1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI.getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = 1771 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1805 EVT PtrTy = TLI.getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 1817 SDValue Guard; 1818 1819 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1820 // guard value from the virtual register holding the value. Otherwise, emit a 1821 // volatile load to retrieve the stack guard value. 1822 unsigned GuardReg = SPD.getGuardReg(); 1823 1824 if (GuardReg && TLI.useLoadStackGuardNode()) 1825 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1826 PtrTy); 1827 else 1828 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = 1842 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1845 1846 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1847 // branch to failure MBB. 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1849 MVT::Other, StackSlot.getOperand(0), 1850 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1851 // Otherwise branch to success MBB. 1852 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1853 MVT::Other, BrCond, 1854 DAG.getBasicBlock(SPD.getSuccessMBB())); 1855 1856 DAG.setRoot(Br); 1857 } 1858 1859 /// Codegen the failure basic block for a stack protector check. 1860 /// 1861 /// A failure stack protector machine basic block consists simply of a call to 1862 /// __stack_chk_fail(). 1863 /// 1864 /// For a high level explanation of how this fits into the stack protector 1865 /// generation see the comment on the declaration of class 1866 /// StackProtectorDescriptor. 1867 void 1868 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SDValue Chain = 1871 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1872 nullptr, 0, false, getCurSDLoc(), false, false).second; 1873 DAG.setRoot(Chain); 1874 } 1875 1876 /// visitBitTestHeader - This function emits necessary code to produce value 1877 /// suitable for "bit tests" 1878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1879 MachineBasicBlock *SwitchBB) { 1880 // Subtract the minimum value 1881 SDValue SwitchOp = getValue(B.SValue); 1882 EVT VT = SwitchOp.getValueType(); 1883 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1884 DAG.getConstant(B.First, VT)); 1885 1886 // Check range 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SDValue RangeCmp = 1889 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI.isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI.getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC( 1961 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1962 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1963 } else { 1964 // Make desired shift 1965 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1966 DAG.getConstant(1, VT), ShiftOp); 1967 1968 // Emit bit tests and jumps 1969 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1970 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1971 Cmp = DAG.getSetCC(getCurSDLoc(), 1972 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1973 DAG.getConstant(0, VT), ISD::SETNE); 1974 } 1975 1976 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1977 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1978 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1979 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1980 1981 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 Cmp, DAG.getBasicBlock(B.TargetBB)); 1984 1985 // Set NextBlock to be the MBB immediately after the current one, if any. 1986 // This is used to avoid emitting unnecessary branches to the next block. 1987 MachineBasicBlock *NextBlock = nullptr; 1988 MachineFunction::iterator BBI = SwitchBB; 1989 if (++BBI != FuncInfo.MF->end()) 1990 NextBlock = BBI; 1991 1992 if (NextMBB != NextBlock) 1993 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 switch (Fn->getIntrinsicID()) { 2012 default: 2013 llvm_unreachable("Cannot invoke this intrinsic"); 2014 case Intrinsic::donothing: 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 break; 2017 case Intrinsic::experimental_patchpoint_void: 2018 case Intrinsic::experimental_patchpoint_i64: 2019 visitPatchpoint(&I, LandingPad); 2020 break; 2021 } 2022 } else 2023 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2024 2025 // If the value of the invoke is used outside of its defining block, make it 2026 // available as a virtual register. 2027 CopyToExportRegsIfNeeded(&I); 2028 2029 // Update successor info 2030 addSuccessorWithWeight(InvokeMBB, Return); 2031 addSuccessorWithWeight(InvokeMBB, LandingPad); 2032 2033 // Drop into normal successor. 2034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2035 MVT::Other, getControlRoot(), 2036 DAG.getBasicBlock(Return))); 2037 } 2038 2039 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2040 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2041 } 2042 2043 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2044 assert(FuncInfo.MBB->isLandingPad() && 2045 "Call to landingpad not in landing pad!"); 2046 2047 MachineBasicBlock *MBB = FuncInfo.MBB; 2048 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2049 AddLandingPadInfo(LP, MMI, MBB); 2050 2051 // If there aren't registers to copy the values into (e.g., during SjLj 2052 // exceptions), then don't bother to create these DAG nodes. 2053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2054 if (TLI.getExceptionPointerRegister() == 0 && 2055 TLI.getExceptionSelectorRegister() == 0) 2056 return; 2057 2058 SmallVector<EVT, 2> ValueVTs; 2059 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2060 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2061 2062 // Get the two live-in registers as SDValues. The physregs have already been 2063 // copied into virtual registers. 2064 SDValue Ops[2]; 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2081 /// small case ranges). 2082 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2083 CaseRecVector& WorkList, 2084 const Value* SV, 2085 MachineBasicBlock *Default, 2086 MachineBasicBlock *SwitchBB) { 2087 // Size is the number of Cases represented by this range. 2088 size_t Size = CR.Range.second - CR.Range.first; 2089 if (Size > 3) 2090 return false; 2091 2092 // Get the MachineFunction which holds the current MBB. This is used when 2093 // inserting any additional MBBs necessary to represent the switch. 2094 MachineFunction *CurMF = FuncInfo.MF; 2095 2096 // Figure out which block is immediately after the current one. 2097 MachineBasicBlock *NextBlock = nullptr; 2098 MachineFunction::iterator BBI = CR.CaseBB; 2099 2100 if (++BBI != FuncInfo.MF->end()) 2101 NextBlock = BBI; 2102 2103 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2104 // If any two of the cases has the same destination, and if one value 2105 // is the same as the other, but has one bit unset that the other has set, 2106 // use bit manipulation to do two compares at once. For example: 2107 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2108 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2109 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2110 if (Size == 2 && CR.CaseBB == SwitchBB) { 2111 Case &Small = *CR.Range.first; 2112 Case &Big = *(CR.Range.second-1); 2113 2114 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2115 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2116 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2117 2118 // Check that there is only one bit different. 2119 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2120 (SmallValue | BigValue) == BigValue) { 2121 // Isolate the common bit. 2122 APInt CommonBit = BigValue & ~SmallValue; 2123 assert((SmallValue | CommonBit) == BigValue && 2124 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2125 2126 SDValue CondLHS = getValue(SV); 2127 EVT VT = CondLHS.getValueType(); 2128 SDLoc DL = getCurSDLoc(); 2129 2130 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2131 DAG.getConstant(CommonBit, VT)); 2132 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2133 Or, DAG.getConstant(BigValue, VT), 2134 ISD::SETEQ); 2135 2136 // Update successor info. 2137 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2138 addSuccessorWithWeight(SwitchBB, Small.BB, 2139 Small.ExtraWeight + Big.ExtraWeight); 2140 addSuccessorWithWeight(SwitchBB, Default, 2141 // The default destination is the first successor in IR. 2142 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2143 2144 // Insert the true branch. 2145 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2146 getControlRoot(), Cond, 2147 DAG.getBasicBlock(Small.BB)); 2148 2149 // Insert the false branch. 2150 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2151 DAG.getBasicBlock(Default)); 2152 2153 DAG.setRoot(BrCond); 2154 return true; 2155 } 2156 } 2157 } 2158 2159 // Order cases by weight so the most likely case will be checked first. 2160 uint32_t UnhandledWeights = 0; 2161 if (BPI) { 2162 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2163 uint32_t IWeight = I->ExtraWeight; 2164 UnhandledWeights += IWeight; 2165 for (CaseItr J = CR.Range.first; J < I; ++J) { 2166 uint32_t JWeight = J->ExtraWeight; 2167 if (IWeight > JWeight) 2168 std::swap(*I, *J); 2169 } 2170 } 2171 } 2172 // Rearrange the case blocks so that the last one falls through if possible. 2173 Case &BackCase = *(CR.Range.second-1); 2174 if (Size > 1 && 2175 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2176 // The last case block won't fall through into 'NextBlock' if we emit the 2177 // branches in this order. See if rearranging a case value would help. 2178 // We start at the bottom as it's the case with the least weight. 2179 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2180 if (I->BB == NextBlock) { 2181 std::swap(*I, BackCase); 2182 break; 2183 } 2184 } 2185 2186 // Create a CaseBlock record representing a conditional branch to 2187 // the Case's target mbb if the value being switched on SV is equal 2188 // to C. 2189 MachineBasicBlock *CurBlock = CR.CaseBB; 2190 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2191 MachineBasicBlock *FallThrough; 2192 if (I != E-1) { 2193 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2194 CurMF->insert(BBI, FallThrough); 2195 2196 // Put SV in a virtual register to make it available from the new blocks. 2197 ExportFromCurrentBlock(SV); 2198 } else { 2199 // If the last case doesn't match, go to the default block. 2200 FallThrough = Default; 2201 } 2202 2203 const Value *RHS, *LHS, *MHS; 2204 ISD::CondCode CC; 2205 if (I->High == I->Low) { 2206 // This is just small small case range :) containing exactly 1 case 2207 CC = ISD::SETEQ; 2208 LHS = SV; RHS = I->High; MHS = nullptr; 2209 } else { 2210 CC = ISD::SETLE; 2211 LHS = I->Low; MHS = SV; RHS = I->High; 2212 } 2213 2214 // The false weight should be sum of all un-handled cases. 2215 UnhandledWeights -= I->ExtraWeight; 2216 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2217 /* me */ CurBlock, 2218 /* trueweight */ I->ExtraWeight, 2219 /* falseweight */ UnhandledWeights); 2220 2221 // If emitting the first comparison, just call visitSwitchCase to emit the 2222 // code into the current block. Otherwise, push the CaseBlock onto the 2223 // vector to be later processed by SDISel, and insert the node's MBB 2224 // before the next MBB. 2225 if (CurBlock == SwitchBB) 2226 visitSwitchCase(CB, SwitchBB); 2227 else 2228 SwitchCases.push_back(CB); 2229 2230 CurBlock = FallThrough; 2231 } 2232 2233 return true; 2234 } 2235 2236 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2237 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2238 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2239 } 2240 2241 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2242 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2243 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2244 return (LastExt - FirstExt + 1ULL); 2245 } 2246 2247 /// handleJTSwitchCase - Emit jumptable for current switch case range 2248 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2249 CaseRecVector &WorkList, 2250 const Value *SV, 2251 MachineBasicBlock *Default, 2252 MachineBasicBlock *SwitchBB) { 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2257 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2258 2259 APInt TSize(First.getBitWidth(), 0); 2260 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2261 TSize += I->size(); 2262 2263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2264 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2265 return false; 2266 2267 APInt Range = ComputeRange(First, Last); 2268 // The density is TSize / Range. Require at least 40%. 2269 // It should not be possible for IntTSize to saturate for sane code, but make 2270 // sure we handle Range saturation correctly. 2271 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2272 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2273 if (IntTSize * 10 < IntRange * 4) 2274 return false; 2275 2276 DEBUG(dbgs() << "Lowering jump table\n" 2277 << "First entry: " << First << ". Last entry: " << Last << '\n' 2278 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2279 2280 // Get the MachineFunction which holds the current MBB. This is used when 2281 // inserting any additional MBBs necessary to represent the switch. 2282 MachineFunction *CurMF = FuncInfo.MF; 2283 2284 // Figure out which block is immediately after the current one. 2285 MachineFunction::iterator BBI = CR.CaseBB; 2286 ++BBI; 2287 2288 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2289 2290 // Create a new basic block to hold the code for loading the address 2291 // of the jump table, and jumping to it. Update successor information; 2292 // we will either branch to the default case for the switch, or the jump 2293 // table. 2294 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, JumpTableBB); 2296 2297 addSuccessorWithWeight(CR.CaseBB, Default); 2298 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2299 2300 // Build a vector of destination BBs, corresponding to each target 2301 // of the jump table. If the value of the jump table slot corresponds to 2302 // a case statement, push the case's BB onto the vector, otherwise, push 2303 // the default BB. 2304 std::vector<MachineBasicBlock*> DestBBs; 2305 APInt TEI = First; 2306 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2307 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2308 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2309 2310 if (Low.sle(TEI) && TEI.sle(High)) { 2311 DestBBs.push_back(I->BB); 2312 if (TEI==High) 2313 ++I; 2314 } else { 2315 DestBBs.push_back(Default); 2316 } 2317 } 2318 2319 // Calculate weight for each unique destination in CR. 2320 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2321 if (FuncInfo.BPI) 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2323 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2324 DestWeights.find(I->BB); 2325 if (Itr != DestWeights.end()) 2326 Itr->second += I->ExtraWeight; 2327 else 2328 DestWeights[I->BB] = I->ExtraWeight; 2329 } 2330 2331 // Update successor info. Add one edge to each unique successor. 2332 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2333 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2334 E = DestBBs.end(); I != E; ++I) { 2335 if (!SuccsHandled[(*I)->getNumber()]) { 2336 SuccsHandled[(*I)->getNumber()] = true; 2337 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2338 DestWeights.find(*I); 2339 addSuccessorWithWeight(JumpTableBB, *I, 2340 Itr != DestWeights.end() ? Itr->second : 0); 2341 } 2342 } 2343 2344 // Create a jump table index for this jump table. 2345 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2346 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2347 ->createJumpTableIndex(DestBBs); 2348 2349 // Set the jump table information so that we can codegen it as a second 2350 // MachineBasicBlock 2351 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2352 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2353 if (CR.CaseBB == SwitchBB) 2354 visitJumpTableHeader(JT, JTH, SwitchBB); 2355 2356 JTCases.push_back(JumpTableBlock(JTH, JT)); 2357 return true; 2358 } 2359 2360 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2361 /// 2 subtrees. 2362 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2363 CaseRecVector& WorkList, 2364 const Value* SV, 2365 MachineBasicBlock* SwitchBB) { 2366 // Get the MachineFunction which holds the current MBB. This is used when 2367 // inserting any additional MBBs necessary to represent the switch. 2368 MachineFunction *CurMF = FuncInfo.MF; 2369 2370 // Figure out which block is immediately after the current one. 2371 MachineFunction::iterator BBI = CR.CaseBB; 2372 ++BBI; 2373 2374 Case& FrontCase = *CR.Range.first; 2375 Case& BackCase = *(CR.Range.second-1); 2376 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2377 2378 // Size is the number of Cases represented by this range. 2379 unsigned Size = CR.Range.second - CR.Range.first; 2380 2381 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2382 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2383 double FMetric = 0; 2384 CaseItr Pivot = CR.Range.first + Size/2; 2385 2386 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2387 // (heuristically) allow us to emit JumpTable's later. 2388 APInt TSize(First.getBitWidth(), 0); 2389 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2390 I!=E; ++I) 2391 TSize += I->size(); 2392 2393 APInt LSize = FrontCase.size(); 2394 APInt RSize = TSize-LSize; 2395 DEBUG(dbgs() << "Selecting best pivot: \n" 2396 << "First: " << First << ", Last: " << Last <<'\n' 2397 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2398 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2399 J!=E; ++I, ++J) { 2400 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2401 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2402 APInt Range = ComputeRange(LEnd, RBegin); 2403 assert((Range - 2ULL).isNonNegative() && 2404 "Invalid case distance"); 2405 // Use volatile double here to avoid excess precision issues on some hosts, 2406 // e.g. that use 80-bit X87 registers. 2407 volatile double LDensity = 2408 (double)LSize.roundToDouble() / 2409 (LEnd - First + 1ULL).roundToDouble(); 2410 volatile double RDensity = 2411 (double)RSize.roundToDouble() / 2412 (Last - RBegin + 1ULL).roundToDouble(); 2413 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2414 // Should always split in some non-trivial place 2415 DEBUG(dbgs() <<"=>Step\n" 2416 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2417 << "LDensity: " << LDensity 2418 << ", RDensity: " << RDensity << '\n' 2419 << "Metric: " << Metric << '\n'); 2420 if (FMetric < Metric) { 2421 Pivot = J; 2422 FMetric = Metric; 2423 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2424 } 2425 2426 LSize += J->size(); 2427 RSize -= J->size(); 2428 } 2429 2430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2431 if (areJTsAllowed(TLI)) { 2432 // If our case is dense we *really* should handle it earlier! 2433 assert((FMetric > 0) && "Should handle dense range earlier!"); 2434 } else { 2435 Pivot = CR.Range.first + Size/2; 2436 } 2437 2438 CaseRange LHSR(CR.Range.first, Pivot); 2439 CaseRange RHSR(Pivot, CR.Range.second); 2440 const Constant *C = Pivot->Low; 2441 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2442 2443 // We know that we branch to the LHS if the Value being switched on is 2444 // less than the Pivot value, C. We use this to optimize our binary 2445 // tree a bit, by recognizing that if SV is greater than or equal to the 2446 // LHS's Case Value, and that Case Value is exactly one less than the 2447 // Pivot's Value, then we can branch directly to the LHS's Target, 2448 // rather than creating a leaf node for it. 2449 if ((LHSR.second - LHSR.first) == 1 && 2450 LHSR.first->High == CR.GE && 2451 cast<ConstantInt>(C)->getValue() == 2452 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2453 TrueBB = LHSR.first->BB; 2454 } else { 2455 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2456 CurMF->insert(BBI, TrueBB); 2457 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2458 2459 // Put SV in a virtual register to make it available from the new blocks. 2460 ExportFromCurrentBlock(SV); 2461 } 2462 2463 // Similar to the optimization above, if the Value being switched on is 2464 // known to be less than the Constant CR.LT, and the current Case Value 2465 // is CR.LT - 1, then we can branch directly to the target block for 2466 // the current Case Value, rather than emitting a RHS leaf node for it. 2467 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2468 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2469 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2470 FalseBB = RHSR.first->BB; 2471 } else { 2472 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2473 CurMF->insert(BBI, FalseBB); 2474 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2475 2476 // Put SV in a virtual register to make it available from the new blocks. 2477 ExportFromCurrentBlock(SV); 2478 } 2479 2480 // Create a CaseBlock record representing a conditional branch to 2481 // the LHS node if the value being switched on SV is less than C. 2482 // Otherwise, branch to LHS. 2483 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2484 2485 if (CR.CaseBB == SwitchBB) 2486 visitSwitchCase(CB, SwitchBB); 2487 else 2488 SwitchCases.push_back(CB); 2489 2490 return true; 2491 } 2492 2493 /// handleBitTestsSwitchCase - if current case range has few destination and 2494 /// range span less, than machine word bitwidth, encode case range into series 2495 /// of masks and emit bit tests with these masks. 2496 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2497 CaseRecVector& WorkList, 2498 const Value* SV, 2499 MachineBasicBlock* Default, 2500 MachineBasicBlock* SwitchBB) { 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 EVT PTy = TLI.getPointerTy(); 2503 unsigned IntPtrBits = PTy.getSizeInBits(); 2504 2505 Case& FrontCase = *CR.Range.first; 2506 Case& BackCase = *(CR.Range.second-1); 2507 2508 // Get the MachineFunction which holds the current MBB. This is used when 2509 // inserting any additional MBBs necessary to represent the switch. 2510 MachineFunction *CurMF = FuncInfo.MF; 2511 2512 // If target does not have legal shift left, do not emit bit tests at all. 2513 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2514 return false; 2515 2516 size_t numCmps = 0; 2517 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2518 // Single case counts one, case range - two. 2519 numCmps += (I->Low == I->High ? 1 : 2); 2520 } 2521 2522 // Count unique destinations 2523 SmallSet<MachineBasicBlock*, 4> Dests; 2524 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2525 Dests.insert(I->BB); 2526 if (Dests.size() > 3) 2527 // Don't bother the code below, if there are too much unique destinations 2528 return false; 2529 } 2530 DEBUG(dbgs() << "Total number of unique destinations: " 2531 << Dests.size() << '\n' 2532 << "Total number of comparisons: " << numCmps << '\n'); 2533 2534 // Compute span of values. 2535 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2536 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2537 APInt cmpRange = maxValue - minValue; 2538 2539 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2540 << "Low bound: " << minValue << '\n' 2541 << "High bound: " << maxValue << '\n'); 2542 2543 if (cmpRange.uge(IntPtrBits) || 2544 (!(Dests.size() == 1 && numCmps >= 3) && 2545 !(Dests.size() == 2 && numCmps >= 5) && 2546 !(Dests.size() >= 3 && numCmps >= 6))) 2547 return false; 2548 2549 DEBUG(dbgs() << "Emitting bit tests\n"); 2550 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2551 2552 // Optimize the case where all the case values fit in a 2553 // word without having to subtract minValue. In this case, 2554 // we can optimize away the subtraction. 2555 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2556 cmpRange = maxValue; 2557 } else { 2558 lowBound = minValue; 2559 } 2560 2561 CaseBitsVector CasesBits; 2562 unsigned i, count = 0; 2563 2564 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2565 MachineBasicBlock* Dest = I->BB; 2566 for (i = 0; i < count; ++i) 2567 if (Dest == CasesBits[i].BB) 2568 break; 2569 2570 if (i == count) { 2571 assert((count < 3) && "Too much destinations to test!"); 2572 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2573 count++; 2574 } 2575 2576 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2577 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2578 2579 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2580 uint64_t hi = (highValue - lowBound).getZExtValue(); 2581 CasesBits[i].ExtraWeight += I->ExtraWeight; 2582 2583 for (uint64_t j = lo; j <= hi; j++) { 2584 CasesBits[i].Mask |= 1ULL << j; 2585 CasesBits[i].Bits++; 2586 } 2587 2588 } 2589 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2590 2591 BitTestInfo BTC; 2592 2593 // Figure out which block is immediately after the current one. 2594 MachineFunction::iterator BBI = CR.CaseBB; 2595 ++BBI; 2596 2597 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2598 2599 DEBUG(dbgs() << "Cases:\n"); 2600 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2601 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2602 << ", Bits: " << CasesBits[i].Bits 2603 << ", BB: " << CasesBits[i].BB << '\n'); 2604 2605 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2606 CurMF->insert(BBI, CaseBB); 2607 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2608 CaseBB, 2609 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2610 2611 // Put SV in a virtual register to make it available from the new blocks. 2612 ExportFromCurrentBlock(SV); 2613 } 2614 2615 BitTestBlock BTB(lowBound, cmpRange, SV, 2616 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2617 CR.CaseBB, Default, std::move(BTC)); 2618 2619 if (CR.CaseBB == SwitchBB) 2620 visitBitTestHeader(BTB, SwitchBB); 2621 2622 BitTestCases.push_back(std::move(BTB)); 2623 2624 return true; 2625 } 2626 2627 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2628 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2629 const SwitchInst& SI) { 2630 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2631 // Start with "simple" cases. 