1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <deque> 108 #include <iterator> 109 #include <limits> 110 #include <optional> 111 #include <tuple> 112 113 using namespace llvm; 114 using namespace PatternMatch; 115 using namespace SwitchCG; 116 117 #define DEBUG_TYPE "isel" 118 119 /// LimitFloatPrecision - Generate low-precision inline sequences for 120 /// some float libcalls (6, 8 or 12 bits). 121 static unsigned LimitFloatPrecision; 122 123 static cl::opt<bool> 124 InsertAssertAlign("insert-assert-align", cl::init(true), 125 cl::desc("Insert the experimental `assertalign` node."), 126 cl::ReallyHidden); 127 128 static cl::opt<unsigned, true> 129 LimitFPPrecision("limit-float-precision", 130 cl::desc("Generate low-precision inline sequences " 131 "for some float libcalls"), 132 cl::location(LimitFloatPrecision), cl::Hidden, 133 cl::init(0)); 134 135 static cl::opt<unsigned> SwitchPeelThreshold( 136 "switch-peel-threshold", cl::Hidden, cl::init(66), 137 cl::desc("Set the case probability threshold for peeling the case from a " 138 "switch statement. A value greater than 100 will void this " 139 "optimization")); 140 141 // Limit the width of DAG chains. This is important in general to prevent 142 // DAG-based analysis from blowing up. For example, alias analysis and 143 // load clustering may not complete in reasonable time. It is difficult to 144 // recognize and avoid this situation within each individual analysis, and 145 // future analyses are likely to have the same behavior. Limiting DAG width is 146 // the safe approach and will be especially important with global DAGs. 147 // 148 // MaxParallelChains default is arbitrarily high to avoid affecting 149 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 150 // sequence over this should have been converted to llvm.memcpy by the 151 // frontend. It is easy to induce this behavior with .ll code such as: 152 // %buffer = alloca [4096 x i8] 153 // %data = load [4096 x i8]* %argPtr 154 // store [4096 x i8] %data, [4096 x i8]* %buffer 155 static const unsigned MaxParallelChains = 64; 156 157 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 SDValue InChain, 161 std::optional<CallingConv::ID> CC); 162 163 /// getCopyFromParts - Create a value that contains the specified legal parts 164 /// combined into the value they represent. If the parts combine to a type 165 /// larger than ValueVT then AssertOp can be used to specify whether the extra 166 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 167 /// (ISD::AssertSext). 168 static SDValue 169 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 170 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 171 SDValue InChain, 172 std::optional<CallingConv::ID> CC = std::nullopt, 173 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 174 // Let the target assemble the parts if it wants to 175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 176 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 177 PartVT, ValueVT, CC)) 178 return Val; 179 180 if (ValueVT.isVector()) 181 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 182 InChain, CC); 183 184 assert(NumParts > 0 && "No parts to assemble!"); 185 SDValue Val = Parts[0]; 186 187 if (NumParts > 1) { 188 // Assemble the value from multiple parts. 189 if (ValueVT.isInteger()) { 190 unsigned PartBits = PartVT.getSizeInBits(); 191 unsigned ValueBits = ValueVT.getSizeInBits(); 192 193 // Assemble the power of 2 part. 194 unsigned RoundParts = llvm::bit_floor(NumParts); 195 unsigned RoundBits = PartBits * RoundParts; 196 EVT RoundVT = RoundBits == ValueBits ? 197 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 198 SDValue Lo, Hi; 199 200 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 201 202 if (RoundParts > 2) { 203 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 204 InChain); 205 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 206 PartVT, HalfVT, V, InChain); 207 } else { 208 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 209 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 210 } 211 212 if (DAG.getDataLayout().isBigEndian()) 213 std::swap(Lo, Hi); 214 215 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 216 217 if (RoundParts < NumParts) { 218 // Assemble the trailing non-power-of-2 part. 219 unsigned OddParts = NumParts - RoundParts; 220 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 221 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 222 OddVT, V, InChain, CC); 223 224 // Combine the round and odd parts. 225 Lo = Val; 226 if (DAG.getDataLayout().isBigEndian()) 227 std::swap(Lo, Hi); 228 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 229 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 230 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 231 DAG.getConstant(Lo.getValueSizeInBits(), DL, 232 TLI.getShiftAmountTy( 233 TotalVT, DAG.getDataLayout()))); 234 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 235 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 236 } 237 } else if (PartVT.isFloatingPoint()) { 238 // FP split into multiple FP parts (for ppcf128) 239 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 240 "Unexpected split"); 241 SDValue Lo, Hi; 242 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 243 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 244 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 245 std::swap(Lo, Hi); 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 247 } else { 248 // FP split into integer parts (soft fp) 249 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 250 !PartVT.isVector() && "Unexpected split"); 251 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 252 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 253 InChain, CC); 254 } 255 } 256 257 // There is now one part, held in Val. Correct it to match ValueVT. 258 // PartEVT is the type of the register class that holds the value. 259 // ValueVT is the type of the inline asm operation. 260 EVT PartEVT = Val.getValueType(); 261 262 if (PartEVT == ValueVT) 263 return Val; 264 265 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 266 ValueVT.bitsLT(PartEVT)) { 267 // For an FP value in an integer part, we need to truncate to the right 268 // width first. 269 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 271 } 272 273 // Handle types that have the same size. 274 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 275 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 276 277 // Handle types with different sizes. 278 if (PartEVT.isInteger() && ValueVT.isInteger()) { 279 if (ValueVT.bitsLT(PartEVT)) { 280 // For a truncate, see if we have any information to 281 // indicate whether the truncated bits will always be 282 // zero or sign-extension. 283 if (AssertOp) 284 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 285 DAG.getValueType(ValueVT)); 286 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 287 } 288 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 289 } 290 291 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 292 // FP_ROUND's are always exact here. 293 if (ValueVT.bitsLT(Val.getValueType())) { 294 295 SDValue NoChange = 296 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 297 298 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 299 llvm::Attribute::StrictFP)) { 300 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 301 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 302 NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 306 } 307 308 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 309 } 310 311 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 312 // then truncating. 313 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 314 ValueVT.bitsLT(PartEVT)) { 315 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 319 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 320 } 321 322 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 323 const Twine &ErrMsg) { 324 const Instruction *I = dyn_cast_or_null<Instruction>(V); 325 if (!V) 326 return Ctx.emitError(ErrMsg); 327 328 const char *AsmError = ", possible invalid constraint for vector type"; 329 if (const CallInst *CI = dyn_cast<CallInst>(I)) 330 if (CI->isInlineAsm()) 331 return Ctx.emitError(I, ErrMsg + AsmError); 332 333 return Ctx.emitError(I, ErrMsg); 334 } 335 336 /// getCopyFromPartsVector - Create a value that contains the specified legal 337 /// parts combined into the value they represent. If the parts combine to a 338 /// type larger than ValueVT then AssertOp can be used to specify whether the 339 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 340 /// ValueVT (ISD::AssertSext). 341 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 342 const SDValue *Parts, unsigned NumParts, 343 MVT PartVT, EVT ValueVT, const Value *V, 344 SDValue InChain, 345 std::optional<CallingConv::ID> CallConv) { 346 assert(ValueVT.isVector() && "Not a vector value"); 347 assert(NumParts > 0 && "No parts to assemble!"); 348 const bool IsABIRegCopy = CallConv.has_value(); 349 350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 351 SDValue Val = Parts[0]; 352 353 // Handle a multi-element vector. 354 if (NumParts > 1) { 355 EVT IntermediateVT; 356 MVT RegisterVT; 357 unsigned NumIntermediates; 358 unsigned NumRegs; 359 360 if (IsABIRegCopy) { 361 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 362 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } else { 365 NumRegs = 366 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 367 NumIntermediates, RegisterVT); 368 } 369 370 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 371 NumParts = NumRegs; // Silence a compiler warning. 372 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 373 assert(RegisterVT.getSizeInBits() == 374 Parts[0].getSimpleValueType().getSizeInBits() && 375 "Part type sizes don't match!"); 376 377 // Assemble the parts into intermediate operands. 378 SmallVector<SDValue, 8> Ops(NumIntermediates); 379 if (NumIntermediates == NumParts) { 380 // If the register was not expanded, truncate or copy the value, 381 // as appropriate. 382 for (unsigned i = 0; i != NumParts; ++i) 383 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 384 V, InChain, CallConv); 385 } else if (NumParts > 0) { 386 // If the intermediate type was expanded, build the intermediate 387 // operands from the parts. 388 assert(NumParts % NumIntermediates == 0 && 389 "Must expand into a divisible number of parts!"); 390 unsigned Factor = NumParts / NumIntermediates; 391 for (unsigned i = 0; i != NumIntermediates; ++i) 392 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 393 IntermediateVT, V, InChain, CallConv); 394 } 395 396 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 397 // intermediate operands. 398 EVT BuiltVectorTy = 399 IntermediateVT.isVector() 400 ? EVT::getVectorVT( 401 *DAG.getContext(), IntermediateVT.getScalarType(), 402 IntermediateVT.getVectorElementCount() * NumParts) 403 : EVT::getVectorVT(*DAG.getContext(), 404 IntermediateVT.getScalarType(), 405 NumIntermediates); 406 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 407 : ISD::BUILD_VECTOR, 408 DL, BuiltVectorTy, Ops); 409 } 410 411 // There is now one part, held in Val. Correct it to match ValueVT. 412 EVT PartEVT = Val.getValueType(); 413 414 if (PartEVT == ValueVT) 415 return Val; 416 417 if (PartEVT.isVector()) { 418 // Vector/Vector bitcast. 419 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // If the parts vector has more elements than the value vector, then we 423 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 424 // Extract the elements we want. 425 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 426 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 427 ValueVT.getVectorElementCount().getKnownMinValue()) && 428 (PartEVT.getVectorElementCount().isScalable() == 429 ValueVT.getVectorElementCount().isScalable()) && 430 "Cannot narrow, it would be a lossy transformation"); 431 PartEVT = 432 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 433 ValueVT.getVectorElementCount()); 434 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 435 DAG.getVectorIdxConstant(0, DL)); 436 if (PartEVT == ValueVT) 437 return Val; 438 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 441 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 442 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 443 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 444 } 445 446 // Promoted vector extract 447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 448 } 449 450 // Trivial bitcast if the types are the same size and the destination 451 // vector type is legal. 452 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 453 TLI.isTypeLegal(ValueVT)) 454 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 455 456 if (ValueVT.getVectorNumElements() != 1) { 457 // Certain ABIs require that vectors are passed as integers. For vectors 458 // are the same size, this is an obvious bitcast. 459 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 } else if (ValueVT.bitsLT(PartEVT)) { 462 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 463 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 464 // Drop the extra bits. 465 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 466 return DAG.getBitcast(ValueVT, Val); 467 } 468 469 diagnosePossiblyInvalidConstraint( 470 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 471 return DAG.getUNDEF(ValueVT); 472 } 473 474 // Handle cases such as i8 -> <1 x i1> 475 EVT ValueSVT = ValueVT.getVectorElementType(); 476 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 477 unsigned ValueSize = ValueSVT.getSizeInBits(); 478 if (ValueSize == PartEVT.getSizeInBits()) { 479 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 480 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 481 // It's possible a scalar floating point type gets softened to integer and 482 // then promoted to a larger integer. If PartEVT is the larger integer 483 // we need to truncate it and then bitcast to the FP type. 484 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 485 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 486 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 487 Val = DAG.getBitcast(ValueSVT, Val); 488 } else { 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 } 494 495 return DAG.getBuildVector(ValueVT, DL, Val); 496 } 497 498 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V, 501 std::optional<CallingConv::ID> CallConv); 502 503 /// getCopyToParts - Create a series of nodes that contain the specified value 504 /// split into legal parts. If the parts contain more bits than Val, then, for 505 /// integers, ExtendKind can be used to specify how to generate the extra bits. 506 static void 507 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 508 unsigned NumParts, MVT PartVT, const Value *V, 509 std::optional<CallingConv::ID> CallConv = std::nullopt, 510 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 511 // Let the target split the parts if it wants to 512 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 513 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 514 CallConv)) 515 return; 516 EVT ValueVT = Val.getValueType(); 517 518 // Handle the vector case separately. 519 if (ValueVT.isVector()) 520 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 521 CallConv); 522 523 unsigned OrigNumParts = NumParts; 524 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 525 "Copying to an illegal type!"); 526 527 if (NumParts == 0) 528 return; 529 530 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 531 EVT PartEVT = PartVT; 532 if (PartEVT == ValueVT) { 533 assert(NumParts == 1 && "No-op copy with multiple parts!"); 534 Parts[0] = Val; 535 return; 536 } 537 538 unsigned PartBits = PartVT.getSizeInBits(); 539 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 540 // If the parts cover more bits than the value has, promote the value. 541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 542 assert(NumParts == 1 && "Do not know what to promote to!"); 543 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 544 } else { 545 if (ValueVT.isFloatingPoint()) { 546 // FP values need to be bitcast, then extended if they are being put 547 // into a larger container. 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 549 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 550 } 551 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 552 ValueVT.isInteger() && 553 "Unknown mismatch!"); 554 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 555 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 556 if (PartVT == MVT::x86mmx) 557 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 558 } 559 } else if (PartBits == ValueVT.getSizeInBits()) { 560 // Different types of the same size. 561 assert(NumParts == 1 && PartEVT != ValueVT); 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 564 // If the parts cover less bits than value has, truncate the value. 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 574 // The value may have changed - recompute ValueVT. 575 ValueVT = Val.getValueType(); 576 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 577 "Failed to tile the value with PartVT!"); 578 579 if (NumParts == 1) { 580 if (PartEVT != ValueVT) { 581 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 582 "scalar-to-vector conversion failed"); 583 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 584 } 585 586 Parts[0] = Val; 587 return; 588 } 589 590 // Expand the value into multiple parts. 591 if (NumParts & (NumParts - 1)) { 592 // The number of parts is not a power of 2. Split off and copy the tail. 593 assert(PartVT.isInteger() && ValueVT.isInteger() && 594 "Do not know what to expand to!"); 595 unsigned RoundParts = llvm::bit_floor(NumParts); 596 unsigned RoundBits = RoundParts * PartBits; 597 unsigned OddParts = NumParts - RoundParts; 598 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 599 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 600 601 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 602 CallConv); 603 604 if (DAG.getDataLayout().isBigEndian()) 605 // The odd parts were reversed by getCopyToParts - unreverse them. 606 std::reverse(Parts + RoundParts, Parts + NumParts); 607 608 NumParts = RoundParts; 609 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 610 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 611 } 612 613 // The number of parts is a power of 2. Repeatedly bisect the value using 614 // EXTRACT_ELEMENT. 615 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 616 EVT::getIntegerVT(*DAG.getContext(), 617 ValueVT.getSizeInBits()), 618 Val); 619 620 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 621 for (unsigned i = 0; i < NumParts; i += StepSize) { 622 unsigned ThisBits = StepSize * PartBits / 2; 623 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 624 SDValue &Part0 = Parts[i]; 625 SDValue &Part1 = Parts[i+StepSize/2]; 626 627 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 629 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 630 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 631 632 if (ThisBits == PartBits && ThisVT != PartVT) { 633 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 634 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 635 } 636 } 637 } 638 639 if (DAG.getDataLayout().isBigEndian()) 640 std::reverse(Parts, Parts + OrigNumParts); 641 } 642 643 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 644 const SDLoc &DL, EVT PartVT) { 645 if (!PartVT.isVector()) 646 return SDValue(); 647 648 EVT ValueVT = Val.getValueType(); 649 EVT PartEVT = PartVT.getVectorElementType(); 650 EVT ValueEVT = ValueVT.getVectorElementType(); 651 ElementCount PartNumElts = PartVT.getVectorElementCount(); 652 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 653 654 // We only support widening vectors with equivalent element types and 655 // fixed/scalable properties. If a target needs to widen a fixed-length type 656 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 657 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 658 PartNumElts.isScalable() != ValueNumElts.isScalable()) 659 return SDValue(); 660 661 // Have a try for bf16 because some targets share its ABI with fp16. 662 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 663 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 664 "Cannot widen to illegal type"); 665 Val = DAG.getNode(ISD::BITCAST, DL, 666 ValueVT.changeVectorElementType(MVT::f16), Val); 667 } else if (PartEVT != ValueEVT) { 668 return SDValue(); 669 } 670 671 // Widening a scalable vector to another scalable vector is done by inserting 672 // the vector into a larger undef one. 673 if (PartNumElts.isScalable()) 674 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 675 Val, DAG.getVectorIdxConstant(0, DL)); 676 677 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 678 // undef elements. 679 SmallVector<SDValue, 16> Ops; 680 DAG.ExtractVectorElements(Val, Ops); 681 SDValue EltUndef = DAG.getUNDEF(PartEVT); 682 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 683 684 // FIXME: Use CONCAT for 2x -> 4x. 685 return DAG.getBuildVector(PartVT, DL, Ops); 686 } 687 688 /// getCopyToPartsVector - Create a series of nodes that contain the specified 689 /// value split into legal parts. 690 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 691 SDValue Val, SDValue *Parts, unsigned NumParts, 692 MVT PartVT, const Value *V, 693 std::optional<CallingConv::ID> CallConv) { 694 EVT ValueVT = Val.getValueType(); 695 assert(ValueVT.isVector() && "Not a vector"); 696 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 697 const bool IsABIRegCopy = CallConv.has_value(); 698 699 if (NumParts == 1) { 700 EVT PartEVT = PartVT; 701 if (PartEVT == ValueVT) { 702 // Nothing to do. 703 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 704 // Bitconvert vector->vector case. 705 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 706 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 707 Val = Widened; 708 } else if (PartVT.isVector() && 709 PartEVT.getVectorElementType().bitsGE( 710 ValueVT.getVectorElementType()) && 711 PartEVT.getVectorElementCount() == 712 ValueVT.getVectorElementCount()) { 713 714 // Promoted vector extract 715 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 716 } else if (PartEVT.isVector() && 717 PartEVT.getVectorElementType() != 718 ValueVT.getVectorElementType() && 719 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 720 TargetLowering::TypeWidenVector) { 721 // Combination of widening and promotion. 722 EVT WidenVT = 723 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 724 PartVT.getVectorElementCount()); 725 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 726 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 727 } else { 728 // Don't extract an integer from a float vector. This can happen if the 729 // FP type gets softened to integer and then promoted. The promotion 730 // prevents it from being picked up by the earlier bitcast case. 731 if (ValueVT.getVectorElementCount().isScalar() && 732 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 733 // If we reach this condition and PartVT is FP, this means that 734 // ValueVT is also FP and both have a different size, otherwise we 735 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 736 // would be invalid since that would mean the smaller FP type has to 737 // be extended to the larger one. 738 if (PartVT.isFloatingPoint()) { 739 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 740 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 741 } else 742 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 743 DAG.getVectorIdxConstant(0, DL)); 744 } else { 745 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 746 assert(PartVT.getFixedSizeInBits() > ValueSize && 747 "lossy conversion of vector to scalar type"); 748 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 749 Val = DAG.getBitcast(IntermediateType, Val); 750 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 751 } 752 } 753 754 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 755 Parts[0] = Val; 756 return; 757 } 758 759 // Handle a multi-element vector. 760 EVT IntermediateVT; 761 MVT RegisterVT; 762 unsigned NumIntermediates; 763 unsigned NumRegs; 764 if (IsABIRegCopy) { 765 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 766 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 767 RegisterVT); 768 } else { 769 NumRegs = 770 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 771 NumIntermediates, RegisterVT); 772 } 773 774 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 775 NumParts = NumRegs; // Silence a compiler warning. 776 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 777 778 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 779 "Mixing scalable and fixed vectors when copying in parts"); 780 781 std::optional<ElementCount> DestEltCnt; 782 783 if (IntermediateVT.isVector()) 784 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 785 else 786 DestEltCnt = ElementCount::getFixed(NumIntermediates); 787 788 EVT BuiltVectorTy = EVT::getVectorVT( 789 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 790 791 if (ValueVT == BuiltVectorTy) { 792 // Nothing to do. 793 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 794 // Bitconvert vector->vector case. 795 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 796 } else { 797 if (BuiltVectorTy.getVectorElementType().bitsGT( 798 ValueVT.getVectorElementType())) { 799 // Integer promotion. 800 ValueVT = EVT::getVectorVT(*DAG.getContext(), 801 BuiltVectorTy.getVectorElementType(), 802 ValueVT.getVectorElementCount()); 803 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 804 } 805 806 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 807 Val = Widened; 808 } 809 } 810 811 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 812 813 // Split the vector into intermediate operands. 814 SmallVector<SDValue, 8> Ops(NumIntermediates); 815 for (unsigned i = 0; i != NumIntermediates; ++i) { 816 if (IntermediateVT.isVector()) { 817 // This does something sensible for scalable vectors - see the 818 // definition of EXTRACT_SUBVECTOR for further details. 819 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 820 Ops[i] = 821 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 822 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 823 } else { 824 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 825 DAG.getVectorIdxConstant(i, DL)); 826 } 827 } 828 829 // Split the intermediate operands into legal parts. 830 if (NumParts == NumIntermediates) { 831 // If the register was not expanded, promote or copy the value, 832 // as appropriate. 833 for (unsigned i = 0; i != NumParts; ++i) 834 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 835 } else if (NumParts > 0) { 836 // If the intermediate type was expanded, split each the value into 837 // legal parts. 838 assert(NumIntermediates != 0 && "division by zero"); 839 assert(NumParts % NumIntermediates == 0 && 840 "Must expand into a divisible number of parts!"); 841 unsigned Factor = NumParts / NumIntermediates; 842 for (unsigned i = 0; i != NumIntermediates; ++i) 843 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 844 CallConv); 845 } 846 } 847 848 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 849 EVT valuevt, std::optional<CallingConv::ID> CC) 850 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 851 RegCount(1, regs.size()), CallConv(CC) {} 852 853 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 854 const DataLayout &DL, unsigned Reg, Type *Ty, 855 std::optional<CallingConv::ID> CC) { 856 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 857 858 CallConv = CC; 859 860 for (EVT ValueVT : ValueVTs) { 861 unsigned NumRegs = 862 isABIMangled() 863 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 864 : TLI.getNumRegisters(Context, ValueVT); 865 MVT RegisterVT = 866 isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 868 : TLI.getRegisterType(Context, ValueVT); 869 for (unsigned i = 0; i != NumRegs; ++i) 870 Regs.push_back(Reg + i); 871 RegVTs.push_back(RegisterVT); 872 RegCount.push_back(NumRegs); 873 Reg += NumRegs; 874 } 875 } 876 877 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 878 FunctionLoweringInfo &FuncInfo, 879 const SDLoc &dl, SDValue &Chain, 880 SDValue *Glue, const Value *V) const { 881 // A Value with type {} or [0 x %t] needs no registers. 882 if (ValueVTs.empty()) 883 return SDValue(); 884 885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 886 887 // Assemble the legal parts into the final values. 888 SmallVector<SDValue, 4> Values(ValueVTs.size()); 889 SmallVector<SDValue, 8> Parts; 890 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 891 // Copy the legal parts from the registers. 892 EVT ValueVT = ValueVTs[Value]; 893 unsigned NumRegs = RegCount[Value]; 894 MVT RegisterVT = isABIMangled() 895 ? TLI.getRegisterTypeForCallingConv( 896 *DAG.getContext(), *CallConv, RegVTs[Value]) 897 : RegVTs[Value]; 898 899 Parts.resize(NumRegs); 900 for (unsigned i = 0; i != NumRegs; ++i) { 901 SDValue P; 902 if (!Glue) { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 904 } else { 905 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 906 *Glue = P.getValue(2); 907 } 908 909 Chain = P.getValue(1); 910 Parts[i] = P; 911 912 // If the source register was virtual and if we know something about it, 913 // add an assert node. 914 if (!Register::isVirtualRegister(Regs[Part + i]) || 915 !RegisterVT.isInteger()) 916 continue; 917 918 const FunctionLoweringInfo::LiveOutInfo *LOI = 919 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 920 if (!LOI) 921 continue; 922 923 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 924 unsigned NumSignBits = LOI->NumSignBits; 925 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 926 927 if (NumZeroBits == RegSize) { 928 // The current value is a zero. 929 // Explicitly express that as it would be easier for 930 // optimizations to kick in. 931 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 932 continue; 933 } 934 935 // FIXME: We capture more information than the dag can represent. For 936 // now, just use the tightest assertzext/assertsext possible. 937 bool isSExt; 938 EVT FromVT(MVT::Other); 939 if (NumZeroBits) { 940 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 941 isSExt = false; 942 } else if (NumSignBits > 1) { 943 FromVT = 944 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 945 isSExt = true; 946 } else { 947 continue; 948 } 949 // Add an assertion node. 950 assert(FromVT != MVT::Other); 951 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 952 RegisterVT, P, DAG.getValueType(FromVT)); 953 } 954 955 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 956 RegisterVT, ValueVT, V, Chain, CallConv); 957 Part += NumRegs; 958 Parts.clear(); 959 } 960 961 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 962 } 963 964 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 965 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 966 const Value *V, 967 ISD::NodeType PreferredExtendType) const { 968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 969 ISD::NodeType ExtendKind = PreferredExtendType; 970 971 // Get the list of the values's legal parts. 972 unsigned NumRegs = Regs.size(); 973 SmallVector<SDValue, 8> Parts(NumRegs); 974 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumParts = RegCount[Value]; 976 977 MVT RegisterVT = isABIMangled() 978 ? TLI.getRegisterTypeForCallingConv( 979 *DAG.getContext(), *CallConv, RegVTs[Value]) 980 : RegVTs[Value]; 981 982 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 983 ExtendKind = ISD::ZERO_EXTEND; 984 985 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 986 NumParts, RegisterVT, V, CallConv, ExtendKind); 987 Part += NumParts; 988 } 989 990 // Copy the parts into the registers. 991 SmallVector<SDValue, 8> Chains(NumRegs); 992 for (unsigned i = 0; i != NumRegs; ++i) { 993 SDValue Part; 994 if (!Glue) { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 996 } else { 997 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 998 *Glue = Part.getValue(1); 999 } 1000 1001 Chains[i] = Part.getValue(0); 1002 } 1003 1004 if (NumRegs == 1 || Glue) 1005 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1006 // flagged to it. That is the CopyToReg nodes and the user are considered 1007 // a single scheduling unit. If we create a TokenFactor and return it as 1008 // chain, then the TokenFactor is both a predecessor (operand) of the 1009 // user as well as a successor (the TF operands are flagged to the user). 1010 // c1, f1 = CopyToReg 1011 // c2, f2 = CopyToReg 1012 // c3 = TokenFactor c1, c2 1013 // ... 1014 // = op c3, ..., f2 1015 Chain = Chains[NumRegs-1]; 1016 else 1017 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1018 } 1019 1020 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1021 unsigned MatchingIdx, const SDLoc &dl, 1022 SelectionDAG &DAG, 1023 std::vector<SDValue> &Ops) const { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 InlineAsm::Flag Flag(Code, Regs.size()); 1027 if (HasMatching) 1028 Flag.setMatchingOp(MatchingIdx); 1029 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1030 // Put the register class of the virtual registers in the flag word. That 1031 // way, later passes can recompute register class constraints for inline 1032 // assembly as well as normal instructions. 1033 // Don't do this for tied operands that can use the regclass information 1034 // from the def. 1035 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1036 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1037 Flag.setRegClass(RC->getID()); 1038 } 1039 1040 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1041 Ops.push_back(Res); 1042 1043 if (Code == InlineAsm::Kind::Clobber) { 1044 // Clobbers should always have a 1:1 mapping with registers, and may 1045 // reference registers that have illegal (e.g. vector) types. Hence, we 1046 // shouldn't try to apply any sort of splitting logic to them. 1047 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1048 "No 1:1 mapping from clobbers to regs?"); 1049 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1050 (void)SP; 1051 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1052 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1053 assert( 1054 (Regs[I] != SP || 1055 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1056 "If we clobbered the stack pointer, MFI should know about it."); 1057 } 1058 return; 1059 } 1060 1061 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1062 MVT RegisterVT = RegVTs[Value]; 1063 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1064 RegisterVT); 1065 for (unsigned i = 0; i != NumRegs; ++i) { 1066 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1067 unsigned TheReg = Regs[Reg++]; 1068 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1069 } 1070 } 1071 } 1072 1073 SmallVector<std::pair<unsigned, TypeSize>, 4> 1074 RegsForValue::getRegsAndSizes() const { 1075 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1076 unsigned I = 0; 1077 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1078 unsigned RegCount = std::get<0>(CountAndVT); 1079 MVT RegisterVT = std::get<1>(CountAndVT); 1080 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1081 for (unsigned E = I + RegCount; I != E; ++I) 1082 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1083 } 1084 return OutVec; 1085 } 1086 1087 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1088 AssumptionCache *ac, 1089 const TargetLibraryInfo *li) { 1090 AA = aa; 1091 AC = ac; 1092 GFI = gfi; 1093 LibInfo = li; 1094 Context = DAG.getContext(); 1095 LPadToCallSiteMap.clear(); 1096 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1097 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1098 *DAG.getMachineFunction().getFunction().getParent()); 1099 } 1100 1101 void SelectionDAGBuilder::clear() { 1102 NodeMap.clear(); 1103 UnusedArgNodeMap.clear(); 1104 PendingLoads.clear(); 1105 PendingExports.clear(); 1106 PendingConstrainedFP.clear(); 1107 PendingConstrainedFPStrict.clear(); 1108 CurInst = nullptr; 1109 HasTailCall = false; 1110 SDNodeOrder = LowestSDNodeOrder; 1111 StatepointLowering.clear(); 1112 } 1113 1114 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1115 DanglingDebugInfoMap.clear(); 1116 } 1117 1118 // Update DAG root to include dependencies on Pending chains. 1119 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1120 SDValue Root = DAG.getRoot(); 1121 1122 if (Pending.empty()) 1123 return Root; 1124 1125 // Add current root to PendingChains, unless we already indirectly 1126 // depend on it. 1127 if (Root.getOpcode() != ISD::EntryToken) { 1128 unsigned i = 0, e = Pending.size(); 1129 for (; i != e; ++i) { 1130 assert(Pending[i].getNode()->getNumOperands() > 1); 1131 if (Pending[i].getNode()->getOperand(0) == Root) 1132 break; // Don't add the root if we already indirectly depend on it. 1133 } 1134 1135 if (i == e) 1136 Pending.push_back(Root); 1137 } 1138 1139 if (Pending.size() == 1) 1140 Root = Pending[0]; 1141 else 1142 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1143 1144 DAG.setRoot(Root); 1145 Pending.clear(); 1146 return Root; 1147 } 1148 1149 SDValue SelectionDAGBuilder::getMemoryRoot() { 1150 return updateRoot(PendingLoads); 1151 } 1152 1153 SDValue SelectionDAGBuilder::getRoot() { 1154 // Chain up all pending constrained intrinsics together with all 1155 // pending loads, by simply appending them to PendingLoads and 1156 // then calling getMemoryRoot(). 1157 PendingLoads.reserve(PendingLoads.size() + 1158 PendingConstrainedFP.size() + 1159 PendingConstrainedFPStrict.size()); 1160 PendingLoads.append(PendingConstrainedFP.begin(), 1161 PendingConstrainedFP.end()); 1162 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFP.clear(); 1165 PendingConstrainedFPStrict.clear(); 1166 return getMemoryRoot(); 1167 } 1168 1169 SDValue SelectionDAGBuilder::getControlRoot() { 1170 // We need to emit pending fpexcept.strict constrained intrinsics, 1171 // so append them to the PendingExports list. 1172 PendingExports.append(PendingConstrainedFPStrict.begin(), 1173 PendingConstrainedFPStrict.end()); 1174 PendingConstrainedFPStrict.clear(); 1175 return updateRoot(PendingExports); 1176 } 1177 1178 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1179 DILocalVariable *Variable, 1180 DIExpression *Expression, 1181 DebugLoc DL) { 1182 assert(Variable && "Missing variable"); 1183 1184 // Check if address has undef value. 1185 if (!Address || isa<UndefValue>(Address) || 1186 (Address->use_empty() && !isa<Argument>(Address))) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1190 return; 1191 } 1192 1193 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1194 1195 SDValue &N = NodeMap[Address]; 1196 if (!N.getNode() && isa<Argument>(Address)) 1197 // Check unused arguments map. 1198 N = UnusedArgNodeMap[Address]; 1199 SDDbgValue *SDV; 1200 if (N.getNode()) { 1201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1202 Address = BCI->getOperand(0); 1203 // Parameters are handled specially. 1204 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1205 if (IsParameter && FINode) { 1206 // Byval parameter. We have a frame index at this point. 1207 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1208 /*IsIndirect*/ true, DL, SDNodeOrder); 1209 } else if (isa<Argument>(Address)) { 1210 // Address is an argument, so try to emit its dbg value using 1211 // virtual register info from the FuncInfo.ValueMap. 1212 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1213 FuncArgumentDbgValueKind::Declare, N); 1214 return; 1215 } else { 1216 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1217 true, DL, SDNodeOrder); 1218 } 1219 DAG.AddDbgValue(SDV, IsParameter); 1220 } else { 1221 // If Address is an argument then try to emit its dbg value using 1222 // virtual register info from the FuncInfo.ValueMap. 1223 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1224 FuncArgumentDbgValueKind::Declare, N)) { 1225 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1226 << " (could not emit func-arg dbg_value)\n"); 1227 } 1228 } 1229 return; 1230 } 1231 1232 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1236 // Add SDDbgValue nodes for any var locs here. Do so before updating 1237 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1238 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1239 It != End; ++It) { 1240 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1241 dropDanglingDebugInfo(Var, It->Expr); 1242 if (It->Values.isKillLocation(It->Expr)) { 1243 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1244 continue; 1245 } 1246 SmallVector<Value *> Values(It->Values.location_ops()); 1247 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1248 It->Values.hasArgList())) { 1249 SmallVector<Value *, 4> Vals; 1250 for (Value *V : It->Values.location_ops()) 1251 Vals.push_back(V); 1252 addDanglingDebugInfo(Vals, 1253 FnVarLocs->getDILocalVariable(It->VariableID), 1254 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1255 } 1256 } 1257 } 1258 1259 // We must skip DbgVariableRecords if they've already been processed above as 1260 // we have just emitted the debug values resulting from assignment tracking 1261 // analysis, making any existing DbgVariableRecords redundant (and probably 1262 // less correct). We still need to process DbgLabelRecords. This does sink 1263 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1264 // be important as it does so deterministcally and ordering between 1265 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1266 // printing). 1267 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1268 // Is there is any debug-info attached to this instruction, in the form of 1269 // DbgRecord non-instruction debug-info records. 1270 for (DbgRecord &DR : I.getDbgRecordRange()) { 1271 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1272 assert(DLR->getLabel() && "Missing label"); 1273 SDDbgLabel *SDV = 1274 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1275 DAG.AddDbgLabel(SDV); 1276 continue; 1277 } 1278 1279 if (SkipDbgVariableRecords) 1280 continue; 1281 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1282 DILocalVariable *Variable = DVR.getVariable(); 1283 DIExpression *Expression = DVR.getExpression(); 1284 dropDanglingDebugInfo(Variable, Expression); 1285 1286 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1287 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1288 continue; 1289 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1290 << "\n"); 1291 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1292 DVR.getDebugLoc()); 1293 continue; 1294 } 1295 1296 // A DbgVariableRecord with no locations is a kill location. 1297 SmallVector<Value *, 4> Values(DVR.location_ops()); 1298 if (Values.empty()) { 1299 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1300 SDNodeOrder); 1301 continue; 1302 } 1303 1304 // A DbgVariableRecord with an undef or absent location is also a kill 1305 // location. 1306 if (llvm::any_of(Values, 1307 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1308 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1309 SDNodeOrder); 1310 continue; 1311 } 1312 1313 bool IsVariadic = DVR.hasArgList(); 1314 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1315 SDNodeOrder, IsVariadic)) { 1316 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1317 DVR.getDebugLoc(), SDNodeOrder); 1318 } 1319 } 1320 } 1321 1322 void SelectionDAGBuilder::visit(const Instruction &I) { 1323 visitDbgInfo(I); 1324 1325 // Set up outgoing PHI node register values before emitting the terminator. 1326 if (I.isTerminator()) { 1327 HandlePHINodesInSuccessorBlocks(I.getParent()); 1328 } 1329 1330 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1331 if (!isa<DbgInfoIntrinsic>(I)) 1332 ++SDNodeOrder; 1333 1334 CurInst = &I; 1335 1336 // Set inserted listener only if required. 1337 bool NodeInserted = false; 1338 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1339 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1340 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1341 if (PCSectionsMD || MMRA) { 1342 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1343 DAG, [&](SDNode *) { NodeInserted = true; }); 1344 } 1345 1346 visit(I.getOpcode(), I); 1347 1348 if (!I.isTerminator() && !HasTailCall && 1349 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1350 CopyToExportRegsIfNeeded(&I); 1351 1352 // Handle metadata. 1353 if (PCSectionsMD || MMRA) { 1354 auto It = NodeMap.find(&I); 1355 if (It != NodeMap.end()) { 1356 if (PCSectionsMD) 1357 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1358 if (MMRA) 1359 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1360 } else if (NodeInserted) { 1361 // This should not happen; if it does, don't let it go unnoticed so we can 1362 // fix it. Relevant visit*() function is probably missing a setValue(). 1363 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1364 << I.getModule()->getName() << "]\n"; 1365 LLVM_DEBUG(I.dump()); 1366 assert(false); 1367 } 1368 } 1369 1370 CurInst = nullptr; 1371 } 1372 1373 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1374 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1375 } 1376 1377 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1378 // Note: this doesn't use InstVisitor, because it has to work with 1379 // ConstantExpr's in addition to instructions. 1380 switch (Opcode) { 1381 default: llvm_unreachable("Unknown instruction type encountered!"); 1382 // Build the switch statement using the Instruction.def file. 1383 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1384 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1385 #include "llvm/IR/Instruction.def" 1386 } 1387 } 1388 1389 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1390 DILocalVariable *Variable, 1391 DebugLoc DL, unsigned Order, 1392 SmallVectorImpl<Value *> &Values, 1393 DIExpression *Expression) { 1394 // For variadic dbg_values we will now insert an undef. 1395 // FIXME: We can potentially recover these! 1396 SmallVector<SDDbgOperand, 2> Locs; 1397 for (const Value *V : Values) { 1398 auto *Undef = UndefValue::get(V->getType()); 1399 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1400 } 1401 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1402 /*IsIndirect=*/false, DL, Order, 1403 /*IsVariadic=*/true); 1404 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1405 return true; 1406 } 1407 1408 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1409 DILocalVariable *Var, 1410 DIExpression *Expr, 1411 bool IsVariadic, DebugLoc DL, 1412 unsigned Order) { 1413 if (IsVariadic) { 1414 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1415 return; 1416 } 1417 // TODO: Dangling debug info will eventually either be resolved or produce 1418 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1419 // between the original dbg.value location and its resolved DBG_VALUE, 1420 // which we should ideally fill with an extra Undef DBG_VALUE. 1421 assert(Values.size() == 1); 1422 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1423 } 1424 1425 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1426 const DIExpression *Expr) { 1427 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1428 DIVariable *DanglingVariable = DDI.getVariable(); 1429 DIExpression *DanglingExpr = DDI.getExpression(); 1430 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1431 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1432 << printDDI(nullptr, DDI) << "\n"); 1433 return true; 1434 } 1435 return false; 1436 }; 1437 1438 for (auto &DDIMI : DanglingDebugInfoMap) { 1439 DanglingDebugInfoVector &DDIV = DDIMI.second; 1440 1441 // If debug info is to be dropped, run it through final checks to see 1442 // whether it can be salvaged. 1443 for (auto &DDI : DDIV) 1444 if (isMatchingDbgValue(DDI)) 1445 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1446 1447 erase_if(DDIV, isMatchingDbgValue); 1448 } 1449 } 1450 1451 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1452 // generate the debug data structures now that we've seen its definition. 1453 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1454 SDValue Val) { 1455 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1456 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1457 return; 1458 1459 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1460 for (auto &DDI : DDIV) { 1461 DebugLoc DL = DDI.getDebugLoc(); 1462 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1463 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1464 DILocalVariable *Variable = DDI.getVariable(); 1465 DIExpression *Expr = DDI.getExpression(); 1466 assert(Variable->isValidLocationForIntrinsic(DL) && 1467 "Expected inlined-at fields to agree"); 1468 SDDbgValue *SDV; 1469 if (Val.getNode()) { 1470 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1471 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1472 // we couldn't resolve it directly when examining the DbgValue intrinsic 1473 // in the first place we should not be more successful here). Unless we 1474 // have some test case that prove this to be correct we should avoid 1475 // calling EmitFuncArgumentDbgValue here. 1476 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1477 FuncArgumentDbgValueKind::Value, Val)) { 1478 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1479 << printDDI(V, DDI) << "\n"); 1480 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1481 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1482 // inserted after the definition of Val when emitting the instructions 1483 // after ISel. An alternative could be to teach 1484 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1485 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1486 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1487 << ValSDNodeOrder << "\n"); 1488 SDV = getDbgValue(Val, Variable, Expr, DL, 1489 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1490 DAG.AddDbgValue(SDV, false); 1491 } else 1492 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1493 << printDDI(V, DDI) 1494 << " in EmitFuncArgumentDbgValue\n"); 1495 } else { 1496 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1497 << "\n"); 1498 auto Undef = UndefValue::get(V->getType()); 1499 auto SDV = 1500 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1501 DAG.AddDbgValue(SDV, false); 1502 } 1503 } 1504 DDIV.clear(); 1505 } 1506 1507 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1508 DanglingDebugInfo &DDI) { 1509 // TODO: For the variadic implementation, instead of only checking the fail 1510 // state of `handleDebugValue`, we need know specifically which values were 1511 // invalid, so that we attempt to salvage only those values when processing 1512 // a DIArgList. 1513 const Value *OrigV = V; 1514 DILocalVariable *Var = DDI.getVariable(); 1515 DIExpression *Expr = DDI.getExpression(); 1516 DebugLoc DL = DDI.getDebugLoc(); 1517 unsigned SDOrder = DDI.getSDNodeOrder(); 1518 1519 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1520 // that DW_OP_stack_value is desired. 1521 bool StackValue = true; 1522 1523 // Can this Value can be encoded without any further work? 1524 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1525 return; 1526 1527 // Attempt to salvage back through as many instructions as possible. Bail if 1528 // a non-instruction is seen, such as a constant expression or global 1529 // variable. FIXME: Further work could recover those too. 1530 while (isa<Instruction>(V)) { 1531 const Instruction &VAsInst = *cast<const Instruction>(V); 1532 // Temporary "0", awaiting real implementation. 1533 SmallVector<uint64_t, 16> Ops; 1534 SmallVector<Value *, 4> AdditionalValues; 1535 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1536 Expr->getNumLocationOperands(), Ops, 1537 AdditionalValues); 1538 // If we cannot salvage any further, and haven't yet found a suitable debug 1539 // expression, bail out. 1540 if (!V) 1541 break; 1542 1543 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1544 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1545 // here for variadic dbg_values, remove that condition. 1546 if (!AdditionalValues.empty()) 1547 break; 1548 1549 // New value and expr now represent this debuginfo. 1550 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1551 1552 // Some kind of simplification occurred: check whether the operand of the 1553 // salvaged debug expression can be encoded in this DAG. 1554 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1555 LLVM_DEBUG( 1556 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1557 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1558 return; 1559 } 1560 } 1561 1562 // This was the final opportunity to salvage this debug information, and it 1563 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1564 // any earlier variable location. 1565 assert(OrigV && "V shouldn't be null"); 1566 auto *Undef = UndefValue::get(OrigV->getType()); 1567 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1568 DAG.AddDbgValue(SDV, false); 1569 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1570 << printDDI(OrigV, DDI) << "\n"); 1571 } 1572 1573 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1574 DIExpression *Expr, 1575 DebugLoc DbgLoc, 1576 unsigned Order) { 1577 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1578 DIExpression *NewExpr = 1579 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1580 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1581 /*IsVariadic*/ false); 1582 } 1583 1584 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1585 DILocalVariable *Var, 1586 DIExpression *Expr, DebugLoc DbgLoc, 1587 unsigned Order, bool IsVariadic) { 1588 if (Values.empty()) 1589 return true; 1590 1591 // Filter EntryValue locations out early. 1592 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1593 return true; 1594 1595 SmallVector<SDDbgOperand> LocationOps; 1596 SmallVector<SDNode *> Dependencies; 1597 for (const Value *V : Values) { 1598 // Constant value. 1599 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1600 isa<ConstantPointerNull>(V)) { 1601 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1602 continue; 1603 } 1604 1605 // Look through IntToPtr constants. 1606 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1607 if (CE->getOpcode() == Instruction::IntToPtr) { 1608 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1609 continue; 1610 } 1611 1612 // If the Value is a frame index, we can create a FrameIndex debug value 1613 // without relying on the DAG at all. 1614 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1615 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1616 if (SI != FuncInfo.StaticAllocaMap.end()) { 1617 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1618 continue; 1619 } 1620 } 1621 1622 // Do not use getValue() in here; we don't want to generate code at 1623 // this point if it hasn't been done yet. 1624 SDValue N = NodeMap[V]; 1625 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1626 N = UnusedArgNodeMap[V]; 1627 if (N.getNode()) { 1628 // Only emit func arg dbg value for non-variadic dbg.values for now. 1629 if (!IsVariadic && 1630 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1631 FuncArgumentDbgValueKind::Value, N)) 1632 return true; 1633 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1634 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1635 // describe stack slot locations. 1636 // 1637 // Consider "int x = 0; int *px = &x;". There are two kinds of 1638 // interesting debug values here after optimization: 1639 // 1640 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1641 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1642 // 1643 // Both describe the direct values of their associated variables. 1644 Dependencies.push_back(N.getNode()); 1645 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1646 continue; 1647 } 1648 LocationOps.emplace_back( 1649 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1650 continue; 1651 } 1652 1653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1654 // Special rules apply for the first dbg.values of parameter variables in a 1655 // function. Identify them by the fact they reference Argument Values, that 1656 // they're parameters, and they are parameters of the current function. We 1657 // need to let them dangle until they get an SDNode. 1658 bool IsParamOfFunc = 1659 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1660 if (IsParamOfFunc) 1661 return false; 1662 1663 // The value is not used in this block yet (or it would have an SDNode). 1664 // We still want the value to appear for the user if possible -- if it has 1665 // an associated VReg, we can refer to that instead. 1666 auto VMI = FuncInfo.ValueMap.find(V); 1667 if (VMI != FuncInfo.ValueMap.end()) { 1668 unsigned Reg = VMI->second; 1669 // If this is a PHI node, it may be split up into several MI PHI nodes 1670 // (in FunctionLoweringInfo::set). 1671 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1672 V->getType(), std::nullopt); 1673 if (RFV.occupiesMultipleRegs()) { 1674 // FIXME: We could potentially support variadic dbg_values here. 1675 if (IsVariadic) 1676 return false; 1677 unsigned Offset = 0; 1678 unsigned BitsToDescribe = 0; 1679 if (auto VarSize = Var->getSizeInBits()) 1680 BitsToDescribe = *VarSize; 1681 if (auto Fragment = Expr->getFragmentInfo()) 1682 BitsToDescribe = Fragment->SizeInBits; 1683 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1684 // Bail out if all bits are described already. 1685 if (Offset >= BitsToDescribe) 1686 break; 1687 // TODO: handle scalable vectors. 1688 unsigned RegisterSize = RegAndSize.second; 1689 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1690 ? BitsToDescribe - Offset 1691 : RegisterSize; 1692 auto FragmentExpr = DIExpression::createFragmentExpression( 1693 Expr, Offset, FragmentSize); 1694 if (!FragmentExpr) 1695 continue; 1696 SDDbgValue *SDV = DAG.getVRegDbgValue( 1697 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1698 DAG.AddDbgValue(SDV, false); 1699 Offset += RegisterSize; 1700 } 1701 return true; 1702 } 1703 // We can use simple vreg locations for variadic dbg_values as well. 1704 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1705 continue; 1706 } 1707 // We failed to create a SDDbgOperand for V. 1708 return false; 1709 } 1710 1711 // We have created a SDDbgOperand for each Value in Values. 