922       case CC_BitTests: {
10923         // FIXME: Optimize away range check based on pivot comparisons.
10924         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10925 
10926         // The bit test blocks haven't been inserted yet; insert them here.
10927         for (BitTestCase &BTC : BTB->Cases)
10928           CurMF->insert(BBI, BTC.ThisBB);
10929 
10930         // Fill in fields of the BitTestBlock.
10931         BTB->Parent = CurMBB;
10932         BTB->Default = Fallthrough;
10933 
10934         BTB->DefaultProb = UnhandledProbs;
10935         // If the cases in bit test don't form a contiguous range, we evenly
10936         // distribute the probability on the edge to Fallthrough to two
10937         // successors of CurMBB.
10938         if (!BTB->ContiguousRange) {
10939           BTB->Prob += DefaultProb / 2;
10940           BTB->DefaultProb -= DefaultProb / 2;
10941         }
10942 
10943         if (FallthroughUnreachable)
10944           BTB->FallthroughUnreachable = true;
10945 
10946         // If we're in the right place, emit the bit test header right now.
10947         if (CurMBB == SwitchMBB) {
10948           visitBitTestHeader(*BTB, SwitchMBB);
10949           BTB->Emitted = true;
10950         }
10951         break;
10952       }
10953       case CC_Range: {
10954         const Value *RHS, *LHS, *MHS;
10955         ISD::CondCode CC;
10956         if (I->Low == I->High) {
10957           // Check Cond == I->Low.
10958           CC = ISD::SETEQ;
10959           LHS = Cond;
10960           RHS=I->Low;
10961           MHS = nullptr;
10962         } else {
10963           // Check I->Low <= Cond <= I->High.
10964           CC = ISD::SETLE;
10965           LHS = I->Low;
10966           MHS = Cond;
10967           RHS = I->High;
10968         }
10969 
10970         // If Fallthrough is unreachable, fold away the comparison.
10971         if (FallthroughUnreachable)
10972           CC = ISD::SETTRUE;
10973 
10974         // The false probability is the sum of all unhandled cases.
10975         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10976                      getCurSDLoc(), I->Prob, UnhandledProbs);
10977 
10978         if (CurMBB == SwitchMBB)
10979           visitSwitchCase(CB, SwitchMBB);
10980         else
10981           SL->SwitchCases.push_back(CB);
10982 
10983         break;
10984       }
10985     }
10986     CurMBB = Fallthrough;
10987   }
10988 }
10989 
10990 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10991                                               CaseClusterIt First,
10992                                               CaseClusterIt Last) {
10993   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10994     if (X.Prob != CC.Prob)
10995       return X.Prob > CC.Prob;
10996 
10997     // Ties are broken by comparing the case value.
10998     return X.Low->getValue().slt(CC.Low->getValue());
10999   });
11000 }
11001 
11002 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11003                                         const SwitchWorkListItem &W,
11004                                         Value *Cond,
11005                                         MachineBasicBlock *SwitchMBB) {
11006   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11007          "Clusters not sorted?");
11008 
11009   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11010 
11011   // Balance the tree based on branch probabilities to create a near-optimal (in
11012   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11013   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11014   CaseClusterIt LastLeft = W.FirstCluster;
11015   CaseClusterIt FirstRight = W.LastCluster;
11016   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11017   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11018 
11019   // Move LastLeft and FirstRight towards each other from opposite directions to
11020   // find a partitioning of the clusters which balances the probability on both
11021   // sides. If LeftProb and RightProb are equal, alternate which side is
11022   // taken to ensure 0-probability nodes are distributed evenly.
11023   unsigned I = 0;
11024   while (LastLeft + 1 < FirstRight) {
11025     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11026       LeftProb += (++LastLeft)->Prob;
11027     else
11028       RightProb += (--FirstRight)->Prob;
11029     I++;
11030   }
11031 
11032   while (true) {
11033     // Our binary search tree differs from a typical BST in that ours can have up
11034     // to three values in each leaf. The pivot selection above doesn't take that
11035     // into account, which means the tree might require more nodes and be less
11036     // efficient. We compensate for this here.
11037 
11038     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11039     unsigned NumRight = W.LastCluster - FirstRight + 1;
11040 
11041     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11042       // If one side has less than 3 clusters, and the other has more than 3,
11043       // consider taking a cluster from the other side.
11044 
11045       if (NumLeft < NumRight) {
11046         // Consider moving the first cluster on the right to the left side.
11047         CaseCluster &CC = *FirstRight;
11048         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11049         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11050         if (LeftSideRank <= RightSideRank) {
11051           // Moving the cluster to the left does not demote it.
11052           ++LastLeft;
11053           ++FirstRight;
11054           continue;
11055         }
11056       } else {
11057         assert(NumRight < NumLeft);
11058         // Consider moving the last element on the left to the right side.
