1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 static cl::opt<bool> 83 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 84 cl::desc("Enable fast-math-flags for DAG nodes")); 85 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, unsigned NumParts, 104 MVT PartVT, EVT ValueVT, const Value *V); 105 106 /// getCopyFromParts - Create a value that contains the specified legal parts 107 /// combined into the value they represent. If the parts combine to a type 108 /// larger then ValueVT then AssertOp can be used to specify whether the extra 109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 110 /// (ISD::AssertSext). 111 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 112 const SDValue *Parts, 113 unsigned NumParts, MVT PartVT, EVT ValueVT, 114 const Value *V, 115 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 116 if (ValueVT.isVector()) 117 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 118 PartVT, ValueVT, V); 119 120 assert(NumParts > 0 && "No parts to assemble!"); 121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 122 SDValue Val = Parts[0]; 123 124 if (NumParts > 1) { 125 // Assemble the value from multiple parts. 126 if (ValueVT.isInteger()) { 127 unsigned PartBits = PartVT.getSizeInBits(); 128 unsigned ValueBits = ValueVT.getSizeInBits(); 129 130 // Assemble the power of 2 part. 131 unsigned RoundParts = NumParts & (NumParts - 1) ? 132 1 << Log2_32(NumParts) : NumParts; 133 unsigned RoundBits = PartBits * RoundParts; 134 EVT RoundVT = RoundBits == ValueBits ? 135 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 136 SDValue Lo, Hi; 137 138 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 139 140 if (RoundParts > 2) { 141 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 142 PartVT, HalfVT, V); 143 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 144 RoundParts / 2, PartVT, HalfVT, V); 145 } else { 146 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 147 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 148 } 149 150 if (DAG.getDataLayout().isBigEndian()) 151 std::swap(Lo, Hi); 152 153 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 154 155 if (RoundParts < NumParts) { 156 // Assemble the trailing non-power-of-2 part. 157 unsigned OddParts = NumParts - RoundParts; 158 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 159 Hi = getCopyFromParts(DAG, DL, 160 Parts + RoundParts, OddParts, PartVT, OddVT, V); 161 162 // Combine the round and odd parts. 163 Lo = Val; 164 if (DAG.getDataLayout().isBigEndian()) 165 std::swap(Lo, Hi); 166 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 167 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 168 Hi = 169 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 170 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 171 TLI.getPointerTy(DAG.getDataLayout()))); 172 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 173 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 174 } 175 } else if (PartVT.isFloatingPoint()) { 176 // FP split into multiple FP parts (for ppcf128) 177 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 178 "Unexpected split"); 179 SDValue Lo, Hi; 180 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 181 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 182 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 183 std::swap(Lo, Hi); 184 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 185 } else { 186 // FP split into integer parts (soft fp) 187 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 188 !PartVT.isVector() && "Unexpected split"); 189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 190 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 191 } 192 } 193 194 // There is now one part, held in Val. Correct it to match ValueVT. 195 EVT PartEVT = Val.getValueType(); 196 197 if (PartEVT == ValueVT) 198 return Val; 199 200 if (PartEVT.isInteger() && ValueVT.isInteger()) { 201 if (ValueVT.bitsLT(PartEVT)) { 202 // For a truncate, see if we have any information to 203 // indicate whether the truncated bits will always be 204 // zero or sign-extension. 205 if (AssertOp != ISD::DELETED_NODE) 206 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 207 DAG.getValueType(ValueVT)); 208 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 209 } 210 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 214 // FP_ROUND's are always exact here. 215 if (ValueVT.bitsLT(Val.getValueType())) 216 return DAG.getNode( 217 ISD::FP_ROUND, DL, ValueVT, Val, 218 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 219 220 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 224 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 225 226 llvm_unreachable("Unknown mismatch!"); 227 } 228 229 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 230 const Twine &ErrMsg) { 231 const Instruction *I = dyn_cast_or_null<Instruction>(V); 232 if (!V) 233 return Ctx.emitError(ErrMsg); 234 235 const char *AsmError = ", possible invalid constraint for vector type"; 236 if (const CallInst *CI = dyn_cast<CallInst>(I)) 237 if (isa<InlineAsm>(CI->getCalledValue())) 238 return Ctx.emitError(I, ErrMsg + AsmError); 239 240 return Ctx.emitError(I, ErrMsg); 241 } 242 243 /// getCopyFromPartsVector - Create a value that contains the specified legal 244 /// parts combined into the value they represent. If the parts combine to a 245 /// type larger then ValueVT then AssertOp can be used to specify whether the 246 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 247 /// ValueVT (ISD::AssertSext). 248 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 249 const SDValue *Parts, unsigned NumParts, 250 MVT PartVT, EVT ValueVT, const Value *V) { 251 assert(ValueVT.isVector() && "Not a vector value"); 252 assert(NumParts > 0 && "No parts to assemble!"); 253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 254 SDValue Val = Parts[0]; 255 256 // Handle a multi-element vector. 257 if (NumParts > 1) { 258 EVT IntermediateVT; 259 MVT RegisterVT; 260 unsigned NumIntermediates; 261 unsigned NumRegs = 262 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 263 NumIntermediates, RegisterVT); 264 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 265 NumParts = NumRegs; // Silence a compiler warning. 266 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 267 assert(RegisterVT.getSizeInBits() == 268 Parts[0].getSimpleValueType().getSizeInBits() && 269 "Part type sizes don't match!"); 270 271 // Assemble the parts into intermediate operands. 272 SmallVector<SDValue, 8> Ops(NumIntermediates); 273 if (NumIntermediates == NumParts) { 274 // If the register was not expanded, truncate or copy the value, 275 // as appropriate. 276 for (unsigned i = 0; i != NumParts; ++i) 277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 278 PartVT, IntermediateVT, V); 279 } else if (NumParts > 0) { 280 // If the intermediate type was expanded, build the intermediate 281 // operands from the parts. 282 assert(NumParts % NumIntermediates == 0 && 283 "Must expand into a divisible number of parts!"); 284 unsigned Factor = NumParts / NumIntermediates; 285 for (unsigned i = 0; i != NumIntermediates; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 287 PartVT, IntermediateVT, V); 288 } 289 290 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 291 // intermediate operands. 292 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 293 : ISD::BUILD_VECTOR, 294 DL, ValueVT, Ops); 295 } 296 297 // There is now one part, held in Val. Correct it to match ValueVT. 298 EVT PartEVT = Val.getValueType(); 299 300 if (PartEVT == ValueVT) 301 return Val; 302 303 if (PartEVT.isVector()) { 304 // If the element type of the source/dest vectors are the same, but the 305 // parts vector has more elements than the value vector, then we have a 306 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 307 // elements we want. 308 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 309 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 310 "Cannot narrow, it would be a lossy transformation"); 311 return DAG.getNode( 312 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 313 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 314 } 315 316 // Vector/Vector bitcast. 317 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 318 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 319 320 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 321 "Cannot handle this kind of promotion"); 322 // Promoted vector extract 323 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 324 325 } 326 327 // Trivial bitcast if the types are the same size and the destination 328 // vector type is legal. 