1712 assert(!LocationOps.empty()); 1713 SDDbgValue *SDV = 1714 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1715 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1716 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1717 return true; 1718 } 1719 1720 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1721 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1722 for (auto &Pair : DanglingDebugInfoMap) 1723 for (auto &DDI : Pair.second) 1724 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1725 clearDanglingDebugInfo(); 1726 } 1727 1728 /// getCopyFromRegs - If there was virtual register allocated for the value V 1729 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1730 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1731 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1732 SDValue Result; 1733 1734 if (It != FuncInfo.ValueMap.end()) { 1735 Register InReg = It->second; 1736 1737 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1738 DAG.getDataLayout(), InReg, Ty, 1739 std::nullopt); // This is not an ABI copy. 1740 SDValue Chain = DAG.getEntryNode(); 1741 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1742 V); 1743 resolveDanglingDebugInfo(V, Result); 1744 } 1745 1746 return Result; 1747 } 1748 1749 /// getValue - Return an SDValue for the given Value. 1750 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1751 // If we already have an SDValue for this value, use it. It's important 1752 // to do this first, so that we don't create a CopyFromReg if we already 1753 // have a regular SDValue. 1754 SDValue &N = NodeMap[V]; 1755 if (N.getNode()) return N; 1756 1757 // If there's a virtual register allocated and initialized for this 1758 // value, use it. 1759 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1760 return copyFromReg; 1761 1762 // Otherwise create a new SDValue and remember it. 1763 SDValue Val = getValueImpl(V); 1764 NodeMap[V] = Val; 1765 resolveDanglingDebugInfo(V, Val); 1766 return Val; 1767 } 1768 1769 /// getNonRegisterValue - Return an SDValue for the given Value, but 1770 /// don't look in FuncInfo.ValueMap for a virtual register. 1771 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1772 // If we already have an SDValue for this value, use it. 1773 SDValue &N = NodeMap[V]; 1774 if (N.getNode()) { 1775 if (isIntOrFPConstant(N)) { 1776 // Remove the debug location from the node as the node is about to be used 1777 // in a location which may differ from the original debug location. This 1778 // is relevant to Constant and ConstantFP nodes because they can appear 1779 // as constant expressions inside PHI nodes. 1780 N->setDebugLoc(DebugLoc()); 1781 } 1782 return N; 1783 } 1784 1785 // Otherwise create a new SDValue and remember it. 1786 SDValue Val = getValueImpl(V); 1787 NodeMap[V] = Val; 1788 resolveDanglingDebugInfo(V, Val); 1789 return Val; 1790 } 1791 1792 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1793 /// Create an SDValue for the given value. 1794 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 1797 if (const Constant *C = dyn_cast<Constant>(V)) { 1798 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1799 1800 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1801 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1802 1803 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1804 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1805 1806 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1807 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1808 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1809 getValue(CPA->getAddrDiscriminator()), 1810 getValue(CPA->getDiscriminator())); 1811 } 1812 1813 if (isa<ConstantPointerNull>(C)) { 1814 unsigned AS = V->getType()->getPointerAddressSpace(); 1815 return DAG.getConstant(0, getCurSDLoc(), 1816 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1817 } 1818 1819 if (match(C, m_VScale())) 1820 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1821 1822 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1823 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1824 1825 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1826 return DAG.getUNDEF(VT); 1827 1828 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1829 visit(CE->getOpcode(), *CE); 1830 SDValue N1 = NodeMap[V]; 1831 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1832 return N1; 1833 } 1834 1835 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1836 SmallVector<SDValue, 4> Constants; 1837 for (const Use &U : C->operands()) { 1838 SDNode *Val = getValue(U).getNode(); 1839 // If the operand is an empty aggregate, there are no values. 1840 if (!Val) continue; 1841 // Add each leaf value from the operand to the Constants list 1842 // to form a flattened list of all the values. 1843 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1844 Constants.push_back(SDValue(Val, i)); 1845 } 1846 1847 return DAG.getMergeValues(Constants, getCurSDLoc()); 1848 } 1849 1850 if (const ConstantDataSequential *CDS = 1851 dyn_cast<ConstantDataSequential>(C)) { 1852 SmallVector<SDValue, 4> Ops; 1853 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1854 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1855 // Add each leaf value from the operand to the Constants list 1856 // to form a flattened list of all the values. 1857 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1858 Ops.push_back(SDValue(Val, i)); 1859 } 1860 1861 if (isa<ArrayType>(CDS->getType())) 1862 return DAG.getMergeValues(Ops, getCurSDLoc()); 1863 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1864 } 1865 1866 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1867 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1868 "Unknown struct or array constant!"); 1869 1870 SmallVector<EVT, 4> ValueVTs; 1871 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1872 unsigned NumElts = ValueVTs.size(); 1873 if (NumElts == 0) 1874 return SDValue(); // empty struct 1875 SmallVector<SDValue, 4> Constants(NumElts); 1876 for (unsigned i = 0; i != NumElts; ++i) { 1877 EVT EltVT = ValueVTs[i]; 1878 if (isa<UndefValue>(C)) 1879 Constants[i] = DAG.getUNDEF(EltVT); 1880 else if (EltVT.isFloatingPoint()) 1881 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1882 else 1883 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1884 } 1885 1886 return DAG.getMergeValues(Constants, getCurSDLoc()); 1887 } 1888 1889 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1890 return DAG.getBlockAddress(BA, VT); 1891 1892 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1893 return getValue(Equiv->getGlobalValue()); 1894 1895 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1896 return getValue(NC->getGlobalValue()); 1897 1898 if (VT == MVT::aarch64svcount) { 1899 assert(C->isNullValue() && "Can only zero this target type!"); 1900 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1901 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1902 } 1903 1904 VectorType *VecTy = cast<VectorType>(V->getType()); 1905 1906 // Now that we know the number and type of the elements, get that number of 1907 // elements into the Ops array based on what kind of constant it is. 1908 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1909 SmallVector<SDValue, 16> Ops; 1910 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1911 for (unsigned i = 0; i != NumElements; ++i) 1912 Ops.push_back(getValue(CV->getOperand(i))); 1913 1914 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1915 } 1916 1917 if (isa<ConstantAggregateZero>(C)) { 1918 EVT EltVT = 1919 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1920 1921 SDValue Op; 1922 if (EltVT.isFloatingPoint()) 1923 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1924 else 1925 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1926 1927 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1928 } 1929 1930 llvm_unreachable("Unknown vector constant"); 1931 } 1932 1933 // If this is a static alloca, generate it as the frameindex instead of 1934 // computation. 1935 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1936 DenseMap<const AllocaInst*, int>::iterator SI = 1937 FuncInfo.StaticAllocaMap.find(AI); 1938 if (SI != FuncInfo.StaticAllocaMap.end()) 1939 return DAG.getFrameIndex( 1940 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1941 } 1942 1943 // If this is an instruction which fast-isel has deferred, select it now. 1944 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1945 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1946 1947 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1948 Inst->getType(), std::nullopt); 1949 SDValue Chain = DAG.getEntryNode(); 1950 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1951 } 1952 1953 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1954 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1955 1956 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1957 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1958 1959 llvm_unreachable("Can't get register for value!"); 1960 } 1961 1962 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1963 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1964 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1965 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1966 bool IsSEH = isAsynchronousEHPersonality(Pers); 1967 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1968 if (!IsSEH) 1969 CatchPadMBB->setIsEHScopeEntry(); 1970 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1971 if (IsMSVCCXX || IsCoreCLR) 1972 CatchPadMBB->setIsEHFuncletEntry(); 1973 } 1974 1975 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1976 // Update machine-CFG edge. 1977 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1978 FuncInfo.MBB->addSuccessor(TargetMBB); 1979 TargetMBB->setIsEHCatchretTarget(true); 1980 DAG.getMachineFunction().setHasEHCatchret(true); 1981 1982 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1983 bool IsSEH = isAsynchronousEHPersonality(Pers); 1984 if (IsSEH) { 1985 // If this is not a fall-through branch or optimizations are switched off, 1986 // emit the branch. 1987 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1988 TM.getOptLevel() == CodeGenOptLevel::None) 1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1990 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1991 return; 1992 } 1993 1994 // Figure out the funclet membership for the catchret's successor. 1995 // This will be used by the FuncletLayout pass to determine how to order the 1996 // BB's. 1997 // A 'catchret' returns to the outer scope's color. 1998 Value *ParentPad = I.getCatchSwitchParentPad(); 1999 const BasicBlock *SuccessorColor; 2000 if (isa<ConstantTokenNone>(ParentPad)) 2001 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2002 else 2003 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2004 assert(SuccessorColor && "No parent funclet for catchret!"); 2005 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 2006 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2007 2008 // Create the terminator node. 2009 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2010 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2011 DAG.getBasicBlock(SuccessorColorMBB)); 2012 DAG.setRoot(Ret); 2013 } 2014 2015 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2016 // Don't emit any special code for the cleanuppad instruction. It just marks 2017 // the start of an EH scope/funclet. 2018 FuncInfo.MBB->setIsEHScopeEntry(); 2019 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2020 if (Pers != EHPersonality::Wasm_CXX) { 2021 FuncInfo.MBB->setIsEHFuncletEntry(); 2022 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2023 } 2024 } 2025 2026 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2027 // not match, it is OK to add only the first unwind destination catchpad to the 2028 // successors, because there will be at least one invoke instruction within the 2029 // catch scope that points to the next unwind destination, if one exists, so 2030 // CFGSort cannot mess up with BB sorting order. 2031 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2032 // call within them, and catchpads only consisting of 'catch (...)' have a 2033 // '__cxa_end_catch' call within them, both of which generate invokes in case 2034 // the next unwind destination exists, i.e., the next unwind destination is not 2035 // the caller.) 2036 // 2037 // Having at most one EH pad successor is also simpler and helps later 2038 // transformations. 2039 // 2040 // For example, 2041 // current: 2042 // invoke void @foo to ... unwind label %catch.dispatch 2043 // catch.dispatch: 2044 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2045 // catch.start: 2046 // ... 2047 // ... in this BB or some other child BB dominated by this BB there will be an 2048 // invoke that points to 'next' BB as an unwind destination 2049 // 2050 // next: ; We don't need to add this to 'current' BB's successor 2051 // ... 2052 static void findWasmUnwindDestinations( 2053 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2054 BranchProbability Prob, 2055 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2056 &UnwindDests) { 2057 while (EHPadBB) { 2058 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2059 if (isa<CleanupPadInst>(Pad)) { 2060 // Stop on cleanup pads. 2061 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2062 UnwindDests.back().first->setIsEHScopeEntry(); 2063 break; 2064 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2065 // Add the catchpad handlers to the possible destinations. We don't 2066 // continue to the unwind destination of the catchswitch for wasm. 2067 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2068 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2069 UnwindDests.back().first->setIsEHScopeEntry(); 2070 } 2071 break; 2072 } else { 2073 continue; 2074 } 2075 } 2076 } 2077 2078 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2079 /// many places it could ultimately go. In the IR, we have a single unwind 2080 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2081 /// This function skips over imaginary basic blocks that hold catchswitch 2082 /// instructions, and finds all the "real" machine 2083 /// basic block destinations. As those destinations may not be successors of 2084 /// EHPadBB, here we also calculate the edge probability to those destinations. 2085 /// The passed-in Prob is the edge probability to EHPadBB. 2086 static void findUnwindDestinations( 2087 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2088 BranchProbability Prob, 2089 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2090 &UnwindDests) { 2091 EHPersonality Personality = 2092 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2093 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2094 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2095 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2096 bool IsSEH = isAsynchronousEHPersonality(Personality); 2097 2098 if (IsWasmCXX) { 2099 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2100 assert(UnwindDests.size() <= 1 && 2101 "There should be at most one unwind destination for wasm"); 2102 return; 2103 } 2104 2105 while (EHPadBB) { 2106 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2107 BasicBlock *NewEHPadBB = nullptr; 2108 if (isa<LandingPadInst>(Pad)) { 2109 // Stop on landingpads. They are not funclets. 2110 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2111 break; 2112 } else if (isa<CleanupPadInst>(Pad)) { 2113 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2114 // personalities. 2115 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2116 UnwindDests.back().first->setIsEHScopeEntry(); 2117 UnwindDests.back().first->setIsEHFuncletEntry(); 2118 break; 2119 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2120 // Add the catchpad handlers to the possible destinations. 2121 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2122 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2123 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2124 if (IsMSVCCXX || IsCoreCLR) 2125 UnwindDests.back().first->setIsEHFuncletEntry(); 2126 if (!IsSEH) 2127 UnwindDests.back().first->setIsEHScopeEntry(); 2128 } 2129 NewEHPadBB = CatchSwitch->getUnwindDest(); 2130 } else { 2131 continue; 2132 } 2133 2134 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2135 if (BPI && NewEHPadBB) 2136 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2137 EHPadBB = NewEHPadBB; 2138 } 2139 } 2140 2141 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2142 // Update successor info. 2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2144 auto UnwindDest = I.getUnwindDest(); 2145 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2146 BranchProbability UnwindDestProb = 2147 (BPI && UnwindDest) 2148 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2149 : BranchProbability::getZero(); 2150 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2151 for (auto &UnwindDest : UnwindDests) { 2152 UnwindDest.first->setIsEHPad(); 2153 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2154 } 2155 FuncInfo.MBB->normalizeSuccProbs(); 2156 2157 // Create the terminator node. 2158 SDValue Ret = 2159 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2160 DAG.setRoot(Ret); 2161 } 2162 2163 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2164 report_fatal_error("visitCatchSwitch not yet implemented!"); 2165 } 2166 2167 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2169 auto &DL = DAG.getDataLayout(); 2170 SDValue Chain = getControlRoot(); 2171 SmallVector<ISD::OutputArg, 8> Outs; 2172 SmallVector<SDValue, 8> OutVals; 2173 2174 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2175 // lower 2176 // 2177 // %val = call <ty> @llvm.experimental.deoptimize() 2178 // ret <ty> %val 2179 // 2180 // differently. 2181 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2182 LowerDeoptimizingReturn(); 2183 return; 2184 } 2185 2186 if (!FuncInfo.CanLowerReturn) { 2187 unsigned DemoteReg = FuncInfo.DemoteRegister; 2188 const Function *F = I.getParent()->getParent(); 2189 2190 // Emit a store of the return value through the virtual register. 2191 // Leave Outs empty so that LowerReturn won't try to load return 2192 // registers the usual way. 2193 SmallVector<EVT, 1> PtrValueVTs; 2194 ComputeValueVTs(TLI, DL, 2195 PointerType::get(F->getContext(), 2196 DAG.getDataLayout().getAllocaAddrSpace()), 2197 PtrValueVTs); 2198 2199 SDValue RetPtr = 2200 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2201 SDValue RetOp = getValue(I.getOperand(0)); 2202 2203 SmallVector<EVT, 4> ValueVTs, MemVTs; 2204 SmallVector<uint64_t, 4> Offsets; 2205 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2206 &Offsets, 0); 2207 unsigned NumValues = ValueVTs.size(); 2208 2209 SmallVector<SDValue, 4> Chains(NumValues); 2210 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2211 for (unsigned i = 0; i != NumValues; ++i) { 2212 // An aggregate return value cannot wrap around the address space, so 2213 // offsets to its parts don't wrap either. 2214 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2215 TypeSize::getFixed(Offsets[i])); 2216 2217 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2218 if (MemVTs[i] != ValueVTs[i]) 2219 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2220 Chains[i] = DAG.getStore( 2221 Chain, getCurSDLoc(), Val, 2222 // FIXME: better loc info would be nice. 2223 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2224 commonAlignment(BaseAlign, Offsets[i])); 2225 } 2226 2227 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2228 MVT::Other, Chains); 2229 } else if (I.getNumOperands() != 0) { 2230 SmallVector<EVT, 4> ValueVTs; 2231 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2232 unsigned NumValues = ValueVTs.size(); 2233 if (NumValues) { 2234 SDValue RetOp = getValue(I.getOperand(0)); 2235 2236 const Function *F = I.getParent()->getParent(); 2237 2238 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2239 I.getOperand(0)->getType(), F->getCallingConv(), 2240 /*IsVarArg*/ false, DL); 2241 2242 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2243 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2244 ExtendKind = ISD::SIGN_EXTEND; 2245 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2246 ExtendKind = ISD::ZERO_EXTEND; 2247 2248 LLVMContext &Context = F->getContext(); 2249 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2250 2251 for (unsigned j = 0; j != NumValues; ++j) { 2252 EVT VT = ValueVTs[j]; 2253 2254 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2255 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2256 2257 CallingConv::ID CC = F->getCallingConv(); 2258 2259 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2260 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2261 SmallVector<SDValue, 4> Parts(NumParts); 2262 getCopyToParts(DAG, getCurSDLoc(), 2263 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2264 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2265 2266 // 'inreg' on function refers to return value 2267 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2268 if (RetInReg) 2269 Flags.setInReg(); 2270 2271 if (I.getOperand(0)->getType()->isPointerTy()) { 2272 Flags.setPointer(); 2273 Flags.setPointerAddrSpace( 2274 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2275 } 2276 2277 if (NeedsRegBlock) { 2278 Flags.setInConsecutiveRegs(); 2279 if (j == NumValues - 1) 2280 Flags.setInConsecutiveRegsLast(); 2281 } 2282 2283 // Propagate extension type if any 2284 if (ExtendKind == ISD::SIGN_EXTEND) 2285 Flags.setSExt(); 2286 else if (ExtendKind == ISD::ZERO_EXTEND) 2287 Flags.setZExt(); 2288 2289 for (unsigned i = 0; i < NumParts; ++i) { 2290 Outs.push_back(ISD::OutputArg(Flags, 2291 Parts[i].getValueType().getSimpleVT(), 2292 VT, /*isfixed=*/true, 0, 0)); 2293 OutVals.push_back(Parts[i]); 2294 } 2295 } 2296 } 2297 } 2298 2299 // Push in swifterror virtual register as the last element of Outs. This makes 2300 // sure swifterror virtual register will be returned in the swifterror 2301 // physical register. 2302 const Function *F = I.getParent()->getParent(); 2303 if (TLI.supportSwiftError() && 2304 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2305 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2306 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2307 Flags.setSwiftError(); 2308 Outs.push_back(ISD::OutputArg( 2309 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2310 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2311 // Create SDNode for the swifterror virtual register. 2312 OutVals.push_back( 2313 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2314 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2315 EVT(TLI.getPointerTy(DL)))); 2316 } 2317 2318 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2319 CallingConv::ID CallConv = 2320 DAG.getMachineFunction().getFunction().getCallingConv(); 2321 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2322 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2323 2324 // Verify that the target's LowerReturn behaved as expected. 2325 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2326 "LowerReturn didn't return a valid chain!"); 2327 2328 // Update the DAG with the new chain value resulting from return lowering. 2329 DAG.setRoot(Chain); 2330 } 2331 2332 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2333 /// created for it, emit nodes to copy the value into the virtual 2334 /// registers. 2335 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2336 // Skip empty types 2337 if (V->getType()->isEmptyTy()) 2338 return; 2339 2340 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2341 if (VMI != FuncInfo.ValueMap.end()) { 2342 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2343 "Unused value assigned virtual registers!"); 2344 CopyValueToVirtualRegister(V, VMI->second); 2345 } 2346 } 2347 2348 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2349 /// the current basic block, add it to ValueMap now so that we'll get a 2350 /// CopyTo/FromReg. 2351 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2352 // No need to export constants. 2353 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2354 2355 // Already exported? 2356 if (FuncInfo.isExportedInst(V)) return; 2357 2358 Register Reg = FuncInfo.InitializeRegForValue(V); 2359 CopyValueToVirtualRegister(V, Reg); 2360 } 2361 2362 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2363 const BasicBlock *FromBB) { 2364 // The operands of the setcc have to be in this block. We don't know 2365 // how to export them from some other block. 2366 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2367 // Can export from current BB. 2368 if (VI->getParent() == FromBB) 2369 return true; 2370 2371 // Is already exported, noop. 2372 return FuncInfo.isExportedInst(V); 2373 } 2374 2375 // If this is an argument, we can export it if the BB is the entry block or 2376 // if it is already exported. 2377 if (isa<Argument>(V)) { 2378 if (FromBB->isEntryBlock()) 2379 return true; 2380 2381 // Otherwise, can only export this if it is already exported. 2382 return FuncInfo.isExportedInst(V); 2383 } 2384 2385 // Otherwise, constants can always be exported. 2386 return true; 2387 } 2388 2389 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2390 BranchProbability 2391 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2392 const MachineBasicBlock *Dst) const { 2393 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2394 const BasicBlock *SrcBB = Src->getBasicBlock(); 2395 const BasicBlock *DstBB = Dst->getBasicBlock(); 2396 if (!BPI) { 2397 // If BPI is not available, set the default probability as 1 / N, where N is 2398 // the number of successors. 2399 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2400 return BranchProbability(1, SuccSize); 2401 } 2402 return BPI->getEdgeProbability(SrcBB, DstBB); 2403 } 2404 2405 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2406 MachineBasicBlock *Dst, 2407 BranchProbability Prob) { 2408 if (!FuncInfo.BPI) 2409 Src->addSuccessorWithoutProb(Dst); 2410 else { 2411 if (Prob.isUnknown()) 2412 Prob = getEdgeProbability(Src, Dst); 2413 Src->addSuccessor(Dst, Prob); 2414 } 2415 } 2416 2417 static bool InBlock(const Value *V, const BasicBlock *BB) { 2418 if (const Instruction *I = dyn_cast<Instruction>(V)) 2419 return I->getParent() == BB; 2420 return true; 2421 } 2422 2423 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2424 /// This function emits a branch and is used at the leaves of an OR or an 2425 /// AND operator tree. 2426 void 2427 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2428 MachineBasicBlock *TBB, 2429 MachineBasicBlock *FBB, 2430 MachineBasicBlock *CurBB, 2431 MachineBasicBlock *SwitchBB, 2432 BranchProbability TProb, 2433 BranchProbability FProb, 2434 bool InvertCond) { 2435 const BasicBlock *BB = CurBB->getBasicBlock(); 2436 2437 // If the leaf of the tree is a comparison, merge the condition into 2438 // the caseblock. 2439 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2440 // The operands of the cmp have to be in this block. We don't know 2441 // how to export them from some other block. If this is the first block 2442 // of the sequence, no exporting is needed. 2443 if (CurBB == SwitchBB || 2444 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2445 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2446 ISD::CondCode Condition; 2447 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2448 ICmpInst::Predicate Pred = 2449 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2450 Condition = getICmpCondCode(Pred); 2451 } else { 2452 const FCmpInst *FC = cast<FCmpInst>(Cond); 2453 FCmpInst::Predicate Pred = 2454 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2455 Condition = getFCmpCondCode(Pred); 2456 if (TM.Options.NoNaNsFPMath) 2457 Condition = getFCmpCodeWithoutNaN(Condition); 2458 } 2459 2460 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2461 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2462 SL->SwitchCases.push_back(CB); 2463 return; 2464 } 2465 } 2466 2467 // Create a CaseBlock record representing this branch. 2468 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2469 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2470 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2471 SL->SwitchCases.push_back(CB); 2472 } 2473 2474 // Collect dependencies on V recursively. This is used for the cost analysis in 2475 // `shouldKeepJumpConditionsTogether`. 2476 static bool collectInstructionDeps( 2477 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2478 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2479 unsigned Depth = 0) { 2480 // Return false if we have an incomplete count. 2481 if (Depth >= SelectionDAG::MaxRecursionDepth) 2482 return false; 2483 2484 auto *I = dyn_cast<Instruction>(V); 2485 if (I == nullptr) 2486 return true; 2487 2488 if (Necessary != nullptr) { 2489 // This instruction is necessary for the other side of the condition so 2490 // don't count it. 2491 if (Necessary->contains(I)) 2492 return true; 2493 } 2494 2495 // Already added this dep. 2496 if (!Deps->try_emplace(I, false).second) 2497 return true; 2498 2499 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2500 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2501 Depth + 1)) 2502 return false; 2503 return true; 2504 } 2505 2506 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2507 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2508 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2509 TargetLoweringBase::CondMergingParams Params) const { 2510 if (I.getNumSuccessors() != 2) 2511 return false; 2512 2513 if (!I.isConditional()) 2514 return false; 2515 2516 if (Params.BaseCost < 0) 2517 return false; 2518 2519 // Baseline cost. 2520 InstructionCost CostThresh = Params.BaseCost; 2521 2522 BranchProbabilityInfo *BPI = nullptr; 2523 if (Params.LikelyBias || Params.UnlikelyBias) 2524 BPI = FuncInfo.BPI; 2525 if (BPI != nullptr) { 2526 // See if we are either likely to get an early out or compute both lhs/rhs 2527 // of the condition. 2528 BasicBlock *IfFalse = I.getSuccessor(0); 2529 BasicBlock *IfTrue = I.getSuccessor(1); 2530 2531 std::optional<bool> Likely; 2532 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2533 Likely = true; 2534 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2535 Likely = false; 2536 2537 if (Likely) { 2538 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2539 // Its likely we will have to compute both lhs and rhs of condition 2540 CostThresh += Params.LikelyBias; 2541 else { 2542 if (Params.UnlikelyBias < 0) 2543 return false; 2544 // Its likely we will get an early out. 2545 CostThresh -= Params.UnlikelyBias; 2546 } 2547 } 2548 } 2549 2550 if (CostThresh <= 0) 2551 return false; 2552 2553 // Collect "all" instructions that lhs condition is dependent on. 2554 // Use map for stable iteration (to avoid non-determanism of iteration of 2555 // SmallPtrSet). The `bool` value is just a dummy. 2556 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2557 collectInstructionDeps(&LhsDeps, Lhs); 2558 // Collect "all" instructions that rhs condition is dependent on AND are 2559 // dependencies of lhs. This gives us an estimate on which instructions we 2560 // stand to save by splitting the condition. 2561 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2562 return false; 2563 // Add the compare instruction itself unless its a dependency on the LHS. 2564 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2565 if (!LhsDeps.contains(RhsI)) 2566 RhsDeps.try_emplace(RhsI, false); 2567 2568 const auto &TLI = DAG.getTargetLoweringInfo(); 2569 const auto &TTI = 2570 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2571 2572 InstructionCost CostOfIncluding = 0; 2573 // See if this instruction will need to computed independently of whether RHS 2574 // is. 2575 Value *BrCond = I.getCondition(); 2576 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2577 for (const auto *U : Ins->users()) { 2578 // If user is independent of RHS calculation we don't need to count it. 2579 if (auto *UIns = dyn_cast<Instruction>(U)) 2580 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2581 return false; 2582 } 2583 return true; 2584 }; 2585 2586 // Prune instructions from RHS Deps that are dependencies of unrelated 2587 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2588 // arbitrary and just meant to cap the how much time we spend in the pruning 2589 // loop. Its highly unlikely to come into affect. 2590 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2591 // Stop after a certain point. No incorrectness from including too many 2592 // instructions. 2593 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2594 const Instruction *ToDrop = nullptr; 2595 for (const auto &InsPair : RhsDeps) { 2596 if (!ShouldCountInsn(InsPair.first)) { 2597 ToDrop = InsPair.first; 2598 break; 2599 } 2600 } 2601 if (ToDrop == nullptr) 2602 break; 2603 RhsDeps.erase(ToDrop); 2604 } 2605 2606 for (const auto &InsPair : RhsDeps) { 2607 // Finally accumulate latency that we can only attribute to computing the 2608 // RHS condition. Use latency because we are essentially trying to calculate 2609 // the cost of the dependency chain. 2610 // Possible TODO: We could try to estimate ILP and make this more precise. 2611 CostOfIncluding += 2612 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2613 2614 if (CostOfIncluding > CostThresh) 2615 return false; 2616 } 2617 return true; 2618 } 2619 2620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2621 MachineBasicBlock *TBB, 2622 MachineBasicBlock *FBB, 2623 MachineBasicBlock *CurBB, 2624 MachineBasicBlock *SwitchBB, 2625 Instruction::BinaryOps Opc, 2626 BranchProbability TProb, 2627 BranchProbability FProb, 2628 bool InvertCond) { 2629 // Skip over not part of the tree and remember to invert op and operands at 2630 // next level. 2631 Value *NotCond; 2632 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2633 InBlock(NotCond, CurBB->getBasicBlock())) { 2634 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2635 !InvertCond); 2636 return; 2637 } 2638 2639 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2640 const Value *BOpOp0, *BOpOp1; 2641 // Compute the effective opcode for Cond, taking into account whether it needs 2642 // to be inverted, e.g. 2643 // and (not (or A, B)), C 2644 // gets lowered as 2645 // and (and (not A, not B), C) 2646 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2647 if (BOp) { 2648 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2649 ? Instruction::And 2650 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2651 ? Instruction::Or 2652 : (Instruction::BinaryOps)0); 2653 if (InvertCond) { 2654 if (BOpc == Instruction::And) 2655 BOpc = Instruction::Or; 2656 else if (BOpc == Instruction::Or) 2657 BOpc = Instruction::And; 2658 } 2659 } 2660 2661 // If this node is not part of the or/and tree, emit it as a branch. 2662 // Note that all nodes in the tree should have same opcode. 2663 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2664 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2665 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2666 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2667 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2668 TProb, FProb, InvertCond); 2669 return; 2670 } 2671 2672 // Create TmpBB after CurBB. 2673 MachineFunction::iterator BBI(CurBB); 2674 MachineFunction &MF = DAG.getMachineFunction(); 2675 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2676 CurBB->getParent()->insert(++BBI, TmpBB); 2677 2678 if (Opc == Instruction::Or) { 2679 // Codegen X | Y as: 2680 // BB1: 2681 // jmp_if_X TBB 2682 // jmp TmpBB 2683 // TmpBB: 2684 // jmp_if_Y TBB 2685 // jmp FBB 2686 // 2687 2688 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2689 // The requirement is that 2690 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2691 // = TrueProb for original BB. 2692 // Assuming the original probabilities are A and B, one choice is to set 2693 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2694 // A/(1+B) and 2B/(1+B). This choice assumes that 2695 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2696 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2697 // TmpBB, but the math is more complicated. 2698 2699 auto NewTrueProb = TProb / 2; 2700 auto NewFalseProb = TProb / 2 + FProb; 2701 // Emit the LHS condition. 2702 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2703 NewFalseProb, InvertCond); 2704 2705 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2706 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2707 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2708 // Emit the RHS condition into TmpBB. 2709 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2710 Probs[1], InvertCond); 2711 } else { 2712 assert(Opc == Instruction::And && "Unknown merge op!"); 2713 // Codegen X & Y as: 2714 // BB1: 2715 // jmp_if_X TmpBB 2716 // jmp FBB 2717 // TmpBB: 2718 // jmp_if_Y TBB 2719 // jmp FBB 2720 // 2721 // This requires creation of TmpBB after CurBB. 2722 2723 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2724 // The requirement is that 2725 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2726 // = FalseProb for original BB. 2727 // Assuming the original probabilities are A and B, one choice is to set 2728 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2729 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2730 // TrueProb for BB1 * FalseProb for TmpBB. 2731 2732 auto NewTrueProb = TProb + FProb / 2; 2733 auto NewFalseProb = FProb / 2; 2734 // Emit the LHS condition. 2735 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2736 NewFalseProb, InvertCond); 2737 2738 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2739 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2740 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2741 // Emit the RHS condition into TmpBB. 2742 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2743 Probs[1], InvertCond); 2744 } 2745 } 2746 2747 /// If the set of cases should be emitted as a series of branches, return true. 2748 /// If we should emit this as a bunch of and/or'd together conditions, return 2749 /// false. 2750 bool 2751 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2752 if (Cases.size() != 2) return true; 2753 2754 // If this is two comparisons of the same values or'd or and'd together, they 2755 // will get folded into a single comparison, so don't emit two blocks. 2756 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2757 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2758 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2759 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2760 return false; 2761 } 2762 2763 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2764 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2765 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2766 Cases[0].CC == Cases[1].CC && 2767 isa<Constant>(Cases[0].CmpRHS) && 2768 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2769 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2770 return false; 2771 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2772 return false; 2773 } 2774 2775 return true; 2776 } 2777 2778 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2779 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2780 2781 // Update machine-CFG edges. 2782 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2783 2784 if (I.isUnconditional()) { 2785 // Update machine-CFG edges. 2786 BrMBB->addSuccessor(Succ0MBB); 2787 2788 // If this is not a fall-through branch or optimizations are switched off, 2789 // emit the branch. 2790 if (Succ0MBB != NextBlock(BrMBB) || 2791 TM.getOptLevel() == CodeGenOptLevel::None) { 2792 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2793 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2794 setValue(&I, Br); 2795 DAG.setRoot(Br); 2796 } 2797 2798 return; 2799 } 2800 2801 // If this condition is one of the special cases we handle, do special stuff 2802 // now. 2803 const Value *CondVal = I.getCondition(); 2804 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2805 2806 // If this is a series of conditions that are or'd or and'd together, emit 2807 // this as a sequence of branches instead of setcc's with and/or operations. 2808 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2809 // unpredictable branches, and vector extracts because those jumps are likely 2810 // expensive for any target), this should improve performance. 2811 // For example, instead of something like: 2812 // cmp A, B 2813 // C = seteq 2814 // cmp D, E 2815 // F = setle 2816 // or C, F 2817 // jnz foo 2818 // Emit: 2819 // cmp A, B 2820 // je foo 2821 // cmp D, E 2822 // jle foo 2823 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2824 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2825 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2826 Value *Vec; 2827 const Value *BOp0, *BOp1; 2828 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2829 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2830 Opcode = Instruction::And; 2831 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2832 Opcode = Instruction::Or; 2833 2834 if (Opcode && 2835 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2836 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2837 !shouldKeepJumpConditionsTogether( 2838 FuncInfo, I, Opcode, BOp0, BOp1, 2839 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2840 Opcode, BOp0, BOp1))) { 2841 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2842 getEdgeProbability(BrMBB, Succ0MBB), 2843 getEdgeProbability(BrMBB, Succ1MBB), 2844 /*InvertCond=*/false); 2845 // If the compares in later blocks need to use values not currently 2846 // exported from this block, export them now. This block should always 2847 // be the first entry. 2848 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2849 2850 // Allow some cases to be rejected. 2851 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2852 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2853 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2854 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2855 } 2856 2857 // Emit the branch for this block. 2858 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2859 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2860 return; 2861 } 2862 2863 // Okay, we decided not to do this, remove any inserted MBB's and clear 2864 // SwitchCases. 2865 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2866 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2867 2868 SL->SwitchCases.clear(); 2869 } 2870 } 2871 2872 // Create a CaseBlock record representing this branch. 2873 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2874 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2875 2876 // Use visitSwitchCase to actually insert the fast branch sequence for this 2877 // cond branch. 2878 visitSwitchCase(CB, BrMBB); 2879 } 2880 2881 /// visitSwitchCase - Emits the necessary code to represent a single node in 2882 /// the binary search tree resulting from lowering a switch instruction. 2883 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2884 MachineBasicBlock *SwitchBB) { 2885 SDValue Cond; 2886 SDValue CondLHS = getValue(CB.CmpLHS); 2887 SDLoc dl = CB.DL; 2888 2889 if (CB.CC == ISD::SETTRUE) { 2890 // Branch or fall through to TrueBB. 2891 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2892 SwitchBB->normalizeSuccProbs(); 2893 if (CB.TrueBB != NextBlock(SwitchBB)) { 2894 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2895 DAG.getBasicBlock(CB.TrueBB))); 2896 } 2897 return; 2898 } 2899 2900 auto &TLI = DAG.getTargetLoweringInfo(); 2901 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2902 2903 // Build the setcc now. 2904 if (!CB.CmpMHS) { 2905 // Fold "(X == true)" to X and "(X == false)" to !X to 2906 // handle common cases produced by branch lowering. 2907 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2908 CB.CC == ISD::SETEQ) 2909 Cond = CondLHS; 2910 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2911 CB.CC == ISD::SETEQ) { 2912 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2913 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2914 } else { 2915 SDValue CondRHS = getValue(CB.CmpRHS); 2916 2917 // If a pointer's DAG type is larger than its memory type then the DAG 2918 // values are zero-extended. This breaks signed comparisons so truncate 2919 // back to the underlying type before doing the compare. 2920 if (CondLHS.getValueType() != MemVT) { 2921 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2922 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2923 } 2924 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2925 } 2926 } else { 2927 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2928 2929 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2930 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2931 2932 SDValue CmpOp = getValue(CB.CmpMHS); 2933 EVT VT = CmpOp.getValueType(); 2934 2935 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2936 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2937 ISD::SETLE); 2938 } else { 2939 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2940 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2941 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2942 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2943 } 2944 } 2945 2946 // Update successor info 2947 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2948 // TrueBB and FalseBB are always different unless the incoming IR is 2949 // degenerate. This only happens when running llc on weird IR. 2950 if (CB.TrueBB != CB.FalseBB) 2951 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2952 SwitchBB->normalizeSuccProbs(); 2953 2954 // If the lhs block is the next block, invert the condition so that we can 2955 // fall through to the lhs instead of the rhs block. 2956 if (CB.TrueBB == NextBlock(SwitchBB)) { 2957 std::swap(CB.TrueBB, CB.FalseBB); 2958 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2959 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2960 } 2961 2962 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2963 MVT::Other, getControlRoot(), Cond, 2964 DAG.getBasicBlock(CB.TrueBB)); 2965 2966 setValue(CurInst, BrCond); 2967 2968 // Insert the false branch. Do this even if it's a fall through branch, 2969 // this makes it easier to do DAG optimizations which require inverting 2970 // the branch condition. 2971 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2972 DAG.getBasicBlock(CB.FalseBB)); 2973 2974 DAG.setRoot(BrCond); 2975 } 2976 2977 /// visitJumpTable - Emit JumpTable node in the current MBB 2978 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2979 // Emit the code for the jump table 2980 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2981 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2982 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2983 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2984 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2985 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2986 Index.getValue(1), Table, Index); 2987 DAG.setRoot(BrJumpTable); 2988 } 2989 2990 /// visitJumpTableHeader - This function emits necessary code to produce index 2991 /// in the JumpTable from switch case. 2992 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2993 JumpTableHeader &JTH, 2994 MachineBasicBlock *SwitchBB) { 2995 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2996 const SDLoc &dl = *JT.SL; 2997 2998 // Subtract the lowest switch case value from the value being switched on. 2999 SDValue SwitchOp = getValue(JTH.SValue); 3000 EVT VT = SwitchOp.getValueType(); 3001 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3002 DAG.getConstant(JTH.First, dl, VT)); 3003 3004 // The SDNode we just created, which holds the value being switched on minus 3005 // the smallest case value, needs to be copied to a virtual register so it 3006 // can be used as an index into the jump table in a subsequent basic block. 3007 // This value may be smaller or larger than the target's pointer type, and 3008 // therefore require extension or truncating. 3009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3010 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 3011 3012 unsigned JumpTableReg = 3013 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 3014 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 3015 JumpTableReg, SwitchOp); 3016 JT.Reg = JumpTableReg; 3017 3018 if (!JTH.FallthroughUnreachable) { 3019 // Emit the range check for the jump table, and branch to the default block 3020 // for the switch statement if the value being switched on exceeds the 3021 // largest case in the switch. 3022 SDValue CMP = DAG.getSetCC( 3023 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3024 Sub.getValueType()), 3025 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3026 3027 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3028 MVT::Other, CopyTo, CMP, 3029 DAG.getBasicBlock(JT.Default)); 3030 3031 // Avoid emitting unnecessary branches to the next block. 3032 if (JT.MBB != NextBlock(SwitchBB)) 3033 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3034 DAG.getBasicBlock(JT.MBB)); 3035 3036 DAG.setRoot(BrCond); 3037 } else { 3038 // Avoid emitting unnecessary branches to the next block. 3039 if (JT.MBB != NextBlock(SwitchBB)) 3040 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3041 DAG.getBasicBlock(JT.MBB))); 3042 else 3043 DAG.setRoot(CopyTo); 3044 } 3045 } 3046 3047 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3048 /// variable if there exists one. 3049 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3050 SDValue &Chain) { 3051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3052 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3053 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3054 MachineFunction &MF = DAG.getMachineFunction(); 3055 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3056 MachineSDNode *Node = 3057 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3058 if (Global) { 3059 MachinePointerInfo MPInfo(Global); 3060 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3061 MachineMemOperand::MODereferenceable; 3062 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3063 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3064 DAG.getEVTAlign(PtrTy)); 3065 DAG.setNodeMemRefs(Node, {MemRef}); 3066 } 3067 if (PtrTy != PtrMemTy) 3068 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3069 return SDValue(Node, 0); 3070 } 3071 3072 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3073 /// tail spliced into a stack protector check success bb. 3074 /// 3075 /// For a high level explanation of how this fits into the stack protector 3076 /// generation see the comment on the declaration of class 3077 /// StackProtectorDescriptor. 3078 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3079 MachineBasicBlock *ParentBB) { 3080 3081 // First create the loads to the guard/stack slot for the comparison. 3082 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3083 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3084 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3085 3086 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3087 int FI = MFI.getStackProtectorIndex(); 3088 3089 SDValue Guard; 3090 SDLoc dl = getCurSDLoc(); 3091 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3092 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3093 Align Align = 3094 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3095 3096 // Generate code to load the content of the guard slot. 3097 SDValue GuardVal = DAG.getLoad( 3098 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3099 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3100 MachineMemOperand::MOVolatile); 3101 3102 if (TLI.useStackGuardXorFP()) 3103 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3104 3105 // Retrieve guard check function, nullptr if instrumentation is inlined. 3106 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3107 // The target provides a guard check function to validate the guard value. 3108 // Generate a call to that function with the content of the guard slot as 3109 // argument. 3110 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3111 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3112 3113 TargetLowering::ArgListTy Args; 3114 TargetLowering::ArgListEntry Entry; 3115 Entry.Node = GuardVal; 3116 Entry.Ty = FnTy->getParamType(0); 3117 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3118 Entry.IsInReg = true; 3119 Args.push_back(Entry); 3120 3121 TargetLowering::CallLoweringInfo CLI(DAG); 3122 CLI.setDebugLoc(getCurSDLoc()) 3123 .setChain(DAG.getEntryNode()) 3124 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3125 getValue(GuardCheckFn), std::move(Args)); 3126 3127 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3128 DAG.setRoot(Result.second); 3129 return; 3130 } 3131 3132 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3133 // Otherwise, emit a volatile load to retrieve the stack guard value. 3134 SDValue Chain = DAG.getEntryNode(); 3135 if (TLI.useLoadStackGuardNode()) { 3136 Guard = getLoadStackGuard(DAG, dl, Chain); 3137 } else { 3138 const Value *IRGuard = TLI.getSDagStackGuard(M); 3139 SDValue GuardPtr = getValue(IRGuard); 3140 3141 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3142 MachinePointerInfo(IRGuard, 0), Align, 3143 MachineMemOperand::MOVolatile); 3144 } 3145 3146 // Perform the comparison via a getsetcc. 3147 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3148 *DAG.getContext(), 3149 Guard.getValueType()), 3150 Guard, GuardVal, ISD::SETNE); 3151 3152 // If the guard/stackslot do not equal, branch to failure MBB. 3153 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3154 MVT::Other, GuardVal.getOperand(0), 3155 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3156 // Otherwise branch to success MBB. 3157 SDValue Br = DAG.getNode(ISD::BR, dl, 3158 MVT::Other, BrCond, 3159 DAG.getBasicBlock(SPD.getSuccessMBB())); 3160 3161 DAG.setRoot(Br); 3162 } 3163 3164 /// Codegen the failure basic block for a stack protector check. 3165 /// 3166 /// A failure stack protector machine basic block consists simply of a call to 3167 /// __stack_chk_fail(). 3168 /// 3169 /// For a high level explanation of how this fits into the stack protector 3170 /// generation see the comment on the declaration of class 3171 /// StackProtectorDescriptor. 3172 void 3173 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3175 TargetLowering::MakeLibCallOptions CallOptions; 3176 CallOptions.setDiscardResult(true); 3177 SDValue Chain = 3178 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3179 std::nullopt, CallOptions, getCurSDLoc()) 3180 .second; 3181 // On PS4/PS5, the "return address" must still be within the calling 3182 // function, even if it's at the very end, so emit an explicit TRAP here. 3183 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3184 if (TM.getTargetTriple().isPS()) 3185 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3186 // WebAssembly needs an unreachable instruction after a non-returning call, 3187 // because the function return type can be different from __stack_chk_fail's 3188 // return type (void). 3189 if (TM.getTargetTriple().isWasm()) 3190 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3191 3192 DAG.setRoot(Chain); 3193 } 3194 3195 /// visitBitTestHeader - This function emits necessary code to produce value 3196 /// suitable for "bit tests" 3197 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3198 MachineBasicBlock *SwitchBB) { 3199 SDLoc dl = getCurSDLoc(); 3200 3201 // Subtract the minimum value. 3202 SDValue SwitchOp = getValue(B.SValue); 3203 EVT VT = SwitchOp.getValueType(); 3204 SDValue RangeSub = 3205 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3206 3207 // Determine the type of the test operands. 3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3209 bool UsePtrType = false; 3210 if (!TLI.isTypeLegal(VT)) { 3211 UsePtrType = true; 3212 } else { 3213 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3214 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3215 // Switch table case range are encoded into series of masks. 3216 // Just use pointer type, it's guaranteed to fit. 3217 UsePtrType = true; 3218 break; 3219 } 3220 } 3221 SDValue Sub = RangeSub; 3222 if (UsePtrType) { 3223 VT = TLI.getPointerTy(DAG.getDataLayout()); 3224 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3225 } 3226 3227 B.RegVT = VT.getSimpleVT(); 3228 B.Reg = FuncInfo.CreateReg(B.RegVT); 3229 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3230 3231 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3232 3233 if (!B.FallthroughUnreachable) 3234 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3235 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3236 SwitchBB->normalizeSuccProbs(); 3237 3238 SDValue Root = CopyTo; 3239 if (!B.FallthroughUnreachable) { 3240 // Conditional branch to the default block. 3241 SDValue RangeCmp = DAG.getSetCC(dl, 3242 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3243 RangeSub.getValueType()), 3244 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3245 ISD::SETUGT); 3246 3247 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3248 DAG.getBasicBlock(B.Default)); 3249 } 3250 3251 // Avoid emitting unnecessary branches to the next block. 