2632 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2633 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2634 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2635 2636 uint32_t ExtraWeight = 2637 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2638 2639 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2640 SMBB, ExtraWeight)); 2641 } 2642 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2643 2644 // Merge case into clusters 2645 if (Cases.size() >= 2) 2646 // Must recompute end() each iteration because it may be 2647 // invalidated by erase if we hold on to it 2648 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2649 J != Cases.end(); ) { 2650 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2651 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2652 MachineBasicBlock* nextBB = J->BB; 2653 MachineBasicBlock* currentBB = I->BB; 2654 2655 // If the two neighboring cases go to the same destination, merge them 2656 // into a single case. 2657 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2658 I->High = J->High; 2659 I->ExtraWeight += J->ExtraWeight; 2660 J = Cases.erase(J); 2661 } else { 2662 I = J++; 2663 } 2664 } 2665 2666 DEBUG({ 2667 size_t numCmps = 0; 2668 for (auto &I : Cases) 2669 // A range counts double, since it requires two compares. 2670 numCmps += I.Low != I.High ? 2 : 1; 2671 2672 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2673 << ". Total compares: " << numCmps << '\n'; 2674 }); 2675 } 2676 2677 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2678 MachineBasicBlock *Last) { 2679 // Update JTCases. 2680 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2681 if (JTCases[i].first.HeaderBB == First) 2682 JTCases[i].first.HeaderBB = Last; 2683 2684 // Update BitTestCases. 2685 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2686 if (BitTestCases[i].Parent == First) 2687 BitTestCases[i].Parent = Last; 2688 } 2689 2690 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2691 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2692 2693 // Figure out which block is immediately after the current one. 2694 MachineBasicBlock *NextBlock = nullptr; 2695 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2696 NextBlock = SwitchMBB + 1; 2697 2698 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2699 2700 // If there is only the default destination, branch to it if it is not the 2701 // next basic block. Otherwise, just fall through. 2702 if (!SI.getNumCases()) { 2703 // Update machine-CFG edges. 2704 SwitchMBB->addSuccessor(Default); 2705 2706 // If this is not a fall-through branch, emit the branch. 2707 if (Default != NextBlock) 2708 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2709 MVT::Other, getControlRoot(), 2710 DAG.getBasicBlock(Default))); 2711 2712 return; 2713 } 2714 2715 // If there are any non-default case statements, create a vector of Cases 2716 // representing each one, and sort the vector so that we can efficiently 2717 // create a binary search tree from them. 2718 CaseVector Cases; 2719 Clusterify(Cases, SI); 2720 2721 // Get the Value to be switched on and default basic blocks, which will be 2722 // inserted into CaseBlock records, representing basic blocks in the binary 2723 // search tree. 2724 const Value *SV = SI.getCondition(); 2725 2726 // Push the initial CaseRec onto the worklist 2727 CaseRecVector WorkList; 2728 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2729 CaseRange(Cases.begin(),Cases.end()))); 2730 2731 while (!WorkList.empty()) { 2732 // Grab a record representing a case range to process off the worklist 2733 CaseRec CR = WorkList.back(); 2734 WorkList.pop_back(); 2735 2736 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2737 continue; 2738 2739 // If the range has few cases (two or less) emit a series of specific 2740 // tests. 2741 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2742 continue; 2743 2744 // If the switch has more than N blocks, and is at least 40% dense, and the 2745 // target supports indirect branches, then emit a jump table rather than 2746 // lowering the switch to a binary tree of conditional branches. 2747 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2748 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2749 continue; 2750 2751 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2752 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2753 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2754 } 2755 } 2756 2757 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2758 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2759 2760 // Update machine-CFG edges with unique successors. 2761 SmallSet<BasicBlock*, 32> Done; 2762 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2763 BasicBlock *BB = I.getSuccessor(i); 2764 bool Inserted = Done.insert(BB).second; 2765 if (!Inserted) 2766 continue; 2767 2768 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2769 addSuccessorWithWeight(IndirectBrMBB, Succ); 2770 } 2771 2772 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2773 MVT::Other, getControlRoot(), 2774 getValue(I.getAddress()))); 2775 } 2776 2777 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2778 if (DAG.getTarget().Options.TrapUnreachable) 2779 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2780 } 2781 2782 void SelectionDAGBuilder::visitFSub(const User &I) { 2783 // -0.0 - X --> fneg 2784 Type *Ty = I.getType(); 2785 if (isa<Constant>(I.getOperand(0)) && 2786 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2787 SDValue Op2 = getValue(I.getOperand(1)); 2788 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2789 Op2.getValueType(), Op2)); 2790 return; 2791 } 2792 2793 visitBinary(I, ISD::FSUB); 2794 } 2795 2796 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2797 SDValue Op1 = getValue(I.getOperand(0)); 2798 SDValue Op2 = getValue(I.getOperand(1)); 2799 2800 bool nuw = false; 2801 bool nsw = false; 2802 bool exact = false; 2803 if (const OverflowingBinaryOperator *OFBinOp = 2804 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2805 nuw = OFBinOp->hasNoUnsignedWrap(); 2806 nsw = OFBinOp->hasNoSignedWrap(); 2807 } 2808 if (const PossiblyExactOperator *ExactOp = 2809 dyn_cast<const PossiblyExactOperator>(&I)) 2810 exact = ExactOp->isExact(); 2811 2812 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2813 Op1, Op2, nuw, nsw, exact); 2814 setValue(&I, BinNodeValue); 2815 } 2816 2817 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2818 SDValue Op1 = getValue(I.getOperand(0)); 2819 SDValue Op2 = getValue(I.getOperand(1)); 2820 2821 EVT ShiftTy = 2822 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2823 2824 // Coerce the shift amount to the right type if we can. 2825 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2826 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2827 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2828 SDLoc DL = getCurSDLoc(); 2829 2830 // If the operand is smaller than the shift count type, promote it. 2831 if (ShiftSize > Op2Size) 2832 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2833 2834 // If the operand is larger than the shift count type but the shift 2835 // count type has enough bits to represent any shift value, truncate 2836 // it now. This is a common case and it exposes the truncate to 2837 // optimization early. 2838 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2839 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2840 // Otherwise we'll need to temporarily settle for some other convenient 2841 // type. Type legalization will make adjustments once the shiftee is split. 2842 else 2843 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2844 } 2845 2846 bool nuw = false; 2847 bool nsw = false; 2848 bool exact = false; 2849 2850 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2851 2852 if (const OverflowingBinaryOperator *OFBinOp = 2853 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2854 nuw = OFBinOp->hasNoUnsignedWrap(); 2855 nsw = OFBinOp->hasNoSignedWrap(); 2856 } 2857 if (const PossiblyExactOperator *ExactOp = 2858 dyn_cast<const PossiblyExactOperator>(&I)) 2859 exact = ExactOp->isExact(); 2860 } 2861 2862 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2863 nuw, nsw, exact); 2864 setValue(&I, Res); 2865 } 2866 2867 void SelectionDAGBuilder::visitSDiv(const User &I) { 2868 SDValue Op1 = getValue(I.getOperand(0)); 2869 SDValue Op2 = getValue(I.getOperand(1)); 2870 2871 // Turn exact SDivs into multiplications. 2872 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2873 // exact bit. 2874 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2875 !isa<ConstantSDNode>(Op1) && 2876 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2877 setValue(&I, DAG.getTargetLoweringInfo() 2878 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2879 else 2880 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2881 Op1, Op2)); 2882 } 2883 2884 void SelectionDAGBuilder::visitICmp(const User &I) { 2885 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2886 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2887 predicate = IC->getPredicate(); 2888 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2889 predicate = ICmpInst::Predicate(IC->getPredicate()); 2890 SDValue Op1 = getValue(I.getOperand(0)); 2891 SDValue Op2 = getValue(I.getOperand(1)); 2892 ISD::CondCode Opcode = getICmpCondCode(predicate); 2893 2894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2895 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2896 } 2897 2898 void SelectionDAGBuilder::visitFCmp(const User &I) { 2899 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2900 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2901 predicate = FC->getPredicate(); 2902 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2903 predicate = FCmpInst::Predicate(FC->getPredicate()); 2904 SDValue Op1 = getValue(I.getOperand(0)); 2905 SDValue Op2 = getValue(I.getOperand(1)); 2906 ISD::CondCode Condition = getFCmpCondCode(predicate); 2907 if (TM.Options.NoNaNsFPMath) 2908 Condition = getFCmpCodeWithoutNaN(Condition); 2909 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2910 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2911 } 2912 2913 void SelectionDAGBuilder::visitSelect(const User &I) { 2914 SmallVector<EVT, 4> ValueVTs; 2915 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2916 unsigned NumValues = ValueVTs.size(); 2917 if (NumValues == 0) return; 2918 2919 SmallVector<SDValue, 4> Values(NumValues); 2920 SDValue Cond = getValue(I.getOperand(0)); 2921 SDValue TrueVal = getValue(I.getOperand(1)); 2922 SDValue FalseVal = getValue(I.getOperand(2)); 2923 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2924 ISD::VSELECT : ISD::SELECT; 2925 2926 for (unsigned i = 0; i != NumValues; ++i) 2927 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2928 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2929 Cond, 2930 SDValue(TrueVal.getNode(), 2931 TrueVal.getResNo() + i), 2932 SDValue(FalseVal.getNode(), 2933 FalseVal.getResNo() + i)); 2934 2935 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2936 DAG.getVTList(ValueVTs), Values)); 2937 } 2938 2939 void SelectionDAGBuilder::visitTrunc(const User &I) { 2940 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2941 SDValue N = getValue(I.getOperand(0)); 2942 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2943 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2944 } 2945 2946 void SelectionDAGBuilder::visitZExt(const User &I) { 2947 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2948 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2949 SDValue N = getValue(I.getOperand(0)); 2950 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2951 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2952 } 2953 2954 void SelectionDAGBuilder::visitSExt(const User &I) { 2955 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2956 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2957 SDValue N = getValue(I.getOperand(0)); 2958 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2959 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2960 } 2961 2962 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2963 // FPTrunc is never a no-op cast, no need to check 2964 SDValue N = getValue(I.getOperand(0)); 2965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2966 EVT DestVT = TLI.getValueType(I.getType()); 2967 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2968 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2969 } 2970 2971 void SelectionDAGBuilder::visitFPExt(const User &I) { 2972 // FPExt is never a no-op cast, no need to check 2973 SDValue N = getValue(I.getOperand(0)); 2974 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2975 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2976 } 2977 2978 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2979 // FPToUI is never a no-op cast, no need to check 2980 SDValue N = getValue(I.getOperand(0)); 2981 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2982 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2983 } 2984 2985 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2986 // FPToSI is never a no-op cast, no need to check 2987 SDValue N = getValue(I.getOperand(0)); 2988 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2989 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2990 } 2991 2992 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2993 // UIToFP is never a no-op cast, no need to check 2994 SDValue N = getValue(I.getOperand(0)); 2995 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2996 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2997 } 2998 2999 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3000 // SIToFP is never a no-op cast, no need to check 3001 SDValue N = getValue(I.getOperand(0)); 3002 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3003 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3004 } 3005 3006 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3007 // What to do depends on the size of the integer and the size of the pointer. 3008 // We can either truncate, zero extend, or no-op, accordingly. 3009 SDValue N = getValue(I.getOperand(0)); 3010 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3011 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3012 } 3013 3014 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3015 // What to do depends on the size of the integer and the size of the pointer. 3016 // We can either truncate, zero extend, or no-op, accordingly. 3017 SDValue N = getValue(I.getOperand(0)); 3018 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3019 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3020 } 3021 3022 void SelectionDAGBuilder::visitBitCast(const User &I) { 3023 SDValue N = getValue(I.getOperand(0)); 3024 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3025 3026 // BitCast assures us that source and destination are the same size so this is 3027 // either a BITCAST or a no-op. 3028 if (DestVT != N.getValueType()) 3029 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3030 DestVT, N)); // convert types. 3031 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3032 // might fold any kind of constant expression to an integer constant and that 3033 // is not what we are looking for. Only regcognize a bitcast of a genuine 3034 // constant integer as an opaque constant. 3035 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3036 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3037 /*isOpaque*/true)); 3038 else 3039 setValue(&I, N); // noop cast. 3040 } 3041 3042 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3044 const Value *SV = I.getOperand(0); 3045 SDValue N = getValue(SV); 3046 EVT DestVT = TLI.getValueType(I.getType()); 3047 3048 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3049 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3050 3051 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3052 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3053 3054 setValue(&I, N); 3055 } 3056 3057 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 SDValue InVec = getValue(I.getOperand(0)); 3060 SDValue InVal = getValue(I.getOperand(1)); 3061 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3062 getCurSDLoc(), TLI.getVectorIdxTy()); 3063 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3064 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3065 } 3066 3067 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3069 SDValue InVec = getValue(I.getOperand(0)); 3070 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3071 getCurSDLoc(), TLI.getVectorIdxTy()); 3072 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3073 TLI.getValueType(I.getType()), InVec, InIdx)); 3074 } 3075 3076 // Utility for visitShuffleVector - Return true if every element in Mask, 3077 // beginning from position Pos and ending in Pos+Size, falls within the 3078 // specified sequential range [L, L+Pos). or is undef. 3079 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3080 unsigned Pos, unsigned Size, int Low) { 3081 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3082 if (Mask[i] >= 0 && Mask[i] != Low) 3083 return false; 3084 return true; 3085 } 3086 3087 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3088 SDValue Src1 = getValue(I.getOperand(0)); 3089 SDValue Src2 = getValue(I.getOperand(1)); 3090 3091 SmallVector<int, 8> Mask; 3092 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3093 unsigned MaskNumElts = Mask.size(); 3094 3095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3096 EVT VT = TLI.getValueType(I.getType()); 3097 EVT SrcVT = Src1.getValueType(); 3098 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3099 3100 if (SrcNumElts == MaskNumElts) { 3101 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3102 &Mask[0])); 3103 return; 3104 } 3105 3106 // Normalize the shuffle vector since mask and vector length don't match. 3107 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3108 // Mask is longer than the source vectors and is a multiple of the source 3109 // vectors. We can use concatenate vector to make the mask and vectors 3110 // lengths match. 3111 if (SrcNumElts*2 == MaskNumElts) { 3112 // First check for Src1 in low and Src2 in high 3113 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3114 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3115 // The shuffle is concatenating two vectors together. 3116 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3117 VT, Src1, Src2)); 3118 return; 3119 } 3120 // Then check for Src2 in low and Src1 in high 3121 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3122 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3123 // The shuffle is concatenating two vectors together. 3124 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3125 VT, Src2, Src1)); 3126 return; 3127 } 3128 } 3129 3130 // Pad both vectors with undefs to make them the same length as the mask. 3131 unsigned NumConcat = MaskNumElts / SrcNumElts; 3132 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3133 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3134 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3135 3136 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3137 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3138 MOps1[0] = Src1; 3139 MOps2[0] = Src2; 3140 3141 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3142 getCurSDLoc(), VT, MOps1); 3143 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3144 getCurSDLoc(), VT, MOps2); 3145 3146 // Readjust mask for new input vector length. 3147 SmallVector<int, 8> MappedOps; 3148 for (unsigned i = 0; i != MaskNumElts; ++i) { 3149 int Idx = Mask[i]; 3150 if (Idx >= (int)SrcNumElts) 3151 Idx -= SrcNumElts - MaskNumElts; 3152 MappedOps.push_back(Idx); 3153 } 3154 3155 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3156 &MappedOps[0])); 3157 return; 3158 } 3159 3160 if (SrcNumElts > MaskNumElts) { 3161 // Analyze the access pattern of the vector to see if we can extract 3162 // two subvectors and do the shuffle. The analysis is done by calculating 3163 // the range of elements the mask access on both vectors. 3164 int MinRange[2] = { static_cast<int>(SrcNumElts), 3165 static_cast<int>(SrcNumElts)}; 3166 int MaxRange[2] = {-1, -1}; 3167 3168 for (unsigned i = 0; i != MaskNumElts; ++i) { 3169 int Idx = Mask[i]; 3170 unsigned Input = 0; 3171 if (Idx < 0) 3172 continue; 3173 3174 if (Idx >= (int)SrcNumElts) { 3175 Input = 1; 3176 Idx -= SrcNumElts; 3177 } 3178 if (Idx > MaxRange[Input]) 3179 MaxRange[Input] = Idx; 3180 if (Idx < MinRange[Input]) 3181 MinRange[Input] = Idx; 3182 } 3183 3184 // Check if the access is smaller than the vector size and can we find 3185 // a reasonable extract index. 3186 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3187 // Extract. 3188 int StartIdx[2]; // StartIdx to extract from 3189 for (unsigned Input = 0; Input < 2; ++Input) { 3190 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3191 RangeUse[Input] = 0; // Unused 3192 StartIdx[Input] = 0; 3193 continue; 3194 } 3195 3196 // Find a good start index that is a multiple of the mask length. Then 3197 // see if the rest of the elements are in range. 3198 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3199 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3200 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3201 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3202 } 3203 3204 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3205 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3206 return; 3207 } 3208 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3209 // Extract appropriate subvector and generate a vector shuffle 3210 for (unsigned Input = 0; Input < 2; ++Input) { 3211 SDValue &Src = Input == 0 ? Src1 : Src2; 3212 if (RangeUse[Input] == 0) 3213 Src = DAG.getUNDEF(VT); 3214 else 3215 Src = DAG.getNode( 3216 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3217 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3218 } 3219 3220 // Calculate new mask. 3221 SmallVector<int, 8> MappedOps; 3222 for (unsigned i = 0; i != MaskNumElts; ++i) { 3223 int Idx = Mask[i]; 3224 if (Idx >= 0) { 3225 if (Idx < (int)SrcNumElts) 3226 Idx -= StartIdx[0]; 3227 else 3228 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3229 } 3230 MappedOps.push_back(Idx); 3231 } 3232 3233 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3234 &MappedOps[0])); 3235 return; 3236 } 3237 } 3238 3239 // We can't use either concat vectors or extract subvectors so fall back to 3240 // replacing the shuffle with extract and build vector. 3241 // to insert and build vector. 3242 EVT EltVT = VT.getVectorElementType(); 3243 EVT IdxVT = TLI.getVectorIdxTy(); 3244 SmallVector<SDValue,8> Ops; 3245 for (unsigned i = 0; i != MaskNumElts; ++i) { 3246 int Idx = Mask[i]; 3247 SDValue Res; 3248 3249 if (Idx < 0) { 3250 Res = DAG.getUNDEF(EltVT); 3251 } else { 3252 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3253 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3254 3255 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3256 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3257 } 3258 3259 Ops.push_back(Res); 3260 } 3261 3262 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3263 } 3264 3265 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3266 const Value *Op0 = I.getOperand(0); 3267 const Value *Op1 = I.getOperand(1); 3268 Type *AggTy = I.getType(); 3269 Type *ValTy = Op1->getType(); 3270 bool IntoUndef = isa<UndefValue>(Op0); 3271 bool FromUndef = isa<UndefValue>(Op1); 3272 3273 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3274 3275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3276 SmallVector<EVT, 4> AggValueVTs; 3277 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3278 SmallVector<EVT, 4> ValValueVTs; 3279 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3280 3281 unsigned NumAggValues = AggValueVTs.size(); 3282 unsigned NumValValues = ValValueVTs.size(); 3283 SmallVector<SDValue, 4> Values(NumAggValues); 3284 3285 // Ignore an insertvalue that produces an empty object 3286 if (!NumAggValues) { 3287 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3288 return; 3289 } 3290 3291 SDValue Agg = getValue(Op0); 3292 unsigned i = 0; 3293 // Copy the beginning value(s) from the original aggregate. 3294 for (; i != LinearIndex; ++i) 3295 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3296 SDValue(Agg.getNode(), Agg.getResNo() + i); 3297 // Copy values from the inserted value(s). 3298 if (NumValValues) { 3299 SDValue Val = getValue(Op1); 3300 for (; i != LinearIndex + NumValValues; ++i) 3301 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3302 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3303 } 3304 // Copy remaining value(s) from the original aggregate. 3305 for (; i != NumAggValues; ++i) 3306 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3307 SDValue(Agg.getNode(), Agg.getResNo() + i); 3308 3309 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3310 DAG.getVTList(AggValueVTs), Values)); 3311 } 3312 3313 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3314 const Value *Op0 = I.getOperand(0); 3315 Type *AggTy = Op0->getType(); 3316 Type *ValTy = I.getType(); 3317 bool OutOfUndef = isa<UndefValue>(Op0); 3318 3319 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3320 3321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3322 SmallVector<EVT, 4> ValValueVTs; 3323 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3324 3325 unsigned NumValValues = ValValueVTs.size(); 3326 3327 // Ignore a extractvalue that produces an empty object 3328 if (!NumValValues) { 3329 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3330 return; 3331 } 3332 3333 SmallVector<SDValue, 4> Values(NumValValues); 3334 3335 SDValue Agg = getValue(Op0); 3336 // Copy out the selected value(s). 3337 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3338 Values[i - LinearIndex] = 3339 OutOfUndef ? 3340 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3341 SDValue(Agg.getNode(), Agg.getResNo() + i); 3342 3343 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3344 DAG.getVTList(ValValueVTs), Values)); 3345 } 3346 3347 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3348 Value *Op0 = I.getOperand(0); 3349 // Note that the pointer operand may be a vector of pointers. Take the scalar 3350 // element which holds a pointer. 3351 Type *Ty = Op0->getType()->getScalarType(); 3352 unsigned AS = Ty->getPointerAddressSpace(); 3353 SDValue N = getValue(Op0); 3354 3355 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3356 OI != E; ++OI) { 3357 const Value *Idx = *OI; 3358 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3359 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3360 if (Field) { 3361 // N = N + Offset 3362 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3363 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3364 DAG.getConstant(Offset, N.getValueType())); 3365 } 3366 3367 Ty = StTy->getElementType(Field); 3368 } else { 3369 Ty = cast<SequentialType>(Ty)->getElementType(); 3370 3371 // If this is a constant subscript, handle it quickly. 