1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 442 DAG.getVectorIdxConstant(0, DL)); 443 } 444 445 // Vector/Vector bitcast. 446 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 450 "Cannot handle this kind of promotion"); 451 // Promoted vector extract 452 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 453 454 } 455 456 // Trivial bitcast if the types are the same size and the destination 457 // vector type is legal. 458 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 459 TLI.isTypeLegal(ValueVT)) 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 462 if (ValueVT.getVectorNumElements() != 1) { 463 // Certain ABIs require that vectors are passed as integers. For vectors 464 // are the same size, this is an obvious bitcast. 465 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 466 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 467 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 468 // Bitcast Val back the original type and extract the corresponding 469 // vector we want. 470 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 471 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 472 ValueVT.getVectorElementType(), Elts); 473 Val = DAG.getBitcast(WiderVecType, Val); 474 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 475 DAG.getVectorIdxConstant(0, DL)); 476 } 477 478 diagnosePossiblyInvalidConstraint( 479 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 480 return DAG.getUNDEF(ValueVT); 481 } 482 483 // Handle cases such as i8 -> <1 x i1> 484 EVT ValueSVT = ValueVT.getVectorElementType(); 485 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 486 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 487 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 488 else 489 Val = ValueVT.isFloatingPoint() 490 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 491 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 Optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 506 SDValue *Parts, unsigned NumParts, MVT PartVT, 507 const Value *V, 508 Optional<CallingConv::ID> CallConv = None, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 EVT ValueVT = Val.getValueType(); 511 512 // Handle the vector case separately. 513 if (ValueVT.isVector()) 514 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 515 CallConv); 516 517 unsigned PartBits = PartVT.getSizeInBits(); 518 unsigned OrigNumParts = NumParts; 519 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 520 "Copying to an illegal type!"); 521 522 if (NumParts == 0) 523 return; 524 525 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 526 EVT PartEVT = PartVT; 527 if (PartEVT == ValueVT) { 528 assert(NumParts == 1 && "No-op copy with multiple parts!"); 529 Parts[0] = Val; 530 return; 531 } 532 533 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 534 // If the parts cover more bits than the value has, promote the value. 535 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 536 assert(NumParts == 1 && "Do not know what to promote to!"); 537 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 538 } else { 539 if (ValueVT.isFloatingPoint()) { 540 // FP values need to be bitcast, then extended if they are being put 541 // into a larger container. 542 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 543 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 544 } 545 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 546 ValueVT.isInteger() && 547 "Unknown mismatch!"); 548 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 549 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 550 if (PartVT == MVT::x86mmx) 551 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 552 } 553 } else if (PartBits == ValueVT.getSizeInBits()) { 554 // Different types of the same size. 555 assert(NumParts == 1 && PartEVT != ValueVT); 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 558 // If the parts cover less bits than value has, truncate the value. 559 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 560 ValueVT.isInteger() && 561 "Unknown mismatch!"); 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 563 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 564 if (PartVT == MVT::x86mmx) 565 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 566 } 567 568 // The value may have changed - recompute ValueVT. 569 ValueVT = Val.getValueType(); 570 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 571 "Failed to tile the value with PartVT!"); 572 573 if (NumParts == 1) { 574 if (PartEVT != ValueVT) { 575 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 576 "scalar-to-vector conversion failed"); 577 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 578 } 579 580 Parts[0] = Val; 581 return; 582 } 583 584 // Expand the value into multiple parts. 585 if (NumParts & (NumParts - 1)) { 586 // The number of parts is not a power of 2. Split off and copy the tail. 587 assert(PartVT.isInteger() && ValueVT.isInteger() && 588 "Do not know what to expand to!"); 589 unsigned RoundParts = 1 << Log2_32(NumParts); 590 unsigned RoundBits = RoundParts * PartBits; 591 unsigned OddParts = NumParts - RoundParts; 592 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 593 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 594 595 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 596 CallConv); 597 598 if (DAG.getDataLayout().isBigEndian()) 599 // The odd parts were reversed by getCopyToParts - unreverse them. 600 std::reverse(Parts + RoundParts, Parts + NumParts); 601 602 NumParts = RoundParts; 603 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 604 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 605 } 606 607 // The number of parts is a power of 2. Repeatedly bisect the value using 608 // EXTRACT_ELEMENT. 609 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 610 EVT::getIntegerVT(*DAG.getContext(), 611 ValueVT.getSizeInBits()), 612 Val); 613 614 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 615 for (unsigned i = 0; i < NumParts; i += StepSize) { 616 unsigned ThisBits = StepSize * PartBits / 2; 617 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 618 SDValue &Part0 = Parts[i]; 619 SDValue &Part1 = Parts[i+StepSize/2]; 620 621 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 622 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 623 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 625 626 if (ThisBits == PartBits && ThisVT != PartVT) { 627 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 628 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 629 } 630 } 631 } 632 633 if (DAG.getDataLayout().isBigEndian()) 634 std::reverse(Parts, Parts + OrigNumParts); 635 } 636 637 static SDValue widenVectorToPartType(SelectionDAG &DAG, 638 SDValue Val, const SDLoc &DL, EVT PartVT) { 639 if (!PartVT.isVector()) 640 return SDValue(); 641 642 EVT ValueVT = Val.getValueType(); 643 unsigned PartNumElts = PartVT.getVectorNumElements(); 644 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 645 if (PartNumElts > ValueNumElts && 646 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 647 EVT ElementVT = PartVT.getVectorElementType(); 648 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 649 // undef elements. 650 SmallVector<SDValue, 16> Ops; 651 DAG.ExtractVectorElements(Val, Ops); 652 SDValue EltUndef = DAG.getUNDEF(ElementVT); 653 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 654 Ops.push_back(EltUndef); 655 656 // FIXME: Use CONCAT for 2x -> 4x. 657 return DAG.getBuildVector(PartVT, DL, Ops); 658 } 659 660 return SDValue(); 661 } 662 663 /// getCopyToPartsVector - Create a series of nodes that contain the specified 664 /// value split into legal parts. 665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 666 SDValue Val, SDValue *Parts, unsigned NumParts, 667 MVT PartVT, const Value *V, 668 Optional<CallingConv::ID> CallConv) { 669 EVT ValueVT = Val.getValueType(); 670 assert(ValueVT.isVector() && "Not a vector"); 671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 672 const bool IsABIRegCopy = CallConv.hasValue(); 673 674 if (NumParts == 1) { 675 EVT PartEVT = PartVT; 676 if (PartEVT == ValueVT) { 677 // Nothing to do. 678 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 679 // Bitconvert vector->vector case. 680 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 681 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 682 Val = Widened; 683 } else if (PartVT.isVector() && 684 PartEVT.getVectorElementType().bitsGE( 685 ValueVT.getVectorElementType()) && 686 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 687 688 // Promoted vector extract 689 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 690 } else { 691 if (ValueVT.getVectorNumElements() == 1) { 692 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 693 DAG.getVectorIdxConstant(0, DL)); 694 } else { 695 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 696 "lossy conversion of vector to scalar type"); 697 EVT IntermediateType = 698 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 699 Val = DAG.getBitcast(IntermediateType, Val); 700 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 701 } 702 } 703 704 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 705 Parts[0] = Val; 706 return; 707 } 708 709 // Handle a multi-element vector. 710 EVT IntermediateVT; 711 MVT RegisterVT; 712 unsigned NumIntermediates; 713 unsigned NumRegs; 714 if (IsABIRegCopy) { 715 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 716 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 717 NumIntermediates, RegisterVT); 718 } else { 719 NumRegs = 720 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 721 NumIntermediates, RegisterVT); 722 } 723 724 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 725 NumParts = NumRegs; // Silence a compiler warning. 726 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 727 728 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 729 IntermediateVT.getVectorNumElements() : 1; 730 731 // Convert the vector to the appropriate type if necessary. 732 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 733 734 EVT BuiltVectorTy = EVT::getVectorVT( 735 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 736 if (ValueVT != BuiltVectorTy) { 737 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 738 Val = Widened; 739 740 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 741 } 742 743 // Split the vector into intermediate operands. 744 SmallVector<SDValue, 8> Ops(NumIntermediates); 745 for (unsigned i = 0; i != NumIntermediates; ++i) { 746 if (IntermediateVT.isVector()) { 747 Ops[i] = 748 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 749 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 750 } else { 751 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 752 DAG.getVectorIdxConstant(i, DL)); 753 } 754 } 755 756 // Split the intermediate operands into legal parts. 757 if (NumParts == NumIntermediates) { 758 // If the register was not expanded, promote or copy the value, 759 // as appropriate. 760 for (unsigned i = 0; i != NumParts; ++i) 761 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 762 } else if (NumParts > 0) { 763 // If the intermediate type was expanded, split each the value into 764 // legal parts. 765 assert(NumIntermediates != 0 && "division by zero"); 766 assert(NumParts % NumIntermediates == 0 && 767 "Must expand into a divisible number of parts!"); 768 unsigned Factor = NumParts / NumIntermediates; 769 for (unsigned i = 0; i != NumIntermediates; ++i) 770 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 771 CallConv); 772 } 773 } 774 775 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 776 EVT valuevt, Optional<CallingConv::ID> CC) 777 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 778 RegCount(1, regs.size()), CallConv(CC) {} 779 780 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 781 const DataLayout &DL, unsigned Reg, Type *Ty, 782 Optional<CallingConv::ID> CC) { 783 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 784 785 CallConv = CC; 786 787 for (EVT ValueVT : ValueVTs) { 788 unsigned NumRegs = 789 isABIMangled() 790 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 791 : TLI.getNumRegisters(Context, ValueVT); 792 MVT RegisterVT = 793 isABIMangled() 794 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 795 : TLI.getRegisterType(Context, ValueVT); 796 for (unsigned i = 0; i != NumRegs; ++i) 797 Regs.push_back(Reg + i); 798 RegVTs.push_back(RegisterVT); 799 RegCount.push_back(NumRegs); 800 Reg += NumRegs; 801 } 802 } 803 804 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 805 FunctionLoweringInfo &FuncInfo, 806 const SDLoc &dl, SDValue &Chain, 807 SDValue *Flag, const Value *V) const { 808 // A Value with type {} or [0 x %t] needs no registers. 809 if (ValueVTs.empty()) 810 return SDValue(); 811 812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 813 814 // Assemble the legal parts into the final values. 815 SmallVector<SDValue, 4> Values(ValueVTs.size()); 816 SmallVector<SDValue, 8> Parts; 817 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 818 // Copy the legal parts from the registers. 819 EVT ValueVT = ValueVTs[Value]; 820 unsigned NumRegs = RegCount[Value]; 821 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 822 *DAG.getContext(), 823 CallConv.getValue(), RegVTs[Value]) 824 : RegVTs[Value]; 825 826 Parts.resize(NumRegs); 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 SDValue P; 829 if (!Flag) { 830 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 831 } else { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 833 *Flag = P.getValue(2); 834 } 835 836 Chain = P.getValue(1); 837 Parts[i] = P; 838 839 // If the source register was virtual and if we know something about it, 840 // add an assert node. 841 if (!Register::isVirtualRegister(Regs[Part + i]) || 842 !RegisterVT.isInteger()) 843 continue; 844 845 const FunctionLoweringInfo::LiveOutInfo *LOI = 846 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 847 if (!LOI) 848 continue; 849 850 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 851 unsigned NumSignBits = LOI->NumSignBits; 852 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 853 854 if (NumZeroBits == RegSize) { 855 // The current value is a zero. 856 // Explicitly express that as it would be easier for 857 // optimizations to kick in. 858 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 859 continue; 860 } 861 862 // FIXME: We capture more information than the dag can represent. For 863 // now, just use the tightest assertzext/assertsext possible. 864 bool isSExt; 865 EVT FromVT(MVT::Other); 866 if (NumZeroBits) { 867 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 868 isSExt = false; 869 } else if (NumSignBits > 1) { 870 FromVT = 871 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 872 isSExt = true; 873 } else { 874 continue; 875 } 876 // Add an assertion node. 877 assert(FromVT != MVT::Other); 878 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 879 RegisterVT, P, DAG.getValueType(FromVT)); 880 } 881 882 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 883 RegisterVT, ValueVT, V, CallConv); 884 Part += NumRegs; 885 Parts.clear(); 886 } 887 888 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 889 } 890 891 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 892 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 893 const Value *V, 894 ISD::NodeType PreferredExtendType) const { 895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 896 ISD::NodeType ExtendKind = PreferredExtendType; 897 898 // Get the list of the values's legal parts. 899 unsigned NumRegs = Regs.size(); 900 SmallVector<SDValue, 8> Parts(NumRegs); 901 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 902 unsigned NumParts = RegCount[Value]; 903 904 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 905 *DAG.getContext(), 906 CallConv.getValue(), RegVTs[Value]) 907 : RegVTs[Value]; 908 909 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 910 ExtendKind = ISD::ZERO_EXTEND; 911 912 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 913 NumParts, RegisterVT, V, CallConv, ExtendKind); 914 Part += NumParts; 915 } 916 917 // Copy the parts into the registers. 918 SmallVector<SDValue, 8> Chains(NumRegs); 919 for (unsigned i = 0; i != NumRegs; ++i) { 920 SDValue Part; 921 if (!Flag) { 922 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 923 } else { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 925 *Flag = Part.getValue(1); 926 } 927 928 Chains[i] = Part.getValue(0); 929 } 930 931 if (NumRegs == 1 || Flag) 932 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 933 // flagged to it. That is the CopyToReg nodes and the user are considered 934 // a single scheduling unit. If we create a TokenFactor and return it as 935 // chain, then the TokenFactor is both a predecessor (operand) of the 936 // user as well as a successor (the TF operands are flagged to the user). 937 // c1, f1 = CopyToReg 938 // c2, f2 = CopyToReg 939 // c3 = TokenFactor c1, c2 940 // ... 941 // = op c3, ..., f2 942 Chain = Chains[NumRegs-1]; 943 else 944 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 945 } 946 947 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 948 unsigned MatchingIdx, const SDLoc &dl, 949 SelectionDAG &DAG, 950 std::vector<SDValue> &Ops) const { 951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 952 953 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 954 if (HasMatching) 955 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 956 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 957 // Put the register class of the virtual registers in the flag word. That 958 // way, later passes can recompute register class constraints for inline 959 // assembly as well as normal instructions. 960 // Don't do this for tied operands that can use the regclass information 961 // from the def. 962 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 963 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 964 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 965 } 966 967 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 968 Ops.push_back(Res); 969 970 if (Code == InlineAsm::Kind_Clobber) { 971 // Clobbers should always have a 1:1 mapping with registers, and may 972 // reference registers that have illegal (e.g. vector) types. Hence, we 973 // shouldn't try to apply any sort of splitting logic to them. 974 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 975 "No 1:1 mapping from clobbers to regs?"); 976 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 977 (void)SP; 978 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 979 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 980 assert( 981 (Regs[I] != SP || 982 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 983 "If we clobbered the stack pointer, MFI should know about it."); 984 } 985 return; 986 } 987 988 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 989 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 990 MVT RegisterVT = RegVTs[Value]; 991 for (unsigned i = 0; i != NumRegs; ++i) { 992 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 993 unsigned TheReg = Regs[Reg++]; 994 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 995 } 996 } 997 } 998 999 SmallVector<std::pair<unsigned, unsigned>, 4> 1000 RegsForValue::getRegsAndSizes() const { 1001 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1002 unsigned I = 0; 1003 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1004 unsigned RegCount = std::get<0>(CountAndVT); 1005 MVT RegisterVT = std::get<1>(CountAndVT); 1006 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1007 for (unsigned E = I + RegCount; I != E; ++I) 1008 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1009 } 1010 return OutVec; 1011 } 1012 1013 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1014 const TargetLibraryInfo *li) { 1015 AA = aa; 1016 GFI = gfi; 1017 LibInfo = li; 1018 DL = &DAG.getDataLayout(); 1019 Context = DAG.getContext(); 1020 LPadToCallSiteMap.clear(); 1021 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1022 } 1023 1024 void SelectionDAGBuilder::clear() { 1025 NodeMap.clear(); 1026 UnusedArgNodeMap.clear(); 1027 PendingLoads.clear(); 1028 PendingExports.clear(); 1029 PendingConstrainedFP.clear(); 1030 PendingConstrainedFPStrict.clear(); 1031 CurInst = nullptr; 1032 HasTailCall = false; 1033 SDNodeOrder = LowestSDNodeOrder; 1034 StatepointLowering.clear(); 1035 } 1036 1037 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1038 DanglingDebugInfoMap.clear(); 1039 } 1040 1041 // Update DAG root to include dependencies on Pending chains. 1042 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (Pending.empty()) 1046 return Root; 1047 1048 // Add current root to PendingChains, unless we already indirectly 1049 // depend on it. 1050 if (Root.getOpcode() != ISD::EntryToken) { 1051 unsigned i = 0, e = Pending.size(); 1052 for (; i != e; ++i) { 1053 assert(Pending[i].getNode()->getNumOperands() > 1); 1054 if (Pending[i].getNode()->getOperand(0) == Root) 1055 break; // Don't add the root if we already indirectly depend on it. 1056 } 1057 1058 if (i == e) 1059 Pending.push_back(Root); 1060 } 1061 1062 if (Pending.size() == 1) 1063 Root = Pending[0]; 1064 else 1065 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1066 1067 DAG.setRoot(Root); 1068 Pending.clear(); 1069 return Root; 1070 } 1071 1072 SDValue SelectionDAGBuilder::getMemoryRoot() { 1073 return updateRoot(PendingLoads); 1074 } 1075 1076 SDValue SelectionDAGBuilder::getRoot() { 1077 // Chain up all pending constrained intrinsics together with all 1078 // pending loads, by simply appending them to PendingLoads and 1079 // then calling getMemoryRoot(). 1080 PendingLoads.reserve(PendingLoads.size() + 1081 PendingConstrainedFP.size() + 1082 PendingConstrainedFPStrict.size()); 1083 PendingLoads.append(PendingConstrainedFP.begin(), 1084 PendingConstrainedFP.end()); 1085 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1086 PendingConstrainedFPStrict.end()); 1087 PendingConstrainedFP.clear(); 1088 PendingConstrainedFPStrict.clear(); 1089 return getMemoryRoot(); 1090 } 1091 1092 SDValue SelectionDAGBuilder::getControlRoot() { 1093 // We need to emit pending fpexcept.strict constrained intrinsics, 1094 // so append them to the PendingExports list. 1095 PendingExports.append(PendingConstrainedFPStrict.begin(), 1096 PendingConstrainedFPStrict.end()); 1097 PendingConstrainedFPStrict.clear(); 1098 return updateRoot(PendingExports); 1099 } 1100 1101 void SelectionDAGBuilder::visit(const Instruction &I) { 1102 // Set up outgoing PHI node register values before emitting the terminator. 1103 if (I.isTerminator()) { 1104 HandlePHINodesInSuccessorBlocks(I.getParent()); 1105 } 1106 1107 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1108 if (!isa<DbgInfoIntrinsic>(I)) 1109 ++SDNodeOrder; 1110 1111 CurInst = &I; 1112 1113 visit(I.getOpcode(), I); 1114 1115 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1116 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1117 // maps to this instruction. 1118 // TODO: We could handle all flags (nsw, etc) here. 1119 // TODO: If an IR instruction maps to >1 node, only the final node will have 1120 // flags set. 1121 if (SDNode *Node = getNodeForIRValue(&I)) { 1122 SDNodeFlags IncomingFlags; 1123 IncomingFlags.copyFMF(*FPMO); 1124 if (!Node->getFlags().isDefined()) 1125 Node->setFlags(IncomingFlags); 1126 else 1127 Node->intersectFlagsWith(IncomingFlags); 1128 } 1129 } 1130 // Constrained FP intrinsics with fpexcept.ignore should also get 1131 // the NoFPExcept flag. 1132 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1133 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1134 if (SDNode *Node = getNodeForIRValue(&I)) { 1135 SDNodeFlags Flags = Node->getFlags(); 1136 Flags.setNoFPExcept(true); 1137 Node->setFlags(Flags); 1138 } 1139 1140 if (!I.isTerminator() && !HasTailCall && 1141 !isStatepoint(&I)) // statepoints handle their exports internally 1142 CopyToExportRegsIfNeeded(&I); 1143 1144 CurInst = nullptr; 1145 } 1146 1147 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1148 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1149 } 1150 1151 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1152 // Note: this doesn't use InstVisitor, because it has to work with 1153 // ConstantExpr's in addition to instructions. 1154 switch (Opcode) { 1155 default: llvm_unreachable("Unknown instruction type encountered!"); 1156 // Build the switch statement using the Instruction.def file. 1157 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1158 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1159 #include "llvm/IR/Instruction.def" 1160 } 1161 } 1162 1163 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1164 const DIExpression *Expr) { 1165 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1166 const DbgValueInst *DI = DDI.getDI(); 1167 DIVariable *DanglingVariable = DI->getVariable(); 1168 DIExpression *DanglingExpr = DI->getExpression(); 1169 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1170 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1171 return true; 1172 } 1173 return false; 1174 }; 1175 1176 for (auto &DDIMI : DanglingDebugInfoMap) { 1177 DanglingDebugInfoVector &DDIV = DDIMI.second; 1178 1179 // If debug info is to be dropped, run it through final checks to see 1180 // whether it can be salvaged. 1181 for (auto &DDI : DDIV) 1182 if (isMatchingDbgValue(DDI)) 1183 salvageUnresolvedDbgValue(DDI); 1184 1185 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1186 } 1187 } 1188 1189 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1190 // generate the debug data structures now that we've seen its definition. 1191 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1192 SDValue Val) { 1193 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1194 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1195 return; 1196 1197 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1198 for (auto &DDI : DDIV) { 1199 const DbgValueInst *DI = DDI.getDI(); 1200 assert(DI && "Ill-formed DanglingDebugInfo"); 1201 DebugLoc dl = DDI.getdl(); 1202 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1203 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1204 DILocalVariable *Variable = DI->getVariable(); 1205 DIExpression *Expr = DI->getExpression(); 1206 assert(Variable->isValidLocationForIntrinsic(dl) && 1207 "Expected inlined-at fields to agree"); 1208 SDDbgValue *SDV; 1209 if (Val.getNode()) { 1210 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1211 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1212 // we couldn't resolve it directly when examining the DbgValue intrinsic 1213 // in the first place we should not be more successful here). Unless we 1214 // have some test case that prove this to be correct we should avoid 1215 // calling EmitFuncArgumentDbgValue here. 1216 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1217 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1218 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1219 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1220 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1221 // inserted after the definition of Val when emitting the instructions 1222 // after ISel. An alternative could be to teach 1223 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1224 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1225 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1226 << ValSDNodeOrder << "\n"); 1227 SDV = getDbgValue(Val, Variable, Expr, dl, 1228 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1229 DAG.AddDbgValue(SDV, Val.getNode(), false); 1230 } else 1231 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1232 << "in EmitFuncArgumentDbgValue\n"); 1233 } else { 1234 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1235 auto Undef = 1236 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1237 auto SDV = 1238 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1239 DAG.AddDbgValue(SDV, nullptr, false); 1240 } 1241 } 1242 DDIV.clear(); 1243 } 1244 1245 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1246 Value *V = DDI.getDI()->getValue(); 1247 DILocalVariable *Var = DDI.getDI()->getVariable(); 1248 DIExpression *Expr = DDI.getDI()->getExpression(); 1249 DebugLoc DL = DDI.getdl(); 1250 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1251 unsigned SDOrder = DDI.getSDNodeOrder(); 1252 1253 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1254 // that DW_OP_stack_value is desired. 1255 assert(isa<DbgValueInst>(DDI.getDI())); 1256 bool StackValue = true; 1257 1258 // Can this Value can be encoded without any further work? 1259 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1260 return; 1261 1262 // Attempt to salvage back through as many instructions as possible. Bail if 1263 // a non-instruction is seen, such as a constant expression or global 1264 // variable. FIXME: Further work could recover those too. 1265 while (isa<Instruction>(V)) { 1266 Instruction &VAsInst = *cast<Instruction>(V); 1267 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1268 1269 // If we cannot salvage any further, and haven't yet found a suitable debug 1270 // expression, bail out. 1271 if (!NewExpr) 1272 break; 1273 1274 // New value and expr now represent this debuginfo. 1275 V = VAsInst.getOperand(0); 1276 Expr = NewExpr; 1277 1278 // Some kind of simplification occurred: check whether the operand of the 1279 // salvaged debug expression can be encoded in this DAG. 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1281 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1282 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1283 return; 1284 } 1285 } 1286 1287 // This was the final opportunity to salvage this debug information, and it 1288 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1289 // any earlier variable location. 1290 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1291 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1292 DAG.AddDbgValue(SDV, nullptr, false); 1293 1294 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1295 << "\n"); 1296 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1297 << "\n"); 1298 } 1299 1300 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1301 DIExpression *Expr, DebugLoc dl, 1302 DebugLoc InstDL, unsigned Order) { 1303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1304 SDDbgValue *SDV; 1305 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1306 isa<ConstantPointerNull>(V)) { 1307 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, nullptr, false); 1309 return true; 1310 } 1311 1312 // If the Value is a frame index, we can create a FrameIndex debug value 1313 // without relying on the DAG at all. 1314 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1315 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1316 if (SI != FuncInfo.StaticAllocaMap.end()) { 1317 auto SDV = 1318 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1319 /*IsIndirect*/ false, dl, SDNodeOrder); 1320 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1321 // is still available even if the SDNode gets optimized out. 1322 DAG.AddDbgValue(SDV, nullptr, false); 1323 return true; 1324 } 1325 } 1326 1327 // Do not use getValue() in here; we don't want to generate code at 1328 // this point if it hasn't been done yet. 1329 SDValue N = NodeMap[V]; 1330 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1331 N = UnusedArgNodeMap[V]; 1332 if (N.getNode()) { 1333 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1334 return true; 1335 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, N.getNode(), false); 1337 return true; 1338 } 1339 1340 // Special rules apply for the first dbg.values of parameter variables in a 1341 // function. Identify them by the fact they reference Argument Values, that 1342 // they're parameters, and they are parameters of the current function. We 1343 // need to let them dangle until they get an SDNode. 1344 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1345 !InstDL.getInlinedAt(); 1346 if (!IsParamOfFunc) { 1347 // The value is not used in this block yet (or it would have an SDNode). 1348 // We still want the value to appear for the user if possible -- if it has 1349 // an associated VReg, we can refer to that instead. 1350 auto VMI = FuncInfo.ValueMap.find(V); 1351 if (VMI != FuncInfo.ValueMap.end()) { 1352 unsigned Reg = VMI->second; 1353 // If this is a PHI node, it may be split up into several MI PHI nodes 1354 // (in FunctionLoweringInfo::set). 1355 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1356 V->getType(), None); 1357 if (RFV.occupiesMultipleRegs()) { 1358 unsigned Offset = 0; 1359 unsigned BitsToDescribe = 0; 1360 if (auto VarSize = Var->getSizeInBits()) 1361 BitsToDescribe = *VarSize; 1362 if (auto Fragment = Expr->getFragmentInfo()) 1363 BitsToDescribe = Fragment->SizeInBits; 1364 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1365 unsigned RegisterSize = RegAndSize.second; 1366 // Bail out if all bits are described already. 1367 if (Offset >= BitsToDescribe) 1368 break; 1369 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1370 ? BitsToDescribe - Offset 1371 : RegisterSize; 1372 auto FragmentExpr = DIExpression::createFragmentExpression( 1373 Expr, Offset, FragmentSize); 1374 if (!FragmentExpr) 1375 continue; 1376 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1377 false, dl, SDNodeOrder); 1378 DAG.AddDbgValue(SDV, nullptr, false); 1379 Offset += RegisterSize; 1380 } 1381 } else { 1382 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1383 DAG.AddDbgValue(SDV, nullptr, false); 1384 } 1385 return true; 1386 } 1387 } 1388 1389 return false; 1390 } 1391 1392 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1393 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1394 for (auto &Pair : DanglingDebugInfoMap) 1395 for (auto &DDI : Pair.second) 1396 salvageUnresolvedDbgValue(DDI); 1397 clearDanglingDebugInfo(); 1398 } 1399 1400 /// getCopyFromRegs - If there was virtual register allocated for the value V 1401 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1402 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1403 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1404 SDValue Result; 1405 1406 if (It != FuncInfo.ValueMap.end()) { 1407 unsigned InReg = It->second; 1408 1409 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1410 DAG.getDataLayout(), InReg, Ty, 1411 None); // This is not an ABI copy. 1412 SDValue Chain = DAG.getEntryNode(); 1413 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1414 V); 1415 resolveDanglingDebugInfo(V, Result); 1416 } 1417 1418 return Result; 1419 } 1420 1421 /// getValue - Return an SDValue for the given Value. 1422 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1423 // If we already have an SDValue for this value, use it. It's important 1424 // to do this first, so that we don't create a CopyFromReg if we already 1425 // have a regular SDValue. 1426 SDValue &N = NodeMap[V]; 1427 if (N.getNode()) return N; 1428 1429 // If there's a virtual register allocated and initialized for this 1430 // value, use it. 1431 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1432 return copyFromReg; 1433 1434 // Otherwise create a new SDValue and remember it. 1435 SDValue Val = getValueImpl(V); 1436 NodeMap[V] = Val; 1437 resolveDanglingDebugInfo(V, Val); 1438 return Val; 1439 } 1440 1441 // Return true if SDValue exists for the given Value 1442 bool SelectionDAGBuilder::findValue(const Value *V) const { 1443 return (NodeMap.find(V) != NodeMap.end()) || 1444 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1445 } 1446 1447 /// getNonRegisterValue - Return an SDValue for the given Value, but 1448 /// don't look in FuncInfo.ValueMap for a virtual register. 1449 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1450 // If we already have an SDValue for this value, use it. 1451 SDValue &N = NodeMap[V]; 1452 if (N.getNode()) { 1453 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1454 // Remove the debug location from the node as the node is about to be used 1455 // in a location which may differ from the original debug location. This 1456 // is relevant to Constant and ConstantFP nodes because they can appear 1457 // as constant expressions inside PHI nodes. 1458 N->setDebugLoc(DebugLoc()); 1459 } 1460 return N; 1461 } 1462 1463 // Otherwise create a new SDValue and remember it. 1464 SDValue Val = getValueImpl(V); 1465 NodeMap[V] = Val; 1466 resolveDanglingDebugInfo(V, Val); 1467 return Val; 1468 } 1469 1470 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1471 /// Create an SDValue for the given value. 1472 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1473 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1474 1475 if (const Constant *C = dyn_cast<Constant>(V)) { 1476 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1477 1478 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1479 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1480 1481 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1482 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1483 1484 if (isa<ConstantPointerNull>(C)) { 1485 unsigned AS = V->getType()->getPointerAddressSpace(); 1486 return DAG.getConstant(0, getCurSDLoc(), 1487 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1488 } 1489 1490 if (match(C, m_VScale(DAG.getDataLayout()))) 1491 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1492 1493 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1494 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1495 1496 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1497 return DAG.getUNDEF(VT); 1498 1499 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1500 visit(CE->getOpcode(), *CE); 1501 SDValue N1 = NodeMap[V]; 1502 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1503 return N1; 1504 } 1505 1506 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1507 SmallVector<SDValue, 4> Constants; 1508 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1509 OI != OE; ++OI) { 1510 SDNode *Val = getValue(*OI).getNode(); 1511 // If the operand is an empty aggregate, there are no values. 1512 if (!Val) continue; 1513 // Add each leaf value from the operand to the Constants list 1514 // to form a flattened list of all the values. 1515 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1516 Constants.push_back(SDValue(Val, i)); 1517 } 1518 1519 return DAG.getMergeValues(Constants, getCurSDLoc()); 1520 } 1521 1522 if (const ConstantDataSequential *CDS = 1523 dyn_cast<ConstantDataSequential>(C)) { 1524 SmallVector<SDValue, 4> Ops; 1525 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1526 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1527 // Add each leaf value from the operand to the Constants list 1528 // to form a flattened list of all the values. 1529 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1530 Ops.push_back(SDValue(Val, i)); 1531 } 1532 1533 if (isa<ArrayType>(CDS->getType())) 1534 return DAG.getMergeValues(Ops, getCurSDLoc()); 1535 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1536 } 1537 1538 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1539 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1540 "Unknown struct or array constant!"); 1541 1542 SmallVector<EVT, 4> ValueVTs; 1543 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1544 unsigned NumElts = ValueVTs.size(); 1545 if (NumElts == 0) 1546 return SDValue(); // empty struct 1547 SmallVector<SDValue, 4> Constants(NumElts); 1548 for (unsigned i = 0; i != NumElts; ++i) { 1549 EVT EltVT = ValueVTs[i]; 1550 if (isa<UndefValue>(C)) 1551 Constants[i] = DAG.getUNDEF(EltVT); 1552 else if (EltVT.isFloatingPoint()) 1553 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1554 else 1555 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1556 } 1557 1558 return DAG.getMergeValues(Constants, getCurSDLoc()); 1559 } 1560 1561 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1562 return DAG.getBlockAddress(BA, VT); 1563 1564 VectorType *VecTy = cast<VectorType>(V->getType()); 1565 unsigned NumElements = VecTy->getNumElements(); 1566 1567 // Now that we know the number and type of the elements, get that number of 1568 // elements into the Ops array based on what kind of constant it is. 1569 SmallVector<SDValue, 16> Ops; 1570 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1571 for (unsigned i = 0; i != NumElements; ++i) 1572 Ops.push_back(getValue(CV->getOperand(i))); 1573 } else { 1574 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1575 EVT EltVT = 1576 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1577 1578 SDValue Op; 1579 if (EltVT.isFloatingPoint()) 1580 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1581 else 1582 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1583 Ops.assign(NumElements, Op); 1584 } 1585 1586 // Create a BUILD_VECTOR node. 1587 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1588 } 1589 1590 // If this is a static alloca, generate it as the frameindex instead of 1591 // computation. 1592 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1593 DenseMap<const AllocaInst*, int>::iterator SI = 1594 FuncInfo.StaticAllocaMap.find(AI); 1595 if (SI != FuncInfo.StaticAllocaMap.end()) 1596 return DAG.getFrameIndex(SI->second, 1597 TLI.getFrameIndexTy(DAG.getDataLayout())); 1598 } 1599 1600 // If this is an instruction which fast-isel has deferred, select it now. 1601 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1602 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1603 1604 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1605 Inst->getType(), getABIRegCopyCC(V)); 1606 SDValue Chain = DAG.getEntryNode(); 1607 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1608 } 1609 1610 llvm_unreachable("Can't get register for value!"); 1611 } 1612 1613 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1614 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1615 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1616 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1617 bool IsSEH = isAsynchronousEHPersonality(Pers); 1618 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1619 if (!IsSEH) 1620 CatchPadMBB->setIsEHScopeEntry(); 1621 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1622 if (IsMSVCCXX || IsCoreCLR) 1623 CatchPadMBB->setIsEHFuncletEntry(); 1624 } 1625 1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1627 // Update machine-CFG edge. 1628 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1629 FuncInfo.MBB->addSuccessor(TargetMBB); 1630 1631 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1632 bool IsSEH = isAsynchronousEHPersonality(Pers); 1633 if (IsSEH) { 1634 // If this is not a fall-through branch or optimizations are switched off, 1635 // emit the branch. 1636 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1637 TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1639 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1640 return; 1641 } 1642 1643 // Figure out the funclet membership for the catchret's successor. 1644 // This will be used by the FuncletLayout pass to determine how to order the 1645 // BB's. 1646 // A 'catchret' returns to the outer scope's color. 1647 Value *ParentPad = I.getCatchSwitchParentPad(); 1648 const BasicBlock *SuccessorColor; 1649 if (isa<ConstantTokenNone>(ParentPad)) 1650 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1651 else 1652 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1653 assert(SuccessorColor && "No parent funclet for catchret!"); 1654 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1655 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1656 1657 // Create the terminator node. 1658 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1659 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1660 DAG.getBasicBlock(SuccessorColorMBB)); 1661 DAG.setRoot(Ret); 1662 } 1663 1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1665 // Don't emit any special code for the cleanuppad instruction. It just marks 1666 // the start of an EH scope/funclet. 1667 FuncInfo.MBB->setIsEHScopeEntry(); 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 if (Pers != EHPersonality::Wasm_CXX) { 1670 FuncInfo.MBB->setIsEHFuncletEntry(); 1671 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1672 } 1673 } 1674 1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1676 // the control flow always stops at the single catch pad, as it does for a 1677 // cleanup pad. In case the exception caught is not of the types the catch pad 1678 // catches, it will be rethrown by a rethrow. 1679 static void findWasmUnwindDestinations( 1680 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1681 BranchProbability Prob, 1682 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1683 &UnwindDests) { 1684 while (EHPadBB) { 1685 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1686 if (isa<CleanupPadInst>(Pad)) { 1687 // Stop on cleanup pads. 1688 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1689 UnwindDests.back().first->setIsEHScopeEntry(); 1690 break; 1691 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1692 // Add the catchpad handlers to the possible destinations. We don't 1693 // continue to the unwind destination of the catchswitch for wasm. 1694 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1695 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1696 UnwindDests.back().first->setIsEHScopeEntry(); 1697 } 1698 break; 1699 } else { 1700 continue; 1701 } 1702 } 1703 } 1704 1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1706 /// many places it could ultimately go. In the IR, we have a single unwind 1707 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1708 /// This function skips over imaginary basic blocks that hold catchswitch 1709 /// instructions, and finds all the "real" machine 1710 /// basic block destinations. As those destinations may not be successors of 1711 /// EHPadBB, here we also calculate the edge probability to those destinations. 1712 /// The passed-in Prob is the edge probability to EHPadBB. 1713 static void findUnwindDestinations( 1714 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1715 BranchProbability Prob, 1716 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1717 &UnwindDests) { 1718 EHPersonality Personality = 1719 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1720 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1721 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1722 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1723 bool IsSEH = isAsynchronousEHPersonality(Personality); 1724 1725 if (IsWasmCXX) { 1726 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1727 assert(UnwindDests.size() <= 1 && 1728 "There should be at most one unwind destination for wasm"); 1729 return; 1730 } 1731 1732 while (EHPadBB) { 1733 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1734 BasicBlock *NewEHPadBB = nullptr; 1735 if (isa<LandingPadInst>(Pad)) { 1736 // Stop on landingpads. They are not funclets. 1737 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1738 break; 1739 } else if (isa<CleanupPadInst>(Pad)) { 1740 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1741 // personalities. 1742 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1743 UnwindDests.back().first->setIsEHScopeEntry(); 1744 UnwindDests.back().first->setIsEHFuncletEntry(); 1745 break; 1746 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1747 // Add the catchpad handlers to the possible destinations. 