329 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 330 TLI.isTypeLegal(ValueVT)) 331 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 332 333 // Handle cases such as i8 -> <1 x i1> 334 if (ValueVT.getVectorNumElements() != 1) { 335 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 336 "non-trivial scalar-to-vector conversion"); 337 return DAG.getUNDEF(ValueVT); 338 } 339 340 if (ValueVT.getVectorNumElements() == 1 && 341 ValueVT.getVectorElementType() != PartEVT) 342 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 unsigned PartBits = PartVT.getSizeInBits(); 365 unsigned OrigNumParts = NumParts; 366 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 367 "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (DAG.getDataLayout().isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (DAG.getDataLayout().isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode( 500 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 501 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 520 } else{ 521 // Vector -> scalar conversion. 522 assert(ValueVT.getVectorNumElements() == 1 && 523 "Only trivial vector-to-scalar conversions should get here!"); 524 Val = DAG.getNode( 525 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 526 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 527 528 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = 553 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 555 TLI.getVectorIdxTy(DAG.getDataLayout()))); 556 else 557 Ops[i] = DAG.getNode( 558 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 559 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 RegsForValue::RegsForValue() {} 581 582 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 583 EVT valuevt) 584 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 585 586 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 587 const DataLayout &DL, unsigned Reg, Type *Ty) { 588 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 589 590 for (EVT ValueVT : ValueVTs) { 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1163 llvm_unreachable("should never codegen catchpads"); 1164 } 1165 1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1167 // Update machine-CFG edge. 1168 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1169 FuncInfo.MBB->addSuccessor(TargetMBB); 1170 1171 // Create the terminator node. 1172 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1173 getControlRoot(), DAG.getBasicBlock(TargetMBB)); 1174 DAG.setRoot(Ret); 1175 } 1176 1177 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1178 llvm_unreachable("should never codegen catchendpads"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 // Don't emit any special code for the cleanuppad instruction. It just marks 1183 // the start of a funclet. 1184 FuncInfo.MBB->setIsEHFuncletEntry(); 1185 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1186 } 1187 1188 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1189 /// many places it could ultimately go. In the IR, we have a single unwind 1190 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1191 /// This function skips over imaginary basic blocks that hold catchpad, 1192 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1193 /// basic block destinations. 1194 static void 1195 findUnwindDestinations(FunctionLoweringInfo &FuncInfo, 1196 const BasicBlock *EHPadBB, 1197 SmallVectorImpl<MachineBasicBlock *> &UnwindDests) { 1198 bool IsMSVCCXX = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()) == 1199 EHPersonality::MSVC_CXX; 1200 while (EHPadBB) { 1201 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1202 if (isa<LandingPadInst>(Pad)) { 1203 // Stop on landingpads. They are not funclets. 1204 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1205 break; 1206 } else if (isa<CleanupPadInst>(Pad) || isa<LandingPadInst>(Pad)) { 1207 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1208 // personalities. 1209 UnwindDests.push_back(FuncInfo.MBBMap[EHPadBB]); 1210 UnwindDests.back()->setIsEHFuncletEntry(); 1211 break; 1212 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1213 // Add the catchpad handler to the possible destinations. 1214 UnwindDests.push_back(FuncInfo.MBBMap[CPI->getNormalDest()]); 1215 // In MSVC C++, catchblocks are funclets and need prologues. 1216 if (IsMSVCCXX) 1217 UnwindDests.back()->setIsEHFuncletEntry(); 1218 EHPadBB = CPI->getUnwindDest(); 1219 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) { 1220 EHPadBB = CEPI->getUnwindDest(); 1221 } else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) { 1222 EHPadBB = CEPI->getUnwindDest(); 1223 } 1224 } 1225 } 1226 1227 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1228 // Update successor info. 1229 // FIXME: The weights for catchpads will be wrong. 1230 SmallVector<MachineBasicBlock *, 1> UnwindDests; 1231 findUnwindDestinations(FuncInfo, I.getUnwindDest(), UnwindDests); 1232 for (MachineBasicBlock *UnwindDest : UnwindDests) { 1233 UnwindDest->setIsEHPad(); 1234 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest); 1235 } 1236 1237 // Create the terminator node. 1238 SDValue Ret = 1239 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1240 DAG.setRoot(Ret); 1241 } 1242 1243 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1244 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1245 } 1246 1247 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1248 report_fatal_error("visitTerminatePad not yet implemented!"); 1249 } 1250 1251 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1253 auto &DL = DAG.getDataLayout(); 1254 SDValue Chain = getControlRoot(); 1255 SmallVector<ISD::OutputArg, 8> Outs; 1256 SmallVector<SDValue, 8> OutVals; 1257 1258 if (!FuncInfo.CanLowerReturn) { 1259 unsigned DemoteReg = FuncInfo.DemoteRegister; 1260 const Function *F = I.getParent()->getParent(); 1261 1262 // Emit a store of the return value through the virtual register. 1263 // Leave Outs empty so that LowerReturn won't try to load return 1264 // registers the usual way. 1265 SmallVector<EVT, 1> PtrValueVTs; 1266 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1267 PtrValueVTs); 1268 1269 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1270 SDValue RetOp = getValue(I.getOperand(0)); 1271 1272 SmallVector<EVT, 4> ValueVTs; 1273 SmallVector<uint64_t, 4> Offsets; 1274 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1275 unsigned NumValues = ValueVTs.size(); 1276 1277 SmallVector<SDValue, 4> Chains(NumValues); 1278 for (unsigned i = 0; i != NumValues; ++i) { 1279 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1280 RetPtr.getValueType(), RetPtr, 1281 DAG.getIntPtrConstant(Offsets[i], 1282 getCurSDLoc())); 1283 Chains[i] = 1284 DAG.getStore(Chain, getCurSDLoc(), 1285 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1286 // FIXME: better loc info would be nice. 1287 Add, MachinePointerInfo(), false, false, 0); 1288 } 1289 1290 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1291 MVT::Other, Chains); 1292 } else if (I.getNumOperands() != 0) { 1293 SmallVector<EVT, 4> ValueVTs; 1294 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1295 unsigned NumValues = ValueVTs.size(); 1296 if (NumValues) { 1297 SDValue RetOp = getValue(I.getOperand(0)); 1298 1299 const Function *F = I.getParent()->getParent(); 1300 1301 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1302 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1303 Attribute::SExt)) 1304 ExtendKind = ISD::SIGN_EXTEND; 1305 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1306 Attribute::ZExt)) 1307 ExtendKind = ISD::ZERO_EXTEND; 1308 1309 LLVMContext &Context = F->getContext(); 1310 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1311 Attribute::InReg); 1312 1313 for (unsigned j = 0; j != NumValues; ++j) { 1314 EVT VT = ValueVTs[j]; 1315 1316 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1317 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1318 1319 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1320 MVT PartVT = TLI.getRegisterType(Context, VT); 1321 SmallVector<SDValue, 4> Parts(NumParts); 1322 getCopyToParts(DAG, getCurSDLoc(), 1323 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1324 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1325 1326 // 'inreg' on function refers to return value 1327 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1328 if (RetInReg) 1329 Flags.setInReg(); 1330 1331 // Propagate extension type if any 1332 if (ExtendKind == ISD::SIGN_EXTEND) 1333 Flags.setSExt(); 1334 else if (ExtendKind == ISD::ZERO_EXTEND) 1335 Flags.setZExt(); 1336 1337 for (unsigned i = 0; i < NumParts; ++i) { 1338 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1339 VT, /*isfixed=*/true, 0, 0)); 1340 OutVals.push_back(Parts[i]); 1341 } 1342 } 1343 } 1344 } 1345 1346 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1347 CallingConv::ID CallConv = 1348 DAG.getMachineFunction().getFunction()->getCallingConv(); 1349 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1350 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1351 1352 // Verify that the target's LowerReturn behaved as expected. 1353 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1354 "LowerReturn didn't return a valid chain!"); 1355 1356 // Update the DAG with the new chain value resulting from return lowering. 1357 DAG.setRoot(Chain); 1358 } 1359 1360 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1361 /// created for it, emit nodes to copy the value into the virtual 1362 /// registers. 