3372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3373 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3374 if (CI->isZero()) continue; 3375 uint64_t Offs = 3376 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3377 SDValue OffsVal; 3378 EVT PTy = TLI.getPointerTy(AS); 3379 unsigned PtrBits = PTy.getSizeInBits(); 3380 if (PtrBits < 64) 3381 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3382 DAG.getConstant(Offs, MVT::i64)); 3383 else 3384 OffsVal = DAG.getConstant(Offs, PTy); 3385 3386 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3387 OffsVal); 3388 continue; 3389 } 3390 3391 // N = N + Idx * ElementSize; 3392 APInt ElementSize = 3393 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3394 SDValue IdxN = getValue(Idx); 3395 3396 // If the index is smaller or larger than intptr_t, truncate or extend 3397 // it. 3398 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3399 3400 // If this is a multiply by a power of two, turn it into a shl 3401 // immediately. This is a very common case. 3402 if (ElementSize != 1) { 3403 if (ElementSize.isPowerOf2()) { 3404 unsigned Amt = ElementSize.logBase2(); 3405 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3406 N.getValueType(), IdxN, 3407 DAG.getConstant(Amt, IdxN.getValueType())); 3408 } else { 3409 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3410 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3411 N.getValueType(), IdxN, Scale); 3412 } 3413 } 3414 3415 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3416 N.getValueType(), N, IdxN); 3417 } 3418 } 3419 3420 setValue(&I, N); 3421 } 3422 3423 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3424 // If this is a fixed sized alloca in the entry block of the function, 3425 // allocate it statically on the stack. 3426 if (FuncInfo.StaticAllocaMap.count(&I)) 3427 return; // getValue will auto-populate this. 3428 3429 Type *Ty = I.getAllocatedType(); 3430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3431 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3432 unsigned Align = 3433 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3434 I.getAlignment()); 3435 3436 SDValue AllocSize = getValue(I.getArraySize()); 3437 3438 EVT IntPtr = TLI.getPointerTy(); 3439 if (AllocSize.getValueType() != IntPtr) 3440 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3441 3442 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3443 AllocSize, 3444 DAG.getConstant(TySize, IntPtr)); 3445 3446 // Handle alignment. If the requested alignment is less than or equal to 3447 // the stack alignment, ignore it. If the size is greater than or equal to 3448 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3449 unsigned StackAlign = 3450 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3451 if (Align <= StackAlign) 3452 Align = 0; 3453 3454 // Round the size of the allocation up to the stack alignment size 3455 // by add SA-1 to the size. 3456 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3457 AllocSize.getValueType(), AllocSize, 3458 DAG.getIntPtrConstant(StackAlign-1)); 3459 3460 // Mask out the low bits for alignment purposes. 3461 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3462 AllocSize.getValueType(), AllocSize, 3463 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3464 3465 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3466 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3467 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3468 setValue(&I, DSA); 3469 DAG.setRoot(DSA.getValue(1)); 3470 3471 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3472 } 3473 3474 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3475 if (I.isAtomic()) 3476 return visitAtomicLoad(I); 3477 3478 const Value *SV = I.getOperand(0); 3479 SDValue Ptr = getValue(SV); 3480 3481 Type *Ty = I.getType(); 3482 3483 bool isVolatile = I.isVolatile(); 3484 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3485 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3486 unsigned Alignment = I.getAlignment(); 3487 3488 AAMDNodes AAInfo; 3489 I.getAAMetadata(AAInfo); 3490 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3491 3492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3493 SmallVector<EVT, 4> ValueVTs; 3494 SmallVector<uint64_t, 4> Offsets; 3495 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3496 unsigned NumValues = ValueVTs.size(); 3497 if (NumValues == 0) 3498 return; 3499 3500 SDValue Root; 3501 bool ConstantMemory = false; 3502 if (isVolatile || NumValues > MaxParallelChains) 3503 // Serialize volatile loads with other side effects. 3504 Root = getRoot(); 3505 else if (AA->pointsToConstantMemory( 3506 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3507 // Do not serialize (non-volatile) loads of constant memory with anything. 3508 Root = DAG.getEntryNode(); 3509 ConstantMemory = true; 3510 } else { 3511 // Do not serialize non-volatile loads against each other. 3512 Root = DAG.getRoot(); 3513 } 3514 3515 if (isVolatile) 3516 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3517 3518 SmallVector<SDValue, 4> Values(NumValues); 3519 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3520 NumValues)); 3521 EVT PtrVT = Ptr.getValueType(); 3522 unsigned ChainI = 0; 3523 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3524 // Serializing loads here may result in excessive register pressure, and 3525 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3526 // could recover a bit by hoisting nodes upward in the chain by recognizing 3527 // they are side-effect free or do not alias. The optimizer should really 3528 // avoid this case by converting large object/array copies to llvm.memcpy 3529 // (MaxParallelChains should always remain as failsafe). 3530 if (ChainI == MaxParallelChains) { 3531 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3532 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3533 makeArrayRef(Chains.data(), ChainI)); 3534 Root = Chain; 3535 ChainI = 0; 3536 } 3537 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3538 PtrVT, Ptr, 3539 DAG.getConstant(Offsets[i], PtrVT)); 3540 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3541 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3542 isNonTemporal, isInvariant, Alignment, AAInfo, 3543 Ranges); 3544 3545 Values[i] = L; 3546 Chains[ChainI] = L.getValue(1); 3547 } 3548 3549 if (!ConstantMemory) { 3550 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3551 makeArrayRef(Chains.data(), ChainI)); 3552 if (isVolatile) 3553 DAG.setRoot(Chain); 3554 else 3555 PendingLoads.push_back(Chain); 3556 } 3557 3558 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3559 DAG.getVTList(ValueVTs), Values)); 3560 } 3561 3562 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3563 if (I.isAtomic()) 3564 return visitAtomicStore(I); 3565 3566 const Value *SrcV = I.getOperand(0); 3567 const Value *PtrV = I.getOperand(1); 3568 3569 SmallVector<EVT, 4> ValueVTs; 3570 SmallVector<uint64_t, 4> Offsets; 3571 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3572 ValueVTs, &Offsets); 3573 unsigned NumValues = ValueVTs.size(); 3574 if (NumValues == 0) 3575 return; 3576 3577 // Get the lowered operands. Note that we do this after 3578 // checking if NumResults is zero, because with zero results 3579 // the operands won't have values in the map. 3580 SDValue Src = getValue(SrcV); 3581 SDValue Ptr = getValue(PtrV); 3582 3583 SDValue Root = getRoot(); 3584 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3585 NumValues)); 3586 EVT PtrVT = Ptr.getValueType(); 3587 bool isVolatile = I.isVolatile(); 3588 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3589 unsigned Alignment = I.getAlignment(); 3590 3591 AAMDNodes AAInfo; 3592 I.getAAMetadata(AAInfo); 3593 3594 unsigned ChainI = 0; 3595 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3596 // See visitLoad comments. 3597 if (ChainI == MaxParallelChains) { 3598 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3599 makeArrayRef(Chains.data(), ChainI)); 3600 Root = Chain; 3601 ChainI = 0; 3602 } 3603 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3604 DAG.getConstant(Offsets[i], PtrVT)); 3605 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3606 SDValue(Src.getNode(), Src.getResNo() + i), 3607 Add, MachinePointerInfo(PtrV, Offsets[i]), 3608 isVolatile, isNonTemporal, Alignment, AAInfo); 3609 Chains[ChainI] = St; 3610 } 3611 3612 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3613 makeArrayRef(Chains.data(), ChainI)); 3614 DAG.setRoot(StoreNode); 3615 } 3616 3617 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3618 SDLoc dl = getCurSDLoc(); 3619 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3620 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3621 SynchronizationScope Scope = I.getSynchScope(); 3622 3623 SDValue InChain = getRoot(); 3624 3625 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3626 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3627 SDValue L = DAG.getAtomicCmpSwap( 3628 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3629 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3630 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3631 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3632 3633 SDValue OutChain = L.getValue(2); 3634 3635 setValue(&I, L); 3636 DAG.setRoot(OutChain); 3637 } 3638 3639 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3640 SDLoc dl = getCurSDLoc(); 3641 ISD::NodeType NT; 3642 switch (I.getOperation()) { 3643 default: llvm_unreachable("Unknown atomicrmw operation"); 3644 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3645 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3646 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3647 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3648 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3649 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3650 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3651 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3652 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3653 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3654 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3655 } 3656 AtomicOrdering Order = I.getOrdering(); 3657 SynchronizationScope Scope = I.getSynchScope(); 3658 3659 SDValue InChain = getRoot(); 3660 3661 SDValue L = 3662 DAG.getAtomic(NT, dl, 3663 getValue(I.getValOperand()).getSimpleValueType(), 3664 InChain, 3665 getValue(I.getPointerOperand()), 3666 getValue(I.getValOperand()), 3667 I.getPointerOperand(), 3668 /* Alignment=*/ 0, Order, Scope); 3669 3670 SDValue OutChain = L.getValue(1); 3671 3672 setValue(&I, L); 3673 DAG.setRoot(OutChain); 3674 } 3675 3676 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3677 SDLoc dl = getCurSDLoc(); 3678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3679 SDValue Ops[3]; 3680 Ops[0] = getRoot(); 3681 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3682 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3683 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3684 } 3685 3686 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3687 SDLoc dl = getCurSDLoc(); 3688 AtomicOrdering Order = I.getOrdering(); 3689 SynchronizationScope Scope = I.getSynchScope(); 3690 3691 SDValue InChain = getRoot(); 3692 3693 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3694 EVT VT = TLI.getValueType(I.getType()); 3695 3696 if (I.getAlignment() < VT.getSizeInBits() / 8) 3697 report_fatal_error("Cannot generate unaligned atomic load"); 3698 3699 MachineMemOperand *MMO = 3700 DAG.getMachineFunction(). 3701 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3702 MachineMemOperand::MOVolatile | 3703 MachineMemOperand::MOLoad, 3704 VT.getStoreSize(), 3705 I.getAlignment() ? I.getAlignment() : 3706 DAG.getEVTAlignment(VT)); 3707 3708 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3709 SDValue L = 3710 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3711 getValue(I.getPointerOperand()), MMO, 3712 Order, Scope); 3713 3714 SDValue OutChain = L.getValue(1); 3715 3716 setValue(&I, L); 3717 DAG.setRoot(OutChain); 3718 } 3719 3720 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3721 SDLoc dl = getCurSDLoc(); 3722 3723 AtomicOrdering Order = I.getOrdering(); 3724 SynchronizationScope Scope = I.getSynchScope(); 3725 3726 SDValue InChain = getRoot(); 3727 3728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3729 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3730 3731 if (I.getAlignment() < VT.getSizeInBits() / 8) 3732 report_fatal_error("Cannot generate unaligned atomic store"); 3733 3734 SDValue OutChain = 3735 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3736 InChain, 3737 getValue(I.getPointerOperand()), 3738 getValue(I.getValueOperand()), 3739 I.getPointerOperand(), I.getAlignment(), 3740 Order, Scope); 3741 3742 DAG.setRoot(OutChain); 3743 } 3744 3745 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3746 /// node. 3747 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3748 unsigned Intrinsic) { 3749 bool HasChain = !I.doesNotAccessMemory(); 3750 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3751 3752 // Build the operand list. 3753 SmallVector<SDValue, 8> Ops; 3754 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3755 if (OnlyLoad) { 3756 // We don't need to serialize loads against other loads. 3757 Ops.push_back(DAG.getRoot()); 3758 } else { 3759 Ops.push_back(getRoot()); 3760 } 3761 } 3762 3763 // Info is set by getTgtMemInstrinsic 3764 TargetLowering::IntrinsicInfo Info; 3765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3766 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3767 3768 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3769 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3770 Info.opc == ISD::INTRINSIC_W_CHAIN) 3771 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3772 3773 // Add all operands of the call to the operand list. 3774 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3775 SDValue Op = getValue(I.getArgOperand(i)); 3776 Ops.push_back(Op); 3777 } 3778 3779 SmallVector<EVT, 4> ValueVTs; 3780 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3781 3782 if (HasChain) 3783 ValueVTs.push_back(MVT::Other); 3784 3785 SDVTList VTs = DAG.getVTList(ValueVTs); 3786 3787 // Create the node. 3788 SDValue Result; 3789 if (IsTgtIntrinsic) { 3790 // This is target intrinsic that touches memory 3791 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3792 VTs, Ops, Info.memVT, 3793 MachinePointerInfo(Info.ptrVal, Info.offset), 3794 Info.align, Info.vol, 3795 Info.readMem, Info.writeMem, Info.size); 3796 } else if (!HasChain) { 3797 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3798 } else if (!I.getType()->isVoidTy()) { 3799 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3800 } else { 3801 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3802 } 3803 3804 if (HasChain) { 3805 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3806 if (OnlyLoad) 3807 PendingLoads.push_back(Chain); 3808 else 3809 DAG.setRoot(Chain); 3810 } 3811 3812 if (!I.getType()->isVoidTy()) { 3813 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3814 EVT VT = TLI.getValueType(PTy); 3815 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3816 } 3817 3818 setValue(&I, Result); 3819 } 3820 } 3821 3822 /// GetSignificand - Get the significand and build it into a floating-point 3823 /// number with exponent of 1: 3824 /// 3825 /// Op = (Op & 0x007fffff) | 0x3f800000; 3826 /// 3827 /// where Op is the hexadecimal representation of floating point value. 3828 static SDValue 3829 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3830 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3831 DAG.getConstant(0x007fffff, MVT::i32)); 3832 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3833 DAG.getConstant(0x3f800000, MVT::i32)); 3834 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3835 } 3836 3837 /// GetExponent - Get the exponent: 3838 /// 3839 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3840 /// 3841 /// where Op is the hexadecimal representation of floating point value. 3842 static SDValue 3843 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3844 SDLoc dl) { 3845 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3846 DAG.getConstant(0x7f800000, MVT::i32)); 3847 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3848 DAG.getConstant(23, TLI.getPointerTy())); 3849 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3850 DAG.getConstant(127, MVT::i32)); 3851 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3852 } 3853 3854 /// getF32Constant - Get 32-bit floating point constant. 3855 static SDValue 3856 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3857 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3858 MVT::f32); 3859 } 3860 3861 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3862 /// limited-precision mode. 3863 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3864 const TargetLowering &TLI) { 3865 if (Op.getValueType() == MVT::f32 && 3866 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3867 3868 // Put the exponent in the right bit position for later addition to the 3869 // final result: 3870 // 3871 // #define LOG2OFe 1.4426950f 3872 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3873 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3874 getF32Constant(DAG, 0x3fb8aa3b)); 3875 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3876 3877 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3878 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3879 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3880 3881 // IntegerPartOfX <<= 23; 3882 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3883 DAG.getConstant(23, TLI.getPointerTy())); 3884 3885 SDValue TwoToFracPartOfX; 3886 if (LimitFloatPrecision <= 6) { 3887 // For floating-point precision of 6: 3888 // 3889 // TwoToFractionalPartOfX = 3890 // 0.997535578f + 3891 // (0.735607626f + 0.252464424f * x) * x; 3892 // 3893 // error 0.0144103317, which is 6 bits 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3895 getF32Constant(DAG, 0x3e814304)); 3896 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3897 getF32Constant(DAG, 0x3f3c50c8)); 3898 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3899 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3900 getF32Constant(DAG, 0x3f7f5e7e)); 3901 } else if (LimitFloatPrecision <= 12) { 3902 // For floating-point precision of 12: 3903 // 3904 // TwoToFractionalPartOfX = 3905 // 0.999892986f + 3906 // (0.696457318f + 3907 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3908 // 3909 // 0.000107046256 error, which is 13 to 14 bits 3910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3911 getF32Constant(DAG, 0x3da235e3)); 3912 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3913 getF32Constant(DAG, 0x3e65b8f3)); 3914 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3915 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3916 getF32Constant(DAG, 0x3f324b07)); 3917 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3918 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3919 getF32Constant(DAG, 0x3f7ff8fd)); 3920 } else { // LimitFloatPrecision <= 18 3921 // For floating-point precision of 18: 3922 // 3923 // TwoToFractionalPartOfX = 3924 // 0.999999982f + 3925 // (0.693148872f + 3926 // (0.240227044f + 3927 // (0.554906021e-1f + 3928 // (0.961591928e-2f + 3929 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3930 // 3931 // error 2.47208000*10^(-7), which is better than 18 bits 3932 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3933 getF32Constant(DAG, 0x3924b03e)); 3934 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3935 getF32Constant(DAG, 0x3ab24b87)); 3936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3937 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3938 getF32Constant(DAG, 0x3c1d8c17)); 3939 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3940 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3941 getF32Constant(DAG, 0x3d634a1d)); 3942 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3943 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3944 getF32Constant(DAG, 0x3e75fe14)); 3945 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3946 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3947 getF32Constant(DAG, 0x3f317234)); 3948 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3949 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3950 getF32Constant(DAG, 0x3f800000)); 3951 } 3952 3953 // Add the exponent into the result in integer domain. 3954 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3955 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3956 DAG.getNode(ISD::ADD, dl, MVT::i32, 3957 t13, IntegerPartOfX)); 3958 } 3959 3960 // No special expansion. 3961 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3962 } 3963 3964 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3965 /// limited-precision mode. 3966 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3967 const TargetLowering &TLI) { 3968 if (Op.getValueType() == MVT::f32 && 3969 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3970 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3971 3972 // Scale the exponent by log(2) [0.69314718f]. 3973 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3974 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3975 getF32Constant(DAG, 0x3f317218)); 3976 3977 // Get the significand and build it into a floating-point number with 3978 // exponent of 1. 3979 SDValue X = GetSignificand(DAG, Op1, dl); 3980 3981 SDValue LogOfMantissa; 3982 if (LimitFloatPrecision <= 6) { 3983 // For floating-point precision of 6: 3984 // 3985 // LogofMantissa = 3986 // -1.1609546f + 3987 // (1.4034025f - 0.23903021f * x) * x; 3988 // 3989 // error 0.0034276066, which is better than 8 bits 3990 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3991 getF32Constant(DAG, 0xbe74c456)); 3992 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3993 getF32Constant(DAG, 0x3fb3a2b1)); 3994 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3995 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3996 getF32Constant(DAG, 0x3f949a29)); 3997 } else if (LimitFloatPrecision <= 12) { 3998 // For floating-point precision of 12: 3999 // 4000 // LogOfMantissa = 4001 // -1.7417939f + 4002 // (2.8212026f + 4003 // (-1.4699568f + 4004 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4005 // 4006 // error 0.000061011436, which is 14 bits 4007 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4008 getF32Constant(DAG, 0xbd67b6d6)); 4009 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4010 getF32Constant(DAG, 0x3ee4f4b8)); 4011 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4012 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4013 getF32Constant(DAG, 0x3fbc278b)); 4014 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4015 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4016 getF32Constant(DAG, 0x40348e95)); 4017 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4018 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4019 getF32Constant(DAG, 0x3fdef31a)); 4020 } else { // LimitFloatPrecision <= 18 4021 // For floating-point precision of 18: 4022 // 4023 // LogOfMantissa = 4024 // -2.1072184f + 4025 // (4.2372794f + 4026 // (-3.7029485f + 4027 // (2.2781945f + 4028 // (-0.87823314f + 4029 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4030 // 4031 // error 0.0000023660568, which is better than 18 bits 4032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4033 getF32Constant(DAG, 0xbc91e5ac)); 4034 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4035 getF32Constant(DAG, 0x3e4350aa)); 4036 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4037 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4038 getF32Constant(DAG, 0x3f60d3e3)); 4039 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4040 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4041 getF32Constant(DAG, 0x4011cdf0)); 4042 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4043 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4044 getF32Constant(DAG, 0x406cfd1c)); 4045 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4046 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4047 getF32Constant(DAG, 0x408797cb)); 4048 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4049 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4050 getF32Constant(DAG, 0x4006dcab)); 4051 } 4052 4053 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4054 } 4055 4056 // No special expansion. 4057 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4058 } 4059 4060 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4061 /// limited-precision mode. 4062 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4063 const TargetLowering &TLI) { 4064 if (Op.getValueType() == MVT::f32 && 4065 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4066 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4067 4068 // Get the exponent. 4069 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4070 4071 // Get the significand and build it into a floating-point number with 4072 // exponent of 1. 4073 SDValue X = GetSignificand(DAG, Op1, dl); 4074 4075 // Different possible minimax approximations of significand in 4076 // floating-point for various degrees of accuracy over [1,2]. 4077 SDValue Log2ofMantissa; 4078 if (LimitFloatPrecision <= 6) { 4079 // For floating-point precision of 6: 4080 // 4081 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4082 // 4083 // error 0.0049451742, which is more than 7 bits 4084 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4085 getF32Constant(DAG, 0xbeb08fe0)); 4086 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4087 getF32Constant(DAG, 0x40019463)); 4088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4089 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4090 getF32Constant(DAG, 0x3fd6633d)); 4091 } else if (LimitFloatPrecision <= 12) { 4092 // For floating-point precision of 12: 4093 // 4094 // Log2ofMantissa = 4095 // -2.51285454f + 4096 // (4.07009056f + 4097 // (-2.12067489f + 4098 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4099 // 4100 // error 0.0000876136000, which is better than 13 bits 4101 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4102 getF32Constant(DAG, 0xbda7262e)); 4103 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4104 getF32Constant(DAG, 0x3f25280b)); 4105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4106 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4107 getF32Constant(DAG, 0x4007b923)); 4108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4109 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4110 getF32Constant(DAG, 0x40823e2f)); 4111 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4112 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4113 getF32Constant(DAG, 0x4020d29c)); 4114 } else { // LimitFloatPrecision <= 18 4115 // For floating-point precision of 18: 4116 // 4117 // Log2ofMantissa = 4118 // -3.0400495f + 4119 // (6.1129976f + 4120 // (-5.3420409f + 4121 // (3.2865683f + 4122 // (-1.2669343f + 4123 // (0.27515199f - 4124 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4125 // 4126 // error 0.0000018516, which is better than 18 bits 4127 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4128 getF32Constant(DAG, 0xbcd2769e)); 4129 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4130 getF32Constant(DAG, 0x3e8ce0b9)); 4131 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4132 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4133 getF32Constant(DAG, 0x3fa22ae7)); 4134 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4135 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4136 getF32Constant(DAG, 0x40525723)); 4137 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4138 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4139 getF32Constant(DAG, 0x40aaf200)); 4140 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4141 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4142 getF32Constant(DAG, 0x40c39dad)); 4143 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4144 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4145 getF32Constant(DAG, 0x4042902c)); 4146 } 4147 4148 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4149 } 4150 4151 // No special expansion. 