11059         CaseCluster &CC = *LastLeft;
11060         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11061         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11062         if (RightSideRank <= LeftSideRank) {
11063           // Moving the cluster to the right does not demot it.
11064           --LastLeft;
11065           --FirstRight;
11066           continue;
11067         }
11068       }
11069     }
11070     break;
11071   }
11072 
11073   assert(LastLeft + 1 == FirstRight);
11074   assert(LastLeft >= W.FirstCluster);
11075   assert(FirstRight <= W.LastCluster);
11076 
11077   // Use the first element on the right as pivot since we will make less-than
11078   // comparisons against it.
11079   CaseClusterIt PivotCluster = FirstRight;
11080   assert(PivotCluster > W.FirstCluster);
11081   assert(PivotCluster <= W.LastCluster);
11082 
11083   CaseClusterIt FirstLeft = W.FirstCluster;
11084   CaseClusterIt LastRight = W.LastCluster;
11085 
11086   const ConstantInt *Pivot = PivotCluster->Low;
11087 
11088   // New blocks will be inserted immediately after the current one.
11089   MachineFunction::iterator BBI(W.MBB);
11090   ++BBI;
11091 
11092   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11093   // we can branch to its destination directly if it's squeezed exactly in
11094   // between the known lower bound and Pivot - 1.
11095   MachineBasicBlock *LeftMBB;
11096   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11097       FirstLeft->Low == W.GE &&
11098       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11099     LeftMBB = FirstLeft->MBB;
11100   } else {
11101     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11102     FuncInfo.MF->insert(BBI, LeftMBB);
11103     WorkList.push_back(
11104         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11105     // Put Cond in a virtual register to make it available from the new blocks.
11106     ExportFromCurrentBlock(Cond);
11107   }
11108 
11109   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11110   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11111   // directly if RHS.High equals the current upper bound.
11112   MachineBasicBlock *RightMBB;
11113   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11114       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11115     RightMBB = FirstRight->MBB;
11116   } else {
11117     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11118     FuncInfo.MF->insert(BBI, RightMBB);
11119     WorkList.push_back(
11120         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11121     // Put Cond in a virtual register to make it available from the new blocks.
11122     ExportFromCurrentBlock(Cond);
11123   }
11124 
11125   // Create the CaseBlock record that will be used to lower the branch.
11126   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11127                getCurSDLoc(), LeftProb, RightProb);
11128 
11129   if (W.MBB == SwitchMBB)
11130     visitSwitchCase(CB, SwitchMBB);
11131   else
11132     SL->SwitchCases.push_back(CB);
11133 }
11134 
11135 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11136 // from the swith statement.
11137 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11138                                             BranchProbability PeeledCaseProb) {
11139   if (PeeledCaseProb == BranchProbability::getOne())
11140     return BranchProbability::getZero();
11141   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11142 
11143   uint32_t Numerator = CaseProb.getNumerator();
11144   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11145   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11146 }
11147 
11148 // Try to peel the top probability case if it exceeds the threshold.
11149 // Return current MachineBasicBlock for the switch statement if the peeling
11150 // does not occur.
11151 // If the peeling is performed, return the newly created MachineBasicBlock
11152 // for the peeled switch statement. Also update Clusters to remove the peeled
11153 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11154 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11155     const SwitchInst &SI, CaseClusterVector &Clusters,
11156     BranchProbability &PeeledCaseProb) {
11157   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11158   // Don't perform if there is only one cluster or optimizing for size.
11159   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11160       TM.getOptLevel() == CodeGenOpt::None ||
11161       SwitchMBB->getParent()->getFunction().hasMinSize())
11162     return SwitchMBB;
11163 
11164   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11165   unsigned PeeledCaseIndex = 0;
11166   bool SwitchPeeled = false;
11167   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11168     CaseCluster &CC = Clusters[Index];
11169     if (CC.Prob < TopCaseProb)
11170       continue;
11171     TopCaseProb = CC.Prob;
11172     PeeledCaseIndex = Index;
11173     SwitchPeeled = true;
11174   }
11175   if (!SwitchPeeled)
11176     return SwitchMBB;
11177 
11178   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11179                     << TopCaseProb << "\n");
11180 
11181   // Record the MBB for the peeled switch statement.
11182   MachineFunction::iterator BBI(SwitchMBB);
11183   ++BBI;
11184   MachineBasicBlock *PeeledSwitchMBB =
11185       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11186   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11187 
11188   ExportFromCurrentBlock(SI.getCondition());
11189   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11190   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11191                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11192   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11193 
11194   Clusters.erase(PeeledCaseIt);
11195   for (CaseCluster &CC : Clusters) {
11196     LLVM_DEBUG(
11197         dbgs() << "Scale the probablity for one cluster, before scaling: "
11198                << CC.Prob << "\n");
11199     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11200     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11201   }
11202   PeeledCaseProb = TopCaseProb;
11203   return PeeledSwitchMBB;
11204 }
11205 
11206 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11207   // Extract cases from the switch.