3252 if (MBB != NextBlock(SwitchBB)) 3253 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3254 3255 DAG.setRoot(Root); 3256 } 3257 3258 /// visitBitTestCase - this function produces one "bit test" 3259 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3260 MachineBasicBlock* NextMBB, 3261 BranchProbability BranchProbToNext, 3262 unsigned Reg, 3263 BitTestCase &B, 3264 MachineBasicBlock *SwitchBB) { 3265 SDLoc dl = getCurSDLoc(); 3266 MVT VT = BB.RegVT; 3267 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3268 SDValue Cmp; 3269 unsigned PopCount = llvm::popcount(B.Mask); 3270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3271 if (PopCount == 1) { 3272 // Testing for a single bit; just compare the shift count with what it 3273 // would need to be to shift a 1 bit in that position. 3274 Cmp = DAG.getSetCC( 3275 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3276 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3277 ISD::SETEQ); 3278 } else if (PopCount == BB.Range) { 3279 // There is only one zero bit in the range, test for it directly. 3280 Cmp = DAG.getSetCC( 3281 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3282 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3283 } else { 3284 // Make desired shift 3285 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3286 DAG.getConstant(1, dl, VT), ShiftOp); 3287 3288 // Emit bit tests and jumps 3289 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3290 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3291 Cmp = DAG.getSetCC( 3292 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3293 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3294 } 3295 3296 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3297 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3298 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3299 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3300 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3301 // one as they are relative probabilities (and thus work more like weights), 3302 // and hence we need to normalize them to let the sum of them become one. 3303 SwitchBB->normalizeSuccProbs(); 3304 3305 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3306 MVT::Other, getControlRoot(), 3307 Cmp, DAG.getBasicBlock(B.TargetBB)); 3308 3309 // Avoid emitting unnecessary branches to the next block. 3310 if (NextMBB != NextBlock(SwitchBB)) 3311 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3312 DAG.getBasicBlock(NextMBB)); 3313 3314 DAG.setRoot(BrAnd); 3315 } 3316 3317 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3318 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3319 3320 // Retrieve successors. Look through artificial IR level blocks like 3321 // catchswitch for successors. 3322 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3323 const BasicBlock *EHPadBB = I.getSuccessor(1); 3324 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3325 3326 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3327 // have to do anything here to lower funclet bundles. 3328 assert(!I.hasOperandBundlesOtherThan( 3329 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3330 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3331 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3332 LLVMContext::OB_clang_arc_attachedcall}) && 3333 "Cannot lower invokes with arbitrary operand bundles yet!"); 3334 3335 const Value *Callee(I.getCalledOperand()); 3336 const Function *Fn = dyn_cast<Function>(Callee); 3337 if (isa<InlineAsm>(Callee)) 3338 visitInlineAsm(I, EHPadBB); 3339 else if (Fn && Fn->isIntrinsic()) { 3340 switch (Fn->getIntrinsicID()) { 3341 default: 3342 llvm_unreachable("Cannot invoke this intrinsic"); 3343 case Intrinsic::donothing: 3344 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3345 case Intrinsic::seh_try_begin: 3346 case Intrinsic::seh_scope_begin: 3347 case Intrinsic::seh_try_end: 3348 case Intrinsic::seh_scope_end: 3349 if (EHPadMBB) 3350 // a block referenced by EH table 3351 // so dtor-funclet not removed by opts 3352 EHPadMBB->setMachineBlockAddressTaken(); 3353 break; 3354 case Intrinsic::experimental_patchpoint_void: 3355 case Intrinsic::experimental_patchpoint: 3356 visitPatchpoint(I, EHPadBB); 3357 break; 3358 case Intrinsic::experimental_gc_statepoint: 3359 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3360 break; 3361 case Intrinsic::wasm_rethrow: { 3362 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3363 // special because it can be invoked, so we manually lower it to a DAG 3364 // node here. 3365 SmallVector<SDValue, 8> Ops; 3366 Ops.push_back(getControlRoot()); // inchain for the terminator node 3367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3368 Ops.push_back( 3369 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3370 TLI.getPointerTy(DAG.getDataLayout()))); 3371 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3372 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3373 break; 3374 } 3375 } 3376 } else if (I.hasDeoptState()) { 3377 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3378 // Eventually we will support lowering the @llvm.experimental.deoptimize 3379 // intrinsic, and right now there are no plans to support other intrinsics 3380 // with deopt state. 3381 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3382 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3383 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3384 } else { 3385 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3386 } 3387 3388 // If the value of the invoke is used outside of its defining block, make it 3389 // available as a virtual register. 3390 // We already took care of the exported value for the statepoint instruction 3391 // during call to the LowerStatepoint. 3392 if (!isa<GCStatepointInst>(I)) { 3393 CopyToExportRegsIfNeeded(&I); 3394 } 3395 3396 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3397 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3398 BranchProbability EHPadBBProb = 3399 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3400 : BranchProbability::getZero(); 3401 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3402 3403 // Update successor info. 3404 addSuccessorWithProb(InvokeMBB, Return); 3405 for (auto &UnwindDest : UnwindDests) { 3406 UnwindDest.first->setIsEHPad(); 3407 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3408 } 3409 InvokeMBB->normalizeSuccProbs(); 3410 3411 // Drop into normal successor. 3412 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3413 DAG.getBasicBlock(Return))); 3414 } 3415 3416 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3417 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3418 3419 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3420 // have to do anything here to lower funclet bundles. 3421 assert(!I.hasOperandBundlesOtherThan( 3422 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3423 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3424 3425 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3426 visitInlineAsm(I); 3427 CopyToExportRegsIfNeeded(&I); 3428 3429 // Retrieve successors. 3430 SmallPtrSet<BasicBlock *, 8> Dests; 3431 Dests.insert(I.getDefaultDest()); 3432 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3433 3434 // Update successor info. 3435 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3436 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3437 BasicBlock *Dest = I.getIndirectDest(i); 3438 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3439 Target->setIsInlineAsmBrIndirectTarget(); 3440 Target->setMachineBlockAddressTaken(); 3441 Target->setLabelMustBeEmitted(); 3442 // Don't add duplicate machine successors. 3443 if (Dests.insert(Dest).second) 3444 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3445 } 3446 CallBrMBB->normalizeSuccProbs(); 3447 3448 // Drop into default successor. 3449 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3450 MVT::Other, getControlRoot(), 3451 DAG.getBasicBlock(Return))); 3452 } 3453 3454 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3455 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3456 } 3457 3458 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3459 assert(FuncInfo.MBB->isEHPad() && 3460 "Call to landingpad not in landing pad!"); 3461 3462 // If there aren't registers to copy the values into (e.g., during SjLj 3463 // exceptions), then don't bother to create these DAG nodes. 3464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3465 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3466 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3467 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3468 return; 3469 3470 // If landingpad's return type is token type, we don't create DAG nodes 3471 // for its exception pointer and selector value. The extraction of exception 3472 // pointer or selector value from token type landingpads is not currently 3473 // supported. 3474 if (LP.getType()->isTokenTy()) 3475 return; 3476 3477 SmallVector<EVT, 2> ValueVTs; 3478 SDLoc dl = getCurSDLoc(); 3479 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3480 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3481 3482 // Get the two live-in registers as SDValues. The physregs have already been 3483 // copied into virtual registers. 3484 SDValue Ops[2]; 3485 if (FuncInfo.ExceptionPointerVirtReg) { 3486 Ops[0] = DAG.getZExtOrTrunc( 3487 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3488 FuncInfo.ExceptionPointerVirtReg, 3489 TLI.getPointerTy(DAG.getDataLayout())), 3490 dl, ValueVTs[0]); 3491 } else { 3492 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3493 } 3494 Ops[1] = DAG.getZExtOrTrunc( 3495 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3496 FuncInfo.ExceptionSelectorVirtReg, 3497 TLI.getPointerTy(DAG.getDataLayout())), 3498 dl, ValueVTs[1]); 3499 3500 // Merge into one. 3501 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3502 DAG.getVTList(ValueVTs), Ops); 3503 setValue(&LP, Res); 3504 } 3505 3506 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3507 MachineBasicBlock *Last) { 3508 // Update JTCases. 3509 for (JumpTableBlock &JTB : SL->JTCases) 3510 if (JTB.first.HeaderBB == First) 3511 JTB.first.HeaderBB = Last; 3512 3513 // Update BitTestCases. 3514 for (BitTestBlock &BTB : SL->BitTestCases) 3515 if (BTB.Parent == First) 3516 BTB.Parent = Last; 3517 } 3518 3519 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3520 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3521 3522 // Update machine-CFG edges with unique successors. 3523 SmallSet<BasicBlock*, 32> Done; 3524 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3525 BasicBlock *BB = I.getSuccessor(i); 3526 bool Inserted = Done.insert(BB).second; 3527 if (!Inserted) 3528 continue; 3529 3530 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3531 addSuccessorWithProb(IndirectBrMBB, Succ); 3532 } 3533 IndirectBrMBB->normalizeSuccProbs(); 3534 3535 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3536 MVT::Other, getControlRoot(), 3537 getValue(I.getAddress()))); 3538 } 3539 3540 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3541 if (!DAG.getTarget().Options.TrapUnreachable) 3542 return; 3543 3544 // We may be able to ignore unreachable behind a noreturn call. 3545 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3546 Call && Call->doesNotReturn()) { 3547 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3548 return; 3549 // Do not emit an additional trap instruction. 3550 if (Call->isNonContinuableTrap()) 3551 return; 3552 } 3553 3554 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3555 } 3556 3557 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3558 SDNodeFlags Flags; 3559 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3560 Flags.copyFMF(*FPOp); 3561 3562 SDValue Op = getValue(I.getOperand(0)); 3563 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3564 Op, Flags); 3565 setValue(&I, UnNodeValue); 3566 } 3567 3568 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3569 SDNodeFlags Flags; 3570 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3571 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3572 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3573 } 3574 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3575 Flags.setExact(ExactOp->isExact()); 3576 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3577 Flags.setDisjoint(DisjointOp->isDisjoint()); 3578 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3579 Flags.copyFMF(*FPOp); 3580 3581 SDValue Op1 = getValue(I.getOperand(0)); 3582 SDValue Op2 = getValue(I.getOperand(1)); 3583 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3584 Op1, Op2, Flags); 3585 setValue(&I, BinNodeValue); 3586 } 3587 3588 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3589 SDValue Op1 = getValue(I.getOperand(0)); 3590 SDValue Op2 = getValue(I.getOperand(1)); 3591 3592 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3593 Op1.getValueType(), DAG.getDataLayout()); 3594 3595 // Coerce the shift amount to the right type if we can. This exposes the 3596 // truncate or zext to optimization early. 3597 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3598 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3599 "Unexpected shift type"); 3600 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3601 } 3602 3603 bool nuw = false; 3604 bool nsw = false; 3605 bool exact = false; 3606 3607 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3608 3609 if (const OverflowingBinaryOperator *OFBinOp = 3610 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3611 nuw = OFBinOp->hasNoUnsignedWrap(); 3612 nsw = OFBinOp->hasNoSignedWrap(); 3613 } 3614 if (const PossiblyExactOperator *ExactOp = 3615 dyn_cast<const PossiblyExactOperator>(&I)) 3616 exact = ExactOp->isExact(); 3617 } 3618 SDNodeFlags Flags; 3619 Flags.setExact(exact); 3620 Flags.setNoSignedWrap(nsw); 3621 Flags.setNoUnsignedWrap(nuw); 3622 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3623 Flags); 3624 setValue(&I, Res); 3625 } 3626 3627 void SelectionDAGBuilder::visitSDiv(const User &I) { 3628 SDValue Op1 = getValue(I.getOperand(0)); 3629 SDValue Op2 = getValue(I.getOperand(1)); 3630 3631 SDNodeFlags Flags; 3632 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3633 cast<PossiblyExactOperator>(&I)->isExact()); 3634 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3635 Op2, Flags)); 3636 } 3637 3638 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3639 ICmpInst::Predicate predicate = I.getPredicate(); 3640 SDValue Op1 = getValue(I.getOperand(0)); 3641 SDValue Op2 = getValue(I.getOperand(1)); 3642 ISD::CondCode Opcode = getICmpCondCode(predicate); 3643 3644 auto &TLI = DAG.getTargetLoweringInfo(); 3645 EVT MemVT = 3646 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3647 3648 // If a pointer's DAG type is larger than its memory type then the DAG values 3649 // are zero-extended. This breaks signed comparisons so truncate back to the 3650 // underlying type before doing the compare. 3651 if (Op1.getValueType() != MemVT) { 3652 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3653 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3654 } 3655 3656 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3657 I.getType()); 3658 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3659 } 3660 3661 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3662 FCmpInst::Predicate predicate = I.getPredicate(); 3663 SDValue Op1 = getValue(I.getOperand(0)); 3664 SDValue Op2 = getValue(I.getOperand(1)); 3665 3666 ISD::CondCode Condition = getFCmpCondCode(predicate); 3667 auto *FPMO = cast<FPMathOperator>(&I); 3668 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3669 Condition = getFCmpCodeWithoutNaN(Condition); 3670 3671 SDNodeFlags Flags; 3672 Flags.copyFMF(*FPMO); 3673 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3674 3675 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3676 I.getType()); 3677 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3678 } 3679 3680 // Check if the condition of the select has one use or two users that are both 3681 // selects with the same condition. 3682 static bool hasOnlySelectUsers(const Value *Cond) { 3683 return llvm::all_of(Cond->users(), [](const Value *V) { 3684 return isa<SelectInst>(V); 3685 }); 3686 } 3687 3688 void SelectionDAGBuilder::visitSelect(const User &I) { 3689 SmallVector<EVT, 4> ValueVTs; 3690 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3691 ValueVTs); 3692 unsigned NumValues = ValueVTs.size(); 3693 if (NumValues == 0) return; 3694 3695 SmallVector<SDValue, 4> Values(NumValues); 3696 SDValue Cond = getValue(I.getOperand(0)); 3697 SDValue LHSVal = getValue(I.getOperand(1)); 3698 SDValue RHSVal = getValue(I.getOperand(2)); 3699 SmallVector<SDValue, 1> BaseOps(1, Cond); 3700 ISD::NodeType OpCode = 3701 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3702 3703 bool IsUnaryAbs = false; 3704 bool Negate = false; 3705 3706 SDNodeFlags Flags; 3707 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3708 Flags.copyFMF(*FPOp); 3709 3710 Flags.setUnpredictable( 3711 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3712 3713 // Min/max matching is only viable if all output VTs are the same. 3714 if (all_equal(ValueVTs)) { 3715 EVT VT = ValueVTs[0]; 3716 LLVMContext &Ctx = *DAG.getContext(); 3717 auto &TLI = DAG.getTargetLoweringInfo(); 3718 3719 // We care about the legality of the operation after it has been type 3720 // legalized. 3721 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3722 VT = TLI.getTypeToTransformTo(Ctx, VT); 3723 3724 // If the vselect is legal, assume we want to leave this as a vector setcc + 3725 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3726 // min/max is legal on the scalar type. 3727 bool UseScalarMinMax = VT.isVector() && 3728 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3729 3730 // ValueTracking's select pattern matching does not account for -0.0, 3731 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3732 // -0.0 is less than +0.0. 3733 const Value *LHS, *RHS; 3734 auto SPR = matchSelectPattern(&I, LHS, RHS); 3735 ISD::NodeType Opc = ISD::DELETED_NODE; 3736 switch (SPR.Flavor) { 3737 case SPF_UMAX: Opc = ISD::UMAX; break; 3738 case SPF_UMIN: Opc = ISD::UMIN; break; 3739 case SPF_SMAX: Opc = ISD::SMAX; break; 3740 case SPF_SMIN: Opc = ISD::SMIN; break; 3741 case SPF_FMINNUM: 3742 switch (SPR.NaNBehavior) { 3743 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3744 case SPNB_RETURNS_NAN: break; 3745 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3746 case SPNB_RETURNS_ANY: 3747 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3748 (UseScalarMinMax && 3749 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3750 Opc = ISD::FMINNUM; 3751 break; 3752 } 3753 break; 3754 case SPF_FMAXNUM: 3755 switch (SPR.NaNBehavior) { 3756 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3757 case SPNB_RETURNS_NAN: break; 3758 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3759 case SPNB_RETURNS_ANY: 3760 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3761 (UseScalarMinMax && 3762 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3763 Opc = ISD::FMAXNUM; 3764 break; 3765 } 3766 break; 3767 case SPF_NABS: 3768 Negate = true; 3769 [[fallthrough]]; 3770 case SPF_ABS: 3771 IsUnaryAbs = true; 3772 Opc = ISD::ABS; 3773 break; 3774 default: break; 3775 } 3776 3777 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3778 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3779 (UseScalarMinMax && 3780 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3781 // If the underlying comparison instruction is used by any other 3782 // instruction, the consumed instructions won't be destroyed, so it is 3783 // not profitable to convert to a min/max. 3784 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3785 OpCode = Opc; 3786 LHSVal = getValue(LHS); 3787 RHSVal = getValue(RHS); 3788 BaseOps.clear(); 3789 } 3790 3791 if (IsUnaryAbs) { 3792 OpCode = Opc; 3793 LHSVal = getValue(LHS); 3794 BaseOps.clear(); 3795 } 3796 } 3797 3798 if (IsUnaryAbs) { 3799 for (unsigned i = 0; i != NumValues; ++i) { 3800 SDLoc dl = getCurSDLoc(); 3801 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3802 Values[i] = 3803 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3804 if (Negate) 3805 Values[i] = DAG.getNegative(Values[i], dl, VT); 3806 } 3807 } else { 3808 for (unsigned i = 0; i != NumValues; ++i) { 3809 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3810 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3811 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3812 Values[i] = DAG.getNode( 3813 OpCode, getCurSDLoc(), 3814 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3815 } 3816 } 3817 3818 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3819 DAG.getVTList(ValueVTs), Values)); 3820 } 3821 3822 void SelectionDAGBuilder::visitTrunc(const User &I) { 3823 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3824 SDValue N = getValue(I.getOperand(0)); 3825 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3826 I.getType()); 3827 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3828 } 3829 3830 void SelectionDAGBuilder::visitZExt(const User &I) { 3831 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3832 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3833 SDValue N = getValue(I.getOperand(0)); 3834 auto &TLI = DAG.getTargetLoweringInfo(); 3835 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3836 3837 SDNodeFlags Flags; 3838 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3839 Flags.setNonNeg(PNI->hasNonNeg()); 3840 3841 // Eagerly use nonneg information to canonicalize towards sign_extend if 3842 // that is the target's preference. 3843 // TODO: Let the target do this later. 3844 if (Flags.hasNonNeg() && 3845 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3846 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3847 return; 3848 } 3849 3850 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3851 } 3852 3853 void SelectionDAGBuilder::visitSExt(const User &I) { 3854 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3855 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3856 SDValue N = getValue(I.getOperand(0)); 3857 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3858 I.getType()); 3859 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3860 } 3861 3862 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3863 // FPTrunc is never a no-op cast, no need to check 3864 SDValue N = getValue(I.getOperand(0)); 3865 SDLoc dl = getCurSDLoc(); 3866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3867 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3868 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3869 DAG.getTargetConstant( 3870 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3871 } 3872 3873 void SelectionDAGBuilder::visitFPExt(const User &I) { 3874 // FPExt is never a no-op cast, no need to check 3875 SDValue N = getValue(I.getOperand(0)); 3876 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3877 I.getType()); 3878 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3879 } 3880 3881 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3882 // FPToUI is never a no-op cast, no need to check 3883 SDValue N = getValue(I.getOperand(0)); 3884 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3885 I.getType()); 3886 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3887 } 3888 3889 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3890 // FPToSI is never a no-op cast, no need to check 3891 SDValue N = getValue(I.getOperand(0)); 3892 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3893 I.getType()); 3894 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3895 } 3896 3897 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3898 // UIToFP is never a no-op cast, no need to check 3899 SDValue N = getValue(I.getOperand(0)); 3900 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3901 I.getType()); 3902 SDNodeFlags Flags; 3903 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3904 Flags.setNonNeg(PNI->hasNonNeg()); 3905 3906 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3907 } 3908 3909 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3910 // SIToFP is never a no-op cast, no need to check 3911 SDValue N = getValue(I.getOperand(0)); 3912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3913 I.getType()); 3914 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3915 } 3916 3917 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3918 // What to do depends on the size of the integer and the size of the pointer. 3919 // We can either truncate, zero extend, or no-op, accordingly. 3920 SDValue N = getValue(I.getOperand(0)); 3921 auto &TLI = DAG.getTargetLoweringInfo(); 3922 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3923 I.getType()); 3924 EVT PtrMemVT = 3925 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3926 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3927 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3928 setValue(&I, N); 3929 } 3930 3931 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3932 // What to do depends on the size of the integer and the size of the pointer. 3933 // We can either truncate, zero extend, or no-op, accordingly. 3934 SDValue N = getValue(I.getOperand(0)); 3935 auto &TLI = DAG.getTargetLoweringInfo(); 3936 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3937 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3938 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3939 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3940 setValue(&I, N); 3941 } 3942 3943 void SelectionDAGBuilder::visitBitCast(const User &I) { 3944 SDValue N = getValue(I.getOperand(0)); 3945 SDLoc dl = getCurSDLoc(); 3946 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3947 I.getType()); 3948 3949 // BitCast assures us that source and destination are the same size so this is 3950 // either a BITCAST or a no-op. 3951 if (DestVT != N.getValueType()) 3952 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3953 DestVT, N)); // convert types. 3954 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3955 // might fold any kind of constant expression to an integer constant and that 3956 // is not what we are looking for. Only recognize a bitcast of a genuine 3957 // constant integer as an opaque constant. 3958 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3959 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3960 /*isOpaque*/true)); 3961 else 3962 setValue(&I, N); // noop cast. 3963 } 3964 3965 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3967 const Value *SV = I.getOperand(0); 3968 SDValue N = getValue(SV); 3969 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3970 3971 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3972 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3973 3974 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3975 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3976 3977 setValue(&I, N); 3978 } 3979 3980 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3981 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3982 SDValue InVec = getValue(I.getOperand(0)); 3983 SDValue InVal = getValue(I.getOperand(1)); 3984 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3985 TLI.getVectorIdxTy(DAG.getDataLayout())); 3986 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3987 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3988 InVec, InVal, InIdx)); 3989 } 3990 3991 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3993 SDValue InVec = getValue(I.getOperand(0)); 3994 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3995 TLI.getVectorIdxTy(DAG.getDataLayout())); 3996 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3997 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3998 InVec, InIdx)); 3999 } 4000 4001 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4002 SDValue Src1 = getValue(I.getOperand(0)); 4003 SDValue Src2 = getValue(I.getOperand(1)); 4004 ArrayRef<int> Mask; 4005 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4006 Mask = SVI->getShuffleMask(); 4007 else 4008 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4009 SDLoc DL = getCurSDLoc(); 4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4011 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4012 EVT SrcVT = Src1.getValueType(); 4013 4014 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4015 VT.isScalableVector()) { 4016 // Canonical splat form of first element of first input vector. 4017 SDValue FirstElt = 4018 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4019 DAG.getVectorIdxConstant(0, DL)); 4020 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4021 return; 4022 } 4023 4024 // For now, we only handle splats for scalable vectors. 4025 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4026 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4027 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4028 4029 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4030 unsigned MaskNumElts = Mask.size(); 4031 4032 if (SrcNumElts == MaskNumElts) { 4033 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4034 return; 4035 } 4036 4037 // Normalize the shuffle vector since mask and vector length don't match. 4038 if (SrcNumElts < MaskNumElts) { 4039 // Mask is longer than the source vectors. We can use concatenate vector to 4040 // make the mask and vectors lengths match. 4041 4042 if (MaskNumElts % SrcNumElts == 0) { 4043 // Mask length is a multiple of the source vector length. 4044 // Check if the shuffle is some kind of concatenation of the input 4045 // vectors. 4046 unsigned NumConcat = MaskNumElts / SrcNumElts; 4047 bool IsConcat = true; 4048 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4049 for (unsigned i = 0; i != MaskNumElts; ++i) { 4050 int Idx = Mask[i]; 4051 if (Idx < 0) 4052 continue; 4053 // Ensure the indices in each SrcVT sized piece are sequential and that 4054 // the same source is used for the whole piece. 4055 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4056 (ConcatSrcs[i / SrcNumElts] >= 0 && 4057 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4058 IsConcat = false; 4059 break; 4060 } 4061 // Remember which source this index came from. 4062 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4063 } 4064 4065 // The shuffle is concatenating multiple vectors together. Just emit 4066 // a CONCAT_VECTORS operation. 4067 if (IsConcat) { 4068 SmallVector<SDValue, 8> ConcatOps; 4069 for (auto Src : ConcatSrcs) { 4070 if (Src < 0) 4071 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4072 else if (Src == 0) 4073 ConcatOps.push_back(Src1); 4074 else 4075 ConcatOps.push_back(Src2); 4076 } 4077 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4078 return; 4079 } 4080 } 4081 4082 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4083 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4084 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4085 PaddedMaskNumElts); 4086 4087 // Pad both vectors with undefs to make them the same length as the mask. 4088 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4089 4090 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4091 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4092 MOps1[0] = Src1; 4093 MOps2[0] = Src2; 4094 4095 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4096 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4097 4098 // Readjust mask for new input vector length. 4099 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4100 for (unsigned i = 0; i != MaskNumElts; ++i) { 4101 int Idx = Mask[i]; 4102 if (Idx >= (int)SrcNumElts) 4103 Idx -= SrcNumElts - PaddedMaskNumElts; 4104 MappedOps[i] = Idx; 4105 } 4106 4107 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4108 4109 // If the concatenated vector was padded, extract a subvector with the 4110 // correct number of elements. 4111 if (MaskNumElts != PaddedMaskNumElts) 4112 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4113 DAG.getVectorIdxConstant(0, DL)); 4114 4115 setValue(&I, Result); 4116 return; 4117 } 4118 4119 if (SrcNumElts > MaskNumElts) { 4120 // Analyze the access pattern of the vector to see if we can extract 4121 // two subvectors and do the shuffle. 4122 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4123 bool CanExtract = true; 4124 for (int Idx : Mask) { 4125 unsigned Input = 0; 4126 if (Idx < 0) 4127 continue; 4128 4129 if (Idx >= (int)SrcNumElts) { 4130 Input = 1; 4131 Idx -= SrcNumElts; 4132 } 4133 4134 // If all the indices come from the same MaskNumElts sized portion of 4135 // the sources we can use extract. Also make sure the extract wouldn't 4136 // extract past the end of the source. 4137 int NewStartIdx = alignDown(Idx, MaskNumElts); 4138 if (NewStartIdx + MaskNumElts > SrcNumElts || 4139 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4140 CanExtract = false; 4141 // Make sure we always update StartIdx as we use it to track if all 4142 // elements are undef. 4143 StartIdx[Input] = NewStartIdx; 4144 } 4145 4146 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4147 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4148 return; 4149 } 4150 if (CanExtract) { 4151 // Extract appropriate subvector and generate a vector shuffle 4152 for (unsigned Input = 0; Input < 2; ++Input) { 4153 SDValue &Src = Input == 0 ? Src1 : Src2; 4154 if (StartIdx[Input] < 0) 4155 Src = DAG.getUNDEF(VT); 4156 else { 4157 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4158 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4159 } 4160 } 4161 4162 // Calculate new mask. 4163 SmallVector<int, 8> MappedOps(Mask); 4164 for (int &Idx : MappedOps) { 4165 if (Idx >= (int)SrcNumElts) 4166 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4167 else if (Idx >= 0) 4168 Idx -= StartIdx[0]; 4169 } 4170 4171 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4172 return; 4173 } 4174 } 4175 4176 // We can't use either concat vectors or extract subvectors so fall back to 4177 // replacing the shuffle with extract and build vector. 4178 // to insert and build vector. 4179 EVT EltVT = VT.getVectorElementType(); 4180 SmallVector<SDValue,8> Ops; 4181 for (int Idx : Mask) { 4182 SDValue Res; 4183 4184 if (Idx < 0) { 4185 Res = DAG.getUNDEF(EltVT); 4186 } else { 4187 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4188 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4189 4190 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4191 DAG.getVectorIdxConstant(Idx, DL)); 4192 } 4193 4194 Ops.push_back(Res); 4195 } 4196 4197 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4198 } 4199 4200 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4201 ArrayRef<unsigned> Indices = I.getIndices(); 4202 const Value *Op0 = I.getOperand(0); 4203 const Value *Op1 = I.getOperand(1); 4204 Type *AggTy = I.getType(); 4205 Type *ValTy = Op1->getType(); 4206 bool IntoUndef = isa<UndefValue>(Op0); 4207 bool FromUndef = isa<UndefValue>(Op1); 4208 4209 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4210 4211 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4212 SmallVector<EVT, 4> AggValueVTs; 4213 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4214 SmallVector<EVT, 4> ValValueVTs; 4215 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4216 4217 unsigned NumAggValues = AggValueVTs.size(); 4218 unsigned NumValValues = ValValueVTs.size(); 4219 SmallVector<SDValue, 4> Values(NumAggValues); 4220 4221 // Ignore an insertvalue that produces an empty object 4222 if (!NumAggValues) { 4223 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4224 return; 4225 } 4226 4227 SDValue Agg = getValue(Op0); 4228 unsigned i = 0; 4229 // Copy the beginning value(s) from the original aggregate. 4230 for (; i != LinearIndex; ++i) 4231 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4232 SDValue(Agg.getNode(), Agg.getResNo() + i); 4233 // Copy values from the inserted value(s). 4234 if (NumValValues) { 4235 SDValue Val = getValue(Op1); 4236 for (; i != LinearIndex + NumValValues; ++i) 4237 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4238 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4239 } 4240 // Copy remaining value(s) from the original aggregate. 4241 for (; i != NumAggValues; ++i) 4242 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4243 SDValue(Agg.getNode(), Agg.getResNo() + i); 4244 4245 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4246 DAG.getVTList(AggValueVTs), Values)); 4247 } 4248 4249 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4250 ArrayRef<unsigned> Indices = I.getIndices(); 4251 const Value *Op0 = I.getOperand(0); 4252 Type *AggTy = Op0->getType(); 4253 Type *ValTy = I.getType(); 4254 bool OutOfUndef = isa<UndefValue>(Op0); 4255 4256 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4257 4258 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4259 SmallVector<EVT, 4> ValValueVTs; 4260 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4261 4262 unsigned NumValValues = ValValueVTs.size(); 4263 4264 // Ignore a extractvalue that produces an empty object 4265 if (!NumValValues) { 4266 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4267 return; 4268 } 4269 4270 SmallVector<SDValue, 4> Values(NumValValues); 4271 4272 SDValue Agg = getValue(Op0); 4273 // Copy out the selected value(s). 4274 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4275 Values[i - LinearIndex] = 4276 OutOfUndef ? 4277 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4278 SDValue(Agg.getNode(), Agg.getResNo() + i); 4279 4280 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4281 DAG.getVTList(ValValueVTs), Values)); 4282 } 4283 4284 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4285 Value *Op0 = I.getOperand(0); 4286 // Note that the pointer operand may be a vector of pointers. Take the scalar 4287 // element which holds a pointer. 4288 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4289 SDValue N = getValue(Op0); 4290 SDLoc dl = getCurSDLoc(); 4291 auto &TLI = DAG.getTargetLoweringInfo(); 4292 4293 // Normalize Vector GEP - all scalar operands should be converted to the 4294 // splat vector. 4295 bool IsVectorGEP = I.getType()->isVectorTy(); 4296 ElementCount VectorElementCount = 4297 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4298 : ElementCount::getFixed(0); 4299 4300 if (IsVectorGEP && !N.getValueType().isVector()) { 4301 LLVMContext &Context = *DAG.getContext(); 4302 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4303 N = DAG.getSplat(VT, dl, N); 4304 } 4305 4306 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4307 GTI != E; ++GTI) { 4308 const Value *Idx = GTI.getOperand(); 4309 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4310 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4311 if (Field) { 4312 // N = N + Offset 4313 uint64_t Offset = 4314 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4315 4316 // In an inbounds GEP with an offset that is nonnegative even when 4317 // interpreted as signed, assume there is no unsigned overflow. 4318 SDNodeFlags Flags; 4319 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4320 Flags.setNoUnsignedWrap(true); 4321 4322 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4323 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4324 } 4325 } else { 4326 // IdxSize is the width of the arithmetic according to IR semantics. 4327 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4328 // (and fix up the result later). 4329 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4330 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4331 TypeSize ElementSize = 4332 GTI.getSequentialElementStride(DAG.getDataLayout()); 4333 // We intentionally mask away the high bits here; ElementSize may not 4334 // fit in IdxTy. 4335 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4336 bool ElementScalable = ElementSize.isScalable(); 4337 4338 // If this is a scalar constant or a splat vector of constants, 4339 // handle it quickly. 4340 const auto *C = dyn_cast<Constant>(Idx); 4341 if (C && isa<VectorType>(C->getType())) 4342 C = C->getSplatValue(); 4343 4344 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4345 if (CI && CI->isZero()) 4346 continue; 4347 if (CI && !ElementScalable) { 4348 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4349 LLVMContext &Context = *DAG.getContext(); 4350 SDValue OffsVal; 4351 if (IsVectorGEP) 4352 OffsVal = DAG.getConstant( 4353 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4354 else 4355 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4356 4357 // In an inbounds GEP with an offset that is nonnegative even when 4358 // interpreted as signed, assume there is no unsigned overflow. 4359 SDNodeFlags Flags; 4360 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4361 Flags.setNoUnsignedWrap(true); 4362 4363 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4364 4365 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4366 continue; 4367 } 4368 4369 // N = N + Idx * ElementMul; 4370 SDValue IdxN = getValue(Idx); 4371 4372 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4373 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4374 VectorElementCount); 4375 IdxN = DAG.getSplat(VT, dl, IdxN); 4376 } 4377 4378 // If the index is smaller or larger than intptr_t, truncate or extend 4379 // it. 4380 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4381 4382 if (ElementScalable) { 4383 EVT VScaleTy = N.getValueType().getScalarType(); 4384 SDValue VScale = DAG.getNode( 4385 ISD::VSCALE, dl, VScaleTy, 4386 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4387 if (IsVectorGEP) 4388 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4389 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4390 } else { 4391 // If this is a multiply by a power of two, turn it into a shl 4392 // immediately. This is a very common case. 4393 if (ElementMul != 1) { 4394 if (ElementMul.isPowerOf2()) { 4395 unsigned Amt = ElementMul.logBase2(); 4396 IdxN = DAG.getNode(ISD::SHL, dl, 4397 N.getValueType(), IdxN, 4398 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4399 } else { 4400 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4401 IdxN.getValueType()); 4402 IdxN = DAG.getNode(ISD::MUL, dl, 4403 N.getValueType(), IdxN, Scale); 4404 } 4405 } 4406 } 4407 4408 N = DAG.getNode(ISD::ADD, dl, 4409 N.getValueType(), N, IdxN); 4410 } 4411 } 4412 4413 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4414 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4415 if (IsVectorGEP) { 4416 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4417 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4418 } 4419 4420 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4421 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4422 4423 setValue(&I, N); 4424 } 4425 4426 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4427 // If this is a fixed sized alloca in the entry block of the function, 4428 // allocate it statically on the stack. 4429 if (FuncInfo.StaticAllocaMap.count(&I)) 4430 return; // getValue will auto-populate this. 4431 4432 SDLoc dl = getCurSDLoc(); 4433 Type *Ty = I.getAllocatedType(); 4434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4435 auto &DL = DAG.getDataLayout(); 4436 TypeSize TySize = DL.getTypeAllocSize(Ty); 4437 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4438 4439 SDValue AllocSize = getValue(I.getArraySize()); 4440 4441 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4442 if (AllocSize.getValueType() != IntPtr) 4443 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4444 4445 if (TySize.isScalable()) 4446 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4447 DAG.getVScale(dl, IntPtr, 4448 APInt(IntPtr.getScalarSizeInBits(), 4449 TySize.getKnownMinValue()))); 4450 else { 4451 SDValue TySizeValue = 4452 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4453 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4454 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4455 } 4456 4457 // Handle alignment. If the requested alignment is less than or equal to 4458 // the stack alignment, ignore it. If the size is greater than or equal to 4459 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4460 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4461 if (*Alignment <= StackAlign) 4462 Alignment = std::nullopt; 4463 4464 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4465 // Round the size of the allocation up to the stack alignment size 4466 // by add SA-1 to the size. This doesn't overflow because we're computing 4467 // an address inside an alloca. 4468 SDNodeFlags Flags; 4469 Flags.setNoUnsignedWrap(true); 4470 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4471 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4472 4473 // Mask out the low bits for alignment purposes. 4474 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4475 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4476 4477 SDValue Ops[] = { 4478 getRoot(), AllocSize, 4479 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4480 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4481 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4482 setValue(&I, DSA); 4483 DAG.setRoot(DSA.getValue(1)); 4484 4485 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4486 } 4487 4488 static const MDNode *getRangeMetadata(const Instruction &I) { 4489 // If !noundef is not present, then !range violation results in a poison 4490 // value rather than immediate undefined behavior. In theory, transferring 4491 // these annotations to SDAG is fine, but in practice there are key SDAG 4492 // transforms that are known not to be poison-safe, such as folding logical 4493 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4494 // also present. 4495 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4496 return nullptr; 4497 return I.getMetadata(LLVMContext::MD_range); 4498 } 4499 4500 static std::optional<ConstantRange> getRange(const Instruction &I) { 4501 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4502 // see comment in getRangeMetadata about this check 4503 if (CB->hasRetAttr(Attribute::NoUndef)) 4504 return CB->getRange(); 4505 } 4506 if (const MDNode *Range = getRangeMetadata(I)) 4507 return getConstantRangeFromMetadata(*Range); 4508 return std::nullopt; 4509 } 4510 4511 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4512 if (I.isAtomic()) 4513 return visitAtomicLoad(I); 4514 4515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4516 const Value *SV = I.getOperand(0); 4517 if (TLI.supportSwiftError()) { 4518 // Swifterror values can come from either a function parameter with 4519 // swifterror attribute or an alloca with swifterror attribute. 4520 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4521 if (Arg->hasSwiftErrorAttr()) 4522 return visitLoadFromSwiftError(I); 4523 } 4524 4525 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4526 if (Alloca->isSwiftError()) 4527 return visitLoadFromSwiftError(I); 4528 } 4529 } 4530 4531 SDValue Ptr = getValue(SV); 4532 4533 Type *Ty = I.getType(); 4534 SmallVector<EVT, 4> ValueVTs, MemVTs; 4535 SmallVector<TypeSize, 4> Offsets; 4536 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4537 unsigned NumValues = ValueVTs.size(); 4538 if (NumValues == 0) 4539 return; 4540 4541 Align Alignment = I.getAlign(); 4542 AAMDNodes AAInfo = I.getAAMetadata(); 4543 const MDNode *Ranges = getRangeMetadata(I); 4544 bool isVolatile = I.isVolatile(); 4545 MachineMemOperand::Flags MMOFlags = 4546 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4547 4548 SDValue Root; 4549 bool ConstantMemory = false; 4550 if (isVolatile) 4551 // Serialize volatile loads with other side effects. 4552 Root = getRoot(); 4553 else if (NumValues > MaxParallelChains) 4554 Root = getMemoryRoot(); 4555 else if (AA && 4556 AA->pointsToConstantMemory(MemoryLocation( 4557 SV, 4558 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4559 AAInfo))) { 4560 // Do not serialize (non-volatile) loads of constant memory with anything. 4561 Root = DAG.getEntryNode(); 4562 ConstantMemory = true; 4563 MMOFlags |= MachineMemOperand::MOInvariant; 4564 } else { 4565 // Do not serialize non-volatile loads against each other. 4566 Root = DAG.getRoot(); 4567 } 4568 4569 SDLoc dl = getCurSDLoc(); 4570 4571 if (isVolatile) 4572 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4573 4574 SmallVector<SDValue, 4> Values(NumValues); 4575 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4576 4577 unsigned ChainI = 0; 4578 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4579 // Serializing loads here may result in excessive register pressure, and 4580 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4581 // could recover a bit by hoisting nodes upward in the chain by recognizing 4582 // they are side-effect free or do not alias. The optimizer should really 4583 // avoid this case by converting large object/array copies to llvm.memcpy 4584 // (MaxParallelChains should always remain as failsafe). 4585 if (ChainI == MaxParallelChains) { 4586 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4587 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4588 ArrayRef(Chains.data(), ChainI)); 4589 Root = Chain; 4590 ChainI = 0; 4591 } 4592 4593 // TODO: MachinePointerInfo only supports a fixed length offset. 4594 MachinePointerInfo PtrInfo = 4595 !Offsets[i].isScalable() || Offsets[i].isZero() 4596 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4597 : MachinePointerInfo(); 4598 4599 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4600 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4601 MMOFlags, AAInfo, Ranges); 4602 Chains[ChainI] = L.getValue(1); 4603 4604 if (MemVTs[i] != ValueVTs[i]) 4605 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4606 4607 Values[i] = L; 4608 } 4609 4610 if (!ConstantMemory) { 4611 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4612 ArrayRef(Chains.data(), ChainI)); 4613 if (isVolatile) 4614 DAG.setRoot(Chain); 4615 else 4616 PendingLoads.push_back(Chain); 4617 } 4618 4619 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4620 DAG.getVTList(ValueVTs), Values)); 4621 } 4622 4623 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4624 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4625 "call visitStoreToSwiftError when backend supports swifterror"); 4626 4627 SmallVector<EVT, 4> ValueVTs; 4628 SmallVector<uint64_t, 4> Offsets; 4629 const Value *SrcV = I.getOperand(0); 4630 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4631 SrcV->getType(), ValueVTs, &Offsets, 0); 4632 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4633 "expect a single EVT for swifterror"); 4634 4635 SDValue Src = getValue(SrcV); 4636 // Create a virtual register, then update the virtual register. 4637 Register VReg = 4638 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4639 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4640 // Chain can be getRoot or getControlRoot. 4641 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4642 SDValue(Src.getNode(), Src.getResNo())); 4643 DAG.setRoot(CopyNode); 4644 } 4645 4646 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4647 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4648 "call visitLoadFromSwiftError when backend supports swifterror"); 4649 4650 assert(!I.isVolatile() && 4651 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4652 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4653 "Support volatile, non temporal, invariant for load_from_swift_error"); 4654 4655 const Value *SV = I.getOperand(0); 4656 Type *Ty = I.getType(); 4657 assert( 4658 (!AA || 4659 !AA->pointsToConstantMemory(MemoryLocation( 4660 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4661 I.getAAMetadata()))) && 4662 "load_from_swift_error should not be constant memory"); 4663 4664 SmallVector<EVT, 4> ValueVTs; 4665 SmallVector<uint64_t, 4> Offsets; 4666 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4667 ValueVTs, &Offsets, 0); 4668 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4669 "expect a single EVT for swifterror"); 4670 4671 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4672 SDValue L = DAG.getCopyFromReg( 4673 getRoot(), getCurSDLoc(), 4674 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4675 4676 setValue(&I, L); 4677 } 4678 4679 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4680 if (I.isAtomic()) 4681 return visitAtomicStore(I); 4682 4683 const Value *SrcV = I.getOperand(0); 4684 const Value *PtrV = I.getOperand(1); 4685 4686 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4687 if (TLI.supportSwiftError()) { 4688 // Swifterror values can come from either a function parameter with 4689 // swifterror attribute or an alloca with swifterror attribute. 4690 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4691 if (Arg->hasSwiftErrorAttr()) 4692 return visitStoreToSwiftError(I); 4693 } 4694 4695 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4696 if (Alloca->isSwiftError()) 4697 return visitStoreToSwiftError(I); 4698 } 4699 } 4700 4701 SmallVector<EVT, 4> ValueVTs, MemVTs; 4702 SmallVector<TypeSize, 4> Offsets; 4703 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4704 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4705 unsigned NumValues = ValueVTs.size(); 4706 if (NumValues == 0) 4707 return; 4708 4709 // Get the lowered operands. Note that we do this after 4710 // checking if NumResults is zero, because with zero results 4711 // the operands won't have values in the map. 4712 SDValue Src = getValue(SrcV); 4713 SDValue Ptr = getValue(PtrV); 4714 4715 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4716 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4717 SDLoc dl = getCurSDLoc(); 4718 Align Alignment = I.getAlign(); 4719 AAMDNodes AAInfo = I.getAAMetadata(); 4720 4721 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4722 4723 unsigned ChainI = 0; 4724 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4725 // See visitLoad comments. 4726 if (ChainI == MaxParallelChains) { 4727 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4728 ArrayRef(Chains.data(), ChainI)); 4729 Root = Chain; 4730 ChainI = 0; 4731 } 4732 4733 // TODO: MachinePointerInfo only supports a fixed length offset. 4734 MachinePointerInfo PtrInfo = 4735 !Offsets[i].isScalable() || Offsets[i].isZero() 4736 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4737 : MachinePointerInfo(); 4738 4739 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4740 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4741 if (MemVTs[i] != ValueVTs[i]) 4742 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4743 SDValue St = 4744 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4745 Chains[ChainI] = St; 4746 } 4747 4748 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4749 ArrayRef(Chains.data(), ChainI)); 4750 setValue(&I, StoreNode); 4751 DAG.setRoot(StoreNode); 4752 } 4753 4754 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4755 bool IsCompressing) { 4756 SDLoc sdl = getCurSDLoc(); 4757 4758 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4759 Align &Alignment) { 4760 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4761 Src0 = I.getArgOperand(0); 4762 Ptr = I.getArgOperand(1); 4763 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4764 Mask = I.getArgOperand(3); 4765 }; 4766 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4767 Align &Alignment) { 4768 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4769 Src0 = I.getArgOperand(0); 4770 Ptr = I.getArgOperand(1); 4771 Mask = I.getArgOperand(2); 4772 Alignment = I.getParamAlign(1).valueOrOne(); 4773 }; 4774 4775 Value *PtrOperand, *MaskOperand, *Src0Operand; 4776 Align Alignment; 4777 if (IsCompressing) 4778 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4779 else 4780 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4781 4782 SDValue Ptr = getValue(PtrOperand); 4783 SDValue Src0 = getValue(Src0Operand); 4784 SDValue Mask = getValue(MaskOperand); 4785 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4786 4787 EVT VT = Src0.getValueType(); 4788 4789 auto MMOFlags = MachineMemOperand::MOStore; 4790 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4791 MMOFlags |= MachineMemOperand::MONonTemporal; 4792 4793 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4794 MachinePointerInfo(PtrOperand), MMOFlags, 4795 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4796 4797 const auto &TLI = DAG.getTargetLoweringInfo(); 4798 const auto &TTI = 4799 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4800 SDValue StoreNode = 4801 !IsCompressing && 4802 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4803 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4804 Mask) 4805 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4806 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4807 IsCompressing); 4808 DAG.setRoot(StoreNode); 4809 setValue(&I, StoreNode); 4810 } 4811 4812 // Get a uniform base for the Gather/Scatter intrinsic. 4813 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4814 // We try to represent it as a base pointer + vector of indices. 4815 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4816 // The first operand of the GEP may be a single pointer or a vector of pointers 4817 // Example: 4818 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4819 // or 4820 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4821 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4822 // 4823 // When the first GEP operand is a single pointer - it is the uniform base we 4824 // are looking for. If first operand of the GEP is a splat vector - we 4825 // extract the splat value and use it as a uniform base. 4826 // In all other cases the function returns 'false'. 4827 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4828 ISD::MemIndexType &IndexType, SDValue &Scale, 4829 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4830 uint64_t ElemSize) { 4831 SelectionDAG& DAG = SDB->DAG; 4832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4833 const DataLayout &DL = DAG.getDataLayout(); 4834 4835 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4836 4837 // Handle splat constant pointer. 