1363 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1364 // Skip empty types 1365 if (V->getType()->isEmptyTy()) 1366 return; 1367 1368 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1369 if (VMI != FuncInfo.ValueMap.end()) { 1370 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1371 CopyValueToVirtualRegister(V, VMI->second); 1372 } 1373 } 1374 1375 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1376 /// the current basic block, add it to ValueMap now so that we'll get a 1377 /// CopyTo/FromReg. 1378 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1379 // No need to export constants. 1380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1381 1382 // Already exported? 1383 if (FuncInfo.isExportedInst(V)) return; 1384 1385 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1386 CopyValueToVirtualRegister(V, Reg); 1387 } 1388 1389 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1390 const BasicBlock *FromBB) { 1391 // The operands of the setcc have to be in this block. We don't know 1392 // how to export them from some other block. 1393 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1394 // Can export from current BB. 1395 if (VI->getParent() == FromBB) 1396 return true; 1397 1398 // Is already exported, noop. 1399 return FuncInfo.isExportedInst(V); 1400 } 1401 1402 // If this is an argument, we can export it if the BB is the entry block or 1403 // if it is already exported. 1404 if (isa<Argument>(V)) { 1405 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1406 return true; 1407 1408 // Otherwise, can only export this if it is already exported. 1409 return FuncInfo.isExportedInst(V); 1410 } 1411 1412 // Otherwise, constants can always be exported. 1413 return true; 1414 } 1415 1416 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1417 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1418 const MachineBasicBlock *Dst) const { 1419 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1420 if (!BPI) 1421 return 0; 1422 const BasicBlock *SrcBB = Src->getBasicBlock(); 1423 const BasicBlock *DstBB = Dst->getBasicBlock(); 1424 return BPI->getEdgeWeight(SrcBB, DstBB); 1425 } 1426 1427 void SelectionDAGBuilder:: 1428 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1429 uint32_t Weight /* = 0 */) { 1430 if (!Weight) 1431 Weight = getEdgeWeight(Src, Dst); 1432 Src->addSuccessor(Dst, Weight); 1433 } 1434 1435 1436 static bool InBlock(const Value *V, const BasicBlock *BB) { 1437 if (const Instruction *I = dyn_cast<Instruction>(V)) 1438 return I->getParent() == BB; 1439 return true; 1440 } 1441 1442 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1443 /// This function emits a branch and is used at the leaves of an OR or an 1444 /// AND operator tree. 1445 /// 1446 void 1447 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1448 MachineBasicBlock *TBB, 1449 MachineBasicBlock *FBB, 1450 MachineBasicBlock *CurBB, 1451 MachineBasicBlock *SwitchBB, 1452 uint32_t TWeight, 1453 uint32_t FWeight) { 1454 const BasicBlock *BB = CurBB->getBasicBlock(); 1455 1456 // If the leaf of the tree is a comparison, merge the condition into 1457 // the caseblock. 1458 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1459 // The operands of the cmp have to be in this block. We don't know 1460 // how to export them from some other block. If this is the first block 1461 // of the sequence, no exporting is needed. 1462 if (CurBB == SwitchBB || 1463 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1464 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1465 ISD::CondCode Condition; 1466 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1467 Condition = getICmpCondCode(IC->getPredicate()); 1468 } else { 1469 const FCmpInst *FC = cast<FCmpInst>(Cond); 1470 Condition = getFCmpCondCode(FC->getPredicate()); 1471 if (TM.Options.NoNaNsFPMath) 1472 Condition = getFCmpCodeWithoutNaN(Condition); 1473 } 1474 1475 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1476 TBB, FBB, CurBB, TWeight, FWeight); 1477 SwitchCases.push_back(CB); 1478 return; 1479 } 1480 } 1481 1482 // Create a CaseBlock record representing this branch. 1483 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1484 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1485 SwitchCases.push_back(CB); 1486 } 1487 1488 /// Scale down both weights to fit into uint32_t. 1489 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1490 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1491 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1492 NewTrue = NewTrue / Scale; 1493 NewFalse = NewFalse / Scale; 1494 } 1495 1496 /// FindMergedConditions - If Cond is an expression like 1497 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1498 MachineBasicBlock *TBB, 1499 MachineBasicBlock *FBB, 1500 MachineBasicBlock *CurBB, 1501 MachineBasicBlock *SwitchBB, 1502 Instruction::BinaryOps Opc, 1503 uint32_t TWeight, 1504 uint32_t FWeight) { 1505 // If this node is not part of the or/and tree, emit it as a branch. 1506 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1507 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1508 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1509 BOp->getParent() != CurBB->getBasicBlock() || 1510 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1511 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1512 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1513 TWeight, FWeight); 1514 return; 1515 } 1516 1517 // Create TmpBB after CurBB. 1518 MachineFunction::iterator BBI = CurBB; 1519 MachineFunction &MF = DAG.getMachineFunction(); 1520 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1521 CurBB->getParent()->insert(++BBI, TmpBB); 1522 1523 if (Opc == Instruction::Or) { 1524 // Codegen X | Y as: 1525 // BB1: 1526 // jmp_if_X TBB 1527 // jmp TmpBB 1528 // TmpBB: 1529 // jmp_if_Y TBB 1530 // jmp FBB 1531 // 1532 1533 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1534 // The requirement is that 1535 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1536 // = TrueProb for original BB. 1537 // Assuming the original weights are A and B, one choice is to set BB1's 1538 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1539 // assumes that 1540 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1541 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1542 // TmpBB, but the math is more complicated. 1543 1544 uint64_t NewTrueWeight = TWeight; 1545 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1546 ScaleWeights(NewTrueWeight, NewFalseWeight); 1547 // Emit the LHS condition. 1548 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1549 NewTrueWeight, NewFalseWeight); 1550 1551 NewTrueWeight = TWeight; 1552 NewFalseWeight = 2 * (uint64_t)FWeight; 1553 ScaleWeights(NewTrueWeight, NewFalseWeight); 1554 // Emit the RHS condition into TmpBB. 1555 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1556 NewTrueWeight, NewFalseWeight); 1557 } else { 1558 assert(Opc == Instruction::And && "Unknown merge op!"); 1559 // Codegen X & Y as: 1560 // BB1: 1561 // jmp_if_X TmpBB 1562 // jmp FBB 1563 // TmpBB: 1564 // jmp_if_Y TBB 1565 // jmp FBB 1566 // 1567 // This requires creation of TmpBB after CurBB. 1568 1569 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1570 // The requirement is that 1571 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1572 // = FalseProb for original BB. 1573 // Assuming the original weights are A and B, one choice is to set BB1's 1574 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1575 // assumes that 1576 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1577 1578 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1579 uint64_t NewFalseWeight = FWeight; 1580 ScaleWeights(NewTrueWeight, NewFalseWeight); 1581 // Emit the LHS condition. 1582 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1583 NewTrueWeight, NewFalseWeight); 1584 1585 NewTrueWeight = 2 * (uint64_t)TWeight; 1586 NewFalseWeight = FWeight; 1587 ScaleWeights(NewTrueWeight, NewFalseWeight); 1588 // Emit the RHS condition into TmpBB. 1589 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1590 NewTrueWeight, NewFalseWeight); 1591 } 1592 } 1593 1594 /// If the set of cases should be emitted as a series of branches, return true. 1595 /// If we should emit this as a bunch of and/or'd together conditions, return 1596 /// false. 1597 bool 1598 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1599 if (Cases.size() != 2) return true; 1600 1601 // If this is two comparisons of the same values or'd or and'd together, they 1602 // will get folded into a single comparison, so don't emit two blocks. 1603 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1604 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1605 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1606 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1607 return false; 1608 } 1609 1610 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1611 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1612 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1613 Cases[0].CC == Cases[1].CC && 1614 isa<Constant>(Cases[0].CmpRHS) && 1615 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1616 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1617 return false; 1618 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1626 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1627 1628 // Update machine-CFG edges. 