1748 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1749 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1750 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1751 if (IsMSVCCXX || IsCoreCLR) 1752 UnwindDests.back().first->setIsEHFuncletEntry(); 1753 if (!IsSEH) 1754 UnwindDests.back().first->setIsEHScopeEntry(); 1755 } 1756 NewEHPadBB = CatchSwitch->getUnwindDest(); 1757 } else { 1758 continue; 1759 } 1760 1761 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1762 if (BPI && NewEHPadBB) 1763 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1764 EHPadBB = NewEHPadBB; 1765 } 1766 } 1767 1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1769 // Update successor info. 1770 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1771 auto UnwindDest = I.getUnwindDest(); 1772 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1773 BranchProbability UnwindDestProb = 1774 (BPI && UnwindDest) 1775 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1776 : BranchProbability::getZero(); 1777 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1778 for (auto &UnwindDest : UnwindDests) { 1779 UnwindDest.first->setIsEHPad(); 1780 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1781 } 1782 FuncInfo.MBB->normalizeSuccProbs(); 1783 1784 // Create the terminator node. 1785 SDValue Ret = 1786 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1787 DAG.setRoot(Ret); 1788 } 1789 1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1791 report_fatal_error("visitCatchSwitch not yet implemented!"); 1792 } 1793 1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1796 auto &DL = DAG.getDataLayout(); 1797 SDValue Chain = getControlRoot(); 1798 SmallVector<ISD::OutputArg, 8> Outs; 1799 SmallVector<SDValue, 8> OutVals; 1800 1801 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1802 // lower 1803 // 1804 // %val = call <ty> @llvm.experimental.deoptimize() 1805 // ret <ty> %val 1806 // 1807 // differently. 1808 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1809 LowerDeoptimizingReturn(); 1810 return; 1811 } 1812 1813 if (!FuncInfo.CanLowerReturn) { 1814 unsigned DemoteReg = FuncInfo.DemoteRegister; 1815 const Function *F = I.getParent()->getParent(); 1816 1817 // Emit a store of the return value through the virtual register. 1818 // Leave Outs empty so that LowerReturn won't try to load return 1819 // registers the usual way. 1820 SmallVector<EVT, 1> PtrValueVTs; 1821 ComputeValueVTs(TLI, DL, 1822 F->getReturnType()->getPointerTo( 1823 DAG.getDataLayout().getAllocaAddrSpace()), 1824 PtrValueVTs); 1825 1826 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1827 DemoteReg, PtrValueVTs[0]); 1828 SDValue RetOp = getValue(I.getOperand(0)); 1829 1830 SmallVector<EVT, 4> ValueVTs, MemVTs; 1831 SmallVector<uint64_t, 4> Offsets; 1832 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1833 &Offsets); 1834 unsigned NumValues = ValueVTs.size(); 1835 1836 SmallVector<SDValue, 4> Chains(NumValues); 1837 for (unsigned i = 0; i != NumValues; ++i) { 1838 // An aggregate return value cannot wrap around the address space, so 1839 // offsets to its parts don't wrap either. 1840 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1841 1842 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1843 if (MemVTs[i] != ValueVTs[i]) 1844 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1845 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1846 // FIXME: better loc info would be nice. 1847 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1848 } 1849 1850 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1851 MVT::Other, Chains); 1852 } else if (I.getNumOperands() != 0) { 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1855 unsigned NumValues = ValueVTs.size(); 1856 if (NumValues) { 1857 SDValue RetOp = getValue(I.getOperand(0)); 1858 1859 const Function *F = I.getParent()->getParent(); 1860 1861 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1862 I.getOperand(0)->getType(), F->getCallingConv(), 1863 /*IsVarArg*/ false); 1864 1865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1866 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::SExt)) 1868 ExtendKind = ISD::SIGN_EXTEND; 1869 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1870 Attribute::ZExt)) 1871 ExtendKind = ISD::ZERO_EXTEND; 1872 1873 LLVMContext &Context = F->getContext(); 1874 bool RetInReg = F->getAttributes().hasAttribute( 1875 AttributeList::ReturnIndex, Attribute::InReg); 1876 1877 for (unsigned j = 0; j != NumValues; ++j) { 1878 EVT VT = ValueVTs[j]; 1879 1880 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1881 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1882 1883 CallingConv::ID CC = F->getCallingConv(); 1884 1885 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1886 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1887 SmallVector<SDValue, 4> Parts(NumParts); 1888 getCopyToParts(DAG, getCurSDLoc(), 1889 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1890 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1891 1892 // 'inreg' on function refers to return value 1893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1894 if (RetInReg) 1895 Flags.setInReg(); 1896 1897 if (I.getOperand(0)->getType()->isPointerTy()) { 1898 Flags.setPointer(); 1899 Flags.setPointerAddrSpace( 1900 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1901 } 1902 1903 if (NeedsRegBlock) { 1904 Flags.setInConsecutiveRegs(); 1905 if (j == NumValues - 1) 1906 Flags.setInConsecutiveRegsLast(); 1907 } 1908 1909 // Propagate extension type if any 1910 if (ExtendKind == ISD::SIGN_EXTEND) 1911 Flags.setSExt(); 1912 else if (ExtendKind == ISD::ZERO_EXTEND) 1913 Flags.setZExt(); 1914 1915 for (unsigned i = 0; i < NumParts; ++i) { 1916 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1917 VT, /*isfixed=*/true, 0, 0)); 1918 OutVals.push_back(Parts[i]); 1919 } 1920 } 1921 } 1922 } 1923 1924 // Push in swifterror virtual register as the last element of Outs. This makes 1925 // sure swifterror virtual register will be returned in the swifterror 1926 // physical register. 1927 const Function *F = I.getParent()->getParent(); 1928 if (TLI.supportSwiftError() && 1929 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1930 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1931 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1932 Flags.setSwiftError(); 1933 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1934 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1935 true /*isfixed*/, 1 /*origidx*/, 1936 0 /*partOffs*/)); 1937 // Create SDNode for the swifterror virtual register. 1938 OutVals.push_back( 1939 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1940 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1941 EVT(TLI.getPointerTy(DL)))); 1942 } 1943 1944 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1945 CallingConv::ID CallConv = 1946 DAG.getMachineFunction().getFunction().getCallingConv(); 1947 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1948 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1949 1950 // Verify that the target's LowerReturn behaved as expected. 1951 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1952 "LowerReturn didn't return a valid chain!"); 1953 1954 // Update the DAG with the new chain value resulting from return lowering. 1955 DAG.setRoot(Chain); 1956 } 1957 1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1959 /// created for it, emit nodes to copy the value into the virtual 1960 /// registers. 1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1962 // Skip empty types 1963 if (V->getType()->isEmptyTy()) 1964 return; 1965 1966 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1967 if (VMI != FuncInfo.ValueMap.end()) { 1968 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1969 CopyValueToVirtualRegister(V, VMI->second); 1970 } 1971 } 1972 1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1974 /// the current basic block, add it to ValueMap now so that we'll get a 1975 /// CopyTo/FromReg. 1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1977 // No need to export constants. 1978 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1979 1980 // Already exported? 1981 if (FuncInfo.isExportedInst(V)) return; 1982 1983 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1984 CopyValueToVirtualRegister(V, Reg); 1985 } 1986 1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1988 const BasicBlock *FromBB) { 1989 // The operands of the setcc have to be in this block. We don't know 1990 // how to export them from some other block. 1991 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1992 // Can export from current BB. 1993 if (VI->getParent() == FromBB) 1994 return true; 1995 1996 // Is already exported, noop. 1997 return FuncInfo.isExportedInst(V); 1998 } 1999 2000 // If this is an argument, we can export it if the BB is the entry block or 2001 // if it is already exported. 2002 if (isa<Argument>(V)) { 2003 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2004 return true; 2005 2006 // Otherwise, can only export this if it is already exported. 2007 return FuncInfo.isExportedInst(V); 2008 } 2009 2010 // Otherwise, constants can always be exported. 2011 return true; 2012 } 2013 2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2015 BranchProbability 2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2017 const MachineBasicBlock *Dst) const { 2018 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2019 const BasicBlock *SrcBB = Src->getBasicBlock(); 2020 const BasicBlock *DstBB = Dst->getBasicBlock(); 2021 if (!BPI) { 2022 // If BPI is not available, set the default probability as 1 / N, where N is 2023 // the number of successors. 2024 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2025 return BranchProbability(1, SuccSize); 2026 } 2027 return BPI->getEdgeProbability(SrcBB, DstBB); 2028 } 2029 2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2031 MachineBasicBlock *Dst, 2032 BranchProbability Prob) { 2033 if (!FuncInfo.BPI) 2034 Src->addSuccessorWithoutProb(Dst); 2035 else { 2036 if (Prob.isUnknown()) 2037 Prob = getEdgeProbability(Src, Dst); 2038 Src->addSuccessor(Dst, Prob); 2039 } 2040 } 2041 2042 static bool InBlock(const Value *V, const BasicBlock *BB) { 2043 if (const Instruction *I = dyn_cast<Instruction>(V)) 2044 return I->getParent() == BB; 2045 return true; 2046 } 2047 2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2049 /// This function emits a branch and is used at the leaves of an OR or an 2050 /// AND operator tree. 2051 void 2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2053 MachineBasicBlock *TBB, 2054 MachineBasicBlock *FBB, 2055 MachineBasicBlock *CurBB, 2056 MachineBasicBlock *SwitchBB, 2057 BranchProbability TProb, 2058 BranchProbability FProb, 2059 bool InvertCond) { 2060 const BasicBlock *BB = CurBB->getBasicBlock(); 2061 2062 // If the leaf of the tree is a comparison, merge the condition into 2063 // the caseblock. 2064 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2065 // The operands of the cmp have to be in this block. We don't know 2066 // how to export them from some other block. If this is the first block 2067 // of the sequence, no exporting is needed. 2068 if (CurBB == SwitchBB || 2069 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2070 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2071 ISD::CondCode Condition; 2072 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2073 ICmpInst::Predicate Pred = 2074 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2075 Condition = getICmpCondCode(Pred); 2076 } else { 2077 const FCmpInst *FC = cast<FCmpInst>(Cond); 2078 FCmpInst::Predicate Pred = 2079 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2080 Condition = getFCmpCondCode(Pred); 2081 if (TM.Options.NoNaNsFPMath) 2082 Condition = getFCmpCodeWithoutNaN(Condition); 2083 } 2084 2085 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2086 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2087 SL->SwitchCases.push_back(CB); 2088 return; 2089 } 2090 } 2091 2092 // Create a CaseBlock record representing this branch. 2093 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2094 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2095 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2096 SL->SwitchCases.push_back(CB); 2097 } 2098 2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2100 MachineBasicBlock *TBB, 2101 MachineBasicBlock *FBB, 2102 MachineBasicBlock *CurBB, 2103 MachineBasicBlock *SwitchBB, 2104 Instruction::BinaryOps Opc, 2105 BranchProbability TProb, 2106 BranchProbability FProb, 2107 bool InvertCond) { 2108 // Skip over not part of the tree and remember to invert op and operands at 2109 // next level. 2110 Value *NotCond; 2111 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2112 InBlock(NotCond, CurBB->getBasicBlock())) { 2113 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2114 !InvertCond); 2115 return; 2116 } 2117 2118 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2119 // Compute the effective opcode for Cond, taking into account whether it needs 2120 // to be inverted, e.g. 2121 // and (not (or A, B)), C 2122 // gets lowered as 2123 // and (and (not A, not B), C) 2124 unsigned BOpc = 0; 2125 if (BOp) { 2126 BOpc = BOp->getOpcode(); 2127 if (InvertCond) { 2128 if (BOpc == Instruction::And) 2129 BOpc = Instruction::Or; 2130 else if (BOpc == Instruction::Or) 2131 BOpc = Instruction::And; 2132 } 2133 } 2134 2135 // If this node is not part of the or/and tree, emit it as a branch. 2136 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2137 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2138 BOp->getParent() != CurBB->getBasicBlock() || 2139 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2140 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2141 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2142 TProb, FProb, InvertCond); 2143 return; 2144 } 2145 2146 // Create TmpBB after CurBB. 2147 MachineFunction::iterator BBI(CurBB); 2148 MachineFunction &MF = DAG.getMachineFunction(); 2149 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2150 CurBB->getParent()->insert(++BBI, TmpBB); 2151 2152 if (Opc == Instruction::Or) { 2153 // Codegen X | Y as: 2154 // BB1: 2155 // jmp_if_X TBB 2156 // jmp TmpBB 2157 // TmpBB: 2158 // jmp_if_Y TBB 2159 // jmp FBB 2160 // 2161 2162 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2163 // The requirement is that 2164 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2165 // = TrueProb for original BB. 2166 // Assuming the original probabilities are A and B, one choice is to set 2167 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2168 // A/(1+B) and 2B/(1+B). This choice assumes that 2169 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2170 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2171 // TmpBB, but the math is more complicated. 2172 2173 auto NewTrueProb = TProb / 2; 2174 auto NewFalseProb = TProb / 2 + FProb; 2175 // Emit the LHS condition. 2176 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2177 NewTrueProb, NewFalseProb, InvertCond); 2178 2179 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2180 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2181 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2182 // Emit the RHS condition into TmpBB. 2183 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2184 Probs[0], Probs[1], InvertCond); 2185 } else { 2186 assert(Opc == Instruction::And && "Unknown merge op!"); 2187 // Codegen X & Y as: 2188 // BB1: 2189 // jmp_if_X TmpBB 2190 // jmp FBB 2191 // TmpBB: 2192 // jmp_if_Y TBB 2193 // jmp FBB 2194 // 2195 // This requires creation of TmpBB after CurBB. 2196 2197 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2198 // The requirement is that 2199 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2200 // = FalseProb for original BB. 2201 // Assuming the original probabilities are A and B, one choice is to set 2202 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2203 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2204 // TrueProb for BB1 * FalseProb for TmpBB. 2205 2206 auto NewTrueProb = TProb + FProb / 2; 2207 auto NewFalseProb = FProb / 2; 2208 // Emit the LHS condition. 2209 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2210 NewTrueProb, NewFalseProb, InvertCond); 2211 2212 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2213 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2214 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2215 // Emit the RHS condition into TmpBB. 2216 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2217 Probs[0], Probs[1], InvertCond); 2218 } 2219 } 2220 2221 /// If the set of cases should be emitted as a series of branches, return true. 2222 /// If we should emit this as a bunch of and/or'd together conditions, return 2223 /// false. 2224 bool 2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2226 if (Cases.size() != 2) return true; 2227 2228 // If this is two comparisons of the same values or'd or and'd together, they 2229 // will get folded into a single comparison, so don't emit two blocks. 2230 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2231 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2232 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2233 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2234 return false; 2235 } 2236 2237 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2238 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2239 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2240 Cases[0].CC == Cases[1].CC && 2241 isa<Constant>(Cases[0].CmpRHS) && 2242 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2243 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2244 return false; 2245 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2246 return false; 2247 } 2248 2249 return true; 2250 } 2251 2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2253 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2254 2255 // Update machine-CFG edges. 2256 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2257 2258 if (I.isUnconditional()) { 2259 // Update machine-CFG edges. 2260 BrMBB->addSuccessor(Succ0MBB); 2261 2262 // If this is not a fall-through branch or optimizations are switched off, 2263 // emit the branch. 2264 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2265 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2266 MVT::Other, getControlRoot(), 2267 DAG.getBasicBlock(Succ0MBB))); 2268 2269 return; 2270 } 2271 2272 // If this condition is one of the special cases we handle, do special stuff 2273 // now. 2274 const Value *CondVal = I.getCondition(); 2275 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2276 2277 // If this is a series of conditions that are or'd or and'd together, emit 2278 // this as a sequence of branches instead of setcc's with and/or operations. 2279 // As long as jumps are not expensive, this should improve performance. 2280 // For example, instead of something like: 2281 // cmp A, B 2282 // C = seteq 2283 // cmp D, E 2284 // F = setle 2285 // or C, F 2286 // jnz foo 2287 // Emit: 2288 // cmp A, B 2289 // je foo 2290 // cmp D, E 2291 // jle foo 2292 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2293 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2294 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2295 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2296 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2297 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2298 Opcode, 2299 getEdgeProbability(BrMBB, Succ0MBB), 2300 getEdgeProbability(BrMBB, Succ1MBB), 2301 /*InvertCond=*/false); 2302 // If the compares in later blocks need to use values not currently 2303 // exported from this block, export them now. This block should always 2304 // be the first entry. 2305 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2306 2307 // Allow some cases to be rejected. 2308 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2309 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2310 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2311 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2312 } 2313 2314 // Emit the branch for this block. 2315 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2316 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2317 return; 2318 } 2319 2320 // Okay, we decided not to do this, remove any inserted MBB's and clear 2321 // SwitchCases. 2322 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2323 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2324 2325 SL->SwitchCases.clear(); 2326 } 2327 } 2328 2329 // Create a CaseBlock record representing this branch. 2330 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2331 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2332 2333 // Use visitSwitchCase to actually insert the fast branch sequence for this 2334 // cond branch. 2335 visitSwitchCase(CB, BrMBB); 2336 } 2337 2338 /// visitSwitchCase - Emits the necessary code to represent a single node in 2339 /// the binary search tree resulting from lowering a switch instruction. 2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2341 MachineBasicBlock *SwitchBB) { 2342 SDValue Cond; 2343 SDValue CondLHS = getValue(CB.CmpLHS); 2344 SDLoc dl = CB.DL; 2345 2346 if (CB.CC == ISD::SETTRUE) { 2347 // Branch or fall through to TrueBB. 2348 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2349 SwitchBB->normalizeSuccProbs(); 2350 if (CB.TrueBB != NextBlock(SwitchBB)) { 2351 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2352 DAG.getBasicBlock(CB.TrueBB))); 2353 } 2354 return; 2355 } 2356 2357 auto &TLI = DAG.getTargetLoweringInfo(); 2358 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2359 2360 // Build the setcc now. 2361 if (!CB.CmpMHS) { 2362 // Fold "(X == true)" to X and "(X == false)" to !X to 2363 // handle common cases produced by branch lowering. 2364 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) 2366 Cond = CondLHS; 2367 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2368 CB.CC == ISD::SETEQ) { 2369 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2370 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2371 } else { 2372 SDValue CondRHS = getValue(CB.CmpRHS); 2373 2374 // If a pointer's DAG type is larger than its memory type then the DAG 2375 // values are zero-extended. This breaks signed comparisons so truncate 2376 // back to the underlying type before doing the compare. 2377 if (CondLHS.getValueType() != MemVT) { 2378 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2379 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2380 } 2381 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2382 } 2383 } else { 2384 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2385 2386 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2387 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2388 2389 SDValue CmpOp = getValue(CB.CmpMHS); 2390 EVT VT = CmpOp.getValueType(); 2391 2392 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2393 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2394 ISD::SETLE); 2395 } else { 2396 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2397 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2398 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2399 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2400 } 2401 } 2402 2403 // Update successor info 2404 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2405 // TrueBB and FalseBB are always different unless the incoming IR is 2406 // degenerate. This only happens when running llc on weird IR. 2407 if (CB.TrueBB != CB.FalseBB) 2408 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2409 SwitchBB->normalizeSuccProbs(); 2410 2411 // If the lhs block is the next block, invert the condition so that we can 2412 // fall through to the lhs instead of the rhs block. 2413 if (CB.TrueBB == NextBlock(SwitchBB)) { 2414 std::swap(CB.TrueBB, CB.FalseBB); 2415 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2416 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2417 } 2418 2419 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2420 MVT::Other, getControlRoot(), Cond, 2421 DAG.getBasicBlock(CB.TrueBB)); 2422 2423 // Insert the false branch. Do this even if it's a fall through branch, 2424 // this makes it easier to do DAG optimizations which require inverting 2425 // the branch condition. 2426 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2427 DAG.getBasicBlock(CB.FalseBB)); 2428 2429 DAG.setRoot(BrCond); 2430 } 2431 2432 /// visitJumpTable - Emit JumpTable node in the current MBB 2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2434 // Emit the code for the jump table 2435 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2436 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2437 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2438 JT.Reg, PTy); 2439 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2440 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2441 MVT::Other, Index.getValue(1), 2442 Table, Index); 2443 DAG.setRoot(BrJumpTable); 2444 } 2445 2446 /// visitJumpTableHeader - This function emits necessary code to produce index 2447 /// in the JumpTable from switch case. 2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2449 JumpTableHeader &JTH, 2450 MachineBasicBlock *SwitchBB) { 2451 SDLoc dl = getCurSDLoc(); 2452 2453 // Subtract the lowest switch case value from the value being switched on. 2454 SDValue SwitchOp = getValue(JTH.SValue); 2455 EVT VT = SwitchOp.getValueType(); 2456 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2457 DAG.getConstant(JTH.First, dl, VT)); 2458 2459 // The SDNode we just created, which holds the value being switched on minus 2460 // the smallest case value, needs to be copied to a virtual register so it 2461 // can be used as an index into the jump table in a subsequent basic block. 2462 // This value may be smaller or larger than the target's pointer type, and 2463 // therefore require extension or truncating. 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2466 2467 unsigned JumpTableReg = 2468 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2469 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2470 JumpTableReg, SwitchOp); 2471 JT.Reg = JumpTableReg; 2472 2473 if (!JTH.OmitRangeCheck) { 2474 // Emit the range check for the jump table, and branch to the default block 2475 // for the switch statement if the value being switched on exceeds the 2476 // largest case in the switch. 2477 SDValue CMP = DAG.getSetCC( 2478 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2479 Sub.getValueType()), 2480 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2481 2482 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2483 MVT::Other, CopyTo, CMP, 2484 DAG.getBasicBlock(JT.Default)); 2485 2486 // Avoid emitting unnecessary branches to the next block. 2487 if (JT.MBB != NextBlock(SwitchBB)) 2488 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2489 DAG.getBasicBlock(JT.MBB)); 2490 2491 DAG.setRoot(BrCond); 2492 } else { 2493 // Avoid emitting unnecessary branches to the next block. 2494 if (JT.MBB != NextBlock(SwitchBB)) 2495 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2496 DAG.getBasicBlock(JT.MBB))); 2497 else 2498 DAG.setRoot(CopyTo); 2499 } 2500 } 2501 2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2503 /// variable if there exists one. 2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2505 SDValue &Chain) { 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 MachineFunction &MF = DAG.getMachineFunction(); 2510 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2511 MachineSDNode *Node = 2512 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2513 if (Global) { 2514 MachinePointerInfo MPInfo(Global); 2515 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2516 MachineMemOperand::MODereferenceable; 2517 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2518 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2519 DAG.setNodeMemRefs(Node, {MemRef}); 2520 } 2521 if (PtrTy != PtrMemTy) 2522 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2523 return SDValue(Node, 0); 2524 } 2525 2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2527 /// tail spliced into a stack protector check success bb. 2528 /// 2529 /// For a high level explanation of how this fits into the stack protector 2530 /// generation see the comment on the declaration of class 2531 /// StackProtectorDescriptor. 2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2533 MachineBasicBlock *ParentBB) { 2534 2535 // First create the loads to the guard/stack slot for the comparison. 2536 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2537 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2538 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2539 2540 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2541 int FI = MFI.getStackProtectorIndex(); 2542 2543 SDValue Guard; 2544 SDLoc dl = getCurSDLoc(); 2545 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2546 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2547 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2548 2549 // Generate code to load the content of the guard slot. 2550 SDValue GuardVal = DAG.getLoad( 2551 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2553 MachineMemOperand::MOVolatile); 2554 2555 if (TLI.useStackGuardXorFP()) 2556 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2557 2558 // Retrieve guard check function, nullptr if instrumentation is inlined. 2559 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2560 // The target provides a guard check function to validate the guard value. 2561 // Generate a call to that function with the content of the guard slot as 2562 // argument. 2563 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2564 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2565 2566 TargetLowering::ArgListTy Args; 2567 TargetLowering::ArgListEntry Entry; 2568 Entry.Node = GuardVal; 2569 Entry.Ty = FnTy->getParamType(0); 2570 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2571 Entry.IsInReg = true; 2572 Args.push_back(Entry); 2573 2574 TargetLowering::CallLoweringInfo CLI(DAG); 2575 CLI.setDebugLoc(getCurSDLoc()) 2576 .setChain(DAG.getEntryNode()) 2577 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2578 getValue(GuardCheckFn), std::move(Args)); 2579 2580 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2581 DAG.setRoot(Result.second); 2582 return; 2583 } 2584 2585 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2586 // Otherwise, emit a volatile load to retrieve the stack guard value. 2587 SDValue Chain = DAG.getEntryNode(); 2588 if (TLI.useLoadStackGuardNode()) { 2589 Guard = getLoadStackGuard(DAG, dl, Chain); 2590 } else { 2591 const Value *IRGuard = TLI.getSDagStackGuard(M); 2592 SDValue GuardPtr = getValue(IRGuard); 2593 2594 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2595 MachinePointerInfo(IRGuard, 0), Align, 2596 MachineMemOperand::MOVolatile); 2597 } 2598 2599 // Perform the comparison via a getsetcc. 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Guard.getValueType()), 2603 Guard, GuardVal, ISD::SETNE); 2604 2605 // If the guard/stackslot do not equal, branch to failure MBB. 2606 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2607 MVT::Other, GuardVal.getOperand(0), 2608 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2609 // Otherwise branch to success MBB. 2610 SDValue Br = DAG.getNode(ISD::BR, dl, 2611 MVT::Other, BrCond, 2612 DAG.getBasicBlock(SPD.getSuccessMBB())); 2613 2614 DAG.setRoot(Br); 2615 } 2616 2617 /// Codegen the failure basic block for a stack protector check. 2618 /// 2619 /// A failure stack protector machine basic block consists simply of a call to 2620 /// __stack_chk_fail(). 2621 /// 2622 /// For a high level explanation of how this fits into the stack protector 2623 /// generation see the comment on the declaration of class 2624 /// StackProtectorDescriptor. 2625 void 2626 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2628 TargetLowering::MakeLibCallOptions CallOptions; 2629 CallOptions.setDiscardResult(true); 2630 SDValue Chain = 2631 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2632 None, CallOptions, getCurSDLoc()).second; 2633 // On PS4, the "return address" must still be within the calling function, 2634 // even if it's at the very end, so emit an explicit TRAP here. 2635 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2636 if (TM.getTargetTriple().isPS4CPU()) 2637 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2638 2639 DAG.setRoot(Chain); 2640 } 2641 2642 /// visitBitTestHeader - This function emits necessary code to produce value 2643 /// suitable for "bit tests" 2644 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2645 MachineBasicBlock *SwitchBB) { 2646 SDLoc dl = getCurSDLoc(); 2647 2648 // Subtract the minimum value. 2649 SDValue SwitchOp = getValue(B.SValue); 2650 EVT VT = SwitchOp.getValueType(); 2651 SDValue RangeSub = 2652 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2653 2654 // Determine the type of the test operands. 2655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2656 bool UsePtrType = false; 2657 if (!TLI.isTypeLegal(VT)) { 2658 UsePtrType = true; 2659 } else { 2660 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2661 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2662 // Switch table case range are encoded into series of masks. 2663 // Just use pointer type, it's guaranteed to fit. 2664 UsePtrType = true; 2665 break; 2666 } 2667 } 2668 SDValue Sub = RangeSub; 2669 if (UsePtrType) { 2670 VT = TLI.getPointerTy(DAG.getDataLayout()); 2671 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2672 } 2673 2674 B.RegVT = VT.getSimpleVT(); 2675 B.Reg = FuncInfo.CreateReg(B.RegVT); 2676 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2677 2678 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2679 2680 if (!B.OmitRangeCheck) 2681 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2682 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2683 SwitchBB->normalizeSuccProbs(); 2684 2685 SDValue Root = CopyTo; 2686 if (!B.OmitRangeCheck) { 2687 // Conditional branch to the default block. 2688 SDValue RangeCmp = DAG.getSetCC(dl, 2689 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2690 RangeSub.getValueType()), 2691 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2692 ISD::SETUGT); 2693 2694 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2695 DAG.getBasicBlock(B.Default)); 2696 } 2697 2698 // Avoid emitting unnecessary branches to the next block. 2699 if (MBB != NextBlock(SwitchBB)) 2700 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2701 2702 DAG.setRoot(Root); 2703 } 2704 2705 /// visitBitTestCase - this function produces one "bit test" 2706 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2707 MachineBasicBlock* NextMBB, 2708 BranchProbability BranchProbToNext, 2709 unsigned Reg, 2710 BitTestCase &B, 2711 MachineBasicBlock *SwitchBB) { 2712 SDLoc dl = getCurSDLoc(); 2713 MVT VT = BB.RegVT; 2714 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2715 SDValue Cmp; 2716 unsigned PopCount = countPopulation(B.Mask); 2717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2718 if (PopCount == 1) { 2719 // Testing for a single bit; just compare the shift count with what it 2720 // would need to be to shift a 1 bit in that position. 2721 Cmp = DAG.getSetCC( 2722 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2723 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2724 ISD::SETEQ); 2725 } else if (PopCount == BB.Range) { 2726 // There is only one zero bit in the range, test for it directly. 2727 Cmp = DAG.getSetCC( 2728 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2729 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2730 ISD::SETNE); 2731 } else { 2732 // Make desired shift 2733 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2734 DAG.getConstant(1, dl, VT), ShiftOp); 2735 2736 // Emit bit tests and jumps 2737 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2738 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2739 Cmp = DAG.getSetCC( 2740 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2741 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2742 } 2743 2744 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2745 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2746 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2747 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2748 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2749 // one as they are relative probabilities (and thus work more like weights), 2750 // and hence we need to normalize them to let the sum of them become one. 2751 SwitchBB->normalizeSuccProbs(); 2752 2753 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2754 MVT::Other, getControlRoot(), 2755 Cmp, DAG.getBasicBlock(B.TargetBB)); 2756 2757 // Avoid emitting unnecessary branches to the next block. 2758 if (NextMBB != NextBlock(SwitchBB)) 2759 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2760 DAG.getBasicBlock(NextMBB)); 2761 2762 DAG.setRoot(BrAnd); 2763 } 2764 2765 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2766 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2767 2768 // Retrieve successors. Look through artificial IR level blocks like 2769 // catchswitch for successors. 2770 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2771 const BasicBlock *EHPadBB = I.getSuccessor(1); 2772 2773 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2774 // have to do anything here to lower funclet bundles. 2775 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2776 LLVMContext::OB_funclet, 2777 LLVMContext::OB_cfguardtarget}) && 2778 "Cannot lower invokes with arbitrary operand bundles yet!"); 2779 2780 const Value *Callee(I.getCalledValue()); 2781 const Function *Fn = dyn_cast<Function>(Callee); 2782 if (isa<InlineAsm>(Callee)) 2783 visitInlineAsm(&I); 2784 else if (Fn && Fn->isIntrinsic()) { 2785 switch (Fn->getIntrinsicID()) { 2786 default: 2787 llvm_unreachable("Cannot invoke this intrinsic"); 2788 case Intrinsic::donothing: 2789 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2790 break; 2791 case Intrinsic::experimental_patchpoint_void: 2792 case Intrinsic::experimental_patchpoint_i64: 2793 visitPatchpoint(&I, EHPadBB); 2794 break; 2795 case Intrinsic::experimental_gc_statepoint: 2796 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2797 break; 2798 case Intrinsic::wasm_rethrow_in_catch: { 2799 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2800 // special because it can be invoked, so we manually lower it to a DAG 2801 // node here. 2802 SmallVector<SDValue, 8> Ops; 2803 Ops.push_back(getRoot()); // inchain 2804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2805 Ops.push_back( 2806 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2807 TLI.getPointerTy(DAG.getDataLayout()))); 2808 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2809 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2810 break; 2811 } 2812 } 2813 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2814 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2815 // Eventually we will support lowering the @llvm.experimental.deoptimize 2816 // intrinsic, and right now there are no plans to support other intrinsics 2817 // with deopt state. 2818 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2819 } else { 2820 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2821 } 2822 2823 // If the value of the invoke is used outside of its defining block, make it 2824 // available as a virtual register. 2825 // We already took care of the exported value for the statepoint instruction 2826 // during call to the LowerStatepoint. 2827 if (!isStatepoint(I)) { 2828 CopyToExportRegsIfNeeded(&I); 2829 } 2830 2831 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2832 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2833 BranchProbability EHPadBBProb = 2834 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2835 : BranchProbability::getZero(); 2836 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2837 2838 // Update successor info. 2839 addSuccessorWithProb(InvokeMBB, Return); 2840 for (auto &UnwindDest : UnwindDests) { 2841 UnwindDest.first->setIsEHPad(); 2842 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2843 } 2844 InvokeMBB->normalizeSuccProbs(); 2845 2846 // Drop into normal successor. 2847 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2848 DAG.getBasicBlock(Return))); 2849 } 2850 2851 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2852 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2853 2854 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2855 // have to do anything here to lower funclet bundles. 2856 assert(!I.hasOperandBundlesOtherThan( 2857 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2858 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2859 2860 assert(isa<InlineAsm>(I.getCalledValue()) && 2861 "Only know how to handle inlineasm callbr"); 2862 visitInlineAsm(&I); 2863 2864 // Retrieve successors. 2865 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2866 2867 // Update successor info. 2868 addSuccessorWithProb(CallBrMBB, Return); 2869 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2870 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2871 addSuccessorWithProb(CallBrMBB, Target); 2872 } 2873 CallBrMBB->normalizeSuccProbs(); 2874 2875 // Drop into default successor. 2876 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2877 MVT::Other, getControlRoot(), 2878 DAG.getBasicBlock(Return))); 2879 } 2880 2881 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2882 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2883 } 2884 2885 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2886 assert(FuncInfo.MBB->isEHPad() && 2887 "Call to landingpad not in landing pad!"); 2888 2889 // If there aren't registers to copy the values into (e.g., during SjLj 2890 // exceptions), then don't bother to create these DAG nodes. 2891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2892 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2893 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2894 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2895 return; 2896 2897 // If landingpad's return type is token type, we don't create DAG nodes 2898 // for its exception pointer and selector value. The extraction of exception 2899 // pointer or selector value from token type landingpads is not currently 2900 // supported. 2901 if (LP.getType()->isTokenTy()) 2902 return; 2903 2904 SmallVector<EVT, 2> ValueVTs; 2905 SDLoc dl = getCurSDLoc(); 2906 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2907 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2908 2909 // Get the two live-in registers as SDValues. The physregs have already been 2910 // copied into virtual registers. 2911 SDValue Ops[2]; 2912 if (FuncInfo.ExceptionPointerVirtReg) { 2913 Ops[0] = DAG.getZExtOrTrunc( 2914 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2915 FuncInfo.ExceptionPointerVirtReg, 2916 TLI.getPointerTy(DAG.getDataLayout())), 2917 dl, ValueVTs[0]); 2918 } else { 2919 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2920 } 2921 Ops[1] = DAG.getZExtOrTrunc( 2922 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2923 FuncInfo.ExceptionSelectorVirtReg, 2924 TLI.getPointerTy(DAG.getDataLayout())), 2925 dl, ValueVTs[1]); 2926 2927 // Merge into one. 2928 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2929 DAG.getVTList(ValueVTs), Ops); 2930 setValue(&LP, Res); 2931 } 2932 2933 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2934 MachineBasicBlock *Last) { 2935 // Update JTCases. 2936 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2937 if (SL->JTCases[i].first.HeaderBB == First) 2938 SL->JTCases[i].first.HeaderBB = Last; 2939 2940 // Update BitTestCases. 2941 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2942 if (SL->BitTestCases[i].Parent == First) 2943 SL->BitTestCases[i].Parent = Last; 2944 } 2945 2946 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2947 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2948 2949 // Update machine-CFG edges with unique successors. 2950 SmallSet<BasicBlock*, 32> Done; 2951 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2952 BasicBlock *BB = I.getSuccessor(i); 2953 bool Inserted = Done.insert(BB).second; 2954 if (!Inserted) 2955 continue; 2956 2957 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2958 addSuccessorWithProb(IndirectBrMBB, Succ); 2959 } 2960 IndirectBrMBB->normalizeSuccProbs(); 2961 2962 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2963 MVT::Other, getControlRoot(), 2964 getValue(I.getAddress()))); 2965 } 2966 2967 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2968 if (!DAG.getTarget().Options.TrapUnreachable) 2969 return; 2970 2971 // We may be able to ignore unreachable behind a noreturn call. 2972 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2973 const BasicBlock &BB = *I.getParent(); 2974 if (&I != &BB.front()) { 2975 BasicBlock::const_iterator PredI = 2976 std::prev(BasicBlock::const_iterator(&I)); 2977 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2978 if (Call->doesNotReturn()) 2979 return; 2980 } 2981 } 2982 } 2983 2984 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2985 } 2986 2987 void SelectionDAGBuilder::visitFSub(const User &I) { 2988 // -0.0 - X --> fneg 2989 Type *Ty = I.getType(); 2990 if (isa<Constant>(I.getOperand(0)) && 2991 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2992 SDValue Op2 = getValue(I.getOperand(1)); 2993 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2994 Op2.getValueType(), Op2)); 2995 return; 2996 } 2997 2998 visitBinary(I, ISD::FSUB); 2999 } 3000 3001 /// Checks if the given instruction performs a vector reduction, in which case 3002 /// we have the freedom to alter the elements in the result as long as the 3003 /// reduction of them stays unchanged. 3004 static bool isVectorReductionOp(const User *I) { 3005 const Instruction *Inst = dyn_cast<Instruction>(I); 3006 if (!Inst || !Inst->getType()->isVectorTy()) 3007 return false; 3008 3009 auto OpCode = Inst->getOpcode(); 3010 switch (OpCode) { 3011 case Instruction::Add: 3012 case Instruction::Mul: 3013 case Instruction::And: 3014 case Instruction::Or: 3015 case Instruction::Xor: 3016 break; 3017 case Instruction::FAdd: 3018 case Instruction::FMul: 3019 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3020 if (FPOp->getFastMathFlags().isFast()) 3021 break; 3022 LLVM_FALLTHROUGH; 3023 default: 3024 return false; 3025 } 3026 3027 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3028 // Ensure the reduction size is a power of 2. 3029 if (!isPowerOf2_32(ElemNum)) 3030 return false; 3031 3032 unsigned ElemNumToReduce = ElemNum; 3033 3034 // Do DFS search on the def-use chain from the given instruction. We only 3035 // allow four kinds of operations during the search until we reach the 3036 // instruction that extracts the first element from the vector: 3037 // 3038 // 1. The reduction operation of the same opcode as the given instruction. 