4838 if (auto *C = dyn_cast<Constant>(Ptr)) { 4839 C = C->getSplatValue(); 4840 if (!C) 4841 return false; 4842 4843 Base = SDB->getValue(C); 4844 4845 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4846 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4847 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4848 IndexType = ISD::SIGNED_SCALED; 4849 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4850 return true; 4851 } 4852 4853 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4854 if (!GEP || GEP->getParent() != CurBB) 4855 return false; 4856 4857 if (GEP->getNumOperands() != 2) 4858 return false; 4859 4860 const Value *BasePtr = GEP->getPointerOperand(); 4861 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4862 4863 // Make sure the base is scalar and the index is a vector. 4864 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4865 return false; 4866 4867 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4868 if (ScaleVal.isScalable()) 4869 return false; 4870 4871 // Target may not support the required addressing mode. 4872 if (ScaleVal != 1 && 4873 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4874 return false; 4875 4876 Base = SDB->getValue(BasePtr); 4877 Index = SDB->getValue(IndexVal); 4878 IndexType = ISD::SIGNED_SCALED; 4879 4880 Scale = 4881 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4882 return true; 4883 } 4884 4885 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4886 SDLoc sdl = getCurSDLoc(); 4887 4888 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4889 const Value *Ptr = I.getArgOperand(1); 4890 SDValue Src0 = getValue(I.getArgOperand(0)); 4891 SDValue Mask = getValue(I.getArgOperand(3)); 4892 EVT VT = Src0.getValueType(); 4893 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4894 ->getMaybeAlignValue() 4895 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4897 4898 SDValue Base; 4899 SDValue Index; 4900 ISD::MemIndexType IndexType; 4901 SDValue Scale; 4902 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4903 I.getParent(), VT.getScalarStoreSize()); 4904 4905 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4906 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4907 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4908 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4909 if (!UniformBase) { 4910 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4911 Index = getValue(Ptr); 4912 IndexType = ISD::SIGNED_SCALED; 4913 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4914 } 4915 4916 EVT IdxVT = Index.getValueType(); 4917 EVT EltTy = IdxVT.getVectorElementType(); 4918 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4919 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4920 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4921 } 4922 4923 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4924 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4925 Ops, MMO, IndexType, false); 4926 DAG.setRoot(Scatter); 4927 setValue(&I, Scatter); 4928 } 4929 4930 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4931 SDLoc sdl = getCurSDLoc(); 4932 4933 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4934 Align &Alignment) { 4935 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4936 Ptr = I.getArgOperand(0); 4937 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4938 Mask = I.getArgOperand(2); 4939 Src0 = I.getArgOperand(3); 4940 }; 4941 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4942 Align &Alignment) { 4943 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4944 Ptr = I.getArgOperand(0); 4945 Alignment = I.getParamAlign(0).valueOrOne(); 4946 Mask = I.getArgOperand(1); 4947 Src0 = I.getArgOperand(2); 4948 }; 4949 4950 Value *PtrOperand, *MaskOperand, *Src0Operand; 4951 Align Alignment; 4952 if (IsExpanding) 4953 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4954 else 4955 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4956 4957 SDValue Ptr = getValue(PtrOperand); 4958 SDValue Src0 = getValue(Src0Operand); 4959 SDValue Mask = getValue(MaskOperand); 4960 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4961 4962 EVT VT = Src0.getValueType(); 4963 AAMDNodes AAInfo = I.getAAMetadata(); 4964 const MDNode *Ranges = getRangeMetadata(I); 4965 4966 // Do not serialize masked loads of constant memory with anything. 4967 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4968 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4969 4970 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4971 4972 auto MMOFlags = MachineMemOperand::MOLoad; 4973 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4974 MMOFlags |= MachineMemOperand::MONonTemporal; 4975 4976 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4977 MachinePointerInfo(PtrOperand), MMOFlags, 4978 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4979 4980 const auto &TLI = DAG.getTargetLoweringInfo(); 4981 const auto &TTI = 4982 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4983 // The Load/Res may point to different values and both of them are output 4984 // variables. 4985 SDValue Load; 4986 SDValue Res; 4987 if (!IsExpanding && 4988 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 4989 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 4990 else 4991 Res = Load = 4992 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4993 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4994 if (AddToChain) 4995 PendingLoads.push_back(Load.getValue(1)); 4996 setValue(&I, Res); 4997 } 4998 4999 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5000 SDLoc sdl = getCurSDLoc(); 5001 5002 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5003 const Value *Ptr = I.getArgOperand(0); 5004 SDValue Src0 = getValue(I.getArgOperand(3)); 5005 SDValue Mask = getValue(I.getArgOperand(2)); 5006 5007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5009 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5010 ->getMaybeAlignValue() 5011 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5012 5013 const MDNode *Ranges = getRangeMetadata(I); 5014 5015 SDValue Root = DAG.getRoot(); 5016 SDValue Base; 5017 SDValue Index; 5018 ISD::MemIndexType IndexType; 5019 SDValue Scale; 5020 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5021 I.getParent(), VT.getScalarStoreSize()); 5022 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5023 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5024 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5025 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5026 Ranges); 5027 5028 if (!UniformBase) { 5029 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5030 Index = getValue(Ptr); 5031 IndexType = ISD::SIGNED_SCALED; 5032 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5033 } 5034 5035 EVT IdxVT = Index.getValueType(); 5036 EVT EltTy = IdxVT.getVectorElementType(); 5037 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5038 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5039 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5040 } 5041 5042 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5043 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5044 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5045 5046 PendingLoads.push_back(Gather.getValue(1)); 5047 setValue(&I, Gather); 5048 } 5049 5050 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5051 SDLoc dl = getCurSDLoc(); 5052 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5053 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5054 SyncScope::ID SSID = I.getSyncScopeID(); 5055 5056 SDValue InChain = getRoot(); 5057 5058 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5059 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5060 5061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5062 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5063 5064 MachineFunction &MF = DAG.getMachineFunction(); 5065 MachineMemOperand *MMO = MF.getMachineMemOperand( 5066 MachinePointerInfo(I.getPointerOperand()), Flags, 5067 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5068 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5069 5070 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5071 dl, MemVT, VTs, InChain, 5072 getValue(I.getPointerOperand()), 5073 getValue(I.getCompareOperand()), 5074 getValue(I.getNewValOperand()), MMO); 5075 5076 SDValue OutChain = L.getValue(2); 5077 5078 setValue(&I, L); 5079 DAG.setRoot(OutChain); 5080 } 5081 5082 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5083 SDLoc dl = getCurSDLoc(); 5084 ISD::NodeType NT; 5085 switch (I.getOperation()) { 5086 default: llvm_unreachable("Unknown atomicrmw operation"); 5087 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5088 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5089 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5090 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5091 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5092 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5093 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5094 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5095 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5096 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5097 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5098 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5099 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5100 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5101 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5102 case AtomicRMWInst::UIncWrap: 5103 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5104 break; 5105 case AtomicRMWInst::UDecWrap: 5106 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5107 break; 5108 } 5109 AtomicOrdering Ordering = I.getOrdering(); 5110 SyncScope::ID SSID = I.getSyncScopeID(); 5111 5112 SDValue InChain = getRoot(); 5113 5114 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5116 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5117 5118 MachineFunction &MF = DAG.getMachineFunction(); 5119 MachineMemOperand *MMO = MF.getMachineMemOperand( 5120 MachinePointerInfo(I.getPointerOperand()), Flags, 5121 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5122 AAMDNodes(), nullptr, SSID, Ordering); 5123 5124 SDValue L = 5125 DAG.getAtomic(NT, dl, MemVT, InChain, 5126 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5127 MMO); 5128 5129 SDValue OutChain = L.getValue(1); 5130 5131 setValue(&I, L); 5132 DAG.setRoot(OutChain); 5133 } 5134 5135 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5136 SDLoc dl = getCurSDLoc(); 5137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5138 SDValue Ops[3]; 5139 Ops[0] = getRoot(); 5140 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5141 TLI.getFenceOperandTy(DAG.getDataLayout())); 5142 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5143 TLI.getFenceOperandTy(DAG.getDataLayout())); 5144 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5145 setValue(&I, N); 5146 DAG.setRoot(N); 5147 } 5148 5149 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5150 SDLoc dl = getCurSDLoc(); 5151 AtomicOrdering Order = I.getOrdering(); 5152 SyncScope::ID SSID = I.getSyncScopeID(); 5153 5154 SDValue InChain = getRoot(); 5155 5156 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5157 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5158 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5159 5160 if (!TLI.supportsUnalignedAtomics() && 5161 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5162 report_fatal_error("Cannot generate unaligned atomic load"); 5163 5164 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5165 5166 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5167 MachinePointerInfo(I.getPointerOperand()), Flags, 5168 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5169 nullptr, SSID, Order); 5170 5171 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5172 5173 SDValue Ptr = getValue(I.getPointerOperand()); 5174 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5175 Ptr, MMO); 5176 5177 SDValue OutChain = L.getValue(1); 5178 if (MemVT != VT) 5179 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5180 5181 setValue(&I, L); 5182 DAG.setRoot(OutChain); 5183 } 5184 5185 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5186 SDLoc dl = getCurSDLoc(); 5187 5188 AtomicOrdering Ordering = I.getOrdering(); 5189 SyncScope::ID SSID = I.getSyncScopeID(); 5190 5191 SDValue InChain = getRoot(); 5192 5193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5194 EVT MemVT = 5195 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5196 5197 if (!TLI.supportsUnalignedAtomics() && 5198 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5199 report_fatal_error("Cannot generate unaligned atomic store"); 5200 5201 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5202 5203 MachineFunction &MF = DAG.getMachineFunction(); 5204 MachineMemOperand *MMO = MF.getMachineMemOperand( 5205 MachinePointerInfo(I.getPointerOperand()), Flags, 5206 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5207 nullptr, SSID, Ordering); 5208 5209 SDValue Val = getValue(I.getValueOperand()); 5210 if (Val.getValueType() != MemVT) 5211 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5212 SDValue Ptr = getValue(I.getPointerOperand()); 5213 5214 SDValue OutChain = 5215 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5216 5217 setValue(&I, OutChain); 5218 DAG.setRoot(OutChain); 5219 } 5220 5221 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5222 /// node. 5223 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5224 unsigned Intrinsic) { 5225 // Ignore the callsite's attributes. A specific call site may be marked with 5226 // readnone, but the lowering code will expect the chain based on the 5227 // definition. 5228 const Function *F = I.getCalledFunction(); 5229 bool HasChain = !F->doesNotAccessMemory(); 5230 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5231 5232 // Build the operand list. 5233 SmallVector<SDValue, 8> Ops; 5234 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5235 if (OnlyLoad) { 5236 // We don't need to serialize loads against other loads. 5237 Ops.push_back(DAG.getRoot()); 5238 } else { 5239 Ops.push_back(getRoot()); 5240 } 5241 } 5242 5243 // Info is set by getTgtMemIntrinsic 5244 TargetLowering::IntrinsicInfo Info; 5245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5246 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5247 DAG.getMachineFunction(), 5248 Intrinsic); 5249 5250 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5251 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5252 Info.opc == ISD::INTRINSIC_W_CHAIN) 5253 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5254 TLI.getPointerTy(DAG.getDataLayout()))); 5255 5256 // Add all operands of the call to the operand list. 5257 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5258 const Value *Arg = I.getArgOperand(i); 5259 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5260 Ops.push_back(getValue(Arg)); 5261 continue; 5262 } 5263 5264 // Use TargetConstant instead of a regular constant for immarg. 5265 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5266 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5267 assert(CI->getBitWidth() <= 64 && 5268 "large intrinsic immediates not handled"); 5269 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5270 } else { 5271 Ops.push_back( 5272 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5273 } 5274 } 5275 5276 SmallVector<EVT, 4> ValueVTs; 5277 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5278 5279 if (HasChain) 5280 ValueVTs.push_back(MVT::Other); 5281 5282 SDVTList VTs = DAG.getVTList(ValueVTs); 5283 5284 // Propagate fast-math-flags from IR to node(s). 5285 SDNodeFlags Flags; 5286 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5287 Flags.copyFMF(*FPMO); 5288 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5289 5290 // Create the node. 5291 SDValue Result; 5292 5293 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5294 auto *Token = Bundle->Inputs[0].get(); 5295 SDValue ConvControlToken = getValue(Token); 5296 assert(Ops.back().getValueType() != MVT::Glue && 5297 "Did not expected another glue node here."); 5298 ConvControlToken = 5299 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5300 Ops.push_back(ConvControlToken); 5301 } 5302 5303 // In some cases, custom collection of operands from CallInst I may be needed. 5304 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5305 if (IsTgtIntrinsic) { 5306 // This is target intrinsic that touches memory 5307 // 5308 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5309 // didn't yield anything useful. 5310 MachinePointerInfo MPI; 5311 if (Info.ptrVal) 5312 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5313 else if (Info.fallbackAddressSpace) 5314 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5315 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5316 Info.memVT, MPI, Info.align, Info.flags, 5317 Info.size, I.getAAMetadata()); 5318 } else if (!HasChain) { 5319 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5320 } else if (!I.getType()->isVoidTy()) { 5321 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5322 } else { 5323 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5324 } 5325 5326 if (HasChain) { 5327 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5328 if (OnlyLoad) 5329 PendingLoads.push_back(Chain); 5330 else 5331 DAG.setRoot(Chain); 5332 } 5333 5334 if (!I.getType()->isVoidTy()) { 5335 if (!isa<VectorType>(I.getType())) 5336 Result = lowerRangeToAssertZExt(DAG, I, Result); 5337 5338 MaybeAlign Alignment = I.getRetAlign(); 5339 5340 // Insert `assertalign` node if there's an alignment. 5341 if (InsertAssertAlign && Alignment) { 5342 Result = 5343 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5344 } 5345 } 5346 5347 setValue(&I, Result); 5348 } 5349 5350 /// GetSignificand - Get the significand and build it into a floating-point 5351 /// number with exponent of 1: 5352 /// 5353 /// Op = (Op & 0x007fffff) | 0x3f800000; 5354 /// 5355 /// where Op is the hexadecimal representation of floating point value. 5356 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5357 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5358 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5359 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5360 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5361 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5362 } 5363 5364 /// GetExponent - Get the exponent: 5365 /// 5366 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5367 /// 5368 /// where Op is the hexadecimal representation of floating point value. 5369 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5370 const TargetLowering &TLI, const SDLoc &dl) { 5371 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5372 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5373 SDValue t1 = DAG.getNode( 5374 ISD::SRL, dl, MVT::i32, t0, 5375 DAG.getConstant(23, dl, 5376 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5377 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5378 DAG.getConstant(127, dl, MVT::i32)); 5379 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5380 } 5381 5382 /// getF32Constant - Get 32-bit floating point constant. 5383 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5384 const SDLoc &dl) { 5385 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5386 MVT::f32); 5387 } 5388 5389 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5390 SelectionDAG &DAG) { 5391 // TODO: What fast-math-flags should be set on the floating-point nodes? 5392 5393 // IntegerPartOfX = ((int32_t)(t0); 5394 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5395 5396 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5397 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5398 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5399 5400 // IntegerPartOfX <<= 23; 5401 IntegerPartOfX = 5402 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5403 DAG.getConstant(23, dl, 5404 DAG.getTargetLoweringInfo().getShiftAmountTy( 5405 MVT::i32, DAG.getDataLayout()))); 5406 5407 SDValue TwoToFractionalPartOfX; 5408 if (LimitFloatPrecision <= 6) { 5409 // For floating-point precision of 6: 5410 // 5411 // TwoToFractionalPartOfX = 5412 // 0.997535578f + 5413 // (0.735607626f + 0.252464424f * x) * x; 5414 // 5415 // error 0.0144103317, which is 6 bits 5416 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5417 getF32Constant(DAG, 0x3e814304, dl)); 5418 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5419 getF32Constant(DAG, 0x3f3c50c8, dl)); 5420 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5421 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5422 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5423 } else if (LimitFloatPrecision <= 12) { 5424 // For floating-point precision of 12: 5425 // 5426 // TwoToFractionalPartOfX = 5427 // 0.999892986f + 5428 // (0.696457318f + 5429 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5430 // 5431 // error 0.000107046256, which is 13 to 14 bits 5432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5433 getF32Constant(DAG, 0x3da235e3, dl)); 5434 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5435 getF32Constant(DAG, 0x3e65b8f3, dl)); 5436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5438 getF32Constant(DAG, 0x3f324b07, dl)); 5439 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5440 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5441 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5442 } else { // LimitFloatPrecision <= 18 5443 // For floating-point precision of 18: 5444 // 5445 // TwoToFractionalPartOfX = 5446 // 0.999999982f + 5447 // (0.693148872f + 5448 // (0.240227044f + 5449 // (0.554906021e-1f + 5450 // (0.961591928e-2f + 5451 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5452 // error 2.47208000*10^(-7), which is better than 18 bits 5453 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5454 getF32Constant(DAG, 0x3924b03e, dl)); 5455 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5456 getF32Constant(DAG, 0x3ab24b87, dl)); 5457 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5458 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5459 getF32Constant(DAG, 0x3c1d8c17, dl)); 5460 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5461 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5462 getF32Constant(DAG, 0x3d634a1d, dl)); 5463 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5464 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5465 getF32Constant(DAG, 0x3e75fe14, dl)); 5466 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5467 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5468 getF32Constant(DAG, 0x3f317234, dl)); 5469 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5470 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5471 getF32Constant(DAG, 0x3f800000, dl)); 5472 } 5473 5474 // Add the exponent into the result in integer domain. 5475 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5476 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5477 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5478 } 5479 5480 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5481 /// limited-precision mode. 5482 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5483 const TargetLowering &TLI, SDNodeFlags Flags) { 5484 if (Op.getValueType() == MVT::f32 && 5485 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5486 5487 // Put the exponent in the right bit position for later addition to the 5488 // final result: 5489 // 5490 // t0 = Op * log2(e) 5491 5492 // TODO: What fast-math-flags should be set here? 5493 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5494 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5495 return getLimitedPrecisionExp2(t0, dl, DAG); 5496 } 5497 5498 // No special expansion. 5499 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5500 } 5501 5502 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5503 /// limited-precision mode. 5504 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5505 const TargetLowering &TLI, SDNodeFlags Flags) { 5506 // TODO: What fast-math-flags should be set on the floating-point nodes? 5507 5508 if (Op.getValueType() == MVT::f32 && 5509 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5510 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5511 5512 // Scale the exponent by log(2). 5513 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5514 SDValue LogOfExponent = 5515 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5516 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5517 5518 // Get the significand and build it into a floating-point number with 5519 // exponent of 1. 5520 SDValue X = GetSignificand(DAG, Op1, dl); 5521 5522 SDValue LogOfMantissa; 5523 if (LimitFloatPrecision <= 6) { 5524 // For floating-point precision of 6: 5525 // 5526 // LogofMantissa = 5527 // -1.1609546f + 5528 // (1.4034025f - 0.23903021f * x) * x; 5529 // 5530 // error 0.0034276066, which is better than 8 bits 5531 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5532 getF32Constant(DAG, 0xbe74c456, dl)); 5533 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5534 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5535 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5536 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5537 getF32Constant(DAG, 0x3f949a29, dl)); 5538 } else if (LimitFloatPrecision <= 12) { 5539 // For floating-point precision of 12: 5540 // 5541 // LogOfMantissa = 5542 // -1.7417939f + 5543 // (2.8212026f + 5544 // (-1.4699568f + 5545 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5546 // 5547 // error 0.000061011436, which is 14 bits 5548 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5549 getF32Constant(DAG, 0xbd67b6d6, dl)); 5550 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5551 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5552 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5553 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5554 getF32Constant(DAG, 0x3fbc278b, dl)); 5555 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5556 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5557 getF32Constant(DAG, 0x40348e95, dl)); 5558 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5559 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5560 getF32Constant(DAG, 0x3fdef31a, dl)); 5561 } else { // LimitFloatPrecision <= 18 5562 // For floating-point precision of 18: 5563 // 5564 // LogOfMantissa = 5565 // -2.1072184f + 5566 // (4.2372794f + 5567 // (-3.7029485f + 5568 // (2.2781945f + 5569 // (-0.87823314f + 5570 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5571 // 5572 // error 0.0000023660568, which is better than 18 bits 5573 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5574 getF32Constant(DAG, 0xbc91e5ac, dl)); 5575 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5576 getF32Constant(DAG, 0x3e4350aa, dl)); 5577 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5578 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5579 getF32Constant(DAG, 0x3f60d3e3, dl)); 5580 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5581 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5582 getF32Constant(DAG, 0x4011cdf0, dl)); 5583 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5584 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5585 getF32Constant(DAG, 0x406cfd1c, dl)); 5586 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5587 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5588 getF32Constant(DAG, 0x408797cb, dl)); 5589 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5590 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5591 getF32Constant(DAG, 0x4006dcab, dl)); 5592 } 5593 5594 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5595 } 5596 5597 // No special expansion. 5598 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5599 } 5600 5601 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5602 /// limited-precision mode. 5603 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5604 const TargetLowering &TLI, SDNodeFlags Flags) { 5605 // TODO: What fast-math-flags should be set on the floating-point nodes? 5606 5607 if (Op.getValueType() == MVT::f32 && 5608 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5609 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5610 5611 // Get the exponent. 5612 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5613 5614 // Get the significand and build it into a floating-point number with 5615 // exponent of 1. 5616 SDValue X = GetSignificand(DAG, Op1, dl); 5617 5618 // Different possible minimax approximations of significand in 5619 // floating-point for various degrees of accuracy over [1,2]. 5620 SDValue Log2ofMantissa; 5621 if (LimitFloatPrecision <= 6) { 5622 // For floating-point precision of 6: 5623 // 5624 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5625 // 5626 // error 0.0049451742, which is more than 7 bits 5627 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5628 getF32Constant(DAG, 0xbeb08fe0, dl)); 5629 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5630 getF32Constant(DAG, 0x40019463, dl)); 5631 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5632 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5633 getF32Constant(DAG, 0x3fd6633d, dl)); 5634 } else if (LimitFloatPrecision <= 12) { 5635 // For floating-point precision of 12: 5636 // 5637 // Log2ofMantissa = 5638 // -2.51285454f + 5639 // (4.07009056f + 5640 // (-2.12067489f + 5641 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5642 // 5643 // error 0.0000876136000, which is better than 13 bits 5644 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5645 getF32Constant(DAG, 0xbda7262e, dl)); 5646 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5647 getF32Constant(DAG, 0x3f25280b, dl)); 5648 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5649 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5650 getF32Constant(DAG, 0x4007b923, dl)); 5651 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5652 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5653 getF32Constant(DAG, 0x40823e2f, dl)); 5654 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5655 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5656 getF32Constant(DAG, 0x4020d29c, dl)); 5657 } else { // LimitFloatPrecision <= 18 5658 // For floating-point precision of 18: 5659 // 5660 // Log2ofMantissa = 5661 // -3.0400495f + 5662 // (6.1129976f + 5663 // (-5.3420409f + 5664 // (3.2865683f + 5665 // (-1.2669343f + 5666 // (0.27515199f - 5667 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5668 // 5669 // error 0.0000018516, which is better than 18 bits 5670 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5671 getF32Constant(DAG, 0xbcd2769e, dl)); 5672 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5673 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5674 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5675 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5676 getF32Constant(DAG, 0x3fa22ae7, dl)); 5677 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5678 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5679 getF32Constant(DAG, 0x40525723, dl)); 5680 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5681 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5682 getF32Constant(DAG, 0x40aaf200, dl)); 5683 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5684 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5685 getF32Constant(DAG, 0x40c39dad, dl)); 5686 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5687 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5688 getF32Constant(DAG, 0x4042902c, dl)); 5689 } 5690 5691 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5692 } 5693 5694 // No special expansion. 5695 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5696 } 5697 5698 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5699 /// limited-precision mode. 5700 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5701 const TargetLowering &TLI, SDNodeFlags Flags) { 5702 // TODO: What fast-math-flags should be set on the floating-point nodes? 5703 5704 if (Op.getValueType() == MVT::f32 && 5705 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5706 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5707 5708 // Scale the exponent by log10(2) [0.30102999f]. 5709 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5710 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5711 getF32Constant(DAG, 0x3e9a209a, dl)); 5712 5713 // Get the significand and build it into a floating-point number with 5714 // exponent of 1. 5715 SDValue X = GetSignificand(DAG, Op1, dl); 5716 5717 SDValue Log10ofMantissa; 5718 if (LimitFloatPrecision <= 6) { 5719 // For floating-point precision of 6: 5720 // 5721 // Log10ofMantissa = 5722 // -0.50419619f + 5723 // (0.60948995f - 0.10380950f * x) * x; 5724 // 5725 // error 0.0014886165, which is 6 bits 5726 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5727 getF32Constant(DAG, 0xbdd49a13, dl)); 5728 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5729 getF32Constant(DAG, 0x3f1c0789, dl)); 5730 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5731 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5732 getF32Constant(DAG, 0x3f011300, dl)); 5733 } else if (LimitFloatPrecision <= 12) { 5734 // For floating-point precision of 12: 5735 // 5736 // Log10ofMantissa = 5737 // -0.64831180f + 5738 // (0.91751397f + 5739 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5740 // 5741 // error 0.00019228036, which is better than 12 bits 5742 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5743 getF32Constant(DAG, 0x3d431f31, dl)); 5744 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5745 getF32Constant(DAG, 0x3ea21fb2, dl)); 5746 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5747 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5748 getF32Constant(DAG, 0x3f6ae232, dl)); 5749 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5750 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5751 getF32Constant(DAG, 0x3f25f7c3, dl)); 5752 } else { // LimitFloatPrecision <= 18 5753 // For floating-point precision of 18: 5754 // 5755 // Log10ofMantissa = 5756 // -0.84299375f + 5757 // (1.5327582f + 5758 // (-1.0688956f + 5759 // (0.49102474f + 5760 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5761 // 5762 // error 0.0000037995730, which is better than 18 bits 5763 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5764 getF32Constant(DAG, 0x3c5d51ce, dl)); 5765 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5766 getF32Constant(DAG, 0x3e00685a, dl)); 5767 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5768 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5769 getF32Constant(DAG, 0x3efb6798, dl)); 5770 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5771 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5772 getF32Constant(DAG, 0x3f88d192, dl)); 5773 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5774 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5775 getF32Constant(DAG, 0x3fc4316c, dl)); 5776 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5777 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5778 getF32Constant(DAG, 0x3f57ce70, dl)); 5779 } 5780 5781 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5782 } 5783 5784 // No special expansion. 5785 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5786 } 5787 5788 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5789 /// limited-precision mode. 5790 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5791 const TargetLowering &TLI, SDNodeFlags Flags) { 5792 if (Op.getValueType() == MVT::f32 && 5793 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5794 return getLimitedPrecisionExp2(Op, dl, DAG); 5795 5796 // No special expansion. 5797 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5798 } 5799 5800 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5801 /// limited-precision mode with x == 10.0f. 5802 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5803 SelectionDAG &DAG, const TargetLowering &TLI, 5804 SDNodeFlags Flags) { 5805 bool IsExp10 = false; 5806 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5807 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5808 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5809 APFloat Ten(10.0f); 5810 IsExp10 = LHSC->isExactlyValue(Ten); 5811 } 5812 } 5813 5814 // TODO: What fast-math-flags should be set on the FMUL node? 5815 if (IsExp10) { 5816 // Put the exponent in the right bit position for later addition to the 5817 // final result: 5818 // 5819 // #define LOG2OF10 3.3219281f 5820 // t0 = Op * LOG2OF10; 5821 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5822 getF32Constant(DAG, 0x40549a78, dl)); 5823 return getLimitedPrecisionExp2(t0, dl, DAG); 5824 } 5825 5826 // No special expansion. 5827 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5828 } 5829 5830 /// ExpandPowI - Expand a llvm.powi intrinsic. 5831 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5832 SelectionDAG &DAG) { 5833 // If RHS is a constant, we can expand this out to a multiplication tree if 5834 // it's beneficial on the target, otherwise we end up lowering to a call to 5835 // __powidf2 (for example). 5836 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5837 unsigned Val = RHSC->getSExtValue(); 5838 5839 // powi(x, 0) -> 1.0 5840 if (Val == 0) 5841 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5842 5843 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5844 Val, DAG.shouldOptForSize())) { 5845 // Get the exponent as a positive value. 5846 if ((int)Val < 0) 5847 Val = -Val; 5848 // We use the simple binary decomposition method to generate the multiply 5849 // sequence. There are more optimal ways to do this (for example, 5850 // powi(x,15) generates one more multiply than it should), but this has 5851 // the benefit of being both really simple and much better than a libcall. 5852 SDValue Res; // Logically starts equal to 1.0 5853 SDValue CurSquare = LHS; 5854 // TODO: Intrinsics should have fast-math-flags that propagate to these 5855 // nodes. 5856 while (Val) { 5857 if (Val & 1) { 5858 if (Res.getNode()) 5859 Res = 5860 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5861 else 5862 Res = CurSquare; // 1.0*CurSquare. 5863 } 5864 5865 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5866 CurSquare, CurSquare); 5867 Val >>= 1; 5868 } 5869 5870 // If the original was negative, invert the result, producing 1/(x*x*x). 5871 if (RHSC->getSExtValue() < 0) 5872 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5873 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5874 return Res; 5875 } 5876 } 5877 5878 // Otherwise, expand to a libcall. 5879 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5880 } 5881 5882 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5883 SDValue LHS, SDValue RHS, SDValue Scale, 5884 SelectionDAG &DAG, const TargetLowering &TLI) { 5885 EVT VT = LHS.getValueType(); 5886 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5887 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5888 LLVMContext &Ctx = *DAG.getContext(); 5889 5890 // If the type is legal but the operation isn't, this node might survive all 5891 // the way to operation legalization. If we end up there and we do not have 5892 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5893 // node. 5894 5895 // Coax the legalizer into expanding the node during type legalization instead 5896 // by bumping the size by one bit. This will force it to Promote, enabling the 5897 // early expansion and avoiding the need to expand later. 5898 5899 // We don't have to do this if Scale is 0; that can always be expanded, unless 5900 // it's a saturating signed operation. Those can experience true integer 5901 // division overflow, a case which we must avoid. 5902 5903 // FIXME: We wouldn't have to do this (or any of the early 5904 // expansion/promotion) if it was possible to expand a libcall of an 5905 // illegal type during operation legalization. But it's not, so things 5906 // get a bit hacky. 5907 unsigned ScaleInt = Scale->getAsZExtVal(); 5908 if ((ScaleInt > 0 || (Saturating && Signed)) && 5909 (TLI.isTypeLegal(VT) || 5910 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5911 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5912 Opcode, VT, ScaleInt); 5913 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5914 EVT PromVT; 5915 if (VT.isScalarInteger()) 5916 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5917 else if (VT.isVector()) { 5918 PromVT = VT.getVectorElementType(); 5919 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5920 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5921 } else 5922 llvm_unreachable("Wrong VT for DIVFIX?"); 5923 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5924 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5925 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5926 // For saturating operations, we need to shift up the LHS to get the 5927 // proper saturation width, and then shift down again afterwards. 5928 if (Saturating) 5929 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5930 DAG.getConstant(1, DL, ShiftTy)); 5931 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5932 if (Saturating) 5933 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5934 DAG.getConstant(1, DL, ShiftTy)); 5935 return DAG.getZExtOrTrunc(Res, DL, VT); 5936 } 5937 } 5938 5939 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5940 } 5941 5942 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5943 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5944 static void 5945 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5946 const SDValue &N) { 5947 switch (N.getOpcode()) { 5948 case ISD::CopyFromReg: { 5949 SDValue Op = N.getOperand(1); 5950 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5951 Op.getValueType().getSizeInBits()); 5952 return; 5953 } 5954 case ISD::BITCAST: 5955 case ISD::AssertZext: 5956 case ISD::AssertSext: 5957 case ISD::TRUNCATE: 5958 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5959 return; 5960 case ISD::BUILD_PAIR: 5961 case ISD::BUILD_VECTOR: 5962 case ISD::CONCAT_VECTORS: 5963 for (SDValue Op : N->op_values()) 5964 getUnderlyingArgRegs(Regs, Op); 5965 return; 5966 default: 5967 return; 5968 } 5969 } 5970 5971 /// If the DbgValueInst is a dbg_value of a function argument, create the 5972 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5973 /// instruction selection, they will be inserted to the entry BB. 5974 /// We don't currently support this for variadic dbg_values, as they shouldn't 5975 /// appear for function arguments or in the prologue. 5976 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5977 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5978 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5979 const Argument *Arg = dyn_cast<Argument>(V); 5980 if (!Arg) 5981 return false; 5982 5983 MachineFunction &MF = DAG.getMachineFunction(); 5984 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5985 5986 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5987 // we've been asked to pursue. 5988 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5989 bool Indirect) { 5990 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5991 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5992 // pointing at the VReg, which will be patched up later. 5993 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5994 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5995 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5996 /* isKill */ false, /* isDead */ false, 5997 /* isUndef */ false, /* isEarlyClobber */ false, 5998 /* SubReg */ 0, /* isDebug */ true)}); 5999 6000 auto *NewDIExpr = FragExpr; 6001 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6002 // the DIExpression. 6003 if (Indirect) 6004 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6005 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6006 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6007 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6008 } else { 6009 // Create a completely standard DBG_VALUE. 6010 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6011 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6012 } 6013 }; 6014 6015 if (Kind == FuncArgumentDbgValueKind::Value) { 6016 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6017 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6018 // the entry block. 6019 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6020 if (!IsInEntryBlock) 6021 return false; 6022 6023 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6024 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6025 // variable that also is a param. 6026 // 6027 // Although, if we are at the top of the entry block already, we can still 6028 // emit using ArgDbgValue. This might catch some situations when the 6029 // dbg.value refers to an argument that isn't used in the entry block, so 6030 // any CopyToReg node would be optimized out and the only way to express 6031 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6032 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6033 // we should only emit as ArgDbgValue if the Variable is an argument to the 6034 // current function, and the dbg.value intrinsic is found in the entry 6035 // block. 6036 bool VariableIsFunctionInputArg = Variable->isParameter() && 6037 !DL->getInlinedAt(); 6038 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6039 if (!IsInPrologue && !VariableIsFunctionInputArg) 6040 return false; 6041 6042 // Here we assume that a function argument on IR level only can be used to 6043 // describe one input parameter on source level. If we for example have 6044 // source code like this 6045 // 6046 // struct A { long x, y; }; 6047 // void foo(struct A a, long b) { 6048 // ... 6049 // b = a.x; 6050 // ... 6051 // } 6052 // 6053 // and IR like this 6054 // 6055 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6056 // entry: 6057 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6058 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6059 // call void @llvm.dbg.value(metadata i32 %b, "b", 6060 // ... 6061 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6062 // ... 6063 // 6064 // then the last dbg.value is describing a parameter "b" using a value that 6065 // is an argument. But since we already has used %a1 to describe a parameter 6066 // we should not handle that last dbg.value here (that would result in an 6067 // incorrect hoisting of the DBG_VALUE to the function entry). 6068 // Notice that we allow one dbg.value per IR level argument, to accommodate 6069 // for the situation with fragments above. 6070 // If there is no node for the value being handled, we return true to skip 6071 // the normal generation of debug info, as it would kill existing debug 6072 // info for the parameter in case of duplicates. 6073 if (VariableIsFunctionInputArg) { 6074 unsigned ArgNo = Arg->getArgNo(); 6075 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6076 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6077 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6078 return !NodeMap[V].getNode(); 6079 FuncInfo.DescribedArgs.set(ArgNo); 6080 } 6081 } 6082 6083 bool IsIndirect = false; 6084 std::optional<MachineOperand> Op; 6085 // Some arguments' frame index is recorded during argument lowering. 6086 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6087 if (FI != std::numeric_limits<int>::max()) 6088 Op = MachineOperand::CreateFI(FI); 6089 6090 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6091 if (!Op && N.getNode()) { 6092 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6093 Register Reg; 6094 if (ArgRegsAndSizes.size() == 1) 6095 Reg = ArgRegsAndSizes.front().first; 6096 6097 if (Reg && Reg.isVirtual()) { 6098 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6099 Register PR = RegInfo.getLiveInPhysReg(Reg); 6100 if (PR) 6101 Reg = PR; 6102 } 6103 if (Reg) { 6104 Op = MachineOperand::CreateReg(Reg, false); 6105 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6106 } 6107 } 6108 6109 if (!Op && N.getNode()) { 6110 // Check if frame index is available. 6111 SDValue LCandidate = peekThroughBitcasts(N); 6112 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6113 if (FrameIndexSDNode *FINode = 6114 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6115 Op = MachineOperand::CreateFI(FINode->getIndex()); 6116 } 6117 6118 if (!Op) { 6119 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6120 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6121 SplitRegs) { 6122 unsigned Offset = 0; 6123 for (const auto &RegAndSize : SplitRegs) { 6124 // If the expression is already a fragment, the current register 6125 // offset+size might extend beyond the fragment. In this case, only 6126 // the register bits that are inside the fragment are relevant. 6127 int RegFragmentSizeInBits = RegAndSize.second; 6128 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6129 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6130 // The register is entirely outside the expression fragment, 6131 // so is irrelevant for debug info. 6132 if (Offset >= ExprFragmentSizeInBits) 6133 break; 6134 // The register is partially outside the expression fragment, only 6135 // the low bits within the fragment are relevant for debug info. 6136 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6137 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6138 } 6139 } 6140 6141 auto FragmentExpr = DIExpression::createFragmentExpression( 6142 Expr, Offset, RegFragmentSizeInBits); 6143 Offset += RegAndSize.second; 6144 // If a valid fragment expression cannot be created, the variable's 6145 // correct value cannot be determined and so it is set as Undef. 6146 if (!FragmentExpr) { 6147 SDDbgValue *SDV = DAG.getConstantDbgValue( 6148 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6149 DAG.AddDbgValue(SDV, false); 6150 continue; 6151 } 6152 MachineInstr *NewMI = 6153 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6154 Kind != FuncArgumentDbgValueKind::Value); 6155 FuncInfo.ArgDbgValues.push_back(NewMI); 6156 } 6157 }; 6158 6159 // Check if ValueMap has reg number. 6160 DenseMap<const Value *, Register>::const_iterator 6161 VMI = FuncInfo.ValueMap.find(V); 6162 if (VMI != FuncInfo.ValueMap.end()) { 6163 const auto &TLI = DAG.getTargetLoweringInfo(); 6164 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6165 V->getType(), std::nullopt); 6166 if (RFV.occupiesMultipleRegs()) { 6167 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6168 return true; 6169 } 6170 6171 Op = MachineOperand::CreateReg(VMI->second, false); 6172 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6173 } else if (ArgRegsAndSizes.size() > 1) { 6174 // This was split due to the calling convention, and no virtual register 6175 // mapping exists for the value. 6176 splitMultiRegDbgValue(ArgRegsAndSizes); 6177 return true; 6178 } 6179 } 6180 6181 if (!Op) 6182 return false; 6183 6184 assert(Variable->isValidLocationForIntrinsic(DL) && 6185 "Expected inlined-at fields to agree"); 6186 MachineInstr *NewMI = nullptr; 6187 6188 if (Op->isReg()) 6189 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6190 else 6191 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6192 Variable, Expr); 6193 6194 // Otherwise, use ArgDbgValues. 6195 FuncInfo.ArgDbgValues.push_back(NewMI); 6196 return true; 6197 } 6198 6199 /// Return the appropriate SDDbgValue based on N. 6200 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6201 DILocalVariable *Variable, 6202 DIExpression *Expr, 6203 const DebugLoc &dl, 6204 unsigned DbgSDNodeOrder) { 6205 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6206 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6207 // stack slot locations. 6208 // 6209 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6210 // debug values here after optimization: 6211 // 6212 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6213 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6214 // 6215 // Both describe the direct values of their associated variables. 6216 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6217 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6218 } 6219 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6220 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6221 } 6222 6223 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6224 switch (Intrinsic) { 6225 case Intrinsic::smul_fix: 6226 return ISD::SMULFIX; 6227 case Intrinsic::umul_fix: 6228 return ISD::UMULFIX; 6229 case Intrinsic::smul_fix_sat: 6230 return ISD::SMULFIXSAT; 6231 case Intrinsic::umul_fix_sat: 6232 return ISD::UMULFIXSAT; 6233 case Intrinsic::sdiv_fix: 6234 return ISD::SDIVFIX; 6235 case Intrinsic::udiv_fix: 6236 return ISD::UDIVFIX; 6237 case Intrinsic::sdiv_fix_sat: 6238 return ISD::SDIVFIXSAT; 6239 case Intrinsic::udiv_fix_sat: 6240 return ISD::UDIVFIXSAT; 6241 default: 6242 llvm_unreachable("Unhandled fixed point intrinsic"); 6243 } 6244 } 6245 6246 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6247 const char *FunctionName) { 6248 assert(FunctionName && "FunctionName must not be nullptr"); 6249 SDValue Callee = DAG.getExternalSymbol( 6250 FunctionName, 6251 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6252 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6253 } 6254 6255 /// Given a @llvm.call.preallocated.setup, return the corresponding 6256 /// preallocated call. 6257 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6258 assert(cast<CallBase>(PreallocatedSetup) 6259 ->getCalledFunction() 6260 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6261 "expected call_preallocated_setup Value"); 6262 for (const auto *U : PreallocatedSetup->users()) { 6263 auto *UseCall = cast<CallBase>(U); 6264 const Function *Fn = UseCall->getCalledFunction(); 6265 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6266 return UseCall; 6267 } 6268 } 6269 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6270 } 6271 6272 /// If DI is a debug value with an EntryValue expression, lower it using the 6273 /// corresponding physical register of the associated Argument value 6274 /// (guaranteed to exist by the verifier). 6275 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6276 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6277 DIExpression *Expr, DebugLoc DbgLoc) { 6278 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6279 return false; 6280 6281 // These properties are guaranteed by the verifier. 6282 const Argument *Arg = cast<Argument>(Values[0]); 6283 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6284 6285 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6286 if (ArgIt == FuncInfo.ValueMap.end()) { 6287 LLVM_DEBUG( 6288 dbgs() << "Dropping dbg.value: expression is entry_value but " 6289 "couldn't find an associated register for the Argument\n"); 6290 return true; 6291 } 6292 Register ArgVReg = ArgIt->getSecond(); 6293 6294 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6295 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6296 SDDbgValue *SDV = DAG.getVRegDbgValue( 6297 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6298 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6299 return true; 6300 } 6301 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6302 "couldn't find a physical register\n"); 6303 return true; 6304 } 6305 6306 /// Lower the call to the specified intrinsic function. 6307 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6308 unsigned Intrinsic) { 6309 SDLoc sdl = getCurSDLoc(); 6310 switch (Intrinsic) { 6311 case Intrinsic::experimental_convergence_anchor: 6312 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6313 break; 6314 case Intrinsic::experimental_convergence_entry: 6315 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6316 break; 6317 case Intrinsic::experimental_convergence_loop: { 6318 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6319 auto *Token = Bundle->Inputs[0].get(); 6320 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6321 getValue(Token))); 6322 break; 6323 } 6324 } 6325 } 6326 6327 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6328 unsigned IntrinsicID) { 6329 // For now, we're only lowering an 'add' histogram. 6330 // We can add others later, e.g. saturating adds, min/max. 6331 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6332 "Tried to lower unsupported histogram type"); 6333 SDLoc sdl = getCurSDLoc(); 6334 Value *Ptr = I.getOperand(0); 6335 SDValue Inc = getValue(I.getOperand(1)); 6336 SDValue Mask = getValue(I.getOperand(2)); 6337 6338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6339 DataLayout TargetDL = DAG.getDataLayout(); 6340 EVT VT = Inc.getValueType(); 6341 Align Alignment = DAG.getEVTAlign(VT); 6342 6343 const MDNode *Ranges = getRangeMetadata(I); 6344 6345 SDValue Root = DAG.getRoot(); 6346 SDValue Base; 6347 SDValue Index; 6348 ISD::MemIndexType IndexType; 6349 SDValue Scale; 6350 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6351 I.getParent(), VT.getScalarStoreSize()); 6352 6353 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6354 6355 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6356 MachinePointerInfo(AS), 6357 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6358 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6359 6360 if (!UniformBase) { 6361 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6362 Index = getValue(Ptr); 6363 IndexType = ISD::SIGNED_SCALED; 6364 Scale = 6365 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6366 } 6367 6368 EVT IdxVT = Index.getValueType(); 6369 EVT EltTy = IdxVT.getVectorElementType(); 6370 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6371 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6372 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6373 } 6374 6375 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6376 6377 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6378 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6379 Ops, MMO, IndexType); 6380 6381 setValue(&I, Histogram); 6382 DAG.setRoot(Histogram); 6383 } 6384 6385 /// Lower the call to the specified intrinsic function. 