1629 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1630 1631 if (I.isUnconditional()) { 1632 // Update machine-CFG edges. 1633 BrMBB->addSuccessor(Succ0MBB); 1634 1635 // If this is not a fall-through branch or optimizations are switched off, 1636 // emit the branch. 1637 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1638 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1639 MVT::Other, getControlRoot(), 1640 DAG.getBasicBlock(Succ0MBB))); 1641 1642 return; 1643 } 1644 1645 // If this condition is one of the special cases we handle, do special stuff 1646 // now. 1647 const Value *CondVal = I.getCondition(); 1648 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1649 1650 // If this is a series of conditions that are or'd or and'd together, emit 1651 // this as a sequence of branches instead of setcc's with and/or operations. 1652 // As long as jumps are not expensive, this should improve performance. 1653 // For example, instead of something like: 1654 // cmp A, B 1655 // C = seteq 1656 // cmp D, E 1657 // F = setle 1658 // or C, F 1659 // jnz foo 1660 // Emit: 1661 // cmp A, B 1662 // je foo 1663 // cmp D, E 1664 // jle foo 1665 // 1666 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1667 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1668 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1669 !I.getMetadata(LLVMContext::MD_unpredictable) && 1670 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1671 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1672 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1673 getEdgeWeight(BrMBB, Succ1MBB)); 1674 // If the compares in later blocks need to use values not currently 1675 // exported from this block, export them now. This block should always 1676 // be the first entry. 1677 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1678 1679 // Allow some cases to be rejected. 1680 if (ShouldEmitAsBranches(SwitchCases)) { 1681 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1682 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1683 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1684 } 1685 1686 // Emit the branch for this block. 1687 visitSwitchCase(SwitchCases[0], BrMBB); 1688 SwitchCases.erase(SwitchCases.begin()); 1689 return; 1690 } 1691 1692 // Okay, we decided not to do this, remove any inserted MBB's and clear 1693 // SwitchCases. 1694 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1695 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1696 1697 SwitchCases.clear(); 1698 } 1699 } 1700 1701 // Create a CaseBlock record representing this branch. 1702 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1703 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1704 1705 // Use visitSwitchCase to actually insert the fast branch sequence for this 1706 // cond branch. 1707 visitSwitchCase(CB, BrMBB); 1708 } 1709 1710 /// visitSwitchCase - Emits the necessary code to represent a single node in 1711 /// the binary search tree resulting from lowering a switch instruction. 1712 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1713 MachineBasicBlock *SwitchBB) { 1714 SDValue Cond; 1715 SDValue CondLHS = getValue(CB.CmpLHS); 1716 SDLoc dl = getCurSDLoc(); 1717 1718 // Build the setcc now. 1719 if (!CB.CmpMHS) { 1720 // Fold "(X == true)" to X and "(X == false)" to !X to 1721 // handle common cases produced by branch lowering. 1722 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1723 CB.CC == ISD::SETEQ) 1724 Cond = CondLHS; 1725 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1726 CB.CC == ISD::SETEQ) { 1727 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1728 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1729 } else 1730 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1731 } else { 1732 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1733 1734 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1735 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1736 1737 SDValue CmpOp = getValue(CB.CmpMHS); 1738 EVT VT = CmpOp.getValueType(); 1739 1740 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1741 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1742 ISD::SETLE); 1743 } else { 1744 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1745 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1746 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1747 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1748 } 1749 } 1750 1751 // Update successor info 1752 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1753 // TrueBB and FalseBB are always different unless the incoming IR is 1754 // degenerate. This only happens when running llc on weird IR. 1755 if (CB.TrueBB != CB.FalseBB) 1756 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1757 1758 // If the lhs block is the next block, invert the condition so that we can 1759 // fall through to the lhs instead of the rhs block. 1760 if (CB.TrueBB == NextBlock(SwitchBB)) { 1761 std::swap(CB.TrueBB, CB.FalseBB); 1762 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1763 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1764 } 1765 1766 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1767 MVT::Other, getControlRoot(), Cond, 1768 DAG.getBasicBlock(CB.TrueBB)); 1769 1770 // Insert the false branch. Do this even if it's a fall through branch, 1771 // this makes it easier to do DAG optimizations which require inverting 1772 // the branch condition. 1773 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1774 DAG.getBasicBlock(CB.FalseBB)); 1775 1776 DAG.setRoot(BrCond); 1777 } 1778 1779 /// visitJumpTable - Emit JumpTable node in the current MBB 1780 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1781 // Emit the code for the jump table 1782 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1783 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1784 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1785 JT.Reg, PTy); 1786 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1787 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1788 MVT::Other, Index.getValue(1), 1789 Table, Index); 1790 DAG.setRoot(BrJumpTable); 1791 } 1792 1793 /// visitJumpTableHeader - This function emits necessary code to produce index 1794 /// in the JumpTable from switch case. 1795 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1796 JumpTableHeader &JTH, 1797 MachineBasicBlock *SwitchBB) { 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // Subtract the lowest switch case value from the value being switched on and 1801 // conditional branch to default mbb if the result is greater than the 1802 // difference between smallest and largest cases. 1803 SDValue SwitchOp = getValue(JTH.SValue); 1804 EVT VT = SwitchOp.getValueType(); 1805 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1806 DAG.getConstant(JTH.First, dl, VT)); 1807 1808 // The SDNode we just created, which holds the value being switched on minus 1809 // the smallest case value, needs to be copied to a virtual register so it 1810 // can be used as an index into the jump table in a subsequent basic block. 1811 // This value may be smaller or larger than the target's pointer type, and 1812 // therefore require extension or truncating. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1815 1816 unsigned JumpTableReg = 1817 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1818 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1819 JumpTableReg, SwitchOp); 1820 JT.Reg = JumpTableReg; 1821 1822 // Emit the range check for the jump table, and branch to the default block 1823 // for the switch statement if the value being switched on exceeds the largest 1824 // case in the switch. 1825 SDValue CMP = DAG.getSetCC( 1826 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1827 Sub.getValueType()), 1828 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1829 1830 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1831 MVT::Other, CopyTo, CMP, 1832 DAG.getBasicBlock(JT.Default)); 1833 1834 // Avoid emitting unnecessary branches to the next block. 1835 if (JT.MBB != NextBlock(SwitchBB)) 1836 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1837 DAG.getBasicBlock(JT.MBB)); 1838 1839 DAG.setRoot(BrCond); 1840 } 1841 1842 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1843 /// tail spliced into a stack protector check success bb. 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1849 MachineBasicBlock *ParentBB) { 1850 1851 // First create the loads to the guard/stack slot for the comparison. 