3039 // 3040 // 2. PHI node. 3041 // 3042 // 3. ShuffleVector instruction together with a reduction operation that 3043 // does a partial reduction. 3044 // 3045 // 4. ExtractElement that extracts the first element from the vector, and we 3046 // stop searching the def-use chain here. 3047 // 3048 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3049 // from 1-3 to the stack to continue the DFS. The given instruction is not 3050 // a reduction operation if we meet any other instructions other than those 3051 // listed above. 3052 3053 SmallVector<const User *, 16> UsersToVisit{Inst}; 3054 SmallPtrSet<const User *, 16> Visited; 3055 bool ReduxExtracted = false; 3056 3057 while (!UsersToVisit.empty()) { 3058 auto User = UsersToVisit.back(); 3059 UsersToVisit.pop_back(); 3060 if (!Visited.insert(User).second) 3061 continue; 3062 3063 for (const auto *U : User->users()) { 3064 auto Inst = dyn_cast<Instruction>(U); 3065 if (!Inst) 3066 return false; 3067 3068 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3069 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3070 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3071 return false; 3072 UsersToVisit.push_back(U); 3073 } else if (const ShuffleVectorInst *ShufInst = 3074 dyn_cast<ShuffleVectorInst>(U)) { 3075 // Detect the following pattern: A ShuffleVector instruction together 3076 // with a reduction that do partial reduction on the first and second 3077 // ElemNumToReduce / 2 elements, and store the result in 3078 // ElemNumToReduce / 2 elements in another vector. 3079 3080 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3081 if (ResultElements < ElemNum) 3082 return false; 3083 3084 if (ElemNumToReduce == 1) 3085 return false; 3086 if (!isa<UndefValue>(U->getOperand(1))) 3087 return false; 3088 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3089 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3090 return false; 3091 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3092 if (ShufInst->getMaskValue(i) != -1) 3093 return false; 3094 3095 // There is only one user of this ShuffleVector instruction, which 3096 // must be a reduction operation. 3097 if (!U->hasOneUse()) 3098 return false; 3099 3100 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3101 if (!U2 || U2->getOpcode() != OpCode) 3102 return false; 3103 3104 // Check operands of the reduction operation. 3105 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3106 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3107 UsersToVisit.push_back(U2); 3108 ElemNumToReduce /= 2; 3109 } else 3110 return false; 3111 } else if (isa<ExtractElementInst>(U)) { 3112 // At this moment we should have reduced all elements in the vector. 3113 if (ElemNumToReduce != 1) 3114 return false; 3115 3116 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3117 if (!Val || !Val->isZero()) 3118 return false; 3119 3120 ReduxExtracted = true; 3121 } else 3122 return false; 3123 } 3124 } 3125 return ReduxExtracted; 3126 } 3127 3128 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3129 SDNodeFlags Flags; 3130 3131 SDValue Op = getValue(I.getOperand(0)); 3132 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3133 Op, Flags); 3134 setValue(&I, UnNodeValue); 3135 } 3136 3137 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3138 SDNodeFlags Flags; 3139 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3140 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3141 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3142 } 3143 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3144 Flags.setExact(ExactOp->isExact()); 3145 } 3146 if (isVectorReductionOp(&I)) { 3147 Flags.setVectorReduction(true); 3148 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3149 3150 // If no flags are set we will propagate the incoming flags, if any flags 3151 // are set, we will intersect them with the incoming flag and so we need to 3152 // copy the FMF flags here. 3153 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3154 Flags.copyFMF(*FPOp); 3155 } 3156 } 3157 3158 SDValue Op1 = getValue(I.getOperand(0)); 3159 SDValue Op2 = getValue(I.getOperand(1)); 3160 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3161 Op1, Op2, Flags); 3162 setValue(&I, BinNodeValue); 3163 } 3164 3165 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3166 SDValue Op1 = getValue(I.getOperand(0)); 3167 SDValue Op2 = getValue(I.getOperand(1)); 3168 3169 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3170 Op1.getValueType(), DAG.getDataLayout()); 3171 3172 // Coerce the shift amount to the right type if we can. 3173 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3174 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3175 unsigned Op2Size = Op2.getValueSizeInBits(); 3176 SDLoc DL = getCurSDLoc(); 3177 3178 // If the operand is smaller than the shift count type, promote it. 3179 if (ShiftSize > Op2Size) 3180 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3181 3182 // If the operand is larger than the shift count type but the shift 3183 // count type has enough bits to represent any shift value, truncate 3184 // it now. This is a common case and it exposes the truncate to 3185 // optimization early. 3186 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3187 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3188 // Otherwise we'll need to temporarily settle for some other convenient 3189 // type. Type legalization will make adjustments once the shiftee is split. 3190 else 3191 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3192 } 3193 3194 bool nuw = false; 3195 bool nsw = false; 3196 bool exact = false; 3197 3198 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3199 3200 if (const OverflowingBinaryOperator *OFBinOp = 3201 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3202 nuw = OFBinOp->hasNoUnsignedWrap(); 3203 nsw = OFBinOp->hasNoSignedWrap(); 3204 } 3205 if (const PossiblyExactOperator *ExactOp = 3206 dyn_cast<const PossiblyExactOperator>(&I)) 3207 exact = ExactOp->isExact(); 3208 } 3209 SDNodeFlags Flags; 3210 Flags.setExact(exact); 3211 Flags.setNoSignedWrap(nsw); 3212 Flags.setNoUnsignedWrap(nuw); 3213 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3214 Flags); 3215 setValue(&I, Res); 3216 } 3217 3218 void SelectionDAGBuilder::visitSDiv(const User &I) { 3219 SDValue Op1 = getValue(I.getOperand(0)); 3220 SDValue Op2 = getValue(I.getOperand(1)); 3221 3222 SDNodeFlags Flags; 3223 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3224 cast<PossiblyExactOperator>(&I)->isExact()); 3225 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3226 Op2, Flags)); 3227 } 3228 3229 void SelectionDAGBuilder::visitICmp(const User &I) { 3230 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3231 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3232 predicate = IC->getPredicate(); 3233 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3234 predicate = ICmpInst::Predicate(IC->getPredicate()); 3235 SDValue Op1 = getValue(I.getOperand(0)); 3236 SDValue Op2 = getValue(I.getOperand(1)); 3237 ISD::CondCode Opcode = getICmpCondCode(predicate); 3238 3239 auto &TLI = DAG.getTargetLoweringInfo(); 3240 EVT MemVT = 3241 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3242 3243 // If a pointer's DAG type is larger than its memory type then the DAG values 3244 // are zero-extended. This breaks signed comparisons so truncate back to the 3245 // underlying type before doing the compare. 3246 if (Op1.getValueType() != MemVT) { 3247 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3248 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3249 } 3250 3251 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3252 I.getType()); 3253 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3254 } 3255 3256 void SelectionDAGBuilder::visitFCmp(const User &I) { 3257 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3258 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3259 predicate = FC->getPredicate(); 3260 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3261 predicate = FCmpInst::Predicate(FC->getPredicate()); 3262 SDValue Op1 = getValue(I.getOperand(0)); 3263 SDValue Op2 = getValue(I.getOperand(1)); 3264 3265 ISD::CondCode Condition = getFCmpCondCode(predicate); 3266 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3267 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3268 Condition = getFCmpCodeWithoutNaN(Condition); 3269 3270 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3271 I.getType()); 3272 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3273 } 3274 3275 // Check if the condition of the select has one use or two users that are both 3276 // selects with the same condition. 3277 static bool hasOnlySelectUsers(const Value *Cond) { 3278 return llvm::all_of(Cond->users(), [](const Value *V) { 3279 return isa<SelectInst>(V); 3280 }); 3281 } 3282 3283 void SelectionDAGBuilder::visitSelect(const User &I) { 3284 SmallVector<EVT, 4> ValueVTs; 3285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3286 ValueVTs); 3287 unsigned NumValues = ValueVTs.size(); 3288 if (NumValues == 0) return; 3289 3290 SmallVector<SDValue, 4> Values(NumValues); 3291 SDValue Cond = getValue(I.getOperand(0)); 3292 SDValue LHSVal = getValue(I.getOperand(1)); 3293 SDValue RHSVal = getValue(I.getOperand(2)); 3294 SmallVector<SDValue, 1> BaseOps(1, Cond); 3295 ISD::NodeType OpCode = 3296 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3297 3298 bool IsUnaryAbs = false; 3299 3300 // Min/max matching is only viable if all output VTs are the same. 3301 if (is_splat(ValueVTs)) { 3302 EVT VT = ValueVTs[0]; 3303 LLVMContext &Ctx = *DAG.getContext(); 3304 auto &TLI = DAG.getTargetLoweringInfo(); 3305 3306 // We care about the legality of the operation after it has been type 3307 // legalized. 3308 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3309 VT = TLI.getTypeToTransformTo(Ctx, VT); 3310 3311 // If the vselect is legal, assume we want to leave this as a vector setcc + 3312 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3313 // min/max is legal on the scalar type. 3314 bool UseScalarMinMax = VT.isVector() && 3315 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3316 3317 Value *LHS, *RHS; 3318 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3319 ISD::NodeType Opc = ISD::DELETED_NODE; 3320 switch (SPR.Flavor) { 3321 case SPF_UMAX: Opc = ISD::UMAX; break; 3322 case SPF_UMIN: Opc = ISD::UMIN; break; 3323 case SPF_SMAX: Opc = ISD::SMAX; break; 3324 case SPF_SMIN: Opc = ISD::SMIN; break; 3325 case SPF_FMINNUM: 3326 switch (SPR.NaNBehavior) { 3327 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3328 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3329 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3330 case SPNB_RETURNS_ANY: { 3331 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3332 Opc = ISD::FMINNUM; 3333 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3334 Opc = ISD::FMINIMUM; 3335 else if (UseScalarMinMax) 3336 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3337 ISD::FMINNUM : ISD::FMINIMUM; 3338 break; 3339 } 3340 } 3341 break; 3342 case SPF_FMAXNUM: 3343 switch (SPR.NaNBehavior) { 3344 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3345 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3346 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3347 case SPNB_RETURNS_ANY: 3348 3349 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3350 Opc = ISD::FMAXNUM; 3351 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3352 Opc = ISD::FMAXIMUM; 3353 else if (UseScalarMinMax) 3354 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3355 ISD::FMAXNUM : ISD::FMAXIMUM; 3356 break; 3357 } 3358 break; 3359 case SPF_ABS: 3360 IsUnaryAbs = true; 3361 Opc = ISD::ABS; 3362 break; 3363 case SPF_NABS: 3364 // TODO: we need to produce sub(0, abs(X)). 3365 default: break; 3366 } 3367 3368 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3369 (TLI.isOperationLegalOrCustom(Opc, VT) || 3370 (UseScalarMinMax && 3371 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3372 // If the underlying comparison instruction is used by any other 3373 // instruction, the consumed instructions won't be destroyed, so it is 3374 // not profitable to convert to a min/max. 3375 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3376 OpCode = Opc; 3377 LHSVal = getValue(LHS); 3378 RHSVal = getValue(RHS); 3379 BaseOps.clear(); 3380 } 3381 3382 if (IsUnaryAbs) { 3383 OpCode = Opc; 3384 LHSVal = getValue(LHS); 3385 BaseOps.clear(); 3386 } 3387 } 3388 3389 if (IsUnaryAbs) { 3390 for (unsigned i = 0; i != NumValues; ++i) { 3391 Values[i] = 3392 DAG.getNode(OpCode, getCurSDLoc(), 3393 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3394 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3395 } 3396 } else { 3397 for (unsigned i = 0; i != NumValues; ++i) { 3398 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3399 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3400 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3401 Values[i] = DAG.getNode( 3402 OpCode, getCurSDLoc(), 3403 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3404 } 3405 } 3406 3407 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3408 DAG.getVTList(ValueVTs), Values)); 3409 } 3410 3411 void SelectionDAGBuilder::visitTrunc(const User &I) { 3412 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3413 SDValue N = getValue(I.getOperand(0)); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3417 } 3418 3419 void SelectionDAGBuilder::visitZExt(const User &I) { 3420 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3421 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3422 SDValue N = getValue(I.getOperand(0)); 3423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3424 I.getType()); 3425 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3426 } 3427 3428 void SelectionDAGBuilder::visitSExt(const User &I) { 3429 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3430 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3431 SDValue N = getValue(I.getOperand(0)); 3432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3433 I.getType()); 3434 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3435 } 3436 3437 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3438 // FPTrunc is never a no-op cast, no need to check 3439 SDValue N = getValue(I.getOperand(0)); 3440 SDLoc dl = getCurSDLoc(); 3441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3442 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3443 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3444 DAG.getTargetConstant( 3445 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3446 } 3447 3448 void SelectionDAGBuilder::visitFPExt(const User &I) { 3449 // FPExt is never a no-op cast, no need to check 3450 SDValue N = getValue(I.getOperand(0)); 3451 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3452 I.getType()); 3453 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3454 } 3455 3456 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3457 // FPToUI is never a no-op cast, no need to check 3458 SDValue N = getValue(I.getOperand(0)); 3459 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3460 I.getType()); 3461 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3462 } 3463 3464 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3465 // FPToSI is never a no-op cast, no need to check 3466 SDValue N = getValue(I.getOperand(0)); 3467 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3468 I.getType()); 3469 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3470 } 3471 3472 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3473 // UIToFP is never a no-op cast, no need to check 3474 SDValue N = getValue(I.getOperand(0)); 3475 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3476 I.getType()); 3477 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3478 } 3479 3480 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3481 // SIToFP is never a no-op cast, no need to check 3482 SDValue N = getValue(I.getOperand(0)); 3483 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3484 I.getType()); 3485 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3486 } 3487 3488 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3489 // What to do depends on the size of the integer and the size of the pointer. 3490 // We can either truncate, zero extend, or no-op, accordingly. 3491 SDValue N = getValue(I.getOperand(0)); 3492 auto &TLI = DAG.getTargetLoweringInfo(); 3493 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3494 I.getType()); 3495 EVT PtrMemVT = 3496 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3497 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3498 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3499 setValue(&I, N); 3500 } 3501 3502 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3503 // What to do depends on the size of the integer and the size of the pointer. 3504 // We can either truncate, zero extend, or no-op, accordingly. 3505 SDValue N = getValue(I.getOperand(0)); 3506 auto &TLI = DAG.getTargetLoweringInfo(); 3507 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3508 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3509 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3510 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3511 setValue(&I, N); 3512 } 3513 3514 void SelectionDAGBuilder::visitBitCast(const User &I) { 3515 SDValue N = getValue(I.getOperand(0)); 3516 SDLoc dl = getCurSDLoc(); 3517 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3518 I.getType()); 3519 3520 // BitCast assures us that source and destination are the same size so this is 3521 // either a BITCAST or a no-op. 3522 if (DestVT != N.getValueType()) 3523 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3524 DestVT, N)); // convert types. 3525 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3526 // might fold any kind of constant expression to an integer constant and that 3527 // is not what we are looking for. Only recognize a bitcast of a genuine 3528 // constant integer as an opaque constant. 3529 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3530 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3531 /*isOpaque*/true)); 3532 else 3533 setValue(&I, N); // noop cast. 3534 } 3535 3536 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3538 const Value *SV = I.getOperand(0); 3539 SDValue N = getValue(SV); 3540 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3541 3542 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3543 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3544 3545 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3546 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3547 3548 setValue(&I, N); 3549 } 3550 3551 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 SDValue InVec = getValue(I.getOperand(0)); 3554 SDValue InVal = getValue(I.getOperand(1)); 3555 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3556 TLI.getVectorIdxTy(DAG.getDataLayout())); 3557 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3558 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3559 InVec, InVal, InIdx)); 3560 } 3561 3562 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3563 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3564 SDValue InVec = getValue(I.getOperand(0)); 3565 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3566 TLI.getVectorIdxTy(DAG.getDataLayout())); 3567 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3568 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3569 InVec, InIdx)); 3570 } 3571 3572 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3573 SDValue Src1 = getValue(I.getOperand(0)); 3574 SDValue Src2 = getValue(I.getOperand(1)); 3575 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3576 SDLoc DL = getCurSDLoc(); 3577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3578 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3579 EVT SrcVT = Src1.getValueType(); 3580 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3581 3582 if (MaskV->isNullValue() && VT.isScalableVector()) { 3583 // Canonical splat form of first element of first input vector. 3584 SDValue FirstElt = 3585 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3586 DAG.getVectorIdxConstant(0, DL)); 3587 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3588 return; 3589 } 3590 3591 // For now, we only handle splats for scalable vectors. 3592 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3593 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3594 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3595 3596 SmallVector<int, 8> Mask; 3597 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3598 unsigned MaskNumElts = Mask.size(); 3599 3600 if (SrcNumElts == MaskNumElts) { 3601 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3602 return; 3603 } 3604 3605 // Normalize the shuffle vector since mask and vector length don't match. 3606 if (SrcNumElts < MaskNumElts) { 3607 // Mask is longer than the source vectors. We can use concatenate vector to 3608 // make the mask and vectors lengths match. 3609 3610 if (MaskNumElts % SrcNumElts == 0) { 3611 // Mask length is a multiple of the source vector length. 3612 // Check if the shuffle is some kind of concatenation of the input 3613 // vectors. 3614 unsigned NumConcat = MaskNumElts / SrcNumElts; 3615 bool IsConcat = true; 3616 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3617 for (unsigned i = 0; i != MaskNumElts; ++i) { 3618 int Idx = Mask[i]; 3619 if (Idx < 0) 3620 continue; 3621 // Ensure the indices in each SrcVT sized piece are sequential and that 3622 // the same source is used for the whole piece. 3623 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3624 (ConcatSrcs[i / SrcNumElts] >= 0 && 3625 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3626 IsConcat = false; 3627 break; 3628 } 3629 // Remember which source this index came from. 3630 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3631 } 3632 3633 // The shuffle is concatenating multiple vectors together. Just emit 3634 // a CONCAT_VECTORS operation. 3635 if (IsConcat) { 3636 SmallVector<SDValue, 8> ConcatOps; 3637 for (auto Src : ConcatSrcs) { 3638 if (Src < 0) 3639 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3640 else if (Src == 0) 3641 ConcatOps.push_back(Src1); 3642 else 3643 ConcatOps.push_back(Src2); 3644 } 3645 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3646 return; 3647 } 3648 } 3649 3650 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3651 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3652 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3653 PaddedMaskNumElts); 3654 3655 // Pad both vectors with undefs to make them the same length as the mask. 3656 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3657 3658 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3659 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3660 MOps1[0] = Src1; 3661 MOps2[0] = Src2; 3662 3663 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3664 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3665 3666 // Readjust mask for new input vector length. 3667 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3668 for (unsigned i = 0; i != MaskNumElts; ++i) { 3669 int Idx = Mask[i]; 3670 if (Idx >= (int)SrcNumElts) 3671 Idx -= SrcNumElts - PaddedMaskNumElts; 3672 MappedOps[i] = Idx; 3673 } 3674 3675 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3676 3677 // If the concatenated vector was padded, extract a subvector with the 3678 // correct number of elements. 3679 if (MaskNumElts != PaddedMaskNumElts) 3680 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3681 DAG.getVectorIdxConstant(0, DL)); 3682 3683 setValue(&I, Result); 3684 return; 3685 } 3686 3687 if (SrcNumElts > MaskNumElts) { 3688 // Analyze the access pattern of the vector to see if we can extract 3689 // two subvectors and do the shuffle. 3690 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3691 bool CanExtract = true; 3692 for (int Idx : Mask) { 3693 unsigned Input = 0; 3694 if (Idx < 0) 3695 continue; 3696 3697 if (Idx >= (int)SrcNumElts) { 3698 Input = 1; 3699 Idx -= SrcNumElts; 3700 } 3701 3702 // If all the indices come from the same MaskNumElts sized portion of 3703 // the sources we can use extract. Also make sure the extract wouldn't 3704 // extract past the end of the source. 3705 int NewStartIdx = alignDown(Idx, MaskNumElts); 3706 if (NewStartIdx + MaskNumElts > SrcNumElts || 3707 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3708 CanExtract = false; 3709 // Make sure we always update StartIdx as we use it to track if all 3710 // elements are undef. 3711 StartIdx[Input] = NewStartIdx; 3712 } 3713 3714 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3715 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3716 return; 3717 } 3718 if (CanExtract) { 3719 // Extract appropriate subvector and generate a vector shuffle 3720 for (unsigned Input = 0; Input < 2; ++Input) { 3721 SDValue &Src = Input == 0 ? Src1 : Src2; 3722 if (StartIdx[Input] < 0) 3723 Src = DAG.getUNDEF(VT); 3724 else { 3725 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3726 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3727 } 3728 } 3729 3730 // Calculate new mask. 3731 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3732 for (int &Idx : MappedOps) { 3733 if (Idx >= (int)SrcNumElts) 3734 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3735 else if (Idx >= 0) 3736 Idx -= StartIdx[0]; 3737 } 3738 3739 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3740 return; 3741 } 3742 } 3743 3744 // We can't use either concat vectors or extract subvectors so fall back to 3745 // replacing the shuffle with extract and build vector. 3746 // to insert and build vector. 3747 EVT EltVT = VT.getVectorElementType(); 3748 SmallVector<SDValue,8> Ops; 3749 for (int Idx : Mask) { 3750 SDValue Res; 3751 3752 if (Idx < 0) { 3753 Res = DAG.getUNDEF(EltVT); 3754 } else { 3755 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3756 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3757 3758 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3759 DAG.getVectorIdxConstant(Idx, DL)); 3760 } 3761 3762 Ops.push_back(Res); 3763 } 3764 3765 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3766 } 3767 3768 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3769 ArrayRef<unsigned> Indices; 3770 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3771 Indices = IV->getIndices(); 3772 else 3773 Indices = cast<ConstantExpr>(&I)->getIndices(); 3774 3775 const Value *Op0 = I.getOperand(0); 3776 const Value *Op1 = I.getOperand(1); 3777 Type *AggTy = I.getType(); 3778 Type *ValTy = Op1->getType(); 3779 bool IntoUndef = isa<UndefValue>(Op0); 3780 bool FromUndef = isa<UndefValue>(Op1); 3781 3782 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3783 3784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3785 SmallVector<EVT, 4> AggValueVTs; 3786 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3787 SmallVector<EVT, 4> ValValueVTs; 3788 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3789 3790 unsigned NumAggValues = AggValueVTs.size(); 3791 unsigned NumValValues = ValValueVTs.size(); 3792 SmallVector<SDValue, 4> Values(NumAggValues); 3793 3794 // Ignore an insertvalue that produces an empty object 3795 if (!NumAggValues) { 3796 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3797 return; 3798 } 3799 3800 SDValue Agg = getValue(Op0); 3801 unsigned i = 0; 3802 // Copy the beginning value(s) from the original aggregate. 3803 for (; i != LinearIndex; ++i) 3804 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3805 SDValue(Agg.getNode(), Agg.getResNo() + i); 3806 // Copy values from the inserted value(s). 3807 if (NumValValues) { 3808 SDValue Val = getValue(Op1); 3809 for (; i != LinearIndex + NumValValues; ++i) 3810 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3811 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3812 } 3813 // Copy remaining value(s) from the original aggregate. 3814 for (; i != NumAggValues; ++i) 3815 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3816 SDValue(Agg.getNode(), Agg.getResNo() + i); 3817 3818 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3819 DAG.getVTList(AggValueVTs), Values)); 3820 } 3821 3822 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3823 ArrayRef<unsigned> Indices; 3824 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3825 Indices = EV->getIndices(); 3826 else 3827 Indices = cast<ConstantExpr>(&I)->getIndices(); 3828 3829 const Value *Op0 = I.getOperand(0); 3830 Type *AggTy = Op0->getType(); 3831 Type *ValTy = I.getType(); 3832 bool OutOfUndef = isa<UndefValue>(Op0); 3833 3834 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3835 3836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3837 SmallVector<EVT, 4> ValValueVTs; 3838 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3839 3840 unsigned NumValValues = ValValueVTs.size(); 3841 3842 // Ignore a extractvalue that produces an empty object 3843 if (!NumValValues) { 3844 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3845 return; 3846 } 3847 3848 SmallVector<SDValue, 4> Values(NumValValues); 3849 3850 SDValue Agg = getValue(Op0); 3851 // Copy out the selected value(s). 3852 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3853 Values[i - LinearIndex] = 3854 OutOfUndef ? 3855 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3856 SDValue(Agg.getNode(), Agg.getResNo() + i); 3857 3858 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3859 DAG.getVTList(ValValueVTs), Values)); 3860 } 3861 3862 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3863 Value *Op0 = I.getOperand(0); 3864 // Note that the pointer operand may be a vector of pointers. Take the scalar 3865 // element which holds a pointer. 3866 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3867 SDValue N = getValue(Op0); 3868 SDLoc dl = getCurSDLoc(); 3869 auto &TLI = DAG.getTargetLoweringInfo(); 3870 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3871 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3872 3873 // Normalize Vector GEP - all scalar operands should be converted to the 3874 // splat vector. 3875 bool IsVectorGEP = I.getType()->isVectorTy(); 3876 ElementCount VectorElementCount = IsVectorGEP ? 3877 I.getType()->getVectorElementCount() : ElementCount(0, false); 3878 3879 if (IsVectorGEP && !N.getValueType().isVector()) { 3880 LLVMContext &Context = *DAG.getContext(); 3881 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3882 if (VectorElementCount.Scalable) 3883 N = DAG.getSplatVector(VT, dl, N); 3884 else 3885 N = DAG.getSplatBuildVector(VT, dl, N); 3886 } 3887 3888 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3889 GTI != E; ++GTI) { 3890 const Value *Idx = GTI.getOperand(); 3891 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3892 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3893 if (Field) { 3894 // N = N + Offset 3895 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3896 3897 // In an inbounds GEP with an offset that is nonnegative even when 3898 // interpreted as signed, assume there is no unsigned overflow. 3899 SDNodeFlags Flags; 3900 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3901 Flags.setNoUnsignedWrap(true); 3902 3903 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3904 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3905 } 3906 } else { 3907 // IdxSize is the width of the arithmetic according to IR semantics. 3908 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3909 // (and fix up the result later). 3910 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3911 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3912 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3913 // We intentionally mask away the high bits here; ElementSize may not 3914 // fit in IdxTy. 3915 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3916 bool ElementScalable = ElementSize.isScalable(); 3917 3918 // If this is a scalar constant or a splat vector of constants, 3919 // handle it quickly. 3920 const auto *C = dyn_cast<Constant>(Idx); 3921 if (C && isa<VectorType>(C->getType())) 3922 C = C->getSplatValue(); 3923 3924 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3925 if (CI && CI->isZero()) 3926 continue; 3927 if (CI && !ElementScalable) { 3928 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3929 LLVMContext &Context = *DAG.getContext(); 3930 SDValue OffsVal; 3931 if (IsVectorGEP) 3932 OffsVal = DAG.getConstant( 3933 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3934 else 3935 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3936 3937 // In an inbounds GEP with an offset that is nonnegative even when 3938 // interpreted as signed, assume there is no unsigned overflow. 3939 SDNodeFlags Flags; 3940 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3941 Flags.setNoUnsignedWrap(true); 3942 3943 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3944 3945 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3946 continue; 3947 } 3948 3949 // N = N + Idx * ElementMul; 3950 SDValue IdxN = getValue(Idx); 3951 3952 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3953 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3954 VectorElementCount); 3955 if (VectorElementCount.Scalable) 3956 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3957 else 3958 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3959 } 3960 3961 // If the index is smaller or larger than intptr_t, truncate or extend 3962 // it. 3963 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3964 3965 if (ElementScalable) { 3966 EVT VScaleTy = N.getValueType().getScalarType(); 3967 SDValue VScale = DAG.getNode( 3968 ISD::VSCALE, dl, VScaleTy, 3969 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3970 if (IsVectorGEP) 3971 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3972 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3973 } else { 3974 // If this is a multiply by a power of two, turn it into a shl 3975 // immediately. This is a very common case. 3976 if (ElementMul != 1) { 3977 if (ElementMul.isPowerOf2()) { 3978 unsigned Amt = ElementMul.logBase2(); 3979 IdxN = DAG.getNode(ISD::SHL, dl, 3980 N.getValueType(), IdxN, 3981 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3982 } else { 3983 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3984 IdxN.getValueType()); 3985 IdxN = DAG.getNode(ISD::MUL, dl, 3986 N.getValueType(), IdxN, Scale); 3987 } 3988 } 3989 } 3990 3991 N = DAG.getNode(ISD::ADD, dl, 3992 N.getValueType(), N, IdxN); 3993 } 3994 } 3995 3996 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3997 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3998 3999 setValue(&I, N); 4000 } 4001 4002 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4003 // If this is a fixed sized alloca in the entry block of the function, 4004 // allocate it statically on the stack. 4005 if (FuncInfo.StaticAllocaMap.count(&I)) 4006 return; // getValue will auto-populate this. 4007 4008 SDLoc dl = getCurSDLoc(); 4009 Type *Ty = I.getAllocatedType(); 4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4011 auto &DL = DAG.getDataLayout(); 4012 uint64_t TySize = DL.getTypeAllocSize(Ty); 4013 unsigned Align = 4014 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 4015 4016 SDValue AllocSize = getValue(I.getArraySize()); 4017 4018 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4019 if (AllocSize.getValueType() != IntPtr) 4020 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4021 4022 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4023 AllocSize, 4024 DAG.getConstant(TySize, dl, IntPtr)); 4025 4026 // Handle alignment. If the requested alignment is less than or equal to 4027 // the stack alignment, ignore it. If the size is greater than or equal to 4028 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4029 unsigned StackAlign = 4030 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 4031 if (Align <= StackAlign) 4032 Align = 0; 4033 4034 // Round the size of the allocation up to the stack alignment size 4035 // by add SA-1 to the size. This doesn't overflow because we're computing 4036 // an address inside an alloca. 4037 SDNodeFlags Flags; 4038 Flags.setNoUnsignedWrap(true); 4039 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4040 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4041 4042 // Mask out the low bits for alignment purposes. 4043 AllocSize = 4044 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4045 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4046 4047 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4048 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4049 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4050 setValue(&I, DSA); 4051 DAG.setRoot(DSA.getValue(1)); 4052 4053 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4054 } 4055 4056 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4057 if (I.isAtomic()) 4058 return visitAtomicLoad(I); 4059 4060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4061 const Value *SV = I.getOperand(0); 4062 if (TLI.supportSwiftError()) { 4063 // Swifterror values can come from either a function parameter with 4064 // swifterror attribute or an alloca with swifterror attribute. 4065 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4066 if (Arg->hasSwiftErrorAttr()) 4067 return visitLoadFromSwiftError(I); 4068 } 4069 4070 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4071 if (Alloca->isSwiftError()) 4072 return visitLoadFromSwiftError(I); 4073 } 4074 } 4075 4076 SDValue Ptr = getValue(SV); 4077 4078 Type *Ty = I.getType(); 4079 unsigned Alignment = I.getAlignment(); 4080 4081 AAMDNodes AAInfo; 4082 I.getAAMetadata(AAInfo); 4083 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4084 4085 SmallVector<EVT, 4> ValueVTs, MemVTs; 4086 SmallVector<uint64_t, 4> Offsets; 4087 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4088 unsigned NumValues = ValueVTs.size(); 4089 if (NumValues == 0) 4090 return; 4091 4092 bool isVolatile = I.isVolatile(); 4093 4094 SDValue Root; 4095 bool ConstantMemory = false; 4096 if (isVolatile) 4097 // Serialize volatile loads with other side effects. 4098 Root = getRoot(); 4099 else if (NumValues > MaxParallelChains) 4100 Root = getMemoryRoot(); 4101 else if (AA && 4102 AA->pointsToConstantMemory(MemoryLocation( 4103 SV, 4104 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4105 AAInfo))) { 4106 // Do not serialize (non-volatile) loads of constant memory with anything. 4107 Root = DAG.getEntryNode(); 4108 ConstantMemory = true; 4109 } else { 4110 // Do not serialize non-volatile loads against each other. 4111 Root = DAG.getRoot(); 4112 } 4113 4114 SDLoc dl = getCurSDLoc(); 4115 4116 if (isVolatile) 4117 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4118 4119 // An aggregate load cannot wrap around the address space, so offsets to its 4120 // parts don't wrap either. 4121 SDNodeFlags Flags; 4122 Flags.setNoUnsignedWrap(true); 4123 4124 SmallVector<SDValue, 4> Values(NumValues); 4125 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4126 EVT PtrVT = Ptr.getValueType(); 4127 4128 MachineMemOperand::Flags MMOFlags 4129 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4130 4131 unsigned ChainI = 0; 4132 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4133 // Serializing loads here may result in excessive register pressure, and 4134 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4135 // could recover a bit by hoisting nodes upward in the chain by recognizing 4136 // they are side-effect free or do not alias. The optimizer should really 4137 // avoid this case by converting large object/array copies to llvm.memcpy 4138 // (MaxParallelChains should always remain as failsafe). 4139 if (ChainI == MaxParallelChains) { 4140 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4141 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4142 makeArrayRef(Chains.data(), ChainI)); 4143 Root = Chain; 4144 ChainI = 0; 4145 } 4146 SDValue A = DAG.getNode(ISD::ADD, dl, 4147 PtrVT, Ptr, 4148 DAG.getConstant(Offsets[i], dl, PtrVT), 4149 Flags); 4150 4151 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4152 MachinePointerInfo(SV, Offsets[i]), Alignment, 4153 MMOFlags, AAInfo, Ranges); 4154 Chains[ChainI] = L.getValue(1); 4155 4156 if (MemVTs[i] != ValueVTs[i]) 4157 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4158 4159 Values[i] = L; 4160 } 4161 4162 if (!ConstantMemory) { 4163 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4164 makeArrayRef(Chains.data(), ChainI)); 4165 if (isVolatile) 4166 DAG.setRoot(Chain); 4167 else 4168 PendingLoads.push_back(Chain); 4169 } 4170 4171 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4172 DAG.getVTList(ValueVTs), Values)); 4173 } 4174 4175 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4176 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4177 "call visitStoreToSwiftError when backend supports swifterror"); 4178 4179 SmallVector<EVT, 4> ValueVTs; 4180 SmallVector<uint64_t, 4> Offsets; 4181 const Value *SrcV = I.getOperand(0); 4182 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4183 SrcV->getType(), ValueVTs, &Offsets); 4184 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4185 "expect a single EVT for swifterror"); 4186 4187 SDValue Src = getValue(SrcV); 4188 // Create a virtual register, then update the virtual register. 4189 Register VReg = 4190 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4191 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4192 // Chain can be getRoot or getControlRoot. 4193 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4194 SDValue(Src.getNode(), Src.getResNo())); 4195 DAG.setRoot(CopyNode); 4196 } 4197 4198 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4199 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4200 "call visitLoadFromSwiftError when backend supports swifterror"); 4201 4202 assert(!I.isVolatile() && 4203 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4204 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4205 "Support volatile, non temporal, invariant for load_from_swift_error"); 4206 4207 const Value *SV = I.getOperand(0); 4208 Type *Ty = I.getType(); 4209 AAMDNodes AAInfo; 4210 I.getAAMetadata(AAInfo); 4211 assert( 4212 (!AA || 4213 !AA->pointsToConstantMemory(MemoryLocation( 4214 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4215 AAInfo))) && 4216 "load_from_swift_error should not be constant memory"); 4217 4218 SmallVector<EVT, 4> ValueVTs; 4219 SmallVector<uint64_t, 4> Offsets; 4220 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4221 ValueVTs, &Offsets); 4222 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4223 "expect a single EVT for swifterror"); 4224 4225 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4226 SDValue L = DAG.getCopyFromReg( 4227 getRoot(), getCurSDLoc(), 4228 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4229 4230 setValue(&I, L); 4231 } 4232 4233 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4234 if (I.isAtomic()) 4235 return visitAtomicStore(I); 4236 4237 const Value *SrcV = I.getOperand(0); 4238 const Value *PtrV = I.getOperand(1); 4239 4240 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4241 if (TLI.supportSwiftError()) { 4242 // Swifterror values can come from either a function parameter with 4243 // swifterror attribute or an alloca with swifterror attribute. 4244 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4245 if (Arg->hasSwiftErrorAttr()) 4246 return visitStoreToSwiftError(I); 4247 } 4248 4249 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4250 if (Alloca->isSwiftError()) 4251 return visitStoreToSwiftError(I); 4252 } 4253 } 4254 4255 SmallVector<EVT, 4> ValueVTs, MemVTs; 4256 SmallVector<uint64_t, 4> Offsets; 4257 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4258 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4259 unsigned NumValues = ValueVTs.size(); 4260 if (NumValues == 0) 4261 return; 4262 4263 // Get the lowered operands. Note that we do this after 4264 // checking if NumResults is zero, because with zero results 4265 // the operands won't have values in the map. 4266 SDValue Src = getValue(SrcV); 4267 SDValue Ptr = getValue(PtrV); 4268 4269 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4270 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4271 SDLoc dl = getCurSDLoc(); 4272 unsigned Alignment = I.getAlignment(); 4273 AAMDNodes AAInfo; 4274 I.getAAMetadata(AAInfo); 4275 4276 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4277 4278 // An aggregate load cannot wrap around the address space, so offsets to its 4279 // parts don't wrap either. 4280 SDNodeFlags Flags; 4281 Flags.setNoUnsignedWrap(true); 4282 4283 unsigned ChainI = 0; 4284 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4285 // See visitLoad comments. 4286 if (ChainI == MaxParallelChains) { 4287 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4288 makeArrayRef(Chains.data(), ChainI)); 4289 Root = Chain; 4290 ChainI = 0; 4291 } 4292 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4293 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4294 if (MemVTs[i] != ValueVTs[i]) 4295 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4296 SDValue St = 4297 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4298 Alignment, MMOFlags, AAInfo); 4299 Chains[ChainI] = St; 4300 } 4301 4302 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4303 makeArrayRef(Chains.data(), ChainI)); 4304 DAG.setRoot(StoreNode); 4305 } 4306 4307 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4308 bool IsCompressing) { 4309 SDLoc sdl = getCurSDLoc(); 4310 4311 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4312 unsigned& Alignment) { 4313 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4314 Src0 = I.getArgOperand(0); 4315 Ptr = I.getArgOperand(1); 4316 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4317 Mask = I.getArgOperand(3); 4318 }; 4319 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4320 unsigned& Alignment) { 4321 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4322 Src0 = I.getArgOperand(0); 4323 Ptr = I.getArgOperand(1); 4324 Mask = I.getArgOperand(2); 4325 Alignment = 0; 4326 }; 4327 4328 Value *PtrOperand, *MaskOperand, *Src0Operand; 4329 unsigned Alignment; 4330 if (IsCompressing) 4331 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4332 else 4333 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4334 4335 SDValue Ptr = getValue(PtrOperand); 4336 SDValue Src0 = getValue(Src0Operand); 4337 SDValue Mask = getValue(MaskOperand); 4338 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4339 4340 EVT VT = Src0.getValueType(); 4341 if (!Alignment) 4342 Alignment = DAG.getEVTAlignment(VT); 4343 4344 AAMDNodes AAInfo; 4345 I.getAAMetadata(AAInfo); 4346 4347 MachineMemOperand *MMO = 4348 DAG.getMachineFunction(). 4349 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4350 MachineMemOperand::MOStore, 4351 // TODO: Make MachineMemOperands aware of scalable 4352 // vectors. 4353 VT.getStoreSize().getKnownMinSize(), 4354 Alignment, AAInfo); 4355 SDValue StoreNode = 4356 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4357 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4358 DAG.setRoot(StoreNode); 4359 setValue(&I, StoreNode); 4360 } 4361 4362 // Get a uniform base for the Gather/Scatter intrinsic. 