6386 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6387 unsigned Intrinsic) { 6388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6389 SDLoc sdl = getCurSDLoc(); 6390 DebugLoc dl = getCurDebugLoc(); 6391 SDValue Res; 6392 6393 SDNodeFlags Flags; 6394 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6395 Flags.copyFMF(*FPOp); 6396 6397 switch (Intrinsic) { 6398 default: 6399 // By default, turn this into a target intrinsic node. 6400 visitTargetIntrinsic(I, Intrinsic); 6401 return; 6402 case Intrinsic::vscale: { 6403 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6404 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6405 return; 6406 } 6407 case Intrinsic::vastart: visitVAStart(I); return; 6408 case Intrinsic::vaend: visitVAEnd(I); return; 6409 case Intrinsic::vacopy: visitVACopy(I); return; 6410 case Intrinsic::returnaddress: 6411 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6412 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6413 getValue(I.getArgOperand(0)))); 6414 return; 6415 case Intrinsic::addressofreturnaddress: 6416 setValue(&I, 6417 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6418 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6419 return; 6420 case Intrinsic::sponentry: 6421 setValue(&I, 6422 DAG.getNode(ISD::SPONENTRY, sdl, 6423 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6424 return; 6425 case Intrinsic::frameaddress: 6426 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6427 TLI.getFrameIndexTy(DAG.getDataLayout()), 6428 getValue(I.getArgOperand(0)))); 6429 return; 6430 case Intrinsic::read_volatile_register: 6431 case Intrinsic::read_register: { 6432 Value *Reg = I.getArgOperand(0); 6433 SDValue Chain = getRoot(); 6434 SDValue RegName = 6435 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6436 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6437 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6438 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6439 setValue(&I, Res); 6440 DAG.setRoot(Res.getValue(1)); 6441 return; 6442 } 6443 case Intrinsic::write_register: { 6444 Value *Reg = I.getArgOperand(0); 6445 Value *RegValue = I.getArgOperand(1); 6446 SDValue Chain = getRoot(); 6447 SDValue RegName = 6448 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6449 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6450 RegName, getValue(RegValue))); 6451 return; 6452 } 6453 case Intrinsic::memcpy: { 6454 const auto &MCI = cast<MemCpyInst>(I); 6455 SDValue Op1 = getValue(I.getArgOperand(0)); 6456 SDValue Op2 = getValue(I.getArgOperand(1)); 6457 SDValue Op3 = getValue(I.getArgOperand(2)); 6458 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6459 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6460 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6461 Align Alignment = std::min(DstAlign, SrcAlign); 6462 bool isVol = MCI.isVolatile(); 6463 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6464 // node. 6465 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6466 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6467 /* AlwaysInline */ false, &I, std::nullopt, 6468 MachinePointerInfo(I.getArgOperand(0)), 6469 MachinePointerInfo(I.getArgOperand(1)), 6470 I.getAAMetadata(), AA); 6471 updateDAGForMaybeTailCall(MC); 6472 return; 6473 } 6474 case Intrinsic::memcpy_inline: { 6475 const auto &MCI = cast<MemCpyInlineInst>(I); 6476 SDValue Dst = getValue(I.getArgOperand(0)); 6477 SDValue Src = getValue(I.getArgOperand(1)); 6478 SDValue Size = getValue(I.getArgOperand(2)); 6479 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6480 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6481 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6482 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6483 Align Alignment = std::min(DstAlign, SrcAlign); 6484 bool isVol = MCI.isVolatile(); 6485 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6486 // node. 6487 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6488 /* AlwaysInline */ true, &I, std::nullopt, 6489 MachinePointerInfo(I.getArgOperand(0)), 6490 MachinePointerInfo(I.getArgOperand(1)), 6491 I.getAAMetadata(), AA); 6492 updateDAGForMaybeTailCall(MC); 6493 return; 6494 } 6495 case Intrinsic::memset: { 6496 const auto &MSI = cast<MemSetInst>(I); 6497 SDValue Op1 = getValue(I.getArgOperand(0)); 6498 SDValue Op2 = getValue(I.getArgOperand(1)); 6499 SDValue Op3 = getValue(I.getArgOperand(2)); 6500 // @llvm.memset defines 0 and 1 to both mean no alignment. 6501 Align Alignment = MSI.getDestAlign().valueOrOne(); 6502 bool isVol = MSI.isVolatile(); 6503 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6504 SDValue MS = DAG.getMemset( 6505 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6506 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6507 updateDAGForMaybeTailCall(MS); 6508 return; 6509 } 6510 case Intrinsic::memset_inline: { 6511 const auto &MSII = cast<MemSetInlineInst>(I); 6512 SDValue Dst = getValue(I.getArgOperand(0)); 6513 SDValue Value = getValue(I.getArgOperand(1)); 6514 SDValue Size = getValue(I.getArgOperand(2)); 6515 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6516 // @llvm.memset defines 0 and 1 to both mean no alignment. 6517 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6518 bool isVol = MSII.isVolatile(); 6519 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6520 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6521 /* AlwaysInline */ true, &I, 6522 MachinePointerInfo(I.getArgOperand(0)), 6523 I.getAAMetadata()); 6524 updateDAGForMaybeTailCall(MC); 6525 return; 6526 } 6527 case Intrinsic::memmove: { 6528 const auto &MMI = cast<MemMoveInst>(I); 6529 SDValue Op1 = getValue(I.getArgOperand(0)); 6530 SDValue Op2 = getValue(I.getArgOperand(1)); 6531 SDValue Op3 = getValue(I.getArgOperand(2)); 6532 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6533 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6534 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6535 Align Alignment = std::min(DstAlign, SrcAlign); 6536 bool isVol = MMI.isVolatile(); 6537 // FIXME: Support passing different dest/src alignments to the memmove DAG 6538 // node. 6539 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6540 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6541 /* OverrideTailCall */ std::nullopt, 6542 MachinePointerInfo(I.getArgOperand(0)), 6543 MachinePointerInfo(I.getArgOperand(1)), 6544 I.getAAMetadata(), AA); 6545 updateDAGForMaybeTailCall(MM); 6546 return; 6547 } 6548 case Intrinsic::memcpy_element_unordered_atomic: { 6549 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6550 SDValue Dst = getValue(MI.getRawDest()); 6551 SDValue Src = getValue(MI.getRawSource()); 6552 SDValue Length = getValue(MI.getLength()); 6553 6554 Type *LengthTy = MI.getLength()->getType(); 6555 unsigned ElemSz = MI.getElementSizeInBytes(); 6556 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6557 SDValue MC = 6558 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6559 isTC, MachinePointerInfo(MI.getRawDest()), 6560 MachinePointerInfo(MI.getRawSource())); 6561 updateDAGForMaybeTailCall(MC); 6562 return; 6563 } 6564 case Intrinsic::memmove_element_unordered_atomic: { 6565 auto &MI = cast<AtomicMemMoveInst>(I); 6566 SDValue Dst = getValue(MI.getRawDest()); 6567 SDValue Src = getValue(MI.getRawSource()); 6568 SDValue Length = getValue(MI.getLength()); 6569 6570 Type *LengthTy = MI.getLength()->getType(); 6571 unsigned ElemSz = MI.getElementSizeInBytes(); 6572 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6573 SDValue MC = 6574 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6575 isTC, MachinePointerInfo(MI.getRawDest()), 6576 MachinePointerInfo(MI.getRawSource())); 6577 updateDAGForMaybeTailCall(MC); 6578 return; 6579 } 6580 case Intrinsic::memset_element_unordered_atomic: { 6581 auto &MI = cast<AtomicMemSetInst>(I); 6582 SDValue Dst = getValue(MI.getRawDest()); 6583 SDValue Val = getValue(MI.getValue()); 6584 SDValue Length = getValue(MI.getLength()); 6585 6586 Type *LengthTy = MI.getLength()->getType(); 6587 unsigned ElemSz = MI.getElementSizeInBytes(); 6588 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6589 SDValue MC = 6590 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6591 isTC, MachinePointerInfo(MI.getRawDest())); 6592 updateDAGForMaybeTailCall(MC); 6593 return; 6594 } 6595 case Intrinsic::call_preallocated_setup: { 6596 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6597 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6598 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6599 getRoot(), SrcValue); 6600 setValue(&I, Res); 6601 DAG.setRoot(Res); 6602 return; 6603 } 6604 case Intrinsic::call_preallocated_arg: { 6605 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6606 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6607 SDValue Ops[3]; 6608 Ops[0] = getRoot(); 6609 Ops[1] = SrcValue; 6610 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6611 MVT::i32); // arg index 6612 SDValue Res = DAG.getNode( 6613 ISD::PREALLOCATED_ARG, sdl, 6614 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6615 setValue(&I, Res); 6616 DAG.setRoot(Res.getValue(1)); 6617 return; 6618 } 6619 case Intrinsic::dbg_declare: { 6620 const auto &DI = cast<DbgDeclareInst>(I); 6621 // Debug intrinsics are handled separately in assignment tracking mode. 6622 // Some intrinsics are handled right after Argument lowering. 6623 if (AssignmentTrackingEnabled || 6624 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6625 return; 6626 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6627 DILocalVariable *Variable = DI.getVariable(); 6628 DIExpression *Expression = DI.getExpression(); 6629 dropDanglingDebugInfo(Variable, Expression); 6630 // Assume dbg.declare can not currently use DIArgList, i.e. 6631 // it is non-variadic. 6632 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6633 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6634 DI.getDebugLoc()); 6635 return; 6636 } 6637 case Intrinsic::dbg_label: { 6638 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6639 DILabel *Label = DI.getLabel(); 6640 assert(Label && "Missing label"); 6641 6642 SDDbgLabel *SDV; 6643 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6644 DAG.AddDbgLabel(SDV); 6645 return; 6646 } 6647 case Intrinsic::dbg_assign: { 6648 // Debug intrinsics are handled separately in assignment tracking mode. 6649 if (AssignmentTrackingEnabled) 6650 return; 6651 // If assignment tracking hasn't been enabled then fall through and treat 6652 // the dbg.assign as a dbg.value. 6653 [[fallthrough]]; 6654 } 6655 case Intrinsic::dbg_value: { 6656 // Debug intrinsics are handled separately in assignment tracking mode. 6657 if (AssignmentTrackingEnabled) 6658 return; 6659 const DbgValueInst &DI = cast<DbgValueInst>(I); 6660 assert(DI.getVariable() && "Missing variable"); 6661 6662 DILocalVariable *Variable = DI.getVariable(); 6663 DIExpression *Expression = DI.getExpression(); 6664 dropDanglingDebugInfo(Variable, Expression); 6665 6666 if (DI.isKillLocation()) { 6667 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6668 return; 6669 } 6670 6671 SmallVector<Value *, 4> Values(DI.getValues()); 6672 if (Values.empty()) 6673 return; 6674 6675 bool IsVariadic = DI.hasArgList(); 6676 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6677 SDNodeOrder, IsVariadic)) 6678 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6679 DI.getDebugLoc(), SDNodeOrder); 6680 return; 6681 } 6682 6683 case Intrinsic::eh_typeid_for: { 6684 // Find the type id for the given typeinfo. 6685 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6686 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6687 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6688 setValue(&I, Res); 6689 return; 6690 } 6691 6692 case Intrinsic::eh_return_i32: 6693 case Intrinsic::eh_return_i64: 6694 DAG.getMachineFunction().setCallsEHReturn(true); 6695 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6696 MVT::Other, 6697 getControlRoot(), 6698 getValue(I.getArgOperand(0)), 6699 getValue(I.getArgOperand(1)))); 6700 return; 6701 case Intrinsic::eh_unwind_init: 6702 DAG.getMachineFunction().setCallsUnwindInit(true); 6703 return; 6704 case Intrinsic::eh_dwarf_cfa: 6705 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6706 TLI.getPointerTy(DAG.getDataLayout()), 6707 getValue(I.getArgOperand(0)))); 6708 return; 6709 case Intrinsic::eh_sjlj_callsite: { 6710 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6711 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6712 6713 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6714 return; 6715 } 6716 case Intrinsic::eh_sjlj_functioncontext: { 6717 // Get and store the index of the function context. 6718 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6719 AllocaInst *FnCtx = 6720 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6721 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6722 MFI.setFunctionContextIndex(FI); 6723 return; 6724 } 6725 case Intrinsic::eh_sjlj_setjmp: { 6726 SDValue Ops[2]; 6727 Ops[0] = getRoot(); 6728 Ops[1] = getValue(I.getArgOperand(0)); 6729 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6730 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6731 setValue(&I, Op.getValue(0)); 6732 DAG.setRoot(Op.getValue(1)); 6733 return; 6734 } 6735 case Intrinsic::eh_sjlj_longjmp: 6736 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6737 getRoot(), getValue(I.getArgOperand(0)))); 6738 return; 6739 case Intrinsic::eh_sjlj_setup_dispatch: 6740 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6741 getRoot())); 6742 return; 6743 case Intrinsic::masked_gather: 6744 visitMaskedGather(I); 6745 return; 6746 case Intrinsic::masked_load: 6747 visitMaskedLoad(I); 6748 return; 6749 case Intrinsic::masked_scatter: 6750 visitMaskedScatter(I); 6751 return; 6752 case Intrinsic::masked_store: 6753 visitMaskedStore(I); 6754 return; 6755 case Intrinsic::masked_expandload: 6756 visitMaskedLoad(I, true /* IsExpanding */); 6757 return; 6758 case Intrinsic::masked_compressstore: 6759 visitMaskedStore(I, true /* IsCompressing */); 6760 return; 6761 case Intrinsic::powi: 6762 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6763 getValue(I.getArgOperand(1)), DAG)); 6764 return; 6765 case Intrinsic::log: 6766 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6767 return; 6768 case Intrinsic::log2: 6769 setValue(&I, 6770 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6771 return; 6772 case Intrinsic::log10: 6773 setValue(&I, 6774 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6775 return; 6776 case Intrinsic::exp: 6777 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6778 return; 6779 case Intrinsic::exp2: 6780 setValue(&I, 6781 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6782 return; 6783 case Intrinsic::pow: 6784 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6785 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6786 return; 6787 case Intrinsic::sqrt: 6788 case Intrinsic::fabs: 6789 case Intrinsic::sin: 6790 case Intrinsic::cos: 6791 case Intrinsic::tan: 6792 case Intrinsic::asin: 6793 case Intrinsic::acos: 6794 case Intrinsic::atan: 6795 case Intrinsic::sinh: 6796 case Intrinsic::cosh: 6797 case Intrinsic::tanh: 6798 case Intrinsic::exp10: 6799 case Intrinsic::floor: 6800 case Intrinsic::ceil: 6801 case Intrinsic::trunc: 6802 case Intrinsic::rint: 6803 case Intrinsic::nearbyint: 6804 case Intrinsic::round: 6805 case Intrinsic::roundeven: 6806 case Intrinsic::canonicalize: { 6807 unsigned Opcode; 6808 // clang-format off 6809 switch (Intrinsic) { 6810 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6811 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6812 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6813 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6814 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6815 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6816 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6817 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6818 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6819 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6820 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6821 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6822 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6823 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6824 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6825 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6826 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6827 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6828 case Intrinsic::round: Opcode = ISD::FROUND; break; 6829 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6830 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6831 } 6832 // clang-format on 6833 6834 setValue(&I, DAG.getNode(Opcode, sdl, 6835 getValue(I.getArgOperand(0)).getValueType(), 6836 getValue(I.getArgOperand(0)), Flags)); 6837 return; 6838 } 6839 case Intrinsic::lround: 6840 case Intrinsic::llround: 6841 case Intrinsic::lrint: 6842 case Intrinsic::llrint: { 6843 unsigned Opcode; 6844 // clang-format off 6845 switch (Intrinsic) { 6846 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6847 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6848 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6849 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6850 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6851 } 6852 // clang-format on 6853 6854 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6855 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6856 getValue(I.getArgOperand(0)))); 6857 return; 6858 } 6859 case Intrinsic::minnum: 6860 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6861 getValue(I.getArgOperand(0)).getValueType(), 6862 getValue(I.getArgOperand(0)), 6863 getValue(I.getArgOperand(1)), Flags)); 6864 return; 6865 case Intrinsic::maxnum: 6866 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6867 getValue(I.getArgOperand(0)).getValueType(), 6868 getValue(I.getArgOperand(0)), 6869 getValue(I.getArgOperand(1)), Flags)); 6870 return; 6871 case Intrinsic::minimum: 6872 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6873 getValue(I.getArgOperand(0)).getValueType(), 6874 getValue(I.getArgOperand(0)), 6875 getValue(I.getArgOperand(1)), Flags)); 6876 return; 6877 case Intrinsic::maximum: 6878 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6879 getValue(I.getArgOperand(0)).getValueType(), 6880 getValue(I.getArgOperand(0)), 6881 getValue(I.getArgOperand(1)), Flags)); 6882 return; 6883 case Intrinsic::copysign: 6884 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6885 getValue(I.getArgOperand(0)).getValueType(), 6886 getValue(I.getArgOperand(0)), 6887 getValue(I.getArgOperand(1)), Flags)); 6888 return; 6889 case Intrinsic::ldexp: 6890 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6891 getValue(I.getArgOperand(0)).getValueType(), 6892 getValue(I.getArgOperand(0)), 6893 getValue(I.getArgOperand(1)), Flags)); 6894 return; 6895 case Intrinsic::frexp: { 6896 SmallVector<EVT, 2> ValueVTs; 6897 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6898 SDVTList VTs = DAG.getVTList(ValueVTs); 6899 setValue(&I, 6900 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6901 return; 6902 } 6903 case Intrinsic::arithmetic_fence: { 6904 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6905 getValue(I.getArgOperand(0)).getValueType(), 6906 getValue(I.getArgOperand(0)), Flags)); 6907 return; 6908 } 6909 case Intrinsic::fma: 6910 setValue(&I, DAG.getNode( 6911 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6912 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6913 getValue(I.getArgOperand(2)), Flags)); 6914 return; 6915 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6916 case Intrinsic::INTRINSIC: 6917 #include "llvm/IR/ConstrainedOps.def" 6918 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6919 return; 6920 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6921 #include "llvm/IR/VPIntrinsics.def" 6922 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6923 return; 6924 case Intrinsic::fptrunc_round: { 6925 // Get the last argument, the metadata and convert it to an integer in the 6926 // call 6927 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6928 std::optional<RoundingMode> RoundMode = 6929 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6930 6931 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6932 6933 // Propagate fast-math-flags from IR to node(s). 6934 SDNodeFlags Flags; 6935 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6936 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6937 6938 SDValue Result; 6939 Result = DAG.getNode( 6940 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6941 DAG.getTargetConstant((int)*RoundMode, sdl, 6942 TLI.getPointerTy(DAG.getDataLayout()))); 6943 setValue(&I, Result); 6944 6945 return; 6946 } 6947 case Intrinsic::fmuladd: { 6948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6949 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6950 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6951 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6952 getValue(I.getArgOperand(0)).getValueType(), 6953 getValue(I.getArgOperand(0)), 6954 getValue(I.getArgOperand(1)), 6955 getValue(I.getArgOperand(2)), Flags)); 6956 } else { 6957 // TODO: Intrinsic calls should have fast-math-flags. 6958 SDValue Mul = DAG.getNode( 6959 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6960 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6961 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6962 getValue(I.getArgOperand(0)).getValueType(), 6963 Mul, getValue(I.getArgOperand(2)), Flags); 6964 setValue(&I, Add); 6965 } 6966 return; 6967 } 6968 case Intrinsic::convert_to_fp16: 6969 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6970 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6971 getValue(I.getArgOperand(0)), 6972 DAG.getTargetConstant(0, sdl, 6973 MVT::i32)))); 6974 return; 6975 case Intrinsic::convert_from_fp16: 6976 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6977 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6978 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6979 getValue(I.getArgOperand(0))))); 6980 return; 6981 case Intrinsic::fptosi_sat: { 6982 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6983 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6984 getValue(I.getArgOperand(0)), 6985 DAG.getValueType(VT.getScalarType()))); 6986 return; 6987 } 6988 case Intrinsic::fptoui_sat: { 6989 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6990 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6991 getValue(I.getArgOperand(0)), 6992 DAG.getValueType(VT.getScalarType()))); 6993 return; 6994 } 6995 case Intrinsic::set_rounding: 6996 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6997 {getRoot(), getValue(I.getArgOperand(0))}); 6998 setValue(&I, Res); 6999 DAG.setRoot(Res.getValue(0)); 7000 return; 7001 case Intrinsic::is_fpclass: { 7002 const DataLayout DLayout = DAG.getDataLayout(); 7003 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7004 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7005 FPClassTest Test = static_cast<FPClassTest>( 7006 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7007 MachineFunction &MF = DAG.getMachineFunction(); 7008 const Function &F = MF.getFunction(); 7009 SDValue Op = getValue(I.getArgOperand(0)); 7010 SDNodeFlags Flags; 7011 Flags.setNoFPExcept( 7012 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7013 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7014 // expansion can use illegal types. Making expansion early allows 7015 // legalizing these types prior to selection. 7016 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 7017 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7018 setValue(&I, Result); 7019 return; 7020 } 7021 7022 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7023 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7024 setValue(&I, V); 7025 return; 7026 } 7027 case Intrinsic::get_fpenv: { 7028 const DataLayout DLayout = DAG.getDataLayout(); 7029 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7030 Align TempAlign = DAG.getEVTAlign(EnvVT); 7031 SDValue Chain = getRoot(); 7032 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7033 // and temporary storage in stack. 7034 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7035 Res = DAG.getNode( 7036 ISD::GET_FPENV, sdl, 7037 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7038 MVT::Other), 7039 Chain); 7040 } else { 7041 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7042 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7043 auto MPI = 7044 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7045 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7046 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7047 TempAlign); 7048 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7049 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7050 } 7051 setValue(&I, Res); 7052 DAG.setRoot(Res.getValue(1)); 7053 return; 7054 } 7055 case Intrinsic::set_fpenv: { 7056 const DataLayout DLayout = DAG.getDataLayout(); 7057 SDValue Env = getValue(I.getArgOperand(0)); 7058 EVT EnvVT = Env.getValueType(); 7059 Align TempAlign = DAG.getEVTAlign(EnvVT); 7060 SDValue Chain = getRoot(); 7061 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7062 // environment from memory. 7063 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7064 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7065 } else { 7066 // Allocate space in stack, copy environment bits into it and use this 7067 // memory in SET_FPENV_MEM. 7068 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7069 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7070 auto MPI = 7071 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7072 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7073 MachineMemOperand::MOStore); 7074 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7075 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7076 TempAlign); 7077 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7078 } 7079 DAG.setRoot(Chain); 7080 return; 7081 } 7082 case Intrinsic::reset_fpenv: 7083 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7084 return; 7085 case Intrinsic::get_fpmode: 7086 Res = DAG.getNode( 7087 ISD::GET_FPMODE, sdl, 7088 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7089 MVT::Other), 7090 DAG.getRoot()); 7091 setValue(&I, Res); 7092 DAG.setRoot(Res.getValue(1)); 7093 return; 7094 case Intrinsic::set_fpmode: 7095 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7096 getValue(I.getArgOperand(0))); 7097 DAG.setRoot(Res); 7098 return; 7099 case Intrinsic::reset_fpmode: { 7100 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7101 DAG.setRoot(Res); 7102 return; 7103 } 7104 case Intrinsic::pcmarker: { 7105 SDValue Tmp = getValue(I.getArgOperand(0)); 7106 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7107 return; 7108 } 7109 case Intrinsic::readcyclecounter: { 7110 SDValue Op = getRoot(); 7111 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7112 DAG.getVTList(MVT::i64, MVT::Other), Op); 7113 setValue(&I, Res); 7114 DAG.setRoot(Res.getValue(1)); 7115 return; 7116 } 7117 case Intrinsic::readsteadycounter: { 7118 SDValue Op = getRoot(); 7119 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7120 DAG.getVTList(MVT::i64, MVT::Other), Op); 7121 setValue(&I, Res); 7122 DAG.setRoot(Res.getValue(1)); 7123 return; 7124 } 7125 case Intrinsic::bitreverse: 7126 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7127 getValue(I.getArgOperand(0)).getValueType(), 7128 getValue(I.getArgOperand(0)))); 7129 return; 7130 case Intrinsic::bswap: 7131 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7132 getValue(I.getArgOperand(0)).getValueType(), 7133 getValue(I.getArgOperand(0)))); 7134 return; 7135 case Intrinsic::cttz: { 7136 SDValue Arg = getValue(I.getArgOperand(0)); 7137 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7138 EVT Ty = Arg.getValueType(); 7139 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7140 sdl, Ty, Arg)); 7141 return; 7142 } 7143 case Intrinsic::ctlz: { 7144 SDValue Arg = getValue(I.getArgOperand(0)); 7145 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7146 EVT Ty = Arg.getValueType(); 7147 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7148 sdl, Ty, Arg)); 7149 return; 7150 } 7151 case Intrinsic::ctpop: { 7152 SDValue Arg = getValue(I.getArgOperand(0)); 7153 EVT Ty = Arg.getValueType(); 7154 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7155 return; 7156 } 7157 case Intrinsic::fshl: 7158 case Intrinsic::fshr: { 7159 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7160 SDValue X = getValue(I.getArgOperand(0)); 7161 SDValue Y = getValue(I.getArgOperand(1)); 7162 SDValue Z = getValue(I.getArgOperand(2)); 7163 EVT VT = X.getValueType(); 7164 7165 if (X == Y) { 7166 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7167 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7168 } else { 7169 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7170 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7171 } 7172 return; 7173 } 7174 case Intrinsic::sadd_sat: { 7175 SDValue Op1 = getValue(I.getArgOperand(0)); 7176 SDValue Op2 = getValue(I.getArgOperand(1)); 7177 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7178 return; 7179 } 7180 case Intrinsic::uadd_sat: { 7181 SDValue Op1 = getValue(I.getArgOperand(0)); 7182 SDValue Op2 = getValue(I.getArgOperand(1)); 7183 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7184 return; 7185 } 7186 case Intrinsic::ssub_sat: { 7187 SDValue Op1 = getValue(I.getArgOperand(0)); 7188 SDValue Op2 = getValue(I.getArgOperand(1)); 7189 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7190 return; 7191 } 7192 case Intrinsic::usub_sat: { 7193 SDValue Op1 = getValue(I.getArgOperand(0)); 7194 SDValue Op2 = getValue(I.getArgOperand(1)); 7195 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7196 return; 7197 } 7198 case Intrinsic::sshl_sat: { 7199 SDValue Op1 = getValue(I.getArgOperand(0)); 7200 SDValue Op2 = getValue(I.getArgOperand(1)); 7201 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7202 return; 7203 } 7204 case Intrinsic::ushl_sat: { 7205 SDValue Op1 = getValue(I.getArgOperand(0)); 7206 SDValue Op2 = getValue(I.getArgOperand(1)); 7207 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7208 return; 7209 } 7210 case Intrinsic::smul_fix: 7211 case Intrinsic::umul_fix: 7212 case Intrinsic::smul_fix_sat: 7213 case Intrinsic::umul_fix_sat: { 7214 SDValue Op1 = getValue(I.getArgOperand(0)); 7215 SDValue Op2 = getValue(I.getArgOperand(1)); 7216 SDValue Op3 = getValue(I.getArgOperand(2)); 7217 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7218 Op1.getValueType(), Op1, Op2, Op3)); 7219 return; 7220 } 7221 case Intrinsic::sdiv_fix: 7222 case Intrinsic::udiv_fix: 7223 case Intrinsic::sdiv_fix_sat: 7224 case Intrinsic::udiv_fix_sat: { 7225 SDValue Op1 = getValue(I.getArgOperand(0)); 7226 SDValue Op2 = getValue(I.getArgOperand(1)); 7227 SDValue Op3 = getValue(I.getArgOperand(2)); 7228 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7229 Op1, Op2, Op3, DAG, TLI)); 7230 return; 7231 } 7232 case Intrinsic::smax: { 7233 SDValue Op1 = getValue(I.getArgOperand(0)); 7234 SDValue Op2 = getValue(I.getArgOperand(1)); 7235 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7236 return; 7237 } 7238 case Intrinsic::smin: { 7239 SDValue Op1 = getValue(I.getArgOperand(0)); 7240 SDValue Op2 = getValue(I.getArgOperand(1)); 7241 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7242 return; 7243 } 7244 case Intrinsic::umax: { 7245 SDValue Op1 = getValue(I.getArgOperand(0)); 7246 SDValue Op2 = getValue(I.getArgOperand(1)); 7247 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7248 return; 7249 } 7250 case Intrinsic::umin: { 7251 SDValue Op1 = getValue(I.getArgOperand(0)); 7252 SDValue Op2 = getValue(I.getArgOperand(1)); 7253 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7254 return; 7255 } 7256 case Intrinsic::abs: { 7257 // TODO: Preserve "int min is poison" arg in SDAG? 7258 SDValue Op1 = getValue(I.getArgOperand(0)); 7259 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7260 return; 7261 } 7262 case Intrinsic::scmp: { 7263 SDValue Op1 = getValue(I.getArgOperand(0)); 7264 SDValue Op2 = getValue(I.getArgOperand(1)); 7265 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7266 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7267 break; 7268 } 7269 case Intrinsic::ucmp: { 7270 SDValue Op1 = getValue(I.getArgOperand(0)); 7271 SDValue Op2 = getValue(I.getArgOperand(1)); 7272 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7273 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7274 break; 7275 } 7276 case Intrinsic::stacksave: { 7277 SDValue Op = getRoot(); 7278 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7279 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7280 setValue(&I, Res); 7281 DAG.setRoot(Res.getValue(1)); 7282 return; 7283 } 7284 case Intrinsic::stackrestore: 7285 Res = getValue(I.getArgOperand(0)); 7286 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7287 return; 7288 case Intrinsic::get_dynamic_area_offset: { 7289 SDValue Op = getRoot(); 7290 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7291 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7292 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7293 // target. 7294 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7295 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7296 " intrinsic!"); 7297 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7298 Op); 7299 DAG.setRoot(Op); 7300 setValue(&I, Res); 7301 return; 7302 } 7303 case Intrinsic::stackguard: { 7304 MachineFunction &MF = DAG.getMachineFunction(); 7305 const Module &M = *MF.getFunction().getParent(); 7306 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7307 SDValue Chain = getRoot(); 7308 if (TLI.useLoadStackGuardNode()) { 7309 Res = getLoadStackGuard(DAG, sdl, Chain); 7310 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7311 } else { 7312 const Value *Global = TLI.getSDagStackGuard(M); 7313 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7314 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7315 MachinePointerInfo(Global, 0), Align, 7316 MachineMemOperand::MOVolatile); 7317 } 7318 if (TLI.useStackGuardXorFP()) 7319 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7320 DAG.setRoot(Chain); 7321 setValue(&I, Res); 7322 return; 7323 } 7324 case Intrinsic::stackprotector: { 7325 // Emit code into the DAG to store the stack guard onto the stack. 7326 MachineFunction &MF = DAG.getMachineFunction(); 7327 MachineFrameInfo &MFI = MF.getFrameInfo(); 7328 SDValue Src, Chain = getRoot(); 7329 7330 if (TLI.useLoadStackGuardNode()) 7331 Src = getLoadStackGuard(DAG, sdl, Chain); 7332 else 7333 Src = getValue(I.getArgOperand(0)); // The guard's value. 7334 7335 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7336 7337 int FI = FuncInfo.StaticAllocaMap[Slot]; 7338 MFI.setStackProtectorIndex(FI); 7339 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7340 7341 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7342 7343 // Store the stack protector onto the stack. 7344 Res = DAG.getStore( 7345 Chain, sdl, Src, FIN, 7346 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7347 MaybeAlign(), MachineMemOperand::MOVolatile); 7348 setValue(&I, Res); 7349 DAG.setRoot(Res); 7350 return; 7351 } 7352 case Intrinsic::objectsize: 7353 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7354 7355 case Intrinsic::is_constant: 7356 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7357 7358 case Intrinsic::annotation: 7359 case Intrinsic::ptr_annotation: 7360 case Intrinsic::launder_invariant_group: 7361 case Intrinsic::strip_invariant_group: 7362 // Drop the intrinsic, but forward the value 7363 setValue(&I, getValue(I.getOperand(0))); 7364 return; 7365 7366 case Intrinsic::assume: 7367 case Intrinsic::experimental_noalias_scope_decl: 7368 case Intrinsic::var_annotation: 7369 case Intrinsic::sideeffect: 7370 // Discard annotate attributes, noalias scope declarations, assumptions, and 7371 // artificial side-effects. 7372 return; 7373 7374 case Intrinsic::codeview_annotation: { 7375 // Emit a label associated with this metadata. 7376 MachineFunction &MF = DAG.getMachineFunction(); 7377 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7378 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7379 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7380 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7381 DAG.setRoot(Res); 7382 return; 7383 } 7384 7385 case Intrinsic::init_trampoline: { 7386 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7387 7388 SDValue Ops[6]; 7389 Ops[0] = getRoot(); 7390 Ops[1] = getValue(I.getArgOperand(0)); 7391 Ops[2] = getValue(I.getArgOperand(1)); 7392 Ops[3] = getValue(I.getArgOperand(2)); 7393 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7394 Ops[5] = DAG.getSrcValue(F); 7395 7396 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7397 7398 DAG.setRoot(Res); 7399 return; 7400 } 7401 case Intrinsic::adjust_trampoline: 7402 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7403 TLI.getPointerTy(DAG.getDataLayout()), 7404 getValue(I.getArgOperand(0)))); 7405 return; 7406 case Intrinsic::gcroot: { 7407 assert(DAG.getMachineFunction().getFunction().hasGC() && 7408 "only valid in functions with gc specified, enforced by Verifier"); 7409 assert(GFI && "implied by previous"); 7410 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7411 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7412 7413 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7414 GFI->addStackRoot(FI->getIndex(), TypeMap); 7415 return; 7416 } 7417 case Intrinsic::gcread: 7418 case Intrinsic::gcwrite: 7419 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7420 case Intrinsic::get_rounding: 7421 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7422 setValue(&I, Res); 7423 DAG.setRoot(Res.getValue(1)); 7424 return; 7425 7426 case Intrinsic::expect: 7427 // Just replace __builtin_expect(exp, c) with EXP. 7428 setValue(&I, getValue(I.getArgOperand(0))); 7429 return; 7430 7431 case Intrinsic::ubsantrap: 7432 case Intrinsic::debugtrap: 7433 case Intrinsic::trap: { 7434 StringRef TrapFuncName = 7435 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7436 if (TrapFuncName.empty()) { 7437 switch (Intrinsic) { 7438 case Intrinsic::trap: 7439 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7440 break; 7441 case Intrinsic::debugtrap: 7442 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7443 break; 7444 case Intrinsic::ubsantrap: 7445 DAG.setRoot(DAG.getNode( 7446 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7447 DAG.getTargetConstant( 7448 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7449 MVT::i32))); 7450 break; 7451 default: llvm_unreachable("unknown trap intrinsic"); 7452 } 7453 return; 7454 } 7455 TargetLowering::ArgListTy Args; 7456 if (Intrinsic == Intrinsic::ubsantrap) { 7457 Args.push_back(TargetLoweringBase::ArgListEntry()); 7458 Args[0].Val = I.getArgOperand(0); 7459 Args[0].Node = getValue(Args[0].Val); 7460 Args[0].Ty = Args[0].Val->getType(); 7461 } 7462 7463 TargetLowering::CallLoweringInfo CLI(DAG); 7464 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7465 CallingConv::C, I.getType(), 7466 DAG.getExternalSymbol(TrapFuncName.data(), 7467 TLI.getPointerTy(DAG.getDataLayout())), 7468 std::move(Args)); 7469 7470 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7471 DAG.setRoot(Result.second); 7472 return; 7473 } 7474 7475 case Intrinsic::allow_runtime_check: 7476 case Intrinsic::allow_ubsan_check: 7477 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7478 return; 7479 7480 case Intrinsic::uadd_with_overflow: 7481 case Intrinsic::sadd_with_overflow: 7482 case Intrinsic::usub_with_overflow: 7483 case Intrinsic::ssub_with_overflow: 7484 case Intrinsic::umul_with_overflow: 7485 case Intrinsic::smul_with_overflow: { 7486 ISD::NodeType Op; 7487 switch (Intrinsic) { 7488 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7489 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7490 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7491 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7492 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7493 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7494 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7495 } 7496 SDValue Op1 = getValue(I.getArgOperand(0)); 7497 SDValue Op2 = getValue(I.getArgOperand(1)); 7498 7499 EVT ResultVT = Op1.getValueType(); 7500 EVT OverflowVT = MVT::i1; 7501 if (ResultVT.isVector()) 7502 OverflowVT = EVT::getVectorVT( 7503 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7504 7505 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7506 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7507 return; 7508 } 7509 case Intrinsic::prefetch: { 7510 SDValue Ops[5]; 7511 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7512 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7513 Ops[0] = DAG.getRoot(); 7514 Ops[1] = getValue(I.getArgOperand(0)); 7515 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7516 MVT::i32); 7517 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7518 MVT::i32); 7519 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7520 MVT::i32); 7521 SDValue Result = DAG.getMemIntrinsicNode( 7522 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7523 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7524 /* align */ std::nullopt, Flags); 7525 7526 // Chain the prefetch in parallel with any pending loads, to stay out of 7527 // the way of later optimizations. 7528 PendingLoads.push_back(Result); 7529 Result = getRoot(); 7530 DAG.setRoot(Result); 7531 return; 7532 } 7533 case Intrinsic::lifetime_start: 7534 case Intrinsic::lifetime_end: { 7535 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7536 // Stack coloring is not enabled in O0, discard region information. 7537 if (TM.getOptLevel() == CodeGenOptLevel::None) 7538 return; 7539 7540 const int64_t ObjectSize = 7541 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7542 Value *const ObjectPtr = I.getArgOperand(1); 7543 SmallVector<const Value *, 4> Allocas; 7544 getUnderlyingObjects(ObjectPtr, Allocas); 7545 7546 for (const Value *Alloca : Allocas) { 7547 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7548 7549 // Could not find an Alloca. 7550 if (!LifetimeObject) 7551 continue; 7552 7553 // First check that the Alloca is static, otherwise it won't have a 7554 // valid frame index. 7555 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7556 if (SI == FuncInfo.StaticAllocaMap.end()) 7557 return; 7558 7559 const int FrameIndex = SI->second; 7560 int64_t Offset; 7561 if (GetPointerBaseWithConstantOffset( 7562 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7563 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7564 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7565 Offset); 7566 DAG.setRoot(Res); 7567 } 7568 return; 7569 } 7570 case Intrinsic::pseudoprobe: { 7571 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7572 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7573 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7574 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7575 DAG.setRoot(Res); 7576 return; 7577 } 7578 case Intrinsic::invariant_start: 7579 // Discard region information. 7580 setValue(&I, 7581 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7582 return; 7583 case Intrinsic::invariant_end: 7584 // Discard region information. 7585 return; 7586 case Intrinsic::clear_cache: { 7587 SDValue InputChain = DAG.getRoot(); 7588 SDValue StartVal = getValue(I.getArgOperand(0)); 7589 SDValue EndVal = getValue(I.getArgOperand(1)); 7590 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7591 {InputChain, StartVal, EndVal}); 7592 setValue(&I, Res); 7593 DAG.setRoot(Res); 7594 return; 7595 } 7596 case Intrinsic::donothing: 7597 case Intrinsic::seh_try_begin: 7598 case Intrinsic::seh_scope_begin: 7599 case Intrinsic::seh_try_end: 7600 case Intrinsic::seh_scope_end: 7601 // ignore 7602 return; 7603 case Intrinsic::experimental_stackmap: 7604 visitStackmap(I); 7605 return; 7606 case Intrinsic::experimental_patchpoint_void: 7607 case Intrinsic::experimental_patchpoint: 7608 visitPatchpoint(I); 7609 return; 7610 case Intrinsic::experimental_gc_statepoint: 7611 LowerStatepoint(cast<GCStatepointInst>(I)); 7612 return; 7613 case Intrinsic::experimental_gc_result: 7614 visitGCResult(cast<GCResultInst>(I)); 7615 return; 7616 case Intrinsic::experimental_gc_relocate: 7617 visitGCRelocate(cast<GCRelocateInst>(I)); 7618 return; 7619 case Intrinsic::instrprof_cover: 7620 llvm_unreachable("instrprof failed to lower a cover"); 7621 case Intrinsic::instrprof_increment: 7622 llvm_unreachable("instrprof failed to lower an increment"); 7623 case Intrinsic::instrprof_timestamp: 7624 llvm_unreachable("instrprof failed to lower a timestamp"); 7625 case Intrinsic::instrprof_value_profile: 7626 llvm_unreachable("instrprof failed to lower a value profiling call"); 7627 case Intrinsic::instrprof_mcdc_parameters: 7628 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7629 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7630 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7631 case Intrinsic::localescape: { 7632 MachineFunction &MF = DAG.getMachineFunction(); 7633 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7634 7635 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7636 // is the same on all targets. 7637 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7638 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7639 if (isa<ConstantPointerNull>(Arg)) 7640 continue; // Skip null pointers. They represent a hole in index space. 7641 AllocaInst *Slot = cast<AllocaInst>(Arg); 7642 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7643 "can only escape static allocas"); 7644 int FI = FuncInfo.StaticAllocaMap[Slot]; 7645 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7646 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7648 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7649 .addSym(FrameAllocSym) 7650 .addFrameIndex(FI); 7651 } 7652 7653 return; 7654 } 7655 7656 case Intrinsic::localrecover: { 7657 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7658 MachineFunction &MF = DAG.getMachineFunction(); 7659 7660 // Get the symbol that defines the frame offset. 7661 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7662 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7663 unsigned IdxVal = 7664 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7665 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7666 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7667 7668 Value *FP = I.getArgOperand(1); 7669 SDValue FPVal = getValue(FP); 7670 EVT PtrVT = FPVal.getValueType(); 7671 7672 // Create a MCSymbol for the label to avoid any target lowering 7673 // that would make this PC relative. 7674 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7675 SDValue OffsetVal = 7676 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7677 7678 // Add the offset to the FP. 7679 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7680 setValue(&I, Add); 7681 7682 return; 7683 } 7684 7685 case Intrinsic::eh_exceptionpointer: 7686 case Intrinsic::eh_exceptioncode: { 7687 // Get the exception pointer vreg, copy from it, and resize it to fit. 7688 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7689 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7690 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7691 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7692 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7693 if (Intrinsic == Intrinsic::eh_exceptioncode) 7694 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7695 setValue(&I, N); 7696 return; 7697 } 7698 case Intrinsic::xray_customevent: { 7699 // Here we want to make sure that the intrinsic behaves as if it has a 7700 // specific calling convention. 7701 const auto &Triple = DAG.getTarget().getTargetTriple(); 7702 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7703 return; 7704 7705 SmallVector<SDValue, 8> Ops; 7706 7707 // We want to say that we always want the arguments in registers. 7708 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7709 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7710 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7711 SDValue Chain = getRoot(); 7712 Ops.push_back(LogEntryVal); 7713 Ops.push_back(StrSizeVal); 7714 Ops.push_back(Chain); 7715 7716 // We need to enforce the calling convention for the callsite, so that 7717 // argument ordering is enforced correctly, and that register allocation can 7718 // see that some registers may be assumed clobbered and have to preserve 7719 // them across calls to the intrinsic. 7720 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7721 sdl, NodeTys, Ops); 7722 SDValue patchableNode = SDValue(MN, 0); 7723 DAG.setRoot(patchableNode); 7724 setValue(&I, patchableNode); 7725 return; 7726 } 7727 case Intrinsic::xray_typedevent: { 7728 // Here we want to make sure that the intrinsic behaves as if it has a 7729 // specific calling convention. 7730 const auto &Triple = DAG.getTarget().getTargetTriple(); 7731 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7732 return; 7733 7734 SmallVector<SDValue, 8> Ops; 7735 7736 // We want to say that we always want the arguments in registers. 7737 // It's unclear to me how manipulating the selection DAG here forces callers 7738 // to provide arguments in registers instead of on the stack. 7739 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7740 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7741 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7742 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7743 SDValue Chain = getRoot(); 7744 Ops.push_back(LogTypeId); 7745 Ops.push_back(LogEntryVal); 7746 Ops.push_back(StrSizeVal); 7747 Ops.push_back(Chain); 7748 7749 // We need to enforce the calling convention for the callsite, so that 7750 // argument ordering is enforced correctly, and that register allocation can 7751 // see that some registers may be assumed clobbered and have to preserve 7752 // them across calls to the intrinsic. 7753 MachineSDNode *MN = DAG.getMachineNode( 7754 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7755 SDValue patchableNode = SDValue(MN, 0); 7756 DAG.setRoot(patchableNode); 7757 setValue(&I, patchableNode); 7758 return; 7759 } 7760 case Intrinsic::experimental_deoptimize: 7761 LowerDeoptimizeCall(&I); 7762 return; 7763 case Intrinsic::experimental_stepvector: 7764 visitStepVector(I); 7765 return; 7766 case Intrinsic::vector_reduce_fadd: 7767 case Intrinsic::vector_reduce_fmul: 7768 case Intrinsic::vector_reduce_add: 7769 case Intrinsic::vector_reduce_mul: 7770 case Intrinsic::vector_reduce_and: 7771 case Intrinsic::vector_reduce_or: 7772 case Intrinsic::vector_reduce_xor: 7773 case Intrinsic::vector_reduce_smax: 7774 case Intrinsic::vector_reduce_smin: 7775 case Intrinsic::vector_reduce_umax: 7776 case Intrinsic::vector_reduce_umin: 7777 case Intrinsic::vector_reduce_fmax: 7778 case Intrinsic::vector_reduce_fmin: 7779 case Intrinsic::vector_reduce_fmaximum: 7780 case Intrinsic::vector_reduce_fminimum: 7781 visitVectorReduce(I, Intrinsic); 7782 return; 7783 7784 case Intrinsic::icall_branch_funnel: { 7785 SmallVector<SDValue, 16> Ops; 7786 Ops.push_back(getValue(I.getArgOperand(0))); 7787 7788 int64_t Offset; 7789 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7790 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7791 if (!Base) 7792 report_fatal_error( 7793 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7794 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7795 7796 struct BranchFunnelTarget { 7797 int64_t Offset; 7798 SDValue Target; 7799 }; 7800 SmallVector<BranchFunnelTarget, 8> Targets; 7801 7802 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7803 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7804 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7805 if (ElemBase != Base) 7806 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7807 "to the same GlobalValue"); 7808 7809 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7810 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7811 if (!GA) 7812 report_fatal_error( 7813 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7814 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7815 GA->getGlobal(), sdl, Val.getValueType(), 7816 GA->getOffset())}); 7817 } 7818 llvm::sort(Targets, 7819 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7820 return T1.Offset < T2.Offset; 7821 }); 7822 7823 for (auto &T : Targets) { 7824 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7825 Ops.push_back(T.Target); 7826 } 7827 7828 Ops.push_back(DAG.getRoot()); // Chain 7829 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7830 MVT::Other, Ops), 7831 0); 7832 DAG.setRoot(N); 7833 setValue(&I, N); 7834 HasTailCall = true; 7835 return; 7836 } 7837 7838 case Intrinsic::wasm_landingpad_index: 7839 // Information this intrinsic contained has been transferred to 7840 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7841 // delete it now. 7842 return; 7843 7844 case Intrinsic::aarch64_settag: 7845 case Intrinsic::aarch64_settag_zero: { 7846 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7847 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7848 SDValue Val = TSI.EmitTargetCodeForSetTag( 7849 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7850 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7851 ZeroMemory); 7852 DAG.setRoot(Val); 7853 setValue(&I, Val); 7854 return; 7855 } 7856 case Intrinsic::amdgcn_cs_chain: { 7857 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7858 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7859 "Non-zero flags not supported yet"); 7860 7861 // At this point we don't care if it's amdgpu_cs_chain or 7862 // amdgpu_cs_chain_preserve. 7863 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7864 7865 Type *RetTy = I.getType(); 7866 assert(RetTy->isVoidTy() && "Should not return"); 7867 7868 SDValue Callee = getValue(I.getOperand(0)); 7869 7870 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7871 // We'll also tack the value of the EXEC mask at the end. 7872 TargetLowering::ArgListTy Args; 7873 Args.reserve(3); 7874 7875 for (unsigned Idx : {2, 3, 1}) { 7876 TargetLowering::ArgListEntry Arg; 7877 Arg.Node = getValue(I.getOperand(Idx)); 7878 Arg.Ty = I.getOperand(Idx)->getType(); 7879 Arg.setAttributes(&I, Idx); 7880 Args.push_back(Arg); 7881 } 7882 7883 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7884 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7885 Args[2].IsInReg = true; // EXEC should be inreg 7886 7887 TargetLowering::CallLoweringInfo CLI(DAG); 7888 CLI.setDebugLoc(getCurSDLoc()) 7889 .setChain(getRoot()) 7890 .setCallee(CC, RetTy, Callee, std::move(Args)) 7891 .setNoReturn(true) 7892 .setTailCall(true) 7893 .setConvergent(I.isConvergent()); 7894 CLI.CB = &I; 7895 std::pair<SDValue, SDValue> Result = 7896 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7897 (void)Result; 7898 assert(!Result.first.getNode() && !Result.second.getNode() && 7899 "Should've lowered as tail call"); 7900 7901 HasTailCall = true; 7902 return; 7903 } 7904 case Intrinsic::ptrmask: { 7905 SDValue Ptr = getValue(I.getOperand(0)); 7906 SDValue Mask = getValue(I.getOperand(1)); 7907 7908 // On arm64_32, pointers are 32 bits when stored in memory, but 7909 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7910 // match the index type, but the pointer is 64 bits, so the the mask must be 7911 // zero-extended up to 64 bits to match the pointer. 7912 EVT PtrVT = 7913 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7914 EVT MemVT = 7915 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7916 assert(PtrVT == Ptr.getValueType()); 7917 assert(MemVT == Mask.getValueType()); 7918 if (MemVT != PtrVT) 7919 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7920 7921 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7922 return; 7923 } 7924 case Intrinsic::threadlocal_address: { 7925 setValue(&I, getValue(I.getOperand(0))); 7926 return; 7927 } 7928 case Intrinsic::get_active_lane_mask: { 7929 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7930 SDValue Index = getValue(I.getOperand(0)); 7931 EVT ElementVT = Index.getValueType(); 7932 7933 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7934 visitTargetIntrinsic(I, Intrinsic); 7935 return; 7936 } 7937 7938 SDValue TripCount = getValue(I.getOperand(1)); 7939 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7940 CCVT.getVectorElementCount()); 7941 7942 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7943 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7944 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7945 SDValue VectorInduction = DAG.getNode( 7946 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7947 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7948 VectorTripCount, ISD::CondCode::SETULT); 7949 setValue(&I, SetCC); 7950 return; 7951 } 7952 case Intrinsic::experimental_get_vector_length: { 7953 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7954 "Expected positive VF"); 7955 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7956 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7957 7958 SDValue Count = getValue(I.getOperand(0)); 7959 EVT CountVT = Count.getValueType(); 7960 7961 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7962 visitTargetIntrinsic(I, Intrinsic); 7963 return; 7964 } 7965 7966 // Expand to a umin between the trip count and the maximum elements the type 7967 // can hold. 7968 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7969 7970 // Extend the trip count to at least the result VT. 7971 if (CountVT.bitsLT(VT)) { 7972 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7973 CountVT = VT; 7974 } 7975 7976 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7977 ElementCount::get(VF, IsScalable)); 7978 7979 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7980 // Clip to the result type if needed. 