1852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1853 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1854 1855 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1856 int FI = MFI->getStackProtectorIndex(); 1857 1858 const Value *IRGuard = SPD.getGuard(); 1859 SDValue GuardPtr = getValue(IRGuard); 1860 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1861 1862 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1863 1864 SDValue Guard; 1865 SDLoc dl = getCurSDLoc(); 1866 1867 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1868 // guard value from the virtual register holding the value. Otherwise, emit a 1869 // volatile load to retrieve the stack guard value. 1870 unsigned GuardReg = SPD.getGuardReg(); 1871 1872 if (GuardReg && TLI.useLoadStackGuardNode()) 1873 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1874 PtrTy); 1875 else 1876 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1877 GuardPtr, MachinePointerInfo(IRGuard, 0), 1878 true, false, false, Align); 1879 1880 SDValue StackSlot = DAG.getLoad( 1881 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1882 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1883 false, false, Align); 1884 1885 // Perform the comparison via a subtract/getsetcc. 1886 EVT VT = Guard.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1888 1889 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1890 *DAG.getContext(), 1891 Sub.getValueType()), 1892 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1893 1894 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1895 // branch to failure MBB. 1896 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1897 MVT::Other, StackSlot.getOperand(0), 1898 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1899 // Otherwise branch to success MBB. 1900 SDValue Br = DAG.getNode(ISD::BR, dl, 1901 MVT::Other, BrCond, 1902 DAG.getBasicBlock(SPD.getSuccessMBB())); 1903 1904 DAG.setRoot(Br); 1905 } 1906 1907 /// Codegen the failure basic block for a stack protector check. 1908 /// 1909 /// A failure stack protector machine basic block consists simply of a call to 1910 /// __stack_chk_fail(). 1911 /// 1912 /// For a high level explanation of how this fits into the stack protector 1913 /// generation see the comment on the declaration of class 1914 /// StackProtectorDescriptor. 1915 void 1916 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1917 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1918 SDValue Chain = 1919 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1920 nullptr, 0, false, getCurSDLoc(), false, false).second; 1921 DAG.setRoot(Chain); 1922 } 1923 1924 /// visitBitTestHeader - This function emits necessary code to produce value 1925 /// suitable for "bit tests" 1926 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1927 MachineBasicBlock *SwitchBB) { 1928 SDLoc dl = getCurSDLoc(); 1929 1930 // Subtract the minimum value 1931 SDValue SwitchOp = getValue(B.SValue); 1932 EVT VT = SwitchOp.getValueType(); 1933 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1934 DAG.getConstant(B.First, dl, VT)); 1935 1936 // Check range 1937 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1938 SDValue RangeCmp = DAG.getSetCC( 1939 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1940 Sub.getValueType()), 1941 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1942 1943 // Determine the type of the test operands. 1944 bool UsePtrType = false; 1945 if (!TLI.isTypeLegal(VT)) 1946 UsePtrType = true; 1947 else { 1948 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1949 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1950 // Switch table case range are encoded into series of masks. 1951 // Just use pointer type, it's guaranteed to fit. 1952 UsePtrType = true; 1953 break; 1954 } 1955 } 1956 if (UsePtrType) { 1957 VT = TLI.getPointerTy(DAG.getDataLayout()); 1958 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1959 } 1960 1961 B.RegVT = VT.getSimpleVT(); 1962 B.Reg = FuncInfo.CreateReg(B.RegVT); 1963 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1964 1965 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1966 1967 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 1968 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 1969 1970 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1971 MVT::Other, CopyTo, RangeCmp, 1972 DAG.getBasicBlock(B.Default)); 1973 1974 // Avoid emitting unnecessary branches to the next block. 1975 if (MBB != NextBlock(SwitchBB)) 1976 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1977 DAG.getBasicBlock(MBB)); 1978 1979 DAG.setRoot(BrRange); 1980 } 1981 1982 /// visitBitTestCase - this function produces one "bit test" 1983 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1984 MachineBasicBlock* NextMBB, 1985 uint32_t BranchWeightToNext, 1986 unsigned Reg, 1987 BitTestCase &B, 1988 MachineBasicBlock *SwitchBB) { 1989 SDLoc dl = getCurSDLoc(); 1990 MVT VT = BB.RegVT; 1991 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1992 SDValue Cmp; 1993 unsigned PopCount = countPopulation(B.Mask); 1994 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1995 if (PopCount == 1) { 1996 // Testing for a single bit; just compare the shift count with what it 1997 // would need to be to shift a 1 bit in that position. 1998 Cmp = DAG.getSetCC( 1999 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2000 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2001 ISD::SETEQ); 2002 } else if (PopCount == BB.Range) { 2003 // There is only one zero bit in the range, test for it directly. 2004 Cmp = DAG.getSetCC( 2005 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2006 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2007 ISD::SETNE); 2008 } else { 2009 // Make desired shift 2010 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2011 DAG.getConstant(1, dl, VT), ShiftOp); 2012 2013 // Emit bit tests and jumps 2014 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2015 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2016 Cmp = DAG.getSetCC( 2017 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2018 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2019 } 2020 2021 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2022 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2023 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2024 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2025 2026 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2027 MVT::Other, getControlRoot(), 2028 Cmp, DAG.getBasicBlock(B.TargetBB)); 2029 2030 // Avoid emitting unnecessary branches to the next block. 2031 if (NextMBB != NextBlock(SwitchBB)) 2032 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2033 DAG.getBasicBlock(NextMBB)); 2034 2035 DAG.setRoot(BrAnd); 2036 } 2037 2038 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2039 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2040 2041 // Retrieve successors. Look through artificial IR level blocks like catchpads 2042 // and catchendpads for successors. 2043 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2044 const BasicBlock *EHPadBB = I.getSuccessor(1); 2045 2046 const Value *Callee(I.getCalledValue()); 2047 const Function *Fn = dyn_cast<Function>(Callee); 2048 if (isa<InlineAsm>(Callee)) 2049 visitInlineAsm(&I); 2050 else if (Fn && Fn->isIntrinsic()) { 2051 switch (Fn->getIntrinsicID()) { 2052 default: 2053 llvm_unreachable("Cannot invoke this intrinsic"); 2054 case Intrinsic::donothing: 2055 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2056 break; 2057 case Intrinsic::experimental_patchpoint_void: 2058 case Intrinsic::experimental_patchpoint_i64: 2059 visitPatchpoint(&I, EHPadBB); 2060 break; 2061 case Intrinsic::experimental_gc_statepoint: 2062 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2063 break; 2064 } 2065 } else 2066 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2067 2068 // If the value of the invoke is used outside of its defining block, make it 2069 // available as a virtual register. 2070 // We already took care of the exported value for the statepoint instruction 2071 // during call to the LowerStatepoint. 2072 if (!isStatepoint(I)) { 2073 CopyToExportRegsIfNeeded(&I); 2074 } 2075 2076 SmallVector<MachineBasicBlock *, 1> UnwindDests; 2077 findUnwindDestinations(FuncInfo, EHPadBB, UnwindDests); 2078 2079 // Update successor info. 2080 // FIXME: The weights for catchpads will be wrong. 2081 addSuccessorWithWeight(InvokeMBB, Return); 2082 for (MachineBasicBlock *UnwindDest : UnwindDests) { 2083 UnwindDest->setIsEHPad(); 2084 addSuccessorWithWeight(InvokeMBB, UnwindDest); 2085 } 2086 2087 // Drop into normal successor. 2088 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2089 MVT::Other, getControlRoot(), 2090 DAG.getBasicBlock(Return))); 2091 } 2092 2093 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2094 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2095 } 2096 2097 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2098 assert(FuncInfo.MBB->isEHPad() && 2099 "Call to landingpad not in landing pad!"); 2100 2101 MachineBasicBlock *MBB = FuncInfo.MBB; 2102 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2103 AddLandingPadInfo(LP, MMI, MBB); 2104 2105 // If there aren't registers to copy the values into (e.g., during SjLj 2106 // exceptions), then don't bother to create these DAG nodes. 