4363 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4364 // We try to represent it as a base pointer + vector of indices. 4365 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4366 // The first operand of the GEP may be a single pointer or a vector of pointers 4367 // Example: 4368 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4369 // or 4370 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4371 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4372 // 4373 // When the first GEP operand is a single pointer - it is the uniform base we 4374 // are looking for. If first operand of the GEP is a splat vector - we 4375 // extract the splat value and use it as a uniform base. 4376 // In all other cases the function returns 'false'. 4377 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4378 ISD::MemIndexType &IndexType, SDValue &Scale, 4379 SelectionDAGBuilder *SDB) { 4380 SelectionDAG& DAG = SDB->DAG; 4381 LLVMContext &Context = *DAG.getContext(); 4382 4383 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4384 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4385 if (!GEP) 4386 return false; 4387 4388 const Value *GEPPtr = GEP->getPointerOperand(); 4389 if (!GEPPtr->getType()->isVectorTy()) 4390 Ptr = GEPPtr; 4391 else if (!(Ptr = getSplatValue(GEPPtr))) 4392 return false; 4393 4394 unsigned FinalIndex = GEP->getNumOperands() - 1; 4395 Value *IndexVal = GEP->getOperand(FinalIndex); 4396 gep_type_iterator GTI = gep_type_begin(*GEP); 4397 4398 // Ensure all the other indices are 0. 4399 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4400 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4401 if (!C) 4402 return false; 4403 if (isa<VectorType>(C->getType())) 4404 C = C->getSplatValue(); 4405 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4406 if (!CI || !CI->isZero()) 4407 return false; 4408 } 4409 4410 // The operands of the GEP may be defined in another basic block. 4411 // In this case we'll not find nodes for the operands. 4412 if (!SDB->findValue(Ptr)) 4413 return false; 4414 Constant *C = dyn_cast<Constant>(IndexVal); 4415 if (!C && !SDB->findValue(IndexVal)) 4416 return false; 4417 4418 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4419 const DataLayout &DL = DAG.getDataLayout(); 4420 StructType *STy = GTI.getStructTypeOrNull(); 4421 4422 if (STy) { 4423 const StructLayout *SL = DL.getStructLayout(STy); 4424 if (isa<VectorType>(C->getType())) { 4425 C = C->getSplatValue(); 4426 // FIXME: If getSplatValue may return nullptr for a structure? 4427 // If not, the following check can be removed. 4428 if (!C) 4429 return false; 4430 } 4431 auto *CI = cast<ConstantInt>(C); 4432 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4433 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4434 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4435 } else { 4436 Scale = DAG.getTargetConstant( 4437 DL.getTypeAllocSize(GEP->getResultElementType()), 4438 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4439 Index = SDB->getValue(IndexVal); 4440 } 4441 Base = SDB->getValue(Ptr); 4442 IndexType = ISD::SIGNED_SCALED; 4443 4444 if (STy || !Index.getValueType().isVector()) { 4445 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4446 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4447 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4448 } 4449 return true; 4450 } 4451 4452 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4453 SDLoc sdl = getCurSDLoc(); 4454 4455 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4456 const Value *Ptr = I.getArgOperand(1); 4457 SDValue Src0 = getValue(I.getArgOperand(0)); 4458 SDValue Mask = getValue(I.getArgOperand(3)); 4459 EVT VT = Src0.getValueType(); 4460 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4461 if (!Alignment) 4462 Alignment = DAG.getEVTAlignment(VT); 4463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4464 4465 AAMDNodes AAInfo; 4466 I.getAAMetadata(AAInfo); 4467 4468 SDValue Base; 4469 SDValue Index; 4470 ISD::MemIndexType IndexType; 4471 SDValue Scale; 4472 const Value *BasePtr = Ptr; 4473 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4474 this); 4475 4476 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4477 MachineMemOperand *MMO = DAG.getMachineFunction(). 4478 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4479 MachineMemOperand::MOStore, 4480 // TODO: Make MachineMemOperands aware of scalable 4481 // vectors. 4482 VT.getStoreSize().getKnownMinSize(), 4483 Alignment, AAInfo); 4484 if (!UniformBase) { 4485 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4486 Index = getValue(Ptr); 4487 IndexType = ISD::SIGNED_SCALED; 4488 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4489 } 4490 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4491 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4492 Ops, MMO, IndexType); 4493 DAG.setRoot(Scatter); 4494 setValue(&I, Scatter); 4495 } 4496 4497 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4498 SDLoc sdl = getCurSDLoc(); 4499 4500 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4501 unsigned& Alignment) { 4502 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4503 Ptr = I.getArgOperand(0); 4504 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4505 Mask = I.getArgOperand(2); 4506 Src0 = I.getArgOperand(3); 4507 }; 4508 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4509 unsigned& Alignment) { 4510 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4511 Ptr = I.getArgOperand(0); 4512 Alignment = 0; 4513 Mask = I.getArgOperand(1); 4514 Src0 = I.getArgOperand(2); 4515 }; 4516 4517 Value *PtrOperand, *MaskOperand, *Src0Operand; 4518 unsigned Alignment; 4519 if (IsExpanding) 4520 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4521 else 4522 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4523 4524 SDValue Ptr = getValue(PtrOperand); 4525 SDValue Src0 = getValue(Src0Operand); 4526 SDValue Mask = getValue(MaskOperand); 4527 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4528 4529 EVT VT = Src0.getValueType(); 4530 if (!Alignment) 4531 Alignment = DAG.getEVTAlignment(VT); 4532 4533 AAMDNodes AAInfo; 4534 I.getAAMetadata(AAInfo); 4535 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4536 4537 // Do not serialize masked loads of constant memory with anything. 4538 MemoryLocation ML; 4539 if (VT.isScalableVector()) 4540 ML = MemoryLocation(PtrOperand); 4541 else 4542 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4543 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4544 AAInfo); 4545 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4546 4547 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4548 4549 MachineMemOperand *MMO = 4550 DAG.getMachineFunction(). 4551 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4552 MachineMemOperand::MOLoad, 4553 // TODO: Make MachineMemOperands aware of scalable 4554 // vectors. 4555 VT.getStoreSize().getKnownMinSize(), 4556 Alignment, AAInfo, Ranges); 4557 4558 SDValue Load = 4559 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4560 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4561 if (AddToChain) 4562 PendingLoads.push_back(Load.getValue(1)); 4563 setValue(&I, Load); 4564 } 4565 4566 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4567 SDLoc sdl = getCurSDLoc(); 4568 4569 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4570 const Value *Ptr = I.getArgOperand(0); 4571 SDValue Src0 = getValue(I.getArgOperand(3)); 4572 SDValue Mask = getValue(I.getArgOperand(2)); 4573 4574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4575 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4576 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4577 if (!Alignment) 4578 Alignment = DAG.getEVTAlignment(VT); 4579 4580 AAMDNodes AAInfo; 4581 I.getAAMetadata(AAInfo); 4582 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4583 4584 SDValue Root = DAG.getRoot(); 4585 SDValue Base; 4586 SDValue Index; 4587 ISD::MemIndexType IndexType; 4588 SDValue Scale; 4589 const Value *BasePtr = Ptr; 4590 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4591 this); 4592 bool ConstantMemory = false; 4593 if (UniformBase && AA && 4594 AA->pointsToConstantMemory( 4595 MemoryLocation(BasePtr, 4596 LocationSize::precise( 4597 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4598 AAInfo))) { 4599 // Do not serialize (non-volatile) loads of constant memory with anything. 4600 Root = DAG.getEntryNode(); 4601 ConstantMemory = true; 4602 } 4603 4604 MachineMemOperand *MMO = 4605 DAG.getMachineFunction(). 4606 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4607 MachineMemOperand::MOLoad, 4608 // TODO: Make MachineMemOperands aware of scalable 4609 // vectors. 4610 VT.getStoreSize().getKnownMinSize(), 4611 Alignment, AAInfo, Ranges); 4612 4613 if (!UniformBase) { 4614 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4615 Index = getValue(Ptr); 4616 IndexType = ISD::SIGNED_SCALED; 4617 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4618 } 4619 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4620 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4621 Ops, MMO, IndexType); 4622 4623 SDValue OutChain = Gather.getValue(1); 4624 if (!ConstantMemory) 4625 PendingLoads.push_back(OutChain); 4626 setValue(&I, Gather); 4627 } 4628 4629 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4630 SDLoc dl = getCurSDLoc(); 4631 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4632 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4633 SyncScope::ID SSID = I.getSyncScopeID(); 4634 4635 SDValue InChain = getRoot(); 4636 4637 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4638 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4639 4640 auto Alignment = DAG.getEVTAlignment(MemVT); 4641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4642 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4643 4644 MachineFunction &MF = DAG.getMachineFunction(); 4645 MachineMemOperand *MMO = 4646 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4647 Flags, MemVT.getStoreSize(), Alignment, 4648 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4649 FailureOrdering); 4650 4651 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4652 dl, MemVT, VTs, InChain, 4653 getValue(I.getPointerOperand()), 4654 getValue(I.getCompareOperand()), 4655 getValue(I.getNewValOperand()), MMO); 4656 4657 SDValue OutChain = L.getValue(2); 4658 4659 setValue(&I, L); 4660 DAG.setRoot(OutChain); 4661 } 4662 4663 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4664 SDLoc dl = getCurSDLoc(); 4665 ISD::NodeType NT; 4666 switch (I.getOperation()) { 4667 default: llvm_unreachable("Unknown atomicrmw operation"); 4668 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4669 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4670 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4671 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4672 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4673 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4674 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4675 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4676 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4677 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4678 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4679 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4680 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4681 } 4682 AtomicOrdering Ordering = I.getOrdering(); 4683 SyncScope::ID SSID = I.getSyncScopeID(); 4684 4685 SDValue InChain = getRoot(); 4686 4687 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4688 auto Alignment = DAG.getEVTAlignment(MemVT); 4689 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4690 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4691 4692 MachineFunction &MF = DAG.getMachineFunction(); 4693 MachineMemOperand *MMO = 4694 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4695 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4696 nullptr, SSID, Ordering); 4697 4698 SDValue L = 4699 DAG.getAtomic(NT, dl, MemVT, InChain, 4700 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4701 MMO); 4702 4703 SDValue OutChain = L.getValue(1); 4704 4705 setValue(&I, L); 4706 DAG.setRoot(OutChain); 4707 } 4708 4709 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4710 SDLoc dl = getCurSDLoc(); 4711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4712 SDValue Ops[3]; 4713 Ops[0] = getRoot(); 4714 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4715 TLI.getFenceOperandTy(DAG.getDataLayout())); 4716 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4717 TLI.getFenceOperandTy(DAG.getDataLayout())); 4718 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4719 } 4720 4721 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4722 SDLoc dl = getCurSDLoc(); 4723 AtomicOrdering Order = I.getOrdering(); 4724 SyncScope::ID SSID = I.getSyncScopeID(); 4725 4726 SDValue InChain = getRoot(); 4727 4728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4729 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4730 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4731 4732 if (!TLI.supportsUnalignedAtomics() && 4733 I.getAlignment() < MemVT.getSizeInBits() / 8) 4734 report_fatal_error("Cannot generate unaligned atomic load"); 4735 4736 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4737 4738 MachineMemOperand *MMO = 4739 DAG.getMachineFunction(). 4740 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4741 Flags, MemVT.getStoreSize(), 4742 I.getAlignment() ? I.getAlignment() : 4743 DAG.getEVTAlignment(MemVT), 4744 AAMDNodes(), nullptr, SSID, Order); 4745 4746 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4747 4748 SDValue Ptr = getValue(I.getPointerOperand()); 4749 4750 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4751 // TODO: Once this is better exercised by tests, it should be merged with 4752 // the normal path for loads to prevent future divergence. 4753 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4754 if (MemVT != VT) 4755 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4756 4757 setValue(&I, L); 4758 SDValue OutChain = L.getValue(1); 4759 if (!I.isUnordered()) 4760 DAG.setRoot(OutChain); 4761 else 4762 PendingLoads.push_back(OutChain); 4763 return; 4764 } 4765 4766 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4767 Ptr, MMO); 4768 4769 SDValue OutChain = L.getValue(1); 4770 if (MemVT != VT) 4771 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4772 4773 setValue(&I, L); 4774 DAG.setRoot(OutChain); 4775 } 4776 4777 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4778 SDLoc dl = getCurSDLoc(); 4779 4780 AtomicOrdering Ordering = I.getOrdering(); 4781 SyncScope::ID SSID = I.getSyncScopeID(); 4782 4783 SDValue InChain = getRoot(); 4784 4785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4786 EVT MemVT = 4787 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4788 4789 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4790 report_fatal_error("Cannot generate unaligned atomic store"); 4791 4792 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4793 4794 MachineFunction &MF = DAG.getMachineFunction(); 4795 MachineMemOperand *MMO = 4796 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4797 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4798 nullptr, SSID, Ordering); 4799 4800 SDValue Val = getValue(I.getValueOperand()); 4801 if (Val.getValueType() != MemVT) 4802 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4803 SDValue Ptr = getValue(I.getPointerOperand()); 4804 4805 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4806 // TODO: Once this is better exercised by tests, it should be merged with 4807 // the normal path for stores to prevent future divergence. 4808 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4809 DAG.setRoot(S); 4810 return; 4811 } 4812 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4813 Ptr, Val, MMO); 4814 4815 4816 DAG.setRoot(OutChain); 4817 } 4818 4819 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4820 /// node. 4821 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4822 unsigned Intrinsic) { 4823 // Ignore the callsite's attributes. A specific call site may be marked with 4824 // readnone, but the lowering code will expect the chain based on the 4825 // definition. 4826 const Function *F = I.getCalledFunction(); 4827 bool HasChain = !F->doesNotAccessMemory(); 4828 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4829 4830 // Build the operand list. 4831 SmallVector<SDValue, 8> Ops; 4832 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4833 if (OnlyLoad) { 4834 // We don't need to serialize loads against other loads. 4835 Ops.push_back(DAG.getRoot()); 4836 } else { 4837 Ops.push_back(getRoot()); 4838 } 4839 } 4840 4841 // Info is set by getTgtMemInstrinsic 4842 TargetLowering::IntrinsicInfo Info; 4843 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4844 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4845 DAG.getMachineFunction(), 4846 Intrinsic); 4847 4848 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4849 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4850 Info.opc == ISD::INTRINSIC_W_CHAIN) 4851 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4852 TLI.getPointerTy(DAG.getDataLayout()))); 4853 4854 // Add all operands of the call to the operand list. 4855 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4856 const Value *Arg = I.getArgOperand(i); 4857 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4858 Ops.push_back(getValue(Arg)); 4859 continue; 4860 } 4861 4862 // Use TargetConstant instead of a regular constant for immarg. 4863 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4864 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4865 assert(CI->getBitWidth() <= 64 && 4866 "large intrinsic immediates not handled"); 4867 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4868 } else { 4869 Ops.push_back( 4870 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4871 } 4872 } 4873 4874 SmallVector<EVT, 4> ValueVTs; 4875 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4876 4877 if (HasChain) 4878 ValueVTs.push_back(MVT::Other); 4879 4880 SDVTList VTs = DAG.getVTList(ValueVTs); 4881 4882 // Create the node. 4883 SDValue Result; 4884 if (IsTgtIntrinsic) { 4885 // This is target intrinsic that touches memory 4886 AAMDNodes AAInfo; 4887 I.getAAMetadata(AAInfo); 4888 Result = DAG.getMemIntrinsicNode( 4889 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4890 MachinePointerInfo(Info.ptrVal, Info.offset), 4891 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4892 } else if (!HasChain) { 4893 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4894 } else if (!I.getType()->isVoidTy()) { 4895 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4896 } else { 4897 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4898 } 4899 4900 if (HasChain) { 4901 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4902 if (OnlyLoad) 4903 PendingLoads.push_back(Chain); 4904 else 4905 DAG.setRoot(Chain); 4906 } 4907 4908 if (!I.getType()->isVoidTy()) { 4909 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4910 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4911 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4912 } else 4913 Result = lowerRangeToAssertZExt(DAG, I, Result); 4914 4915 setValue(&I, Result); 4916 } 4917 } 4918 4919 /// GetSignificand - Get the significand and build it into a floating-point 4920 /// number with exponent of 1: 4921 /// 4922 /// Op = (Op & 0x007fffff) | 0x3f800000; 4923 /// 4924 /// where Op is the hexadecimal representation of floating point value. 4925 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4926 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4927 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4928 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4929 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4930 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4931 } 4932 4933 /// GetExponent - Get the exponent: 4934 /// 4935 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4936 /// 4937 /// where Op is the hexadecimal representation of floating point value. 4938 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4939 const TargetLowering &TLI, const SDLoc &dl) { 4940 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4941 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4942 SDValue t1 = DAG.getNode( 4943 ISD::SRL, dl, MVT::i32, t0, 4944 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4945 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4946 DAG.getConstant(127, dl, MVT::i32)); 4947 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4948 } 4949 4950 /// getF32Constant - Get 32-bit floating point constant. 4951 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4952 const SDLoc &dl) { 4953 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4954 MVT::f32); 4955 } 4956 4957 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4958 SelectionDAG &DAG) { 4959 // TODO: What fast-math-flags should be set on the floating-point nodes? 4960 4961 // IntegerPartOfX = ((int32_t)(t0); 4962 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4963 4964 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4965 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4966 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4967 4968 // IntegerPartOfX <<= 23; 4969 IntegerPartOfX = DAG.getNode( 4970 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4971 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4972 DAG.getDataLayout()))); 4973 4974 SDValue TwoToFractionalPartOfX; 4975 if (LimitFloatPrecision <= 6) { 4976 // For floating-point precision of 6: 4977 // 4978 // TwoToFractionalPartOfX = 4979 // 0.997535578f + 4980 // (0.735607626f + 0.252464424f * x) * x; 4981 // 4982 // error 0.0144103317, which is 6 bits 4983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4984 getF32Constant(DAG, 0x3e814304, dl)); 4985 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4986 getF32Constant(DAG, 0x3f3c50c8, dl)); 4987 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4988 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4989 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4990 } else if (LimitFloatPrecision <= 12) { 4991 // For floating-point precision of 12: 4992 // 4993 // TwoToFractionalPartOfX = 4994 // 0.999892986f + 4995 // (0.696457318f + 4996 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4997 // 4998 // error 0.000107046256, which is 13 to 14 bits 4999 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5000 getF32Constant(DAG, 0x3da235e3, dl)); 5001 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5002 getF32Constant(DAG, 0x3e65b8f3, dl)); 5003 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5004 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5005 getF32Constant(DAG, 0x3f324b07, dl)); 5006 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5007 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5008 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5009 } else { // LimitFloatPrecision <= 18 5010 // For floating-point precision of 18: 5011 // 5012 // TwoToFractionalPartOfX = 5013 // 0.999999982f + 5014 // (0.693148872f + 5015 // (0.240227044f + 5016 // (0.554906021e-1f + 5017 // (0.961591928e-2f + 5018 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5019 // error 2.47208000*10^(-7), which is better than 18 bits 5020 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5021 getF32Constant(DAG, 0x3924b03e, dl)); 5022 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5023 getF32Constant(DAG, 0x3ab24b87, dl)); 5024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5026 getF32Constant(DAG, 0x3c1d8c17, dl)); 5027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5028 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5029 getF32Constant(DAG, 0x3d634a1d, dl)); 5030 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5031 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5032 getF32Constant(DAG, 0x3e75fe14, dl)); 5033 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5034 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5035 getF32Constant(DAG, 0x3f317234, dl)); 5036 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5037 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5038 getF32Constant(DAG, 0x3f800000, dl)); 5039 } 5040 5041 // Add the exponent into the result in integer domain. 5042 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5043 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5044 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5045 } 5046 5047 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5048 /// limited-precision mode. 5049 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5050 const TargetLowering &TLI) { 5051 if (Op.getValueType() == MVT::f32 && 5052 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5053 5054 // Put the exponent in the right bit position for later addition to the 5055 // final result: 5056 // 5057 // t0 = Op * log2(e) 5058 5059 // TODO: What fast-math-flags should be set here? 5060 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5061 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5062 return getLimitedPrecisionExp2(t0, dl, DAG); 5063 } 5064 5065 // No special expansion. 5066 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5067 } 5068 5069 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5070 /// limited-precision mode. 5071 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5072 const TargetLowering &TLI) { 5073 // TODO: What fast-math-flags should be set on the floating-point nodes? 5074 5075 if (Op.getValueType() == MVT::f32 && 5076 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5077 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5078 5079 // Scale the exponent by log(2). 5080 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5081 SDValue LogOfExponent = 5082 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5083 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5084 5085 // Get the significand and build it into a floating-point number with 5086 // exponent of 1. 5087 SDValue X = GetSignificand(DAG, Op1, dl); 5088 5089 SDValue LogOfMantissa; 5090 if (LimitFloatPrecision <= 6) { 5091 // For floating-point precision of 6: 5092 // 5093 // LogofMantissa = 5094 // -1.1609546f + 5095 // (1.4034025f - 0.23903021f * x) * x; 5096 // 5097 // error 0.0034276066, which is better than 8 bits 5098 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5099 getF32Constant(DAG, 0xbe74c456, dl)); 5100 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5101 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5102 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5103 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5104 getF32Constant(DAG, 0x3f949a29, dl)); 5105 } else if (LimitFloatPrecision <= 12) { 5106 // For floating-point precision of 12: 5107 // 5108 // LogOfMantissa = 5109 // -1.7417939f + 5110 // (2.8212026f + 5111 // (-1.4699568f + 5112 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5113 // 5114 // error 0.000061011436, which is 14 bits 5115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5116 getF32Constant(DAG, 0xbd67b6d6, dl)); 5117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5118 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5120 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3fbc278b, dl)); 5122 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5123 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5124 getF32Constant(DAG, 0x40348e95, dl)); 5125 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5126 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5127 getF32Constant(DAG, 0x3fdef31a, dl)); 5128 } else { // LimitFloatPrecision <= 18 5129 // For floating-point precision of 18: 5130 // 5131 // LogOfMantissa = 5132 // -2.1072184f + 5133 // (4.2372794f + 5134 // (-3.7029485f + 5135 // (2.2781945f + 5136 // (-0.87823314f + 5137 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5138 // 5139 // error 0.0000023660568, which is better than 18 bits 5140 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5141 getF32Constant(DAG, 0xbc91e5ac, dl)); 5142 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5143 getF32Constant(DAG, 0x3e4350aa, dl)); 5144 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5145 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5146 getF32Constant(DAG, 0x3f60d3e3, dl)); 5147 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5148 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5149 getF32Constant(DAG, 0x4011cdf0, dl)); 5150 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5151 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5152 getF32Constant(DAG, 0x406cfd1c, dl)); 5153 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5154 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5155 getF32Constant(DAG, 0x408797cb, dl)); 5156 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5157 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5158 getF32Constant(DAG, 0x4006dcab, dl)); 5159 } 5160 5161 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5162 } 5163 5164 // No special expansion. 5165 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5166 } 5167 5168 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5169 /// limited-precision mode. 5170 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5171 const TargetLowering &TLI) { 5172 // TODO: What fast-math-flags should be set on the floating-point nodes? 5173 5174 if (Op.getValueType() == MVT::f32 && 5175 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5176 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5177 5178 // Get the exponent. 5179 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5180 5181 // Get the significand and build it into a floating-point number with 5182 // exponent of 1. 5183 SDValue X = GetSignificand(DAG, Op1, dl); 5184 5185 // Different possible minimax approximations of significand in 5186 // floating-point for various degrees of accuracy over [1,2]. 5187 SDValue Log2ofMantissa; 5188 if (LimitFloatPrecision <= 6) { 5189 // For floating-point precision of 6: 5190 // 5191 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5192 // 5193 // error 0.0049451742, which is more than 7 bits 5194 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5195 getF32Constant(DAG, 0xbeb08fe0, dl)); 5196 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5197 getF32Constant(DAG, 0x40019463, dl)); 5198 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5199 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5200 getF32Constant(DAG, 0x3fd6633d, dl)); 5201 } else if (LimitFloatPrecision <= 12) { 5202 // For floating-point precision of 12: 5203 // 5204 // Log2ofMantissa = 5205 // -2.51285454f + 5206 // (4.07009056f + 5207 // (-2.12067489f + 5208 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5209 // 5210 // error 0.0000876136000, which is better than 13 bits 5211 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5212 getF32Constant(DAG, 0xbda7262e, dl)); 5213 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5214 getF32Constant(DAG, 0x3f25280b, dl)); 5215 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5216 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5217 getF32Constant(DAG, 0x4007b923, dl)); 5218 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5219 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5220 getF32Constant(DAG, 0x40823e2f, dl)); 5221 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5222 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5223 getF32Constant(DAG, 0x4020d29c, dl)); 5224 } else { // LimitFloatPrecision <= 18 5225 // For floating-point precision of 18: 5226 // 5227 // Log2ofMantissa = 5228 // -3.0400495f + 5229 // (6.1129976f + 5230 // (-5.3420409f + 5231 // (3.2865683f + 5232 // (-1.2669343f + 5233 // (0.27515199f - 5234 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5235 // 5236 // error 0.0000018516, which is better than 18 bits 5237 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5238 getF32Constant(DAG, 0xbcd2769e, dl)); 5239 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5240 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5241 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5242 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5243 getF32Constant(DAG, 0x3fa22ae7, dl)); 5244 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5245 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5246 getF32Constant(DAG, 0x40525723, dl)); 5247 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5248 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5249 getF32Constant(DAG, 0x40aaf200, dl)); 5250 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5251 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5252 getF32Constant(DAG, 0x40c39dad, dl)); 5253 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5254 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5255 getF32Constant(DAG, 0x4042902c, dl)); 5256 } 5257 5258 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5259 } 5260 5261 // No special expansion. 5262 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5263 } 5264 5265 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5266 /// limited-precision mode. 5267 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5268 const TargetLowering &TLI) { 5269 // TODO: What fast-math-flags should be set on the floating-point nodes? 5270 5271 if (Op.getValueType() == MVT::f32 && 5272 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5273 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5274 5275 // Scale the exponent by log10(2) [0.30102999f]. 5276 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5277 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5278 getF32Constant(DAG, 0x3e9a209a, dl)); 5279 5280 // Get the significand and build it into a floating-point number with 5281 // exponent of 1. 5282 SDValue X = GetSignificand(DAG, Op1, dl); 5283 5284 SDValue Log10ofMantissa; 5285 if (LimitFloatPrecision <= 6) { 5286 // For floating-point precision of 6: 5287 // 5288 // Log10ofMantissa = 5289 // -0.50419619f + 5290 // (0.60948995f - 0.10380950f * x) * x; 5291 // 5292 // error 0.0014886165, which is 6 bits 5293 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5294 getF32Constant(DAG, 0xbdd49a13, dl)); 5295 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5296 getF32Constant(DAG, 0x3f1c0789, dl)); 5297 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5298 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5299 getF32Constant(DAG, 0x3f011300, dl)); 5300 } else if (LimitFloatPrecision <= 12) { 5301 // For floating-point precision of 12: 5302 // 5303 // Log10ofMantissa = 5304 // -0.64831180f + 5305 // (0.91751397f + 5306 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5307 // 5308 // error 0.00019228036, which is better than 12 bits 5309 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5310 getF32Constant(DAG, 0x3d431f31, dl)); 5311 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5312 getF32Constant(DAG, 0x3ea21fb2, dl)); 5313 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5314 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5315 getF32Constant(DAG, 0x3f6ae232, dl)); 5316 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5317 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5318 getF32Constant(DAG, 0x3f25f7c3, dl)); 5319 } else { // LimitFloatPrecision <= 18 5320 // For floating-point precision of 18: 5321 // 5322 // Log10ofMantissa = 5323 // -0.84299375f + 5324 // (1.5327582f + 5325 // (-1.0688956f + 5326 // (0.49102474f + 5327 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5328 // 5329 // error 0.0000037995730, which is better than 18 bits 5330 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5331 getF32Constant(DAG, 0x3c5d51ce, dl)); 5332 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5333 getF32Constant(DAG, 0x3e00685a, dl)); 5334 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5335 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5336 getF32Constant(DAG, 0x3efb6798, dl)); 5337 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5338 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5339 getF32Constant(DAG, 0x3f88d192, dl)); 5340 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5341 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5342 getF32Constant(DAG, 0x3fc4316c, dl)); 5343 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5344 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5345 getF32Constant(DAG, 0x3f57ce70, dl)); 5346 } 5347 5348 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5349 } 5350 5351 // No special expansion. 5352 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5353 } 5354 5355 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5356 /// limited-precision mode. 5357 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5358 const TargetLowering &TLI) { 5359 if (Op.getValueType() == MVT::f32 && 5360 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5361 return getLimitedPrecisionExp2(Op, dl, DAG); 5362 5363 // No special expansion. 5364 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5365 } 5366 5367 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5368 /// limited-precision mode with x == 10.0f. 5369 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5370 SelectionDAG &DAG, const TargetLowering &TLI) { 5371 bool IsExp10 = false; 5372 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5373 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5374 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5375 APFloat Ten(10.0f); 5376 IsExp10 = LHSC->isExactlyValue(Ten); 5377 } 5378 } 5379 5380 // TODO: What fast-math-flags should be set on the FMUL node? 5381 if (IsExp10) { 5382 // Put the exponent in the right bit position for later addition to the 5383 // final result: 5384 // 5385 // #define LOG2OF10 3.3219281f 5386 // t0 = Op * LOG2OF10; 5387 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5388 getF32Constant(DAG, 0x40549a78, dl)); 5389 return getLimitedPrecisionExp2(t0, dl, DAG); 5390 } 5391 5392 // No special expansion. 5393 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5394 } 5395 5396 /// ExpandPowI - Expand a llvm.powi intrinsic. 5397 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5398 SelectionDAG &DAG) { 5399 // If RHS is a constant, we can expand this out to a multiplication tree, 5400 // otherwise we end up lowering to a call to __powidf2 (for example). When 5401 // optimizing for size, we only want to do this if the expansion would produce 5402 // a small number of multiplies, otherwise we do the full expansion. 5403 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5404 // Get the exponent as a positive value. 5405 unsigned Val = RHSC->getSExtValue(); 5406 if ((int)Val < 0) Val = -Val; 5407 5408 // powi(x, 0) -> 1.0 5409 if (Val == 0) 5410 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5411 5412 bool OptForSize = DAG.shouldOptForSize(); 5413 if (!OptForSize || 5414 // If optimizing for size, don't insert too many multiplies. 5415 // This inserts up to 5 multiplies. 5416 countPopulation(Val) + Log2_32(Val) < 7) { 5417 // We use the simple binary decomposition method to generate the multiply 5418 // sequence. There are more optimal ways to do this (for example, 5419 // powi(x,15) generates one more multiply than it should), but this has 5420 // the benefit of being both really simple and much better than a libcall. 5421 SDValue Res; // Logically starts equal to 1.0 5422 SDValue CurSquare = LHS; 5423 // TODO: Intrinsics should have fast-math-flags that propagate to these 5424 // nodes. 5425 while (Val) { 5426 if (Val & 1) { 5427 if (Res.getNode()) 5428 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5429 else 5430 Res = CurSquare; // 1.0*CurSquare. 5431 } 5432 5433 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5434 CurSquare, CurSquare); 5435 Val >>= 1; 5436 } 5437 5438 // If the original was negative, invert the result, producing 1/(x*x*x). 5439 if (RHSC->getSExtValue() < 0) 5440 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5441 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5442 return Res; 5443 } 5444 } 5445 5446 // Otherwise, expand to a libcall. 5447 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5448 } 5449 5450 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5451 SDValue LHS, SDValue RHS, SDValue Scale, 5452 SelectionDAG &DAG, const TargetLowering &TLI) { 5453 EVT VT = LHS.getValueType(); 5454 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5455 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5456 LLVMContext &Ctx = *DAG.getContext(); 5457 5458 // If the type is legal but the operation isn't, this node might survive all 5459 // the way to operation legalization. If we end up there and we do not have 5460 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5461 // node. 5462 5463 // Coax the legalizer into expanding the node during type legalization instead 5464 // by bumping the size by one bit. This will force it to Promote, enabling the 5465 // early expansion and avoiding the need to expand later. 5466 5467 // We don't have to do this if Scale is 0; that can always be expanded, unless 5468 // it's a saturating signed operation. Those can experience true integer 5469 // division overflow, a case which we must avoid. 5470 5471 // FIXME: We wouldn't have to do this (or any of the early 5472 // expansion/promotion) if it was possible to expand a libcall of an 5473 // illegal type during operation legalization. But it's not, so things 5474 // get a bit hacky. 5475 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5476 if ((ScaleInt > 0 || (Saturating && Signed)) && 5477 (TLI.isTypeLegal(VT) || 5478 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5479 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5480 Opcode, VT, ScaleInt); 5481 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5482 EVT PromVT; 5483 if (VT.isScalarInteger()) 5484 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5485 else if (VT.isVector()) { 5486 PromVT = VT.getVectorElementType(); 5487 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5488 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5489 } else 5490 llvm_unreachable("Wrong VT for DIVFIX?"); 5491 if (Signed) { 5492 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5493 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5494 } else { 5495 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5496 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5497 } 5498 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5499 // For saturating operations, we need to shift up the LHS to get the 5500 // proper saturation width, and then shift down again afterwards. 5501 if (Saturating) 5502 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5503 DAG.getConstant(1, DL, ShiftTy)); 5504 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5505 if (Saturating) 5506 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5507 DAG.getConstant(1, DL, ShiftTy)); 5508 return DAG.getZExtOrTrunc(Res, DL, VT); 5509 } 5510 } 5511 5512 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5513 } 5514 5515 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5516 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5517 static void 5518 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5519 const SDValue &N) { 5520 switch (N.getOpcode()) { 5521 case ISD::CopyFromReg: { 5522 SDValue Op = N.getOperand(1); 5523 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5524 Op.getValueType().getSizeInBits()); 5525 return; 5526 } 5527 case ISD::BITCAST: 5528 case ISD::AssertZext: 5529 case ISD::AssertSext: 5530 case ISD::TRUNCATE: 5531 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5532 return; 5533 case ISD::BUILD_PAIR: 5534 case ISD::BUILD_VECTOR: 5535 case ISD::CONCAT_VECTORS: 5536 for (SDValue Op : N->op_values()) 5537 getUnderlyingArgRegs(Regs, Op); 5538 return; 5539 default: 5540 return; 5541 } 5542 } 5543 5544 /// If the DbgValueInst is a dbg_value of a function argument, create the 5545 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5546 /// instruction selection, they will be inserted to the entry BB. 5547 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5548 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5549 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5550 const Argument *Arg = dyn_cast<Argument>(V); 5551 if (!Arg) 5552 return false; 5553 5554 if (!IsDbgDeclare) { 5555 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5556 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5557 // the entry block. 5558 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5559 if (!IsInEntryBlock) 5560 return false; 5561 5562 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5563 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5564 // variable that also is a param. 5565 // 5566 // Although, if we are at the top of the entry block already, we can still 5567 // emit using ArgDbgValue. This might catch some situations when the 5568 // dbg.value refers to an argument that isn't used in the entry block, so 5569 // any CopyToReg node would be optimized out and the only way to express 5570 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5571 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5572 // we should only emit as ArgDbgValue if the Variable is an argument to the 5573 // current function, and the dbg.value intrinsic is found in the entry 5574 // block. 5575 bool VariableIsFunctionInputArg = Variable->isParameter() && 5576 !DL->getInlinedAt(); 5577 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5578 if (!IsInPrologue && !VariableIsFunctionInputArg) 5579 return false; 5580 5581 // Here we assume that a function argument on IR level only can be used to 5582 // describe one input parameter on source level. If we for example have 5583 // source code like this 5584 // 5585 // struct A { long x, y; }; 5586 // void foo(struct A a, long b) { 5587 // ... 5588 // b = a.x; 5589 // ... 5590 // } 5591 // 5592 // and IR like this 5593 // 5594 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5595 // entry: 5596 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5597 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5598 // call void @llvm.dbg.value(metadata i32 %b, "b", 5599 // ... 5600 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5601 // ... 5602 // 5603 // then the last dbg.value is describing a parameter "b" using a value that 5604 // is an argument. But since we already has used %a1 to describe a parameter 5605 // we should not handle that last dbg.value here (that would result in an 5606 // incorrect hoisting of the DBG_VALUE to the function entry). 5607 // Notice that we allow one dbg.value per IR level argument, to accommodate 5608 // for the situation with fragments above. 5609 if (VariableIsFunctionInputArg) { 5610 unsigned ArgNo = Arg->getArgNo(); 5611 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5612 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5613 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5614 return false; 5615 FuncInfo.DescribedArgs.set(ArgNo); 5616 } 5617 } 5618 5619 MachineFunction &MF = DAG.getMachineFunction(); 5620 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5621 5622 bool IsIndirect = false; 5623 Optional<MachineOperand> Op; 5624 // Some arguments' frame index is recorded during argument lowering. 