7981 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7982 7983 setValue(&I, Trunc); 7984 return; 7985 } 7986 case Intrinsic::experimental_vector_partial_reduce_add: { 7987 SDValue OpNode = getValue(I.getOperand(1)); 7988 EVT ReducedTy = EVT::getEVT(I.getType()); 7989 EVT FullTy = OpNode.getValueType(); 7990 7991 unsigned Stride = ReducedTy.getVectorMinNumElements(); 7992 unsigned ScaleFactor = FullTy.getVectorMinNumElements() / Stride; 7993 7994 // Collect all of the subvectors 7995 std::deque<SDValue> Subvectors; 7996 Subvectors.push_back(getValue(I.getOperand(0))); 7997 for (unsigned i = 0; i < ScaleFactor; i++) { 7998 auto SourceIndex = DAG.getVectorIdxConstant(i * Stride, sdl); 7999 Subvectors.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ReducedTy, 8000 {OpNode, SourceIndex})); 8001 } 8002 8003 // Flatten the subvector tree 8004 while (Subvectors.size() > 1) { 8005 Subvectors.push_back(DAG.getNode(ISD::ADD, sdl, ReducedTy, 8006 {Subvectors[0], Subvectors[1]})); 8007 Subvectors.pop_front(); 8008 Subvectors.pop_front(); 8009 } 8010 8011 assert(Subvectors.size() == 1 && 8012 "There should only be one subvector after tree flattening"); 8013 8014 setValue(&I, Subvectors[0]); 8015 return; 8016 } 8017 case Intrinsic::experimental_cttz_elts: { 8018 auto DL = getCurSDLoc(); 8019 SDValue Op = getValue(I.getOperand(0)); 8020 EVT OpVT = Op.getValueType(); 8021 8022 if (!TLI.shouldExpandCttzElements(OpVT)) { 8023 visitTargetIntrinsic(I, Intrinsic); 8024 return; 8025 } 8026 8027 if (OpVT.getScalarType() != MVT::i1) { 8028 // Compare the input vector elements to zero & use to count trailing zeros 8029 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8030 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8031 OpVT.getVectorElementCount()); 8032 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8033 } 8034 8035 // If the zero-is-poison flag is set, we can assume the upper limit 8036 // of the result is VF-1. 8037 bool ZeroIsPoison = 8038 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8039 ConstantRange VScaleRange(1, true); // Dummy value. 8040 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8041 VScaleRange = getVScaleRange(I.getCaller(), 64); 8042 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8043 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8044 8045 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8046 8047 // Create the new vector type & get the vector length 8048 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8049 OpVT.getVectorElementCount()); 8050 8051 SDValue VL = 8052 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8053 8054 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8055 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8056 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8057 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8058 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8059 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8060 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8061 8062 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8063 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8064 8065 setValue(&I, Ret); 8066 return; 8067 } 8068 case Intrinsic::vector_insert: { 8069 SDValue Vec = getValue(I.getOperand(0)); 8070 SDValue SubVec = getValue(I.getOperand(1)); 8071 SDValue Index = getValue(I.getOperand(2)); 8072 8073 // The intrinsic's index type is i64, but the SDNode requires an index type 8074 // suitable for the target. Convert the index as required. 8075 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8076 if (Index.getValueType() != VectorIdxTy) 8077 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8078 8079 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8080 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8081 Index)); 8082 return; 8083 } 8084 case Intrinsic::vector_extract: { 8085 SDValue Vec = getValue(I.getOperand(0)); 8086 SDValue Index = getValue(I.getOperand(1)); 8087 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8088 8089 // The intrinsic's index type is i64, but the SDNode requires an index type 8090 // suitable for the target. Convert the index as required. 8091 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8092 if (Index.getValueType() != VectorIdxTy) 8093 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8094 8095 setValue(&I, 8096 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8097 return; 8098 } 8099 case Intrinsic::vector_reverse: 8100 visitVectorReverse(I); 8101 return; 8102 case Intrinsic::vector_splice: 8103 visitVectorSplice(I); 8104 return; 8105 case Intrinsic::callbr_landingpad: 8106 visitCallBrLandingPad(I); 8107 return; 8108 case Intrinsic::vector_interleave2: 8109 visitVectorInterleave(I); 8110 return; 8111 case Intrinsic::vector_deinterleave2: 8112 visitVectorDeinterleave(I); 8113 return; 8114 case Intrinsic::experimental_vector_compress: 8115 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8116 getValue(I.getArgOperand(0)).getValueType(), 8117 getValue(I.getArgOperand(0)), 8118 getValue(I.getArgOperand(1)), 8119 getValue(I.getArgOperand(2)), Flags)); 8120 return; 8121 case Intrinsic::experimental_convergence_anchor: 8122 case Intrinsic::experimental_convergence_entry: 8123 case Intrinsic::experimental_convergence_loop: 8124 visitConvergenceControl(I, Intrinsic); 8125 return; 8126 case Intrinsic::experimental_vector_histogram_add: { 8127 visitVectorHistogram(I, Intrinsic); 8128 return; 8129 } 8130 } 8131 } 8132 8133 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8134 const ConstrainedFPIntrinsic &FPI) { 8135 SDLoc sdl = getCurSDLoc(); 8136 8137 // We do not need to serialize constrained FP intrinsics against 8138 // each other or against (nonvolatile) loads, so they can be 8139 // chained like loads. 8140 SDValue Chain = DAG.getRoot(); 8141 SmallVector<SDValue, 4> Opers; 8142 Opers.push_back(Chain); 8143 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8144 Opers.push_back(getValue(FPI.getArgOperand(I))); 8145 8146 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8147 assert(Result.getNode()->getNumValues() == 2); 8148 8149 // Push node to the appropriate list so that future instructions can be 8150 // chained up correctly. 8151 SDValue OutChain = Result.getValue(1); 8152 switch (EB) { 8153 case fp::ExceptionBehavior::ebIgnore: 8154 // The only reason why ebIgnore nodes still need to be chained is that 8155 // they might depend on the current rounding mode, and therefore must 8156 // not be moved across instruction that may change that mode. 8157 [[fallthrough]]; 8158 case fp::ExceptionBehavior::ebMayTrap: 8159 // These must not be moved across calls or instructions that may change 8160 // floating-point exception masks. 8161 PendingConstrainedFP.push_back(OutChain); 8162 break; 8163 case fp::ExceptionBehavior::ebStrict: 8164 // These must not be moved across calls or instructions that may change 8165 // floating-point exception masks or read floating-point exception flags. 8166 // In addition, they cannot be optimized out even if unused. 8167 PendingConstrainedFPStrict.push_back(OutChain); 8168 break; 8169 } 8170 }; 8171 8172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8173 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8174 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8175 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8176 8177 SDNodeFlags Flags; 8178 if (EB == fp::ExceptionBehavior::ebIgnore) 8179 Flags.setNoFPExcept(true); 8180 8181 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8182 Flags.copyFMF(*FPOp); 8183 8184 unsigned Opcode; 8185 switch (FPI.getIntrinsicID()) { 8186 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8187 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8188 case Intrinsic::INTRINSIC: \ 8189 Opcode = ISD::STRICT_##DAGN; \ 8190 break; 8191 #include "llvm/IR/ConstrainedOps.def" 8192 case Intrinsic::experimental_constrained_fmuladd: { 8193 Opcode = ISD::STRICT_FMA; 8194 // Break fmuladd into fmul and fadd. 8195 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8196 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8197 Opers.pop_back(); 8198 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8199 pushOutChain(Mul, EB); 8200 Opcode = ISD::STRICT_FADD; 8201 Opers.clear(); 8202 Opers.push_back(Mul.getValue(1)); 8203 Opers.push_back(Mul.getValue(0)); 8204 Opers.push_back(getValue(FPI.getArgOperand(2))); 8205 } 8206 break; 8207 } 8208 } 8209 8210 // A few strict DAG nodes carry additional operands that are not 8211 // set up by the default code above. 8212 switch (Opcode) { 8213 default: break; 8214 case ISD::STRICT_FP_ROUND: 8215 Opers.push_back( 8216 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8217 break; 8218 case ISD::STRICT_FSETCC: 8219 case ISD::STRICT_FSETCCS: { 8220 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8221 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8222 if (TM.Options.NoNaNsFPMath) 8223 Condition = getFCmpCodeWithoutNaN(Condition); 8224 Opers.push_back(DAG.getCondCode(Condition)); 8225 break; 8226 } 8227 } 8228 8229 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8230 pushOutChain(Result, EB); 8231 8232 SDValue FPResult = Result.getValue(0); 8233 setValue(&FPI, FPResult); 8234 } 8235 8236 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8237 std::optional<unsigned> ResOPC; 8238 switch (VPIntrin.getIntrinsicID()) { 8239 case Intrinsic::vp_ctlz: { 8240 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8241 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8242 break; 8243 } 8244 case Intrinsic::vp_cttz: { 8245 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8246 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8247 break; 8248 } 8249 case Intrinsic::vp_cttz_elts: { 8250 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8251 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8252 break; 8253 } 8254 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8255 case Intrinsic::VPID: \ 8256 ResOPC = ISD::VPSD; \ 8257 break; 8258 #include "llvm/IR/VPIntrinsics.def" 8259 } 8260 8261 if (!ResOPC) 8262 llvm_unreachable( 8263 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8264 8265 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8266 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8267 if (VPIntrin.getFastMathFlags().allowReassoc()) 8268 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8269 : ISD::VP_REDUCE_FMUL; 8270 } 8271 8272 return *ResOPC; 8273 } 8274 8275 void SelectionDAGBuilder::visitVPLoad( 8276 const VPIntrinsic &VPIntrin, EVT VT, 8277 const SmallVectorImpl<SDValue> &OpValues) { 8278 SDLoc DL = getCurSDLoc(); 8279 Value *PtrOperand = VPIntrin.getArgOperand(0); 8280 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8281 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8282 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8283 SDValue LD; 8284 // Do not serialize variable-length loads of constant memory with 8285 // anything. 8286 if (!Alignment) 8287 Alignment = DAG.getEVTAlign(VT); 8288 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8289 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8290 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8291 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8292 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8293 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8294 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8295 MMO, false /*IsExpanding */); 8296 if (AddToChain) 8297 PendingLoads.push_back(LD.getValue(1)); 8298 setValue(&VPIntrin, LD); 8299 } 8300 8301 void SelectionDAGBuilder::visitVPGather( 8302 const VPIntrinsic &VPIntrin, EVT VT, 8303 const SmallVectorImpl<SDValue> &OpValues) { 8304 SDLoc DL = getCurSDLoc(); 8305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8306 Value *PtrOperand = VPIntrin.getArgOperand(0); 8307 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8308 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8309 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8310 SDValue LD; 8311 if (!Alignment) 8312 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8313 unsigned AS = 8314 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8315 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8316 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8317 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8318 SDValue Base, Index, Scale; 8319 ISD::MemIndexType IndexType; 8320 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8321 this, VPIntrin.getParent(), 8322 VT.getScalarStoreSize()); 8323 if (!UniformBase) { 8324 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8325 Index = getValue(PtrOperand); 8326 IndexType = ISD::SIGNED_SCALED; 8327 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8328 } 8329 EVT IdxVT = Index.getValueType(); 8330 EVT EltTy = IdxVT.getVectorElementType(); 8331 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8332 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8333 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8334 } 8335 LD = DAG.getGatherVP( 8336 DAG.getVTList(VT, MVT::Other), VT, DL, 8337 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8338 IndexType); 8339 PendingLoads.push_back(LD.getValue(1)); 8340 setValue(&VPIntrin, LD); 8341 } 8342 8343 void SelectionDAGBuilder::visitVPStore( 8344 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8345 SDLoc DL = getCurSDLoc(); 8346 Value *PtrOperand = VPIntrin.getArgOperand(1); 8347 EVT VT = OpValues[0].getValueType(); 8348 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8349 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8350 SDValue ST; 8351 if (!Alignment) 8352 Alignment = DAG.getEVTAlign(VT); 8353 SDValue Ptr = OpValues[1]; 8354 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8355 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8356 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8357 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8358 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8359 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8360 /* IsTruncating */ false, /*IsCompressing*/ false); 8361 DAG.setRoot(ST); 8362 setValue(&VPIntrin, ST); 8363 } 8364 8365 void SelectionDAGBuilder::visitVPScatter( 8366 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8367 SDLoc DL = getCurSDLoc(); 8368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8369 Value *PtrOperand = VPIntrin.getArgOperand(1); 8370 EVT VT = OpValues[0].getValueType(); 8371 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8372 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8373 SDValue ST; 8374 if (!Alignment) 8375 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8376 unsigned AS = 8377 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8378 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8379 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8380 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8381 SDValue Base, Index, Scale; 8382 ISD::MemIndexType IndexType; 8383 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8384 this, VPIntrin.getParent(), 8385 VT.getScalarStoreSize()); 8386 if (!UniformBase) { 8387 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8388 Index = getValue(PtrOperand); 8389 IndexType = ISD::SIGNED_SCALED; 8390 Scale = 8391 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8392 } 8393 EVT IdxVT = Index.getValueType(); 8394 EVT EltTy = IdxVT.getVectorElementType(); 8395 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8396 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8397 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8398 } 8399 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8400 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8401 OpValues[2], OpValues[3]}, 8402 MMO, IndexType); 8403 DAG.setRoot(ST); 8404 setValue(&VPIntrin, ST); 8405 } 8406 8407 void SelectionDAGBuilder::visitVPStridedLoad( 8408 const VPIntrinsic &VPIntrin, EVT VT, 8409 const SmallVectorImpl<SDValue> &OpValues) { 8410 SDLoc DL = getCurSDLoc(); 8411 Value *PtrOperand = VPIntrin.getArgOperand(0); 8412 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8413 if (!Alignment) 8414 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8415 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8416 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8417 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8418 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8419 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8420 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8421 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8422 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8423 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8424 8425 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8426 OpValues[2], OpValues[3], MMO, 8427 false /*IsExpanding*/); 8428 8429 if (AddToChain) 8430 PendingLoads.push_back(LD.getValue(1)); 8431 setValue(&VPIntrin, LD); 8432 } 8433 8434 void SelectionDAGBuilder::visitVPStridedStore( 8435 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8436 SDLoc DL = getCurSDLoc(); 8437 Value *PtrOperand = VPIntrin.getArgOperand(1); 8438 EVT VT = OpValues[0].getValueType(); 8439 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8440 if (!Alignment) 8441 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8442 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8443 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8444 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8445 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8446 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8447 8448 SDValue ST = DAG.getStridedStoreVP( 8449 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8450 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8451 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8452 /*IsCompressing*/ false); 8453 8454 DAG.setRoot(ST); 8455 setValue(&VPIntrin, ST); 8456 } 8457 8458 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8460 SDLoc DL = getCurSDLoc(); 8461 8462 ISD::CondCode Condition; 8463 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8464 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8465 if (IsFP) { 8466 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8467 // flags, but calls that don't return floating-point types can't be 8468 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8469 Condition = getFCmpCondCode(CondCode); 8470 if (TM.Options.NoNaNsFPMath) 8471 Condition = getFCmpCodeWithoutNaN(Condition); 8472 } else { 8473 Condition = getICmpCondCode(CondCode); 8474 } 8475 8476 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8477 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8478 // #2 is the condition code 8479 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8480 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8481 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8482 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8483 "Unexpected target EVL type"); 8484 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8485 8486 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8487 VPIntrin.getType()); 8488 setValue(&VPIntrin, 8489 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8490 } 8491 8492 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8493 const VPIntrinsic &VPIntrin) { 8494 SDLoc DL = getCurSDLoc(); 8495 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8496 8497 auto IID = VPIntrin.getIntrinsicID(); 8498 8499 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8500 return visitVPCmp(*CmpI); 8501 8502 SmallVector<EVT, 4> ValueVTs; 8503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8504 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8505 SDVTList VTs = DAG.getVTList(ValueVTs); 8506 8507 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8508 8509 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8510 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8511 "Unexpected target EVL type"); 8512 8513 // Request operands. 8514 SmallVector<SDValue, 7> OpValues; 8515 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8516 auto Op = getValue(VPIntrin.getArgOperand(I)); 8517 if (I == EVLParamPos) 8518 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8519 OpValues.push_back(Op); 8520 } 8521 8522 switch (Opcode) { 8523 default: { 8524 SDNodeFlags SDFlags; 8525 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8526 SDFlags.copyFMF(*FPMO); 8527 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8528 setValue(&VPIntrin, Result); 8529 break; 8530 } 8531 case ISD::VP_LOAD: 8532 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8533 break; 8534 case ISD::VP_GATHER: 8535 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8536 break; 8537 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8538 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8539 break; 8540 case ISD::VP_STORE: 8541 visitVPStore(VPIntrin, OpValues); 8542 break; 8543 case ISD::VP_SCATTER: 8544 visitVPScatter(VPIntrin, OpValues); 8545 break; 8546 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8547 visitVPStridedStore(VPIntrin, OpValues); 8548 break; 8549 case ISD::VP_FMULADD: { 8550 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8551 SDNodeFlags SDFlags; 8552 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8553 SDFlags.copyFMF(*FPMO); 8554 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8555 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8556 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8557 } else { 8558 SDValue Mul = DAG.getNode( 8559 ISD::VP_FMUL, DL, VTs, 8560 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8561 SDValue Add = 8562 DAG.getNode(ISD::VP_FADD, DL, VTs, 8563 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8564 setValue(&VPIntrin, Add); 8565 } 8566 break; 8567 } 8568 case ISD::VP_IS_FPCLASS: { 8569 const DataLayout DLayout = DAG.getDataLayout(); 8570 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8571 auto Constant = OpValues[1]->getAsZExtVal(); 8572 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8573 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8574 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8575 setValue(&VPIntrin, V); 8576 return; 8577 } 8578 case ISD::VP_INTTOPTR: { 8579 SDValue N = OpValues[0]; 8580 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8581 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8582 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8583 OpValues[2]); 8584 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8585 OpValues[2]); 8586 setValue(&VPIntrin, N); 8587 break; 8588 } 8589 case ISD::VP_PTRTOINT: { 8590 SDValue N = OpValues[0]; 8591 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8592 VPIntrin.getType()); 8593 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8594 VPIntrin.getOperand(0)->getType()); 8595 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8596 OpValues[2]); 8597 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8598 OpValues[2]); 8599 setValue(&VPIntrin, N); 8600 break; 8601 } 8602 case ISD::VP_ABS: 8603 case ISD::VP_CTLZ: 8604 case ISD::VP_CTLZ_ZERO_UNDEF: 8605 case ISD::VP_CTTZ: 8606 case ISD::VP_CTTZ_ZERO_UNDEF: 8607 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8608 case ISD::VP_CTTZ_ELTS: { 8609 SDValue Result = 8610 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8611 setValue(&VPIntrin, Result); 8612 break; 8613 } 8614 } 8615 } 8616 8617 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8618 const BasicBlock *EHPadBB, 8619 MCSymbol *&BeginLabel) { 8620 MachineFunction &MF = DAG.getMachineFunction(); 8621 8622 // Insert a label before the invoke call to mark the try range. This can be 8623 // used to detect deletion of the invoke via the MachineModuleInfo. 8624 BeginLabel = MF.getContext().createTempSymbol(); 8625 8626 // For SjLj, keep track of which landing pads go with which invokes 8627 // so as to maintain the ordering of pads in the LSDA. 8628 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8629 if (CallSiteIndex) { 8630 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8631 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8632 8633 // Now that the call site is handled, stop tracking it. 8634 FuncInfo.setCurrentCallSite(0); 8635 } 8636 8637 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8638 } 8639 8640 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8641 const BasicBlock *EHPadBB, 8642 MCSymbol *BeginLabel) { 8643 assert(BeginLabel && "BeginLabel should've been set"); 8644 8645 MachineFunction &MF = DAG.getMachineFunction(); 8646 8647 // Insert a label at the end of the invoke call to mark the try range. This 8648 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8649 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8650 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8651 8652 // Inform MachineModuleInfo of range. 8653 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8654 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8655 // actually use outlined funclets and their LSDA info style. 8656 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8657 assert(II && "II should've been set"); 8658 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8659 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8660 } else if (!isScopedEHPersonality(Pers)) { 8661 assert(EHPadBB); 8662 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8663 } 8664 8665 return Chain; 8666 } 8667 8668 std::pair<SDValue, SDValue> 8669 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8670 const BasicBlock *EHPadBB) { 8671 MCSymbol *BeginLabel = nullptr; 8672 8673 if (EHPadBB) { 8674 // Both PendingLoads and PendingExports must be flushed here; 8675 // this call might not return. 8676 (void)getRoot(); 8677 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8678 CLI.setChain(getRoot()); 8679 } 8680 8681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8682 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8683 8684 assert((CLI.IsTailCall || Result.second.getNode()) && 8685 "Non-null chain expected with non-tail call!"); 8686 assert((Result.second.getNode() || !Result.first.getNode()) && 8687 "Null value expected with tail call!"); 8688 8689 if (!Result.second.getNode()) { 8690 // As a special case, a null chain means that a tail call has been emitted 8691 // and the DAG root is already updated. 8692 HasTailCall = true; 8693 8694 // Since there's no actual continuation from this block, nothing can be 8695 // relying on us setting vregs for them. 8696 PendingExports.clear(); 8697 } else { 8698 DAG.setRoot(Result.second); 8699 } 8700 8701 if (EHPadBB) { 8702 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8703 BeginLabel)); 8704 Result.second = getRoot(); 8705 } 8706 8707 return Result; 8708 } 8709 8710 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8711 bool isTailCall, bool isMustTailCall, 8712 const BasicBlock *EHPadBB, 8713 const TargetLowering::PtrAuthInfo *PAI) { 8714 auto &DL = DAG.getDataLayout(); 8715 FunctionType *FTy = CB.getFunctionType(); 8716 Type *RetTy = CB.getType(); 8717 8718 TargetLowering::ArgListTy Args; 8719 Args.reserve(CB.arg_size()); 8720 8721 const Value *SwiftErrorVal = nullptr; 8722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8723 8724 if (isTailCall) { 8725 // Avoid emitting tail calls in functions with the disable-tail-calls 8726 // attribute. 8727 auto *Caller = CB.getParent()->getParent(); 8728 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8729 "true" && !isMustTailCall) 8730 isTailCall = false; 8731 8732 // We can't tail call inside a function with a swifterror argument. Lowering 8733 // does not support this yet. It would have to move into the swifterror 8734 // register before the call. 8735 if (TLI.supportSwiftError() && 8736 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8737 isTailCall = false; 8738 } 8739 8740 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8741 TargetLowering::ArgListEntry Entry; 8742 const Value *V = *I; 8743 8744 // Skip empty types 8745 if (V->getType()->isEmptyTy()) 8746 continue; 8747 8748 SDValue ArgNode = getValue(V); 8749 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8750 8751 Entry.setAttributes(&CB, I - CB.arg_begin()); 8752 8753 // Use swifterror virtual register as input to the call. 8754 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8755 SwiftErrorVal = V; 8756 // We find the virtual register for the actual swifterror argument. 8757 // Instead of using the Value, we use the virtual register instead. 8758 Entry.Node = 8759 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8760 EVT(TLI.getPointerTy(DL))); 8761 } 8762 8763 Args.push_back(Entry); 8764 8765 // If we have an explicit sret argument that is an Instruction, (i.e., it 8766 // might point to function-local memory), we can't meaningfully tail-call. 8767 if (Entry.IsSRet && isa<Instruction>(V)) 8768 isTailCall = false; 8769 } 8770 8771 // If call site has a cfguardtarget operand bundle, create and add an 8772 // additional ArgListEntry. 8773 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8774 TargetLowering::ArgListEntry Entry; 8775 Value *V = Bundle->Inputs[0]; 8776 SDValue ArgNode = getValue(V); 8777 Entry.Node = ArgNode; 8778 Entry.Ty = V->getType(); 8779 Entry.IsCFGuardTarget = true; 8780 Args.push_back(Entry); 8781 } 8782 8783 // Check if target-independent constraints permit a tail call here. 8784 // Target-dependent constraints are checked within TLI->LowerCallTo. 8785 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8786 isTailCall = false; 8787 8788 // Disable tail calls if there is an swifterror argument. Targets have not 8789 // been updated to support tail calls. 8790 if (TLI.supportSwiftError() && SwiftErrorVal) 8791 isTailCall = false; 8792 8793 ConstantInt *CFIType = nullptr; 8794 if (CB.isIndirectCall()) { 8795 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8796 if (!TLI.supportKCFIBundles()) 8797 report_fatal_error( 8798 "Target doesn't support calls with kcfi operand bundles."); 8799 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8800 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8801 } 8802 } 8803 8804 SDValue ConvControlToken; 8805 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8806 auto *Token = Bundle->Inputs[0].get(); 8807 ConvControlToken = getValue(Token); 8808 } 8809 8810 TargetLowering::CallLoweringInfo CLI(DAG); 8811 CLI.setDebugLoc(getCurSDLoc()) 8812 .setChain(getRoot()) 8813 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8814 .setTailCall(isTailCall) 8815 .setConvergent(CB.isConvergent()) 8816 .setIsPreallocated( 8817 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8818 .setCFIType(CFIType) 8819 .setConvergenceControlToken(ConvControlToken); 8820 8821 // Set the pointer authentication info if we have it. 8822 if (PAI) { 8823 if (!TLI.supportPtrAuthBundles()) 8824 report_fatal_error( 8825 "This target doesn't support calls with ptrauth operand bundles."); 8826 CLI.setPtrAuth(*PAI); 8827 } 8828 8829 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8830 8831 if (Result.first.getNode()) { 8832 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8833 setValue(&CB, Result.first); 8834 } 8835 8836 // The last element of CLI.InVals has the SDValue for swifterror return. 8837 // Here we copy it to a virtual register and update SwiftErrorMap for 8838 // book-keeping. 8839 if (SwiftErrorVal && TLI.supportSwiftError()) { 8840 // Get the last element of InVals. 8841 SDValue Src = CLI.InVals.back(); 8842 Register VReg = 8843 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8844 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8845 DAG.setRoot(CopyNode); 8846 } 8847 } 8848 8849 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8850 SelectionDAGBuilder &Builder) { 8851 // Check to see if this load can be trivially constant folded, e.g. if the 8852 // input is from a string literal. 8853 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8854 // Cast pointer to the type we really want to load. 8855 Type *LoadTy = 8856 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8857 if (LoadVT.isVector()) 8858 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8859 8860 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8861 PointerType::getUnqual(LoadTy)); 8862 8863 if (const Constant *LoadCst = 8864 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8865 LoadTy, Builder.DAG.getDataLayout())) 8866 return Builder.getValue(LoadCst); 8867 } 8868 8869 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8870 // still constant memory, the input chain can be the entry node. 8871 SDValue Root; 8872 bool ConstantMemory = false; 8873 8874 // Do not serialize (non-volatile) loads of constant memory with anything. 8875 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8876 Root = Builder.DAG.getEntryNode(); 8877 ConstantMemory = true; 8878 } else { 8879 // Do not serialize non-volatile loads against each other. 8880 Root = Builder.DAG.getRoot(); 8881 } 8882 8883 SDValue Ptr = Builder.getValue(PtrVal); 8884 SDValue LoadVal = 8885 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8886 MachinePointerInfo(PtrVal), Align(1)); 8887 8888 if (!ConstantMemory) 8889 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8890 return LoadVal; 8891 } 8892 8893 /// Record the value for an instruction that produces an integer result, 8894 /// converting the type where necessary. 8895 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8896 SDValue Value, 8897 bool IsSigned) { 8898 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8899 I.getType(), true); 8900 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8901 setValue(&I, Value); 8902 } 8903 8904 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8905 /// true and lower it. Otherwise return false, and it will be lowered like a 8906 /// normal call. 8907 /// The caller already checked that \p I calls the appropriate LibFunc with a 8908 /// correct prototype. 8909 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8910 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8911 const Value *Size = I.getArgOperand(2); 8912 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8913 if (CSize && CSize->getZExtValue() == 0) { 8914 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8915 I.getType(), true); 8916 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8917 return true; 8918 } 8919 8920 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8921 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8922 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8923 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8924 if (Res.first.getNode()) { 8925 processIntegerCallValue(I, Res.first, true); 8926 PendingLoads.push_back(Res.second); 8927 return true; 8928 } 8929 8930 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8931 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8932 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8933 return false; 8934 8935 // If the target has a fast compare for the given size, it will return a 8936 // preferred load type for that size. Require that the load VT is legal and 8937 // that the target supports unaligned loads of that type. Otherwise, return 8938 // INVALID. 8939 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8941 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8942 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8943 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8944 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8945 // TODO: Check alignment of src and dest ptrs. 8946 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8947 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8948 if (!TLI.isTypeLegal(LVT) || 8949 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8950 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8951 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8952 } 8953 8954 return LVT; 8955 }; 8956 8957 // This turns into unaligned loads. We only do this if the target natively 8958 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8959 // we'll only produce a small number of byte loads. 8960 MVT LoadVT; 8961 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8962 switch (NumBitsToCompare) { 8963 default: 8964 return false; 8965 case 16: 8966 LoadVT = MVT::i16; 8967 break; 8968 case 32: 8969 LoadVT = MVT::i32; 8970 break; 8971 case 64: 8972 case 128: 8973 case 256: 8974 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8975 break; 8976 } 8977 8978 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8979 return false; 8980 8981 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8982 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8983 8984 // Bitcast to a wide integer type if the loads are vectors. 8985 if (LoadVT.isVector()) { 8986 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8987 LoadL = DAG.getBitcast(CmpVT, LoadL); 8988 LoadR = DAG.getBitcast(CmpVT, LoadR); 8989 } 8990 8991 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8992 processIntegerCallValue(I, Cmp, false); 8993 return true; 8994 } 8995 8996 /// See if we can lower a memchr call into an optimized form. If so, return 8997 /// true and lower it. Otherwise return false, and it will be lowered like a 8998 /// normal call. 8999 /// The caller already checked that \p I calls the appropriate LibFunc with a 9000 /// correct prototype. 9001 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9002 const Value *Src = I.getArgOperand(0); 9003 const Value *Char = I.getArgOperand(1); 9004 const Value *Length = I.getArgOperand(2); 9005 9006 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9007 std::pair<SDValue, SDValue> Res = 9008 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9009 getValue(Src), getValue(Char), getValue(Length), 9010 MachinePointerInfo(Src)); 9011 if (Res.first.getNode()) { 9012 setValue(&I, Res.first); 9013 PendingLoads.push_back(Res.second); 9014 return true; 9015 } 9016 9017 return false; 9018 } 9019 9020 /// See if we can lower a mempcpy call into an optimized form. If so, return 9021 /// true and lower it. Otherwise return false, and it will be lowered like a 9022 /// normal call. 9023 /// The caller already checked that \p I calls the appropriate LibFunc with a 9024 /// correct prototype. 9025 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9026 SDValue Dst = getValue(I.getArgOperand(0)); 9027 SDValue Src = getValue(I.getArgOperand(1)); 9028 SDValue Size = getValue(I.getArgOperand(2)); 9029 9030 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9031 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9032 // DAG::getMemcpy needs Alignment to be defined. 9033 Align Alignment = std::min(DstAlign, SrcAlign); 9034 9035 SDLoc sdl = getCurSDLoc(); 9036 9037 // In the mempcpy context we need to pass in a false value for isTailCall 9038 // because the return pointer needs to be adjusted by the size of 9039 // the copied memory. 9040 SDValue Root = getMemoryRoot(); 9041 SDValue MC = DAG.getMemcpy( 9042 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9043 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9044 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9045 assert(MC.getNode() != nullptr && 9046 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9047 DAG.setRoot(MC); 9048 9049 // Check if Size needs to be truncated or extended. 9050 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9051 9052 // Adjust return pointer to point just past the last dst byte. 9053 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9054 Dst, Size); 9055 setValue(&I, DstPlusSize); 9056 return true; 9057 } 9058 9059 /// See if we can lower a strcpy call into an optimized form. If so, return 9060 /// true and lower it, otherwise return false and it will be lowered like a 9061 /// normal call. 9062 /// The caller already checked that \p I calls the appropriate LibFunc with a 9063 /// correct prototype. 9064 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9065 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9066 9067 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9068 std::pair<SDValue, SDValue> Res = 9069 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9070 getValue(Arg0), getValue(Arg1), 9071 MachinePointerInfo(Arg0), 9072 MachinePointerInfo(Arg1), isStpcpy); 9073 if (Res.first.getNode()) { 9074 setValue(&I, Res.first); 9075 DAG.setRoot(Res.second); 9076 return true; 9077 } 9078 9079 return false; 9080 } 9081 9082 /// See if we can lower a strcmp call into an optimized form. If so, return 9083 /// true and lower it, otherwise return false and it will be lowered like a 9084 /// normal call. 9085 /// The caller already checked that \p I calls the appropriate LibFunc with a 9086 /// correct prototype. 9087 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9088 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9089 9090 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9091 std::pair<SDValue, SDValue> Res = 9092 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9093 getValue(Arg0), getValue(Arg1), 9094 MachinePointerInfo(Arg0), 9095 MachinePointerInfo(Arg1)); 9096 if (Res.first.getNode()) { 9097 processIntegerCallValue(I, Res.first, true); 9098 PendingLoads.push_back(Res.second); 9099 return true; 9100 } 9101 9102 return false; 9103 } 9104 9105 /// See if we can lower a strlen call into an optimized form. If so, return 9106 /// true and lower it, otherwise return false and it will be lowered like a 9107 /// normal call. 9108 /// The caller already checked that \p I calls the appropriate LibFunc with a 9109 /// correct prototype. 9110 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9111 const Value *Arg0 = I.getArgOperand(0); 9112 9113 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9114 std::pair<SDValue, SDValue> Res = 9115 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9116 getValue(Arg0), MachinePointerInfo(Arg0)); 9117 if (Res.first.getNode()) { 9118 processIntegerCallValue(I, Res.first, false); 9119 PendingLoads.push_back(Res.second); 9120 return true; 9121 } 9122 9123 return false; 9124 } 9125 9126 /// See if we can lower a strnlen call into an optimized form. If so, return 9127 /// true and lower it, otherwise return false and it will be lowered like a 9128 /// normal call. 9129 /// The caller already checked that \p I calls the appropriate LibFunc with a 9130 /// correct prototype. 9131 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9132 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9133 9134 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9135 std::pair<SDValue, SDValue> Res = 9136 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9137 getValue(Arg0), getValue(Arg1), 9138 MachinePointerInfo(Arg0)); 9139 if (Res.first.getNode()) { 9140 processIntegerCallValue(I, Res.first, false); 9141 PendingLoads.push_back(Res.second); 9142 return true; 9143 } 9144 9145 return false; 9146 } 9147 9148 /// See if we can lower a unary floating-point operation into an SDNode with 9149 /// the specified Opcode. If so, return true and lower it, otherwise return 9150 /// false and it will be lowered like a normal call. 9151 /// The caller already checked that \p I calls the appropriate LibFunc with a 9152 /// correct prototype. 9153 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9154 unsigned Opcode) { 9155 // We already checked this call's prototype; verify it doesn't modify errno. 9156 if (!I.onlyReadsMemory()) 9157 return false; 9158 9159 SDNodeFlags Flags; 9160 Flags.copyFMF(cast<FPMathOperator>(I)); 9161 9162 SDValue Tmp = getValue(I.getArgOperand(0)); 9163 setValue(&I, 9164 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9165 return true; 9166 } 9167 9168 /// See if we can lower a binary floating-point operation into an SDNode with 9169 /// the specified Opcode. If so, return true and lower it. Otherwise return 9170 /// false, and it will be lowered like a normal call. 9171 /// The caller already checked that \p I calls the appropriate LibFunc with a 9172 /// correct prototype. 9173 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9174 unsigned Opcode) { 9175 // We already checked this call's prototype; verify it doesn't modify errno. 9176 if (!I.onlyReadsMemory()) 9177 return false; 9178 9179 SDNodeFlags Flags; 9180 Flags.copyFMF(cast<FPMathOperator>(I)); 9181 9182 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9183 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9184 EVT VT = Tmp0.getValueType(); 9185 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9186 return true; 9187 } 9188 9189 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9190 // Handle inline assembly differently. 9191 if (I.isInlineAsm()) { 9192 visitInlineAsm(I); 9193 return; 9194 } 9195 9196 diagnoseDontCall(I); 9197 9198 if (Function *F = I.getCalledFunction()) { 9199 if (F->isDeclaration()) { 9200 // Is this an LLVM intrinsic or a target-specific intrinsic? 9201 unsigned IID = F->getIntrinsicID(); 9202 if (!IID) 9203 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9204 IID = II->getIntrinsicID(F); 9205 9206 if (IID) { 9207 visitIntrinsicCall(I, IID); 9208 return; 9209 } 9210 } 9211 9212 // Check for well-known libc/libm calls. If the function is internal, it 9213 // can't be a library call. Don't do the check if marked as nobuiltin for 9214 // some reason or the call site requires strict floating point semantics. 9215 LibFunc Func; 9216 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9217 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9218 LibInfo->hasOptimizedCodeGen(Func)) { 9219 switch (Func) { 9220 default: break; 9221 case LibFunc_bcmp: 9222 if (visitMemCmpBCmpCall(I)) 9223 return; 9224 break; 9225 case LibFunc_copysign: 9226 case LibFunc_copysignf: 9227 case LibFunc_copysignl: 9228 // We already checked this call's prototype; verify it doesn't modify 9229 // errno. 9230 if (I.onlyReadsMemory()) { 9231 SDValue LHS = getValue(I.getArgOperand(0)); 9232 SDValue RHS = getValue(I.getArgOperand(1)); 9233 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9234 LHS.getValueType(), LHS, RHS)); 9235 return; 9236 } 9237 break; 9238 case LibFunc_fabs: 9239 case LibFunc_fabsf: 9240 case LibFunc_fabsl: 9241 if (visitUnaryFloatCall(I, ISD::FABS)) 9242 return; 9243 break; 9244 case LibFunc_fmin: 9245 case LibFunc_fminf: 9246 case LibFunc_fminl: 9247 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9248 return; 9249 break; 9250 case LibFunc_fmax: 9251 case LibFunc_fmaxf: 9252 case LibFunc_fmaxl: 9253 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9254 return; 9255 break; 9256 case LibFunc_sin: 9257 case LibFunc_sinf: 9258 case LibFunc_sinl: 9259 if (visitUnaryFloatCall(I, ISD::FSIN)) 9260 return; 9261 break; 9262 case LibFunc_cos: 9263 case LibFunc_cosf: 9264 case LibFunc_cosl: 9265 if (visitUnaryFloatCall(I, ISD::FCOS)) 9266 return; 9267 break; 9268 case LibFunc_tan: 9269 case LibFunc_tanf: 9270 case LibFunc_tanl: 9271 if (visitUnaryFloatCall(I, ISD::FTAN)) 9272 return; 9273 break; 9274 case LibFunc_asin: 9275 case LibFunc_asinf: 9276 case LibFunc_asinl: 9277 if (visitUnaryFloatCall(I, ISD::FASIN)) 9278 return; 9279 break; 9280 case LibFunc_acos: 9281 case LibFunc_acosf: 9282 case LibFunc_acosl: 9283 if (visitUnaryFloatCall(I, ISD::FACOS)) 9284 return; 9285 break; 9286 case LibFunc_atan: 9287 case LibFunc_atanf: 9288 case LibFunc_atanl: 9289 if (visitUnaryFloatCall(I, ISD::FATAN)) 9290 return; 9291 break; 9292 case LibFunc_sinh: 9293 case LibFunc_sinhf: 9294 case LibFunc_sinhl: 9295 if (visitUnaryFloatCall(I, ISD::FSINH)) 9296 return; 9297 break; 9298 case LibFunc_cosh: 9299 case LibFunc_coshf: 9300 case LibFunc_coshl: 9301 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9302 return; 9303 break; 9304 case LibFunc_tanh: 9305 case LibFunc_tanhf: 9306 case LibFunc_tanhl: 9307 if (visitUnaryFloatCall(I, ISD::FTANH)) 9308 return; 9309 break; 9310 case LibFunc_sqrt: 9311 case LibFunc_sqrtf: 9312 case LibFunc_sqrtl: 9313 case LibFunc_sqrt_finite: 9314 case LibFunc_sqrtf_finite: 9315 case LibFunc_sqrtl_finite: 9316 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9317 return; 9318 break; 9319 case LibFunc_floor: 9320 case LibFunc_floorf: 9321 case LibFunc_floorl: 9322 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9323 return; 9324 break; 9325 case LibFunc_nearbyint: 9326 case LibFunc_nearbyintf: 9327 case LibFunc_nearbyintl: 9328 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9329 return; 9330 break; 9331 case LibFunc_ceil: 9332 case LibFunc_ceilf: 9333 case LibFunc_ceill: 9334 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9335 return; 9336 break; 9337 case LibFunc_rint: 9338 case LibFunc_rintf: 9339 case LibFunc_rintl: 9340 if (visitUnaryFloatCall(I, ISD::FRINT)) 9341 return; 9342 break; 9343 case LibFunc_round: 9344 case LibFunc_roundf: 9345 case LibFunc_roundl: 9346 if (visitUnaryFloatCall(I, ISD::FROUND)) 9347 return; 9348 break; 9349 case LibFunc_trunc: 9350 case LibFunc_truncf: 9351 case LibFunc_truncl: 9352 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9353 return; 9354 break; 9355 case LibFunc_log2: 9356 case LibFunc_log2f: 9357 case LibFunc_log2l: 9358 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9359 return; 9360 break; 9361 case LibFunc_exp2: 9362 case LibFunc_exp2f: 9363 case LibFunc_exp2l: 9364 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9365 return; 9366 break; 9367 case LibFunc_exp10: 9368 case LibFunc_exp10f: 9369 case LibFunc_exp10l: 9370 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9371 return; 9372 break; 9373 case LibFunc_ldexp: 9374 case LibFunc_ldexpf: 9375 case LibFunc_ldexpl: 9376 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9377 return; 9378 break; 9379 case LibFunc_memcmp: 9380 if (visitMemCmpBCmpCall(I)) 9381 return; 9382 break; 9383 case LibFunc_mempcpy: 9384 if (visitMemPCpyCall(I)) 9385 return; 9386 break; 9387 case LibFunc_memchr: 9388 if (visitMemChrCall(I)) 9389 return; 9390 break; 9391 case LibFunc_strcpy: 9392 if (visitStrCpyCall(I, false)) 9393 return; 9394 break; 9395 case LibFunc_stpcpy: 9396 if (visitStrCpyCall(I, true)) 9397 return; 9398 break; 9399 case LibFunc_strcmp: 9400 if (visitStrCmpCall(I)) 9401 return; 9402 break; 9403 case LibFunc_strlen: 9404 if (visitStrLenCall(I)) 9405 return; 9406 break; 9407 case LibFunc_strnlen: 9408 if (visitStrNLenCall(I)) 9409 return; 9410 break; 9411 } 9412 } 9413 } 9414 9415 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9416 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9417 return; 9418 } 9419 9420 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9421 // have to do anything here to lower funclet bundles. 9422 // CFGuardTarget bundles are lowered in LowerCallTo. 9423 assert(!I.hasOperandBundlesOtherThan( 9424 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9425 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9426 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9427 LLVMContext::OB_convergencectrl}) && 9428 "Cannot lower calls with arbitrary operand bundles!"); 9429 9430 SDValue Callee = getValue(I.getCalledOperand()); 9431 9432 if (I.hasDeoptState()) 9433 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9434 else 9435 // Check if we can potentially perform a tail call. More detailed checking 9436 // is be done within LowerCallTo, after more information about the call is 9437 // known. 9438 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9439 } 9440 9441 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9442 const CallBase &CB, const BasicBlock *EHPadBB) { 9443 auto PAB = CB.getOperandBundle("ptrauth"); 9444 const Value *CalleeV = CB.getCalledOperand(); 9445 9446 // Gather the call ptrauth data from the operand bundle: 9447 // [ i32 <key>, i64 <discriminator> ] 9448 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9449 const Value *Discriminator = PAB->Inputs[1]; 9450 9451 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9452 assert(Discriminator->getType()->isIntegerTy(64) && 9453 "Invalid ptrauth discriminator"); 9454 9455 // Look through ptrauth constants to find the raw callee. 9456 // Do a direct unauthenticated call if we found it and everything matches. 9457 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9458 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9459 DAG.getDataLayout())) 9460 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9461 CB.isMustTailCall(), EHPadBB); 9462 9463 // Functions should never be ptrauth-called directly. 9464 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9465 9466 // Otherwise, do an authenticated indirect call. 9467 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9468 getValue(Discriminator)}; 9469 9470 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9471 EHPadBB, &PAI); 9472 } 9473 9474 namespace { 9475 9476 /// AsmOperandInfo - This contains information for each constraint that we are 9477 /// lowering. 9478 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9479 public: 9480 /// CallOperand - If this is the result output operand or a clobber 9481 /// this is null, otherwise it is the incoming operand to the CallInst. 9482 /// This gets modified as the asm is processed. 9483 SDValue CallOperand; 9484 9485 /// AssignedRegs - If this is a register or register class operand, this 9486 /// contains the set of register corresponding to the operand. 9487 RegsForValue AssignedRegs; 9488 9489 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9490 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9491 } 9492 9493 /// Whether or not this operand accesses memory 9494 bool hasMemory(const TargetLowering &TLI) const { 9495 // Indirect operand accesses access memory. 9496 if (isIndirect) 9497 return true; 9498 9499 for (const auto &Code : Codes) 9500 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9501 return true; 9502 9503 return false; 9504 } 9505 }; 9506 9507 9508 } // end anonymous namespace 9509 9510 /// Make sure that the output operand \p OpInfo and its corresponding input 9511 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9512 /// out). 9513 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9514 SDISelAsmOperandInfo &MatchingOpInfo, 9515 SelectionDAG &DAG) { 9516 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9517 return; 9518 9519 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9520 const auto &TLI = DAG.getTargetLoweringInfo(); 9521 9522 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9523 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9524 OpInfo.ConstraintVT); 9525 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9526 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9527 MatchingOpInfo.ConstraintVT); 9528 if ((OpInfo.ConstraintVT.isInteger() != 9529 MatchingOpInfo.ConstraintVT.isInteger()) || 9530 (MatchRC.second != InputRC.second)) { 9531 // FIXME: error out in a more elegant fashion 9532 report_fatal_error("Unsupported asm: input constraint" 9533 " with a matching output constraint of" 9534 " incompatible type!"); 9535 } 9536 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9537 } 9538 9539 /// Get a direct memory input to behave well as an indirect operand. 9540 /// This may introduce stores, hence the need for a \p Chain. 9541 /// \return The (possibly updated) chain. 9542 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9543 SDISelAsmOperandInfo &OpInfo, 9544 SelectionDAG &DAG) { 9545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9546 9547 // If we don't have an indirect input, put it in the constpool if we can, 9548 // otherwise spill it to a stack slot. 9549 // TODO: This isn't quite right. We need to handle these according to 9550 // the addressing mode that the constraint wants. Also, this may take 9551 // an additional register for the computation and we don't want that 9552 // either. 9553 9554 // If the operand is a float, integer, or vector constant, spill to a 9555 // constant pool entry to get its address. 9556 const Value *OpVal = OpInfo.CallOperandVal; 9557 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9558 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9559 OpInfo.CallOperand = DAG.getConstantPool( 9560 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9561 return Chain; 9562 } 9563 9564 // Otherwise, create a stack slot and emit a store to it before the asm. 9565 Type *Ty = OpVal->getType(); 9566 auto &DL = DAG.getDataLayout(); 9567 TypeSize TySize = DL.getTypeAllocSize(Ty); 9568 MachineFunction &MF = DAG.getMachineFunction(); 9569 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9570 int StackID = 0; 9571 if (TySize.isScalable()) 9572 StackID = TFI->getStackIDForScalableVectors(); 9573 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9574 DL.getPrefTypeAlign(Ty), false, 9575 nullptr, StackID); 9576 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9577 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9578 MachinePointerInfo::getFixedStack(MF, SSFI), 9579 TLI.getMemValueType(DL, Ty)); 9580 OpInfo.CallOperand = StackSlot; 9581 9582 return Chain; 9583 } 9584 9585 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9586 /// specified operand. We prefer to assign virtual registers, to allow the 9587 /// register allocator to handle the assignment process. However, if the asm 9588 /// uses features that we can't model on machineinstrs, we have SDISel do the 9589 /// allocation. This produces generally horrible, but correct, code. 9590 /// 9591 /// OpInfo describes the operand 9592 /// RefOpInfo describes the matching operand if any, the operand otherwise 9593 static std::optional<unsigned> 9594 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9595 SDISelAsmOperandInfo &OpInfo, 9596 SDISelAsmOperandInfo &RefOpInfo) { 9597 LLVMContext &Context = *DAG.getContext(); 9598 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9599 9600 MachineFunction &MF = DAG.getMachineFunction(); 9601 SmallVector<unsigned, 4> Regs; 9602 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9603 9604 // No work to do for memory/address operands. 