2107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2108 if (TLI.getExceptionPointerRegister() == 0 && 2109 TLI.getExceptionSelectorRegister() == 0) 2110 return; 2111 2112 SmallVector<EVT, 2> ValueVTs; 2113 SDLoc dl = getCurSDLoc(); 2114 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2115 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2116 2117 // Get the two live-in registers as SDValues. The physregs have already been 2118 // copied into virtual registers. 2119 SDValue Ops[2]; 2120 if (FuncInfo.ExceptionPointerVirtReg) { 2121 Ops[0] = DAG.getZExtOrTrunc( 2122 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2123 FuncInfo.ExceptionPointerVirtReg, 2124 TLI.getPointerTy(DAG.getDataLayout())), 2125 dl, ValueVTs[0]); 2126 } else { 2127 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2128 } 2129 Ops[1] = DAG.getZExtOrTrunc( 2130 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2131 FuncInfo.ExceptionSelectorVirtReg, 2132 TLI.getPointerTy(DAG.getDataLayout())), 2133 dl, ValueVTs[1]); 2134 2135 // Merge into one. 2136 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2137 DAG.getVTList(ValueVTs), Ops); 2138 setValue(&LP, Res); 2139 } 2140 2141 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2142 #ifndef NDEBUG 2143 for (const CaseCluster &CC : Clusters) 2144 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2145 #endif 2146 2147 std::sort(Clusters.begin(), Clusters.end(), 2148 [](const CaseCluster &a, const CaseCluster &b) { 2149 return a.Low->getValue().slt(b.Low->getValue()); 2150 }); 2151 2152 // Merge adjacent clusters with the same destination. 2153 const unsigned N = Clusters.size(); 2154 unsigned DstIndex = 0; 2155 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2156 CaseCluster &CC = Clusters[SrcIndex]; 2157 const ConstantInt *CaseVal = CC.Low; 2158 MachineBasicBlock *Succ = CC.MBB; 2159 2160 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2161 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2162 // If this case has the same successor and is a neighbour, merge it into 2163 // the previous cluster. 2164 Clusters[DstIndex - 1].High = CaseVal; 2165 Clusters[DstIndex - 1].Weight += CC.Weight; 2166 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2167 } else { 2168 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2169 sizeof(Clusters[SrcIndex])); 2170 } 2171 } 2172 Clusters.resize(DstIndex); 2173 } 2174 2175 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2176 MachineBasicBlock *Last) { 2177 // Update JTCases. 2178 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2179 if (JTCases[i].first.HeaderBB == First) 2180 JTCases[i].first.HeaderBB = Last; 2181 2182 // Update BitTestCases. 2183 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2184 if (BitTestCases[i].Parent == First) 2185 BitTestCases[i].Parent = Last; 2186 } 2187 2188 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2189 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2190 2191 // Update machine-CFG edges with unique successors. 2192 SmallSet<BasicBlock*, 32> Done; 2193 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2194 BasicBlock *BB = I.getSuccessor(i); 2195 bool Inserted = Done.insert(BB).second; 2196 if (!Inserted) 2197 continue; 2198 2199 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2200 addSuccessorWithWeight(IndirectBrMBB, Succ); 2201 } 2202 2203 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2204 MVT::Other, getControlRoot(), 2205 getValue(I.getAddress()))); 2206 } 2207 2208 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {} 2209 2210 void SelectionDAGBuilder::visitFSub(const User &I) { 2211 // -0.0 - X --> fneg 2212 Type *Ty = I.getType(); 2213 if (isa<Constant>(I.getOperand(0)) && 2214 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2215 SDValue Op2 = getValue(I.getOperand(1)); 2216 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2217 Op2.getValueType(), Op2)); 2218 return; 2219 } 2220 2221 visitBinary(I, ISD::FSUB); 2222 } 2223 2224 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2225 SDValue Op1 = getValue(I.getOperand(0)); 2226 SDValue Op2 = getValue(I.getOperand(1)); 2227 2228 bool nuw = false; 2229 bool nsw = false; 2230 bool exact = false; 2231 FastMathFlags FMF; 2232 2233 if (const OverflowingBinaryOperator *OFBinOp = 2234 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2235 nuw = OFBinOp->hasNoUnsignedWrap(); 2236 nsw = OFBinOp->hasNoSignedWrap(); 2237 } 2238 if (const PossiblyExactOperator *ExactOp = 2239 dyn_cast<const PossiblyExactOperator>(&I)) 2240 exact = ExactOp->isExact(); 2241 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2242 FMF = FPOp->getFastMathFlags(); 2243 2244 SDNodeFlags Flags; 2245 Flags.setExact(exact); 2246 Flags.setNoSignedWrap(nsw); 2247 Flags.setNoUnsignedWrap(nuw); 2248 if (EnableFMFInDAG) { 2249 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2250 Flags.setNoInfs(FMF.noInfs()); 2251 Flags.setNoNaNs(FMF.noNaNs()); 2252 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2253 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2254 } 2255 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2256 Op1, Op2, &Flags); 2257 setValue(&I, BinNodeValue); 2258 } 2259 2260 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2261 SDValue Op1 = getValue(I.getOperand(0)); 2262 SDValue Op2 = getValue(I.getOperand(1)); 2263 2264 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2265 Op2.getValueType(), DAG.getDataLayout()); 2266 2267 // Coerce the shift amount to the right type if we can. 2268 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2269 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2270 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2271 SDLoc DL = getCurSDLoc(); 2272 2273 // If the operand is smaller than the shift count type, promote it. 2274 if (ShiftSize > Op2Size) 2275 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2276 2277 // If the operand is larger than the shift count type but the shift 2278 // count type has enough bits to represent any shift value, truncate 2279 // it now. This is a common case and it exposes the truncate to 2280 // optimization early. 2281 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2282 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2283 // Otherwise we'll need to temporarily settle for some other convenient 2284 // type. Type legalization will make adjustments once the shiftee is split. 2285 else 2286 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2287 } 2288 2289 bool nuw = false; 2290 bool nsw = false; 2291 bool exact = false; 2292 2293 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2294 2295 if (const OverflowingBinaryOperator *OFBinOp = 2296 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2297 nuw = OFBinOp->hasNoUnsignedWrap(); 2298 nsw = OFBinOp->hasNoSignedWrap(); 2299 } 2300 if (const PossiblyExactOperator *ExactOp = 2301 dyn_cast<const PossiblyExactOperator>(&I)) 2302 exact = ExactOp->isExact(); 2303 } 2304 SDNodeFlags Flags; 2305 Flags.setExact(exact); 2306 Flags.setNoSignedWrap(nsw); 2307 Flags.setNoUnsignedWrap(nuw); 2308 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2309 &Flags); 2310 setValue(&I, Res); 2311 } 2312 2313 void SelectionDAGBuilder::visitSDiv(const User &I) { 2314 SDValue Op1 = getValue(I.getOperand(0)); 2315 SDValue Op2 = getValue(I.getOperand(1)); 2316 2317 SDNodeFlags Flags; 2318 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2319 cast<PossiblyExactOperator>(&I)->isExact()); 2320 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2321 Op2, &Flags)); 2322 } 2323 2324 void SelectionDAGBuilder::visitICmp(const User &I) { 2325 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2326 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2327 predicate = IC->getPredicate(); 2328 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2329 predicate = ICmpInst::Predicate(IC->getPredicate()); 2330 SDValue Op1 = getValue(I.getOperand(0)); 2331 SDValue Op2 = getValue(I.getOperand(1)); 2332 ISD::CondCode Opcode = getICmpCondCode(predicate); 2333 2334 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2335 I.getType()); 2336 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2337 } 2338 2339 void SelectionDAGBuilder::visitFCmp(const User &I) { 2340 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2341 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2342 predicate = FC->getPredicate(); 2343 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2344 predicate = FCmpInst::Predicate(FC->getPredicate()); 2345 SDValue Op1 = getValue(I.getOperand(0)); 2346 SDValue Op2 = getValue(I.getOperand(1)); 2347 ISD::CondCode Condition = getFCmpCondCode(predicate); 2348 2349 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2350 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2351 // further optimization, but currently FMF is only applicable to binary nodes. 