5625 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5626 if (FI != std::numeric_limits<int>::max()) 5627 Op = MachineOperand::CreateFI(FI); 5628 5629 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5630 if (!Op && N.getNode()) { 5631 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5632 Register Reg; 5633 if (ArgRegsAndSizes.size() == 1) 5634 Reg = ArgRegsAndSizes.front().first; 5635 5636 if (Reg && Reg.isVirtual()) { 5637 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5638 Register PR = RegInfo.getLiveInPhysReg(Reg); 5639 if (PR) 5640 Reg = PR; 5641 } 5642 if (Reg) { 5643 Op = MachineOperand::CreateReg(Reg, false); 5644 IsIndirect = IsDbgDeclare; 5645 } 5646 } 5647 5648 if (!Op && N.getNode()) { 5649 // Check if frame index is available. 5650 SDValue LCandidate = peekThroughBitcasts(N); 5651 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5652 if (FrameIndexSDNode *FINode = 5653 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5654 Op = MachineOperand::CreateFI(FINode->getIndex()); 5655 } 5656 5657 if (!Op) { 5658 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5659 auto splitMultiRegDbgValue 5660 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5661 unsigned Offset = 0; 5662 for (auto RegAndSize : SplitRegs) { 5663 // If the expression is already a fragment, the current register 5664 // offset+size might extend beyond the fragment. In this case, only 5665 // the register bits that are inside the fragment are relevant. 5666 int RegFragmentSizeInBits = RegAndSize.second; 5667 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5668 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5669 // The register is entirely outside the expression fragment, 5670 // so is irrelevant for debug info. 5671 if (Offset >= ExprFragmentSizeInBits) 5672 break; 5673 // The register is partially outside the expression fragment, only 5674 // the low bits within the fragment are relevant for debug info. 5675 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5676 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5677 } 5678 } 5679 5680 auto FragmentExpr = DIExpression::createFragmentExpression( 5681 Expr, Offset, RegFragmentSizeInBits); 5682 Offset += RegAndSize.second; 5683 // If a valid fragment expression cannot be created, the variable's 5684 // correct value cannot be determined and so it is set as Undef. 5685 if (!FragmentExpr) { 5686 SDDbgValue *SDV = DAG.getConstantDbgValue( 5687 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5688 DAG.AddDbgValue(SDV, nullptr, false); 5689 continue; 5690 } 5691 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5692 FuncInfo.ArgDbgValues.push_back( 5693 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5694 RegAndSize.first, Variable, *FragmentExpr)); 5695 } 5696 }; 5697 5698 // Check if ValueMap has reg number. 5699 DenseMap<const Value *, unsigned>::const_iterator 5700 VMI = FuncInfo.ValueMap.find(V); 5701 if (VMI != FuncInfo.ValueMap.end()) { 5702 const auto &TLI = DAG.getTargetLoweringInfo(); 5703 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5704 V->getType(), getABIRegCopyCC(V)); 5705 if (RFV.occupiesMultipleRegs()) { 5706 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5707 return true; 5708 } 5709 5710 Op = MachineOperand::CreateReg(VMI->second, false); 5711 IsIndirect = IsDbgDeclare; 5712 } else if (ArgRegsAndSizes.size() > 1) { 5713 // This was split due to the calling convention, and no virtual register 5714 // mapping exists for the value. 5715 splitMultiRegDbgValue(ArgRegsAndSizes); 5716 return true; 5717 } 5718 } 5719 5720 if (!Op) 5721 return false; 5722 5723 assert(Variable->isValidLocationForIntrinsic(DL) && 5724 "Expected inlined-at fields to agree"); 5725 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5726 FuncInfo.ArgDbgValues.push_back( 5727 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5728 *Op, Variable, Expr)); 5729 5730 return true; 5731 } 5732 5733 /// Return the appropriate SDDbgValue based on N. 5734 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5735 DILocalVariable *Variable, 5736 DIExpression *Expr, 5737 const DebugLoc &dl, 5738 unsigned DbgSDNodeOrder) { 5739 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5740 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5741 // stack slot locations. 5742 // 5743 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5744 // debug values here after optimization: 5745 // 5746 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5747 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5748 // 5749 // Both describe the direct values of their associated variables. 5750 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5751 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5752 } 5753 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5754 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5755 } 5756 5757 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5758 switch (Intrinsic) { 5759 case Intrinsic::smul_fix: 5760 return ISD::SMULFIX; 5761 case Intrinsic::umul_fix: 5762 return ISD::UMULFIX; 5763 case Intrinsic::smul_fix_sat: 5764 return ISD::SMULFIXSAT; 5765 case Intrinsic::umul_fix_sat: 5766 return ISD::UMULFIXSAT; 5767 case Intrinsic::sdiv_fix: 5768 return ISD::SDIVFIX; 5769 case Intrinsic::udiv_fix: 5770 return ISD::UDIVFIX; 5771 case Intrinsic::sdiv_fix_sat: 5772 return ISD::SDIVFIXSAT; 5773 case Intrinsic::udiv_fix_sat: 5774 return ISD::UDIVFIXSAT; 5775 default: 5776 llvm_unreachable("Unhandled fixed point intrinsic"); 5777 } 5778 } 5779 5780 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5781 const char *FunctionName) { 5782 assert(FunctionName && "FunctionName must not be nullptr"); 5783 SDValue Callee = DAG.getExternalSymbol( 5784 FunctionName, 5785 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5786 LowerCallTo(&I, Callee, I.isTailCall()); 5787 } 5788 5789 /// Lower the call to the specified intrinsic function. 5790 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5791 unsigned Intrinsic) { 5792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5793 SDLoc sdl = getCurSDLoc(); 5794 DebugLoc dl = getCurDebugLoc(); 5795 SDValue Res; 5796 5797 switch (Intrinsic) { 5798 default: 5799 // By default, turn this into a target intrinsic node. 5800 visitTargetIntrinsic(I, Intrinsic); 5801 return; 5802 case Intrinsic::vscale: { 5803 match(&I, m_VScale(DAG.getDataLayout())); 5804 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5805 setValue(&I, 5806 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5807 return; 5808 } 5809 case Intrinsic::vastart: visitVAStart(I); return; 5810 case Intrinsic::vaend: visitVAEnd(I); return; 5811 case Intrinsic::vacopy: visitVACopy(I); return; 5812 case Intrinsic::returnaddress: 5813 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5814 TLI.getPointerTy(DAG.getDataLayout()), 5815 getValue(I.getArgOperand(0)))); 5816 return; 5817 case Intrinsic::addressofreturnaddress: 5818 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5819 TLI.getPointerTy(DAG.getDataLayout()))); 5820 return; 5821 case Intrinsic::sponentry: 5822 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5823 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5824 return; 5825 case Intrinsic::frameaddress: 5826 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5827 TLI.getFrameIndexTy(DAG.getDataLayout()), 5828 getValue(I.getArgOperand(0)))); 5829 return; 5830 case Intrinsic::read_register: { 5831 Value *Reg = I.getArgOperand(0); 5832 SDValue Chain = getRoot(); 5833 SDValue RegName = 5834 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5835 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5836 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5837 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5838 setValue(&I, Res); 5839 DAG.setRoot(Res.getValue(1)); 5840 return; 5841 } 5842 case Intrinsic::write_register: { 5843 Value *Reg = I.getArgOperand(0); 5844 Value *RegValue = I.getArgOperand(1); 5845 SDValue Chain = getRoot(); 5846 SDValue RegName = 5847 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5848 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5849 RegName, getValue(RegValue))); 5850 return; 5851 } 5852 case Intrinsic::memcpy: { 5853 const auto &MCI = cast<MemCpyInst>(I); 5854 SDValue Op1 = getValue(I.getArgOperand(0)); 5855 SDValue Op2 = getValue(I.getArgOperand(1)); 5856 SDValue Op3 = getValue(I.getArgOperand(2)); 5857 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5858 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5859 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5860 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5861 bool isVol = MCI.isVolatile(); 5862 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5863 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5864 // node. 5865 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5866 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5867 /* AlwaysInline */ false, isTC, 5868 MachinePointerInfo(I.getArgOperand(0)), 5869 MachinePointerInfo(I.getArgOperand(1))); 5870 updateDAGForMaybeTailCall(MC); 5871 return; 5872 } 5873 case Intrinsic::memcpy_inline: { 5874 const auto &MCI = cast<MemCpyInlineInst>(I); 5875 SDValue Dst = getValue(I.getArgOperand(0)); 5876 SDValue Src = getValue(I.getArgOperand(1)); 5877 SDValue Size = getValue(I.getArgOperand(2)); 5878 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5879 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5880 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5881 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5882 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5883 bool isVol = MCI.isVolatile(); 5884 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5885 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5886 // node. 5887 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5888 /* AlwaysInline */ true, isTC, 5889 MachinePointerInfo(I.getArgOperand(0)), 5890 MachinePointerInfo(I.getArgOperand(1))); 5891 updateDAGForMaybeTailCall(MC); 5892 return; 5893 } 5894 case Intrinsic::memset: { 5895 const auto &MSI = cast<MemSetInst>(I); 5896 SDValue Op1 = getValue(I.getArgOperand(0)); 5897 SDValue Op2 = getValue(I.getArgOperand(1)); 5898 SDValue Op3 = getValue(I.getArgOperand(2)); 5899 // @llvm.memset defines 0 and 1 to both mean no alignment. 5900 Align Alignment = MSI.getDestAlign().valueOrOne(); 5901 bool isVol = MSI.isVolatile(); 5902 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5903 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5904 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5905 MachinePointerInfo(I.getArgOperand(0))); 5906 updateDAGForMaybeTailCall(MS); 5907 return; 5908 } 5909 case Intrinsic::memmove: { 5910 const auto &MMI = cast<MemMoveInst>(I); 5911 SDValue Op1 = getValue(I.getArgOperand(0)); 5912 SDValue Op2 = getValue(I.getArgOperand(1)); 5913 SDValue Op3 = getValue(I.getArgOperand(2)); 5914 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5915 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5916 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5917 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5918 bool isVol = MMI.isVolatile(); 5919 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5920 // FIXME: Support passing different dest/src alignments to the memmove DAG 5921 // node. 5922 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5923 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5924 isTC, MachinePointerInfo(I.getArgOperand(0)), 5925 MachinePointerInfo(I.getArgOperand(1))); 5926 updateDAGForMaybeTailCall(MM); 5927 return; 5928 } 5929 case Intrinsic::memcpy_element_unordered_atomic: { 5930 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5931 SDValue Dst = getValue(MI.getRawDest()); 5932 SDValue Src = getValue(MI.getRawSource()); 5933 SDValue Length = getValue(MI.getLength()); 5934 5935 unsigned DstAlign = MI.getDestAlignment(); 5936 unsigned SrcAlign = MI.getSourceAlignment(); 5937 Type *LengthTy = MI.getLength()->getType(); 5938 unsigned ElemSz = MI.getElementSizeInBytes(); 5939 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5940 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5941 SrcAlign, Length, LengthTy, ElemSz, isTC, 5942 MachinePointerInfo(MI.getRawDest()), 5943 MachinePointerInfo(MI.getRawSource())); 5944 updateDAGForMaybeTailCall(MC); 5945 return; 5946 } 5947 case Intrinsic::memmove_element_unordered_atomic: { 5948 auto &MI = cast<AtomicMemMoveInst>(I); 5949 SDValue Dst = getValue(MI.getRawDest()); 5950 SDValue Src = getValue(MI.getRawSource()); 5951 SDValue Length = getValue(MI.getLength()); 5952 5953 unsigned DstAlign = MI.getDestAlignment(); 5954 unsigned SrcAlign = MI.getSourceAlignment(); 5955 Type *LengthTy = MI.getLength()->getType(); 5956 unsigned ElemSz = MI.getElementSizeInBytes(); 5957 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5958 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5959 SrcAlign, Length, LengthTy, ElemSz, isTC, 5960 MachinePointerInfo(MI.getRawDest()), 5961 MachinePointerInfo(MI.getRawSource())); 5962 updateDAGForMaybeTailCall(MC); 5963 return; 5964 } 5965 case Intrinsic::memset_element_unordered_atomic: { 5966 auto &MI = cast<AtomicMemSetInst>(I); 5967 SDValue Dst = getValue(MI.getRawDest()); 5968 SDValue Val = getValue(MI.getValue()); 5969 SDValue Length = getValue(MI.getLength()); 5970 5971 unsigned DstAlign = MI.getDestAlignment(); 5972 Type *LengthTy = MI.getLength()->getType(); 5973 unsigned ElemSz = MI.getElementSizeInBytes(); 5974 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5975 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5976 LengthTy, ElemSz, isTC, 5977 MachinePointerInfo(MI.getRawDest())); 5978 updateDAGForMaybeTailCall(MC); 5979 return; 5980 } 5981 case Intrinsic::dbg_addr: 5982 case Intrinsic::dbg_declare: { 5983 const auto &DI = cast<DbgVariableIntrinsic>(I); 5984 DILocalVariable *Variable = DI.getVariable(); 5985 DIExpression *Expression = DI.getExpression(); 5986 dropDanglingDebugInfo(Variable, Expression); 5987 assert(Variable && "Missing variable"); 5988 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5989 << "\n"); 5990 // Check if address has undef value. 5991 const Value *Address = DI.getVariableLocation(); 5992 if (!Address || isa<UndefValue>(Address) || 5993 (Address->use_empty() && !isa<Argument>(Address))) { 5994 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5995 << " (bad/undef/unused-arg address)\n"); 5996 return; 5997 } 5998 5999 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6000 6001 // Check if this variable can be described by a frame index, typically 6002 // either as a static alloca or a byval parameter. 6003 int FI = std::numeric_limits<int>::max(); 6004 if (const auto *AI = 6005 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6006 if (AI->isStaticAlloca()) { 6007 auto I = FuncInfo.StaticAllocaMap.find(AI); 6008 if (I != FuncInfo.StaticAllocaMap.end()) 6009 FI = I->second; 6010 } 6011 } else if (const auto *Arg = dyn_cast<Argument>( 6012 Address->stripInBoundsConstantOffsets())) { 6013 FI = FuncInfo.getArgumentFrameIndex(Arg); 6014 } 6015 6016 // llvm.dbg.addr is control dependent and always generates indirect 6017 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6018 // the MachineFunction variable table. 6019 if (FI != std::numeric_limits<int>::max()) { 6020 if (Intrinsic == Intrinsic::dbg_addr) { 6021 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6022 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 6023 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 6024 } else { 6025 LLVM_DEBUG(dbgs() << "Skipping " << DI 6026 << " (variable info stashed in MF side table)\n"); 6027 } 6028 return; 6029 } 6030 6031 SDValue &N = NodeMap[Address]; 6032 if (!N.getNode() && isa<Argument>(Address)) 6033 // Check unused arguments map. 6034 N = UnusedArgNodeMap[Address]; 6035 SDDbgValue *SDV; 6036 if (N.getNode()) { 6037 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6038 Address = BCI->getOperand(0); 6039 // Parameters are handled specially. 6040 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6041 if (isParameter && FINode) { 6042 // Byval parameter. We have a frame index at this point. 6043 SDV = 6044 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6045 /*IsIndirect*/ true, dl, SDNodeOrder); 6046 } else if (isa<Argument>(Address)) { 6047 // Address is an argument, so try to emit its dbg value using 6048 // virtual register info from the FuncInfo.ValueMap. 6049 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6050 return; 6051 } else { 6052 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6053 true, dl, SDNodeOrder); 6054 } 6055 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 6056 } else { 6057 // If Address is an argument then try to emit its dbg value using 6058 // virtual register info from the FuncInfo.ValueMap. 6059 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6060 N)) { 6061 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6062 << " (could not emit func-arg dbg_value)\n"); 6063 } 6064 } 6065 return; 6066 } 6067 case Intrinsic::dbg_label: { 6068 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6069 DILabel *Label = DI.getLabel(); 6070 assert(Label && "Missing label"); 6071 6072 SDDbgLabel *SDV; 6073 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6074 DAG.AddDbgLabel(SDV); 6075 return; 6076 } 6077 case Intrinsic::dbg_value: { 6078 const DbgValueInst &DI = cast<DbgValueInst>(I); 6079 assert(DI.getVariable() && "Missing variable"); 6080 6081 DILocalVariable *Variable = DI.getVariable(); 6082 DIExpression *Expression = DI.getExpression(); 6083 dropDanglingDebugInfo(Variable, Expression); 6084 const Value *V = DI.getValue(); 6085 if (!V) 6086 return; 6087 6088 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 6089 SDNodeOrder)) 6090 return; 6091 6092 // TODO: Dangling debug info will eventually either be resolved or produce 6093 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 6094 // between the original dbg.value location and its resolved DBG_VALUE, which 6095 // we should ideally fill with an extra Undef DBG_VALUE. 6096 6097 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 6098 return; 6099 } 6100 6101 case Intrinsic::eh_typeid_for: { 6102 // Find the type id for the given typeinfo. 6103 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6104 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6105 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6106 setValue(&I, Res); 6107 return; 6108 } 6109 6110 case Intrinsic::eh_return_i32: 6111 case Intrinsic::eh_return_i64: 6112 DAG.getMachineFunction().setCallsEHReturn(true); 6113 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6114 MVT::Other, 6115 getControlRoot(), 6116 getValue(I.getArgOperand(0)), 6117 getValue(I.getArgOperand(1)))); 6118 return; 6119 case Intrinsic::eh_unwind_init: 6120 DAG.getMachineFunction().setCallsUnwindInit(true); 6121 return; 6122 case Intrinsic::eh_dwarf_cfa: 6123 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6124 TLI.getPointerTy(DAG.getDataLayout()), 6125 getValue(I.getArgOperand(0)))); 6126 return; 6127 case Intrinsic::eh_sjlj_callsite: { 6128 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6129 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6130 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6131 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6132 6133 MMI.setCurrentCallSite(CI->getZExtValue()); 6134 return; 6135 } 6136 case Intrinsic::eh_sjlj_functioncontext: { 6137 // Get and store the index of the function context. 6138 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6139 AllocaInst *FnCtx = 6140 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6141 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6142 MFI.setFunctionContextIndex(FI); 6143 return; 6144 } 6145 case Intrinsic::eh_sjlj_setjmp: { 6146 SDValue Ops[2]; 6147 Ops[0] = getRoot(); 6148 Ops[1] = getValue(I.getArgOperand(0)); 6149 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6150 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6151 setValue(&I, Op.getValue(0)); 6152 DAG.setRoot(Op.getValue(1)); 6153 return; 6154 } 6155 case Intrinsic::eh_sjlj_longjmp: 6156 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6157 getRoot(), getValue(I.getArgOperand(0)))); 6158 return; 6159 case Intrinsic::eh_sjlj_setup_dispatch: 6160 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6161 getRoot())); 6162 return; 6163 case Intrinsic::masked_gather: 6164 visitMaskedGather(I); 6165 return; 6166 case Intrinsic::masked_load: 6167 visitMaskedLoad(I); 6168 return; 6169 case Intrinsic::masked_scatter: 6170 visitMaskedScatter(I); 6171 return; 6172 case Intrinsic::masked_store: 6173 visitMaskedStore(I); 6174 return; 6175 case Intrinsic::masked_expandload: 6176 visitMaskedLoad(I, true /* IsExpanding */); 6177 return; 6178 case Intrinsic::masked_compressstore: 6179 visitMaskedStore(I, true /* IsCompressing */); 6180 return; 6181 case Intrinsic::powi: 6182 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6183 getValue(I.getArgOperand(1)), DAG)); 6184 return; 6185 case Intrinsic::log: 6186 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6187 return; 6188 case Intrinsic::log2: 6189 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6190 return; 6191 case Intrinsic::log10: 6192 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6193 return; 6194 case Intrinsic::exp: 6195 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6196 return; 6197 case Intrinsic::exp2: 6198 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6199 return; 6200 case Intrinsic::pow: 6201 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6202 getValue(I.getArgOperand(1)), DAG, TLI)); 6203 return; 6204 case Intrinsic::sqrt: 6205 case Intrinsic::fabs: 6206 case Intrinsic::sin: 6207 case Intrinsic::cos: 6208 case Intrinsic::floor: 6209 case Intrinsic::ceil: 6210 case Intrinsic::trunc: 6211 case Intrinsic::rint: 6212 case Intrinsic::nearbyint: 6213 case Intrinsic::round: 6214 case Intrinsic::canonicalize: { 6215 unsigned Opcode; 6216 switch (Intrinsic) { 6217 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6218 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6219 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6220 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6221 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6222 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6223 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6224 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6225 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6226 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6227 case Intrinsic::round: Opcode = ISD::FROUND; break; 6228 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6229 } 6230 6231 setValue(&I, DAG.getNode(Opcode, sdl, 6232 getValue(I.getArgOperand(0)).getValueType(), 6233 getValue(I.getArgOperand(0)))); 6234 return; 6235 } 6236 case Intrinsic::lround: 6237 case Intrinsic::llround: 6238 case Intrinsic::lrint: 6239 case Intrinsic::llrint: { 6240 unsigned Opcode; 6241 switch (Intrinsic) { 6242 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6243 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6244 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6245 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6246 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6247 } 6248 6249 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6250 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6251 getValue(I.getArgOperand(0)))); 6252 return; 6253 } 6254 case Intrinsic::minnum: 6255 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6256 getValue(I.getArgOperand(0)).getValueType(), 6257 getValue(I.getArgOperand(0)), 6258 getValue(I.getArgOperand(1)))); 6259 return; 6260 case Intrinsic::maxnum: 6261 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6262 getValue(I.getArgOperand(0)).getValueType(), 6263 getValue(I.getArgOperand(0)), 6264 getValue(I.getArgOperand(1)))); 6265 return; 6266 case Intrinsic::minimum: 6267 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6268 getValue(I.getArgOperand(0)).getValueType(), 6269 getValue(I.getArgOperand(0)), 6270 getValue(I.getArgOperand(1)))); 6271 return; 6272 case Intrinsic::maximum: 6273 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6274 getValue(I.getArgOperand(0)).getValueType(), 6275 getValue(I.getArgOperand(0)), 6276 getValue(I.getArgOperand(1)))); 6277 return; 6278 case Intrinsic::copysign: 6279 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6280 getValue(I.getArgOperand(0)).getValueType(), 6281 getValue(I.getArgOperand(0)), 6282 getValue(I.getArgOperand(1)))); 6283 return; 6284 case Intrinsic::fma: 6285 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6286 getValue(I.getArgOperand(0)).getValueType(), 6287 getValue(I.getArgOperand(0)), 6288 getValue(I.getArgOperand(1)), 6289 getValue(I.getArgOperand(2)))); 6290 return; 6291 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6292 case Intrinsic::INTRINSIC: 6293 #include "llvm/IR/ConstrainedOps.def" 6294 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6295 return; 6296 case Intrinsic::fmuladd: { 6297 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6298 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6299 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6300 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6301 getValue(I.getArgOperand(0)).getValueType(), 6302 getValue(I.getArgOperand(0)), 6303 getValue(I.getArgOperand(1)), 6304 getValue(I.getArgOperand(2)))); 6305 } else { 6306 // TODO: Intrinsic calls should have fast-math-flags. 6307 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6308 getValue(I.getArgOperand(0)).getValueType(), 6309 getValue(I.getArgOperand(0)), 6310 getValue(I.getArgOperand(1))); 6311 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6312 getValue(I.getArgOperand(0)).getValueType(), 6313 Mul, 6314 getValue(I.getArgOperand(2))); 6315 setValue(&I, Add); 6316 } 6317 return; 6318 } 6319 case Intrinsic::convert_to_fp16: 6320 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6321 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6322 getValue(I.getArgOperand(0)), 6323 DAG.getTargetConstant(0, sdl, 6324 MVT::i32)))); 6325 return; 6326 case Intrinsic::convert_from_fp16: 6327 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6328 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6329 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6330 getValue(I.getArgOperand(0))))); 6331 return; 6332 case Intrinsic::pcmarker: { 6333 SDValue Tmp = getValue(I.getArgOperand(0)); 6334 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6335 return; 6336 } 6337 case Intrinsic::readcyclecounter: { 6338 SDValue Op = getRoot(); 6339 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6340 DAG.getVTList(MVT::i64, MVT::Other), Op); 6341 setValue(&I, Res); 6342 DAG.setRoot(Res.getValue(1)); 6343 return; 6344 } 6345 case Intrinsic::bitreverse: 6346 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6347 getValue(I.getArgOperand(0)).getValueType(), 6348 getValue(I.getArgOperand(0)))); 6349 return; 6350 case Intrinsic::bswap: 6351 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6352 getValue(I.getArgOperand(0)).getValueType(), 6353 getValue(I.getArgOperand(0)))); 6354 return; 6355 case Intrinsic::cttz: { 6356 SDValue Arg = getValue(I.getArgOperand(0)); 6357 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6358 EVT Ty = Arg.getValueType(); 6359 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6360 sdl, Ty, Arg)); 6361 return; 6362 } 6363 case Intrinsic::ctlz: { 6364 SDValue Arg = getValue(I.getArgOperand(0)); 6365 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6366 EVT Ty = Arg.getValueType(); 6367 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6368 sdl, Ty, Arg)); 6369 return; 6370 } 6371 case Intrinsic::ctpop: { 6372 SDValue Arg = getValue(I.getArgOperand(0)); 6373 EVT Ty = Arg.getValueType(); 6374 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6375 return; 6376 } 6377 case Intrinsic::fshl: 6378 case Intrinsic::fshr: { 6379 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6380 SDValue X = getValue(I.getArgOperand(0)); 6381 SDValue Y = getValue(I.getArgOperand(1)); 6382 SDValue Z = getValue(I.getArgOperand(2)); 6383 EVT VT = X.getValueType(); 6384 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6385 SDValue Zero = DAG.getConstant(0, sdl, VT); 6386 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6387 6388 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6389 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6390 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6391 return; 6392 } 6393 6394 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6395 // avoid the select that is necessary in the general case to filter out 6396 // the 0-shift possibility that leads to UB. 6397 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6398 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6399 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6400 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6401 return; 6402 } 6403 6404 // Some targets only rotate one way. Try the opposite direction. 6405 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6406 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6407 // Negate the shift amount because it is safe to ignore the high bits. 6408 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6409 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6410 return; 6411 } 6412 6413 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6414 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6415 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6416 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6417 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6418 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6419 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6420 return; 6421 } 6422 6423 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6424 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6425 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6426 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6427 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6428 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6429 6430 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6431 // and that is undefined. We must compare and select to avoid UB. 6432 EVT CCVT = MVT::i1; 6433 if (VT.isVector()) 6434 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6435 6436 // For fshl, 0-shift returns the 1st arg (X). 6437 // For fshr, 0-shift returns the 2nd arg (Y). 6438 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6439 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6440 return; 6441 } 6442 case Intrinsic::sadd_sat: { 6443 SDValue Op1 = getValue(I.getArgOperand(0)); 6444 SDValue Op2 = getValue(I.getArgOperand(1)); 6445 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6446 return; 6447 } 6448 case Intrinsic::uadd_sat: { 6449 SDValue Op1 = getValue(I.getArgOperand(0)); 6450 SDValue Op2 = getValue(I.getArgOperand(1)); 6451 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6452 return; 6453 } 6454 case Intrinsic::ssub_sat: { 6455 SDValue Op1 = getValue(I.getArgOperand(0)); 6456 SDValue Op2 = getValue(I.getArgOperand(1)); 6457 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6458 return; 6459 } 6460 case Intrinsic::usub_sat: { 6461 SDValue Op1 = getValue(I.getArgOperand(0)); 6462 SDValue Op2 = getValue(I.getArgOperand(1)); 6463 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6464 return; 6465 } 6466 case Intrinsic::smul_fix: 6467 case Intrinsic::umul_fix: 6468 case Intrinsic::smul_fix_sat: 6469 case Intrinsic::umul_fix_sat: { 6470 SDValue Op1 = getValue(I.getArgOperand(0)); 6471 SDValue Op2 = getValue(I.getArgOperand(1)); 6472 SDValue Op3 = getValue(I.getArgOperand(2)); 6473 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6474 Op1.getValueType(), Op1, Op2, Op3)); 6475 return; 6476 } 6477 case Intrinsic::sdiv_fix: 6478 case Intrinsic::udiv_fix: 6479 case Intrinsic::sdiv_fix_sat: 6480 case Intrinsic::udiv_fix_sat: { 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 SDValue Op3 = getValue(I.getArgOperand(2)); 6484 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6485 Op1, Op2, Op3, DAG, TLI)); 6486 return; 6487 } 6488 case Intrinsic::stacksave: { 6489 SDValue Op = getRoot(); 6490 Res = DAG.getNode( 6491 ISD::STACKSAVE, sdl, 6492 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6493 setValue(&I, Res); 6494 DAG.setRoot(Res.getValue(1)); 6495 return; 6496 } 6497 case Intrinsic::stackrestore: 6498 Res = getValue(I.getArgOperand(0)); 6499 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6500 return; 6501 case Intrinsic::get_dynamic_area_offset: { 6502 SDValue Op = getRoot(); 6503 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6504 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6505 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6506 // target. 6507 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6508 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6509 " intrinsic!"); 6510 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6511 Op); 6512 DAG.setRoot(Op); 6513 setValue(&I, Res); 6514 return; 6515 } 6516 case Intrinsic::stackguard: { 6517 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6518 MachineFunction &MF = DAG.getMachineFunction(); 6519 const Module &M = *MF.getFunction().getParent(); 6520 SDValue Chain = getRoot(); 6521 if (TLI.useLoadStackGuardNode()) { 6522 Res = getLoadStackGuard(DAG, sdl, Chain); 6523 } else { 6524 const Value *Global = TLI.getSDagStackGuard(M); 6525 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6526 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6527 MachinePointerInfo(Global, 0), Align, 6528 MachineMemOperand::MOVolatile); 6529 } 6530 if (TLI.useStackGuardXorFP()) 6531 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6532 DAG.setRoot(Chain); 6533 setValue(&I, Res); 6534 return; 6535 } 6536 case Intrinsic::stackprotector: { 6537 // Emit code into the DAG to store the stack guard onto the stack. 6538 MachineFunction &MF = DAG.getMachineFunction(); 6539 MachineFrameInfo &MFI = MF.getFrameInfo(); 6540 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6541 SDValue Src, Chain = getRoot(); 6542 6543 if (TLI.useLoadStackGuardNode()) 6544 Src = getLoadStackGuard(DAG, sdl, Chain); 6545 else 6546 Src = getValue(I.getArgOperand(0)); // The guard's value. 6547 6548 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6549 6550 int FI = FuncInfo.StaticAllocaMap[Slot]; 6551 MFI.setStackProtectorIndex(FI); 6552 6553 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6554 6555 // Store the stack protector onto the stack. 6556 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6557 DAG.getMachineFunction(), FI), 6558 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6559 setValue(&I, Res); 6560 DAG.setRoot(Res); 6561 return; 6562 } 6563 case Intrinsic::objectsize: 6564 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6565 6566 case Intrinsic::is_constant: 6567 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6568 6569 case Intrinsic::annotation: 6570 case Intrinsic::ptr_annotation: 6571 case Intrinsic::launder_invariant_group: 6572 case Intrinsic::strip_invariant_group: 6573 // Drop the intrinsic, but forward the value 6574 setValue(&I, getValue(I.getOperand(0))); 6575 return; 6576 case Intrinsic::assume: 6577 case Intrinsic::var_annotation: 6578 case Intrinsic::sideeffect: 6579 // Discard annotate attributes, assumptions, and artificial side-effects. 6580 return; 6581 6582 case Intrinsic::codeview_annotation: { 6583 // Emit a label associated with this metadata. 6584 MachineFunction &MF = DAG.getMachineFunction(); 6585 MCSymbol *Label = 6586 MF.getMMI().getContext().createTempSymbol("annotation", true); 6587 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6588 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6589 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6590 DAG.setRoot(Res); 6591 return; 6592 } 6593 6594 case Intrinsic::init_trampoline: { 6595 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6596 6597 SDValue Ops[6]; 6598 Ops[0] = getRoot(); 6599 Ops[1] = getValue(I.getArgOperand(0)); 6600 Ops[2] = getValue(I.getArgOperand(1)); 6601 Ops[3] = getValue(I.getArgOperand(2)); 6602 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6603 Ops[5] = DAG.getSrcValue(F); 6604 6605 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6606 6607 DAG.setRoot(Res); 6608 return; 6609 } 6610 case Intrinsic::adjust_trampoline: 6611 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6612 TLI.getPointerTy(DAG.getDataLayout()), 6613 getValue(I.getArgOperand(0)))); 6614 return; 6615 case Intrinsic::gcroot: { 6616 assert(DAG.getMachineFunction().getFunction().hasGC() && 6617 "only valid in functions with gc specified, enforced by Verifier"); 6618 assert(GFI && "implied by previous"); 6619 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6620 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6621 6622 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6623 GFI->addStackRoot(FI->getIndex(), TypeMap); 6624 return; 6625 } 6626 case Intrinsic::gcread: 6627 case Intrinsic::gcwrite: 6628 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6629 case Intrinsic::flt_rounds: 6630 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6631 return; 6632 6633 case Intrinsic::expect: 6634 // Just replace __builtin_expect(exp, c) with EXP. 6635 setValue(&I, getValue(I.getArgOperand(0))); 6636 return; 6637 6638 case Intrinsic::debugtrap: 6639 case Intrinsic::trap: { 6640 StringRef TrapFuncName = 6641 I.getAttributes() 6642 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6643 .getValueAsString(); 6644 if (TrapFuncName.empty()) { 6645 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6646 ISD::TRAP : ISD::DEBUGTRAP; 6647 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6648 return; 6649 } 6650 TargetLowering::ArgListTy Args; 6651 6652 TargetLowering::CallLoweringInfo CLI(DAG); 6653 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6654 CallingConv::C, I.getType(), 6655 DAG.getExternalSymbol(TrapFuncName.data(), 6656 TLI.getPointerTy(DAG.getDataLayout())), 6657 std::move(Args)); 6658 6659 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6660 DAG.setRoot(Result.second); 6661 return; 6662 } 6663 6664 case Intrinsic::uadd_with_overflow: 6665 case Intrinsic::sadd_with_overflow: 6666 case Intrinsic::usub_with_overflow: 6667 case Intrinsic::ssub_with_overflow: 6668 case Intrinsic::umul_with_overflow: 6669 case Intrinsic::smul_with_overflow: { 6670 ISD::NodeType Op; 6671 switch (Intrinsic) { 6672 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6673 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6674 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6675 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6676 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6677 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6678 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6679 } 6680 SDValue Op1 = getValue(I.getArgOperand(0)); 6681 SDValue Op2 = getValue(I.getArgOperand(1)); 6682 6683 EVT ResultVT = Op1.getValueType(); 6684 EVT OverflowVT = MVT::i1; 6685 if (ResultVT.isVector()) 6686 OverflowVT = EVT::getVectorVT( 6687 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6688 6689 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6690 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6691 return; 6692 } 6693 case Intrinsic::prefetch: { 6694 SDValue Ops[5]; 6695 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6696 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6697 Ops[0] = DAG.getRoot(); 6698 Ops[1] = getValue(I.getArgOperand(0)); 6699 Ops[2] = getValue(I.getArgOperand(1)); 6700 Ops[3] = getValue(I.getArgOperand(2)); 6701 Ops[4] = getValue(I.getArgOperand(3)); 6702 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6703 DAG.getVTList(MVT::Other), Ops, 6704 EVT::getIntegerVT(*Context, 8), 6705 MachinePointerInfo(I.getArgOperand(0)), 6706 0, /* align */ 6707 Flags); 6708 6709 // Chain the prefetch in parallell with any pending loads, to stay out of 6710 // the way of later optimizations. 6711 PendingLoads.push_back(Result); 6712 Result = getRoot(); 6713 DAG.setRoot(Result); 6714 return; 6715 } 6716 case Intrinsic::lifetime_start: 6717 case Intrinsic::lifetime_end: { 6718 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6719 // Stack coloring is not enabled in O0, discard region information. 6720 if (TM.getOptLevel() == CodeGenOpt::None) 6721 return; 6722 6723 const int64_t ObjectSize = 6724 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6725 Value *const ObjectPtr = I.getArgOperand(1); 6726 SmallVector<const Value *, 4> Allocas; 6727 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6728 6729 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6730 E = Allocas.end(); Object != E; ++Object) { 6731 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6732 6733 // Could not find an Alloca. 6734 if (!LifetimeObject) 6735 continue; 6736 6737 // First check that the Alloca is static, otherwise it won't have a 6738 // valid frame index. 6739 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6740 if (SI == FuncInfo.StaticAllocaMap.end()) 6741 return; 6742 6743 const int FrameIndex = SI->second; 6744 int64_t Offset; 6745 if (GetPointerBaseWithConstantOffset( 6746 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6747 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6748 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6749 Offset); 6750 DAG.setRoot(Res); 6751 } 6752 return; 6753 } 6754 case Intrinsic::invariant_start: 6755 // Discard region information. 6756 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6757 return; 6758 case Intrinsic::invariant_end: 6759 // Discard region information. 6760 return; 6761 case Intrinsic::clear_cache: 6762 /// FunctionName may be null. 6763 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6764 lowerCallToExternalSymbol(I, FunctionName); 6765 return; 6766 case Intrinsic::donothing: 6767 // ignore 6768 return; 6769 case Intrinsic::experimental_stackmap: 6770 visitStackmap(I); 6771 return; 6772 case Intrinsic::experimental_patchpoint_void: 6773 case Intrinsic::experimental_patchpoint_i64: 6774 visitPatchpoint(&I); 6775 return; 6776 case Intrinsic::experimental_gc_statepoint: 6777 LowerStatepoint(ImmutableStatepoint(&I)); 6778 return; 6779 case Intrinsic::experimental_gc_result: 6780 visitGCResult(cast<GCResultInst>(I)); 6781 return; 6782 case Intrinsic::experimental_gc_relocate: 6783 visitGCRelocate(cast<GCRelocateInst>(I)); 6784 return; 6785 case Intrinsic::instrprof_increment: 6786 llvm_unreachable("instrprof failed to lower an increment"); 6787 case Intrinsic::instrprof_value_profile: 6788 llvm_unreachable("instrprof failed to lower a value profiling call"); 6789 case Intrinsic::localescape: { 6790 MachineFunction &MF = DAG.getMachineFunction(); 6791 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6792 6793 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6794 // is the same on all targets. 6795 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6796 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6797 if (isa<ConstantPointerNull>(Arg)) 6798 continue; // Skip null pointers. They represent a hole in index space. 6799 AllocaInst *Slot = cast<AllocaInst>(Arg); 6800 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6801 "can only escape static allocas"); 6802 int FI = FuncInfo.StaticAllocaMap[Slot]; 6803 MCSymbol *FrameAllocSym = 6804 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6805 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6807 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6808 .addSym(FrameAllocSym) 6809 .addFrameIndex(FI); 6810 } 6811 6812 return; 6813 } 6814 6815 case Intrinsic::localrecover: { 6816 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6817 MachineFunction &MF = DAG.getMachineFunction(); 6818 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6819 6820 // Get the symbol that defines the frame offset. 6821 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6822 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6823 unsigned IdxVal = 6824 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6825 MCSymbol *FrameAllocSym = 6826 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6827 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6828 6829 // Create a MCSymbol for the label to avoid any target lowering 6830 // that would make this PC relative. 6831 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6832 SDValue OffsetVal = 6833 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6834 6835 // Add the offset to the FP. 6836 Value *FP = I.getArgOperand(1); 6837 SDValue FPVal = getValue(FP); 6838 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6839 setValue(&I, Add); 6840 6841 return; 6842 } 6843 6844 case Intrinsic::eh_exceptionpointer: 6845 case Intrinsic::eh_exceptioncode: { 6846 // Get the exception pointer vreg, copy from it, and resize it to fit. 6847 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6848 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6849 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6850 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6851 SDValue N = 6852 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6853 if (Intrinsic == Intrinsic::eh_exceptioncode) 6854 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6855 setValue(&I, N); 6856 return; 6857 } 6858 case Intrinsic::xray_customevent: { 6859 // Here we want to make sure that the intrinsic behaves as if it has a 6860 // specific calling convention, and only for x86_64. 6861 // FIXME: Support other platforms later. 6862 const auto &Triple = DAG.getTarget().getTargetTriple(); 6863 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6864 return; 6865 6866 SDLoc DL = getCurSDLoc(); 6867 SmallVector<SDValue, 8> Ops; 6868 6869 // We want to say that we always want the arguments in registers. 6870 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6871 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6872 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6873 SDValue Chain = getRoot(); 6874 Ops.push_back(LogEntryVal); 6875 Ops.push_back(StrSizeVal); 6876 Ops.push_back(Chain); 6877 6878 // We need to enforce the calling convention for the callsite, so that 6879 // argument ordering is enforced correctly, and that register allocation can 6880 // see that some registers may be assumed clobbered and have to preserve 6881 // them across calls to the intrinsic. 6882 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6883 DL, NodeTys, Ops); 6884 SDValue patchableNode = SDValue(MN, 0); 6885 DAG.setRoot(patchableNode); 6886 setValue(&I, patchableNode); 6887 return; 6888 } 6889 case Intrinsic::xray_typedevent: { 6890 // Here we want to make sure that the intrinsic behaves as if it has a 6891 // specific calling convention, and only for x86_64. 6892 // FIXME: Support other platforms later. 