9605 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9606 OpInfo.ConstraintType == TargetLowering::C_Address) 9607 return std::nullopt; 9608 9609 // If this is a constraint for a single physreg, or a constraint for a 9610 // register class, find it. 9611 unsigned AssignedReg; 9612 const TargetRegisterClass *RC; 9613 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9614 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9615 // RC is unset only on failure. Return immediately. 9616 if (!RC) 9617 return std::nullopt; 9618 9619 // Get the actual register value type. This is important, because the user 9620 // may have asked for (e.g.) the AX register in i32 type. We need to 9621 // remember that AX is actually i16 to get the right extension. 9622 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9623 9624 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9625 // If this is an FP operand in an integer register (or visa versa), or more 9626 // generally if the operand value disagrees with the register class we plan 9627 // to stick it in, fix the operand type. 9628 // 9629 // If this is an input value, the bitcast to the new type is done now. 9630 // Bitcast for output value is done at the end of visitInlineAsm(). 9631 if ((OpInfo.Type == InlineAsm::isOutput || 9632 OpInfo.Type == InlineAsm::isInput) && 9633 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9634 // Try to convert to the first EVT that the reg class contains. If the 9635 // types are identical size, use a bitcast to convert (e.g. two differing 9636 // vector types). Note: output bitcast is done at the end of 9637 // visitInlineAsm(). 9638 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9639 // Exclude indirect inputs while they are unsupported because the code 9640 // to perform the load is missing and thus OpInfo.CallOperand still 9641 // refers to the input address rather than the pointed-to value. 9642 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9643 OpInfo.CallOperand = 9644 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9645 OpInfo.ConstraintVT = RegVT; 9646 // If the operand is an FP value and we want it in integer registers, 9647 // use the corresponding integer type. This turns an f64 value into 9648 // i64, which can be passed with two i32 values on a 32-bit machine. 9649 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9650 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9651 if (OpInfo.Type == InlineAsm::isInput) 9652 OpInfo.CallOperand = 9653 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9654 OpInfo.ConstraintVT = VT; 9655 } 9656 } 9657 } 9658 9659 // No need to allocate a matching input constraint since the constraint it's 9660 // matching to has already been allocated. 9661 if (OpInfo.isMatchingInputConstraint()) 9662 return std::nullopt; 9663 9664 EVT ValueVT = OpInfo.ConstraintVT; 9665 if (OpInfo.ConstraintVT == MVT::Other) 9666 ValueVT = RegVT; 9667 9668 // Initialize NumRegs. 9669 unsigned NumRegs = 1; 9670 if (OpInfo.ConstraintVT != MVT::Other) 9671 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9672 9673 // If this is a constraint for a specific physical register, like {r17}, 9674 // assign it now. 9675 9676 // If this associated to a specific register, initialize iterator to correct 9677 // place. If virtual, make sure we have enough registers 9678 9679 // Initialize iterator if necessary 9680 TargetRegisterClass::iterator I = RC->begin(); 9681 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9682 9683 // Do not check for single registers. 9684 if (AssignedReg) { 9685 I = std::find(I, RC->end(), AssignedReg); 9686 if (I == RC->end()) { 9687 // RC does not contain the selected register, which indicates a 9688 // mismatch between the register and the required type/bitwidth. 9689 return {AssignedReg}; 9690 } 9691 } 9692 9693 for (; NumRegs; --NumRegs, ++I) { 9694 assert(I != RC->end() && "Ran out of registers to allocate!"); 9695 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9696 Regs.push_back(R); 9697 } 9698 9699 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9700 return std::nullopt; 9701 } 9702 9703 static unsigned 9704 findMatchingInlineAsmOperand(unsigned OperandNo, 9705 const std::vector<SDValue> &AsmNodeOperands) { 9706 // Scan until we find the definition we already emitted of this operand. 9707 unsigned CurOp = InlineAsm::Op_FirstOperand; 9708 for (; OperandNo; --OperandNo) { 9709 // Advance to the next operand. 9710 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9711 const InlineAsm::Flag F(OpFlag); 9712 assert( 9713 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9714 "Skipped past definitions?"); 9715 CurOp += F.getNumOperandRegisters() + 1; 9716 } 9717 return CurOp; 9718 } 9719 9720 namespace { 9721 9722 class ExtraFlags { 9723 unsigned Flags = 0; 9724 9725 public: 9726 explicit ExtraFlags(const CallBase &Call) { 9727 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9728 if (IA->hasSideEffects()) 9729 Flags |= InlineAsm::Extra_HasSideEffects; 9730 if (IA->isAlignStack()) 9731 Flags |= InlineAsm::Extra_IsAlignStack; 9732 if (Call.isConvergent()) 9733 Flags |= InlineAsm::Extra_IsConvergent; 9734 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9735 } 9736 9737 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9738 // Ideally, we would only check against memory constraints. However, the 9739 // meaning of an Other constraint can be target-specific and we can't easily 9740 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9741 // for Other constraints as well. 9742 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9743 OpInfo.ConstraintType == TargetLowering::C_Other) { 9744 if (OpInfo.Type == InlineAsm::isInput) 9745 Flags |= InlineAsm::Extra_MayLoad; 9746 else if (OpInfo.Type == InlineAsm::isOutput) 9747 Flags |= InlineAsm::Extra_MayStore; 9748 else if (OpInfo.Type == InlineAsm::isClobber) 9749 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9750 } 9751 } 9752 9753 unsigned get() const { return Flags; } 9754 }; 9755 9756 } // end anonymous namespace 9757 9758 static bool isFunction(SDValue Op) { 9759 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9760 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9761 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9762 9763 // In normal "call dllimport func" instruction (non-inlineasm) it force 9764 // indirect access by specifing call opcode. And usually specially print 9765 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9766 // not do in this way now. (In fact, this is similar with "Data Access" 9767 // action). So here we ignore dllimport function. 9768 if (Fn && !Fn->hasDLLImportStorageClass()) 9769 return true; 9770 } 9771 } 9772 return false; 9773 } 9774 9775 /// visitInlineAsm - Handle a call to an InlineAsm object. 9776 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9777 const BasicBlock *EHPadBB) { 9778 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9779 9780 /// ConstraintOperands - Information about all of the constraints. 9781 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9782 9783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9784 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9785 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9786 9787 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9788 // AsmDialect, MayLoad, MayStore). 9789 bool HasSideEffect = IA->hasSideEffects(); 9790 ExtraFlags ExtraInfo(Call); 9791 9792 for (auto &T : TargetConstraints) { 9793 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9794 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9795 9796 if (OpInfo.CallOperandVal) 9797 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9798 9799 if (!HasSideEffect) 9800 HasSideEffect = OpInfo.hasMemory(TLI); 9801 9802 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9803 // FIXME: Could we compute this on OpInfo rather than T? 9804 9805 // Compute the constraint code and ConstraintType to use. 9806 TLI.ComputeConstraintToUse(T, SDValue()); 9807 9808 if (T.ConstraintType == TargetLowering::C_Immediate && 9809 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9810 // We've delayed emitting a diagnostic like the "n" constraint because 9811 // inlining could cause an integer showing up. 9812 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9813 "' expects an integer constant " 9814 "expression"); 9815 9816 ExtraInfo.update(T); 9817 } 9818 9819 // We won't need to flush pending loads if this asm doesn't touch 9820 // memory and is nonvolatile. 9821 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9822 9823 bool EmitEHLabels = isa<InvokeInst>(Call); 9824 if (EmitEHLabels) { 9825 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9826 } 9827 bool IsCallBr = isa<CallBrInst>(Call); 9828 9829 if (IsCallBr || EmitEHLabels) { 9830 // If this is a callbr or invoke we need to flush pending exports since 9831 // inlineasm_br and invoke are terminators. 9832 // We need to do this before nodes are glued to the inlineasm_br node. 9833 Chain = getControlRoot(); 9834 } 9835 9836 MCSymbol *BeginLabel = nullptr; 9837 if (EmitEHLabels) { 9838 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9839 } 9840 9841 int OpNo = -1; 9842 SmallVector<StringRef> AsmStrs; 9843 IA->collectAsmStrs(AsmStrs); 9844 9845 // Second pass over the constraints: compute which constraint option to use. 9846 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9847 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9848 OpNo++; 9849 9850 // If this is an output operand with a matching input operand, look up the 9851 // matching input. If their types mismatch, e.g. one is an integer, the 9852 // other is floating point, or their sizes are different, flag it as an 9853 // error. 9854 if (OpInfo.hasMatchingInput()) { 9855 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9856 patchMatchingInput(OpInfo, Input, DAG); 9857 } 9858 9859 // Compute the constraint code and ConstraintType to use. 9860 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9861 9862 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9863 OpInfo.Type == InlineAsm::isClobber) || 9864 OpInfo.ConstraintType == TargetLowering::C_Address) 9865 continue; 9866 9867 // In Linux PIC model, there are 4 cases about value/label addressing: 9868 // 9869 // 1: Function call or Label jmp inside the module. 9870 // 2: Data access (such as global variable, static variable) inside module. 9871 // 3: Function call or Label jmp outside the module. 9872 // 4: Data access (such as global variable) outside the module. 9873 // 9874 // Due to current llvm inline asm architecture designed to not "recognize" 9875 // the asm code, there are quite troubles for us to treat mem addressing 9876 // differently for same value/adress used in different instuctions. 9877 // For example, in pic model, call a func may in plt way or direclty 9878 // pc-related, but lea/mov a function adress may use got. 9879 // 9880 // Here we try to "recognize" function call for the case 1 and case 3 in 9881 // inline asm. And try to adjust the constraint for them. 9882 // 9883 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9884 // label, so here we don't handle jmp function label now, but we need to 9885 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9886 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9887 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9888 TM.getCodeModel() != CodeModel::Large) { 9889 OpInfo.isIndirect = false; 9890 OpInfo.ConstraintType = TargetLowering::C_Address; 9891 } 9892 9893 // If this is a memory input, and if the operand is not indirect, do what we 9894 // need to provide an address for the memory input. 9895 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9896 !OpInfo.isIndirect) { 9897 assert((OpInfo.isMultipleAlternative || 9898 (OpInfo.Type == InlineAsm::isInput)) && 9899 "Can only indirectify direct input operands!"); 9900 9901 // Memory operands really want the address of the value. 9902 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9903 9904 // There is no longer a Value* corresponding to this operand. 9905 OpInfo.CallOperandVal = nullptr; 9906 9907 // It is now an indirect operand. 9908 OpInfo.isIndirect = true; 9909 } 9910 9911 } 9912 9913 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9914 std::vector<SDValue> AsmNodeOperands; 9915 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9916 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9917 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9918 9919 // If we have a !srcloc metadata node associated with it, we want to attach 9920 // this to the ultimately generated inline asm machineinstr. To do this, we 9921 // pass in the third operand as this (potentially null) inline asm MDNode. 9922 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9923 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9924 9925 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9926 // bits as operand 3. 9927 AsmNodeOperands.push_back(DAG.getTargetConstant( 9928 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9929 9930 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9931 // this, assign virtual and physical registers for inputs and otput. 9932 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9933 // Assign Registers. 9934 SDISelAsmOperandInfo &RefOpInfo = 9935 OpInfo.isMatchingInputConstraint() 9936 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9937 : OpInfo; 9938 const auto RegError = 9939 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9940 if (RegError) { 9941 const MachineFunction &MF = DAG.getMachineFunction(); 9942 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9943 const char *RegName = TRI.getName(*RegError); 9944 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9945 "' allocated for constraint '" + 9946 Twine(OpInfo.ConstraintCode) + 9947 "' does not match required type"); 9948 return; 9949 } 9950 9951 auto DetectWriteToReservedRegister = [&]() { 9952 const MachineFunction &MF = DAG.getMachineFunction(); 9953 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9954 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9955 if (Register::isPhysicalRegister(Reg) && 9956 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9957 const char *RegName = TRI.getName(Reg); 9958 emitInlineAsmError(Call, "write to reserved register '" + 9959 Twine(RegName) + "'"); 9960 return true; 9961 } 9962 } 9963 return false; 9964 }; 9965 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9966 (OpInfo.Type == InlineAsm::isInput && 9967 !OpInfo.isMatchingInputConstraint())) && 9968 "Only address as input operand is allowed."); 9969 9970 switch (OpInfo.Type) { 9971 case InlineAsm::isOutput: 9972 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9973 const InlineAsm::ConstraintCode ConstraintID = 9974 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9975 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9976 "Failed to convert memory constraint code to constraint id."); 9977 9978 // Add information to the INLINEASM node to know about this output. 9979 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9980 OpFlags.setMemConstraint(ConstraintID); 9981 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9982 MVT::i32)); 9983 AsmNodeOperands.push_back(OpInfo.CallOperand); 9984 } else { 9985 // Otherwise, this outputs to a register (directly for C_Register / 9986 // C_RegisterClass, and a target-defined fashion for 9987 // C_Immediate/C_Other). Find a register that we can use. 9988 if (OpInfo.AssignedRegs.Regs.empty()) { 9989 emitInlineAsmError( 9990 Call, "couldn't allocate output register for constraint '" + 9991 Twine(OpInfo.ConstraintCode) + "'"); 9992 return; 9993 } 9994 9995 if (DetectWriteToReservedRegister()) 9996 return; 9997 9998 // Add information to the INLINEASM node to know that this register is 9999 // set. 10000 OpInfo.AssignedRegs.AddInlineAsmOperands( 10001 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10002 : InlineAsm::Kind::RegDef, 10003 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10004 } 10005 break; 10006 10007 case InlineAsm::isInput: 10008 case InlineAsm::isLabel: { 10009 SDValue InOperandVal = OpInfo.CallOperand; 10010 10011 if (OpInfo.isMatchingInputConstraint()) { 10012 // If this is required to match an output register we have already set, 10013 // just use its register. 10014 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10015 AsmNodeOperands); 10016 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10017 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10018 if (OpInfo.isIndirect) { 10019 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10020 emitInlineAsmError(Call, "inline asm not supported yet: " 10021 "don't know how to handle tied " 10022 "indirect register inputs"); 10023 return; 10024 } 10025 10026 SmallVector<unsigned, 4> Regs; 10027 MachineFunction &MF = DAG.getMachineFunction(); 10028 MachineRegisterInfo &MRI = MF.getRegInfo(); 10029 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10030 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10031 Register TiedReg = R->getReg(); 10032 MVT RegVT = R->getSimpleValueType(0); 10033 const TargetRegisterClass *RC = 10034 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10035 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10036 : TRI.getMinimalPhysRegClass(TiedReg); 10037 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10038 Regs.push_back(MRI.createVirtualRegister(RC)); 10039 10040 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10041 10042 SDLoc dl = getCurSDLoc(); 10043 // Use the produced MatchedRegs object to 10044 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10045 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10046 OpInfo.getMatchedOperand(), dl, DAG, 10047 AsmNodeOperands); 10048 break; 10049 } 10050 10051 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10052 assert(Flag.getNumOperandRegisters() == 1 && 10053 "Unexpected number of operands"); 10054 // Add information to the INLINEASM node to know about this input. 10055 // See InlineAsm.h isUseOperandTiedToDef. 10056 Flag.clearMemConstraint(); 10057 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10058 AsmNodeOperands.push_back(DAG.getTargetConstant( 10059 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10060 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10061 break; 10062 } 10063 10064 // Treat indirect 'X' constraint as memory. 10065 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10066 OpInfo.isIndirect) 10067 OpInfo.ConstraintType = TargetLowering::C_Memory; 10068 10069 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10070 OpInfo.ConstraintType == TargetLowering::C_Other) { 10071 std::vector<SDValue> Ops; 10072 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10073 Ops, DAG); 10074 if (Ops.empty()) { 10075 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10076 if (isa<ConstantSDNode>(InOperandVal)) { 10077 emitInlineAsmError(Call, "value out of range for constraint '" + 10078 Twine(OpInfo.ConstraintCode) + "'"); 10079 return; 10080 } 10081 10082 emitInlineAsmError(Call, 10083 "invalid operand for inline asm constraint '" + 10084 Twine(OpInfo.ConstraintCode) + "'"); 10085 return; 10086 } 10087 10088 // Add information to the INLINEASM node to know about this input. 10089 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10090 AsmNodeOperands.push_back(DAG.getTargetConstant( 10091 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10092 llvm::append_range(AsmNodeOperands, Ops); 10093 break; 10094 } 10095 10096 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10097 assert((OpInfo.isIndirect || 10098 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10099 "Operand must be indirect to be a mem!"); 10100 assert(InOperandVal.getValueType() == 10101 TLI.getPointerTy(DAG.getDataLayout()) && 10102 "Memory operands expect pointer values"); 10103 10104 const InlineAsm::ConstraintCode ConstraintID = 10105 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10106 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10107 "Failed to convert memory constraint code to constraint id."); 10108 10109 // Add information to the INLINEASM node to know about this input. 10110 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10111 ResOpType.setMemConstraint(ConstraintID); 10112 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10113 getCurSDLoc(), 10114 MVT::i32)); 10115 AsmNodeOperands.push_back(InOperandVal); 10116 break; 10117 } 10118 10119 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10120 const InlineAsm::ConstraintCode ConstraintID = 10121 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10122 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10123 "Failed to convert memory constraint code to constraint id."); 10124 10125 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10126 10127 SDValue AsmOp = InOperandVal; 10128 if (isFunction(InOperandVal)) { 10129 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10130 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10131 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10132 InOperandVal.getValueType(), 10133 GA->getOffset()); 10134 } 10135 10136 // Add information to the INLINEASM node to know about this input. 10137 ResOpType.setMemConstraint(ConstraintID); 10138 10139 AsmNodeOperands.push_back( 10140 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10141 10142 AsmNodeOperands.push_back(AsmOp); 10143 break; 10144 } 10145 10146 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10147 OpInfo.ConstraintType != TargetLowering::C_Register) { 10148 emitInlineAsmError(Call, "unknown asm constraint '" + 10149 Twine(OpInfo.ConstraintCode) + "'"); 10150 return; 10151 } 10152 10153 // TODO: Support this. 10154 if (OpInfo.isIndirect) { 10155 emitInlineAsmError( 10156 Call, "Don't know how to handle indirect register inputs yet " 10157 "for constraint '" + 10158 Twine(OpInfo.ConstraintCode) + "'"); 10159 return; 10160 } 10161 10162 // Copy the input into the appropriate registers. 10163 if (OpInfo.AssignedRegs.Regs.empty()) { 10164 emitInlineAsmError(Call, 10165 "couldn't allocate input reg for constraint '" + 10166 Twine(OpInfo.ConstraintCode) + "'"); 10167 return; 10168 } 10169 10170 if (DetectWriteToReservedRegister()) 10171 return; 10172 10173 SDLoc dl = getCurSDLoc(); 10174 10175 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10176 &Call); 10177 10178 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10179 0, dl, DAG, AsmNodeOperands); 10180 break; 10181 } 10182 case InlineAsm::isClobber: 10183 // Add the clobbered value to the operand list, so that the register 10184 // allocator is aware that the physreg got clobbered. 10185 if (!OpInfo.AssignedRegs.Regs.empty()) 10186 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10187 false, 0, getCurSDLoc(), DAG, 10188 AsmNodeOperands); 10189 break; 10190 } 10191 } 10192 10193 // Finish up input operands. Set the input chain and add the flag last. 10194 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10195 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10196 10197 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10198 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10199 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10200 Glue = Chain.getValue(1); 10201 10202 // Do additional work to generate outputs. 10203 10204 SmallVector<EVT, 1> ResultVTs; 10205 SmallVector<SDValue, 1> ResultValues; 10206 SmallVector<SDValue, 8> OutChains; 10207 10208 llvm::Type *CallResultType = Call.getType(); 10209 ArrayRef<Type *> ResultTypes; 10210 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10211 ResultTypes = StructResult->elements(); 10212 else if (!CallResultType->isVoidTy()) 10213 ResultTypes = ArrayRef(CallResultType); 10214 10215 auto CurResultType = ResultTypes.begin(); 10216 auto handleRegAssign = [&](SDValue V) { 10217 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10218 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10219 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10220 ++CurResultType; 10221 // If the type of the inline asm call site return value is different but has 10222 // same size as the type of the asm output bitcast it. One example of this 10223 // is for vectors with different width / number of elements. This can 10224 // happen for register classes that can contain multiple different value 10225 // types. The preg or vreg allocated may not have the same VT as was 10226 // expected. 10227 // 10228 // This can also happen for a return value that disagrees with the register 10229 // class it is put in, eg. a double in a general-purpose register on a 10230 // 32-bit machine. 10231 if (ResultVT != V.getValueType() && 10232 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10233 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10234 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10235 V.getValueType().isInteger()) { 10236 // If a result value was tied to an input value, the computed result 10237 // may have a wider width than the expected result. Extract the 10238 // relevant portion. 10239 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10240 } 10241 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10242 ResultVTs.push_back(ResultVT); 10243 ResultValues.push_back(V); 10244 }; 10245 10246 // Deal with output operands. 10247 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10248 if (OpInfo.Type == InlineAsm::isOutput) { 10249 SDValue Val; 10250 // Skip trivial output operands. 10251 if (OpInfo.AssignedRegs.Regs.empty()) 10252 continue; 10253 10254 switch (OpInfo.ConstraintType) { 10255 case TargetLowering::C_Register: 10256 case TargetLowering::C_RegisterClass: 10257 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10258 Chain, &Glue, &Call); 10259 break; 10260 case TargetLowering::C_Immediate: 10261 case TargetLowering::C_Other: 10262 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10263 OpInfo, DAG); 10264 break; 10265 case TargetLowering::C_Memory: 10266 break; // Already handled. 10267 case TargetLowering::C_Address: 10268 break; // Silence warning. 10269 case TargetLowering::C_Unknown: 10270 assert(false && "Unexpected unknown constraint"); 10271 } 10272 10273 // Indirect output manifest as stores. Record output chains. 10274 if (OpInfo.isIndirect) { 10275 const Value *Ptr = OpInfo.CallOperandVal; 10276 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10277 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10278 MachinePointerInfo(Ptr)); 10279 OutChains.push_back(Store); 10280 } else { 10281 // generate CopyFromRegs to associated registers. 10282 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10283 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10284 for (const SDValue &V : Val->op_values()) 10285 handleRegAssign(V); 10286 } else 10287 handleRegAssign(Val); 10288 } 10289 } 10290 } 10291 10292 // Set results. 10293 if (!ResultValues.empty()) { 10294 assert(CurResultType == ResultTypes.end() && 10295 "Mismatch in number of ResultTypes"); 10296 assert(ResultValues.size() == ResultTypes.size() && 10297 "Mismatch in number of output operands in asm result"); 10298 10299 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10300 DAG.getVTList(ResultVTs), ResultValues); 10301 setValue(&Call, V); 10302 } 10303 10304 // Collect store chains. 10305 if (!OutChains.empty()) 10306 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10307 10308 if (EmitEHLabels) { 10309 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10310 } 10311 10312 // Only Update Root if inline assembly has a memory effect. 10313 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10314 EmitEHLabels) 10315 DAG.setRoot(Chain); 10316 } 10317 10318 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10319 const Twine &Message) { 10320 LLVMContext &Ctx = *DAG.getContext(); 10321 Ctx.emitError(&Call, Message); 10322 10323 // Make sure we leave the DAG in a valid state 10324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10325 SmallVector<EVT, 1> ValueVTs; 10326 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10327 10328 if (ValueVTs.empty()) 10329 return; 10330 10331 SmallVector<SDValue, 1> Ops; 10332 for (const EVT &VT : ValueVTs) 10333 Ops.push_back(DAG.getUNDEF(VT)); 10334 10335 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10336 } 10337 10338 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10339 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10340 MVT::Other, getRoot(), 10341 getValue(I.getArgOperand(0)), 10342 DAG.getSrcValue(I.getArgOperand(0)))); 10343 } 10344 10345 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10347 const DataLayout &DL = DAG.getDataLayout(); 10348 SDValue V = DAG.getVAArg( 10349 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10350 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10351 DL.getABITypeAlign(I.getType()).value()); 10352 DAG.setRoot(V.getValue(1)); 10353 10354 if (I.getType()->isPointerTy()) 10355 V = DAG.getPtrExtOrTrunc( 10356 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10357 setValue(&I, V); 10358 } 10359 10360 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10361 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10362 MVT::Other, getRoot(), 10363 getValue(I.getArgOperand(0)), 10364 DAG.getSrcValue(I.getArgOperand(0)))); 10365 } 10366 10367 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10368 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10369 MVT::Other, getRoot(), 10370 getValue(I.getArgOperand(0)), 10371 getValue(I.getArgOperand(1)), 10372 DAG.getSrcValue(I.getArgOperand(0)), 10373 DAG.getSrcValue(I.getArgOperand(1)))); 10374 } 10375 10376 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10377 const Instruction &I, 10378 SDValue Op) { 10379 std::optional<ConstantRange> CR = getRange(I); 10380 10381 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10382 return Op; 10383 10384 APInt Lo = CR->getUnsignedMin(); 10385 if (!Lo.isMinValue()) 10386 return Op; 10387 10388 APInt Hi = CR->getUnsignedMax(); 10389 unsigned Bits = std::max(Hi.getActiveBits(), 10390 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10391 10392 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10393 10394 SDLoc SL = getCurSDLoc(); 10395 10396 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10397 DAG.getValueType(SmallVT)); 10398 unsigned NumVals = Op.getNode()->getNumValues(); 10399 if (NumVals == 1) 10400 return ZExt; 10401 10402 SmallVector<SDValue, 4> Ops; 10403 10404 Ops.push_back(ZExt); 10405 for (unsigned I = 1; I != NumVals; ++I) 10406 Ops.push_back(Op.getValue(I)); 10407 10408 return DAG.getMergeValues(Ops, SL); 10409 } 10410 10411 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10412 /// the call being lowered. 10413 /// 10414 /// This is a helper for lowering intrinsics that follow a target calling 10415 /// convention or require stack pointer adjustment. Only a subset of the 10416 /// intrinsic's operands need to participate in the calling convention. 10417 void SelectionDAGBuilder::populateCallLoweringInfo( 10418 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10419 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10420 AttributeSet RetAttrs, bool IsPatchPoint) { 10421 TargetLowering::ArgListTy Args; 10422 Args.reserve(NumArgs); 10423 10424 // Populate the argument list. 10425 // Attributes for args start at offset 1, after the return attribute. 10426 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10427 ArgI != ArgE; ++ArgI) { 10428 const Value *V = Call->getOperand(ArgI); 10429 10430 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10431 10432 TargetLowering::ArgListEntry Entry; 10433 Entry.Node = getValue(V); 10434 Entry.Ty = V->getType(); 10435 Entry.setAttributes(Call, ArgI); 10436 Args.push_back(Entry); 10437 } 10438 10439 CLI.setDebugLoc(getCurSDLoc()) 10440 .setChain(getRoot()) 10441 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10442 RetAttrs) 10443 .setDiscardResult(Call->use_empty()) 10444 .setIsPatchPoint(IsPatchPoint) 10445 .setIsPreallocated( 10446 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10447 } 10448 10449 /// Add a stack map intrinsic call's live variable operands to a stackmap 10450 /// or patchpoint target node's operand list. 10451 /// 10452 /// Constants are converted to TargetConstants purely as an optimization to 10453 /// avoid constant materialization and register allocation. 10454 /// 10455 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10456 /// generate addess computation nodes, and so FinalizeISel can convert the 10457 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10458 /// address materialization and register allocation, but may also be required 10459 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10460 /// alloca in the entry block, then the runtime may assume that the alloca's 10461 /// StackMap location can be read immediately after compilation and that the 10462 /// location is valid at any point during execution (this is similar to the 10463 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10464 /// only available in a register, then the runtime would need to trap when 10465 /// execution reaches the StackMap in order to read the alloca's location. 10466 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10467 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10468 SelectionDAGBuilder &Builder) { 10469 SelectionDAG &DAG = Builder.DAG; 10470 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10471 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10472 10473 // Things on the stack are pointer-typed, meaning that they are already 10474 // legal and can be emitted directly to target nodes. 10475 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10476 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10477 } else { 10478 // Otherwise emit a target independent node to be legalised. 10479 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10480 } 10481 } 10482 } 10483 10484 /// Lower llvm.experimental.stackmap. 10485 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10486 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10487 // [live variables...]) 10488 10489 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10490 10491 SDValue Chain, InGlue, Callee; 10492 SmallVector<SDValue, 32> Ops; 10493 10494 SDLoc DL = getCurSDLoc(); 10495 Callee = getValue(CI.getCalledOperand()); 10496 10497 // The stackmap intrinsic only records the live variables (the arguments 10498 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10499 // intrinsic, this won't be lowered to a function call. This means we don't 10500 // have to worry about calling conventions and target specific lowering code. 10501 // Instead we perform the call lowering right here. 10502 // 10503 // chain, flag = CALLSEQ_START(chain, 0, 0) 10504 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10505 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10506 // 10507 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10508 InGlue = Chain.getValue(1); 10509 10510 // Add the STACKMAP operands, starting with DAG house-keeping. 10511 Ops.push_back(Chain); 10512 Ops.push_back(InGlue); 10513 10514 // Add the <id>, <numShadowBytes> operands. 10515 // 10516 // These do not require legalisation, and can be emitted directly to target 10517 // constant nodes. 10518 SDValue ID = getValue(CI.getArgOperand(0)); 10519 assert(ID.getValueType() == MVT::i64); 10520 SDValue IDConst = 10521 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10522 Ops.push_back(IDConst); 10523 10524 SDValue Shad = getValue(CI.getArgOperand(1)); 10525 assert(Shad.getValueType() == MVT::i32); 10526 SDValue ShadConst = 10527 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10528 Ops.push_back(ShadConst); 10529 10530 // Add the live variables. 10531 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10532 10533 // Create the STACKMAP node. 10534 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10535 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10536 InGlue = Chain.getValue(1); 10537 10538 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10539 10540 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10541 10542 // Set the root to the target-lowered call chain. 10543 DAG.setRoot(Chain); 10544 10545 // Inform the Frame Information that we have a stackmap in this function. 10546 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10547 } 10548 10549 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10550 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10551 const BasicBlock *EHPadBB) { 10552 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10553 // i32 <numBytes>, 10554 // i8* <target>, 10555 // i32 <numArgs>, 10556 // [Args...], 10557 // [live variables...]) 10558 10559 CallingConv::ID CC = CB.getCallingConv(); 10560 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10561 bool HasDef = !CB.getType()->isVoidTy(); 10562 SDLoc dl = getCurSDLoc(); 10563 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10564 10565 // Handle immediate and symbolic callees. 10566 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10567 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10568 /*isTarget=*/true); 10569 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10570 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10571 SDLoc(SymbolicCallee), 10572 SymbolicCallee->getValueType(0)); 10573 10574 // Get the real number of arguments participating in the call <numArgs> 10575 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10576 unsigned NumArgs = NArgVal->getAsZExtVal(); 10577 10578 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10579 // Intrinsics include all meta-operands up to but not including CC. 10580 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10581 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10582 "Not enough arguments provided to the patchpoint intrinsic"); 10583 10584 // For AnyRegCC the arguments are lowered later on manually. 10585 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10586 Type *ReturnTy = 10587 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10588 10589 TargetLowering::CallLoweringInfo CLI(DAG); 10590 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10591 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10592 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10593 10594 SDNode *CallEnd = Result.second.getNode(); 10595 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10596 CallEnd = CallEnd->getOperand(0).getNode(); 10597 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10598 CallEnd = CallEnd->getOperand(0).getNode(); 10599 10600 /// Get a call instruction from the call sequence chain. 10601 /// Tail calls are not allowed. 10602 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10603 "Expected a callseq node."); 10604 SDNode *Call = CallEnd->getOperand(0).getNode(); 10605 bool HasGlue = Call->getGluedNode(); 10606 10607 // Replace the target specific call node with the patchable intrinsic. 10608 SmallVector<SDValue, 8> Ops; 10609 10610 // Push the chain. 10611 Ops.push_back(*(Call->op_begin())); 10612 10613 // Optionally, push the glue (if any). 10614 if (HasGlue) 10615 Ops.push_back(*(Call->op_end() - 1)); 10616 10617 // Push the register mask info. 10618 if (HasGlue) 10619 Ops.push_back(*(Call->op_end() - 2)); 10620 else 10621 Ops.push_back(*(Call->op_end() - 1)); 10622 10623 // Add the <id> and <numBytes> constants. 10624 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10625 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10626 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10627 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10628 10629 // Add the callee. 10630 Ops.push_back(Callee); 10631 10632 // Adjust <numArgs> to account for any arguments that have been passed on the 10633 // stack instead. 10634 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10635 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10636 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10637 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10638 10639 // Add the calling convention 10640 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10641 10642 // Add the arguments we omitted previously. The register allocator should 10643 // place these in any free register. 10644 if (IsAnyRegCC) 10645 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10646 Ops.push_back(getValue(CB.getArgOperand(i))); 10647 10648 // Push the arguments from the call instruction. 10649 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10650 Ops.append(Call->op_begin() + 2, e); 10651 10652 // Push live variables for the stack map. 10653 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10654 10655 SDVTList NodeTys; 10656 if (IsAnyRegCC && HasDef) { 10657 // Create the return types based on the intrinsic definition 10658 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10659 SmallVector<EVT, 3> ValueVTs; 10660 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10661 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10662 10663 // There is always a chain and a glue type at the end 10664 ValueVTs.push_back(MVT::Other); 10665 ValueVTs.push_back(MVT::Glue); 10666 NodeTys = DAG.getVTList(ValueVTs); 10667 } else 10668 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10669 10670 // Replace the target specific call node with a PATCHPOINT node. 10671 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10672 10673 // Update the NodeMap. 10674 if (HasDef) { 10675 if (IsAnyRegCC) 10676 setValue(&CB, SDValue(PPV.getNode(), 0)); 10677 else 10678 setValue(&CB, Result.first); 10679 } 10680 10681 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10682 // call sequence. Furthermore the location of the chain and glue can change 10683 // when the AnyReg calling convention is used and the intrinsic returns a 10684 // value. 10685 if (IsAnyRegCC && HasDef) { 10686 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10687 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10688 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10689 } else 10690 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10691 DAG.DeleteNode(Call); 10692 10693 // Inform the Frame Information that we have a patchpoint in this function. 10694 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10695 } 10696 10697 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10698 unsigned Intrinsic) { 10699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10700 SDValue Op1 = getValue(I.getArgOperand(0)); 10701 SDValue Op2; 10702 if (I.arg_size() > 1) 10703 Op2 = getValue(I.getArgOperand(1)); 10704 SDLoc dl = getCurSDLoc(); 10705 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10706 SDValue Res; 10707 SDNodeFlags SDFlags; 10708 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10709 SDFlags.copyFMF(*FPMO); 10710 10711 switch (Intrinsic) { 10712 case Intrinsic::vector_reduce_fadd: 10713 if (SDFlags.hasAllowReassociation()) 10714 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10715 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10716 SDFlags); 10717 else 10718 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10719 break; 10720 case Intrinsic::vector_reduce_fmul: 10721 if (SDFlags.hasAllowReassociation()) 10722 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10723 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10724 SDFlags); 10725 else 10726 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10727 break; 10728 case Intrinsic::vector_reduce_add: 10729 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10730 break; 10731 case Intrinsic::vector_reduce_mul: 10732 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10733 break; 10734 case Intrinsic::vector_reduce_and: 10735 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10736 break; 10737 case Intrinsic::vector_reduce_or: 10738 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10739 break; 10740 case Intrinsic::vector_reduce_xor: 10741 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10742 break; 10743 case Intrinsic::vector_reduce_smax: 10744 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10745 break; 10746 case Intrinsic::vector_reduce_smin: 10747 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10748 break; 10749 case Intrinsic::vector_reduce_umax: 10750 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10751 break; 10752 case Intrinsic::vector_reduce_umin: 10753 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10754 break; 10755 case Intrinsic::vector_reduce_fmax: 10756 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10757 break; 10758 case Intrinsic::vector_reduce_fmin: 10759 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10760 break; 10761 case Intrinsic::vector_reduce_fmaximum: 10762 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10763 break; 10764 case Intrinsic::vector_reduce_fminimum: 10765 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10766 break; 10767 default: 10768 llvm_unreachable("Unhandled vector reduce intrinsic"); 10769 } 10770 setValue(&I, Res); 10771 } 10772 10773 /// Returns an AttributeList representing the attributes applied to the return 10774 /// value of the given call. 10775 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10776 SmallVector<Attribute::AttrKind, 2> Attrs; 10777 if (CLI.RetSExt) 10778 Attrs.push_back(Attribute::SExt); 10779 if (CLI.RetZExt) 10780 Attrs.push_back(Attribute::ZExt); 10781 if (CLI.IsInReg) 10782 Attrs.push_back(Attribute::InReg); 10783 10784 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10785 Attrs); 10786 } 10787 10788 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10789 /// implementation, which just calls LowerCall. 10790 /// FIXME: When all targets are 10791 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10792 std::pair<SDValue, SDValue> 10793 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10794 // Handle the incoming return values from the call. 10795 CLI.Ins.clear(); 10796 Type *OrigRetTy = CLI.RetTy; 10797 SmallVector<EVT, 4> RetTys; 10798 SmallVector<TypeSize, 4> Offsets; 10799 auto &DL = CLI.DAG.getDataLayout(); 10800 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10801 10802 if (CLI.IsPostTypeLegalization) { 10803 // If we are lowering a libcall after legalization, split the return type. 10804 SmallVector<EVT, 4> OldRetTys; 10805 SmallVector<TypeSize, 4> OldOffsets; 10806 RetTys.swap(OldRetTys); 10807 Offsets.swap(OldOffsets); 10808 10809 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10810 EVT RetVT = OldRetTys[i]; 10811 uint64_t Offset = OldOffsets[i]; 10812 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10813 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10814 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10815 RetTys.append(NumRegs, RegisterVT); 10816 for (unsigned j = 0; j != NumRegs; ++j) 10817 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10818 } 10819 } 10820 10821 SmallVector<ISD::OutputArg, 4> Outs; 10822 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10823 10824 bool CanLowerReturn = 10825 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10826 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10827 10828 SDValue DemoteStackSlot; 10829 int DemoteStackIdx = -100; 10830 if (!CanLowerReturn) { 10831 // FIXME: equivalent assert? 10832 // assert(!CS.hasInAllocaArgument() && 10833 // "sret demotion is incompatible with inalloca"); 10834 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10835 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10836 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10837 DemoteStackIdx = 10838 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10839 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10840 DL.getAllocaAddrSpace()); 10841 10842 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10843 ArgListEntry Entry; 10844 Entry.Node = DemoteStackSlot; 10845 Entry.Ty = StackSlotPtrType; 10846 Entry.IsSExt = false; 10847 Entry.IsZExt = false; 10848 Entry.IsInReg = false; 10849 Entry.IsSRet = true; 10850 Entry.IsNest = false; 10851 Entry.IsByVal = false; 10852 Entry.IsByRef = false; 10853 Entry.IsReturned = false; 10854 Entry.IsSwiftSelf = false; 10855 Entry.IsSwiftAsync = false; 10856 Entry.IsSwiftError = false; 10857 Entry.IsCFGuardTarget = false; 10858 Entry.Alignment = Alignment; 10859 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10860 CLI.NumFixedArgs += 1; 10861 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10862 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10863 10864 // sret demotion isn't compatible with tail-calls, since the sret argument 10865 // points into the callers stack frame. 10866 CLI.IsTailCall = false; 10867 } else { 10868 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10869 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10870 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10871 ISD::ArgFlagsTy Flags; 10872 if (NeedsRegBlock) { 10873 Flags.setInConsecutiveRegs(); 10874 if (I == RetTys.size() - 1) 10875 Flags.setInConsecutiveRegsLast(); 10876 } 10877 EVT VT = RetTys[I]; 10878 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10879 CLI.CallConv, VT); 10880 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10881 CLI.CallConv, VT); 10882 for (unsigned i = 0; i != NumRegs; ++i) { 10883 ISD::InputArg MyFlags; 10884 MyFlags.Flags = Flags; 10885 MyFlags.VT = RegisterVT; 10886 MyFlags.ArgVT = VT; 10887 MyFlags.Used = CLI.IsReturnValueUsed; 10888 if (CLI.RetTy->isPointerTy()) { 10889 MyFlags.Flags.setPointer(); 10890 MyFlags.Flags.setPointerAddrSpace( 10891 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10892 } 10893 if (CLI.RetSExt) 10894 MyFlags.Flags.setSExt(); 10895 if (CLI.RetZExt) 10896 MyFlags.Flags.setZExt(); 10897 if (CLI.IsInReg) 10898 MyFlags.Flags.setInReg(); 10899 CLI.Ins.push_back(MyFlags); 10900 } 10901 } 10902 } 10903 10904 // We push in swifterror return as the last element of CLI.Ins. 10905 ArgListTy &Args = CLI.getArgs(); 10906 if (supportSwiftError()) { 10907 for (const ArgListEntry &Arg : Args) { 10908 if (Arg.IsSwiftError) { 10909 ISD::InputArg MyFlags; 10910 MyFlags.VT = getPointerTy(DL); 10911 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10912 MyFlags.Flags.setSwiftError(); 10913 CLI.Ins.push_back(MyFlags); 10914 } 10915 } 10916 } 10917 10918 // Handle all of the outgoing arguments. 10919 CLI.Outs.clear(); 10920 CLI.OutVals.clear(); 10921 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10922 SmallVector<EVT, 4> ValueVTs; 10923 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10924 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10925 Type *FinalType = Args[i].Ty; 10926 if (Args[i].IsByVal) 10927 FinalType = Args[i].IndirectType; 10928 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10929 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10930 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10931 ++Value) { 10932 EVT VT = ValueVTs[Value]; 10933 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10934 SDValue Op = SDValue(Args[i].Node.getNode(), 10935 Args[i].Node.getResNo() + Value); 10936 ISD::ArgFlagsTy Flags; 10937 10938 // Certain targets (such as MIPS), may have a different ABI alignment 10939 // for a type depending on the context. Give the target a chance to 10940 // specify the alignment it wants. 10941 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10942 Flags.setOrigAlign(OriginalAlignment); 10943 10944 if (Args[i].Ty->isPointerTy()) { 10945 Flags.setPointer(); 10946 Flags.setPointerAddrSpace( 10947 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10948 } 10949 if (Args[i].IsZExt) 10950 Flags.setZExt(); 10951 if (Args[i].IsSExt) 10952 Flags.setSExt(); 10953 if (Args[i].IsInReg) { 10954 // If we are using vectorcall calling convention, a structure that is 10955 // passed InReg - is surely an HVA 10956 if (CLI.CallConv == CallingConv::X86_VectorCall && 10957 isa<StructType>(FinalType)) { 10958 // The first value of a structure is marked 10959 if (0 == Value) 10960 Flags.setHvaStart(); 10961 Flags.setHva(); 10962 } 10963 // Set InReg Flag 10964 Flags.setInReg(); 10965 } 10966 if (Args[i].IsSRet) 10967 Flags.setSRet(); 10968 if (Args[i].IsSwiftSelf) 10969 Flags.setSwiftSelf(); 10970 if (Args[i].IsSwiftAsync) 10971 Flags.setSwiftAsync(); 10972 if (Args[i].IsSwiftError) 10973 Flags.setSwiftError(); 10974 if (Args[i].IsCFGuardTarget) 10975 Flags.setCFGuardTarget(); 10976 if (Args[i].IsByVal) 10977 Flags.setByVal(); 10978 if (Args[i].IsByRef) 10979 Flags.setByRef(); 10980 if (Args[i].IsPreallocated) { 10981 Flags.setPreallocated(); 10982 // Set the byval flag for CCAssignFn callbacks that don't know about 10983 // preallocated. This way we can know how many bytes we should've 10984 // allocated and how many bytes a callee cleanup function will pop. If 10985 // we port preallocated to more targets, we'll have to add custom 10986 // preallocated handling in the various CC lowering callbacks. 10987 Flags.setByVal(); 10988 } 10989 if (Args[i].IsInAlloca) { 10990 Flags.setInAlloca(); 10991 // Set the byval flag for CCAssignFn callbacks that don't know about 10992 // inalloca. This way we can know how many bytes we should've allocated 10993 // and how many bytes a callee cleanup function will pop. If we port 10994 // inalloca to more targets, we'll have to add custom inalloca handling 10995 // in the various CC lowering callbacks. 10996 Flags.setByVal(); 10997 } 10998 Align MemAlign; 10999 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11000 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11001 Flags.setByValSize(FrameSize); 11002 11003 // info is not there but there are cases it cannot get right. 11004 if (auto MA = Args[i].Alignment) 11005 MemAlign = *MA; 11006 else 11007 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 11008 } else if (auto MA = Args[i].Alignment) { 11009 MemAlign = *MA; 11010 } else { 11011 MemAlign = OriginalAlignment; 11012 } 11013 Flags.setMemAlign(MemAlign); 11014 if (Args[i].IsNest) 11015 Flags.setNest(); 11016 if (NeedsRegBlock) 11017 Flags.setInConsecutiveRegs(); 11018 11019 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11020 CLI.CallConv, VT); 11021 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11022 CLI.CallConv, VT); 11023 SmallVector<SDValue, 4> Parts(NumParts); 11024 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11025 11026 if (Args[i].IsSExt) 11027 ExtendKind = ISD::SIGN_EXTEND; 11028 else if (Args[i].IsZExt) 11029 ExtendKind = ISD::ZERO_EXTEND; 11030 11031 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11032 // for now. 11033 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11034 CanLowerReturn) { 11035 assert((CLI.RetTy == Args[i].Ty || 11036 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11037 CLI.RetTy->getPointerAddressSpace() == 11038 Args[i].Ty->getPointerAddressSpace())) && 11039 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11040 // Before passing 'returned' to the target lowering code, ensure that 11041 // either the register MVT and the actual EVT are the same size or that 11042 // the return value and argument are extended in the same way; in these 11043 // cases it's safe to pass the argument register value unchanged as the 11044 // return register value (although it's at the target's option whether 11045 // to do so) 11046 // TODO: allow code generation to take advantage of partially preserved 11047 // registers rather than clobbering the entire register when the 11048 // parameter extension method is not compatible with the return 11049 // extension method 11050 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11051 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11052 CLI.RetZExt == Args[i].IsZExt)) 11053 Flags.setReturned(); 11054 } 11055 11056 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11057 CLI.CallConv, ExtendKind); 11058 11059 for (unsigned j = 0; j != NumParts; ++j) { 11060 // if it isn't first piece, alignment must be 1 11061 // For scalable vectors the scalable part is currently handled 11062 // by individual targets, so we just use the known minimum size here. 11063 ISD::OutputArg MyFlags( 11064 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11065 i < CLI.NumFixedArgs, i, 11066 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11067 if (NumParts > 1 && j == 0) 11068 MyFlags.Flags.setSplit(); 11069 else if (j != 0) { 11070 MyFlags.Flags.setOrigAlign(Align(1)); 11071 if (j == NumParts - 1) 11072 MyFlags.Flags.setSplitEnd(); 11073 } 11074 11075 CLI.Outs.push_back(MyFlags); 11076 CLI.OutVals.push_back(Parts[j]); 11077 } 11078 11079 if (NeedsRegBlock && Value == NumValues - 1) 11080 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11081 } 11082 } 11083 11084 SmallVector<SDValue, 4> InVals; 11085 CLI.Chain = LowerCall(CLI, InVals); 11086 11087 // Update CLI.InVals to use outside of this function. 11088 CLI.InVals = InVals; 11089 11090 // Verify that the target's LowerCall behaved as expected. 11091 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11092 "LowerCall didn't return a valid chain!"); 11093 assert((!CLI.IsTailCall || InVals.empty()) && 11094 "LowerCall emitted a return value for a tail call!"); 11095 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11096 "LowerCall didn't emit the correct number of values!"); 11097 11098 // For a tail call, the return value is merely live-out and there aren't 11099 // any nodes in the DAG representing it. Return a special value to 11100 // indicate that a tail call has been emitted and no more Instructions 11101 // should be processed in the current block. 11102 if (CLI.IsTailCall) { 11103 CLI.DAG.setRoot(CLI.Chain); 11104 return std::make_pair(SDValue(), SDValue()); 11105 } 11106 11107 #ifndef NDEBUG 11108 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11109 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11110 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11111 "LowerCall emitted a value with the wrong type!"); 11112 } 11113 #endif 11114 11115 SmallVector<SDValue, 4> ReturnValues; 11116 if (!CanLowerReturn) { 11117 // The instruction result is the result of loading from the 11118 // hidden sret parameter. 