4152 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4153 } 4154 4155 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4156 /// limited-precision mode. 4157 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4158 const TargetLowering &TLI) { 4159 if (Op.getValueType() == MVT::f32 && 4160 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4161 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4162 4163 // Scale the exponent by log10(2) [0.30102999f]. 4164 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4165 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4166 getF32Constant(DAG, 0x3e9a209a)); 4167 4168 // Get the significand and build it into a floating-point number with 4169 // exponent of 1. 4170 SDValue X = GetSignificand(DAG, Op1, dl); 4171 4172 SDValue Log10ofMantissa; 4173 if (LimitFloatPrecision <= 6) { 4174 // For floating-point precision of 6: 4175 // 4176 // Log10ofMantissa = 4177 // -0.50419619f + 4178 // (0.60948995f - 0.10380950f * x) * x; 4179 // 4180 // error 0.0014886165, which is 6 bits 4181 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4182 getF32Constant(DAG, 0xbdd49a13)); 4183 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4184 getF32Constant(DAG, 0x3f1c0789)); 4185 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4186 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4187 getF32Constant(DAG, 0x3f011300)); 4188 } else if (LimitFloatPrecision <= 12) { 4189 // For floating-point precision of 12: 4190 // 4191 // Log10ofMantissa = 4192 // -0.64831180f + 4193 // (0.91751397f + 4194 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4195 // 4196 // error 0.00019228036, which is better than 12 bits 4197 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4198 getF32Constant(DAG, 0x3d431f31)); 4199 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4200 getF32Constant(DAG, 0x3ea21fb2)); 4201 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4202 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4203 getF32Constant(DAG, 0x3f6ae232)); 4204 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4205 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4206 getF32Constant(DAG, 0x3f25f7c3)); 4207 } else { // LimitFloatPrecision <= 18 4208 // For floating-point precision of 18: 4209 // 4210 // Log10ofMantissa = 4211 // -0.84299375f + 4212 // (1.5327582f + 4213 // (-1.0688956f + 4214 // (0.49102474f + 4215 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4216 // 4217 // error 0.0000037995730, which is better than 18 bits 4218 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4219 getF32Constant(DAG, 0x3c5d51ce)); 4220 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4221 getF32Constant(DAG, 0x3e00685a)); 4222 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4223 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4224 getF32Constant(DAG, 0x3efb6798)); 4225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4226 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4227 getF32Constant(DAG, 0x3f88d192)); 4228 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4229 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4230 getF32Constant(DAG, 0x3fc4316c)); 4231 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4232 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4233 getF32Constant(DAG, 0x3f57ce70)); 4234 } 4235 4236 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4237 } 4238 4239 // No special expansion. 4240 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4241 } 4242 4243 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4244 /// limited-precision mode. 4245 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4246 const TargetLowering &TLI) { 4247 if (Op.getValueType() == MVT::f32 && 4248 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4249 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4250 4251 // FractionalPartOfX = x - (float)IntegerPartOfX; 4252 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4253 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4254 4255 // IntegerPartOfX <<= 23; 4256 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4257 DAG.getConstant(23, TLI.getPointerTy())); 4258 4259 SDValue TwoToFractionalPartOfX; 4260 if (LimitFloatPrecision <= 6) { 4261 // For floating-point precision of 6: 4262 // 4263 // TwoToFractionalPartOfX = 4264 // 0.997535578f + 4265 // (0.735607626f + 0.252464424f * x) * x; 4266 // 4267 // error 0.0144103317, which is 6 bits 4268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4269 getF32Constant(DAG, 0x3e814304)); 4270 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4271 getF32Constant(DAG, 0x3f3c50c8)); 4272 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4273 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4274 getF32Constant(DAG, 0x3f7f5e7e)); 4275 } else if (LimitFloatPrecision <= 12) { 4276 // For floating-point precision of 12: 4277 // 4278 // TwoToFractionalPartOfX = 4279 // 0.999892986f + 4280 // (0.696457318f + 4281 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4282 // 4283 // error 0.000107046256, which is 13 to 14 bits 4284 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4285 getF32Constant(DAG, 0x3da235e3)); 4286 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4287 getF32Constant(DAG, 0x3e65b8f3)); 4288 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4289 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4290 getF32Constant(DAG, 0x3f324b07)); 4291 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4292 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4293 getF32Constant(DAG, 0x3f7ff8fd)); 4294 } else { // LimitFloatPrecision <= 18 4295 // For floating-point precision of 18: 4296 // 4297 // TwoToFractionalPartOfX = 4298 // 0.999999982f + 4299 // (0.693148872f + 4300 // (0.240227044f + 4301 // (0.554906021e-1f + 4302 // (0.961591928e-2f + 4303 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4304 // error 2.47208000*10^(-7), which is better than 18 bits 4305 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4306 getF32Constant(DAG, 0x3924b03e)); 4307 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4308 getF32Constant(DAG, 0x3ab24b87)); 4309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4310 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4311 getF32Constant(DAG, 0x3c1d8c17)); 4312 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4313 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4314 getF32Constant(DAG, 0x3d634a1d)); 4315 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4316 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4317 getF32Constant(DAG, 0x3e75fe14)); 4318 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4319 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4320 getF32Constant(DAG, 0x3f317234)); 4321 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4322 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4323 getF32Constant(DAG, 0x3f800000)); 4324 } 4325 4326 // Add the exponent into the result in integer domain. 4327 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4328 TwoToFractionalPartOfX); 4329 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4330 DAG.getNode(ISD::ADD, dl, MVT::i32, 4331 t13, IntegerPartOfX)); 4332 } 4333 4334 // No special expansion. 4335 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4336 } 4337 4338 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4339 /// limited-precision mode with x == 10.0f. 4340 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4341 SelectionDAG &DAG, const TargetLowering &TLI) { 4342 bool IsExp10 = false; 4343 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4344 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4345 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4346 APFloat Ten(10.0f); 4347 IsExp10 = LHSC->isExactlyValue(Ten); 4348 } 4349 } 4350 4351 if (IsExp10) { 4352 // Put the exponent in the right bit position for later addition to the 4353 // final result: 4354 // 4355 // #define LOG2OF10 3.3219281f 4356 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4357 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4358 getF32Constant(DAG, 0x40549a78)); 4359 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4360 4361 // FractionalPartOfX = x - (float)IntegerPartOfX; 4362 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4363 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4364 4365 // IntegerPartOfX <<= 23; 4366 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4367 DAG.getConstant(23, TLI.getPointerTy())); 4368 4369 SDValue TwoToFractionalPartOfX; 4370 if (LimitFloatPrecision <= 6) { 4371 // For floating-point precision of 6: 4372 // 4373 // twoToFractionalPartOfX = 4374 // 0.997535578f + 4375 // (0.735607626f + 0.252464424f * x) * x; 4376 // 4377 // error 0.0144103317, which is 6 bits 4378 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4379 getF32Constant(DAG, 0x3e814304)); 4380 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4381 getF32Constant(DAG, 0x3f3c50c8)); 4382 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4383 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4384 getF32Constant(DAG, 0x3f7f5e7e)); 4385 } else if (LimitFloatPrecision <= 12) { 4386 // For floating-point precision of 12: 4387 // 4388 // TwoToFractionalPartOfX = 4389 // 0.999892986f + 4390 // (0.696457318f + 4391 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4392 // 4393 // error 0.000107046256, which is 13 to 14 bits 4394 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4395 getF32Constant(DAG, 0x3da235e3)); 4396 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4397 getF32Constant(DAG, 0x3e65b8f3)); 4398 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4399 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4400 getF32Constant(DAG, 0x3f324b07)); 4401 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4402 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4403 getF32Constant(DAG, 0x3f7ff8fd)); 4404 } else { // LimitFloatPrecision <= 18 4405 // For floating-point precision of 18: 4406 // 4407 // TwoToFractionalPartOfX = 4408 // 0.999999982f + 4409 // (0.693148872f + 4410 // (0.240227044f + 4411 // (0.554906021e-1f + 4412 // (0.961591928e-2f + 4413 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4414 // error 2.47208000*10^(-7), which is better than 18 bits 4415 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4416 getF32Constant(DAG, 0x3924b03e)); 4417 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4418 getF32Constant(DAG, 0x3ab24b87)); 4419 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4420 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4421 getF32Constant(DAG, 0x3c1d8c17)); 4422 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4423 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4424 getF32Constant(DAG, 0x3d634a1d)); 4425 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4426 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4427 getF32Constant(DAG, 0x3e75fe14)); 4428 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4429 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4430 getF32Constant(DAG, 0x3f317234)); 4431 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4432 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4433 getF32Constant(DAG, 0x3f800000)); 4434 } 4435 4436 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4437 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4438 DAG.getNode(ISD::ADD, dl, MVT::i32, 4439 t13, IntegerPartOfX)); 4440 } 4441 4442 // No special expansion. 4443 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4444 } 4445 4446 4447 /// ExpandPowI - Expand a llvm.powi intrinsic. 4448 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4449 SelectionDAG &DAG) { 4450 // If RHS is a constant, we can expand this out to a multiplication tree, 4451 // otherwise we end up lowering to a call to __powidf2 (for example). When 4452 // optimizing for size, we only want to do this if the expansion would produce 4453 // a small number of multiplies, otherwise we do the full expansion. 4454 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4455 // Get the exponent as a positive value. 4456 unsigned Val = RHSC->getSExtValue(); 4457 if ((int)Val < 0) Val = -Val; 4458 4459 // powi(x, 0) -> 1.0 4460 if (Val == 0) 4461 return DAG.getConstantFP(1.0, LHS.getValueType()); 4462 4463 const Function *F = DAG.getMachineFunction().getFunction(); 4464 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4465 Attribute::OptimizeForSize) || 4466 // If optimizing for size, don't insert too many multiplies. This 4467 // inserts up to 5 multiplies. 4468 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4469 // We use the simple binary decomposition method to generate the multiply 4470 // sequence. There are more optimal ways to do this (for example, 4471 // powi(x,15) generates one more multiply than it should), but this has 4472 // the benefit of being both really simple and much better than a libcall. 4473 SDValue Res; // Logically starts equal to 1.0 4474 SDValue CurSquare = LHS; 4475 while (Val) { 4476 if (Val & 1) { 4477 if (Res.getNode()) 4478 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4479 else 4480 Res = CurSquare; // 1.0*CurSquare. 4481 } 4482 4483 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4484 CurSquare, CurSquare); 4485 Val >>= 1; 4486 } 4487 4488 // If the original was negative, invert the result, producing 1/(x*x*x). 4489 if (RHSC->getSExtValue() < 0) 4490 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4491 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4492 return Res; 4493 } 4494 } 4495 4496 // Otherwise, expand to a libcall. 4497 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4498 } 4499 4500 // getTruncatedArgReg - Find underlying register used for an truncated 4501 // argument. 4502 static unsigned getTruncatedArgReg(const SDValue &N) { 4503 if (N.getOpcode() != ISD::TRUNCATE) 4504 return 0; 4505 4506 const SDValue &Ext = N.getOperand(0); 4507 if (Ext.getOpcode() == ISD::AssertZext || 4508 Ext.getOpcode() == ISD::AssertSext) { 4509 const SDValue &CFR = Ext.getOperand(0); 4510 if (CFR.getOpcode() == ISD::CopyFromReg) 4511 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4512 if (CFR.getOpcode() == ISD::TRUNCATE) 4513 return getTruncatedArgReg(CFR); 4514 } 4515 return 0; 4516 } 4517 4518 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4519 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4520 /// At the end of instruction selection, they will be inserted to the entry BB. 4521 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4522 MDNode *Variable, 4523 MDNode *Expr, int64_t Offset, 4524 bool IsIndirect, 4525 const SDValue &N) { 4526 const Argument *Arg = dyn_cast<Argument>(V); 4527 if (!Arg) 4528 return false; 4529 4530 MachineFunction &MF = DAG.getMachineFunction(); 4531 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4532 4533 // Ignore inlined function arguments here. 4534 DIVariable DV(Variable); 4535 if (DV.isInlinedFnArgument(MF.getFunction())) 4536 return false; 4537 4538 Optional<MachineOperand> Op; 4539 // Some arguments' frame index is recorded during argument lowering. 4540 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4541 Op = MachineOperand::CreateFI(FI); 4542 4543 if (!Op && N.getNode()) { 4544 unsigned Reg; 4545 if (N.getOpcode() == ISD::CopyFromReg) 4546 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4547 else 4548 Reg = getTruncatedArgReg(N); 4549 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4550 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4551 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4552 if (PR) 4553 Reg = PR; 4554 } 4555 if (Reg) 4556 Op = MachineOperand::CreateReg(Reg, false); 4557 } 4558 4559 if (!Op) { 4560 // Check if ValueMap has reg number. 4561 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4562 if (VMI != FuncInfo.ValueMap.end()) 4563 Op = MachineOperand::CreateReg(VMI->second, false); 4564 } 4565 4566 if (!Op && N.getNode()) 4567 // Check if frame index is available. 4568 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4569 if (FrameIndexSDNode *FINode = 4570 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4571 Op = MachineOperand::CreateFI(FINode->getIndex()); 4572 4573 if (!Op) 4574 return false; 4575 4576 if (Op->isReg()) 4577 FuncInfo.ArgDbgValues.push_back( 4578 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4579 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4580 else 4581 FuncInfo.ArgDbgValues.push_back( 4582 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4583 .addOperand(*Op) 4584 .addImm(Offset) 4585 .addMetadata(Variable) 4586 .addMetadata(Expr)); 4587 4588 return true; 4589 } 4590 4591 // VisualStudio defines setjmp as _setjmp 4592 #if defined(_MSC_VER) && defined(setjmp) && \ 4593 !defined(setjmp_undefined_for_msvc) 4594 # pragma push_macro("setjmp") 4595 # undef setjmp 4596 # define setjmp_undefined_for_msvc 4597 #endif 4598 4599 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4600 /// we want to emit this as a call to a named external function, return the name 4601 /// otherwise lower it and return null. 4602 const char * 4603 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4605 SDLoc sdl = getCurSDLoc(); 4606 DebugLoc dl = getCurDebugLoc(); 4607 SDValue Res; 4608 4609 switch (Intrinsic) { 4610 default: 4611 // By default, turn this into a target intrinsic node. 4612 visitTargetIntrinsic(I, Intrinsic); 4613 return nullptr; 4614 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4615 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4616 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4617 case Intrinsic::returnaddress: 4618 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4619 getValue(I.getArgOperand(0)))); 4620 return nullptr; 4621 case Intrinsic::frameaddress: 4622 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4623 getValue(I.getArgOperand(0)))); 4624 return nullptr; 4625 case Intrinsic::read_register: { 4626 Value *Reg = I.getArgOperand(0); 4627 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4628 EVT VT = TLI.getValueType(I.getType()); 4629 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4630 return nullptr; 4631 } 4632 case Intrinsic::write_register: { 4633 Value *Reg = I.getArgOperand(0); 4634 Value *RegValue = I.getArgOperand(1); 4635 SDValue Chain = getValue(RegValue).getOperand(0); 4636 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4637 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4638 RegName, getValue(RegValue))); 4639 return nullptr; 4640 } 4641 case Intrinsic::setjmp: 4642 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4643 case Intrinsic::longjmp: 4644 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4645 case Intrinsic::memcpy: { 4646 // Assert for address < 256 since we support only user defined address 4647 // spaces. 4648 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4649 < 256 && 4650 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4651 < 256 && 4652 "Unknown address space"); 4653 SDValue Op1 = getValue(I.getArgOperand(0)); 4654 SDValue Op2 = getValue(I.getArgOperand(1)); 4655 SDValue Op3 = getValue(I.getArgOperand(2)); 4656 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4657 if (!Align) 4658 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4659 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4660 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4661 MachinePointerInfo(I.getArgOperand(0)), 4662 MachinePointerInfo(I.getArgOperand(1)))); 4663 return nullptr; 4664 } 4665 case Intrinsic::memset: { 4666 // Assert for address < 256 since we support only user defined address 4667 // spaces. 4668 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4669 < 256 && 4670 "Unknown address space"); 4671 SDValue Op1 = getValue(I.getArgOperand(0)); 4672 SDValue Op2 = getValue(I.getArgOperand(1)); 4673 SDValue Op3 = getValue(I.getArgOperand(2)); 4674 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4675 if (!Align) 4676 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4677 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4678 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4679 MachinePointerInfo(I.getArgOperand(0)))); 4680 return nullptr; 4681 } 4682 case Intrinsic::memmove: { 4683 // Assert for address < 256 since we support only user defined address 4684 // spaces. 4685 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4686 < 256 && 4687 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4688 < 256 && 4689 "Unknown address space"); 4690 SDValue Op1 = getValue(I.getArgOperand(0)); 4691 SDValue Op2 = getValue(I.getArgOperand(1)); 4692 SDValue Op3 = getValue(I.getArgOperand(2)); 4693 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4694 if (!Align) 4695 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4696 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4697 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4698 MachinePointerInfo(I.getArgOperand(0)), 4699 MachinePointerInfo(I.getArgOperand(1)))); 4700 return nullptr; 4701 } 4702 case Intrinsic::dbg_declare: { 4703 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4704 MDNode *Variable = DI.getVariable(); 4705 MDNode *Expression = DI.getExpression(); 4706 const Value *Address = DI.getAddress(); 4707 DIVariable DIVar(Variable); 4708 assert((!DIVar || DIVar.isVariable()) && 4709 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4710 if (!Address || !DIVar) { 4711 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4712 return nullptr; 4713 } 4714 4715 // Check if address has undef value. 4716 if (isa<UndefValue>(Address) || 4717 (Address->use_empty() && !isa<Argument>(Address))) { 4718 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4719 return nullptr; 4720 } 4721 4722 SDValue &N = NodeMap[Address]; 4723 if (!N.getNode() && isa<Argument>(Address)) 4724 // Check unused arguments map. 4725 N = UnusedArgNodeMap[Address]; 4726 SDDbgValue *SDV; 4727 if (N.getNode()) { 4728 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4729 Address = BCI->getOperand(0); 4730 // Parameters are handled specially. 4731 bool isParameter = 4732 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4733 isa<Argument>(Address)); 4734 4735 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4736 4737 if (isParameter && !AI) { 4738 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4739 if (FINode) 4740 // Byval parameter. We have a frame index at this point. 4741 SDV = DAG.getFrameIndexDbgValue( 4742 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4743 else { 4744 // Address is an argument, so try to emit its dbg value using 4745 // virtual register info from the FuncInfo.ValueMap. 4746 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4747 return nullptr; 4748 } 4749 } else if (AI) 4750 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4751 true, 0, dl, SDNodeOrder); 4752 else { 4753 // Can't do anything with other non-AI cases yet. 4754 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4755 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4756 DEBUG(Address->dump()); 4757 return nullptr; 4758 } 4759 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4760 } else { 4761 // If Address is an argument then try to emit its dbg value using 4762 // virtual register info from the FuncInfo.ValueMap. 4763 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4764 N)) { 4765 // If variable is pinned by a alloca in dominating bb then 4766 // use StaticAllocaMap. 4767 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4768 if (AI->getParent() != DI.getParent()) { 4769 DenseMap<const AllocaInst*, int>::iterator SI = 4770 FuncInfo.StaticAllocaMap.find(AI); 4771 if (SI != FuncInfo.StaticAllocaMap.end()) { 4772 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4773 0, dl, SDNodeOrder); 4774 DAG.AddDbgValue(SDV, nullptr, false); 4775 return nullptr; 4776 } 4777 } 4778 } 4779 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4780 } 4781 } 4782 return nullptr; 4783 } 4784 case Intrinsic::dbg_value: { 4785 const DbgValueInst &DI = cast<DbgValueInst>(I); 4786 DIVariable DIVar(DI.getVariable()); 4787 assert((!DIVar || DIVar.isVariable()) && 4788 "Variable in DbgValueInst should be either null or a DIVariable."); 4789 if (!DIVar) 4790 return nullptr; 4791 4792 MDNode *Variable = DI.getVariable(); 4793 MDNode *Expression = DI.getExpression(); 4794 uint64_t Offset = DI.getOffset(); 4795 const Value *V = DI.getValue(); 4796 if (!V) 4797 return nullptr; 4798 4799 SDDbgValue *SDV; 4800 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4801 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4802 SDNodeOrder); 4803 DAG.AddDbgValue(SDV, nullptr, false); 4804 } else { 4805 // Do not use getValue() in here; we don't want to generate code at 4806 // this point if it hasn't been done yet. 4807 SDValue N = NodeMap[V]; 4808 if (!N.getNode() && isa<Argument>(V)) 4809 // Check unused arguments map. 4810 N = UnusedArgNodeMap[V]; 4811 if (N.getNode()) { 4812 // A dbg.value for an alloca is always indirect. 4813 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4814 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4815 IsIndirect, N)) { 4816 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4817 IsIndirect, Offset, dl, SDNodeOrder); 4818 DAG.AddDbgValue(SDV, N.getNode(), false); 4819 } 4820 } else if (!V->use_empty() ) { 4821 // Do not call getValue(V) yet, as we don't want to generate code. 4822 // Remember it for later. 4823 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4824 DanglingDebugInfoMap[V] = DDI; 4825 } else { 4826 // We may expand this to cover more cases. One case where we have no 4827 // data available is an unreferenced parameter. 