6893 const auto &Triple = DAG.getTarget().getTargetTriple(); 6894 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6895 return; 6896 6897 SDLoc DL = getCurSDLoc(); 6898 SmallVector<SDValue, 8> Ops; 6899 6900 // We want to say that we always want the arguments in registers. 6901 // It's unclear to me how manipulating the selection DAG here forces callers 6902 // to provide arguments in registers instead of on the stack. 6903 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6904 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6905 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6906 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6907 SDValue Chain = getRoot(); 6908 Ops.push_back(LogTypeId); 6909 Ops.push_back(LogEntryVal); 6910 Ops.push_back(StrSizeVal); 6911 Ops.push_back(Chain); 6912 6913 // We need to enforce the calling convention for the callsite, so that 6914 // argument ordering is enforced correctly, and that register allocation can 6915 // see that some registers may be assumed clobbered and have to preserve 6916 // them across calls to the intrinsic. 6917 MachineSDNode *MN = DAG.getMachineNode( 6918 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6919 SDValue patchableNode = SDValue(MN, 0); 6920 DAG.setRoot(patchableNode); 6921 setValue(&I, patchableNode); 6922 return; 6923 } 6924 case Intrinsic::experimental_deoptimize: 6925 LowerDeoptimizeCall(&I); 6926 return; 6927 6928 case Intrinsic::experimental_vector_reduce_v2_fadd: 6929 case Intrinsic::experimental_vector_reduce_v2_fmul: 6930 case Intrinsic::experimental_vector_reduce_add: 6931 case Intrinsic::experimental_vector_reduce_mul: 6932 case Intrinsic::experimental_vector_reduce_and: 6933 case Intrinsic::experimental_vector_reduce_or: 6934 case Intrinsic::experimental_vector_reduce_xor: 6935 case Intrinsic::experimental_vector_reduce_smax: 6936 case Intrinsic::experimental_vector_reduce_smin: 6937 case Intrinsic::experimental_vector_reduce_umax: 6938 case Intrinsic::experimental_vector_reduce_umin: 6939 case Intrinsic::experimental_vector_reduce_fmax: 6940 case Intrinsic::experimental_vector_reduce_fmin: 6941 visitVectorReduce(I, Intrinsic); 6942 return; 6943 6944 case Intrinsic::icall_branch_funnel: { 6945 SmallVector<SDValue, 16> Ops; 6946 Ops.push_back(getValue(I.getArgOperand(0))); 6947 6948 int64_t Offset; 6949 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6950 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6951 if (!Base) 6952 report_fatal_error( 6953 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6954 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6955 6956 struct BranchFunnelTarget { 6957 int64_t Offset; 6958 SDValue Target; 6959 }; 6960 SmallVector<BranchFunnelTarget, 8> Targets; 6961 6962 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6963 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6964 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6965 if (ElemBase != Base) 6966 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6967 "to the same GlobalValue"); 6968 6969 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6970 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6971 if (!GA) 6972 report_fatal_error( 6973 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6974 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6975 GA->getGlobal(), getCurSDLoc(), 6976 Val.getValueType(), GA->getOffset())}); 6977 } 6978 llvm::sort(Targets, 6979 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6980 return T1.Offset < T2.Offset; 6981 }); 6982 6983 for (auto &T : Targets) { 6984 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6985 Ops.push_back(T.Target); 6986 } 6987 6988 Ops.push_back(DAG.getRoot()); // Chain 6989 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6990 getCurSDLoc(), MVT::Other, Ops), 6991 0); 6992 DAG.setRoot(N); 6993 setValue(&I, N); 6994 HasTailCall = true; 6995 return; 6996 } 6997 6998 case Intrinsic::wasm_landingpad_index: 6999 // Information this intrinsic contained has been transferred to 7000 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7001 // delete it now. 7002 return; 7003 7004 case Intrinsic::aarch64_settag: 7005 case Intrinsic::aarch64_settag_zero: { 7006 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7007 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7008 SDValue Val = TSI.EmitTargetCodeForSetTag( 7009 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 7010 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7011 ZeroMemory); 7012 DAG.setRoot(Val); 7013 setValue(&I, Val); 7014 return; 7015 } 7016 case Intrinsic::ptrmask: { 7017 SDValue Ptr = getValue(I.getOperand(0)); 7018 SDValue Const = getValue(I.getOperand(1)); 7019 7020 EVT DestVT = 7021 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7022 7023 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 7024 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 7025 return; 7026 } 7027 } 7028 } 7029 7030 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7031 const ConstrainedFPIntrinsic &FPI) { 7032 SDLoc sdl = getCurSDLoc(); 7033 7034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7035 SmallVector<EVT, 4> ValueVTs; 7036 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7037 ValueVTs.push_back(MVT::Other); // Out chain 7038 7039 // We do not need to serialize constrained FP intrinsics against 7040 // each other or against (nonvolatile) loads, so they can be 7041 // chained like loads. 7042 SDValue Chain = DAG.getRoot(); 7043 SmallVector<SDValue, 4> Opers; 7044 Opers.push_back(Chain); 7045 if (FPI.isUnaryOp()) { 7046 Opers.push_back(getValue(FPI.getArgOperand(0))); 7047 } else if (FPI.isTernaryOp()) { 7048 Opers.push_back(getValue(FPI.getArgOperand(0))); 7049 Opers.push_back(getValue(FPI.getArgOperand(1))); 7050 Opers.push_back(getValue(FPI.getArgOperand(2))); 7051 } else { 7052 Opers.push_back(getValue(FPI.getArgOperand(0))); 7053 Opers.push_back(getValue(FPI.getArgOperand(1))); 7054 } 7055 7056 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7057 assert(Result.getNode()->getNumValues() == 2); 7058 7059 // Push node to the appropriate list so that future instructions can be 7060 // chained up correctly. 7061 SDValue OutChain = Result.getValue(1); 7062 switch (EB) { 7063 case fp::ExceptionBehavior::ebIgnore: 7064 // The only reason why ebIgnore nodes still need to be chained is that 7065 // they might depend on the current rounding mode, and therefore must 7066 // not be moved across instruction that may change that mode. 7067 LLVM_FALLTHROUGH; 7068 case fp::ExceptionBehavior::ebMayTrap: 7069 // These must not be moved across calls or instructions that may change 7070 // floating-point exception masks. 7071 PendingConstrainedFP.push_back(OutChain); 7072 break; 7073 case fp::ExceptionBehavior::ebStrict: 7074 // These must not be moved across calls or instructions that may change 7075 // floating-point exception masks or read floating-point exception flags. 7076 // In addition, they cannot be optimized out even if unused. 7077 PendingConstrainedFPStrict.push_back(OutChain); 7078 break; 7079 } 7080 }; 7081 7082 SDVTList VTs = DAG.getVTList(ValueVTs); 7083 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7084 7085 unsigned Opcode; 7086 switch (FPI.getIntrinsicID()) { 7087 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7088 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7089 case Intrinsic::INTRINSIC: \ 7090 Opcode = ISD::STRICT_##DAGN; \ 7091 break; 7092 #include "llvm/IR/ConstrainedOps.def" 7093 case Intrinsic::experimental_constrained_fmuladd: { 7094 Opcode = ISD::STRICT_FMA; 7095 // Break fmuladd into fmul and fadd. 7096 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7097 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7098 ValueVTs[0])) { 7099 Opers.pop_back(); 7100 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers); 7101 pushOutChain(Mul, EB); 7102 Opcode = ISD::STRICT_FADD; 7103 Opers.clear(); 7104 Opers.push_back(Mul.getValue(1)); 7105 Opers.push_back(Mul.getValue(0)); 7106 Opers.push_back(getValue(FPI.getArgOperand(2))); 7107 } 7108 break; 7109 } 7110 } 7111 7112 // A few strict DAG nodes carry additional operands that are not 7113 // set up by the default code above. 7114 switch (Opcode) { 7115 default: break; 7116 case ISD::STRICT_FP_ROUND: 7117 Opers.push_back( 7118 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7119 break; 7120 case ISD::STRICT_FSETCC: 7121 case ISD::STRICT_FSETCCS: { 7122 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7123 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7124 break; 7125 } 7126 } 7127 7128 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 7129 pushOutChain(Result, EB); 7130 7131 SDValue FPResult = Result.getValue(0); 7132 setValue(&FPI, FPResult); 7133 } 7134 7135 std::pair<SDValue, SDValue> 7136 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7137 const BasicBlock *EHPadBB) { 7138 MachineFunction &MF = DAG.getMachineFunction(); 7139 MachineModuleInfo &MMI = MF.getMMI(); 7140 MCSymbol *BeginLabel = nullptr; 7141 7142 if (EHPadBB) { 7143 // Insert a label before the invoke call to mark the try range. This can be 7144 // used to detect deletion of the invoke via the MachineModuleInfo. 7145 BeginLabel = MMI.getContext().createTempSymbol(); 7146 7147 // For SjLj, keep track of which landing pads go with which invokes 7148 // so as to maintain the ordering of pads in the LSDA. 7149 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7150 if (CallSiteIndex) { 7151 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7152 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7153 7154 // Now that the call site is handled, stop tracking it. 7155 MMI.setCurrentCallSite(0); 7156 } 7157 7158 // Both PendingLoads and PendingExports must be flushed here; 7159 // this call might not return. 7160 (void)getRoot(); 7161 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7162 7163 CLI.setChain(getRoot()); 7164 } 7165 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7166 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7167 7168 assert((CLI.IsTailCall || Result.second.getNode()) && 7169 "Non-null chain expected with non-tail call!"); 7170 assert((Result.second.getNode() || !Result.first.getNode()) && 7171 "Null value expected with tail call!"); 7172 7173 if (!Result.second.getNode()) { 7174 // As a special case, a null chain means that a tail call has been emitted 7175 // and the DAG root is already updated. 7176 HasTailCall = true; 7177 7178 // Since there's no actual continuation from this block, nothing can be 7179 // relying on us setting vregs for them. 7180 PendingExports.clear(); 7181 } else { 7182 DAG.setRoot(Result.second); 7183 } 7184 7185 if (EHPadBB) { 7186 // Insert a label at the end of the invoke call to mark the try range. This 7187 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7188 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7189 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7190 7191 // Inform MachineModuleInfo of range. 7192 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7193 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7194 // actually use outlined funclets and their LSDA info style. 7195 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7196 assert(CLI.CS); 7197 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7198 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7199 BeginLabel, EndLabel); 7200 } else if (!isScopedEHPersonality(Pers)) { 7201 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7202 } 7203 } 7204 7205 return Result; 7206 } 7207 7208 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7209 bool isTailCall, 7210 const BasicBlock *EHPadBB) { 7211 auto &DL = DAG.getDataLayout(); 7212 FunctionType *FTy = CS.getFunctionType(); 7213 Type *RetTy = CS.getType(); 7214 7215 TargetLowering::ArgListTy Args; 7216 Args.reserve(CS.arg_size()); 7217 7218 const Value *SwiftErrorVal = nullptr; 7219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7220 7221 if (isTailCall) { 7222 // Avoid emitting tail calls in functions with the disable-tail-calls 7223 // attribute. 7224 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7225 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7226 "true") 7227 isTailCall = false; 7228 7229 // We can't tail call inside a function with a swifterror argument. Lowering 7230 // does not support this yet. It would have to move into the swifterror 7231 // register before the call. 7232 if (TLI.supportSwiftError() && 7233 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7234 isTailCall = false; 7235 } 7236 7237 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7238 i != e; ++i) { 7239 TargetLowering::ArgListEntry Entry; 7240 const Value *V = *i; 7241 7242 // Skip empty types 7243 if (V->getType()->isEmptyTy()) 7244 continue; 7245 7246 SDValue ArgNode = getValue(V); 7247 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7248 7249 Entry.setAttributes(&CS, i - CS.arg_begin()); 7250 7251 // Use swifterror virtual register as input to the call. 7252 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7253 SwiftErrorVal = V; 7254 // We find the virtual register for the actual swifterror argument. 7255 // Instead of using the Value, we use the virtual register instead. 7256 Entry.Node = DAG.getRegister( 7257 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7258 EVT(TLI.getPointerTy(DL))); 7259 } 7260 7261 Args.push_back(Entry); 7262 7263 // If we have an explicit sret argument that is an Instruction, (i.e., it 7264 // might point to function-local memory), we can't meaningfully tail-call. 7265 if (Entry.IsSRet && isa<Instruction>(V)) 7266 isTailCall = false; 7267 } 7268 7269 // If call site has a cfguardtarget operand bundle, create and add an 7270 // additional ArgListEntry. 7271 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7272 TargetLowering::ArgListEntry Entry; 7273 Value *V = Bundle->Inputs[0]; 7274 SDValue ArgNode = getValue(V); 7275 Entry.Node = ArgNode; 7276 Entry.Ty = V->getType(); 7277 Entry.IsCFGuardTarget = true; 7278 Args.push_back(Entry); 7279 } 7280 7281 // Check if target-independent constraints permit a tail call here. 7282 // Target-dependent constraints are checked within TLI->LowerCallTo. 7283 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7284 isTailCall = false; 7285 7286 // Disable tail calls if there is an swifterror argument. Targets have not 7287 // been updated to support tail calls. 7288 if (TLI.supportSwiftError() && SwiftErrorVal) 7289 isTailCall = false; 7290 7291 TargetLowering::CallLoweringInfo CLI(DAG); 7292 CLI.setDebugLoc(getCurSDLoc()) 7293 .setChain(getRoot()) 7294 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7295 .setTailCall(isTailCall) 7296 .setConvergent(CS.isConvergent()); 7297 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7298 7299 if (Result.first.getNode()) { 7300 const Instruction *Inst = CS.getInstruction(); 7301 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7302 setValue(Inst, Result.first); 7303 } 7304 7305 // The last element of CLI.InVals has the SDValue for swifterror return. 7306 // Here we copy it to a virtual register and update SwiftErrorMap for 7307 // book-keeping. 7308 if (SwiftErrorVal && TLI.supportSwiftError()) { 7309 // Get the last element of InVals. 7310 SDValue Src = CLI.InVals.back(); 7311 Register VReg = SwiftError.getOrCreateVRegDefAt( 7312 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7313 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7314 DAG.setRoot(CopyNode); 7315 } 7316 } 7317 7318 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7319 SelectionDAGBuilder &Builder) { 7320 // Check to see if this load can be trivially constant folded, e.g. if the 7321 // input is from a string literal. 7322 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7323 // Cast pointer to the type we really want to load. 7324 Type *LoadTy = 7325 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7326 if (LoadVT.isVector()) 7327 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7328 7329 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7330 PointerType::getUnqual(LoadTy)); 7331 7332 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7333 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7334 return Builder.getValue(LoadCst); 7335 } 7336 7337 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7338 // still constant memory, the input chain can be the entry node. 7339 SDValue Root; 7340 bool ConstantMemory = false; 7341 7342 // Do not serialize (non-volatile) loads of constant memory with anything. 7343 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7344 Root = Builder.DAG.getEntryNode(); 7345 ConstantMemory = true; 7346 } else { 7347 // Do not serialize non-volatile loads against each other. 7348 Root = Builder.DAG.getRoot(); 7349 } 7350 7351 SDValue Ptr = Builder.getValue(PtrVal); 7352 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7353 Ptr, MachinePointerInfo(PtrVal), 7354 /* Alignment = */ 1); 7355 7356 if (!ConstantMemory) 7357 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7358 return LoadVal; 7359 } 7360 7361 /// Record the value for an instruction that produces an integer result, 7362 /// converting the type where necessary. 7363 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7364 SDValue Value, 7365 bool IsSigned) { 7366 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7367 I.getType(), true); 7368 if (IsSigned) 7369 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7370 else 7371 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7372 setValue(&I, Value); 7373 } 7374 7375 /// See if we can lower a memcmp call into an optimized form. If so, return 7376 /// true and lower it. Otherwise return false, and it will be lowered like a 7377 /// normal call. 7378 /// The caller already checked that \p I calls the appropriate LibFunc with a 7379 /// correct prototype. 7380 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7381 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7382 const Value *Size = I.getArgOperand(2); 7383 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7384 if (CSize && CSize->getZExtValue() == 0) { 7385 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7386 I.getType(), true); 7387 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7388 return true; 7389 } 7390 7391 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7392 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7393 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7394 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7395 if (Res.first.getNode()) { 7396 processIntegerCallValue(I, Res.first, true); 7397 PendingLoads.push_back(Res.second); 7398 return true; 7399 } 7400 7401 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7402 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7403 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7404 return false; 7405 7406 // If the target has a fast compare for the given size, it will return a 7407 // preferred load type for that size. Require that the load VT is legal and 7408 // that the target supports unaligned loads of that type. Otherwise, return 7409 // INVALID. 7410 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7412 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7413 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7414 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7415 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7416 // TODO: Check alignment of src and dest ptrs. 7417 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7418 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7419 if (!TLI.isTypeLegal(LVT) || 7420 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7421 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7422 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7423 } 7424 7425 return LVT; 7426 }; 7427 7428 // This turns into unaligned loads. We only do this if the target natively 7429 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7430 // we'll only produce a small number of byte loads. 7431 MVT LoadVT; 7432 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7433 switch (NumBitsToCompare) { 7434 default: 7435 return false; 7436 case 16: 7437 LoadVT = MVT::i16; 7438 break; 7439 case 32: 7440 LoadVT = MVT::i32; 7441 break; 7442 case 64: 7443 case 128: 7444 case 256: 7445 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7446 break; 7447 } 7448 7449 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7450 return false; 7451 7452 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7453 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7454 7455 // Bitcast to a wide integer type if the loads are vectors. 7456 if (LoadVT.isVector()) { 7457 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7458 LoadL = DAG.getBitcast(CmpVT, LoadL); 7459 LoadR = DAG.getBitcast(CmpVT, LoadR); 7460 } 7461 7462 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7463 processIntegerCallValue(I, Cmp, false); 7464 return true; 7465 } 7466 7467 /// See if we can lower a memchr call into an optimized form. If so, return 7468 /// true and lower it. Otherwise return false, and it will be lowered like a 7469 /// normal call. 7470 /// The caller already checked that \p I calls the appropriate LibFunc with a 7471 /// correct prototype. 7472 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7473 const Value *Src = I.getArgOperand(0); 7474 const Value *Char = I.getArgOperand(1); 7475 const Value *Length = I.getArgOperand(2); 7476 7477 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7478 std::pair<SDValue, SDValue> Res = 7479 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7480 getValue(Src), getValue(Char), getValue(Length), 7481 MachinePointerInfo(Src)); 7482 if (Res.first.getNode()) { 7483 setValue(&I, Res.first); 7484 PendingLoads.push_back(Res.second); 7485 return true; 7486 } 7487 7488 return false; 7489 } 7490 7491 /// See if we can lower a mempcpy call into an optimized form. If so, return 7492 /// true and lower it. Otherwise return false, and it will be lowered like a 7493 /// normal call. 7494 /// The caller already checked that \p I calls the appropriate LibFunc with a 7495 /// correct prototype. 7496 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7497 SDValue Dst = getValue(I.getArgOperand(0)); 7498 SDValue Src = getValue(I.getArgOperand(1)); 7499 SDValue Size = getValue(I.getArgOperand(2)); 7500 7501 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7502 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7503 // DAG::getMemcpy needs Alignment to be defined. 7504 Align Alignment = assumeAligned(std::min(DstAlign, SrcAlign)); 7505 7506 bool isVol = false; 7507 SDLoc sdl = getCurSDLoc(); 7508 7509 // In the mempcpy context we need to pass in a false value for isTailCall 7510 // because the return pointer needs to be adjusted by the size of 7511 // the copied memory. 7512 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7513 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7514 /*isTailCall=*/false, 7515 MachinePointerInfo(I.getArgOperand(0)), 7516 MachinePointerInfo(I.getArgOperand(1))); 7517 assert(MC.getNode() != nullptr && 7518 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7519 DAG.setRoot(MC); 7520 7521 // Check if Size needs to be truncated or extended. 7522 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7523 7524 // Adjust return pointer to point just past the last dst byte. 7525 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7526 Dst, Size); 7527 setValue(&I, DstPlusSize); 7528 return true; 7529 } 7530 7531 /// See if we can lower a strcpy call into an optimized form. If so, return 7532 /// true and lower it, otherwise return false and it will be lowered like a 7533 /// normal call. 7534 /// The caller already checked that \p I calls the appropriate LibFunc with a 7535 /// correct prototype. 7536 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7537 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7538 7539 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7540 std::pair<SDValue, SDValue> Res = 7541 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7542 getValue(Arg0), getValue(Arg1), 7543 MachinePointerInfo(Arg0), 7544 MachinePointerInfo(Arg1), isStpcpy); 7545 if (Res.first.getNode()) { 7546 setValue(&I, Res.first); 7547 DAG.setRoot(Res.second); 7548 return true; 7549 } 7550 7551 return false; 7552 } 7553 7554 /// See if we can lower a strcmp call into an optimized form. If so, return 7555 /// true and lower it, otherwise return false and it will be lowered like a 7556 /// normal call. 7557 /// The caller already checked that \p I calls the appropriate LibFunc with a 7558 /// correct prototype. 7559 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7560 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7561 7562 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7563 std::pair<SDValue, SDValue> Res = 7564 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7565 getValue(Arg0), getValue(Arg1), 7566 MachinePointerInfo(Arg0), 7567 MachinePointerInfo(Arg1)); 7568 if (Res.first.getNode()) { 7569 processIntegerCallValue(I, Res.first, true); 7570 PendingLoads.push_back(Res.second); 7571 return true; 7572 } 7573 7574 return false; 7575 } 7576 7577 /// See if we can lower a strlen call into an optimized form. If so, return 7578 /// true and lower it, otherwise return false and it will be lowered like a 7579 /// normal call. 7580 /// The caller already checked that \p I calls the appropriate LibFunc with a 7581 /// correct prototype. 7582 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7583 const Value *Arg0 = I.getArgOperand(0); 7584 7585 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7586 std::pair<SDValue, SDValue> Res = 7587 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7588 getValue(Arg0), MachinePointerInfo(Arg0)); 7589 if (Res.first.getNode()) { 7590 processIntegerCallValue(I, Res.first, false); 7591 PendingLoads.push_back(Res.second); 7592 return true; 7593 } 7594 7595 return false; 7596 } 7597 7598 /// See if we can lower a strnlen call into an optimized form. If so, return 7599 /// true and lower it, otherwise return false and it will be lowered like a 7600 /// normal call. 7601 /// The caller already checked that \p I calls the appropriate LibFunc with a 7602 /// correct prototype. 7603 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7604 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7605 7606 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7607 std::pair<SDValue, SDValue> Res = 7608 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7609 getValue(Arg0), getValue(Arg1), 7610 MachinePointerInfo(Arg0)); 7611 if (Res.first.getNode()) { 7612 processIntegerCallValue(I, Res.first, false); 7613 PendingLoads.push_back(Res.second); 7614 return true; 7615 } 7616 7617 return false; 7618 } 7619 7620 /// See if we can lower a unary floating-point operation into an SDNode with 7621 /// the specified Opcode. If so, return true and lower it, otherwise return 7622 /// false and it will be lowered like a normal call. 7623 /// The caller already checked that \p I calls the appropriate LibFunc with a 7624 /// correct prototype. 7625 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7626 unsigned Opcode) { 7627 // We already checked this call's prototype; verify it doesn't modify errno. 7628 if (!I.onlyReadsMemory()) 7629 return false; 7630 7631 SDValue Tmp = getValue(I.getArgOperand(0)); 7632 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7633 return true; 7634 } 7635 7636 /// See if we can lower a binary floating-point operation into an SDNode with 7637 /// the specified Opcode. If so, return true and lower it. Otherwise return 7638 /// false, and it will be lowered like a normal call. 7639 /// The caller already checked that \p I calls the appropriate LibFunc with a 7640 /// correct prototype. 7641 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7642 unsigned Opcode) { 7643 // We already checked this call's prototype; verify it doesn't modify errno. 7644 if (!I.onlyReadsMemory()) 7645 return false; 7646 7647 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7648 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7649 EVT VT = Tmp0.getValueType(); 7650 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7651 return true; 7652 } 7653 7654 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7655 // Handle inline assembly differently. 7656 if (isa<InlineAsm>(I.getCalledValue())) { 7657 visitInlineAsm(&I); 7658 return; 7659 } 7660 7661 if (Function *F = I.getCalledFunction()) { 7662 if (F->isDeclaration()) { 7663 // Is this an LLVM intrinsic or a target-specific intrinsic? 7664 unsigned IID = F->getIntrinsicID(); 7665 if (!IID) 7666 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7667 IID = II->getIntrinsicID(F); 7668 7669 if (IID) { 7670 visitIntrinsicCall(I, IID); 7671 return; 7672 } 7673 } 7674 7675 // Check for well-known libc/libm calls. If the function is internal, it 7676 // can't be a library call. Don't do the check if marked as nobuiltin for 7677 // some reason or the call site requires strict floating point semantics. 7678 LibFunc Func; 7679 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7680 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7681 LibInfo->hasOptimizedCodeGen(Func)) { 7682 switch (Func) { 7683 default: break; 7684 case LibFunc_copysign: 7685 case LibFunc_copysignf: 7686 case LibFunc_copysignl: 7687 // We already checked this call's prototype; verify it doesn't modify 7688 // errno. 7689 if (I.onlyReadsMemory()) { 7690 SDValue LHS = getValue(I.getArgOperand(0)); 7691 SDValue RHS = getValue(I.getArgOperand(1)); 7692 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7693 LHS.getValueType(), LHS, RHS)); 7694 return; 7695 } 7696 break; 7697 case LibFunc_fabs: 7698 case LibFunc_fabsf: 7699 case LibFunc_fabsl: 7700 if (visitUnaryFloatCall(I, ISD::FABS)) 7701 return; 7702 break; 7703 case LibFunc_fmin: 7704 case LibFunc_fminf: 7705 case LibFunc_fminl: 7706 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7707 return; 7708 break; 7709 case LibFunc_fmax: 7710 case LibFunc_fmaxf: 7711 case LibFunc_fmaxl: 7712 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7713 return; 7714 break; 7715 case LibFunc_sin: 7716 case LibFunc_sinf: 7717 case LibFunc_sinl: 7718 if (visitUnaryFloatCall(I, ISD::FSIN)) 7719 return; 7720 break; 7721 case LibFunc_cos: 7722 case LibFunc_cosf: 7723 case LibFunc_cosl: 7724 if (visitUnaryFloatCall(I, ISD::FCOS)) 7725 return; 7726 break; 7727 case LibFunc_sqrt: 7728 case LibFunc_sqrtf: 7729 case LibFunc_sqrtl: 7730 case LibFunc_sqrt_finite: 7731 case LibFunc_sqrtf_finite: 7732 case LibFunc_sqrtl_finite: 7733 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7734 return; 7735 break; 7736 case LibFunc_floor: 7737 case LibFunc_floorf: 7738 case LibFunc_floorl: 7739 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7740 return; 7741 break; 7742 case LibFunc_nearbyint: 7743 case LibFunc_nearbyintf: 7744 case LibFunc_nearbyintl: 7745 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7746 return; 7747 break; 7748 case LibFunc_ceil: 7749 case LibFunc_ceilf: 7750 case LibFunc_ceill: 7751 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7752 return; 7753 break; 7754 case LibFunc_rint: 7755 case LibFunc_rintf: 7756 case LibFunc_rintl: 7757 if (visitUnaryFloatCall(I, ISD::FRINT)) 7758 return; 7759 break; 7760 case LibFunc_round: 7761 case LibFunc_roundf: 7762 case LibFunc_roundl: 7763 if (visitUnaryFloatCall(I, ISD::FROUND)) 7764 return; 7765 break; 7766 case LibFunc_trunc: 7767 case LibFunc_truncf: 7768 case LibFunc_truncl: 7769 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7770 return; 7771 break; 7772 case LibFunc_log2: 7773 case LibFunc_log2f: 7774 case LibFunc_log2l: 7775 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7776 return; 7777 break; 7778 case LibFunc_exp2: 7779 case LibFunc_exp2f: 7780 case LibFunc_exp2l: 7781 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7782 return; 7783 break; 7784 case LibFunc_memcmp: 7785 if (visitMemCmpCall(I)) 7786 return; 7787 break; 7788 case LibFunc_mempcpy: 7789 if (visitMemPCpyCall(I)) 7790 return; 7791 break; 7792 case LibFunc_memchr: 7793 if (visitMemChrCall(I)) 7794 return; 7795 break; 7796 case LibFunc_strcpy: 7797 if (visitStrCpyCall(I, false)) 7798 return; 7799 break; 7800 case LibFunc_stpcpy: 7801 if (visitStrCpyCall(I, true)) 7802 return; 7803 break; 7804 case LibFunc_strcmp: 7805 if (visitStrCmpCall(I)) 7806 return; 7807 break; 7808 case LibFunc_strlen: 7809 if (visitStrLenCall(I)) 7810 return; 7811 break; 7812 case LibFunc_strnlen: 7813 if (visitStrNLenCall(I)) 7814 return; 7815 break; 7816 } 7817 } 7818 } 7819 7820 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7821 // have to do anything here to lower funclet bundles. 7822 // CFGuardTarget bundles are lowered in LowerCallTo. 7823 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7824 LLVMContext::OB_funclet, 7825 LLVMContext::OB_cfguardtarget}) && 7826 "Cannot lower calls with arbitrary operand bundles!"); 7827 7828 SDValue Callee = getValue(I.getCalledValue()); 7829 7830 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7831 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7832 else 7833 // Check if we can potentially perform a tail call. More detailed checking 7834 // is be done within LowerCallTo, after more information about the call is 7835 // known. 7836 LowerCallTo(&I, Callee, I.isTailCall()); 7837 } 7838 7839 namespace { 7840 7841 /// AsmOperandInfo - This contains information for each constraint that we are 7842 /// lowering. 7843 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7844 public: 7845 /// CallOperand - If this is the result output operand or a clobber 7846 /// this is null, otherwise it is the incoming operand to the CallInst. 7847 /// This gets modified as the asm is processed. 7848 SDValue CallOperand; 7849 7850 /// AssignedRegs - If this is a register or register class operand, this 7851 /// contains the set of register corresponding to the operand. 7852 RegsForValue AssignedRegs; 7853 7854 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7855 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7856 } 7857 7858 /// Whether or not this operand accesses memory 7859 bool hasMemory(const TargetLowering &TLI) const { 7860 // Indirect operand accesses access memory. 7861 if (isIndirect) 7862 return true; 7863 7864 for (const auto &Code : Codes) 7865 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7866 return true; 7867 7868 return false; 7869 } 7870 7871 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7872 /// corresponds to. If there is no Value* for this operand, it returns 7873 /// MVT::Other. 7874 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7875 const DataLayout &DL) const { 7876 if (!CallOperandVal) return MVT::Other; 7877 7878 if (isa<BasicBlock>(CallOperandVal)) 7879 return TLI.getPointerTy(DL); 7880 7881 llvm::Type *OpTy = CallOperandVal->getType(); 7882 7883 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7884 // If this is an indirect operand, the operand is a pointer to the 7885 // accessed type. 7886 if (isIndirect) { 7887 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7888 if (!PtrTy) 7889 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7890 OpTy = PtrTy->getElementType(); 7891 } 7892 7893 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7894 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7895 if (STy->getNumElements() == 1) 7896 OpTy = STy->getElementType(0); 7897 7898 // If OpTy is not a single value, it may be a struct/union that we 7899 // can tile with integers. 7900 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7901 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7902 switch (BitSize) { 7903 default: break; 7904 case 1: 7905 case 8: 7906 case 16: 7907 case 32: 7908 case 64: 7909 case 128: 7910 OpTy = IntegerType::get(Context, BitSize); 7911 break; 7912 } 7913 } 7914 7915 return TLI.getValueType(DL, OpTy, true); 7916 } 7917 }; 7918 7919 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7920 7921 } // end anonymous namespace 7922 7923 /// Make sure that the output operand \p OpInfo and its corresponding input 7924 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7925 /// out). 7926 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7927 SDISelAsmOperandInfo &MatchingOpInfo, 7928 SelectionDAG &DAG) { 7929 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7930 return; 7931 7932 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7933 const auto &TLI = DAG.getTargetLoweringInfo(); 7934 7935 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7936 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7937 OpInfo.ConstraintVT); 7938 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7939 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7940 MatchingOpInfo.ConstraintVT); 7941 if ((OpInfo.ConstraintVT.isInteger() != 7942 MatchingOpInfo.ConstraintVT.isInteger()) || 7943 (MatchRC.second != InputRC.second)) { 7944 // FIXME: error out in a more elegant fashion 7945 report_fatal_error("Unsupported asm: input constraint" 7946 " with a matching output constraint of" 7947 " incompatible type!"); 7948 } 7949 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7950 } 7951 7952 /// Get a direct memory input to behave well as an indirect operand. 7953 /// This may introduce stores, hence the need for a \p Chain. 7954 /// \return The (possibly updated) chain. 7955 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7956 SDISelAsmOperandInfo &OpInfo, 7957 SelectionDAG &DAG) { 7958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7959 7960 // If we don't have an indirect input, put it in the constpool if we can, 7961 // otherwise spill it to a stack slot. 7962 // TODO: This isn't quite right. We need to handle these according to 7963 // the addressing mode that the constraint wants. Also, this may take 7964 // an additional register for the computation and we don't want that 7965 // either. 7966 7967 // If the operand is a float, integer, or vector constant, spill to a 7968 // constant pool entry to get its address. 7969 const Value *OpVal = OpInfo.CallOperandVal; 7970 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7971 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7972 OpInfo.CallOperand = DAG.getConstantPool( 7973 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7974 return Chain; 7975 } 7976 7977 // Otherwise, create a stack slot and emit a store to it before the asm. 7978 Type *Ty = OpVal->getType(); 7979 auto &DL = DAG.getDataLayout(); 7980 uint64_t TySize = DL.getTypeAllocSize(Ty); 7981 unsigned Align = DL.getPrefTypeAlignment(Ty); 7982 MachineFunction &MF = DAG.getMachineFunction(); 7983 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7984 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7985 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7986 MachinePointerInfo::getFixedStack(MF, SSFI), 7987 TLI.getMemValueType(DL, Ty)); 7988 OpInfo.CallOperand = StackSlot; 7989 7990 return Chain; 7991 } 7992 7993 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7994 /// specified operand. We prefer to assign virtual registers, to allow the 7995 /// register allocator to handle the assignment process. However, if the asm 7996 /// uses features that we can't model on machineinstrs, we have SDISel do the 7997 /// allocation. This produces generally horrible, but correct, code. 7998 /// 7999 /// OpInfo describes the operand 8000 /// RefOpInfo describes the matching operand if any, the operand otherwise 8001 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8002 SDISelAsmOperandInfo &OpInfo, 8003 SDISelAsmOperandInfo &RefOpInfo) { 8004 LLVMContext &Context = *DAG.getContext(); 8005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8006 8007 MachineFunction &MF = DAG.getMachineFunction(); 8008 SmallVector<unsigned, 4> Regs; 8009 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8010 8011 // No work to do for memory operations. 8012 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8013 return; 8014 8015 // If this is a constraint for a single physreg, or a constraint for a 8016 // register class, find it. 8017 unsigned AssignedReg; 8018 const TargetRegisterClass *RC; 8019 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8020 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8021 // RC is unset only on failure. Return immediately. 8022 if (!RC) 8023 return; 8024 8025 // Get the actual register value type. This is important, because the user 8026 // may have asked for (e.g.) the AX register in i32 type. We need to 8027 // remember that AX is actually i16 to get the right extension. 8028 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8029 8030 if (OpInfo.ConstraintVT != MVT::Other) { 8031 // If this is an FP operand in an integer register (or visa versa), or more 8032 // generally if the operand value disagrees with the register class we plan 8033 // to stick it in, fix the operand type. 8034 // 8035 // If this is an input value, the bitcast to the new type is done now. 8036 // Bitcast for output value is done at the end of visitInlineAsm(). 8037 if ((OpInfo.Type == InlineAsm::isOutput || 8038 OpInfo.Type == InlineAsm::isInput) && 8039 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8040 // Try to convert to the first EVT that the reg class contains. If the 8041 // types are identical size, use a bitcast to convert (e.g. two differing 8042 // vector types). Note: output bitcast is done at the end of 8043 // visitInlineAsm(). 8044 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8045 // Exclude indirect inputs while they are unsupported because the code 8046 // to perform the load is missing and thus OpInfo.CallOperand still 8047 // refers to the input address rather than the pointed-to value. 8048 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8049 OpInfo.CallOperand = 8050 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8051 OpInfo.ConstraintVT = RegVT; 8052 // If the operand is an FP value and we want it in integer registers, 8053 // use the corresponding integer type. This turns an f64 value into 8054 // i64, which can be passed with two i32 values on a 32-bit machine. 8055 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8056 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8057 if (OpInfo.Type == InlineAsm::isInput) 8058 OpInfo.CallOperand = 8059 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8060 OpInfo.ConstraintVT = VT; 8061 } 8062 } 8063 } 8064 8065 // No need to allocate a matching input constraint since the constraint it's 8066 // matching to has already been allocated. 8067 if (OpInfo.isMatchingInputConstraint()) 8068 return; 8069 8070 EVT ValueVT = OpInfo.ConstraintVT; 8071 if (OpInfo.ConstraintVT == MVT::Other) 8072 ValueVT = RegVT; 8073 8074 // Initialize NumRegs. 8075 unsigned NumRegs = 1; 8076 if (OpInfo.ConstraintVT != MVT::Other) 8077 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8078 8079 // If this is a constraint for a specific physical register, like {r17}, 8080 // assign it now. 8081 8082 // If this associated to a specific register, initialize iterator to correct 8083 // place. If virtual, make sure we have enough registers 8084 8085 // Initialize iterator if necessary 8086 TargetRegisterClass::iterator I = RC->begin(); 8087 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8088 8089 // Do not check for single registers. 8090 if (AssignedReg) { 8091 for (; *I != AssignedReg; ++I) 8092 assert(I != RC->end() && "AssignedReg should be member of RC"); 8093 } 8094 8095 for (; NumRegs; --NumRegs, ++I) { 8096 assert(I != RC->end() && "Ran out of registers to allocate!"); 8097 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8098 Regs.push_back(R); 8099 } 8100 8101 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8102 } 8103 8104 static unsigned 8105 findMatchingInlineAsmOperand(unsigned OperandNo, 8106 const std::vector<SDValue> &AsmNodeOperands) { 8107 // Scan until we find the definition we already emitted of this operand. 8108 unsigned CurOp = InlineAsm::Op_FirstOperand; 8109 for (; OperandNo; --OperandNo) { 8110 // Advance to the next operand. 8111 unsigned OpFlag = 8112 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8113 assert((InlineAsm::isRegDefKind(OpFlag) || 8114 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8115 InlineAsm::isMemKind(OpFlag)) && 8116 "Skipped past definitions?"); 8117 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8118 } 8119 return CurOp; 8120 } 8121 8122 namespace { 8123 8124 class ExtraFlags { 8125 unsigned Flags = 0; 8126 8127 public: 8128 explicit ExtraFlags(ImmutableCallSite CS) { 8129 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8130 if (IA->hasSideEffects()) 8131 Flags |= InlineAsm::Extra_HasSideEffects; 8132 if (IA->isAlignStack()) 8133 Flags |= InlineAsm::Extra_IsAlignStack; 8134 if (CS.isConvergent()) 8135 Flags |= InlineAsm::Extra_IsConvergent; 8136 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8137 } 8138 8139 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8140 // Ideally, we would only check against memory constraints. However, the 8141 // meaning of an Other constraint can be target-specific and we can't easily 8142 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8143 // for Other constraints as well. 8144 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8145 OpInfo.ConstraintType == TargetLowering::C_Other) { 8146 if (OpInfo.Type == InlineAsm::isInput) 8147 Flags |= InlineAsm::Extra_MayLoad; 8148 else if (OpInfo.Type == InlineAsm::isOutput) 8149 Flags |= InlineAsm::Extra_MayStore; 8150 else if (OpInfo.Type == InlineAsm::isClobber) 8151 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8152 } 8153 } 8154 8155 unsigned get() const { return Flags; } 8156 }; 8157 8158 } // end anonymous namespace 8159 8160 /// visitInlineAsm - Handle a call to an InlineAsm object. 8161 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8162 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8163 8164 /// ConstraintOperands - Information about all of the constraints. 8165 SDISelAsmOperandInfoVector ConstraintOperands; 8166 8167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8168 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8169 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8170 8171 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8172 // AsmDialect, MayLoad, MayStore). 8173 bool HasSideEffect = IA->hasSideEffects(); 8174 ExtraFlags ExtraInfo(CS); 8175 8176 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8177 unsigned ResNo = 0; // ResNo - The result number of the next output. 8178 for (auto &T : TargetConstraints) { 8179 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8180 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8181 8182 // Compute the value type for each operand. 8183 if (OpInfo.Type == InlineAsm::isInput || 8184 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8185 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8186 8187 // Process the call argument. BasicBlocks are labels, currently appearing 8188 // only in asm's. 8189 const Instruction *I = CS.getInstruction(); 8190 if (isa<CallBrInst>(I) && 8191 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8192 cast<CallBrInst>(I)->getNumIndirectDests())) { 8193 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8194 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8195 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8196 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8197 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8198 } else { 8199 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8200 } 8201 8202 OpInfo.ConstraintVT = 8203 OpInfo 8204 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8205 .getSimpleVT(); 8206 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8207 // The return value of the call is this value. As such, there is no 8208 // corresponding argument. 