2352 if (TM.Options.NoNaNsFPMath) 2353 Condition = getFCmpCodeWithoutNaN(Condition); 2354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2355 I.getType()); 2356 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2357 } 2358 2359 void SelectionDAGBuilder::visitSelect(const User &I) { 2360 SmallVector<EVT, 4> ValueVTs; 2361 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2362 ValueVTs); 2363 unsigned NumValues = ValueVTs.size(); 2364 if (NumValues == 0) return; 2365 2366 SmallVector<SDValue, 4> Values(NumValues); 2367 SDValue Cond = getValue(I.getOperand(0)); 2368 SDValue LHSVal = getValue(I.getOperand(1)); 2369 SDValue RHSVal = getValue(I.getOperand(2)); 2370 auto BaseOps = {Cond}; 2371 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2372 ISD::VSELECT : ISD::SELECT; 2373 2374 // Min/max matching is only viable if all output VTs are the same. 2375 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2376 EVT VT = ValueVTs[0]; 2377 LLVMContext &Ctx = *DAG.getContext(); 2378 auto &TLI = DAG.getTargetLoweringInfo(); 2379 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2380 VT = TLI.getTypeToTransformTo(Ctx, VT); 2381 2382 Value *LHS, *RHS; 2383 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2384 ISD::NodeType Opc = ISD::DELETED_NODE; 2385 switch (SPR.Flavor) { 2386 case SPF_UMAX: Opc = ISD::UMAX; break; 2387 case SPF_UMIN: Opc = ISD::UMIN; break; 2388 case SPF_SMAX: Opc = ISD::SMAX; break; 2389 case SPF_SMIN: Opc = ISD::SMIN; break; 2390 case SPF_FMINNUM: 2391 switch (SPR.NaNBehavior) { 2392 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2393 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2394 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2395 case SPNB_RETURNS_ANY: 2396 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2397 : ISD::FMINNAN; 2398 break; 2399 } 2400 break; 2401 case SPF_FMAXNUM: 2402 switch (SPR.NaNBehavior) { 2403 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2404 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2405 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2406 case SPNB_RETURNS_ANY: 2407 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2408 : ISD::FMAXNAN; 2409 break; 2410 } 2411 break; 2412 default: break; 2413 } 2414 2415 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2416 // If the underlying comparison instruction is used by any other instruction, 2417 // the consumed instructions won't be destroyed, so it is not profitable 2418 // to convert to a min/max. 2419 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2420 OpCode = Opc; 2421 LHSVal = getValue(LHS); 2422 RHSVal = getValue(RHS); 2423 BaseOps = {}; 2424 } 2425 } 2426 2427 for (unsigned i = 0; i != NumValues; ++i) { 2428 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2429 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2430 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2431 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2432 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2433 Ops); 2434 } 2435 2436 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2437 DAG.getVTList(ValueVTs), Values)); 2438 } 2439 2440 void SelectionDAGBuilder::visitTrunc(const User &I) { 2441 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2442 SDValue N = getValue(I.getOperand(0)); 2443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2444 I.getType()); 2445 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2446 } 2447 2448 void SelectionDAGBuilder::visitZExt(const User &I) { 2449 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2450 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2451 SDValue N = getValue(I.getOperand(0)); 2452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2453 I.getType()); 2454 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2455 } 2456 2457 void SelectionDAGBuilder::visitSExt(const User &I) { 2458 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2459 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2460 SDValue N = getValue(I.getOperand(0)); 2461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2462 I.getType()); 2463 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2464 } 2465 2466 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2467 // FPTrunc is never a no-op cast, no need to check 2468 SDValue N = getValue(I.getOperand(0)); 2469 SDLoc dl = getCurSDLoc(); 2470 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2471 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2472 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2473 DAG.getTargetConstant( 2474 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2475 } 2476 2477 void SelectionDAGBuilder::visitFPExt(const User &I) { 2478 // FPExt is never a no-op cast, no need to check 2479 SDValue N = getValue(I.getOperand(0)); 2480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2481 I.getType()); 2482 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2483 } 2484 2485 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2486 // FPToUI is never a no-op cast, no need to check 2487 SDValue N = getValue(I.getOperand(0)); 2488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2489 I.getType()); 2490 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2491 } 2492 2493 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2494 // FPToSI is never a no-op cast, no need to check 2495 SDValue N = getValue(I.getOperand(0)); 2496 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2497 I.getType()); 2498 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2499 } 2500 2501 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2502 // UIToFP is never a no-op cast, no need to check 2503 SDValue N = getValue(I.getOperand(0)); 2504 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2505 I.getType()); 2506 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2507 } 2508 2509 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2510 // SIToFP is never a no-op cast, no need to check 2511 SDValue N = getValue(I.getOperand(0)); 2512 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2513 I.getType()); 2514 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2515 } 2516 2517 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2518 // What to do depends on the size of the integer and the size of the pointer. 2519 // We can either truncate, zero extend, or no-op, accordingly. 2520 SDValue N = getValue(I.getOperand(0)); 2521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2522 I.getType()); 2523 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2524 } 2525 2526 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2527 // What to do depends on the size of the integer and the size of the pointer. 2528 // We can either truncate, zero extend, or no-op, accordingly. 2529 SDValue N = getValue(I.getOperand(0)); 2530 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2531 I.getType()); 2532 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2533 } 2534 2535 void SelectionDAGBuilder::visitBitCast(const User &I) { 2536 SDValue N = getValue(I.getOperand(0)); 2537 SDLoc dl = getCurSDLoc(); 2538 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2539 I.getType()); 2540 2541 // BitCast assures us that source and destination are the same size so this is 2542 // either a BITCAST or a no-op. 2543 if (DestVT != N.getValueType()) 2544 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2545 DestVT, N)); // convert types. 2546 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2547 // might fold any kind of constant expression to an integer constant and that 2548 // is not what we are looking for. Only regcognize a bitcast of a genuine 2549 // constant integer as an opaque constant. 2550 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2551 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2552 /*isOpaque*/true)); 2553 else 2554 setValue(&I, N); // noop cast. 2555 } 2556 2557 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2559 const Value *SV = I.getOperand(0); 2560 SDValue N = getValue(SV); 2561 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2562 2563 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2564 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2565 2566 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2567 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2568 2569 setValue(&I, N); 2570 } 2571 2572 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2574 SDValue InVec = getValue(I.getOperand(0)); 2575 SDValue InVal = getValue(I.getOperand(1)); 2576 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2577 TLI.getVectorIdxTy(DAG.getDataLayout())); 2578 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2579 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2580 InVec, InVal, InIdx)); 2581 } 2582 2583 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2585 SDValue InVec = getValue(I.getOperand(0)); 2586 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2587 TLI.getVectorIdxTy(DAG.getDataLayout())); 2588 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2589 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2590 InVec, InIdx)); 2591 } 2592 2593 // Utility for visitShuffleVector - Return true if every element in Mask, 2594 // beginning from position Pos and ending in Pos+Size, falls within the 2595 // specified sequential range [L, L+Pos). or is undef. 