11119 SmallVector<EVT, 1> PVTs; 11120 Type *PtrRetTy = 11121 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 11122 11123 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 11124 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 11125 EVT PtrVT = PVTs[0]; 11126 11127 unsigned NumValues = RetTys.size(); 11128 ReturnValues.resize(NumValues); 11129 SmallVector<SDValue, 4> Chains(NumValues); 11130 11131 // An aggregate return value cannot wrap around the address space, so 11132 // offsets to its parts don't wrap either. 11133 SDNodeFlags Flags; 11134 Flags.setNoUnsignedWrap(true); 11135 11136 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11137 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11138 for (unsigned i = 0; i < NumValues; ++i) { 11139 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11140 CLI.DAG.getConstant(Offsets[i], CLI.DL, 11141 PtrVT), Flags); 11142 SDValue L = CLI.DAG.getLoad( 11143 RetTys[i], CLI.DL, CLI.Chain, Add, 11144 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11145 DemoteStackIdx, Offsets[i]), 11146 HiddenSRetAlign); 11147 ReturnValues[i] = L; 11148 Chains[i] = L.getValue(1); 11149 } 11150 11151 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11152 } else { 11153 // Collect the legal value parts into potentially illegal values 11154 // that correspond to the original function's return values. 11155 std::optional<ISD::NodeType> AssertOp; 11156 if (CLI.RetSExt) 11157 AssertOp = ISD::AssertSext; 11158 else if (CLI.RetZExt) 11159 AssertOp = ISD::AssertZext; 11160 unsigned CurReg = 0; 11161 for (EVT VT : RetTys) { 11162 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11163 CLI.CallConv, VT); 11164 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11165 CLI.CallConv, VT); 11166 11167 ReturnValues.push_back(getCopyFromParts( 11168 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11169 CLI.Chain, CLI.CallConv, AssertOp)); 11170 CurReg += NumRegs; 11171 } 11172 11173 // For a function returning void, there is no return value. We can't create 11174 // such a node, so we just return a null return value in that case. In 11175 // that case, nothing will actually look at the value. 11176 if (ReturnValues.empty()) 11177 return std::make_pair(SDValue(), CLI.Chain); 11178 } 11179 11180 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11181 CLI.DAG.getVTList(RetTys), ReturnValues); 11182 return std::make_pair(Res, CLI.Chain); 11183 } 11184 11185 /// Places new result values for the node in Results (their number 11186 /// and types must exactly match those of the original return values of 11187 /// the node), or leaves Results empty, which indicates that the node is not 11188 /// to be custom lowered after all. 11189 void TargetLowering::LowerOperationWrapper(SDNode *N, 11190 SmallVectorImpl<SDValue> &Results, 11191 SelectionDAG &DAG) const { 11192 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11193 11194 if (!Res.getNode()) 11195 return; 11196 11197 // If the original node has one result, take the return value from 11198 // LowerOperation as is. It might not be result number 0. 11199 if (N->getNumValues() == 1) { 11200 Results.push_back(Res); 11201 return; 11202 } 11203 11204 // If the original node has multiple results, then the return node should 11205 // have the same number of results. 11206 assert((N->getNumValues() == Res->getNumValues()) && 11207 "Lowering returned the wrong number of results!"); 11208 11209 // Places new result values base on N result number. 11210 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11211 Results.push_back(Res.getValue(I)); 11212 } 11213 11214 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11215 llvm_unreachable("LowerOperation not implemented for this target!"); 11216 } 11217 11218 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11219 unsigned Reg, 11220 ISD::NodeType ExtendType) { 11221 SDValue Op = getNonRegisterValue(V); 11222 assert((Op.getOpcode() != ISD::CopyFromReg || 11223 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11224 "Copy from a reg to the same reg!"); 11225 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11226 11227 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11228 // If this is an InlineAsm we have to match the registers required, not the 11229 // notional registers required by the type. 11230 11231 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11232 std::nullopt); // This is not an ABI copy. 11233 SDValue Chain = DAG.getEntryNode(); 11234 11235 if (ExtendType == ISD::ANY_EXTEND) { 11236 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11237 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11238 ExtendType = PreferredExtendIt->second; 11239 } 11240 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11241 PendingExports.push_back(Chain); 11242 } 11243 11244 #include "llvm/CodeGen/SelectionDAGISel.h" 11245 11246 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11247 /// entry block, return true. This includes arguments used by switches, since 11248 /// the switch may expand into multiple basic blocks. 11249 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11250 // With FastISel active, we may be splitting blocks, so force creation 11251 // of virtual registers for all non-dead arguments. 11252 if (FastISel) 11253 return A->use_empty(); 11254 11255 const BasicBlock &Entry = A->getParent()->front(); 11256 for (const User *U : A->users()) 11257 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11258 return false; // Use not in entry block. 11259 11260 return true; 11261 } 11262 11263 using ArgCopyElisionMapTy = 11264 DenseMap<const Argument *, 11265 std::pair<const AllocaInst *, const StoreInst *>>; 11266 11267 /// Scan the entry block of the function in FuncInfo for arguments that look 11268 /// like copies into a local alloca. Record any copied arguments in 11269 /// ArgCopyElisionCandidates. 11270 static void 11271 findArgumentCopyElisionCandidates(const DataLayout &DL, 11272 FunctionLoweringInfo *FuncInfo, 11273 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11274 // Record the state of every static alloca used in the entry block. Argument 11275 // allocas are all used in the entry block, so we need approximately as many 11276 // entries as we have arguments. 11277 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11278 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11279 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11280 StaticAllocas.reserve(NumArgs * 2); 11281 11282 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11283 if (!V) 11284 return nullptr; 11285 V = V->stripPointerCasts(); 11286 const auto *AI = dyn_cast<AllocaInst>(V); 11287 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11288 return nullptr; 11289 auto Iter = StaticAllocas.insert({AI, Unknown}); 11290 return &Iter.first->second; 11291 }; 11292 11293 // Look for stores of arguments to static allocas. Look through bitcasts and 11294 // GEPs to handle type coercions, as long as the alloca is fully initialized 11295 // by the store. Any non-store use of an alloca escapes it and any subsequent 11296 // unanalyzed store might write it. 11297 // FIXME: Handle structs initialized with multiple stores. 11298 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11299 // Look for stores, and handle non-store uses conservatively. 11300 const auto *SI = dyn_cast<StoreInst>(&I); 11301 if (!SI) { 11302 // We will look through cast uses, so ignore them completely. 11303 if (I.isCast()) 11304 continue; 11305 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11306 // to allocas. 11307 if (I.isDebugOrPseudoInst()) 11308 continue; 11309 // This is an unknown instruction. Assume it escapes or writes to all 11310 // static alloca operands. 11311 for (const Use &U : I.operands()) { 11312 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11313 *Info = StaticAllocaInfo::Clobbered; 11314 } 11315 continue; 11316 } 11317 11318 // If the stored value is a static alloca, mark it as escaped. 11319 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11320 *Info = StaticAllocaInfo::Clobbered; 11321 11322 // Check if the destination is a static alloca. 11323 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11324 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11325 if (!Info) 11326 continue; 11327 const AllocaInst *AI = cast<AllocaInst>(Dst); 11328 11329 // Skip allocas that have been initialized or clobbered. 11330 if (*Info != StaticAllocaInfo::Unknown) 11331 continue; 11332 11333 // Check if the stored value is an argument, and that this store fully 11334 // initializes the alloca. 11335 // If the argument type has padding bits we can't directly forward a pointer 11336 // as the upper bits may contain garbage. 11337 // Don't elide copies from the same argument twice. 11338 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11339 const auto *Arg = dyn_cast<Argument>(Val); 11340 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11341 Arg->getType()->isEmptyTy() || 11342 DL.getTypeStoreSize(Arg->getType()) != 11343 DL.getTypeAllocSize(AI->getAllocatedType()) || 11344 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11345 ArgCopyElisionCandidates.count(Arg)) { 11346 *Info = StaticAllocaInfo::Clobbered; 11347 continue; 11348 } 11349 11350 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11351 << '\n'); 11352 11353 // Mark this alloca and store for argument copy elision. 11354 *Info = StaticAllocaInfo::Elidable; 11355 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11356 11357 // Stop scanning if we've seen all arguments. This will happen early in -O0 11358 // builds, which is useful, because -O0 builds have large entry blocks and 11359 // many allocas. 11360 if (ArgCopyElisionCandidates.size() == NumArgs) 11361 break; 11362 } 11363 } 11364 11365 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11366 /// ArgVal is a load from a suitable fixed stack object. 11367 static void tryToElideArgumentCopy( 11368 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11369 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11370 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11371 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11372 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11373 // Check if this is a load from a fixed stack object. 11374 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11375 if (!LNode) 11376 return; 11377 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11378 if (!FINode) 11379 return; 11380 11381 // Check that the fixed stack object is the right size and alignment. 11382 // Look at the alignment that the user wrote on the alloca instead of looking 11383 // at the stack object. 11384 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11385 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11386 const AllocaInst *AI = ArgCopyIter->second.first; 11387 int FixedIndex = FINode->getIndex(); 11388 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11389 int OldIndex = AllocaIndex; 11390 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11391 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11392 LLVM_DEBUG( 11393 dbgs() << " argument copy elision failed due to bad fixed stack " 11394 "object size\n"); 11395 return; 11396 } 11397 Align RequiredAlignment = AI->getAlign(); 11398 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11399 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11400 "greater than stack argument alignment (" 11401 << DebugStr(RequiredAlignment) << " vs " 11402 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11403 return; 11404 } 11405 11406 // Perform the elision. Delete the old stack object and replace its only use 11407 // in the variable info map. Mark the stack object as mutable and aliased. 11408 LLVM_DEBUG({ 11409 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11410 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11411 << '\n'; 11412 }); 11413 MFI.RemoveStackObject(OldIndex); 11414 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11415 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11416 AllocaIndex = FixedIndex; 11417 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11418 for (SDValue ArgVal : ArgVals) 11419 Chains.push_back(ArgVal.getValue(1)); 11420 11421 // Avoid emitting code for the store implementing the copy. 11422 const StoreInst *SI = ArgCopyIter->second.second; 11423 ElidedArgCopyInstrs.insert(SI); 11424 11425 // Check for uses of the argument again so that we can avoid exporting ArgVal 11426 // if it is't used by anything other than the store. 11427 for (const Value *U : Arg.users()) { 11428 if (U != SI) { 11429 ArgHasUses = true; 11430 break; 11431 } 11432 } 11433 } 11434 11435 void SelectionDAGISel::LowerArguments(const Function &F) { 11436 SelectionDAG &DAG = SDB->DAG; 11437 SDLoc dl = SDB->getCurSDLoc(); 11438 const DataLayout &DL = DAG.getDataLayout(); 11439 SmallVector<ISD::InputArg, 16> Ins; 11440 11441 // In Naked functions we aren't going to save any registers. 11442 if (F.hasFnAttribute(Attribute::Naked)) 11443 return; 11444 11445 if (!FuncInfo->CanLowerReturn) { 11446 // Put in an sret pointer parameter before all the other parameters. 11447 SmallVector<EVT, 1> ValueVTs; 11448 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11449 PointerType::get(F.getContext(), 11450 DAG.getDataLayout().getAllocaAddrSpace()), 11451 ValueVTs); 11452 11453 // NOTE: Assuming that a pointer will never break down to more than one VT 11454 // or one register. 11455 ISD::ArgFlagsTy Flags; 11456 Flags.setSRet(); 11457 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11458 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11459 ISD::InputArg::NoArgIndex, 0); 11460 Ins.push_back(RetArg); 11461 } 11462 11463 // Look for stores of arguments to static allocas. Mark such arguments with a 11464 // flag to ask the target to give us the memory location of that argument if 11465 // available. 11466 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11467 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11468 ArgCopyElisionCandidates); 11469 11470 // Set up the incoming argument description vector. 11471 for (const Argument &Arg : F.args()) { 11472 unsigned ArgNo = Arg.getArgNo(); 11473 SmallVector<EVT, 4> ValueVTs; 11474 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11475 bool isArgValueUsed = !Arg.use_empty(); 11476 unsigned PartBase = 0; 11477 Type *FinalType = Arg.getType(); 11478 if (Arg.hasAttribute(Attribute::ByVal)) 11479 FinalType = Arg.getParamByValType(); 11480 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11481 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11482 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11483 Value != NumValues; ++Value) { 11484 EVT VT = ValueVTs[Value]; 11485 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11486 ISD::ArgFlagsTy Flags; 11487 11488 11489 if (Arg.getType()->isPointerTy()) { 11490 Flags.setPointer(); 11491 Flags.setPointerAddrSpace( 11492 cast<PointerType>(Arg.getType())->getAddressSpace()); 11493 } 11494 if (Arg.hasAttribute(Attribute::ZExt)) 11495 Flags.setZExt(); 11496 if (Arg.hasAttribute(Attribute::SExt)) 11497 Flags.setSExt(); 11498 if (Arg.hasAttribute(Attribute::InReg)) { 11499 // If we are using vectorcall calling convention, a structure that is 11500 // passed InReg - is surely an HVA 11501 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11502 isa<StructType>(Arg.getType())) { 11503 // The first value of a structure is marked 11504 if (0 == Value) 11505 Flags.setHvaStart(); 11506 Flags.setHva(); 11507 } 11508 // Set InReg Flag 11509 Flags.setInReg(); 11510 } 11511 if (Arg.hasAttribute(Attribute::StructRet)) 11512 Flags.setSRet(); 11513 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11514 Flags.setSwiftSelf(); 11515 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11516 Flags.setSwiftAsync(); 11517 if (Arg.hasAttribute(Attribute::SwiftError)) 11518 Flags.setSwiftError(); 11519 if (Arg.hasAttribute(Attribute::ByVal)) 11520 Flags.setByVal(); 11521 if (Arg.hasAttribute(Attribute::ByRef)) 11522 Flags.setByRef(); 11523 if (Arg.hasAttribute(Attribute::InAlloca)) { 11524 Flags.setInAlloca(); 11525 // Set the byval flag for CCAssignFn callbacks that don't know about 11526 // inalloca. This way we can know how many bytes we should've allocated 11527 // and how many bytes a callee cleanup function will pop. If we port 11528 // inalloca to more targets, we'll have to add custom inalloca handling 11529 // in the various CC lowering callbacks. 11530 Flags.setByVal(); 11531 } 11532 if (Arg.hasAttribute(Attribute::Preallocated)) { 11533 Flags.setPreallocated(); 11534 // Set the byval flag for CCAssignFn callbacks that don't know about 11535 // preallocated. This way we can know how many bytes we should've 11536 // allocated and how many bytes a callee cleanup function will pop. If 11537 // we port preallocated to more targets, we'll have to add custom 11538 // preallocated handling in the various CC lowering callbacks. 11539 Flags.setByVal(); 11540 } 11541 11542 // Certain targets (such as MIPS), may have a different ABI alignment 11543 // for a type depending on the context. Give the target a chance to 11544 // specify the alignment it wants. 11545 const Align OriginalAlignment( 11546 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11547 Flags.setOrigAlign(OriginalAlignment); 11548 11549 Align MemAlign; 11550 Type *ArgMemTy = nullptr; 11551 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11552 Flags.isByRef()) { 11553 if (!ArgMemTy) 11554 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11555 11556 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11557 11558 // For in-memory arguments, size and alignment should be passed from FE. 11559 // BE will guess if this info is not there but there are cases it cannot 11560 // get right. 11561 if (auto ParamAlign = Arg.getParamStackAlign()) 11562 MemAlign = *ParamAlign; 11563 else if ((ParamAlign = Arg.getParamAlign())) 11564 MemAlign = *ParamAlign; 11565 else 11566 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11567 if (Flags.isByRef()) 11568 Flags.setByRefSize(MemSize); 11569 else 11570 Flags.setByValSize(MemSize); 11571 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11572 MemAlign = *ParamAlign; 11573 } else { 11574 MemAlign = OriginalAlignment; 11575 } 11576 Flags.setMemAlign(MemAlign); 11577 11578 if (Arg.hasAttribute(Attribute::Nest)) 11579 Flags.setNest(); 11580 if (NeedsRegBlock) 11581 Flags.setInConsecutiveRegs(); 11582 if (ArgCopyElisionCandidates.count(&Arg)) 11583 Flags.setCopyElisionCandidate(); 11584 if (Arg.hasAttribute(Attribute::Returned)) 11585 Flags.setReturned(); 11586 11587 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11588 *CurDAG->getContext(), F.getCallingConv(), VT); 11589 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11590 *CurDAG->getContext(), F.getCallingConv(), VT); 11591 for (unsigned i = 0; i != NumRegs; ++i) { 11592 // For scalable vectors, use the minimum size; individual targets 11593 // are responsible for handling scalable vector arguments and 11594 // return values. 11595 ISD::InputArg MyFlags( 11596 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11597 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11598 if (NumRegs > 1 && i == 0) 11599 MyFlags.Flags.setSplit(); 11600 // if it isn't first piece, alignment must be 1 11601 else if (i > 0) { 11602 MyFlags.Flags.setOrigAlign(Align(1)); 11603 if (i == NumRegs - 1) 11604 MyFlags.Flags.setSplitEnd(); 11605 } 11606 Ins.push_back(MyFlags); 11607 } 11608 if (NeedsRegBlock && Value == NumValues - 1) 11609 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11610 PartBase += VT.getStoreSize().getKnownMinValue(); 11611 } 11612 } 11613 11614 // Call the target to set up the argument values. 11615 SmallVector<SDValue, 8> InVals; 11616 SDValue NewRoot = TLI->LowerFormalArguments( 11617 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11618 11619 // Verify that the target's LowerFormalArguments behaved as expected. 11620 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11621 "LowerFormalArguments didn't return a valid chain!"); 11622 assert(InVals.size() == Ins.size() && 11623 "LowerFormalArguments didn't emit the correct number of values!"); 11624 LLVM_DEBUG({ 11625 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11626 assert(InVals[i].getNode() && 11627 "LowerFormalArguments emitted a null value!"); 11628 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11629 "LowerFormalArguments emitted a value with the wrong type!"); 11630 } 11631 }); 11632 11633 // Update the DAG with the new chain value resulting from argument lowering. 11634 DAG.setRoot(NewRoot); 11635 11636 // Set up the argument values. 11637 unsigned i = 0; 11638 if (!FuncInfo->CanLowerReturn) { 11639 // Create a virtual register for the sret pointer, and put in a copy 11640 // from the sret argument into it. 11641 SmallVector<EVT, 1> ValueVTs; 11642 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11643 PointerType::get(F.getContext(), 11644 DAG.getDataLayout().getAllocaAddrSpace()), 11645 ValueVTs); 11646 MVT VT = ValueVTs[0].getSimpleVT(); 11647 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11648 std::optional<ISD::NodeType> AssertOp; 11649 SDValue ArgValue = 11650 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11651 F.getCallingConv(), AssertOp); 11652 11653 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11654 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11655 Register SRetReg = 11656 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11657 FuncInfo->DemoteRegister = SRetReg; 11658 NewRoot = 11659 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11660 DAG.setRoot(NewRoot); 11661 11662 // i indexes lowered arguments. Bump it past the hidden sret argument. 11663 ++i; 11664 } 11665 11666 SmallVector<SDValue, 4> Chains; 11667 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11668 for (const Argument &Arg : F.args()) { 11669 SmallVector<SDValue, 4> ArgValues; 11670 SmallVector<EVT, 4> ValueVTs; 11671 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11672 unsigned NumValues = ValueVTs.size(); 11673 if (NumValues == 0) 11674 continue; 11675 11676 bool ArgHasUses = !Arg.use_empty(); 11677 11678 // Elide the copying store if the target loaded this argument from a 11679 // suitable fixed stack object. 11680 if (Ins[i].Flags.isCopyElisionCandidate()) { 11681 unsigned NumParts = 0; 11682 for (EVT VT : ValueVTs) 11683 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11684 F.getCallingConv(), VT); 11685 11686 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11687 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11688 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11689 } 11690 11691 // If this argument is unused then remember its value. It is used to generate 11692 // debugging information. 11693 bool isSwiftErrorArg = 11694 TLI->supportSwiftError() && 11695 Arg.hasAttribute(Attribute::SwiftError); 11696 if (!ArgHasUses && !isSwiftErrorArg) { 11697 SDB->setUnusedArgValue(&Arg, InVals[i]); 11698 11699 // Also remember any frame index for use in FastISel. 11700 if (FrameIndexSDNode *FI = 11701 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11702 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11703 } 11704 11705 for (unsigned Val = 0; Val != NumValues; ++Val) { 11706 EVT VT = ValueVTs[Val]; 11707 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11708 F.getCallingConv(), VT); 11709 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11710 *CurDAG->getContext(), F.getCallingConv(), VT); 11711 11712 // Even an apparent 'unused' swifterror argument needs to be returned. So 11713 // we do generate a copy for it that can be used on return from the 11714 // function. 11715 if (ArgHasUses || isSwiftErrorArg) { 11716 std::optional<ISD::NodeType> AssertOp; 11717 if (Arg.hasAttribute(Attribute::SExt)) 11718 AssertOp = ISD::AssertSext; 11719 else if (Arg.hasAttribute(Attribute::ZExt)) 11720 AssertOp = ISD::AssertZext; 11721 11722 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11723 PartVT, VT, nullptr, NewRoot, 11724 F.getCallingConv(), AssertOp)); 11725 } 11726 11727 i += NumParts; 11728 } 11729 11730 // We don't need to do anything else for unused arguments. 11731 if (ArgValues.empty()) 11732 continue; 11733 11734 // Note down frame index. 11735 if (FrameIndexSDNode *FI = 11736 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11737 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11738 11739 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11740 SDB->getCurSDLoc()); 11741 11742 SDB->setValue(&Arg, Res); 11743 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11744 // We want to associate the argument with the frame index, among 11745 // involved operands, that correspond to the lowest address. The 11746 // getCopyFromParts function, called earlier, is swapping the order of 11747 // the operands to BUILD_PAIR depending on endianness. The result of 11748 // that swapping is that the least significant bits of the argument will 11749 // be in the first operand of the BUILD_PAIR node, and the most 11750 // significant bits will be in the second operand. 11751 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11752 if (LoadSDNode *LNode = 11753 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11754 if (FrameIndexSDNode *FI = 11755 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11756 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11757 } 11758 11759 // Analyses past this point are naive and don't expect an assertion. 11760 if (Res.getOpcode() == ISD::AssertZext) 11761 Res = Res.getOperand(0); 11762 11763 // Update the SwiftErrorVRegDefMap. 11764 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11765 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11766 if (Register::isVirtualRegister(Reg)) 11767 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11768 Reg); 11769 } 11770 11771 // If this argument is live outside of the entry block, insert a copy from 11772 // wherever we got it to the vreg that other BB's will reference it as. 11773 if (Res.getOpcode() == ISD::CopyFromReg) { 11774 // If we can, though, try to skip creating an unnecessary vreg. 11775 // FIXME: This isn't very clean... it would be nice to make this more 11776 // general. 11777 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11778 if (Register::isVirtualRegister(Reg)) { 11779 FuncInfo->ValueMap[&Arg] = Reg; 11780 continue; 11781 } 11782 } 11783 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11784 FuncInfo->InitializeRegForValue(&Arg); 11785 SDB->CopyToExportRegsIfNeeded(&Arg); 11786 } 11787 } 11788 11789 if (!Chains.empty()) { 11790 Chains.push_back(NewRoot); 11791 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11792 } 11793 11794 DAG.setRoot(NewRoot); 11795 11796 assert(i == InVals.size() && "Argument register count mismatch!"); 11797 11798 // If any argument copy elisions occurred and we have debug info, update the 11799 // stale frame indices used in the dbg.declare variable info table. 11800 if (!ArgCopyElisionFrameIndexMap.empty()) { 11801 for (MachineFunction::VariableDbgInfo &VI : 11802 MF->getInStackSlotVariableDbgInfo()) { 11803 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11804 if (I != ArgCopyElisionFrameIndexMap.end()) 11805 VI.updateStackSlot(I->second); 11806 } 11807 } 11808 11809 // Finally, if the target has anything special to do, allow it to do so. 11810 emitFunctionEntryCode(); 11811 } 11812 11813 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11814 /// ensure constants are generated when needed. Remember the virtual registers 11815 /// that need to be added to the Machine PHI nodes as input. We cannot just 11816 /// directly add them, because expansion might result in multiple MBB's for one 11817 /// BB. As such, the start of the BB might correspond to a different MBB than 11818 /// the end. 11819 void 11820 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11822 11823 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11824 11825 // Check PHI nodes in successors that expect a value to be available from this 11826 // block. 11827 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11828 if (!isa<PHINode>(SuccBB->begin())) continue; 11829 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11830 11831 // If this terminator has multiple identical successors (common for 11832 // switches), only handle each succ once. 11833 if (!SuccsHandled.insert(SuccMBB).second) 11834 continue; 11835 11836 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11837 11838 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11839 // nodes and Machine PHI nodes, but the incoming operands have not been 11840 // emitted yet. 11841 for (const PHINode &PN : SuccBB->phis()) { 11842 // Ignore dead phi's. 11843 if (PN.use_empty()) 11844 continue; 11845 11846 // Skip empty types 11847 if (PN.getType()->isEmptyTy()) 11848 continue; 11849 11850 unsigned Reg; 11851 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11852 11853 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11854 unsigned &RegOut = ConstantsOut[C]; 11855 if (RegOut == 0) { 11856 RegOut = FuncInfo.CreateRegs(C); 11857 // We need to zero/sign extend ConstantInt phi operands to match 11858 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11859 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11860 if (auto *CI = dyn_cast<ConstantInt>(C)) 11861 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11862 : ISD::ZERO_EXTEND; 11863 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11864 } 11865 Reg = RegOut; 11866 } else { 11867 DenseMap<const Value *, Register>::iterator I = 11868 FuncInfo.ValueMap.find(PHIOp); 11869 if (I != FuncInfo.ValueMap.end()) 11870 Reg = I->second; 11871 else { 11872 assert(isa<AllocaInst>(PHIOp) && 11873 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11874 "Didn't codegen value into a register!??"); 11875 Reg = FuncInfo.CreateRegs(PHIOp); 11876 CopyValueToVirtualRegister(PHIOp, Reg); 11877 } 11878 } 11879 11880 // Remember that this register needs to added to the machine PHI node as 11881 // the input for this MBB. 11882 SmallVector<EVT, 4> ValueVTs; 11883 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11884 for (EVT VT : ValueVTs) { 11885 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11886 for (unsigned i = 0; i != NumRegisters; ++i) 11887 FuncInfo.PHINodesToUpdate.push_back( 11888 std::make_pair(&*MBBI++, Reg + i)); 11889 Reg += NumRegisters; 11890 } 11891 } 11892 } 11893 11894 ConstantsOut.clear(); 11895 } 11896 11897 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11898 MachineFunction::iterator I(MBB); 11899 if (++I == FuncInfo.MF->end()) 11900 return nullptr; 11901 return &*I; 11902 } 11903 11904 /// During lowering new call nodes can be created (such as memset, etc.). 11905 /// Those will become new roots of the current DAG, but complications arise 11906 /// when they are tail calls. In such cases, the call lowering will update 11907 /// the root, but the builder still needs to know that a tail call has been 11908 /// lowered in order to avoid generating an additional return. 11909 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11910 // If the node is null, we do have a tail call. 11911 if (MaybeTC.getNode() != nullptr) 11912 DAG.setRoot(MaybeTC); 11913 else 11914 HasTailCall = true; 11915 } 11916 11917 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11918 MachineBasicBlock *SwitchMBB, 11919 MachineBasicBlock *DefaultMBB) { 11920 MachineFunction *CurMF = FuncInfo.MF; 11921 MachineBasicBlock *NextMBB = nullptr; 11922 MachineFunction::iterator BBI(W.MBB); 11923 if (++BBI != FuncInfo.MF->end()) 11924 NextMBB = &*BBI; 11925 11926 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11927 11928 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11929 11930 if (Size == 2 && W.MBB == SwitchMBB) { 11931 // If any two of the cases has the same destination, and if one value 11932 // is the same as the other, but has one bit unset that the other has set, 11933 // use bit manipulation to do two compares at once. For example: 11934 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11935 // TODO: This could be extended to merge any 2 cases in switches with 3 11936 // cases. 11937 // TODO: Handle cases where W.CaseBB != SwitchBB. 11938 CaseCluster &Small = *W.FirstCluster; 11939 CaseCluster &Big = *W.LastCluster; 11940 11941 if (Small.Low == Small.High && Big.Low == Big.High && 11942 Small.MBB == Big.MBB) { 11943 const APInt &SmallValue = Small.Low->getValue(); 11944 const APInt &BigValue = Big.Low->getValue(); 11945 11946 // Check that there is only one bit different. 11947 APInt CommonBit = BigValue ^ SmallValue; 11948 if (CommonBit.isPowerOf2()) { 11949 SDValue CondLHS = getValue(Cond); 11950 EVT VT = CondLHS.getValueType(); 11951 SDLoc DL = getCurSDLoc(); 11952 11953 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11954 DAG.getConstant(CommonBit, DL, VT)); 11955 SDValue Cond = DAG.getSetCC( 11956 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11957 ISD::SETEQ); 11958 11959 // Update successor info. 11960 // Both Small and Big will jump to Small.BB, so we sum up the 11961 // probabilities. 11962 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11963 if (BPI) 11964 addSuccessorWithProb( 11965 SwitchMBB, DefaultMBB, 11966 // The default destination is the first successor in IR. 11967 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11968 else 11969 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11970 11971 // Insert the true branch. 11972 SDValue BrCond = 11973 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11974 DAG.getBasicBlock(Small.MBB)); 11975 // Insert the false branch. 11976 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11977 DAG.getBasicBlock(DefaultMBB)); 11978 11979 DAG.setRoot(BrCond); 11980 return; 11981 } 11982 } 11983 } 11984 11985 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11986 // Here, we order cases by probability so the most likely case will be 11987 // checked first. However, two clusters can have the same probability in 11988 // which case their relative ordering is non-deterministic. So we use Low 11989 // as a tie-breaker as clusters are guaranteed to never overlap. 11990 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11991 [](const CaseCluster &a, const CaseCluster &b) { 11992 return a.Prob != b.Prob ? 11993 a.Prob > b.Prob : 11994 a.Low->getValue().slt(b.Low->getValue()); 11995 }); 11996 11997 // Rearrange the case blocks so that the last one falls through if possible 11998 // without changing the order of probabilities. 11999 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12000 --I; 12001 if (I->Prob > W.LastCluster->Prob) 12002 break; 12003 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12004 std::swap(*I, *W.LastCluster); 12005 break; 12006 } 12007 } 12008 } 12009 12010 // Compute total probability. 12011 BranchProbability DefaultProb = W.DefaultProb; 12012 BranchProbability UnhandledProbs = DefaultProb; 12013 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12014 UnhandledProbs += I->Prob; 12015 12016 MachineBasicBlock *CurMBB = W.MBB; 12017 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12018 bool FallthroughUnreachable = false; 12019 MachineBasicBlock *Fallthrough; 12020 if (I == W.LastCluster) { 12021 // For the last cluster, fall through to the default destination. 12022 Fallthrough = DefaultMBB; 12023 FallthroughUnreachable = isa<UnreachableInst>( 12024 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12025 } else { 12026 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12027 CurMF->insert(BBI, Fallthrough); 12028 // Put Cond in a virtual register to make it available from the new blocks. 12029 ExportFromCurrentBlock(Cond); 12030 } 12031 UnhandledProbs -= I->Prob; 12032 12033 switch (I->Kind) { 12034 case CC_JumpTable: { 12035 // FIXME: Optimize away range check based on pivot comparisons. 12036 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12037 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12038 12039 // The jump block hasn't been inserted yet; insert it here. 12040 MachineBasicBlock *JumpMBB = JT->MBB; 12041 CurMF->insert(BBI, JumpMBB); 12042 12043 auto JumpProb = I->Prob; 12044 auto FallthroughProb = UnhandledProbs; 12045 12046 // If the default statement is a target of the jump table, we evenly 12047 // distribute the default probability to successors of CurMBB. Also 12048 // update the probability on the edge from JumpMBB to Fallthrough. 12049 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12050 SE = JumpMBB->succ_end(); 12051 SI != SE; ++SI) { 12052 if (*SI == DefaultMBB) { 12053 JumpProb += DefaultProb / 2; 12054 FallthroughProb -= DefaultProb / 2; 12055 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12056 JumpMBB->normalizeSuccProbs(); 12057 break; 12058 } 12059 } 12060 12061 // If the default clause is unreachable, propagate that knowledge into 12062 // JTH->FallthroughUnreachable which will use it to suppress the range 12063 // check. 12064 // 12065 // However, don't do this if we're doing branch target enforcement, 12066 // because a table branch _without_ a range check can be a tempting JOP 12067 // gadget - out-of-bounds inputs that are impossible in correct 12068 // execution become possible again if an attacker can influence the 12069 // control flow. So if an attacker doesn't already have a BTI bypass 12070 // available, we don't want them to be able to get one out of this 12071 // table branch. 12072 if (FallthroughUnreachable) { 12073 Function &CurFunc = CurMF->getFunction(); 12074 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12075 JTH->FallthroughUnreachable = true; 12076 } 12077 12078 if (!JTH->FallthroughUnreachable) 12079 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12080 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12081 CurMBB->normalizeSuccProbs(); 12082 12083 // The jump table header will be inserted in our current block, do the 12084 // range check, and fall through to our fallthrough block. 12085 JTH->HeaderBB = CurMBB; 12086 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12087 12088 // If we're in the right place, emit the jump table header right now. 12089 if (CurMBB == SwitchMBB) { 12090 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12091 JTH->Emitted = true; 12092 } 12093 break; 12094 } 12095 case CC_BitTests: { 12096 // FIXME: Optimize away range check based on pivot comparisons. 12097 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12098 12099 // The bit test blocks haven't been inserted yet; insert them here. 12100 for (BitTestCase &BTC : BTB->Cases) 12101 CurMF->insert(BBI, BTC.ThisBB); 12102 12103 // Fill in fields of the BitTestBlock. 12104 BTB->Parent = CurMBB; 12105 BTB->Default = Fallthrough; 12106 12107 BTB->DefaultProb = UnhandledProbs; 12108 // If the cases in bit test don't form a contiguous range, we evenly 12109 // distribute the probability on the edge to Fallthrough to two 12110 // successors of CurMBB. 12111 if (!BTB->ContiguousRange) { 12112 BTB->Prob += DefaultProb / 2; 12113 BTB->DefaultProb -= DefaultProb / 2; 12114 } 12115 12116 if (FallthroughUnreachable) 12117 BTB->FallthroughUnreachable = true; 12118 12119 // If we're in the right place, emit the bit test header right now. 12120 if (CurMBB == SwitchMBB) { 12121 visitBitTestHeader(*BTB, SwitchMBB); 12122 BTB->Emitted = true; 12123 } 12124 break; 12125 } 12126 case CC_Range: { 12127 const Value *RHS, *LHS, *MHS; 12128 ISD::CondCode CC; 12129 if (I->Low == I->High) { 12130 // Check Cond == I->Low. 12131 CC = ISD::SETEQ; 12132 LHS = Cond; 12133 RHS=I->Low; 12134 MHS = nullptr; 12135 } else { 12136 // Check I->Low <= Cond <= I->High. 12137 CC = ISD::SETLE; 12138 LHS = I->Low; 12139 MHS = Cond; 12140 RHS = I->High; 12141 } 12142 12143 // If Fallthrough is unreachable, fold away the comparison. 12144 if (FallthroughUnreachable) 12145 CC = ISD::SETTRUE; 12146 12147 // The false probability is the sum of all unhandled cases. 12148 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12149 getCurSDLoc(), I->Prob, UnhandledProbs); 12150 12151 if (CurMBB == SwitchMBB) 12152 visitSwitchCase(CB, SwitchMBB); 12153 else 12154 SL->SwitchCases.push_back(CB); 12155 12156 break; 12157 } 12158 } 12159 CurMBB = Fallthrough; 12160 } 12161 } 12162 12163 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12164 const SwitchWorkListItem &W, 12165 Value *Cond, 12166 MachineBasicBlock *SwitchMBB) { 12167 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12168 "Clusters not sorted?"); 12169 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12170 12171 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12172 SL->computeSplitWorkItemInfo(W); 12173 12174 // Use the first element on the right as pivot since we will make less-than 12175 // comparisons against it. 12176 CaseClusterIt PivotCluster = FirstRight; 12177 assert(PivotCluster > W.FirstCluster); 12178 assert(PivotCluster <= W.LastCluster); 12179 12180 CaseClusterIt FirstLeft = W.FirstCluster; 12181 CaseClusterIt LastRight = W.LastCluster; 12182 12183 const ConstantInt *Pivot = PivotCluster->Low; 12184 12185 // New blocks will be inserted immediately after the current one. 12186 MachineFunction::iterator BBI(W.MBB); 12187 ++BBI; 12188 12189 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12190 // we can branch to its destination directly if it's squeezed exactly in 12191 // between the known lower bound and Pivot - 1. 12192 MachineBasicBlock *LeftMBB; 12193 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12194 FirstLeft->Low == W.GE && 12195 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12196 LeftMBB = FirstLeft->MBB; 12197 } else { 12198 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12199 FuncInfo.MF->insert(BBI, LeftMBB); 12200 WorkList.push_back( 12201 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12202 // Put Cond in a virtual register to make it available from the new blocks. 12203 ExportFromCurrentBlock(Cond); 12204 } 12205 12206 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12207 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12208 // directly if RHS.High equals the current upper bound. 12209 MachineBasicBlock *RightMBB; 12210 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12211 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12212 RightMBB = FirstRight->MBB; 12213 } else { 12214 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12215 FuncInfo.MF->insert(BBI, RightMBB); 12216 WorkList.push_back( 12217 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12218 // Put Cond in a virtual register to make it available from the new blocks. 12219 ExportFromCurrentBlock(Cond); 12220 } 12221 12222 // Create the CaseBlock record that will be used to lower the branch. 12223 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12224 getCurSDLoc(), LeftProb, RightProb); 12225 12226 if (W.MBB == SwitchMBB) 12227 visitSwitchCase(CB, SwitchMBB); 12228 else 12229 SL->SwitchCases.push_back(CB); 12230 } 12231 12232 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12233 // from the swith statement. 12234 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12235 BranchProbability PeeledCaseProb) { 12236 if (PeeledCaseProb == BranchProbability::getOne()) 12237 return BranchProbability::getZero(); 12238 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12239 12240 uint32_t Numerator = CaseProb.getNumerator(); 12241 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12242 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12243 } 12244 12245 // Try to peel the top probability case if it exceeds the threshold. 12246 // Return current MachineBasicBlock for the switch statement if the peeling 12247 // does not occur. 12248 // If the peeling is performed, return the newly created MachineBasicBlock 12249 // for the peeled switch statement. Also update Clusters to remove the peeled 12250 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12251 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12252 const SwitchInst &SI, CaseClusterVector &Clusters, 12253 BranchProbability &PeeledCaseProb) { 12254 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12255 // Don't perform if there is only one cluster or optimizing for size. 12256 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12257 TM.getOptLevel() == CodeGenOptLevel::None || 12258 SwitchMBB->getParent()->getFunction().hasMinSize()) 12259 return SwitchMBB; 12260 12261 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12262 unsigned PeeledCaseIndex = 0; 12263 bool SwitchPeeled = false; 12264 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12265 CaseCluster &CC = Clusters[Index]; 12266 if (CC.Prob < TopCaseProb) 12267 continue; 12268 TopCaseProb = CC.Prob; 12269 PeeledCaseIndex = Index; 12270 SwitchPeeled = true; 12271 } 12272 if (!SwitchPeeled) 12273 return SwitchMBB; 12274 12275 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12276 << TopCaseProb << "\n"); 12277 12278 // Record the MBB for the peeled switch statement. 12279 MachineFunction::iterator BBI(SwitchMBB); 12280 ++BBI; 12281 MachineBasicBlock *PeeledSwitchMBB = 12282 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12283 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12284 12285 ExportFromCurrentBlock(SI.getCondition()); 12286 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12287 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12288 nullptr, nullptr, TopCaseProb.getCompl()}; 12289 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12290 12291 Clusters.erase(PeeledCaseIt); 12292 for (CaseCluster &CC : Clusters) { 12293 LLVM_DEBUG( 12294 dbgs() << "Scale the probablity for one cluster, before scaling: " 12295 << CC.Prob << "\n"); 12296 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12297 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12298 } 12299 PeeledCaseProb = TopCaseProb; 12300 return PeeledSwitchMBB; 12301 } 12302 12303 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12304 // Extract cases from the switch. 12305 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12306 CaseClusterVector Clusters; 12307 Clusters.reserve(SI.getNumCases()); 12308 for (auto I : SI.cases()) { 12309 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12310 const ConstantInt *CaseVal = I.getCaseValue(); 12311 BranchProbability Prob = 12312 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12313 : BranchProbability(1, SI.getNumCases() + 1); 12314 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12315 } 12316 12317 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12318 12319 // Cluster adjacent cases with the same destination. We do this at all 12320 // optimization levels because it's cheap to do and will make codegen faster 12321 // if there are many clusters. 12322 sortAndRangeify(Clusters); 12323 12324 // The branch probablity of the peeled case. 12325 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12326 MachineBasicBlock *PeeledSwitchMBB = 12327 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12328 12329 // If there is only the default destination, jump there directly. 12330 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12331 if (Clusters.empty()) { 12332 assert(PeeledSwitchMBB == SwitchMBB); 12333 SwitchMBB->addSuccessor(DefaultMBB); 12334 if (DefaultMBB != NextBlock(SwitchMBB)) { 12335 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12336 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12337 } 12338 return; 12339 } 12340 12341 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12342 DAG.getBFI()); 12343 SL->findBitTestClusters(Clusters, &SI); 12344 12345 LLVM_DEBUG({ 12346 dbgs() << "Case clusters: "; 12347 for (const CaseCluster &C : Clusters) { 12348 if (C.Kind == CC_JumpTable) 12349 dbgs() << "JT:"; 12350 if (C.Kind == CC_BitTests) 12351 dbgs() << "BT:"; 12352 12353 C.Low->getValue().print(dbgs(), true); 12354 if (C.Low != C.High) { 12355 dbgs() << '-'; 12356 C.High->getValue().print(dbgs(), true); 12357 } 12358 dbgs() << ' '; 12359 } 12360 dbgs() << '\n'; 12361 }); 12362 12363 assert(!Clusters.empty()); 12364 SwitchWorkList WorkList; 12365 CaseClusterIt First = Clusters.begin(); 12366 CaseClusterIt Last = Clusters.end() - 1; 12367 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12368 // Scale the branchprobability for DefaultMBB if the peel occurs and 12369 // DefaultMBB is not replaced. 12370 if (PeeledCaseProb != BranchProbability::getZero() && 12371 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12372 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12373 WorkList.push_back( 12374 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12375 12376 while (!WorkList.empty()) { 12377 SwitchWorkListItem W = WorkList.pop_back_val(); 12378 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12379 12380 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12381 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12382 // For optimized builds, lower large range as a balanced binary tree. 12383 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12384 continue; 12385 } 12386 12387 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12388 } 12389 } 12390 12391 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12393 auto DL = getCurSDLoc(); 12394 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12395 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12396 } 12397 12398 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12400 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12401 12402 SDLoc DL = getCurSDLoc(); 12403 SDValue V = getValue(I.getOperand(0)); 12404 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12405 12406 if (VT.isScalableVector()) { 12407 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12408 return; 12409 } 12410 12411 // Use VECTOR_SHUFFLE for the fixed-length vector 12412 // to maintain existing behavior. 12413 SmallVector<int, 8> Mask; 12414 unsigned NumElts = VT.getVectorMinNumElements(); 12415 for (unsigned i = 0; i != NumElts; ++i) 12416 Mask.push_back(NumElts - 1 - i); 12417 12418 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12419 } 12420 12421 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12422 auto DL = getCurSDLoc(); 12423 SDValue InVec = getValue(I.getOperand(0)); 12424 EVT OutVT = 12425 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12426 12427 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12428 12429 // ISD Node needs the input vectors split into two equal parts 12430 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12431 DAG.getVectorIdxConstant(0, DL)); 12432 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12433 DAG.getVectorIdxConstant(OutNumElts, DL)); 12434 12435 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12436 // legalisation and combines. 12437 if (OutVT.isFixedLengthVector()) { 12438 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12439 createStrideMask(0, 2, OutNumElts)); 12440 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12441 createStrideMask(1, 2, OutNumElts)); 12442 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12443 setValue(&I, Res); 12444 return; 12445 } 12446 12447 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12448 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12449 setValue(&I, Res); 12450 } 12451 12452 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12453 auto DL = getCurSDLoc(); 12454 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12455 SDValue InVec0 = getValue(I.getOperand(0)); 12456 SDValue InVec1 = getValue(I.getOperand(1)); 12457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12458 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12459 12460 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12461 // legalisation and combines. 12462 if (OutVT.isFixedLengthVector()) { 12463 unsigned NumElts = InVT.getVectorMinNumElements(); 12464 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12465 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12466 createInterleaveMask(NumElts, 2))); 12467 return; 12468 } 12469 12470 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12471 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12472 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12473 Res.getValue(1)); 12474 setValue(&I, Res); 12475 } 12476 12477 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12478 SmallVector<EVT, 4> ValueVTs; 12479 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12480 ValueVTs); 12481 unsigned NumValues = ValueVTs.size(); 12482 if (NumValues == 0) return; 12483 12484 SmallVector<SDValue, 4> Values(NumValues); 12485 SDValue Op = getValue(I.getOperand(0)); 12486 12487 for (unsigned i = 0; i != NumValues; ++i) 12488 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12489 SDValue(Op.getNode(), Op.getResNo() + i)); 12490 12491 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12492 DAG.getVTList(ValueVTs), Values)); 12493 } 12494 12495 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12497 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12498 12499 SDLoc DL = getCurSDLoc(); 12500 SDValue V1 = getValue(I.getOperand(0)); 12501 SDValue V2 = getValue(I.getOperand(1)); 12502 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12503 12504 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12505 if (VT.isScalableVector()) { 12506 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12507 DAG.getVectorIdxConstant(Imm, DL))); 12508 return; 12509 } 12510 12511 unsigned NumElts = VT.getVectorNumElements(); 12512 12513 uint64_t Idx = (NumElts + Imm) % NumElts; 12514 12515 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12516 SmallVector<int, 8> Mask; 12517 for (unsigned i = 0; i < NumElts; ++i) 12518 Mask.push_back(Idx + i); 12519 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12520 } 12521 12522 // Consider the following MIR after SelectionDAG, which produces output in 12523 // phyregs in the first case or virtregs in the second case. 12524 // 12525 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12526 // %5:gr32 = COPY $ebx 12527 // %6:gr32 = COPY $edx 12528 // %1:gr32 = COPY %6:gr32 12529 // %0:gr32 = COPY %5:gr32 12530 // 12531 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12532 // %1:gr32 = COPY %6:gr32 12533 // %0:gr32 = COPY %5:gr32 12534 // 12535 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12536 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12537 // 12538 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12539 // to a single virtreg (such as %0). The remaining outputs monotonically 12540 // increase in virtreg number from there. If a callbr has no outputs, then it 12541 // should not have a corresponding callbr landingpad; in fact, the callbr 12542 // landingpad would not even be able to refer to such a callbr. 12543 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12544 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12545 // There is definitely at least one copy. 12546 assert(MI->getOpcode() == TargetOpcode::COPY && 12547 "start of copy chain MUST be COPY"); 12548 Reg = MI->getOperand(1).getReg(); 12549 MI = MRI.def_begin(Reg)->getParent(); 12550 // There may be an optional second copy. 12551 if (MI->getOpcode() == TargetOpcode::COPY) { 12552 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12553 Reg = MI->getOperand(1).getReg(); 12554 assert(Reg.isPhysical() && "expected COPY of physical register"); 12555 MI = MRI.def_begin(Reg)->getParent(); 12556 } 12557 // The start of the chain must be an INLINEASM_BR. 12558 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12559 "end of copy chain MUST be INLINEASM_BR"); 12560 return Reg; 12561 } 12562 12563 // We must do this walk rather than the simpler 12564 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12565 // otherwise we will end up with copies of virtregs only valid along direct 12566 // edges. 12567 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12568 SmallVector<EVT, 8> ResultVTs; 12569 SmallVector<SDValue, 8> ResultValues; 12570 const auto *CBR = 12571 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12572 12573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12574 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12575 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12576 12577 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12578 SDValue Chain = DAG.getRoot(); 12579 12580 // Re-parse the asm constraints string. 12581 TargetLowering::AsmOperandInfoVector TargetConstraints = 12582 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12583 for (auto &T : TargetConstraints) { 12584 SDISelAsmOperandInfo OpInfo(T); 12585 if (OpInfo.Type != InlineAsm::isOutput) 12586 continue; 12587 12588 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12589 // individual constraint. 12590 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12591 12592 switch (OpInfo.ConstraintType) { 12593 case TargetLowering::C_Register: 12594 case TargetLowering::C_RegisterClass: { 12595 // Fill in OpInfo.AssignedRegs.Regs. 12596 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12597 12598 // getRegistersForValue may produce 1 to many registers based on whether 12599 // the OpInfo.ConstraintVT is legal on the target or not. 12600 for (unsigned &Reg : OpInfo.AssignedRegs.Regs) { 12601 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12602 if (Register::isPhysicalRegister(OriginalDef)) 12603 FuncInfo.MBB->addLiveIn(OriginalDef); 12604 // Update the assigned registers to use the original defs. 12605 Reg = OriginalDef; 12606 } 12607 12608 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12609 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12610 ResultValues.push_back(V); 12611 ResultVTs.push_back(OpInfo.ConstraintVT); 12612 break; 12613 } 12614 case TargetLowering::C_Other: { 12615 SDValue Flag; 12616 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12617 OpInfo, DAG); 12618 ++InitialDef; 12619 ResultValues.push_back(V); 12620 ResultVTs.push_back(OpInfo.ConstraintVT); 12621 break; 12622 } 12623 default: 12624 break; 12625 } 12626 } 12627 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12628 DAG.getVTList(ResultVTs), ResultValues); 12629 setValue(&I, V); 12630 } 12631