8209 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8210 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8211 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8212 DAG.getDataLayout(), STy->getElementType(ResNo)); 8213 } else { 8214 assert(ResNo == 0 && "Asm only has one result!"); 8215 OpInfo.ConstraintVT = 8216 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8217 } 8218 ++ResNo; 8219 } else { 8220 OpInfo.ConstraintVT = MVT::Other; 8221 } 8222 8223 if (!HasSideEffect) 8224 HasSideEffect = OpInfo.hasMemory(TLI); 8225 8226 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8227 // FIXME: Could we compute this on OpInfo rather than T? 8228 8229 // Compute the constraint code and ConstraintType to use. 8230 TLI.ComputeConstraintToUse(T, SDValue()); 8231 8232 if (T.ConstraintType == TargetLowering::C_Immediate && 8233 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8234 // We've delayed emitting a diagnostic like the "n" constraint because 8235 // inlining could cause an integer showing up. 8236 return emitInlineAsmError( 8237 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8238 "integer constant expression"); 8239 8240 ExtraInfo.update(T); 8241 } 8242 8243 8244 // We won't need to flush pending loads if this asm doesn't touch 8245 // memory and is nonvolatile. 8246 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8247 8248 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8249 if (IsCallBr) { 8250 // If this is a callbr we need to flush pending exports since inlineasm_br 8251 // is a terminator. We need to do this before nodes are glued to 8252 // the inlineasm_br node. 8253 Chain = getControlRoot(); 8254 } 8255 8256 // Second pass over the constraints: compute which constraint option to use. 8257 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8258 // If this is an output operand with a matching input operand, look up the 8259 // matching input. If their types mismatch, e.g. one is an integer, the 8260 // other is floating point, or their sizes are different, flag it as an 8261 // error. 8262 if (OpInfo.hasMatchingInput()) { 8263 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8264 patchMatchingInput(OpInfo, Input, DAG); 8265 } 8266 8267 // Compute the constraint code and ConstraintType to use. 8268 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8269 8270 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8271 OpInfo.Type == InlineAsm::isClobber) 8272 continue; 8273 8274 // If this is a memory input, and if the operand is not indirect, do what we 8275 // need to provide an address for the memory input. 8276 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8277 !OpInfo.isIndirect) { 8278 assert((OpInfo.isMultipleAlternative || 8279 (OpInfo.Type == InlineAsm::isInput)) && 8280 "Can only indirectify direct input operands!"); 8281 8282 // Memory operands really want the address of the value. 8283 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8284 8285 // There is no longer a Value* corresponding to this operand. 8286 OpInfo.CallOperandVal = nullptr; 8287 8288 // It is now an indirect operand. 8289 OpInfo.isIndirect = true; 8290 } 8291 8292 } 8293 8294 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8295 std::vector<SDValue> AsmNodeOperands; 8296 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8297 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8298 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8299 8300 // If we have a !srcloc metadata node associated with it, we want to attach 8301 // this to the ultimately generated inline asm machineinstr. To do this, we 8302 // pass in the third operand as this (potentially null) inline asm MDNode. 8303 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8304 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8305 8306 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8307 // bits as operand 3. 8308 AsmNodeOperands.push_back(DAG.getTargetConstant( 8309 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8310 8311 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8312 // this, assign virtual and physical registers for inputs and otput. 8313 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8314 // Assign Registers. 8315 SDISelAsmOperandInfo &RefOpInfo = 8316 OpInfo.isMatchingInputConstraint() 8317 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8318 : OpInfo; 8319 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8320 8321 switch (OpInfo.Type) { 8322 case InlineAsm::isOutput: 8323 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8324 unsigned ConstraintID = 8325 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8326 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8327 "Failed to convert memory constraint code to constraint id."); 8328 8329 // Add information to the INLINEASM node to know about this output. 8330 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8331 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8332 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8333 MVT::i32)); 8334 AsmNodeOperands.push_back(OpInfo.CallOperand); 8335 } else { 8336 // Otherwise, this outputs to a register (directly for C_Register / 8337 // C_RegisterClass, and a target-defined fashion for 8338 // C_Immediate/C_Other). Find a register that we can use. 8339 if (OpInfo.AssignedRegs.Regs.empty()) { 8340 emitInlineAsmError( 8341 CS, "couldn't allocate output register for constraint '" + 8342 Twine(OpInfo.ConstraintCode) + "'"); 8343 return; 8344 } 8345 8346 // Add information to the INLINEASM node to know that this register is 8347 // set. 8348 OpInfo.AssignedRegs.AddInlineAsmOperands( 8349 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8350 : InlineAsm::Kind_RegDef, 8351 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8352 } 8353 break; 8354 8355 case InlineAsm::isInput: { 8356 SDValue InOperandVal = OpInfo.CallOperand; 8357 8358 if (OpInfo.isMatchingInputConstraint()) { 8359 // If this is required to match an output register we have already set, 8360 // just use its register. 8361 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8362 AsmNodeOperands); 8363 unsigned OpFlag = 8364 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8365 if (InlineAsm::isRegDefKind(OpFlag) || 8366 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8367 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8368 if (OpInfo.isIndirect) { 8369 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8370 emitInlineAsmError(CS, "inline asm not supported yet:" 8371 " don't know how to handle tied " 8372 "indirect register inputs"); 8373 return; 8374 } 8375 8376 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8377 SmallVector<unsigned, 4> Regs; 8378 8379 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8380 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8381 MachineRegisterInfo &RegInfo = 8382 DAG.getMachineFunction().getRegInfo(); 8383 for (unsigned i = 0; i != NumRegs; ++i) 8384 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8385 } else { 8386 emitInlineAsmError(CS, "inline asm error: This value type register " 8387 "class is not natively supported!"); 8388 return; 8389 } 8390 8391 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8392 8393 SDLoc dl = getCurSDLoc(); 8394 // Use the produced MatchedRegs object to 8395 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8396 CS.getInstruction()); 8397 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8398 true, OpInfo.getMatchedOperand(), dl, 8399 DAG, AsmNodeOperands); 8400 break; 8401 } 8402 8403 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8404 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8405 "Unexpected number of operands"); 8406 // Add information to the INLINEASM node to know about this input. 8407 // See InlineAsm.h isUseOperandTiedToDef. 8408 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8409 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8410 OpInfo.getMatchedOperand()); 8411 AsmNodeOperands.push_back(DAG.getTargetConstant( 8412 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8413 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8414 break; 8415 } 8416 8417 // Treat indirect 'X' constraint as memory. 8418 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8419 OpInfo.isIndirect) 8420 OpInfo.ConstraintType = TargetLowering::C_Memory; 8421 8422 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8423 OpInfo.ConstraintType == TargetLowering::C_Other) { 8424 std::vector<SDValue> Ops; 8425 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8426 Ops, DAG); 8427 if (Ops.empty()) { 8428 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8429 if (isa<ConstantSDNode>(InOperandVal)) { 8430 emitInlineAsmError(CS, "value out of range for constraint '" + 8431 Twine(OpInfo.ConstraintCode) + "'"); 8432 return; 8433 } 8434 8435 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8436 Twine(OpInfo.ConstraintCode) + "'"); 8437 return; 8438 } 8439 8440 // Add information to the INLINEASM node to know about this input. 8441 unsigned ResOpType = 8442 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8443 AsmNodeOperands.push_back(DAG.getTargetConstant( 8444 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8445 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8446 break; 8447 } 8448 8449 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8450 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8451 assert(InOperandVal.getValueType() == 8452 TLI.getPointerTy(DAG.getDataLayout()) && 8453 "Memory operands expect pointer values"); 8454 8455 unsigned ConstraintID = 8456 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8457 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8458 "Failed to convert memory constraint code to constraint id."); 8459 8460 // Add information to the INLINEASM node to know about this input. 8461 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8462 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8463 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8464 getCurSDLoc(), 8465 MVT::i32)); 8466 AsmNodeOperands.push_back(InOperandVal); 8467 break; 8468 } 8469 8470 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8471 OpInfo.ConstraintType == TargetLowering::C_Register) && 8472 "Unknown constraint type!"); 8473 8474 // TODO: Support this. 8475 if (OpInfo.isIndirect) { 8476 emitInlineAsmError( 8477 CS, "Don't know how to handle indirect register inputs yet " 8478 "for constraint '" + 8479 Twine(OpInfo.ConstraintCode) + "'"); 8480 return; 8481 } 8482 8483 // Copy the input into the appropriate registers. 8484 if (OpInfo.AssignedRegs.Regs.empty()) { 8485 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8486 Twine(OpInfo.ConstraintCode) + "'"); 8487 return; 8488 } 8489 8490 SDLoc dl = getCurSDLoc(); 8491 8492 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8493 Chain, &Flag, CS.getInstruction()); 8494 8495 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8496 dl, DAG, AsmNodeOperands); 8497 break; 8498 } 8499 case InlineAsm::isClobber: 8500 // Add the clobbered value to the operand list, so that the register 8501 // allocator is aware that the physreg got clobbered. 8502 if (!OpInfo.AssignedRegs.Regs.empty()) 8503 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8504 false, 0, getCurSDLoc(), DAG, 8505 AsmNodeOperands); 8506 break; 8507 } 8508 } 8509 8510 // Finish up input operands. Set the input chain and add the flag last. 8511 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8512 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8513 8514 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8515 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8516 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8517 Flag = Chain.getValue(1); 8518 8519 // Do additional work to generate outputs. 8520 8521 SmallVector<EVT, 1> ResultVTs; 8522 SmallVector<SDValue, 1> ResultValues; 8523 SmallVector<SDValue, 8> OutChains; 8524 8525 llvm::Type *CSResultType = CS.getType(); 8526 ArrayRef<Type *> ResultTypes; 8527 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8528 ResultTypes = StructResult->elements(); 8529 else if (!CSResultType->isVoidTy()) 8530 ResultTypes = makeArrayRef(CSResultType); 8531 8532 auto CurResultType = ResultTypes.begin(); 8533 auto handleRegAssign = [&](SDValue V) { 8534 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8535 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8536 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8537 ++CurResultType; 8538 // If the type of the inline asm call site return value is different but has 8539 // same size as the type of the asm output bitcast it. One example of this 8540 // is for vectors with different width / number of elements. This can 8541 // happen for register classes that can contain multiple different value 8542 // types. The preg or vreg allocated may not have the same VT as was 8543 // expected. 8544 // 8545 // This can also happen for a return value that disagrees with the register 8546 // class it is put in, eg. a double in a general-purpose register on a 8547 // 32-bit machine. 8548 if (ResultVT != V.getValueType() && 8549 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8550 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8551 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8552 V.getValueType().isInteger()) { 8553 // If a result value was tied to an input value, the computed result 8554 // may have a wider width than the expected result. Extract the 8555 // relevant portion. 8556 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8557 } 8558 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8559 ResultVTs.push_back(ResultVT); 8560 ResultValues.push_back(V); 8561 }; 8562 8563 // Deal with output operands. 8564 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8565 if (OpInfo.Type == InlineAsm::isOutput) { 8566 SDValue Val; 8567 // Skip trivial output operands. 8568 if (OpInfo.AssignedRegs.Regs.empty()) 8569 continue; 8570 8571 switch (OpInfo.ConstraintType) { 8572 case TargetLowering::C_Register: 8573 case TargetLowering::C_RegisterClass: 8574 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8575 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8576 break; 8577 case TargetLowering::C_Immediate: 8578 case TargetLowering::C_Other: 8579 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8580 OpInfo, DAG); 8581 break; 8582 case TargetLowering::C_Memory: 8583 break; // Already handled. 8584 case TargetLowering::C_Unknown: 8585 assert(false && "Unexpected unknown constraint"); 8586 } 8587 8588 // Indirect output manifest as stores. Record output chains. 8589 if (OpInfo.isIndirect) { 8590 const Value *Ptr = OpInfo.CallOperandVal; 8591 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8592 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8593 MachinePointerInfo(Ptr)); 8594 OutChains.push_back(Store); 8595 } else { 8596 // generate CopyFromRegs to associated registers. 8597 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8598 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8599 for (const SDValue &V : Val->op_values()) 8600 handleRegAssign(V); 8601 } else 8602 handleRegAssign(Val); 8603 } 8604 } 8605 } 8606 8607 // Set results. 8608 if (!ResultValues.empty()) { 8609 assert(CurResultType == ResultTypes.end() && 8610 "Mismatch in number of ResultTypes"); 8611 assert(ResultValues.size() == ResultTypes.size() && 8612 "Mismatch in number of output operands in asm result"); 8613 8614 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8615 DAG.getVTList(ResultVTs), ResultValues); 8616 setValue(CS.getInstruction(), V); 8617 } 8618 8619 // Collect store chains. 8620 if (!OutChains.empty()) 8621 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8622 8623 // Only Update Root if inline assembly has a memory effect. 8624 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8625 DAG.setRoot(Chain); 8626 } 8627 8628 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8629 const Twine &Message) { 8630 LLVMContext &Ctx = *DAG.getContext(); 8631 Ctx.emitError(CS.getInstruction(), Message); 8632 8633 // Make sure we leave the DAG in a valid state 8634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8635 SmallVector<EVT, 1> ValueVTs; 8636 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8637 8638 if (ValueVTs.empty()) 8639 return; 8640 8641 SmallVector<SDValue, 1> Ops; 8642 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8643 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8644 8645 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8646 } 8647 8648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8649 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8650 MVT::Other, getRoot(), 8651 getValue(I.getArgOperand(0)), 8652 DAG.getSrcValue(I.getArgOperand(0)))); 8653 } 8654 8655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8657 const DataLayout &DL = DAG.getDataLayout(); 8658 SDValue V = DAG.getVAArg( 8659 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8660 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8661 DL.getABITypeAlignment(I.getType())); 8662 DAG.setRoot(V.getValue(1)); 8663 8664 if (I.getType()->isPointerTy()) 8665 V = DAG.getPtrExtOrTrunc( 8666 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8667 setValue(&I, V); 8668 } 8669 8670 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8671 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8672 MVT::Other, getRoot(), 8673 getValue(I.getArgOperand(0)), 8674 DAG.getSrcValue(I.getArgOperand(0)))); 8675 } 8676 8677 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8678 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8679 MVT::Other, getRoot(), 8680 getValue(I.getArgOperand(0)), 8681 getValue(I.getArgOperand(1)), 8682 DAG.getSrcValue(I.getArgOperand(0)), 8683 DAG.getSrcValue(I.getArgOperand(1)))); 8684 } 8685 8686 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8687 const Instruction &I, 8688 SDValue Op) { 8689 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8690 if (!Range) 8691 return Op; 8692 8693 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8694 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8695 return Op; 8696 8697 APInt Lo = CR.getUnsignedMin(); 8698 if (!Lo.isMinValue()) 8699 return Op; 8700 8701 APInt Hi = CR.getUnsignedMax(); 8702 unsigned Bits = std::max(Hi.getActiveBits(), 8703 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8704 8705 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8706 8707 SDLoc SL = getCurSDLoc(); 8708 8709 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8710 DAG.getValueType(SmallVT)); 8711 unsigned NumVals = Op.getNode()->getNumValues(); 8712 if (NumVals == 1) 8713 return ZExt; 8714 8715 SmallVector<SDValue, 4> Ops; 8716 8717 Ops.push_back(ZExt); 8718 for (unsigned I = 1; I != NumVals; ++I) 8719 Ops.push_back(Op.getValue(I)); 8720 8721 return DAG.getMergeValues(Ops, SL); 8722 } 8723 8724 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8725 /// the call being lowered. 8726 /// 8727 /// This is a helper for lowering intrinsics that follow a target calling 8728 /// convention or require stack pointer adjustment. Only a subset of the 8729 /// intrinsic's operands need to participate in the calling convention. 8730 void SelectionDAGBuilder::populateCallLoweringInfo( 8731 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8732 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8733 bool IsPatchPoint) { 8734 TargetLowering::ArgListTy Args; 8735 Args.reserve(NumArgs); 8736 8737 // Populate the argument list. 8738 // Attributes for args start at offset 1, after the return attribute. 8739 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8740 ArgI != ArgE; ++ArgI) { 8741 const Value *V = Call->getOperand(ArgI); 8742 8743 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8744 8745 TargetLowering::ArgListEntry Entry; 8746 Entry.Node = getValue(V); 8747 Entry.Ty = V->getType(); 8748 Entry.setAttributes(Call, ArgI); 8749 Args.push_back(Entry); 8750 } 8751 8752 CLI.setDebugLoc(getCurSDLoc()) 8753 .setChain(getRoot()) 8754 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8755 .setDiscardResult(Call->use_empty()) 8756 .setIsPatchPoint(IsPatchPoint); 8757 } 8758 8759 /// Add a stack map intrinsic call's live variable operands to a stackmap 8760 /// or patchpoint target node's operand list. 8761 /// 8762 /// Constants are converted to TargetConstants purely as an optimization to 8763 /// avoid constant materialization and register allocation. 8764 /// 8765 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8766 /// generate addess computation nodes, and so FinalizeISel can convert the 8767 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8768 /// address materialization and register allocation, but may also be required 8769 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8770 /// alloca in the entry block, then the runtime may assume that the alloca's 8771 /// StackMap location can be read immediately after compilation and that the 8772 /// location is valid at any point during execution (this is similar to the 8773 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8774 /// only available in a register, then the runtime would need to trap when 8775 /// execution reaches the StackMap in order to read the alloca's location. 8776 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8777 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8778 SelectionDAGBuilder &Builder) { 8779 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8780 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8781 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8782 Ops.push_back( 8783 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8784 Ops.push_back( 8785 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8786 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8787 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8788 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8789 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8790 } else 8791 Ops.push_back(OpVal); 8792 } 8793 } 8794 8795 /// Lower llvm.experimental.stackmap directly to its target opcode. 8796 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8797 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8798 // [live variables...]) 8799 8800 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8801 8802 SDValue Chain, InFlag, Callee, NullPtr; 8803 SmallVector<SDValue, 32> Ops; 8804 8805 SDLoc DL = getCurSDLoc(); 8806 Callee = getValue(CI.getCalledValue()); 8807 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8808 8809 // The stackmap intrinsic only records the live variables (the arguments 8810 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8811 // intrinsic, this won't be lowered to a function call. This means we don't 8812 // have to worry about calling conventions and target specific lowering code. 8813 // Instead we perform the call lowering right here. 8814 // 8815 // chain, flag = CALLSEQ_START(chain, 0, 0) 8816 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8817 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8818 // 8819 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8820 InFlag = Chain.getValue(1); 8821 8822 // Add the <id> and <numBytes> constants. 8823 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8824 Ops.push_back(DAG.getTargetConstant( 8825 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8826 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8827 Ops.push_back(DAG.getTargetConstant( 8828 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8829 MVT::i32)); 8830 8831 // Push live variables for the stack map. 8832 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8833 8834 // We are not pushing any register mask info here on the operands list, 8835 // because the stackmap doesn't clobber anything. 8836 8837 // Push the chain and the glue flag. 8838 Ops.push_back(Chain); 8839 Ops.push_back(InFlag); 8840 8841 // Create the STACKMAP node. 8842 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8843 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8844 Chain = SDValue(SM, 0); 8845 InFlag = Chain.getValue(1); 8846 8847 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8848 8849 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8850 8851 // Set the root to the target-lowered call chain. 8852 DAG.setRoot(Chain); 8853 8854 // Inform the Frame Information that we have a stackmap in this function. 8855 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8856 } 8857 8858 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8859 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8860 const BasicBlock *EHPadBB) { 8861 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8862 // i32 <numBytes>, 8863 // i8* <target>, 8864 // i32 <numArgs>, 8865 // [Args...], 8866 // [live variables...]) 8867 8868 CallingConv::ID CC = CS.getCallingConv(); 8869 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8870 bool HasDef = !CS->getType()->isVoidTy(); 8871 SDLoc dl = getCurSDLoc(); 8872 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8873 8874 // Handle immediate and symbolic callees. 8875 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8876 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8877 /*isTarget=*/true); 8878 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8879 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8880 SDLoc(SymbolicCallee), 8881 SymbolicCallee->getValueType(0)); 8882 8883 // Get the real number of arguments participating in the call <numArgs> 8884 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8885 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8886 8887 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8888 // Intrinsics include all meta-operands up to but not including CC. 8889 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8890 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8891 "Not enough arguments provided to the patchpoint intrinsic"); 8892 8893 // For AnyRegCC the arguments are lowered later on manually. 8894 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8895 Type *ReturnTy = 8896 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8897 8898 TargetLowering::CallLoweringInfo CLI(DAG); 8899 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8900 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8901 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8902 8903 SDNode *CallEnd = Result.second.getNode(); 8904 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8905 CallEnd = CallEnd->getOperand(0).getNode(); 8906 8907 /// Get a call instruction from the call sequence chain. 8908 /// Tail calls are not allowed. 8909 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8910 "Expected a callseq node."); 8911 SDNode *Call = CallEnd->getOperand(0).getNode(); 8912 bool HasGlue = Call->getGluedNode(); 8913 8914 // Replace the target specific call node with the patchable intrinsic. 8915 SmallVector<SDValue, 8> Ops; 8916 8917 // Add the <id> and <numBytes> constants. 8918 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8919 Ops.push_back(DAG.getTargetConstant( 8920 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8921 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8922 Ops.push_back(DAG.getTargetConstant( 8923 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8924 MVT::i32)); 8925 8926 // Add the callee. 8927 Ops.push_back(Callee); 8928 8929 // Adjust <numArgs> to account for any arguments that have been passed on the 8930 // stack instead. 8931 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8932 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8933 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8934 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8935 8936 // Add the calling convention 8937 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8938 8939 // Add the arguments we omitted previously. The register allocator should 8940 // place these in any free register. 8941 if (IsAnyRegCC) 8942 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8943 Ops.push_back(getValue(CS.getArgument(i))); 8944 8945 // Push the arguments from the call instruction up to the register mask. 8946 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8947 Ops.append(Call->op_begin() + 2, e); 8948 8949 // Push live variables for the stack map. 8950 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8951 8952 // Push the register mask info. 8953 if (HasGlue) 8954 Ops.push_back(*(Call->op_end()-2)); 8955 else 8956 Ops.push_back(*(Call->op_end()-1)); 8957 8958 // Push the chain (this is originally the first operand of the call, but 8959 // becomes now the last or second to last operand). 8960 Ops.push_back(*(Call->op_begin())); 8961 8962 // Push the glue flag (last operand). 8963 if (HasGlue) 8964 Ops.push_back(*(Call->op_end()-1)); 8965 8966 SDVTList NodeTys; 8967 if (IsAnyRegCC && HasDef) { 8968 // Create the return types based on the intrinsic definition 8969 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8970 SmallVector<EVT, 3> ValueVTs; 8971 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8972 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8973 8974 // There is always a chain and a glue type at the end 8975 ValueVTs.push_back(MVT::Other); 8976 ValueVTs.push_back(MVT::Glue); 8977 NodeTys = DAG.getVTList(ValueVTs); 8978 } else 8979 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8980 8981 // Replace the target specific call node with a PATCHPOINT node. 8982 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8983 dl, NodeTys, Ops); 8984 8985 // Update the NodeMap. 8986 if (HasDef) { 8987 if (IsAnyRegCC) 8988 setValue(CS.getInstruction(), SDValue(MN, 0)); 8989 else 8990 setValue(CS.getInstruction(), Result.first); 8991 } 8992 8993 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8994 // call sequence. Furthermore the location of the chain and glue can change 8995 // when the AnyReg calling convention is used and the intrinsic returns a 8996 // value. 8997 if (IsAnyRegCC && HasDef) { 8998 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8999 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9000 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9001 } else 9002 DAG.ReplaceAllUsesWith(Call, MN); 9003 DAG.DeleteNode(Call); 9004 9005 // Inform the Frame Information that we have a patchpoint in this function. 9006 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9007 } 9008 9009 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9010 unsigned Intrinsic) { 9011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9012 SDValue Op1 = getValue(I.getArgOperand(0)); 9013 SDValue Op2; 9014 if (I.getNumArgOperands() > 1) 9015 Op2 = getValue(I.getArgOperand(1)); 9016 SDLoc dl = getCurSDLoc(); 9017 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9018 SDValue Res; 9019 FastMathFlags FMF; 9020 if (isa<FPMathOperator>(I)) 9021 FMF = I.getFastMathFlags(); 9022 9023 switch (Intrinsic) { 9024 case Intrinsic::experimental_vector_reduce_v2_fadd: 9025 if (FMF.allowReassoc()) 9026 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9027 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 9028 else 9029 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 9030 break; 9031 case Intrinsic::experimental_vector_reduce_v2_fmul: 9032 if (FMF.allowReassoc()) 9033 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9034 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 9035 else 9036 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 9037 break; 9038 case Intrinsic::experimental_vector_reduce_add: 9039 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9040 break; 9041 case Intrinsic::experimental_vector_reduce_mul: 9042 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9043 break; 9044 case Intrinsic::experimental_vector_reduce_and: 9045 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9046 break; 9047 case Intrinsic::experimental_vector_reduce_or: 9048 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9049 break; 9050 case Intrinsic::experimental_vector_reduce_xor: 9051 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9052 break; 9053 case Intrinsic::experimental_vector_reduce_smax: 9054 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9055 break; 9056 case Intrinsic::experimental_vector_reduce_smin: 9057 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9058 break; 9059 case Intrinsic::experimental_vector_reduce_umax: 9060 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9061 break; 9062 case Intrinsic::experimental_vector_reduce_umin: 9063 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9064 break; 9065 case Intrinsic::experimental_vector_reduce_fmax: 9066 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9067 break; 9068 case Intrinsic::experimental_vector_reduce_fmin: 9069 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9070 break; 9071 default: 9072 llvm_unreachable("Unhandled vector reduce intrinsic"); 9073 } 9074 setValue(&I, Res); 9075 } 9076 9077 /// Returns an AttributeList representing the attributes applied to the return 9078 /// value of the given call. 9079 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9080 SmallVector<Attribute::AttrKind, 2> Attrs; 9081 if (CLI.RetSExt) 9082 Attrs.push_back(Attribute::SExt); 9083 if (CLI.RetZExt) 9084 Attrs.push_back(Attribute::ZExt); 9085 if (CLI.IsInReg) 9086 Attrs.push_back(Attribute::InReg); 9087 9088 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9089 Attrs); 9090 } 9091 9092 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9093 /// implementation, which just calls LowerCall. 9094 /// FIXME: When all targets are 9095 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9096 std::pair<SDValue, SDValue> 9097 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9098 // Handle the incoming return values from the call. 9099 CLI.Ins.clear(); 9100 Type *OrigRetTy = CLI.RetTy; 9101 SmallVector<EVT, 4> RetTys; 9102 SmallVector<uint64_t, 4> Offsets; 9103 auto &DL = CLI.DAG.getDataLayout(); 9104 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9105 9106 if (CLI.IsPostTypeLegalization) { 9107 // If we are lowering a libcall after legalization, split the return type. 9108 SmallVector<EVT, 4> OldRetTys; 9109 SmallVector<uint64_t, 4> OldOffsets; 9110 RetTys.swap(OldRetTys); 9111 Offsets.swap(OldOffsets); 9112 9113 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9114 EVT RetVT = OldRetTys[i]; 9115 uint64_t Offset = OldOffsets[i]; 9116 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9117 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9118 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9119 RetTys.append(NumRegs, RegisterVT); 9120 for (unsigned j = 0; j != NumRegs; ++j) 9121 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9122 } 9123 } 9124 9125 SmallVector<ISD::OutputArg, 4> Outs; 9126 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9127 9128 bool CanLowerReturn = 9129 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9130 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9131 9132 SDValue DemoteStackSlot; 9133 int DemoteStackIdx = -100; 9134 if (!CanLowerReturn) { 9135 // FIXME: equivalent assert? 9136 // assert(!CS.hasInAllocaArgument() && 9137 // "sret demotion is incompatible with inalloca"); 9138 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9139 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9140 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9141 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9142 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9143 DL.getAllocaAddrSpace()); 9144 9145 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9146 ArgListEntry Entry; 9147 Entry.Node = DemoteStackSlot; 9148 Entry.Ty = StackSlotPtrType; 9149 Entry.IsSExt = false; 9150 Entry.IsZExt = false; 9151 Entry.IsInReg = false; 9152 Entry.IsSRet = true; 9153 Entry.IsNest = false; 9154 Entry.IsByVal = false; 9155 Entry.IsReturned = false; 9156 Entry.IsSwiftSelf = false; 9157 Entry.IsSwiftError = false; 9158 Entry.IsCFGuardTarget = false; 9159 Entry.Alignment = Align; 9160 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9161 CLI.NumFixedArgs += 1; 9162 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9163 9164 // sret demotion isn't compatible with tail-calls, since the sret argument 9165 // points into the callers stack frame. 9166 CLI.IsTailCall = false; 9167 } else { 9168 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9169 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9170 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9171 ISD::ArgFlagsTy Flags; 9172 if (NeedsRegBlock) { 9173 Flags.setInConsecutiveRegs(); 9174 if (I == RetTys.size() - 1) 9175 Flags.setInConsecutiveRegsLast(); 9176 } 9177 EVT VT = RetTys[I]; 9178 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9179 CLI.CallConv, VT); 9180 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9181 CLI.CallConv, VT); 9182 for (unsigned i = 0; i != NumRegs; ++i) { 9183 ISD::InputArg MyFlags; 9184 MyFlags.Flags = Flags; 9185 MyFlags.VT = RegisterVT; 9186 MyFlags.ArgVT = VT; 9187 MyFlags.Used = CLI.IsReturnValueUsed; 9188 if (CLI.RetTy->isPointerTy()) { 9189 MyFlags.Flags.setPointer(); 9190 MyFlags.Flags.setPointerAddrSpace( 9191 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9192 } 9193 if (CLI.RetSExt) 9194 MyFlags.Flags.setSExt(); 9195 if (CLI.RetZExt) 9196 MyFlags.Flags.setZExt(); 9197 if (CLI.IsInReg) 9198 MyFlags.Flags.setInReg(); 9199 CLI.Ins.push_back(MyFlags); 9200 } 9201 } 9202 } 9203 9204 // We push in swifterror return as the last element of CLI.Ins. 9205 ArgListTy &Args = CLI.getArgs(); 9206 if (supportSwiftError()) { 9207 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9208 if (Args[i].IsSwiftError) { 9209 ISD::InputArg MyFlags; 9210 MyFlags.VT = getPointerTy(DL); 9211 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9212 MyFlags.Flags.setSwiftError(); 9213 CLI.Ins.push_back(MyFlags); 9214 } 9215 } 9216 } 9217 9218 // Handle all of the outgoing arguments. 9219 CLI.Outs.clear(); 9220 CLI.OutVals.clear(); 9221 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9222 SmallVector<EVT, 4> ValueVTs; 9223 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9224 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9225 Type *FinalType = Args[i].Ty; 9226 if (Args[i].IsByVal) 9227 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9228 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9229 FinalType, CLI.CallConv, CLI.IsVarArg); 9230 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9231 ++Value) { 9232 EVT VT = ValueVTs[Value]; 9233 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9234 SDValue Op = SDValue(Args[i].Node.getNode(), 9235 Args[i].Node.getResNo() + Value); 9236 ISD::ArgFlagsTy Flags; 9237 9238 // Certain targets (such as MIPS), may have a different ABI alignment 9239 // for a type depending on the context. Give the target a chance to 9240 // specify the alignment it wants. 9241 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9242 9243 if (Args[i].Ty->isPointerTy()) { 9244 Flags.setPointer(); 9245 Flags.setPointerAddrSpace( 9246 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9247 } 9248 if (Args[i].IsZExt) 9249 Flags.setZExt(); 9250 if (Args[i].IsSExt) 9251 Flags.setSExt(); 9252 if (Args[i].IsInReg) { 9253 // If we are using vectorcall calling convention, a structure that is 9254 // passed InReg - is surely an HVA 9255 if (CLI.CallConv == CallingConv::X86_VectorCall && 9256 isa<StructType>(FinalType)) { 9257 // The first value of a structure is marked 9258 if (0 == Value) 9259 Flags.setHvaStart(); 9260 Flags.setHva(); 9261 } 9262 // Set InReg Flag 9263 Flags.setInReg(); 9264 } 9265 if (Args[i].IsSRet) 9266 Flags.setSRet(); 9267 if (Args[i].IsSwiftSelf) 9268 Flags.setSwiftSelf(); 9269 if (Args[i].IsSwiftError) 9270 Flags.setSwiftError(); 9271 if (Args[i].IsCFGuardTarget) 9272 Flags.setCFGuardTarget(); 9273 if (Args[i].IsByVal) 9274 Flags.setByVal(); 9275 if (Args[i].IsInAlloca) { 9276 Flags.setInAlloca(); 9277 // Set the byval flag for CCAssignFn callbacks that don't know about 9278 // inalloca. This way we can know how many bytes we should've allocated 9279 // and how many bytes a callee cleanup function will pop. If we port 9280 // inalloca to more targets, we'll have to add custom inalloca handling 9281 // in the various CC lowering callbacks. 9282 Flags.setByVal(); 9283 } 9284 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9285 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9286 Type *ElementTy = Ty->getElementType(); 9287 9288 unsigned FrameSize = DL.getTypeAllocSize( 9289 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9290 Flags.setByValSize(FrameSize); 9291 9292 // info is not there but there are cases it cannot get right. 9293 unsigned FrameAlign; 9294 if (Args[i].Alignment) 9295 FrameAlign = Args[i].Alignment; 9296 else 9297 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9298 Flags.setByValAlign(Align(FrameAlign)); 9299 } 9300 if (Args[i].IsNest) 9301 Flags.setNest(); 9302 if (NeedsRegBlock) 9303 Flags.setInConsecutiveRegs(); 9304 Flags.setOrigAlign(OriginalAlignment); 9305 9306 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9307 CLI.CallConv, VT); 9308 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9309 CLI.CallConv, VT); 9310 SmallVector<SDValue, 4> Parts(NumParts); 9311 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9312 9313 if (Args[i].IsSExt) 9314 ExtendKind = ISD::SIGN_EXTEND; 9315 else if (Args[i].IsZExt) 9316 ExtendKind = ISD::ZERO_EXTEND; 9317 9318 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9319 // for now. 9320 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9321 CanLowerReturn) { 9322 assert((CLI.RetTy == Args[i].Ty || 9323 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9324 CLI.RetTy->getPointerAddressSpace() == 9325 Args[i].Ty->getPointerAddressSpace())) && 9326 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9327 // Before passing 'returned' to the target lowering code, ensure that 9328 // either the register MVT and the actual EVT are the same size or that 9329 // the return value and argument are extended in the same way; in these 9330 // cases it's safe to pass the argument register value unchanged as the 9331 // return register value (although it's at the target's option whether 9332 // to do so) 9333 // TODO: allow code generation to take advantage of partially preserved 9334 // registers rather than clobbering the entire register when the 9335 // parameter extension method is not compatible with the return 9336 // extension method 9337 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9338 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9339 CLI.RetZExt == Args[i].IsZExt)) 9340 Flags.setReturned(); 9341 } 9342 9343 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9344 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9345 9346 for (unsigned j = 0; j != NumParts; ++j) { 9347 // if it isn't first piece, alignment must be 1 9348 // For scalable vectors the scalable part is currently handled 9349 // by individual targets, so we just use the known minimum size here. 9350 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9351 i < CLI.NumFixedArgs, i, 9352 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9353 if (NumParts > 1 && j == 0) 9354 MyFlags.Flags.setSplit(); 9355 else if (j != 0) { 9356 MyFlags.Flags.setOrigAlign(Align(1)); 9357 if (j == NumParts - 1) 9358 MyFlags.Flags.setSplitEnd(); 9359 } 9360 9361 CLI.Outs.push_back(MyFlags); 9362 CLI.OutVals.push_back(Parts[j]); 9363 } 9364 9365 if (NeedsRegBlock && Value == NumValues - 1) 9366 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9367 } 9368 } 9369 9370 SmallVector<SDValue, 4> InVals; 9371 CLI.Chain = LowerCall(CLI, InVals); 9372 9373 // Update CLI.InVals to use outside of this function. 9374 CLI.InVals = InVals; 9375 9376 // Verify that the target's LowerCall behaved as expected. 9377 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9378 "LowerCall didn't return a valid chain!"); 9379 assert((!CLI.IsTailCall || InVals.empty()) && 9380 "LowerCall emitted a return value for a tail call!"); 9381 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9382 "LowerCall didn't emit the correct number of values!"); 9383 9384 // For a tail call, the return value is merely live-out and there aren't 9385 // any nodes in the DAG representing it. Return a special value to 9386 // indicate that a tail call has been emitted and no more Instructions 9387 // should be processed in the current block. 9388 if (CLI.IsTailCall) { 9389 CLI.DAG.setRoot(CLI.Chain); 9390 return std::make_pair(SDValue(), SDValue()); 9391 } 9392 9393 #ifndef NDEBUG 9394 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9395 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9396 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9397 "LowerCall emitted a value with the wrong type!"); 9398 } 9399 #endif 9400 9401 SmallVector<SDValue, 4> ReturnValues; 9402 if (!CanLowerReturn) { 9403 // The instruction result is the result of loading from the 9404 // hidden sret parameter. 9405 SmallVector<EVT, 1> PVTs; 9406 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9407 9408 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9409 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9410 EVT PtrVT = PVTs[0]; 9411 9412 unsigned NumValues = RetTys.size(); 9413 ReturnValues.resize(NumValues); 9414 SmallVector<SDValue, 4> Chains(NumValues); 9415 9416 // An aggregate return value cannot wrap around the address space, so 9417 // offsets to its parts don't wrap either. 9418 SDNodeFlags Flags; 9419 Flags.setNoUnsignedWrap(true); 9420 9421 for (unsigned i = 0; i < NumValues; ++i) { 9422 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9423 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9424 PtrVT), Flags); 9425 SDValue L = CLI.DAG.getLoad( 9426 RetTys[i], CLI.DL, CLI.Chain, Add, 9427 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9428 DemoteStackIdx, Offsets[i]), 9429 /* Alignment = */ 1); 9430 ReturnValues[i] = L; 9431 Chains[i] = L.getValue(1); 9432 } 9433 9434 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9435 } else { 9436 // Collect the legal value parts into potentially illegal values 9437 // that correspond to the original function's return values. 9438 Optional<ISD::NodeType> AssertOp; 9439 if (CLI.RetSExt) 9440 AssertOp = ISD::AssertSext; 9441 else if (CLI.RetZExt) 9442 AssertOp = ISD::AssertZext; 9443 unsigned CurReg = 0; 9444 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9445 EVT VT = RetTys[I]; 9446 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9447 CLI.CallConv, VT); 9448 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9449 CLI.CallConv, VT); 9450 9451 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9452 NumRegs, RegisterVT, VT, nullptr, 9453 CLI.CallConv, AssertOp)); 9454 CurReg += NumRegs; 9455 } 9456 9457 // For a function returning void, there is no return value. We can't create 9458 // such a node, so we just return a null return value in that case. In 9459 // that case, nothing will actually look at the value. 