4828 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4829 } 4830 } 4831 4832 // Build a debug info table entry. 4833 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4834 V = BCI->getOperand(0); 4835 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4836 // Don't handle byval struct arguments or VLAs, for example. 4837 if (!AI) { 4838 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4839 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4840 return nullptr; 4841 } 4842 DenseMap<const AllocaInst*, int>::iterator SI = 4843 FuncInfo.StaticAllocaMap.find(AI); 4844 if (SI == FuncInfo.StaticAllocaMap.end()) 4845 return nullptr; // VLAs. 4846 return nullptr; 4847 } 4848 4849 case Intrinsic::eh_typeid_for: { 4850 // Find the type id for the given typeinfo. 4851 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4852 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4853 Res = DAG.getConstant(TypeID, MVT::i32); 4854 setValue(&I, Res); 4855 return nullptr; 4856 } 4857 4858 case Intrinsic::eh_return_i32: 4859 case Intrinsic::eh_return_i64: 4860 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4861 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4862 MVT::Other, 4863 getControlRoot(), 4864 getValue(I.getArgOperand(0)), 4865 getValue(I.getArgOperand(1)))); 4866 return nullptr; 4867 case Intrinsic::eh_unwind_init: 4868 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4869 return nullptr; 4870 case Intrinsic::eh_dwarf_cfa: { 4871 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4872 TLI.getPointerTy()); 4873 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4874 CfaArg.getValueType(), 4875 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4876 CfaArg.getValueType()), 4877 CfaArg); 4878 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4879 DAG.getConstant(0, TLI.getPointerTy())); 4880 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4881 FA, Offset)); 4882 return nullptr; 4883 } 4884 case Intrinsic::eh_sjlj_callsite: { 4885 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4886 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4887 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4888 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4889 4890 MMI.setCurrentCallSite(CI->getZExtValue()); 4891 return nullptr; 4892 } 4893 case Intrinsic::eh_sjlj_functioncontext: { 4894 // Get and store the index of the function context. 4895 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4896 AllocaInst *FnCtx = 4897 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4898 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4899 MFI->setFunctionContextIndex(FI); 4900 return nullptr; 4901 } 4902 case Intrinsic::eh_sjlj_setjmp: { 4903 SDValue Ops[2]; 4904 Ops[0] = getRoot(); 4905 Ops[1] = getValue(I.getArgOperand(0)); 4906 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4907 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4908 setValue(&I, Op.getValue(0)); 4909 DAG.setRoot(Op.getValue(1)); 4910 return nullptr; 4911 } 4912 case Intrinsic::eh_sjlj_longjmp: { 4913 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4914 getRoot(), getValue(I.getArgOperand(0)))); 4915 return nullptr; 4916 } 4917 4918 case Intrinsic::x86_mmx_pslli_w: 4919 case Intrinsic::x86_mmx_pslli_d: 4920 case Intrinsic::x86_mmx_pslli_q: 4921 case Intrinsic::x86_mmx_psrli_w: 4922 case Intrinsic::x86_mmx_psrli_d: 4923 case Intrinsic::x86_mmx_psrli_q: 4924 case Intrinsic::x86_mmx_psrai_w: 4925 case Intrinsic::x86_mmx_psrai_d: { 4926 SDValue ShAmt = getValue(I.getArgOperand(1)); 4927 if (isa<ConstantSDNode>(ShAmt)) { 4928 visitTargetIntrinsic(I, Intrinsic); 4929 return nullptr; 4930 } 4931 unsigned NewIntrinsic = 0; 4932 EVT ShAmtVT = MVT::v2i32; 4933 switch (Intrinsic) { 4934 case Intrinsic::x86_mmx_pslli_w: 4935 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4936 break; 4937 case Intrinsic::x86_mmx_pslli_d: 4938 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4939 break; 4940 case Intrinsic::x86_mmx_pslli_q: 4941 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4942 break; 4943 case Intrinsic::x86_mmx_psrli_w: 4944 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4945 break; 4946 case Intrinsic::x86_mmx_psrli_d: 4947 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4948 break; 4949 case Intrinsic::x86_mmx_psrli_q: 4950 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4951 break; 4952 case Intrinsic::x86_mmx_psrai_w: 4953 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4954 break; 4955 case Intrinsic::x86_mmx_psrai_d: 4956 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4957 break; 4958 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4959 } 4960 4961 // The vector shift intrinsics with scalars uses 32b shift amounts but 4962 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4963 // to be zero. 4964 // We must do this early because v2i32 is not a legal type. 4965 SDValue ShOps[2]; 4966 ShOps[0] = ShAmt; 4967 ShOps[1] = DAG.getConstant(0, MVT::i32); 4968 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4969 EVT DestVT = TLI.getValueType(I.getType()); 4970 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4971 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4972 DAG.getConstant(NewIntrinsic, MVT::i32), 4973 getValue(I.getArgOperand(0)), ShAmt); 4974 setValue(&I, Res); 4975 return nullptr; 4976 } 4977 case Intrinsic::x86_avx_vinsertf128_pd_256: 4978 case Intrinsic::x86_avx_vinsertf128_ps_256: 4979 case Intrinsic::x86_avx_vinsertf128_si_256: 4980 case Intrinsic::x86_avx2_vinserti128: { 4981 EVT DestVT = TLI.getValueType(I.getType()); 4982 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4983 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4984 ElVT.getVectorNumElements(); 4985 Res = 4986 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4987 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 4988 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4989 setValue(&I, Res); 4990 return nullptr; 4991 } 4992 case Intrinsic::x86_avx_vextractf128_pd_256: 4993 case Intrinsic::x86_avx_vextractf128_ps_256: 4994 case Intrinsic::x86_avx_vextractf128_si_256: 4995 case Intrinsic::x86_avx2_vextracti128: { 4996 EVT DestVT = TLI.getValueType(I.getType()); 4997 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4998 DestVT.getVectorNumElements(); 4999 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5000 getValue(I.getArgOperand(0)), 5001 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5002 setValue(&I, Res); 5003 return nullptr; 5004 } 5005 case Intrinsic::convertff: 5006 case Intrinsic::convertfsi: 5007 case Intrinsic::convertfui: 5008 case Intrinsic::convertsif: 5009 case Intrinsic::convertuif: 5010 case Intrinsic::convertss: 5011 case Intrinsic::convertsu: 5012 case Intrinsic::convertus: 5013 case Intrinsic::convertuu: { 5014 ISD::CvtCode Code = ISD::CVT_INVALID; 5015 switch (Intrinsic) { 5016 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5017 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5018 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5019 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5020 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5021 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5022 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5023 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5024 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5025 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5026 } 5027 EVT DestVT = TLI.getValueType(I.getType()); 5028 const Value *Op1 = I.getArgOperand(0); 5029 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5030 DAG.getValueType(DestVT), 5031 DAG.getValueType(getValue(Op1).getValueType()), 5032 getValue(I.getArgOperand(1)), 5033 getValue(I.getArgOperand(2)), 5034 Code); 5035 setValue(&I, Res); 5036 return nullptr; 5037 } 5038 case Intrinsic::powi: 5039 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5040 getValue(I.getArgOperand(1)), DAG)); 5041 return nullptr; 5042 case Intrinsic::log: 5043 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5044 return nullptr; 5045 case Intrinsic::log2: 5046 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5047 return nullptr; 5048 case Intrinsic::log10: 5049 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5050 return nullptr; 5051 case Intrinsic::exp: 5052 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5053 return nullptr; 5054 case Intrinsic::exp2: 5055 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5056 return nullptr; 5057 case Intrinsic::pow: 5058 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5059 getValue(I.getArgOperand(1)), DAG, TLI)); 5060 return nullptr; 5061 case Intrinsic::sqrt: 5062 case Intrinsic::fabs: 5063 case Intrinsic::sin: 5064 case Intrinsic::cos: 5065 case Intrinsic::floor: 5066 case Intrinsic::ceil: 5067 case Intrinsic::trunc: 5068 case Intrinsic::rint: 5069 case Intrinsic::nearbyint: 5070 case Intrinsic::round: { 5071 unsigned Opcode; 5072 switch (Intrinsic) { 5073 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5074 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5075 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5076 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5077 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5078 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5079 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5080 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5081 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5082 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5083 case Intrinsic::round: Opcode = ISD::FROUND; break; 5084 } 5085 5086 setValue(&I, DAG.getNode(Opcode, sdl, 5087 getValue(I.getArgOperand(0)).getValueType(), 5088 getValue(I.getArgOperand(0)))); 5089 return nullptr; 5090 } 5091 case Intrinsic::minnum: 5092 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5093 getValue(I.getArgOperand(0)).getValueType(), 5094 getValue(I.getArgOperand(0)), 5095 getValue(I.getArgOperand(1)))); 5096 return nullptr; 5097 case Intrinsic::maxnum: 5098 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5099 getValue(I.getArgOperand(0)).getValueType(), 5100 getValue(I.getArgOperand(0)), 5101 getValue(I.getArgOperand(1)))); 5102 return nullptr; 5103 case Intrinsic::copysign: 5104 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5105 getValue(I.getArgOperand(0)).getValueType(), 5106 getValue(I.getArgOperand(0)), 5107 getValue(I.getArgOperand(1)))); 5108 return nullptr; 5109 case Intrinsic::fma: 5110 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5111 getValue(I.getArgOperand(0)).getValueType(), 5112 getValue(I.getArgOperand(0)), 5113 getValue(I.getArgOperand(1)), 5114 getValue(I.getArgOperand(2)))); 5115 return nullptr; 5116 case Intrinsic::fmuladd: { 5117 EVT VT = TLI.getValueType(I.getType()); 5118 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5119 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5120 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5121 getValue(I.getArgOperand(0)).getValueType(), 5122 getValue(I.getArgOperand(0)), 5123 getValue(I.getArgOperand(1)), 5124 getValue(I.getArgOperand(2)))); 5125 } else { 5126 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5127 getValue(I.getArgOperand(0)).getValueType(), 5128 getValue(I.getArgOperand(0)), 5129 getValue(I.getArgOperand(1))); 5130 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5131 getValue(I.getArgOperand(0)).getValueType(), 5132 Mul, 5133 getValue(I.getArgOperand(2))); 5134 setValue(&I, Add); 5135 } 5136 return nullptr; 5137 } 5138 case Intrinsic::convert_to_fp16: 5139 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5140 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5141 getValue(I.getArgOperand(0)), 5142 DAG.getTargetConstant(0, MVT::i32)))); 5143 return nullptr; 5144 case Intrinsic::convert_from_fp16: 5145 setValue(&I, 5146 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5147 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5148 getValue(I.getArgOperand(0))))); 5149 return nullptr; 5150 case Intrinsic::pcmarker: { 5151 SDValue Tmp = getValue(I.getArgOperand(0)); 5152 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5153 return nullptr; 5154 } 5155 case Intrinsic::readcyclecounter: { 5156 SDValue Op = getRoot(); 5157 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5158 DAG.getVTList(MVT::i64, MVT::Other), Op); 5159 setValue(&I, Res); 5160 DAG.setRoot(Res.getValue(1)); 5161 return nullptr; 5162 } 5163 case Intrinsic::bswap: 5164 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5165 getValue(I.getArgOperand(0)).getValueType(), 5166 getValue(I.getArgOperand(0)))); 5167 return nullptr; 5168 case Intrinsic::cttz: { 5169 SDValue Arg = getValue(I.getArgOperand(0)); 5170 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5171 EVT Ty = Arg.getValueType(); 5172 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5173 sdl, Ty, Arg)); 5174 return nullptr; 5175 } 5176 case Intrinsic::ctlz: { 5177 SDValue Arg = getValue(I.getArgOperand(0)); 5178 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5179 EVT Ty = Arg.getValueType(); 5180 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5181 sdl, Ty, Arg)); 5182 return nullptr; 5183 } 5184 case Intrinsic::ctpop: { 5185 SDValue Arg = getValue(I.getArgOperand(0)); 5186 EVT Ty = Arg.getValueType(); 5187 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5188 return nullptr; 5189 } 5190 case Intrinsic::stacksave: { 5191 SDValue Op = getRoot(); 5192 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5193 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5194 setValue(&I, Res); 5195 DAG.setRoot(Res.getValue(1)); 5196 return nullptr; 5197 } 5198 case Intrinsic::stackrestore: { 5199 Res = getValue(I.getArgOperand(0)); 5200 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5201 return nullptr; 5202 } 5203 case Intrinsic::stackprotector: { 5204 // Emit code into the DAG to store the stack guard onto the stack. 5205 MachineFunction &MF = DAG.getMachineFunction(); 5206 MachineFrameInfo *MFI = MF.getFrameInfo(); 5207 EVT PtrTy = TLI.getPointerTy(); 5208 SDValue Src, Chain = getRoot(); 5209 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5210 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5211 5212 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5213 // global variable __stack_chk_guard. 5214 if (!GV) 5215 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5216 if (BC->getOpcode() == Instruction::BitCast) 5217 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5218 5219 if (GV && TLI.useLoadStackGuardNode()) { 5220 // Emit a LOAD_STACK_GUARD node. 5221 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5222 sdl, PtrTy, Chain); 5223 MachinePointerInfo MPInfo(GV); 5224 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5225 unsigned Flags = MachineMemOperand::MOLoad | 5226 MachineMemOperand::MOInvariant; 5227 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5228 PtrTy.getSizeInBits() / 8, 5229 DAG.getEVTAlignment(PtrTy)); 5230 Node->setMemRefs(MemRefs, MemRefs + 1); 5231 5232 // Copy the guard value to a virtual register so that it can be 5233 // retrieved in the epilogue. 5234 Src = SDValue(Node, 0); 5235 const TargetRegisterClass *RC = 5236 TLI.getRegClassFor(Src.getSimpleValueType()); 5237 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5238 5239 SPDescriptor.setGuardReg(Reg); 5240 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5241 } else { 5242 Src = getValue(I.getArgOperand(0)); // The guard's value. 5243 } 5244 5245 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5246 5247 int FI = FuncInfo.StaticAllocaMap[Slot]; 5248 MFI->setStackProtectorIndex(FI); 5249 5250 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5251 5252 // Store the stack protector onto the stack. 5253 Res = DAG.getStore(Chain, sdl, Src, FIN, 5254 MachinePointerInfo::getFixedStack(FI), 5255 true, false, 0); 5256 setValue(&I, Res); 5257 DAG.setRoot(Res); 5258 return nullptr; 5259 } 5260 case Intrinsic::objectsize: { 5261 // If we don't know by now, we're never going to know. 5262 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5263 5264 assert(CI && "Non-constant type in __builtin_object_size?"); 5265 5266 SDValue Arg = getValue(I.getCalledValue()); 5267 EVT Ty = Arg.getValueType(); 5268 5269 if (CI->isZero()) 5270 Res = DAG.getConstant(-1ULL, Ty); 5271 else 5272 Res = DAG.getConstant(0, Ty); 5273 5274 setValue(&I, Res); 5275 return nullptr; 5276 } 5277 case Intrinsic::annotation: 5278 case Intrinsic::ptr_annotation: 5279 // Drop the intrinsic, but forward the value 5280 setValue(&I, getValue(I.getOperand(0))); 5281 return nullptr; 5282 case Intrinsic::assume: 5283 case Intrinsic::var_annotation: 5284 // Discard annotate attributes and assumptions 5285 return nullptr; 5286 5287 case Intrinsic::init_trampoline: { 5288 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5289 5290 SDValue Ops[6]; 5291 Ops[0] = getRoot(); 5292 Ops[1] = getValue(I.getArgOperand(0)); 5293 Ops[2] = getValue(I.getArgOperand(1)); 5294 Ops[3] = getValue(I.getArgOperand(2)); 5295 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5296 Ops[5] = DAG.getSrcValue(F); 5297 5298 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5299 5300 DAG.setRoot(Res); 5301 return nullptr; 5302 } 5303 case Intrinsic::adjust_trampoline: { 5304 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5305 TLI.getPointerTy(), 5306 getValue(I.getArgOperand(0)))); 5307 return nullptr; 5308 } 5309 case Intrinsic::gcroot: 5310 if (GFI) { 5311 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5312 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5313 5314 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5315 GFI->addStackRoot(FI->getIndex(), TypeMap); 5316 } 5317 return nullptr; 5318 case Intrinsic::gcread: 5319 case Intrinsic::gcwrite: 5320 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5321 case Intrinsic::flt_rounds: 5322 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5323 return nullptr; 5324 5325 case Intrinsic::expect: { 5326 // Just replace __builtin_expect(exp, c) with EXP. 5327 setValue(&I, getValue(I.getArgOperand(0))); 5328 return nullptr; 5329 } 5330 5331 case Intrinsic::debugtrap: 5332 case Intrinsic::trap: { 5333 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5334 if (TrapFuncName.empty()) { 5335 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5336 ISD::TRAP : ISD::DEBUGTRAP; 5337 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5338 return nullptr; 5339 } 5340 TargetLowering::ArgListTy Args; 5341 5342 TargetLowering::CallLoweringInfo CLI(DAG); 5343 CLI.setDebugLoc(sdl).setChain(getRoot()) 5344 .setCallee(CallingConv::C, I.getType(), 5345 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5346 std::move(Args), 0); 5347 5348 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5349 DAG.setRoot(Result.second); 5350 return nullptr; 5351 } 5352 5353 case Intrinsic::uadd_with_overflow: 5354 case Intrinsic::sadd_with_overflow: 5355 case Intrinsic::usub_with_overflow: 5356 case Intrinsic::ssub_with_overflow: 5357 case Intrinsic::umul_with_overflow: 5358 case Intrinsic::smul_with_overflow: { 5359 ISD::NodeType Op; 5360 switch (Intrinsic) { 5361 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5362 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5363 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5364 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5365 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5366 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5367 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5368 } 5369 SDValue Op1 = getValue(I.getArgOperand(0)); 5370 SDValue Op2 = getValue(I.getArgOperand(1)); 5371 5372 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5373 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5374 return nullptr; 5375 } 5376 case Intrinsic::prefetch: { 5377 SDValue Ops[5]; 5378 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5379 Ops[0] = getRoot(); 5380 Ops[1] = getValue(I.getArgOperand(0)); 5381 Ops[2] = getValue(I.getArgOperand(1)); 5382 Ops[3] = getValue(I.getArgOperand(2)); 5383 Ops[4] = getValue(I.getArgOperand(3)); 5384 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5385 DAG.getVTList(MVT::Other), Ops, 5386 EVT::getIntegerVT(*Context, 8), 5387 MachinePointerInfo(I.getArgOperand(0)), 5388 0, /* align */ 5389 false, /* volatile */ 5390 rw==0, /* read */ 5391 rw==1)); /* write */ 5392 return nullptr; 5393 } 5394 case Intrinsic::lifetime_start: 5395 case Intrinsic::lifetime_end: { 5396 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5397 // Stack coloring is not enabled in O0, discard region information. 5398 if (TM.getOptLevel() == CodeGenOpt::None) 5399 return nullptr; 5400 5401 SmallVector<Value *, 4> Allocas; 5402 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5403 5404 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5405 E = Allocas.end(); Object != E; ++Object) { 5406 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5407 5408 // Could not find an Alloca. 5409 if (!LifetimeObject) 5410 continue; 5411 5412 // First check that the Alloca is static, otherwise it won't have a 5413 // valid frame index. 5414 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5415 if (SI == FuncInfo.StaticAllocaMap.end()) 5416 return nullptr; 5417 5418 int FI = SI->second; 5419 5420 SDValue Ops[2]; 5421 Ops[0] = getRoot(); 5422 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5423 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5424 5425 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5426 DAG.setRoot(Res); 5427 } 5428 return nullptr; 5429 } 5430 case Intrinsic::invariant_start: 5431 // Discard region information. 5432 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5433 return nullptr; 5434 case Intrinsic::invariant_end: 5435 // Discard region information. 5436 return nullptr; 5437 case Intrinsic::stackprotectorcheck: { 5438 // Do not actually emit anything for this basic block. Instead we initialize 5439 // the stack protector descriptor and export the guard variable so we can 5440 // access it in FinishBasicBlock. 5441 const BasicBlock *BB = I.getParent(); 5442 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5443 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5444 5445 // Flush our exports since we are going to process a terminator. 5446 (void)getControlRoot(); 5447 return nullptr; 5448 } 5449 case Intrinsic::clear_cache: 5450 return TLI.getClearCacheBuiltinName(); 5451 case Intrinsic::donothing: 5452 // ignore 5453 return nullptr; 5454 case Intrinsic::experimental_stackmap: { 5455 visitStackmap(I); 5456 return nullptr; 5457 } 5458 case Intrinsic::experimental_patchpoint_void: 5459 case Intrinsic::experimental_patchpoint_i64: { 5460 visitPatchpoint(&I); 5461 return nullptr; 5462 } 5463 } 5464 } 5465 5466 std::pair<SDValue, SDValue> 5467 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5468 MachineBasicBlock *LandingPad) { 5469 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5470 MCSymbol *BeginLabel = nullptr; 5471 5472 if (LandingPad) { 5473 // Insert a label before the invoke call to mark the try range. This can be 5474 // used to detect deletion of the invoke via the MachineModuleInfo. 5475 BeginLabel = MMI.getContext().CreateTempSymbol(); 5476 5477 // For SjLj, keep track of which landing pads go with which invokes 5478 // so as to maintain the ordering of pads in the LSDA. 5479 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5480 if (CallSiteIndex) { 5481 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5482 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5483 5484 // Now that the call site is handled, stop tracking it. 5485 MMI.setCurrentCallSite(0); 5486 } 5487 5488 // Both PendingLoads and PendingExports must be flushed here; 5489 // this call might not return. 5490 (void)getRoot(); 5491 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5492 5493 CLI.setChain(getRoot()); 5494 } 5495 5496 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5497 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5498 5499 assert((CLI.IsTailCall || Result.second.getNode()) && 5500 "Non-null chain expected with non-tail call!"); 5501 assert((Result.second.getNode() || !Result.first.getNode()) && 5502 "Null value expected with tail call!"); 5503 5504 if (!Result.second.getNode()) { 5505 // As a special case, a null chain means that a tail call has been emitted 5506 // and the DAG root is already updated. 5507 HasTailCall = true; 5508 5509 // Since there's no actual continuation from this block, nothing can be 5510 // relying on us setting vregs for them. 5511 PendingExports.clear(); 5512 } else { 5513 DAG.setRoot(Result.second); 5514 } 5515 5516 if (LandingPad) { 5517 // Insert a label at the end of the invoke call to mark the try range. This 5518 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5519 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5520 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5521 5522 // Inform MachineModuleInfo of range. 5523 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5524 } 5525 5526 return Result; 5527 } 5528 5529 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5530 bool isTailCall, 5531 MachineBasicBlock *LandingPad) { 5532 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5533 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5534 Type *RetTy = FTy->getReturnType(); 5535 5536 TargetLowering::ArgListTy Args; 5537 TargetLowering::ArgListEntry Entry; 5538 Args.reserve(CS.arg_size()); 5539 5540 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5541 i != e; ++i) { 5542 const Value *V = *i; 5543 5544 // Skip empty types 5545 if (V->getType()->isEmptyTy()) 5546 continue; 5547 5548 SDValue ArgNode = getValue(V); 5549 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5550 5551 // Skip the first return-type Attribute to get to params. 5552 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5553 Args.push_back(Entry); 5554 } 5555 5556 // Check if target-independent constraints permit a tail call here. 5557 // Target-dependent constraints are checked within TLI->LowerCallTo. 5558 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5559 isTailCall = false; 5560 5561 TargetLowering::CallLoweringInfo CLI(DAG); 5562 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5563 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5564 .setTailCall(isTailCall); 5565 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5566 5567 if (Result.first.getNode()) 5568 setValue(CS.getInstruction(), Result.first); 5569 } 5570 5571 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5572 /// value is equal or not-equal to zero. 5573 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5574 for (const User *U : V->users()) { 5575 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5576 if (IC->isEquality()) 5577 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5578 if (C->isNullValue()) 5579 continue; 5580 // Unknown instruction. 