11208   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11209   CaseClusterVector Clusters;
11210   Clusters.reserve(SI.getNumCases());
11211   for (auto I : SI.cases()) {
11212     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11213     const ConstantInt *CaseVal = I.getCaseValue();
11214     BranchProbability Prob =
11215         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11216             : BranchProbability(1, SI.getNumCases() + 1);
11217     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11218   }
11219 
11220   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11221 
11222   // Cluster adjacent cases with the same destination. We do this at all
11223   // optimization levels because it's cheap to do and will make codegen faster
11224   // if there are many clusters.
11225   sortAndRangeify(Clusters);
11226 
11227   // The branch probablity of the peeled case.
11228   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11229   MachineBasicBlock *PeeledSwitchMBB =
11230       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11231 
11232   // If there is only the default destination, jump there directly.
11233   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11234   if (Clusters.empty()) {
11235     assert(PeeledSwitchMBB == SwitchMBB);
11236     SwitchMBB->addSuccessor(DefaultMBB);
11237     if (DefaultMBB != NextBlock(SwitchMBB)) {
11238       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11239                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11240     }
11241     return;
11242   }
11243 
11244   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11245   SL->findBitTestClusters(Clusters, &SI);
11246 
11247   LLVM_DEBUG({
11248     dbgs() << "Case clusters: ";
11249     for (const CaseCluster &C : Clusters) {
11250       if (C.Kind == CC_JumpTable)
11251         dbgs() << "JT:";
11252       if (C.Kind == CC_BitTests)
11253         dbgs() << "BT:";
11254 
11255       C.Low->getValue().print(dbgs(), true);
11256       if (C.Low != C.High) {
11257         dbgs() << '-';
11258         C.High->getValue().print(dbgs(), true);
11259       }
11260       dbgs() << ' ';
11261     }
11262     dbgs() << '\n';
11263   });
11264 
11265   assert(!Clusters.empty());
11266   SwitchWorkList WorkList;
11267   CaseClusterIt First = Clusters.begin();
11268   CaseClusterIt Last = Clusters.end() - 1;
11269   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11270   // Scale the branchprobability for DefaultMBB if the peel occurs and
11271   // DefaultMBB is not replaced.
11272   if (PeeledCaseProb != BranchProbability::getZero() &&
11273       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11274     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11275   WorkList.push_back(
11276       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11277 
11278   while (!WorkList.empty()) {
11279     SwitchWorkListItem W = WorkList.pop_back_val();
11280     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11281 
11282     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11283         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11284       // For optimized builds, lower large range as a balanced binary tree.
11285       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11286       continue;
11287     }
11288 
11289     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11290   }
11291 }
11292 
11293 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11295   auto DL = getCurSDLoc();
11296   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11297   setValue(&I, DAG.getStepVector(DL, ResultVT));
11298 }
11299 
11300 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11301   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11302   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11303 
11304   SDLoc DL = getCurSDLoc();
11305   SDValue V = getValue(I.getOperand(0));
11306   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11307 
11308   if (VT.isScalableVector()) {
11309     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11310     return;
11311   }
11312 
11313   // Use VECTOR_SHUFFLE for the fixed-length vector
11314   // to maintain existing behavior.
11315   SmallVector<int, 8> Mask;
11316   unsigned NumElts = VT.getVectorMinNumElements();
11317   for (unsigned i = 0; i != NumElts; ++i)
11318     Mask.push_back(NumElts - 1 - i);
11319 
11320   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11321 }
11322 
11323 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11324   SmallVector<EVT, 4> ValueVTs;
11325   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11326                   ValueVTs);
11327   unsigned NumValues = ValueVTs.size();
11328   if (NumValues == 0) return;
11329 
11330   SmallVector<SDValue, 4> Values(NumValues);
11331   SDValue Op = getValue(I.getOperand(0));
11332 
11333   for (unsigned i = 0; i != NumValues; ++i)
11334     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11335                             SDValue(Op.getNode(), Op.getResNo() + i));
11336 
11337   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11338                            DAG.getVTList(ValueVTs), Values));
11339 }
11340 
11341 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11343   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11344 
11345   SDLoc DL = getCurSDLoc();
11346   SDValue V1 = getValue(I.getOperand(0));
11347   SDValue V2 = getValue(I.getOperand(1));
11348   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11349 
11350   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11351   if (VT.isScalableVector()) {
11352     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11353     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11354                              DAG.getConstant(Imm, DL, IdxVT)));
11355     return;
11356   }
11357 
11358   unsigned NumElts = VT.getVectorNumElements();
11359 
11360   uint64_t Idx = (NumElts + Imm) % NumElts;
11361 
11362   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11363   SmallVector<int, 8> Mask;
11364   for (unsigned i = 0; i < NumElts; ++i)
11365     Mask.push_back(Idx + i);
11366   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11367 }
11368