9460 if (ReturnValues.empty()) 9461 return std::make_pair(SDValue(), CLI.Chain); 9462 } 9463 9464 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9465 CLI.DAG.getVTList(RetTys), ReturnValues); 9466 return std::make_pair(Res, CLI.Chain); 9467 } 9468 9469 void TargetLowering::LowerOperationWrapper(SDNode *N, 9470 SmallVectorImpl<SDValue> &Results, 9471 SelectionDAG &DAG) const { 9472 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9473 Results.push_back(Res); 9474 } 9475 9476 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9477 llvm_unreachable("LowerOperation not implemented for this target!"); 9478 } 9479 9480 void 9481 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9482 SDValue Op = getNonRegisterValue(V); 9483 assert((Op.getOpcode() != ISD::CopyFromReg || 9484 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9485 "Copy from a reg to the same reg!"); 9486 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9487 9488 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9489 // If this is an InlineAsm we have to match the registers required, not the 9490 // notional registers required by the type. 9491 9492 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9493 None); // This is not an ABI copy. 9494 SDValue Chain = DAG.getEntryNode(); 9495 9496 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9497 FuncInfo.PreferredExtendType.end()) 9498 ? ISD::ANY_EXTEND 9499 : FuncInfo.PreferredExtendType[V]; 9500 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9501 PendingExports.push_back(Chain); 9502 } 9503 9504 #include "llvm/CodeGen/SelectionDAGISel.h" 9505 9506 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9507 /// entry block, return true. This includes arguments used by switches, since 9508 /// the switch may expand into multiple basic blocks. 9509 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9510 // With FastISel active, we may be splitting blocks, so force creation 9511 // of virtual registers for all non-dead arguments. 9512 if (FastISel) 9513 return A->use_empty(); 9514 9515 const BasicBlock &Entry = A->getParent()->front(); 9516 for (const User *U : A->users()) 9517 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9518 return false; // Use not in entry block. 9519 9520 return true; 9521 } 9522 9523 using ArgCopyElisionMapTy = 9524 DenseMap<const Argument *, 9525 std::pair<const AllocaInst *, const StoreInst *>>; 9526 9527 /// Scan the entry block of the function in FuncInfo for arguments that look 9528 /// like copies into a local alloca. Record any copied arguments in 9529 /// ArgCopyElisionCandidates. 9530 static void 9531 findArgumentCopyElisionCandidates(const DataLayout &DL, 9532 FunctionLoweringInfo *FuncInfo, 9533 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9534 // Record the state of every static alloca used in the entry block. Argument 9535 // allocas are all used in the entry block, so we need approximately as many 9536 // entries as we have arguments. 9537 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9538 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9539 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9540 StaticAllocas.reserve(NumArgs * 2); 9541 9542 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9543 if (!V) 9544 return nullptr; 9545 V = V->stripPointerCasts(); 9546 const auto *AI = dyn_cast<AllocaInst>(V); 9547 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9548 return nullptr; 9549 auto Iter = StaticAllocas.insert({AI, Unknown}); 9550 return &Iter.first->second; 9551 }; 9552 9553 // Look for stores of arguments to static allocas. Look through bitcasts and 9554 // GEPs to handle type coercions, as long as the alloca is fully initialized 9555 // by the store. Any non-store use of an alloca escapes it and any subsequent 9556 // unanalyzed store might write it. 9557 // FIXME: Handle structs initialized with multiple stores. 9558 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9559 // Look for stores, and handle non-store uses conservatively. 9560 const auto *SI = dyn_cast<StoreInst>(&I); 9561 if (!SI) { 9562 // We will look through cast uses, so ignore them completely. 9563 if (I.isCast()) 9564 continue; 9565 // Ignore debug info intrinsics, they don't escape or store to allocas. 9566 if (isa<DbgInfoIntrinsic>(I)) 9567 continue; 9568 // This is an unknown instruction. Assume it escapes or writes to all 9569 // static alloca operands. 9570 for (const Use &U : I.operands()) { 9571 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9572 *Info = StaticAllocaInfo::Clobbered; 9573 } 9574 continue; 9575 } 9576 9577 // If the stored value is a static alloca, mark it as escaped. 9578 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9579 *Info = StaticAllocaInfo::Clobbered; 9580 9581 // Check if the destination is a static alloca. 9582 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9583 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9584 if (!Info) 9585 continue; 9586 const AllocaInst *AI = cast<AllocaInst>(Dst); 9587 9588 // Skip allocas that have been initialized or clobbered. 9589 if (*Info != StaticAllocaInfo::Unknown) 9590 continue; 9591 9592 // Check if the stored value is an argument, and that this store fully 9593 // initializes the alloca. Don't elide copies from the same argument twice. 9594 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9595 const auto *Arg = dyn_cast<Argument>(Val); 9596 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9597 Arg->getType()->isEmptyTy() || 9598 DL.getTypeStoreSize(Arg->getType()) != 9599 DL.getTypeAllocSize(AI->getAllocatedType()) || 9600 ArgCopyElisionCandidates.count(Arg)) { 9601 *Info = StaticAllocaInfo::Clobbered; 9602 continue; 9603 } 9604 9605 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9606 << '\n'); 9607 9608 // Mark this alloca and store for argument copy elision. 9609 *Info = StaticAllocaInfo::Elidable; 9610 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9611 9612 // Stop scanning if we've seen all arguments. This will happen early in -O0 9613 // builds, which is useful, because -O0 builds have large entry blocks and 9614 // many allocas. 9615 if (ArgCopyElisionCandidates.size() == NumArgs) 9616 break; 9617 } 9618 } 9619 9620 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9621 /// ArgVal is a load from a suitable fixed stack object. 9622 static void tryToElideArgumentCopy( 9623 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9624 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9625 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9626 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9627 SDValue ArgVal, bool &ArgHasUses) { 9628 // Check if this is a load from a fixed stack object. 9629 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9630 if (!LNode) 9631 return; 9632 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9633 if (!FINode) 9634 return; 9635 9636 // Check that the fixed stack object is the right size and alignment. 9637 // Look at the alignment that the user wrote on the alloca instead of looking 9638 // at the stack object. 9639 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9640 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9641 const AllocaInst *AI = ArgCopyIter->second.first; 9642 int FixedIndex = FINode->getIndex(); 9643 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9644 int OldIndex = AllocaIndex; 9645 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9646 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9647 LLVM_DEBUG( 9648 dbgs() << " argument copy elision failed due to bad fixed stack " 9649 "object size\n"); 9650 return; 9651 } 9652 unsigned RequiredAlignment = AI->getAlignment(); 9653 if (!RequiredAlignment) { 9654 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9655 AI->getAllocatedType()); 9656 } 9657 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9658 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9659 "greater than stack argument alignment (" 9660 << RequiredAlignment << " vs " 9661 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9662 return; 9663 } 9664 9665 // Perform the elision. Delete the old stack object and replace its only use 9666 // in the variable info map. Mark the stack object as mutable. 9667 LLVM_DEBUG({ 9668 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9669 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9670 << '\n'; 9671 }); 9672 MFI.RemoveStackObject(OldIndex); 9673 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9674 AllocaIndex = FixedIndex; 9675 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9676 Chains.push_back(ArgVal.getValue(1)); 9677 9678 // Avoid emitting code for the store implementing the copy. 9679 const StoreInst *SI = ArgCopyIter->second.second; 9680 ElidedArgCopyInstrs.insert(SI); 9681 9682 // Check for uses of the argument again so that we can avoid exporting ArgVal 9683 // if it is't used by anything other than the store. 9684 for (const Value *U : Arg.users()) { 9685 if (U != SI) { 9686 ArgHasUses = true; 9687 break; 9688 } 9689 } 9690 } 9691 9692 void SelectionDAGISel::LowerArguments(const Function &F) { 9693 SelectionDAG &DAG = SDB->DAG; 9694 SDLoc dl = SDB->getCurSDLoc(); 9695 const DataLayout &DL = DAG.getDataLayout(); 9696 SmallVector<ISD::InputArg, 16> Ins; 9697 9698 if (!FuncInfo->CanLowerReturn) { 9699 // Put in an sret pointer parameter before all the other parameters. 9700 SmallVector<EVT, 1> ValueVTs; 9701 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9702 F.getReturnType()->getPointerTo( 9703 DAG.getDataLayout().getAllocaAddrSpace()), 9704 ValueVTs); 9705 9706 // NOTE: Assuming that a pointer will never break down to more than one VT 9707 // or one register. 9708 ISD::ArgFlagsTy Flags; 9709 Flags.setSRet(); 9710 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9711 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9712 ISD::InputArg::NoArgIndex, 0); 9713 Ins.push_back(RetArg); 9714 } 9715 9716 // Look for stores of arguments to static allocas. Mark such arguments with a 9717 // flag to ask the target to give us the memory location of that argument if 9718 // available. 9719 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9720 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9721 ArgCopyElisionCandidates); 9722 9723 // Set up the incoming argument description vector. 9724 for (const Argument &Arg : F.args()) { 9725 unsigned ArgNo = Arg.getArgNo(); 9726 SmallVector<EVT, 4> ValueVTs; 9727 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9728 bool isArgValueUsed = !Arg.use_empty(); 9729 unsigned PartBase = 0; 9730 Type *FinalType = Arg.getType(); 9731 if (Arg.hasAttribute(Attribute::ByVal)) 9732 FinalType = Arg.getParamByValType(); 9733 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9734 FinalType, F.getCallingConv(), F.isVarArg()); 9735 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9736 Value != NumValues; ++Value) { 9737 EVT VT = ValueVTs[Value]; 9738 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9739 ISD::ArgFlagsTy Flags; 9740 9741 // Certain targets (such as MIPS), may have a different ABI alignment 9742 // for a type depending on the context. Give the target a chance to 9743 // specify the alignment it wants. 9744 const Align OriginalAlignment( 9745 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9746 9747 if (Arg.getType()->isPointerTy()) { 9748 Flags.setPointer(); 9749 Flags.setPointerAddrSpace( 9750 cast<PointerType>(Arg.getType())->getAddressSpace()); 9751 } 9752 if (Arg.hasAttribute(Attribute::ZExt)) 9753 Flags.setZExt(); 9754 if (Arg.hasAttribute(Attribute::SExt)) 9755 Flags.setSExt(); 9756 if (Arg.hasAttribute(Attribute::InReg)) { 9757 // If we are using vectorcall calling convention, a structure that is 9758 // passed InReg - is surely an HVA 9759 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9760 isa<StructType>(Arg.getType())) { 9761 // The first value of a structure is marked 9762 if (0 == Value) 9763 Flags.setHvaStart(); 9764 Flags.setHva(); 9765 } 9766 // Set InReg Flag 9767 Flags.setInReg(); 9768 } 9769 if (Arg.hasAttribute(Attribute::StructRet)) 9770 Flags.setSRet(); 9771 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9772 Flags.setSwiftSelf(); 9773 if (Arg.hasAttribute(Attribute::SwiftError)) 9774 Flags.setSwiftError(); 9775 if (Arg.hasAttribute(Attribute::ByVal)) 9776 Flags.setByVal(); 9777 if (Arg.hasAttribute(Attribute::InAlloca)) { 9778 Flags.setInAlloca(); 9779 // Set the byval flag for CCAssignFn callbacks that don't know about 9780 // inalloca. This way we can know how many bytes we should've allocated 9781 // and how many bytes a callee cleanup function will pop. If we port 9782 // inalloca to more targets, we'll have to add custom inalloca handling 9783 // in the various CC lowering callbacks. 9784 Flags.setByVal(); 9785 } 9786 if (F.getCallingConv() == CallingConv::X86_INTR) { 9787 // IA Interrupt passes frame (1st parameter) by value in the stack. 9788 if (ArgNo == 0) 9789 Flags.setByVal(); 9790 } 9791 if (Flags.isByVal() || Flags.isInAlloca()) { 9792 Type *ElementTy = Arg.getParamByValType(); 9793 9794 // For ByVal, size and alignment should be passed from FE. BE will 9795 // guess if this info is not there but there are cases it cannot get 9796 // right. 9797 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9798 Flags.setByValSize(FrameSize); 9799 9800 unsigned FrameAlign; 9801 if (Arg.getParamAlignment()) 9802 FrameAlign = Arg.getParamAlignment(); 9803 else 9804 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9805 Flags.setByValAlign(Align(FrameAlign)); 9806 } 9807 if (Arg.hasAttribute(Attribute::Nest)) 9808 Flags.setNest(); 9809 if (NeedsRegBlock) 9810 Flags.setInConsecutiveRegs(); 9811 Flags.setOrigAlign(OriginalAlignment); 9812 if (ArgCopyElisionCandidates.count(&Arg)) 9813 Flags.setCopyElisionCandidate(); 9814 if (Arg.hasAttribute(Attribute::Returned)) 9815 Flags.setReturned(); 9816 9817 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9818 *CurDAG->getContext(), F.getCallingConv(), VT); 9819 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9820 *CurDAG->getContext(), F.getCallingConv(), VT); 9821 for (unsigned i = 0; i != NumRegs; ++i) { 9822 // For scalable vectors, use the minimum size; individual targets 9823 // are responsible for handling scalable vector arguments and 9824 // return values. 9825 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9826 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9827 if (NumRegs > 1 && i == 0) 9828 MyFlags.Flags.setSplit(); 9829 // if it isn't first piece, alignment must be 1 9830 else if (i > 0) { 9831 MyFlags.Flags.setOrigAlign(Align(1)); 9832 if (i == NumRegs - 1) 9833 MyFlags.Flags.setSplitEnd(); 9834 } 9835 Ins.push_back(MyFlags); 9836 } 9837 if (NeedsRegBlock && Value == NumValues - 1) 9838 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9839 PartBase += VT.getStoreSize().getKnownMinSize(); 9840 } 9841 } 9842 9843 // Call the target to set up the argument values. 9844 SmallVector<SDValue, 8> InVals; 9845 SDValue NewRoot = TLI->LowerFormalArguments( 9846 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9847 9848 // Verify that the target's LowerFormalArguments behaved as expected. 9849 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9850 "LowerFormalArguments didn't return a valid chain!"); 9851 assert(InVals.size() == Ins.size() && 9852 "LowerFormalArguments didn't emit the correct number of values!"); 9853 LLVM_DEBUG({ 9854 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9855 assert(InVals[i].getNode() && 9856 "LowerFormalArguments emitted a null value!"); 9857 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9858 "LowerFormalArguments emitted a value with the wrong type!"); 9859 } 9860 }); 9861 9862 // Update the DAG with the new chain value resulting from argument lowering. 9863 DAG.setRoot(NewRoot); 9864 9865 // Set up the argument values. 9866 unsigned i = 0; 9867 if (!FuncInfo->CanLowerReturn) { 9868 // Create a virtual register for the sret pointer, and put in a copy 9869 // from the sret argument into it. 9870 SmallVector<EVT, 1> ValueVTs; 9871 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9872 F.getReturnType()->getPointerTo( 9873 DAG.getDataLayout().getAllocaAddrSpace()), 9874 ValueVTs); 9875 MVT VT = ValueVTs[0].getSimpleVT(); 9876 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9877 Optional<ISD::NodeType> AssertOp = None; 9878 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9879 nullptr, F.getCallingConv(), AssertOp); 9880 9881 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9882 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9883 Register SRetReg = 9884 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9885 FuncInfo->DemoteRegister = SRetReg; 9886 NewRoot = 9887 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9888 DAG.setRoot(NewRoot); 9889 9890 // i indexes lowered arguments. Bump it past the hidden sret argument. 9891 ++i; 9892 } 9893 9894 SmallVector<SDValue, 4> Chains; 9895 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9896 for (const Argument &Arg : F.args()) { 9897 SmallVector<SDValue, 4> ArgValues; 9898 SmallVector<EVT, 4> ValueVTs; 9899 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9900 unsigned NumValues = ValueVTs.size(); 9901 if (NumValues == 0) 9902 continue; 9903 9904 bool ArgHasUses = !Arg.use_empty(); 9905 9906 // Elide the copying store if the target loaded this argument from a 9907 // suitable fixed stack object. 9908 if (Ins[i].Flags.isCopyElisionCandidate()) { 9909 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9910 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9911 InVals[i], ArgHasUses); 9912 } 9913 9914 // If this argument is unused then remember its value. It is used to generate 9915 // debugging information. 9916 bool isSwiftErrorArg = 9917 TLI->supportSwiftError() && 9918 Arg.hasAttribute(Attribute::SwiftError); 9919 if (!ArgHasUses && !isSwiftErrorArg) { 9920 SDB->setUnusedArgValue(&Arg, InVals[i]); 9921 9922 // Also remember any frame index for use in FastISel. 9923 if (FrameIndexSDNode *FI = 9924 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9925 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9926 } 9927 9928 for (unsigned Val = 0; Val != NumValues; ++Val) { 9929 EVT VT = ValueVTs[Val]; 9930 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9931 F.getCallingConv(), VT); 9932 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9933 *CurDAG->getContext(), F.getCallingConv(), VT); 9934 9935 // Even an apparent 'unused' swifterror argument needs to be returned. So 9936 // we do generate a copy for it that can be used on return from the 9937 // function. 9938 if (ArgHasUses || isSwiftErrorArg) { 9939 Optional<ISD::NodeType> AssertOp; 9940 if (Arg.hasAttribute(Attribute::SExt)) 9941 AssertOp = ISD::AssertSext; 9942 else if (Arg.hasAttribute(Attribute::ZExt)) 9943 AssertOp = ISD::AssertZext; 9944 9945 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9946 PartVT, VT, nullptr, 9947 F.getCallingConv(), AssertOp)); 9948 } 9949 9950 i += NumParts; 9951 } 9952 9953 // We don't need to do anything else for unused arguments. 9954 if (ArgValues.empty()) 9955 continue; 9956 9957 // Note down frame index. 9958 if (FrameIndexSDNode *FI = 9959 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9960 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9961 9962 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9963 SDB->getCurSDLoc()); 9964 9965 SDB->setValue(&Arg, Res); 9966 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9967 // We want to associate the argument with the frame index, among 9968 // involved operands, that correspond to the lowest address. The 9969 // getCopyFromParts function, called earlier, is swapping the order of 9970 // the operands to BUILD_PAIR depending on endianness. The result of 9971 // that swapping is that the least significant bits of the argument will 9972 // be in the first operand of the BUILD_PAIR node, and the most 9973 // significant bits will be in the second operand. 9974 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9975 if (LoadSDNode *LNode = 9976 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9977 if (FrameIndexSDNode *FI = 9978 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9979 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9980 } 9981 9982 // Analyses past this point are naive and don't expect an assertion. 9983 if (Res.getOpcode() == ISD::AssertZext) 9984 Res = Res.getOperand(0); 9985 9986 // Update the SwiftErrorVRegDefMap. 9987 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9988 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9989 if (Register::isVirtualRegister(Reg)) 9990 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9991 Reg); 9992 } 9993 9994 // If this argument is live outside of the entry block, insert a copy from 9995 // wherever we got it to the vreg that other BB's will reference it as. 9996 if (Res.getOpcode() == ISD::CopyFromReg) { 9997 // If we can, though, try to skip creating an unnecessary vreg. 9998 // FIXME: This isn't very clean... it would be nice to make this more 9999 // general. 10000 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10001 if (Register::isVirtualRegister(Reg)) { 10002 FuncInfo->ValueMap[&Arg] = Reg; 10003 continue; 10004 } 10005 } 10006 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10007 FuncInfo->InitializeRegForValue(&Arg); 10008 SDB->CopyToExportRegsIfNeeded(&Arg); 10009 } 10010 } 10011 10012 if (!Chains.empty()) { 10013 Chains.push_back(NewRoot); 10014 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10015 } 10016 10017 DAG.setRoot(NewRoot); 10018 10019 assert(i == InVals.size() && "Argument register count mismatch!"); 10020 10021 // If any argument copy elisions occurred and we have debug info, update the 10022 // stale frame indices used in the dbg.declare variable info table. 10023 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10024 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10025 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10026 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10027 if (I != ArgCopyElisionFrameIndexMap.end()) 10028 VI.Slot = I->second; 10029 } 10030 } 10031 10032 // Finally, if the target has anything special to do, allow it to do so. 10033 emitFunctionEntryCode(); 10034 } 10035 10036 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10037 /// ensure constants are generated when needed. Remember the virtual registers 10038 /// that need to be added to the Machine PHI nodes as input. We cannot just 10039 /// directly add them, because expansion might result in multiple MBB's for one 10040 /// BB. As such, the start of the BB might correspond to a different MBB than 10041 /// the end. 10042 void 10043 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10044 const Instruction *TI = LLVMBB->getTerminator(); 10045 10046 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10047 10048 // Check PHI nodes in successors that expect a value to be available from this 10049 // block. 10050 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10051 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10052 if (!isa<PHINode>(SuccBB->begin())) continue; 10053 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10054 10055 // If this terminator has multiple identical successors (common for 10056 // switches), only handle each succ once. 10057 if (!SuccsHandled.insert(SuccMBB).second) 10058 continue; 10059 10060 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10061 10062 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10063 // nodes and Machine PHI nodes, but the incoming operands have not been 10064 // emitted yet. 10065 for (const PHINode &PN : SuccBB->phis()) { 10066 // Ignore dead phi's. 10067 if (PN.use_empty()) 10068 continue; 10069 10070 // Skip empty types 10071 if (PN.getType()->isEmptyTy()) 10072 continue; 10073 10074 unsigned Reg; 10075 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10076 10077 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10078 unsigned &RegOut = ConstantsOut[C]; 10079 if (RegOut == 0) { 10080 RegOut = FuncInfo.CreateRegs(C); 10081 CopyValueToVirtualRegister(C, RegOut); 10082 } 10083 Reg = RegOut; 10084 } else { 10085 DenseMap<const Value *, unsigned>::iterator I = 10086 FuncInfo.ValueMap.find(PHIOp); 10087 if (I != FuncInfo.ValueMap.end()) 10088 Reg = I->second; 10089 else { 10090 assert(isa<AllocaInst>(PHIOp) && 10091 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10092 "Didn't codegen value into a register!??"); 10093 Reg = FuncInfo.CreateRegs(PHIOp); 10094 CopyValueToVirtualRegister(PHIOp, Reg); 10095 } 10096 } 10097 10098 // Remember that this register needs to added to the machine PHI node as 10099 // the input for this MBB. 10100 SmallVector<EVT, 4> ValueVTs; 10101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10102 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10103 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10104 EVT VT = ValueVTs[vti]; 10105 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10106 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10107 FuncInfo.PHINodesToUpdate.push_back( 10108 std::make_pair(&*MBBI++, Reg + i)); 10109 Reg += NumRegisters; 10110 } 10111 } 10112 } 10113 10114 ConstantsOut.clear(); 10115 } 10116 10117 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10118 /// is 0. 10119 MachineBasicBlock * 10120 SelectionDAGBuilder::StackProtectorDescriptor:: 10121 AddSuccessorMBB(const BasicBlock *BB, 10122 MachineBasicBlock *ParentMBB, 10123 bool IsLikely, 10124 MachineBasicBlock *SuccMBB) { 10125 // If SuccBB has not been created yet, create it. 10126 if (!SuccMBB) { 10127 MachineFunction *MF = ParentMBB->getParent(); 10128 MachineFunction::iterator BBI(ParentMBB); 10129 SuccMBB = MF->CreateMachineBasicBlock(BB); 10130 MF->insert(++BBI, SuccMBB); 10131 } 10132 // Add it as a successor of ParentMBB. 10133 ParentMBB->addSuccessor( 10134 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10135 return SuccMBB; 10136 } 10137 10138 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10139 MachineFunction::iterator I(MBB); 10140 if (++I == FuncInfo.MF->end()) 10141 return nullptr; 10142 return &*I; 10143 } 10144 10145 /// During lowering new call nodes can be created (such as memset, etc.). 10146 /// Those will become new roots of the current DAG, but complications arise 10147 /// when they are tail calls. In such cases, the call lowering will update 10148 /// the root, but the builder still needs to know that a tail call has been 10149 /// lowered in order to avoid generating an additional return. 10150 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10151 // If the node is null, we do have a tail call. 10152 if (MaybeTC.getNode() != nullptr) 10153 DAG.setRoot(MaybeTC); 10154 else 10155 HasTailCall = true; 10156 } 10157 10158 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10159 MachineBasicBlock *SwitchMBB, 10160 MachineBasicBlock *DefaultMBB) { 10161 MachineFunction *CurMF = FuncInfo.MF; 10162 MachineBasicBlock *NextMBB = nullptr; 10163 MachineFunction::iterator BBI(W.MBB); 10164 if (++BBI != FuncInfo.MF->end()) 10165 NextMBB = &*BBI; 10166 10167 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10168 10169 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10170 10171 if (Size == 2 && W.MBB == SwitchMBB) { 10172 // If any two of the cases has the same destination, and if one value 10173 // is the same as the other, but has one bit unset that the other has set, 10174 // use bit manipulation to do two compares at once. For example: 10175 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10176 // TODO: This could be extended to merge any 2 cases in switches with 3 10177 // cases. 10178 // TODO: Handle cases where W.CaseBB != SwitchBB. 10179 CaseCluster &Small = *W.FirstCluster; 10180 CaseCluster &Big = *W.LastCluster; 10181 10182 if (Small.Low == Small.High && Big.Low == Big.High && 10183 Small.MBB == Big.MBB) { 10184 const APInt &SmallValue = Small.Low->getValue(); 10185 const APInt &BigValue = Big.Low->getValue(); 10186 10187 // Check that there is only one bit different. 10188 APInt CommonBit = BigValue ^ SmallValue; 10189 if (CommonBit.isPowerOf2()) { 10190 SDValue CondLHS = getValue(Cond); 10191 EVT VT = CondLHS.getValueType(); 10192 SDLoc DL = getCurSDLoc(); 10193 10194 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10195 DAG.getConstant(CommonBit, DL, VT)); 10196 SDValue Cond = DAG.getSetCC( 10197 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10198 ISD::SETEQ); 10199 10200 // Update successor info. 10201 // Both Small and Big will jump to Small.BB, so we sum up the 10202 // probabilities. 10203 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10204 if (BPI) 10205 addSuccessorWithProb( 10206 SwitchMBB, DefaultMBB, 10207 // The default destination is the first successor in IR. 10208 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10209 else 10210 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10211 10212 // Insert the true branch. 10213 SDValue BrCond = 10214 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10215 DAG.getBasicBlock(Small.MBB)); 10216 // Insert the false branch. 10217 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10218 DAG.getBasicBlock(DefaultMBB)); 10219 10220 DAG.setRoot(BrCond); 10221 return; 10222 } 10223 } 10224 } 10225 10226 if (TM.getOptLevel() != CodeGenOpt::None) { 10227 // Here, we order cases by probability so the most likely case will be 10228 // checked first. However, two clusters can have the same probability in 10229 // which case their relative ordering is non-deterministic. So we use Low 10230 // as a tie-breaker as clusters are guaranteed to never overlap. 10231 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10232 [](const CaseCluster &a, const CaseCluster &b) { 10233 return a.Prob != b.Prob ? 10234 a.Prob > b.Prob : 10235 a.Low->getValue().slt(b.Low->getValue()); 10236 }); 10237 10238 // Rearrange the case blocks so that the last one falls through if possible 10239 // without changing the order of probabilities. 10240 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10241 --I; 10242 if (I->Prob > W.LastCluster->Prob) 10243 break; 10244 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10245 std::swap(*I, *W.LastCluster); 10246 break; 10247 } 10248 } 10249 } 10250 10251 // Compute total probability. 10252 BranchProbability DefaultProb = W.DefaultProb; 10253 BranchProbability UnhandledProbs = DefaultProb; 10254 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10255 UnhandledProbs += I->Prob; 10256 10257 MachineBasicBlock *CurMBB = W.MBB; 10258 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10259 bool FallthroughUnreachable = false; 10260 MachineBasicBlock *Fallthrough; 10261 if (I == W.LastCluster) { 10262 // For the last cluster, fall through to the default destination. 10263 Fallthrough = DefaultMBB; 10264 FallthroughUnreachable = isa<UnreachableInst>( 10265 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10266 } else { 10267 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10268 CurMF->insert(BBI, Fallthrough); 10269 // Put Cond in a virtual register to make it available from the new blocks. 10270 ExportFromCurrentBlock(Cond); 10271 } 10272 UnhandledProbs -= I->Prob; 10273 10274 switch (I->Kind) { 10275 case CC_JumpTable: { 10276 // FIXME: Optimize away range check based on pivot comparisons. 10277 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10278 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10279 10280 // The jump block hasn't been inserted yet; insert it here. 10281 MachineBasicBlock *JumpMBB = JT->MBB; 10282 CurMF->insert(BBI, JumpMBB); 10283 10284 auto JumpProb = I->Prob; 10285 auto FallthroughProb = UnhandledProbs; 10286 10287 // If the default statement is a target of the jump table, we evenly 10288 // distribute the default probability to successors of CurMBB. Also 10289 // update the probability on the edge from JumpMBB to Fallthrough. 10290 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10291 SE = JumpMBB->succ_end(); 10292 SI != SE; ++SI) { 10293 if (*SI == DefaultMBB) { 10294 JumpProb += DefaultProb / 2; 10295 FallthroughProb -= DefaultProb / 2; 10296 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10297 JumpMBB->normalizeSuccProbs(); 10298 break; 10299 } 10300 } 10301 10302 if (FallthroughUnreachable) { 10303 // Skip the range check if the fallthrough block is unreachable. 10304 JTH->OmitRangeCheck = true; 10305 } 10306 10307 if (!JTH->OmitRangeCheck) 10308 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10309 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10310 CurMBB->normalizeSuccProbs(); 10311 10312 // The jump table header will be inserted in our current block, do the 10313 // range check, and fall through to our fallthrough block. 10314 JTH->HeaderBB = CurMBB; 10315 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10316 10317 // If we're in the right place, emit the jump table header right now. 10318 if (CurMBB == SwitchMBB) { 10319 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10320 JTH->Emitted = true; 10321 } 10322 break; 10323 } 10324 case CC_BitTests: { 10325 // FIXME: Optimize away range check based on pivot comparisons. 10326 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10327 10328 // The bit test blocks haven't been inserted yet; insert them here. 10329 for (BitTestCase &BTC : BTB->Cases) 10330 CurMF->insert(BBI, BTC.ThisBB); 10331 10332 // Fill in fields of the BitTestBlock. 10333 BTB->Parent = CurMBB; 10334 BTB->Default = Fallthrough; 10335 10336 BTB->DefaultProb = UnhandledProbs; 10337 // If the cases in bit test don't form a contiguous range, we evenly 10338 // distribute the probability on the edge to Fallthrough to two 10339 // successors of CurMBB. 10340 if (!BTB->ContiguousRange) { 10341 BTB->Prob += DefaultProb / 2; 10342 BTB->DefaultProb -= DefaultProb / 2; 10343 } 10344 10345 if (FallthroughUnreachable) { 10346 // Skip the range check if the fallthrough block is unreachable. 10347 BTB->OmitRangeCheck = true; 10348 } 10349 10350 // If we're in the right place, emit the bit test header right now. 10351 if (CurMBB == SwitchMBB) { 10352 visitBitTestHeader(*BTB, SwitchMBB); 10353 BTB->Emitted = true; 10354 } 10355 break; 10356 } 10357 case CC_Range: { 10358 const Value *RHS, *LHS, *MHS; 10359 ISD::CondCode CC; 10360 if (I->Low == I->High) { 10361 // Check Cond == I->Low. 10362 CC = ISD::SETEQ; 10363 LHS = Cond; 10364 RHS=I->Low; 10365 MHS = nullptr; 10366 } else { 10367 // Check I->Low <= Cond <= I->High. 10368 CC = ISD::SETLE; 10369 LHS = I->Low; 10370 MHS = Cond; 10371 RHS = I->High; 10372 } 10373 10374 // If Fallthrough is unreachable, fold away the comparison. 10375 if (FallthroughUnreachable) 10376 CC = ISD::SETTRUE; 10377 10378 // The false probability is the sum of all unhandled cases. 10379 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10380 getCurSDLoc(), I->Prob, UnhandledProbs); 10381 10382 if (CurMBB == SwitchMBB) 10383 visitSwitchCase(CB, SwitchMBB); 10384 else 10385 SL->SwitchCases.push_back(CB); 10386 10387 break; 10388 } 10389 } 10390 CurMBB = Fallthrough; 10391 } 10392 } 10393 10394 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10395 CaseClusterIt First, 10396 CaseClusterIt Last) { 10397 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10398 if (X.Prob != CC.Prob) 10399 return X.Prob > CC.Prob; 10400 10401 // Ties are broken by comparing the case value. 10402 return X.Low->getValue().slt(CC.Low->getValue()); 10403 }); 10404 } 10405 10406 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10407 const SwitchWorkListItem &W, 10408 Value *Cond, 10409 MachineBasicBlock *SwitchMBB) { 10410 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10411 "Clusters not sorted?"); 10412 10413 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10414 10415 // Balance the tree based on branch probabilities to create a near-optimal (in 10416 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10417 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10418 CaseClusterIt LastLeft = W.FirstCluster; 10419 CaseClusterIt FirstRight = W.LastCluster; 10420 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10421 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10422 10423 // Move LastLeft and FirstRight towards each other from opposite directions to 10424 // find a partitioning of the clusters which balances the probability on both 10425 // sides. If LeftProb and RightProb are equal, alternate which side is 10426 // taken to ensure 0-probability nodes are distributed evenly. 10427 unsigned I = 0; 10428 while (LastLeft + 1 < FirstRight) { 10429 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10430 LeftProb += (++LastLeft)->Prob; 10431 else 10432 RightProb += (--FirstRight)->Prob; 10433 I++; 10434 } 10435 10436 while (true) { 10437 // Our binary search tree differs from a typical BST in that ours can have up 10438 // to three values in each leaf. The pivot selection above doesn't take that 10439 // into account, which means the tree might require more nodes and be less 10440 // efficient. We compensate for this here. 10441 10442 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10443 unsigned NumRight = W.LastCluster - FirstRight + 1; 10444 10445 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10446 // If one side has less than 3 clusters, and the other has more than 3, 10447 // consider taking a cluster from the other side. 10448 10449 if (NumLeft < NumRight) { 10450 // Consider moving the first cluster on the right to the left side. 10451 CaseCluster &CC = *FirstRight; 10452 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10453 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10454 if (LeftSideRank <= RightSideRank) { 10455 // Moving the cluster to the left does not demote it. 10456 ++LastLeft; 10457 ++FirstRight; 10458 continue; 10459 } 10460 } else { 10461 assert(NumRight < NumLeft); 10462 // Consider moving the last element on the left to the right side. 10463 CaseCluster &CC = *LastLeft; 10464 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10465 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10466 if (RightSideRank <= LeftSideRank) { 10467 // Moving the cluster to the right does not demot it. 10468 --LastLeft; 10469 --FirstRight; 10470 continue; 10471 } 10472 } 10473 } 10474 break; 10475 } 10476 10477 assert(LastLeft + 1 == FirstRight); 10478 assert(LastLeft >= W.FirstCluster); 10479 assert(FirstRight <= W.LastCluster); 10480 10481 // Use the first element on the right as pivot since we will make less-than 10482 // comparisons against it. 10483 CaseClusterIt PivotCluster = FirstRight; 10484 assert(PivotCluster > W.FirstCluster); 10485 assert(PivotCluster <= W.LastCluster); 10486 10487 CaseClusterIt FirstLeft = W.FirstCluster; 10488 CaseClusterIt LastRight = W.LastCluster; 10489 10490 const ConstantInt *Pivot = PivotCluster->Low; 10491 10492 // New blocks will be inserted immediately after the current one. 10493 MachineFunction::iterator BBI(W.MBB); 10494 ++BBI; 10495 10496 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10497 // we can branch to its destination directly if it's squeezed exactly in 10498 // between the known lower bound and Pivot - 1. 10499 MachineBasicBlock *LeftMBB; 10500 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10501 FirstLeft->Low == W.GE && 10502 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10503 LeftMBB = FirstLeft->MBB; 10504 } else { 10505 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10506 FuncInfo.MF->insert(BBI, LeftMBB); 10507 WorkList.push_back( 10508 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10509 // Put Cond in a virtual register to make it available from the new blocks. 10510 ExportFromCurrentBlock(Cond); 10511 } 10512 10513 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10514 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10515 // directly if RHS.High equals the current upper bound. 10516 MachineBasicBlock *RightMBB; 10517 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10518 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10519 RightMBB = FirstRight->MBB; 10520 } else { 10521 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10522 FuncInfo.MF->insert(BBI, RightMBB); 10523 WorkList.push_back( 10524 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10525 // Put Cond in a virtual register to make it available from the new blocks. 10526 ExportFromCurrentBlock(Cond); 10527 } 10528 10529 // Create the CaseBlock record that will be used to lower the branch. 10530 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10531 getCurSDLoc(), LeftProb, RightProb); 10532 10533 if (W.MBB == SwitchMBB) 10534 visitSwitchCase(CB, SwitchMBB); 10535 else 10536 SL->SwitchCases.push_back(CB); 10537 } 10538 10539 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10540 // from the swith statement. 10541 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10542 BranchProbability PeeledCaseProb) { 10543 if (PeeledCaseProb == BranchProbability::getOne()) 10544 return BranchProbability::getZero(); 10545 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10546 10547 uint32_t Numerator = CaseProb.getNumerator(); 10548 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10549 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10550 } 10551 10552 // Try to peel the top probability case if it exceeds the threshold. 10553 // Return current MachineBasicBlock for the switch statement if the peeling 10554 // does not occur. 10555 // If the peeling is performed, return the newly created MachineBasicBlock 10556 // for the peeled switch statement. Also update Clusters to remove the peeled 10557 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10558 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10559 const SwitchInst &SI, CaseClusterVector &Clusters, 10560 BranchProbability &PeeledCaseProb) { 10561 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10562 // Don't perform if there is only one cluster or optimizing for size. 10563 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10564 TM.getOptLevel() == CodeGenOpt::None || 10565 SwitchMBB->getParent()->getFunction().hasMinSize()) 10566 return SwitchMBB; 10567 10568 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10569 unsigned PeeledCaseIndex = 0; 10570 bool SwitchPeeled = false; 10571 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10572 CaseCluster &CC = Clusters[Index]; 10573 if (CC.Prob < TopCaseProb) 10574 continue; 10575 TopCaseProb = CC.Prob; 10576 PeeledCaseIndex = Index; 10577 SwitchPeeled = true; 10578 } 10579 if (!SwitchPeeled) 10580 return SwitchMBB; 10581 10582 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10583 << TopCaseProb << "\n"); 10584 10585 // Record the MBB for the peeled switch statement. 10586 MachineFunction::iterator BBI(SwitchMBB); 10587 ++BBI; 10588 MachineBasicBlock *PeeledSwitchMBB = 10589 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10590 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10591 10592 ExportFromCurrentBlock(SI.getCondition()); 10593 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10594 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10595 nullptr, nullptr, TopCaseProb.getCompl()}; 10596 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10597 10598 Clusters.erase(PeeledCaseIt); 10599 for (CaseCluster &CC : Clusters) { 10600 LLVM_DEBUG( 10601 dbgs() << "Scale the probablity for one cluster, before scaling: " 10602 << CC.Prob << "\n"); 10603 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10604 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10605 } 10606 PeeledCaseProb = TopCaseProb; 10607 return PeeledSwitchMBB; 10608 } 10609 10610 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10611 // Extract cases from the switch. 10612 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10613 CaseClusterVector Clusters; 10614 Clusters.reserve(SI.getNumCases()); 10615 for (auto I : SI.cases()) { 10616 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10617 const ConstantInt *CaseVal = I.getCaseValue(); 10618 BranchProbability Prob = 10619 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10620 : BranchProbability(1, SI.getNumCases() + 1); 10621 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10622 } 10623 10624 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10625 10626 // Cluster adjacent cases with the same destination. We do this at all 10627 // optimization levels because it's cheap to do and will make codegen faster 10628 // if there are many clusters. 10629 sortAndRangeify(Clusters); 10630 10631 // The branch probablity of the peeled case. 10632 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10633 MachineBasicBlock *PeeledSwitchMBB = 10634 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10635 10636 // If there is only the default destination, jump there directly. 10637 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10638 if (Clusters.empty()) { 10639 assert(PeeledSwitchMBB == SwitchMBB); 10640 SwitchMBB->addSuccessor(DefaultMBB); 10641 if (DefaultMBB != NextBlock(SwitchMBB)) { 10642 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10643 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10644 } 10645 return; 10646 } 10647 10648 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10649 SL->findBitTestClusters(Clusters, &SI); 10650 10651 LLVM_DEBUG({ 10652 dbgs() << "Case clusters: "; 10653 for (const CaseCluster &C : Clusters) { 10654 if (C.Kind == CC_JumpTable) 10655 dbgs() << "JT:"; 10656 if (C.Kind == CC_BitTests) 10657 dbgs() << "BT:"; 10658 10659 C.Low->getValue().print(dbgs(), true); 10660 if (C.Low != C.High) { 10661 dbgs() << '-'; 10662 C.High->getValue().print(dbgs(), true); 10663 } 10664 dbgs() << ' '; 10665 } 10666 dbgs() << '\n'; 10667 }); 10668 10669 assert(!Clusters.empty()); 10670 SwitchWorkList WorkList; 10671 CaseClusterIt First = Clusters.begin(); 10672 CaseClusterIt Last = Clusters.end() - 1; 10673 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10674 // Scale the branchprobability for DefaultMBB if the peel occurs and 10675 // DefaultMBB is not replaced. 10676 if (PeeledCaseProb != BranchProbability::getZero() && 10677 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10678 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10679 WorkList.push_back( 10680 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10681 10682 while (!WorkList.empty()) { 10683 SwitchWorkListItem W = WorkList.back(); 10684 WorkList.pop_back(); 10685 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10686 10687 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10688 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10689 // For optimized builds, lower large range as a balanced binary tree. 10690 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10691 continue; 10692 } 10693 10694 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10695 } 10696 } 10697 10698 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10699 SDValue N = getValue(I.getOperand(0)); 10700 setValue(&I, N); 10701 } 10702