5581 return false; 5582 } 5583 return true; 5584 } 5585 5586 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5587 Type *LoadTy, 5588 SelectionDAGBuilder &Builder) { 5589 5590 // Check to see if this load can be trivially constant folded, e.g. if the 5591 // input is from a string literal. 5592 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5593 // Cast pointer to the type we really want to load. 5594 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5595 PointerType::getUnqual(LoadTy)); 5596 5597 if (const Constant *LoadCst = 5598 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5599 Builder.DL)) 5600 return Builder.getValue(LoadCst); 5601 } 5602 5603 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5604 // still constant memory, the input chain can be the entry node. 5605 SDValue Root; 5606 bool ConstantMemory = false; 5607 5608 // Do not serialize (non-volatile) loads of constant memory with anything. 5609 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5610 Root = Builder.DAG.getEntryNode(); 5611 ConstantMemory = true; 5612 } else { 5613 // Do not serialize non-volatile loads against each other. 5614 Root = Builder.DAG.getRoot(); 5615 } 5616 5617 SDValue Ptr = Builder.getValue(PtrVal); 5618 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5619 Ptr, MachinePointerInfo(PtrVal), 5620 false /*volatile*/, 5621 false /*nontemporal*/, 5622 false /*isinvariant*/, 1 /* align=1 */); 5623 5624 if (!ConstantMemory) 5625 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5626 return LoadVal; 5627 } 5628 5629 /// processIntegerCallValue - Record the value for an instruction that 5630 /// produces an integer result, converting the type where necessary. 5631 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5632 SDValue Value, 5633 bool IsSigned) { 5634 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5635 if (IsSigned) 5636 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5637 else 5638 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5639 setValue(&I, Value); 5640 } 5641 5642 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5643 /// If so, return true and lower it, otherwise return false and it will be 5644 /// lowered like a normal call. 5645 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5646 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5647 if (I.getNumArgOperands() != 3) 5648 return false; 5649 5650 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5651 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5652 !I.getArgOperand(2)->getType()->isIntegerTy() || 5653 !I.getType()->isIntegerTy()) 5654 return false; 5655 5656 const Value *Size = I.getArgOperand(2); 5657 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5658 if (CSize && CSize->getZExtValue() == 0) { 5659 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5660 setValue(&I, DAG.getConstant(0, CallVT)); 5661 return true; 5662 } 5663 5664 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5665 std::pair<SDValue, SDValue> Res = 5666 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5667 getValue(LHS), getValue(RHS), getValue(Size), 5668 MachinePointerInfo(LHS), 5669 MachinePointerInfo(RHS)); 5670 if (Res.first.getNode()) { 5671 processIntegerCallValue(I, Res.first, true); 5672 PendingLoads.push_back(Res.second); 5673 return true; 5674 } 5675 5676 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5677 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5678 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5679 bool ActuallyDoIt = true; 5680 MVT LoadVT; 5681 Type *LoadTy; 5682 switch (CSize->getZExtValue()) { 5683 default: 5684 LoadVT = MVT::Other; 5685 LoadTy = nullptr; 5686 ActuallyDoIt = false; 5687 break; 5688 case 2: 5689 LoadVT = MVT::i16; 5690 LoadTy = Type::getInt16Ty(CSize->getContext()); 5691 break; 5692 case 4: 5693 LoadVT = MVT::i32; 5694 LoadTy = Type::getInt32Ty(CSize->getContext()); 5695 break; 5696 case 8: 5697 LoadVT = MVT::i64; 5698 LoadTy = Type::getInt64Ty(CSize->getContext()); 5699 break; 5700 /* 5701 case 16: 5702 LoadVT = MVT::v4i32; 5703 LoadTy = Type::getInt32Ty(CSize->getContext()); 5704 LoadTy = VectorType::get(LoadTy, 4); 5705 break; 5706 */ 5707 } 5708 5709 // This turns into unaligned loads. We only do this if the target natively 5710 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5711 // we'll only produce a small number of byte loads. 5712 5713 // Require that we can find a legal MVT, and only do this if the target 5714 // supports unaligned loads of that type. Expanding into byte loads would 5715 // bloat the code. 5716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5717 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5718 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5719 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5720 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5721 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5722 // TODO: Check alignment of src and dest ptrs. 5723 if (!TLI.isTypeLegal(LoadVT) || 5724 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5725 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5726 ActuallyDoIt = false; 5727 } 5728 5729 if (ActuallyDoIt) { 5730 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5731 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5732 5733 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5734 ISD::SETNE); 5735 processIntegerCallValue(I, Res, false); 5736 return true; 5737 } 5738 } 5739 5740 5741 return false; 5742 } 5743 5744 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5745 /// form. If so, return true and lower it, otherwise return false and it 5746 /// will be lowered like a normal call. 5747 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5748 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5749 if (I.getNumArgOperands() != 3) 5750 return false; 5751 5752 const Value *Src = I.getArgOperand(0); 5753 const Value *Char = I.getArgOperand(1); 5754 const Value *Length = I.getArgOperand(2); 5755 if (!Src->getType()->isPointerTy() || 5756 !Char->getType()->isIntegerTy() || 5757 !Length->getType()->isIntegerTy() || 5758 !I.getType()->isPointerTy()) 5759 return false; 5760 5761 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5762 std::pair<SDValue, SDValue> Res = 5763 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5764 getValue(Src), getValue(Char), getValue(Length), 5765 MachinePointerInfo(Src)); 5766 if (Res.first.getNode()) { 5767 setValue(&I, Res.first); 5768 PendingLoads.push_back(Res.second); 5769 return true; 5770 } 5771 5772 return false; 5773 } 5774 5775 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5776 /// optimized form. If so, return true and lower it, otherwise return false 5777 /// and it will be lowered like a normal call. 5778 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5779 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5780 if (I.getNumArgOperands() != 2) 5781 return false; 5782 5783 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5784 if (!Arg0->getType()->isPointerTy() || 5785 !Arg1->getType()->isPointerTy() || 5786 !I.getType()->isPointerTy()) 5787 return false; 5788 5789 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5790 std::pair<SDValue, SDValue> Res = 5791 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5792 getValue(Arg0), getValue(Arg1), 5793 MachinePointerInfo(Arg0), 5794 MachinePointerInfo(Arg1), isStpcpy); 5795 if (Res.first.getNode()) { 5796 setValue(&I, Res.first); 5797 DAG.setRoot(Res.second); 5798 return true; 5799 } 5800 5801 return false; 5802 } 5803 5804 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5805 /// If so, return true and lower it, otherwise return false and it will be 5806 /// lowered like a normal call. 5807 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5808 // Verify that the prototype makes sense. int strcmp(void*,void*) 5809 if (I.getNumArgOperands() != 2) 5810 return false; 5811 5812 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5813 if (!Arg0->getType()->isPointerTy() || 5814 !Arg1->getType()->isPointerTy() || 5815 !I.getType()->isIntegerTy()) 5816 return false; 5817 5818 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5819 std::pair<SDValue, SDValue> Res = 5820 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5821 getValue(Arg0), getValue(Arg1), 5822 MachinePointerInfo(Arg0), 5823 MachinePointerInfo(Arg1)); 5824 if (Res.first.getNode()) { 5825 processIntegerCallValue(I, Res.first, true); 5826 PendingLoads.push_back(Res.second); 5827 return true; 5828 } 5829 5830 return false; 5831 } 5832 5833 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5834 /// form. If so, return true and lower it, otherwise return false and it 5835 /// will be lowered like a normal call. 5836 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5837 // Verify that the prototype makes sense. size_t strlen(char *) 5838 if (I.getNumArgOperands() != 1) 5839 return false; 5840 5841 const Value *Arg0 = I.getArgOperand(0); 5842 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5843 return false; 5844 5845 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5846 std::pair<SDValue, SDValue> Res = 5847 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5848 getValue(Arg0), MachinePointerInfo(Arg0)); 5849 if (Res.first.getNode()) { 5850 processIntegerCallValue(I, Res.first, false); 5851 PendingLoads.push_back(Res.second); 5852 return true; 5853 } 5854 5855 return false; 5856 } 5857 5858 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5859 /// form. If so, return true and lower it, otherwise return false and it 5860 /// will be lowered like a normal call. 5861 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5862 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5863 if (I.getNumArgOperands() != 2) 5864 return false; 5865 5866 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5867 if (!Arg0->getType()->isPointerTy() || 5868 !Arg1->getType()->isIntegerTy() || 5869 !I.getType()->isIntegerTy()) 5870 return false; 5871 5872 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5873 std::pair<SDValue, SDValue> Res = 5874 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5875 getValue(Arg0), getValue(Arg1), 5876 MachinePointerInfo(Arg0)); 5877 if (Res.first.getNode()) { 5878 processIntegerCallValue(I, Res.first, false); 5879 PendingLoads.push_back(Res.second); 5880 return true; 5881 } 5882 5883 return false; 5884 } 5885 5886 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5887 /// operation (as expected), translate it to an SDNode with the specified opcode 5888 /// and return true. 5889 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5890 unsigned Opcode) { 5891 // Sanity check that it really is a unary floating-point call. 5892 if (I.getNumArgOperands() != 1 || 5893 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5894 I.getType() != I.getArgOperand(0)->getType() || 5895 !I.onlyReadsMemory()) 5896 return false; 5897 5898 SDValue Tmp = getValue(I.getArgOperand(0)); 5899 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5900 return true; 5901 } 5902 5903 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5904 /// operation (as expected), translate it to an SDNode with the specified opcode 5905 /// and return true. 5906 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5907 unsigned Opcode) { 5908 // Sanity check that it really is a binary floating-point call. 5909 if (I.getNumArgOperands() != 2 || 5910 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5911 I.getType() != I.getArgOperand(0)->getType() || 5912 I.getType() != I.getArgOperand(1)->getType() || 5913 !I.onlyReadsMemory()) 5914 return false; 5915 5916 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5917 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5918 EVT VT = Tmp0.getValueType(); 5919 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5920 return true; 5921 } 5922 5923 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5924 // Handle inline assembly differently. 5925 if (isa<InlineAsm>(I.getCalledValue())) { 5926 visitInlineAsm(&I); 5927 return; 5928 } 5929 5930 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5931 ComputeUsesVAFloatArgument(I, &MMI); 5932 5933 const char *RenameFn = nullptr; 5934 if (Function *F = I.getCalledFunction()) { 5935 if (F->isDeclaration()) { 5936 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5937 if (unsigned IID = II->getIntrinsicID(F)) { 5938 RenameFn = visitIntrinsicCall(I, IID); 5939 if (!RenameFn) 5940 return; 5941 } 5942 } 5943 if (unsigned IID = F->getIntrinsicID()) { 5944 RenameFn = visitIntrinsicCall(I, IID); 5945 if (!RenameFn) 5946 return; 5947 } 5948 } 5949 5950 // Check for well-known libc/libm calls. If the function is internal, it 5951 // can't be a library call. 5952 LibFunc::Func Func; 5953 if (!F->hasLocalLinkage() && F->hasName() && 5954 LibInfo->getLibFunc(F->getName(), Func) && 5955 LibInfo->hasOptimizedCodeGen(Func)) { 5956 switch (Func) { 5957 default: break; 5958 case LibFunc::copysign: 5959 case LibFunc::copysignf: 5960 case LibFunc::copysignl: 5961 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5962 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5963 I.getType() == I.getArgOperand(0)->getType() && 5964 I.getType() == I.getArgOperand(1)->getType() && 5965 I.onlyReadsMemory()) { 5966 SDValue LHS = getValue(I.getArgOperand(0)); 5967 SDValue RHS = getValue(I.getArgOperand(1)); 5968 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5969 LHS.getValueType(), LHS, RHS)); 5970 return; 5971 } 5972 break; 5973 case LibFunc::fabs: 5974 case LibFunc::fabsf: 5975 case LibFunc::fabsl: 5976 if (visitUnaryFloatCall(I, ISD::FABS)) 5977 return; 5978 break; 5979 case LibFunc::fmin: 5980 case LibFunc::fminf: 5981 case LibFunc::fminl: 5982 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5983 return; 5984 break; 5985 case LibFunc::fmax: 5986 case LibFunc::fmaxf: 5987 case LibFunc::fmaxl: 5988 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5989 return; 5990 break; 5991 case LibFunc::sin: 5992 case LibFunc::sinf: 5993 case LibFunc::sinl: 5994 if (visitUnaryFloatCall(I, ISD::FSIN)) 5995 return; 5996 break; 5997 case LibFunc::cos: 5998 case LibFunc::cosf: 5999 case LibFunc::cosl: 6000 if (visitUnaryFloatCall(I, ISD::FCOS)) 6001 return; 6002 break; 6003 case LibFunc::sqrt: 6004 case LibFunc::sqrtf: 6005 case LibFunc::sqrtl: 6006 case LibFunc::sqrt_finite: 6007 case LibFunc::sqrtf_finite: 6008 case LibFunc::sqrtl_finite: 6009 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6010 return; 6011 break; 6012 case LibFunc::floor: 6013 case LibFunc::floorf: 6014 case LibFunc::floorl: 6015 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6016 return; 6017 break; 6018 case LibFunc::nearbyint: 6019 case LibFunc::nearbyintf: 6020 case LibFunc::nearbyintl: 6021 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6022 return; 6023 break; 6024 case LibFunc::ceil: 6025 case LibFunc::ceilf: 6026 case LibFunc::ceill: 6027 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6028 return; 6029 break; 6030 case LibFunc::rint: 6031 case LibFunc::rintf: 6032 case LibFunc::rintl: 6033 if (visitUnaryFloatCall(I, ISD::FRINT)) 6034 return; 6035 break; 6036 case LibFunc::round: 6037 case LibFunc::roundf: 6038 case LibFunc::roundl: 6039 if (visitUnaryFloatCall(I, ISD::FROUND)) 6040 return; 6041 break; 6042 case LibFunc::trunc: 6043 case LibFunc::truncf: 6044 case LibFunc::truncl: 6045 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6046 return; 6047 break; 6048 case LibFunc::log2: 6049 case LibFunc::log2f: 6050 case LibFunc::log2l: 6051 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6052 return; 6053 break; 6054 case LibFunc::exp2: 6055 case LibFunc::exp2f: 6056 case LibFunc::exp2l: 6057 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6058 return; 6059 break; 6060 case LibFunc::memcmp: 6061 if (visitMemCmpCall(I)) 6062 return; 6063 break; 6064 case LibFunc::memchr: 6065 if (visitMemChrCall(I)) 6066 return; 6067 break; 6068 case LibFunc::strcpy: 6069 if (visitStrCpyCall(I, false)) 6070 return; 6071 break; 6072 case LibFunc::stpcpy: 6073 if (visitStrCpyCall(I, true)) 6074 return; 6075 break; 6076 case LibFunc::strcmp: 6077 if (visitStrCmpCall(I)) 6078 return; 6079 break; 6080 case LibFunc::strlen: 6081 if (visitStrLenCall(I)) 6082 return; 6083 break; 6084 case LibFunc::strnlen: 6085 if (visitStrNLenCall(I)) 6086 return; 6087 break; 6088 } 6089 } 6090 } 6091 6092 SDValue Callee; 6093 if (!RenameFn) 6094 Callee = getValue(I.getCalledValue()); 6095 else 6096 Callee = DAG.getExternalSymbol(RenameFn, 6097 DAG.getTargetLoweringInfo().getPointerTy()); 6098 6099 // Check if we can potentially perform a tail call. More detailed checking is 6100 // be done within LowerCallTo, after more information about the call is known. 6101 LowerCallTo(&I, Callee, I.isTailCall()); 6102 } 6103 6104 namespace { 6105 6106 /// AsmOperandInfo - This contains information for each constraint that we are 6107 /// lowering. 6108 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6109 public: 6110 /// CallOperand - If this is the result output operand or a clobber 6111 /// this is null, otherwise it is the incoming operand to the CallInst. 6112 /// This gets modified as the asm is processed. 6113 SDValue CallOperand; 6114 6115 /// AssignedRegs - If this is a register or register class operand, this 6116 /// contains the set of register corresponding to the operand. 6117 RegsForValue AssignedRegs; 6118 6119 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6120 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6121 } 6122 6123 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6124 /// corresponds to. If there is no Value* for this operand, it returns 6125 /// MVT::Other. 6126 EVT getCallOperandValEVT(LLVMContext &Context, 6127 const TargetLowering &TLI, 6128 const DataLayout *DL) const { 6129 if (!CallOperandVal) return MVT::Other; 6130 6131 if (isa<BasicBlock>(CallOperandVal)) 6132 return TLI.getPointerTy(); 6133 6134 llvm::Type *OpTy = CallOperandVal->getType(); 6135 6136 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6137 // If this is an indirect operand, the operand is a pointer to the 6138 // accessed type. 6139 if (isIndirect) { 6140 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6141 if (!PtrTy) 6142 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6143 OpTy = PtrTy->getElementType(); 6144 } 6145 6146 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6147 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6148 if (STy->getNumElements() == 1) 6149 OpTy = STy->getElementType(0); 6150 6151 // If OpTy is not a single value, it may be a struct/union that we 6152 // can tile with integers. 6153 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6154 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6155 switch (BitSize) { 6156 default: break; 6157 case 1: 6158 case 8: 6159 case 16: 6160 case 32: 6161 case 64: 6162 case 128: 6163 OpTy = IntegerType::get(Context, BitSize); 6164 break; 6165 } 6166 } 6167 6168 return TLI.getValueType(OpTy, true); 6169 } 6170 }; 6171 6172 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6173 6174 } // end anonymous namespace 6175 6176 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6177 /// specified operand. We prefer to assign virtual registers, to allow the 6178 /// register allocator to handle the assignment process. However, if the asm 6179 /// uses features that we can't model on machineinstrs, we have SDISel do the 6180 /// allocation. This produces generally horrible, but correct, code. 6181 /// 6182 /// OpInfo describes the operand. 6183 /// 6184 static void GetRegistersForValue(SelectionDAG &DAG, 6185 const TargetLowering &TLI, 6186 SDLoc DL, 6187 SDISelAsmOperandInfo &OpInfo) { 6188 LLVMContext &Context = *DAG.getContext(); 6189 6190 MachineFunction &MF = DAG.getMachineFunction(); 6191 SmallVector<unsigned, 4> Regs; 6192 6193 // If this is a constraint for a single physreg, or a constraint for a 6194 // register class, find it. 6195 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6196 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6197 OpInfo.ConstraintVT); 6198 6199 unsigned NumRegs = 1; 6200 if (OpInfo.ConstraintVT != MVT::Other) { 6201 // If this is a FP input in an integer register (or visa versa) insert a bit 6202 // cast of the input value. More generally, handle any case where the input 6203 // value disagrees with the register class we plan to stick this in. 6204 if (OpInfo.Type == InlineAsm::isInput && 6205 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6206 // Try to convert to the first EVT that the reg class contains. If the 6207 // types are identical size, use a bitcast to convert (e.g. two differing 6208 // vector types). 6209 MVT RegVT = *PhysReg.second->vt_begin(); 6210 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6211 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6212 RegVT, OpInfo.CallOperand); 6213 OpInfo.ConstraintVT = RegVT; 6214 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6215 // If the input is a FP value and we want it in FP registers, do a 6216 // bitcast to the corresponding integer type. This turns an f64 value 6217 // into i64, which can be passed with two i32 values on a 32-bit 6218 // machine. 6219 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6220 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6221 RegVT, OpInfo.CallOperand); 6222 OpInfo.ConstraintVT = RegVT; 6223 } 6224 } 6225 6226 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6227 } 6228 6229 MVT RegVT; 6230 EVT ValueVT = OpInfo.ConstraintVT; 6231 6232 // If this is a constraint for a specific physical register, like {r17}, 6233 // assign it now. 6234 if (unsigned AssignedReg = PhysReg.first) { 6235 const TargetRegisterClass *RC = PhysReg.second; 6236 if (OpInfo.ConstraintVT == MVT::Other) 6237 ValueVT = *RC->vt_begin(); 6238 6239 // Get the actual register value type. This is important, because the user 6240 // may have asked for (e.g.) the AX register in i32 type. We need to 6241 // remember that AX is actually i16 to get the right extension. 6242 RegVT = *RC->vt_begin(); 6243 6244 // This is a explicit reference to a physical register. 6245 Regs.push_back(AssignedReg); 6246 6247 // If this is an expanded reference, add the rest of the regs to Regs. 6248 if (NumRegs != 1) { 6249 TargetRegisterClass::iterator I = RC->begin(); 6250 for (; *I != AssignedReg; ++I) 6251 assert(I != RC->end() && "Didn't find reg!"); 6252 6253 // Already added the first reg. 6254 --NumRegs; ++I; 6255 for (; NumRegs; --NumRegs, ++I) { 6256 assert(I != RC->end() && "Ran out of registers to allocate!"); 6257 Regs.push_back(*I); 6258 } 6259 } 6260 6261 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6262 return; 6263 } 6264 6265 // Otherwise, if this was a reference to an LLVM register class, create vregs 6266 // for this reference. 6267 if (const TargetRegisterClass *RC = PhysReg.second) { 6268 RegVT = *RC->vt_begin(); 6269 if (OpInfo.ConstraintVT == MVT::Other) 6270 ValueVT = RegVT; 6271 6272 // Create the appropriate number of virtual registers. 6273 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6274 for (; NumRegs; --NumRegs) 6275 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6276 6277 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6278 return; 6279 } 6280 6281 // Otherwise, we couldn't allocate enough registers for this. 6282 } 6283 6284 /// visitInlineAsm - Handle a call to an InlineAsm object. 6285 /// 6286 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6287 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6288 6289 /// ConstraintOperands - Information about all of the constraints. 6290 SDISelAsmOperandInfoVector ConstraintOperands; 6291 6292 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6293 TargetLowering::AsmOperandInfoVector 6294 TargetConstraints = TLI.ParseConstraints(CS); 6295 6296 bool hasMemory = false; 6297 6298 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6299 unsigned ResNo = 0; // ResNo - The result number of the next output. 6300 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6301 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6302 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6303 6304 MVT OpVT = MVT::Other; 6305 6306 // Compute the value type for each operand. 6307 switch (OpInfo.Type) { 6308 case InlineAsm::isOutput: 6309 // Indirect outputs just consume an argument. 6310 if (OpInfo.isIndirect) { 6311 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6312 break; 6313 } 6314 6315 // The return value of the call is this value. As such, there is no 6316 // corresponding argument. 6317 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6318 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6319 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6320 } else { 6321 assert(ResNo == 0 && "Asm only has one result!"); 6322 OpVT = TLI.getSimpleValueType(CS.getType()); 6323 } 6324 ++ResNo; 6325 break; 6326 case InlineAsm::isInput: 6327 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6328 break; 6329 case InlineAsm::isClobber: 6330 // Nothing to do. 6331 break; 6332 } 6333 6334 // If this is an input or an indirect output, process the call argument. 6335 // BasicBlocks are labels, currently appearing only in asm's. 6336 if (OpInfo.CallOperandVal) { 6337 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6338 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6339 } else { 6340 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6341 } 6342 6343 OpVT = 6344 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6345 } 6346 6347 OpInfo.ConstraintVT = OpVT; 6348 6349 // Indirect operand accesses access memory. 6350 if (OpInfo.isIndirect) 6351 hasMemory = true; 6352 else { 6353 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6354 TargetLowering::ConstraintType 6355 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6356 if (CType == TargetLowering::C_Memory) { 6357 hasMemory = true; 6358 break; 6359 } 6360 } 6361 } 6362 } 6363 6364 SDValue Chain, Flag; 6365 6366 // We won't need to flush pending loads if this asm doesn't touch 6367 // memory and is nonvolatile. 6368 if (hasMemory || IA->hasSideEffects()) 6369 Chain = getRoot(); 6370 else 6371 Chain = DAG.getRoot(); 6372 6373 // Second pass over the constraints: compute which constraint option to use 6374 // and assign registers to constraints that want a specific physreg. 6375 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6376 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6377 6378 // If this is an output operand with a matching input operand, look up the 6379 // matching input. If their types mismatch, e.g. one is an integer, the 6380 // other is floating point, or their sizes are different, flag it as an 6381 // error. 6382 if (OpInfo.hasMatchingInput()) { 6383 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6384 6385 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6386 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6387 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6388 OpInfo.ConstraintVT); 6389 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6390 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6391 Input.ConstraintVT); 6392 if ((OpInfo.ConstraintVT.isInteger() != 6393 Input.ConstraintVT.isInteger()) || 6394 (MatchRC.second != InputRC.second)) { 6395 report_fatal_error("Unsupported asm: input constraint" 6396 " with a matching output constraint of" 6397 " incompatible type!"); 6398 } 6399 Input.ConstraintVT = OpInfo.ConstraintVT; 6400 } 6401 } 6402 6403 // Compute the constraint code and ConstraintType to use. 6404 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6405 6406 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6407 OpInfo.Type == InlineAsm::isClobber) 6408 continue; 6409 6410 // If this is a memory input, and if the operand is not indirect, do what we 6411 // need to to provide an address for the memory input. 6412 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6413 !OpInfo.isIndirect) { 6414 assert((OpInfo.isMultipleAlternative || 6415 (OpInfo.Type == InlineAsm::isInput)) && 6416 "Can only indirectify direct input operands!"); 6417 6418 // Memory operands really want the address of the value. If we don't have 6419 // an indirect input, put it in the constpool if we can, otherwise spill 6420 // it to a stack slot. 6421 // TODO: This isn't quite right. We need to handle these according to 6422 // the addressing mode that the constraint wants. Also, this may take 6423 // an additional register for the computation and we don't want that 6424 // either. 6425 6426 // If the operand is a float, integer, or vector constant, spill to a 6427 // constant pool entry to get its address. 6428 const Value *OpVal = OpInfo.CallOperandVal; 6429 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6430 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6431 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6432 TLI.getPointerTy()); 6433 } else { 6434 // Otherwise, create a stack slot and emit a store to it before the 6435 // asm. 6436 Type *Ty = OpVal->getType(); 6437 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6438 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6439 MachineFunction &MF = DAG.getMachineFunction(); 6440 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6441 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6442 Chain = DAG.getStore(Chain, getCurSDLoc(), 6443 OpInfo.CallOperand, StackSlot, 6444 MachinePointerInfo::getFixedStack(SSFI), 6445 false, false, 0); 6446 OpInfo.CallOperand = StackSlot; 6447 } 6448 6449 // There is no longer a Value* corresponding to this operand. 6450 OpInfo.CallOperandVal = nullptr; 6451 6452 // It is now an indirect operand. 6453 OpInfo.isIndirect = true; 6454 } 6455 6456 // If this constraint is for a specific register, allocate it before 6457 // anything else. 6458 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6459 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6460 } 6461 6462 // Second pass - Loop over all of the operands, assigning virtual or physregs 6463 // to register class operands. 6464 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6465 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6466 6467 // C_Register operands have already been allocated, Other/Memory don't need 6468 // to be. 6469 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6470 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6471 } 6472 6473 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6474 std::vector<SDValue> AsmNodeOperands; 6475 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6476 AsmNodeOperands.push_back( 6477 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6478 TLI.getPointerTy())); 6479 6480 // If we have a !srcloc metadata node associated with it, we want to attach 6481 // this to the ultimately generated inline asm machineinstr. To do this, we 6482 // pass in the third operand as this (potentially null) inline asm MDNode. 6483 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6484 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6485 6486 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6487 // bits as operand 3. 6488 unsigned ExtraInfo = 0; 6489 if (IA->hasSideEffects()) 6490 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6491 if (IA->isAlignStack()) 6492 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6493 // Set the asm dialect. 6494 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6495 6496 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6497 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6498 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6499 6500 // Compute the constraint code and ConstraintType to use. 6501 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6502 6503 // Ideally, we would only check against memory constraints. However, the 6504 // meaning of an other constraint can be target-specific and we can't easily 6505 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6506 // for other constriants as well. 6507 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6508 OpInfo.ConstraintType == TargetLowering::C_Other) { 6509 if (OpInfo.Type == InlineAsm::isInput) 6510 ExtraInfo |= InlineAsm::Extra_MayLoad; 6511 else if (OpInfo.Type == InlineAsm::isOutput) 6512 ExtraInfo |= InlineAsm::Extra_MayStore; 6513 else if (OpInfo.Type == InlineAsm::isClobber) 6514 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6515 } 6516 } 6517 6518 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6519 TLI.getPointerTy())); 6520 6521 // Loop over all of the inputs, copying the operand values into the 6522 // appropriate registers and processing the output regs. 6523 RegsForValue RetValRegs; 6524 6525 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6526 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6527 6528 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6529 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6530 6531 switch (OpInfo.Type) { 6532 case InlineAsm::isOutput: { 6533 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6534 OpInfo.ConstraintType != TargetLowering::C_Register) { 6535 // Memory output, or 'other' output (e.g. 'X' constraint). 6536 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6537 6538 // Add information to the INLINEASM node to know about this output. 6539 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6540 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6541 TLI.getPointerTy())); 6542 AsmNodeOperands.push_back(OpInfo.CallOperand); 6543 break; 6544 } 6545 6546 // Otherwise, this is a register or register class output. 6547 6548 // Copy the output from the appropriate register. Find a register that 6549 // we can use. 6550 if (OpInfo.AssignedRegs.Regs.empty()) { 6551 LLVMContext &Ctx = *DAG.getContext(); 6552 Ctx.emitError(CS.getInstruction(), 6553 "couldn't allocate output register for constraint '" + 6554 Twine(OpInfo.ConstraintCode) + "'"); 6555 return; 6556 } 6557 6558 // If this is an indirect operand, store through the pointer after the 6559 // asm. 6560 if (OpInfo.isIndirect) { 6561 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6562 OpInfo.CallOperandVal)); 6563 } else { 6564 // This is the result value of the call. 6565 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6566 // Concatenate this output onto the outputs list. 6567 RetValRegs.append(OpInfo.AssignedRegs); 6568 } 6569 6570 // Add information to the INLINEASM node to know that this register is 6571 // set. 6572 OpInfo.AssignedRegs 6573 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6574 ? InlineAsm::Kind_RegDefEarlyClobber 6575 : InlineAsm::Kind_RegDef, 6576 false, 0, DAG, AsmNodeOperands); 6577 break; 6578 } 6579 case InlineAsm::isInput: { 6580 SDValue InOperandVal = OpInfo.CallOperand; 6581 6582 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6583 // If this is required to match an output register we have already set, 6584 // just use its register. 6585 unsigned OperandNo = OpInfo.getMatchedOperand(); 6586 6587 // Scan until we find the definition we already emitted of this operand. 6588 // When we find it, create a RegsForValue operand. 6589 unsigned CurOp = InlineAsm::Op_FirstOperand; 6590 for (; OperandNo; --OperandNo) { 6591 // Advance to the next operand. 6592 unsigned OpFlag = 6593 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6594 assert((InlineAsm::isRegDefKind(OpFlag) || 6595 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6596 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6597 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6598 } 6599 6600 unsigned OpFlag = 6601 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6602 if (InlineAsm::isRegDefKind(OpFlag) || 6603 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6604 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6605 if (OpInfo.isIndirect) { 6606 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6607 LLVMContext &Ctx = *DAG.getContext(); 6608 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6609 " don't know how to handle tied " 6610 "indirect register inputs"); 6611 return; 6612 } 6613 6614 RegsForValue MatchedRegs; 6615 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6616 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6617 MatchedRegs.RegVTs.push_back(RegVT); 6618 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6619 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6620 i != e; ++i) { 6621 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6622 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6623 else { 6624 LLVMContext &Ctx = *DAG.getContext(); 6625 Ctx.emitError(CS.getInstruction(), 6626 "inline asm error: This value" 6627 " type register class is not natively supported!"); 6628 return; 6629 } 6630 } 6631 // Use the produced MatchedRegs object to 6632 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6633 Chain, &Flag, CS.getInstruction()); 6634 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6635 true, OpInfo.getMatchedOperand(), 6636 DAG, AsmNodeOperands); 6637 break; 6638 } 6639 6640 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6641 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6642 "Unexpected number of operands"); 6643 // Add information to the INLINEASM node to know about this input. 6644 // See InlineAsm.h isUseOperandTiedToDef. 6645 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6646 OpInfo.getMatchedOperand()); 6647 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6648 TLI.getPointerTy())); 6649 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6650 break; 6651 } 6652 6653 // Treat indirect 'X' constraint as memory. 6654 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6655 OpInfo.isIndirect) 6656 OpInfo.ConstraintType = TargetLowering::C_Memory; 6657 6658 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6659 std::vector<SDValue> Ops; 6660 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6661 Ops, DAG); 6662 if (Ops.empty()) { 6663 LLVMContext &Ctx = *DAG.getContext(); 6664 Ctx.emitError(CS.getInstruction(), 6665 "invalid operand for inline asm constraint '" + 6666 Twine(OpInfo.ConstraintCode) + "'"); 6667 return; 6668 } 6669 6670 // Add information to the INLINEASM node to know about this input. 6671 unsigned ResOpType = 6672 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6673 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6674 TLI.getPointerTy())); 6675 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6676 break; 6677 } 6678 6679 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6680 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6681 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6682 "Memory operands expect pointer values"); 6683 6684 // Add information to the INLINEASM node to know about this input. 6685 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6686 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6687 TLI.getPointerTy())); 6688 AsmNodeOperands.push_back(InOperandVal); 6689 break; 6690 } 6691 6692 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6693 OpInfo.ConstraintType == TargetLowering::C_Register) && 6694 "Unknown constraint type!"); 6695 6696 // TODO: Support this. 6697 if (OpInfo.isIndirect) { 6698 LLVMContext &Ctx = *DAG.getContext(); 6699 Ctx.emitError(CS.getInstruction(), 6700 "Don't know how to handle indirect register inputs yet " 6701 "for constraint '" + 6702 Twine(OpInfo.ConstraintCode) + "'"); 6703 return; 6704 } 6705 6706 // Copy the input into the appropriate registers. 6707 if (OpInfo.AssignedRegs.Regs.empty()) { 6708 LLVMContext &Ctx = *DAG.getContext(); 6709 Ctx.emitError(CS.getInstruction(), 6710 "couldn't allocate input reg for constraint '" + 6711 Twine(OpInfo.ConstraintCode) + "'"); 6712 return; 6713 } 6714 6715 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6716 Chain, &Flag, CS.getInstruction()); 6717 6718 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6719 DAG, AsmNodeOperands); 6720 break; 6721 } 6722 case InlineAsm::isClobber: { 6723 // Add the clobbered value to the operand list, so that the register 6724 // allocator is aware that the physreg got clobbered. 6725 if (!OpInfo.AssignedRegs.Regs.empty()) 6726 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6727 false, 0, DAG, 6728 AsmNodeOperands); 6729 break; 6730 } 6731 } 6732 } 6733 6734 // Finish up input operands. Set the input chain and add the flag last. 6735 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6736 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6737 6738 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6739 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6740 Flag = Chain.getValue(1); 6741 6742 // If this asm returns a register value, copy the result from that register 6743 // and set it as the value of the call. 6744 if (!RetValRegs.Regs.empty()) { 6745 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6746 Chain, &Flag, CS.getInstruction()); 6747 6748 // FIXME: Why don't we do this for inline asms with MRVs? 6749 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6750 EVT ResultType = TLI.getValueType(CS.getType()); 6751 6752 // If any of the results of the inline asm is a vector, it may have the 6753 // wrong width/num elts. This can happen for register classes that can 6754 // contain multiple different value types. The preg or vreg allocated may 6755 // not have the same VT as was expected. Convert it to the right type 6756 // with bit_convert. 6757 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6758 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6759 ResultType, Val); 6760 6761 } else if (ResultType != Val.getValueType() && 6762 ResultType.isInteger() && Val.getValueType().isInteger()) { 6763 // If a result value was tied to an input value, the computed result may 6764 // have a wider width than the expected result. Extract the relevant 6765 // portion. 6766 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6767 } 6768 6769 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6770 } 6771 6772 setValue(CS.getInstruction(), Val); 6773 // Don't need to use this as a chain in this case. 6774 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6775 return; 6776 } 6777 6778 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6779 6780 // Process indirect outputs, first output all of the flagged copies out of 6781 // physregs. 6782 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6783 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6784 const Value *Ptr = IndirectStoresToEmit[i].second; 6785 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6786 Chain, &Flag, IA); 6787 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6788 } 6789 6790 // Emit the non-flagged stores from the physregs. 6791 SmallVector<SDValue, 8> OutChains; 6792 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6793 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6794 StoresToEmit[i].first, 6795 getValue(StoresToEmit[i].second), 6796 MachinePointerInfo(StoresToEmit[i].second), 6797 false, false, 0); 6798 OutChains.push_back(Val); 6799 } 6800 6801 if (!OutChains.empty()) 6802 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6803 6804 DAG.setRoot(Chain); 6805 } 6806 6807 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6808 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6809 MVT::Other, getRoot(), 6810 getValue(I.getArgOperand(0)), 6811 DAG.getSrcValue(I.getArgOperand(0)))); 6812 } 6813 6814 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6816 const DataLayout &DL = *TLI.getDataLayout(); 6817 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6818 getRoot(), getValue(I.getOperand(0)), 6819 DAG.getSrcValue(I.getOperand(0)), 6820 DL.getABITypeAlignment(I.getType())); 6821 setValue(&I, V); 6822 DAG.setRoot(V.getValue(1)); 6823 } 6824 6825 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6826 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6827 MVT::Other, getRoot(), 6828 getValue(I.getArgOperand(0)), 6829 DAG.getSrcValue(I.getArgOperand(0)))); 6830 } 6831 6832 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6833 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6834 MVT::Other, getRoot(), 6835 getValue(I.getArgOperand(0)), 6836 getValue(I.getArgOperand(1)), 6837 DAG.getSrcValue(I.getArgOperand(0)), 6838 DAG.getSrcValue(I.getArgOperand(1)))); 6839 } 6840 6841 /// \brief Lower an argument list according to the target calling convention. 6842 /// 6843 /// \return A tuple of <return-value, token-chain> 6844 /// 6845 /// This is a helper for lowering intrinsics that follow a target calling 6846 /// convention or require stack pointer adjustment. Only a subset of the 6847 /// intrinsic's operands need to participate in the calling convention. 6848 std::pair<SDValue, SDValue> 6849 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6850 unsigned NumArgs, SDValue Callee, 6851 bool UseVoidTy, 6852 MachineBasicBlock *LandingPad) { 6853 TargetLowering::ArgListTy Args; 6854 Args.reserve(NumArgs); 6855 6856 // Populate the argument list. 6857 // Attributes for args start at offset 1, after the return attribute. 6858 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6859 ArgI != ArgE; ++ArgI) { 6860 const Value *V = CS->getOperand(ArgI); 6861 6862 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6863 6864 TargetLowering::ArgListEntry Entry; 6865 Entry.Node = getValue(V); 6866 Entry.Ty = V->getType(); 6867 Entry.setAttributes(&CS, AttrI); 6868 Args.push_back(Entry); 6869 } 6870 6871 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6872 TargetLowering::CallLoweringInfo CLI(DAG); 6873 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6874 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6875 .setDiscardResult(CS->use_empty()); 6876 6877 return lowerInvokable(CLI, LandingPad); 6878 } 6879 6880 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6881 /// or patchpoint target node's operand list. 6882 /// 6883 /// Constants are converted to TargetConstants purely as an optimization to 6884 /// avoid constant materialization and register allocation. 6885 /// 6886 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6887 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6888 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6889 /// address materialization and register allocation, but may also be required 6890 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6891 /// alloca in the entry block, then the runtime may assume that the alloca's 6892 /// StackMap location can be read immediately after compilation and that the 6893 /// location is valid at any point during execution (this is similar to the 6894 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6895 /// only available in a register, then the runtime would need to trap when 6896 /// execution reaches the StackMap in order to read the alloca's location. 6897 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6898 SmallVectorImpl<SDValue> &Ops, 6899 SelectionDAGBuilder &Builder) { 6900 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6901 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6902 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6903 Ops.push_back( 6904 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6905 Ops.push_back( 6906 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6907 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6908 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6909 Ops.push_back( 6910 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6911 } else 6912 Ops.push_back(OpVal); 6913 } 6914 } 6915 6916 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6917 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6918 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6919 // [live variables...]) 6920 6921 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6922 6923 SDValue Chain, InFlag, Callee, NullPtr; 6924 SmallVector<SDValue, 32> Ops; 6925 6926 SDLoc DL = getCurSDLoc(); 6927 Callee = getValue(CI.getCalledValue()); 6928 NullPtr = DAG.getIntPtrConstant(0, true); 6929 6930 // The stackmap intrinsic only records the live variables (the arguemnts 6931 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6932 // intrinsic, this won't be lowered to a function call. This means we don't 6933 // have to worry about calling conventions and target specific lowering code. 6934 // Instead we perform the call lowering right here. 6935 // 6936 // chain, flag = CALLSEQ_START(chain, 0) 6937 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6938 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6939 // 6940 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6941 InFlag = Chain.getValue(1); 6942 6943 // Add the <id> and <numBytes> constants. 6944 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6945 Ops.push_back(DAG.getTargetConstant( 6946 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6947 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6948 Ops.push_back(DAG.getTargetConstant( 6949 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6950 6951 // Push live variables for the stack map. 6952 addStackMapLiveVars(&CI, 2, Ops, *this); 6953 6954 // We are not pushing any register mask info here on the operands list, 6955 // because the stackmap doesn't clobber anything. 6956 6957 // Push the chain and the glue flag. 6958 Ops.push_back(Chain); 6959 Ops.push_back(InFlag); 6960 6961 // Create the STACKMAP node. 6962 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6963 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6964 Chain = SDValue(SM, 0); 6965 InFlag = Chain.getValue(1); 6966 6967 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6968 6969 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6970 6971 // Set the root to the target-lowered call chain. 6972 DAG.setRoot(Chain); 6973 6974 // Inform the Frame Information that we have a stackmap in this function. 6975 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6976 } 6977 6978 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6979 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6980 MachineBasicBlock *LandingPad) { 6981 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6982 // i32 <numBytes>, 6983 // i8* <target>, 6984 // i32 <numArgs>, 6985 // [Args...], 6986 // [live variables...]) 6987 6988 CallingConv::ID CC = CS.getCallingConv(); 6989 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6990 bool HasDef = !CS->getType()->isVoidTy(); 6991 SDValue Callee = getValue(CS->getOperand(2)); // <target> 6992 6993 // Get the real number of arguments participating in the call <numArgs> 6994 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6995 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6996 6997 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6998 // Intrinsics include all meta-operands up to but not including CC. 6999 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7000 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7001 "Not enough arguments provided to the patchpoint intrinsic"); 7002 7003 // For AnyRegCC the arguments are lowered later on manually. 7004 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7005 std::pair<SDValue, SDValue> Result = 7006 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7007 LandingPad); 7008 7009 SDNode *CallEnd = Result.second.getNode(); 7010 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7011 CallEnd = CallEnd->getOperand(0).getNode(); 7012 7013 /// Get a call instruction from the call sequence chain. 7014 /// Tail calls are not allowed. 7015 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7016 "Expected a callseq node."); 7017 SDNode *Call = CallEnd->getOperand(0).getNode(); 7018 bool HasGlue = Call->getGluedNode(); 7019 7020 // Replace the target specific call node with the patchable intrinsic. 7021 SmallVector<SDValue, 8> Ops; 7022 7023 // Add the <id> and <numBytes> constants. 7024 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7025 Ops.push_back(DAG.getTargetConstant( 7026 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7027 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7028 Ops.push_back(DAG.getTargetConstant( 7029 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7030 7031 // Assume that the Callee is a constant address. 7032 // FIXME: handle function symbols in the future. 7033 Ops.push_back( 7034 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7035 /*isTarget=*/true)); 7036 7037 // Adjust <numArgs> to account for any arguments that have been passed on the 7038 // stack instead. 7039 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7040 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7041 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7042 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7043 7044 // Add the calling convention 7045 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7046 7047 // Add the arguments we omitted previously. The register allocator should 7048 // place these in any free register. 7049 if (IsAnyRegCC) 7050 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7051 Ops.push_back(getValue(CS.getArgument(i))); 7052 7053 // Push the arguments from the call instruction up to the register mask. 7054 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7055 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7056 Ops.push_back(*i); 7057 7058 // Push live variables for the stack map. 7059 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7060 7061 // Push the register mask info. 7062 if (HasGlue) 7063 Ops.push_back(*(Call->op_end()-2)); 7064 else 7065 Ops.push_back(*(Call->op_end()-1)); 7066 7067 // Push the chain (this is originally the first operand of the call, but 7068 // becomes now the last or second to last operand). 7069 Ops.push_back(*(Call->op_begin())); 7070 7071 // Push the glue flag (last operand). 7072 if (HasGlue) 7073 Ops.push_back(*(Call->op_end()-1)); 7074 7075 SDVTList NodeTys; 7076 if (IsAnyRegCC && HasDef) { 7077 // Create the return types based on the intrinsic definition 7078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7079 SmallVector<EVT, 3> ValueVTs; 7080 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7081 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7082 7083 // There is always a chain and a glue type at the end 7084 ValueVTs.push_back(MVT::Other); 7085 ValueVTs.push_back(MVT::Glue); 7086 NodeTys = DAG.getVTList(ValueVTs); 7087 } else 7088 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7089 7090 // Replace the target specific call node with a PATCHPOINT node. 7091 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7092 getCurSDLoc(), NodeTys, Ops); 7093 7094 // Update the NodeMap. 7095 if (HasDef) { 7096 if (IsAnyRegCC) 7097 setValue(CS.getInstruction(), SDValue(MN, 0)); 7098 else 7099 setValue(CS.getInstruction(), Result.first); 7100 } 7101 7102 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7103 // call sequence. Furthermore the location of the chain and glue can change 7104 // when the AnyReg calling convention is used and the intrinsic returns a 7105 // value. 7106 if (IsAnyRegCC && HasDef) { 7107 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7108 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7109 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7110 } else 7111 DAG.ReplaceAllUsesWith(Call, MN); 7112 DAG.DeleteNode(Call); 7113 7114 // Inform the Frame Information that we have a patchpoint in this function. 7115 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7116 } 7117 7118 /// Returns an AttributeSet representing the attributes applied to the return 7119 /// value of the given call. 7120 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7121 SmallVector<Attribute::AttrKind, 2> Attrs; 7122 if (CLI.RetSExt) 7123 Attrs.push_back(Attribute::SExt); 7124 if (CLI.RetZExt) 7125 Attrs.push_back(Attribute::ZExt); 7126 if (CLI.IsInReg) 7127 Attrs.push_back(Attribute::InReg); 7128 7129 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7130 Attrs); 7131 } 7132 7133 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7134 /// implementation, which just calls LowerCall. 7135 /// FIXME: When all targets are 7136 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7137 std::pair<SDValue, SDValue> 7138 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7139 // Handle the incoming return values from the call. 7140 CLI.Ins.clear(); 7141 Type *OrigRetTy = CLI.RetTy; 7142 SmallVector<EVT, 4> RetTys; 7143 SmallVector<uint64_t, 4> Offsets; 7144 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7145 7146 SmallVector<ISD::OutputArg, 4> Outs; 7147 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7148 7149 bool CanLowerReturn = 7150 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7151 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7152 7153 SDValue DemoteStackSlot; 7154 int DemoteStackIdx = -100; 7155 if (!CanLowerReturn) { 7156 // FIXME: equivalent assert? 7157 // assert(!CS.hasInAllocaArgument() && 7158 // "sret demotion is incompatible with inalloca"); 7159 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7160 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7161 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7162 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7163 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7164 7165 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7166 ArgListEntry Entry; 7167 Entry.Node = DemoteStackSlot; 7168 Entry.Ty = StackSlotPtrType; 7169 Entry.isSExt = false; 7170 Entry.isZExt = false; 7171 Entry.isInReg = false; 7172 Entry.isSRet = true; 7173 Entry.isNest = false; 7174 Entry.isByVal = false; 7175 Entry.isReturned = false; 7176 Entry.Alignment = Align; 7177 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7178 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7179 } else { 7180 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7181 EVT VT = RetTys[I]; 7182 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7183 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7184 for (unsigned i = 0; i != NumRegs; ++i) { 7185 ISD::InputArg MyFlags; 7186 MyFlags.VT = RegisterVT; 7187 MyFlags.ArgVT = VT; 7188 MyFlags.Used = CLI.IsReturnValueUsed; 7189 if (CLI.RetSExt) 7190 MyFlags.Flags.setSExt(); 7191 if (CLI.RetZExt) 7192 MyFlags.Flags.setZExt(); 7193 if (CLI.IsInReg) 7194 MyFlags.Flags.setInReg(); 7195 CLI.Ins.push_back(MyFlags); 7196 } 7197 } 7198 } 7199 7200 // Handle all of the outgoing arguments. 7201 CLI.Outs.clear(); 7202 CLI.OutVals.clear(); 7203 ArgListTy &Args = CLI.getArgs(); 7204 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7205 SmallVector<EVT, 4> ValueVTs; 7206 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7207 Type *FinalType = Args[i].Ty; 7208 if (Args[i].isByVal) 7209 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7210 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7211 FinalType, CLI.CallConv, CLI.IsVarArg); 7212 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7213 ++Value) { 7214 EVT VT = ValueVTs[Value]; 7215 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7216 SDValue Op = SDValue(Args[i].Node.getNode(), 7217 Args[i].Node.getResNo() + Value); 7218 ISD::ArgFlagsTy Flags; 7219 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7220 7221 if (Args[i].isZExt) 7222 Flags.setZExt(); 7223 if (Args[i].isSExt) 7224 Flags.setSExt(); 7225 if (Args[i].isInReg) 7226 Flags.setInReg(); 7227 if (Args[i].isSRet) 7228 Flags.setSRet(); 7229 if (Args[i].isByVal) 7230 Flags.setByVal(); 7231 if (Args[i].isInAlloca) { 7232 Flags.setInAlloca(); 7233 // Set the byval flag for CCAssignFn callbacks that don't know about 7234 // inalloca. This way we can know how many bytes we should've allocated 7235 // and how many bytes a callee cleanup function will pop. If we port 7236 // inalloca to more targets, we'll have to add custom inalloca handling 7237 // in the various CC lowering callbacks. 7238 Flags.setByVal(); 7239 } 7240 if (Args[i].isByVal || Args[i].isInAlloca) { 7241 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7242 Type *ElementTy = Ty->getElementType(); 7243 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7244 // For ByVal, alignment should come from FE. BE will guess if this 7245 // info is not there but there are cases it cannot get right. 7246 unsigned FrameAlign; 7247 if (Args[i].Alignment) 7248 FrameAlign = Args[i].Alignment; 7249 else 7250 FrameAlign = getByValTypeAlignment(ElementTy); 7251 Flags.setByValAlign(FrameAlign); 7252 } 7253 if (Args[i].isNest) 7254 Flags.setNest(); 7255 if (NeedsRegBlock) { 7256 Flags.setInConsecutiveRegs(); 7257 if (Value == NumValues - 1) 7258 Flags.setInConsecutiveRegsLast(); 7259 } 7260 Flags.setOrigAlign(OriginalAlignment); 7261 7262 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7263 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7264 SmallVector<SDValue, 4> Parts(NumParts); 7265 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7266 7267 if (Args[i].isSExt) 7268 ExtendKind = ISD::SIGN_EXTEND; 7269 else if (Args[i].isZExt) 7270 ExtendKind = ISD::ZERO_EXTEND; 7271 7272 // Conservatively only handle 'returned' on non-vectors for now 7273 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7274 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7275 "unexpected use of 'returned'"); 7276 // Before passing 'returned' to the target lowering code, ensure that 7277 // either the register MVT and the actual EVT are the same size or that 7278 // the return value and argument are extended in the same way; in these 7279 // cases it's safe to pass the argument register value unchanged as the 7280 // return register value (although it's at the target's option whether 7281 // to do so) 7282 // TODO: allow code generation to take advantage of partially preserved 7283 // registers rather than clobbering the entire register when the 7284 // parameter extension method is not compatible with the return 7285 // extension method 7286 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7287 (ExtendKind != ISD::ANY_EXTEND && 7288 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7289 Flags.setReturned(); 7290 } 7291 7292 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7293 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7294 7295 for (unsigned j = 0; j != NumParts; ++j) { 7296 // if it isn't first piece, alignment must be 1 7297 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7298 i < CLI.NumFixedArgs, 7299 i, j*Parts[j].getValueType().getStoreSize()); 7300 if (NumParts > 1 && j == 0) 7301 MyFlags.Flags.setSplit(); 7302 else if (j != 0) 7303 MyFlags.Flags.setOrigAlign(1); 7304 7305 CLI.Outs.push_back(MyFlags); 7306 CLI.OutVals.push_back(Parts[j]); 7307 } 7308 } 7309 } 7310 7311 SmallVector<SDValue, 4> InVals; 7312 CLI.Chain = LowerCall(CLI, InVals); 7313 7314 // Verify that the target's LowerCall behaved as expected. 7315 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7316 "LowerCall didn't return a valid chain!"); 7317 assert((!CLI.IsTailCall || InVals.empty()) && 7318 "LowerCall emitted a return value for a tail call!"); 7319 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7320 "LowerCall didn't emit the correct number of values!"); 7321 7322 // For a tail call, the return value is merely live-out and there aren't 7323 // any nodes in the DAG representing it. Return a special value to 7324 // indicate that a tail call has been emitted and no more Instructions 7325 // should be processed in the current block. 7326 if (CLI.IsTailCall) { 7327 CLI.DAG.setRoot(CLI.Chain); 7328 return std::make_pair(SDValue(), SDValue()); 7329 } 7330 7331 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7332 assert(InVals[i].getNode() && 7333 "LowerCall emitted a null value!"); 7334 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7335 "LowerCall emitted a value with the wrong type!"); 7336 }); 7337 7338 SmallVector<SDValue, 4> ReturnValues; 7339 if (!CanLowerReturn) { 7340 // The instruction result is the result of loading from the 7341 // hidden sret parameter. 7342 SmallVector<EVT, 1> PVTs; 7343 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7344 7345 ComputeValueVTs(*this, PtrRetTy, PVTs); 7346 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7347 EVT PtrVT = PVTs[0]; 7348 7349 unsigned NumValues = RetTys.size(); 7350 ReturnValues.resize(NumValues); 7351 SmallVector<SDValue, 4> Chains(NumValues); 7352 7353 for (unsigned i = 0; i < NumValues; ++i) { 7354 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7355 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7356 SDValue L = CLI.DAG.getLoad( 7357 RetTys[i], CLI.DL, CLI.Chain, Add, 7358 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7359 false, false, 1); 7360 ReturnValues[i] = L; 7361 Chains[i] = L.getValue(1); 7362 } 7363 7364 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7365 } else { 7366 // Collect the legal value parts into potentially illegal values 7367 // that correspond to the original function's return values. 7368 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7369 if (CLI.RetSExt) 7370 AssertOp = ISD::AssertSext; 7371 else if (CLI.RetZExt) 7372 AssertOp = ISD::AssertZext; 7373 unsigned CurReg = 0; 7374 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7375 EVT VT = RetTys[I]; 7376 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7377 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7378 7379 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7380 NumRegs, RegisterVT, VT, nullptr, 7381 AssertOp)); 7382 CurReg += NumRegs; 7383 } 7384 7385 // For a function returning void, there is no return value. We can't create 7386 // such a node, so we just return a null return value in that case. In 7387 // that case, nothing will actually look at the value. 7388 if (ReturnValues.empty()) 7389 return std::make_pair(SDValue(), CLI.Chain); 7390 } 7391 7392 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7393 CLI.DAG.getVTList(RetTys), ReturnValues); 7394 return std::make_pair(Res, CLI.Chain); 7395 } 7396 7397 void TargetLowering::LowerOperationWrapper(SDNode *N, 7398 SmallVectorImpl<SDValue> &Results, 7399 SelectionDAG &DAG) const { 7400 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7401 if (Res.getNode()) 7402 Results.push_back(Res); 7403 } 7404 7405 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7406 llvm_unreachable("LowerOperation not implemented for this target!"); 7407 } 7408 7409 void 7410 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7411 SDValue Op = getNonRegisterValue(V); 7412 assert((Op.getOpcode() != ISD::CopyFromReg || 7413 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7414 "Copy from a reg to the same reg!"); 7415 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7416 7417 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7418 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7419 SDValue Chain = DAG.getEntryNode(); 7420 7421 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7422 FuncInfo.PreferredExtendType.end()) 7423 ? ISD::ANY_EXTEND 7424 : FuncInfo.PreferredExtendType[V]; 7425 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7426 PendingExports.push_back(Chain); 7427 } 7428 7429 #include "llvm/CodeGen/SelectionDAGISel.h" 7430 7431 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7432 /// entry block, return true. This includes arguments used by switches, since 7433 /// the switch may expand into multiple basic blocks. 7434 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7435 // With FastISel active, we may be splitting blocks, so force creation 7436 // of virtual registers for all non-dead arguments. 7437 if (FastISel) 7438 return A->use_empty(); 7439 7440 const BasicBlock *Entry = A->getParent()->begin(); 7441 for (const User *U : A->users()) 7442 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7443 return false; // Use not in entry block. 7444 7445 return true; 7446 } 7447 7448 void SelectionDAGISel::LowerArguments(const Function &F) { 7449 SelectionDAG &DAG = SDB->DAG; 7450 SDLoc dl = SDB->getCurSDLoc(); 7451 const DataLayout *DL = TLI->getDataLayout(); 7452 SmallVector<ISD::InputArg, 16> Ins; 7453 7454 if (!FuncInfo->CanLowerReturn) { 7455 // Put in an sret pointer parameter before all the other parameters. 7456 SmallVector<EVT, 1> ValueVTs; 7457 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7458 7459 // NOTE: Assuming that a pointer will never break down to more than one VT 7460 // or one register. 7461 ISD::ArgFlagsTy Flags; 7462 Flags.setSRet(); 7463 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7464 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7465 Ins.push_back(RetArg); 7466 } 7467 7468 // Set up the incoming argument description vector. 7469 unsigned Idx = 1; 7470 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7471 I != E; ++I, ++Idx) { 7472 SmallVector<EVT, 4> ValueVTs; 7473 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7474 bool isArgValueUsed = !I->use_empty(); 7475 unsigned PartBase = 0; 7476 Type *FinalType = I->getType(); 7477 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7478 FinalType = cast<PointerType>(FinalType)->getElementType(); 7479 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7480 FinalType, F.getCallingConv(), F.isVarArg()); 7481 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7482 Value != NumValues; ++Value) { 7483 EVT VT = ValueVTs[Value]; 7484 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7485 ISD::ArgFlagsTy Flags; 7486 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7487 7488 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7489 Flags.setZExt(); 7490 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7491 Flags.setSExt(); 7492 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7493 Flags.setInReg(); 7494 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7495 Flags.setSRet(); 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7497 Flags.setByVal(); 7498 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7499 Flags.setInAlloca(); 7500 // Set the byval flag for CCAssignFn callbacks that don't know about 7501 // inalloca. This way we can know how many bytes we should've allocated 7502 // and how many bytes a callee cleanup function will pop. If we port 7503 // inalloca to more targets, we'll have to add custom inalloca handling 7504 // in the various CC lowering callbacks. 7505 Flags.setByVal(); 7506 } 7507 if (Flags.isByVal() || Flags.isInAlloca()) { 7508 PointerType *Ty = cast<PointerType>(I->getType()); 7509 Type *ElementTy = Ty->getElementType(); 7510 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7511 // For ByVal, alignment should be passed from FE. BE will guess if 7512 // this info is not there but there are cases it cannot get right. 7513 unsigned FrameAlign; 7514 if (F.getParamAlignment(Idx)) 7515 FrameAlign = F.getParamAlignment(Idx); 7516 else 7517 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7518 Flags.setByValAlign(FrameAlign); 7519 } 7520 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7521 Flags.setNest(); 7522 if (NeedsRegBlock) { 7523 Flags.setInConsecutiveRegs(); 7524 if (Value == NumValues - 1) 7525 Flags.setInConsecutiveRegsLast(); 7526 } 7527 Flags.setOrigAlign(OriginalAlignment); 7528 7529 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7530 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7531 for (unsigned i = 0; i != NumRegs; ++i) { 7532 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7533 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7534 if (NumRegs > 1 && i == 0) 7535 MyFlags.Flags.setSplit(); 7536 // if it isn't first piece, alignment must be 1 7537 else if (i > 0) 7538 MyFlags.Flags.setOrigAlign(1); 7539 Ins.push_back(MyFlags); 7540 } 7541 PartBase += VT.getStoreSize(); 7542 } 7543 } 7544 7545 // Call the target to set up the argument values. 7546 SmallVector<SDValue, 8> InVals; 7547 SDValue NewRoot = TLI->LowerFormalArguments( 7548 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7549 7550 // Verify that the target's LowerFormalArguments behaved as expected. 7551 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7552 "LowerFormalArguments didn't return a valid chain!"); 7553 assert(InVals.size() == Ins.size() && 7554 "LowerFormalArguments didn't emit the correct number of values!"); 7555 DEBUG({ 7556 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7557 assert(InVals[i].getNode() && 7558 "LowerFormalArguments emitted a null value!"); 7559 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7560 "LowerFormalArguments emitted a value with the wrong type!"); 7561 } 7562 }); 7563 7564 // Update the DAG with the new chain value resulting from argument lowering. 7565 DAG.setRoot(NewRoot); 7566 7567 // Set up the argument values. 7568 unsigned i = 0; 7569 Idx = 1; 7570 if (!FuncInfo->CanLowerReturn) { 7571 // Create a virtual register for the sret pointer, and put in a copy 7572 // from the sret argument into it. 7573 SmallVector<EVT, 1> ValueVTs; 7574 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7575 MVT VT = ValueVTs[0].getSimpleVT(); 7576 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7577 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7578 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7579 RegVT, VT, nullptr, AssertOp); 7580 7581 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7582 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7583 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7584 FuncInfo->DemoteRegister = SRetReg; 7585 NewRoot = 7586 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7587 DAG.setRoot(NewRoot); 7588 7589 // i indexes lowered arguments. Bump it past the hidden sret argument. 7590 // Idx indexes LLVM arguments. Don't touch it. 7591 ++i; 7592 } 7593 7594 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7595 ++I, ++Idx) { 7596 SmallVector<SDValue, 4> ArgValues; 7597 SmallVector<EVT, 4> ValueVTs; 7598 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7599 unsigned NumValues = ValueVTs.size(); 7600 7601 // If this argument is unused then remember its value. It is used to generate 7602 // debugging information. 7603 if (I->use_empty() && NumValues) { 7604 SDB->setUnusedArgValue(I, InVals[i]); 7605 7606 // Also remember any frame index for use in FastISel. 7607 if (FrameIndexSDNode *FI = 7608 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7609 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7610 } 7611 7612 for (unsigned Val = 0; Val != NumValues; ++Val) { 7613 EVT VT = ValueVTs[Val]; 7614 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7615 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7616 7617 if (!I->use_empty()) { 7618 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7619 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7620 AssertOp = ISD::AssertSext; 7621 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7622 AssertOp = ISD::AssertZext; 7623 7624 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7625 NumParts, PartVT, VT, 7626 nullptr, AssertOp)); 7627 } 7628 7629 i += NumParts; 7630 } 7631 7632 // We don't need to do anything else for unused arguments. 7633 if (ArgValues.empty()) 7634 continue; 7635 7636 // Note down frame index. 7637 if (FrameIndexSDNode *FI = 7638 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7639 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7640 7641 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7642 SDB->getCurSDLoc()); 7643 7644 SDB->setValue(I, Res); 7645 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7646 if (LoadSDNode *LNode = 7647 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7648 if (FrameIndexSDNode *FI = 7649 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7650 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7651 } 7652 7653 // If this argument is live outside of the entry block, insert a copy from 7654 // wherever we got it to the vreg that other BB's will reference it as. 7655 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7656 // If we can, though, try to skip creating an unnecessary vreg. 7657 // FIXME: This isn't very clean... it would be nice to make this more 7658 // general. It's also subtly incompatible with the hacks FastISel 7659 // uses with vregs. 7660 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7661 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7662 FuncInfo->ValueMap[I] = Reg; 7663 continue; 7664 } 7665 } 7666 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7667 FuncInfo->InitializeRegForValue(I); 7668 SDB->CopyToExportRegsIfNeeded(I); 7669 } 7670 } 7671 7672 assert(i == InVals.size() && "Argument register count mismatch!"); 7673 7674 // Finally, if the target has anything special to do, allow it to do so. 7675 // FIXME: this should insert code into the DAG! 7676 EmitFunctionEntryCode(); 7677 } 7678 7679 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7680 /// ensure constants are generated when needed. Remember the virtual registers 7681 /// that need to be added to the Machine PHI nodes as input. We cannot just 7682 /// directly add them, because expansion might result in multiple MBB's for one 7683 /// BB. As such, the start of the BB might correspond to a different MBB than 7684 /// the end. 7685 /// 7686 void 7687 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7688 const TerminatorInst *TI = LLVMBB->getTerminator(); 7689 7690 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7691 7692 // Check successor nodes' PHI nodes that expect a constant to be available 7693 // from this block. 7694 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7695 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7696 if (!isa<PHINode>(SuccBB->begin())) continue; 7697 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7698 7699 // If this terminator has multiple identical successors (common for 7700 // switches), only handle each succ once. 7701 if (!SuccsHandled.insert(SuccMBB).second) 7702 continue; 7703 7704 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7705 7706 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7707 // nodes and Machine PHI nodes, but the incoming operands have not been 7708 // emitted yet. 7709 for (BasicBlock::const_iterator I = SuccBB->begin(); 7710 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7711 // Ignore dead phi's. 7712 if (PN->use_empty()) continue; 7713 7714 // Skip empty types 7715 if (PN->getType()->isEmptyTy()) 7716 continue; 7717 7718 unsigned Reg; 7719 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7720 7721 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7722 unsigned &RegOut = ConstantsOut[C]; 7723 if (RegOut == 0) { 7724 RegOut = FuncInfo.CreateRegs(C->getType()); 7725 CopyValueToVirtualRegister(C, RegOut); 7726 } 7727 Reg = RegOut; 7728 } else { 7729 DenseMap<const Value *, unsigned>::iterator I = 7730 FuncInfo.ValueMap.find(PHIOp); 7731 if (I != FuncInfo.ValueMap.end()) 7732 Reg = I->second; 7733 else { 7734 assert(isa<AllocaInst>(PHIOp) && 7735 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7736 "Didn't codegen value into a register!??"); 7737 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7738 CopyValueToVirtualRegister(PHIOp, Reg); 7739 } 7740 } 7741 7742 // Remember that this register needs to added to the machine PHI node as 7743 // the input for this MBB. 7744 SmallVector<EVT, 4> ValueVTs; 7745 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7746 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7747 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7748 EVT VT = ValueVTs[vti]; 7749 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7750 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7751 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7752 Reg += NumRegisters; 7753 } 7754 } 7755 } 7756 7757 ConstantsOut.clear(); 7758 } 7759 7760 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7761 /// is 0. 7762 MachineBasicBlock * 7763 SelectionDAGBuilder::StackProtectorDescriptor:: 7764 AddSuccessorMBB(const BasicBlock *BB, 7765 MachineBasicBlock *ParentMBB, 7766 MachineBasicBlock *SuccMBB) { 7767 // If SuccBB has not been created yet, create it. 7768 if (!SuccMBB) { 7769 MachineFunction *MF = ParentMBB->getParent(); 7770 MachineFunction::iterator BBI = ParentMBB; 7771 SuccMBB = MF->CreateMachineBasicBlock(BB); 7772 MF->insert(++BBI, SuccMBB); 7773 } 7774 // Add it as a successor of ParentMBB. 7775 ParentMBB->addSuccessor(SuccMBB); 7776 return SuccMBB; 7777 } 7778