2596 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2597 unsigned Pos, unsigned Size, int Low) { 2598 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2599 if (Mask[i] >= 0 && Mask[i] != Low) 2600 return false; 2601 return true; 2602 } 2603 2604 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2605 SDValue Src1 = getValue(I.getOperand(0)); 2606 SDValue Src2 = getValue(I.getOperand(1)); 2607 2608 SmallVector<int, 8> Mask; 2609 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2610 unsigned MaskNumElts = Mask.size(); 2611 2612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2613 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2614 EVT SrcVT = Src1.getValueType(); 2615 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2616 2617 if (SrcNumElts == MaskNumElts) { 2618 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2619 &Mask[0])); 2620 return; 2621 } 2622 2623 // Normalize the shuffle vector since mask and vector length don't match. 2624 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2625 // Mask is longer than the source vectors and is a multiple of the source 2626 // vectors. We can use concatenate vector to make the mask and vectors 2627 // lengths match. 2628 if (SrcNumElts*2 == MaskNumElts) { 2629 // First check for Src1 in low and Src2 in high 2630 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2631 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2632 // The shuffle is concatenating two vectors together. 2633 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2634 VT, Src1, Src2)); 2635 return; 2636 } 2637 // Then check for Src2 in low and Src1 in high 2638 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2639 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2640 // The shuffle is concatenating two vectors together. 2641 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2642 VT, Src2, Src1)); 2643 return; 2644 } 2645 } 2646 2647 // Pad both vectors with undefs to make them the same length as the mask. 2648 unsigned NumConcat = MaskNumElts / SrcNumElts; 2649 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2650 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2651 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2652 2653 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2654 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2655 MOps1[0] = Src1; 2656 MOps2[0] = Src2; 2657 2658 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2659 getCurSDLoc(), VT, MOps1); 2660 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2661 getCurSDLoc(), VT, MOps2); 2662 2663 // Readjust mask for new input vector length. 2664 SmallVector<int, 8> MappedOps; 2665 for (unsigned i = 0; i != MaskNumElts; ++i) { 2666 int Idx = Mask[i]; 2667 if (Idx >= (int)SrcNumElts) 2668 Idx -= SrcNumElts - MaskNumElts; 2669 MappedOps.push_back(Idx); 2670 } 2671 2672 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2673 &MappedOps[0])); 2674 return; 2675 } 2676 2677 if (SrcNumElts > MaskNumElts) { 2678 // Analyze the access pattern of the vector to see if we can extract 2679 // two subvectors and do the shuffle. The analysis is done by calculating 2680 // the range of elements the mask access on both vectors. 2681 int MinRange[2] = { static_cast<int>(SrcNumElts), 2682 static_cast<int>(SrcNumElts)}; 2683 int MaxRange[2] = {-1, -1}; 2684 2685 for (unsigned i = 0; i != MaskNumElts; ++i) { 2686 int Idx = Mask[i]; 2687 unsigned Input = 0; 2688 if (Idx < 0) 2689 continue; 2690 2691 if (Idx >= (int)SrcNumElts) { 2692 Input = 1; 2693 Idx -= SrcNumElts; 2694 } 2695 if (Idx > MaxRange[Input]) 2696 MaxRange[Input] = Idx; 2697 if (Idx < MinRange[Input]) 2698 MinRange[Input] = Idx; 2699 } 2700 2701 // Check if the access is smaller than the vector size and can we find 2702 // a reasonable extract index. 2703 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2704 // Extract. 2705 int StartIdx[2]; // StartIdx to extract from 2706 for (unsigned Input = 0; Input < 2; ++Input) { 2707 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2708 RangeUse[Input] = 0; // Unused 2709 StartIdx[Input] = 0; 2710 continue; 2711 } 2712 2713 // Find a good start index that is a multiple of the mask length. Then 2714 // see if the rest of the elements are in range. 2715 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2716 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2717 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2718 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2719 } 2720 2721 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2722 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2723 return; 2724 } 2725 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2726 // Extract appropriate subvector and generate a vector shuffle 2727 for (unsigned Input = 0; Input < 2; ++Input) { 2728 SDValue &Src = Input == 0 ? Src1 : Src2; 2729 if (RangeUse[Input] == 0) 2730 Src = DAG.getUNDEF(VT); 2731 else { 2732 SDLoc dl = getCurSDLoc(); 2733 Src = DAG.getNode( 2734 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2735 DAG.getConstant(StartIdx[Input], dl, 2736 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2737 } 2738 } 2739 2740 // Calculate new mask. 2741 SmallVector<int, 8> MappedOps; 2742 for (unsigned i = 0; i != MaskNumElts; ++i) { 2743 int Idx = Mask[i]; 2744 if (Idx >= 0) { 2745 if (Idx < (int)SrcNumElts) 2746 Idx -= StartIdx[0]; 2747 else 2748 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2749 } 2750 MappedOps.push_back(Idx); 2751 } 2752 2753 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2754 &MappedOps[0])); 2755 return; 2756 } 2757 } 2758 2759 // We can't use either concat vectors or extract subvectors so fall back to 2760 // replacing the shuffle with extract and build vector. 2761 // to insert and build vector. 2762 EVT EltVT = VT.getVectorElementType(); 2763 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2764 SDLoc dl = getCurSDLoc(); 2765 SmallVector<SDValue,8> Ops; 2766 for (unsigned i = 0; i != MaskNumElts; ++i) { 2767 int Idx = Mask[i]; 2768 SDValue Res; 2769 2770 if (Idx < 0) { 2771 Res = DAG.getUNDEF(EltVT); 2772 } else { 2773 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2774 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2775 2776 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2777 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2778 } 2779 2780 Ops.push_back(Res); 2781 } 2782 2783 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2784 } 2785 2786 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2787 const Value *Op0 = I.getOperand(0); 2788 const Value *Op1 = I.getOperand(1); 2789 Type *AggTy = I.getType(); 2790 Type *ValTy = Op1->getType(); 2791 bool IntoUndef = isa<UndefValue>(Op0); 2792 bool FromUndef = isa<UndefValue>(Op1); 2793 2794 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2795 2796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2797 SmallVector<EVT, 4> AggValueVTs; 2798 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2799 SmallVector<EVT, 4> ValValueVTs; 2800 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2801 2802 unsigned NumAggValues = AggValueVTs.size(); 2803 unsigned NumValValues = ValValueVTs.size(); 2804 SmallVector<SDValue, 4> Values(NumAggValues); 2805 2806 // Ignore an insertvalue that produces an empty object 2807 if (!NumAggValues) { 2808 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2809 return; 2810 } 2811 2812 SDValue Agg = getValue(Op0); 2813 unsigned i = 0; 2814 // Copy the beginning value(s) from the original aggregate. 2815 for (; i != LinearIndex; ++i) 2816 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2817 SDValue(Agg.getNode(), Agg.getResNo() + i); 2818 // Copy values from the inserted value(s). 2819 if (NumValValues) { 2820 SDValue Val = getValue(Op1); 2821 for (; i != LinearIndex + NumValValues; ++i) 2822 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2823 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2824 } 2825 // Copy remaining value(s) from the original aggregate. 2826 for (; i != NumAggValues; ++i) 2827 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2828 SDValue(Agg.getNode(), Agg.getResNo() + i); 2829 2830 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2831 DAG.getVTList(AggValueVTs), Values)); 2832 } 2833 2834 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2835 const Value *Op0 = I.getOperand(0); 2836 Type *AggTy = Op0->getType(); 2837 Type *ValTy = I.getType(); 2838 bool OutOfUndef = isa<UndefValue>(Op0); 2839 2840 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2841 2842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2843 SmallVector<EVT, 4> ValValueVTs; 2844 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2845 2846 unsigned NumValValues = ValValueVTs.size(); 2847 2848 // Ignore a extractvalue that produces an empty object 2849 if (!NumValValues) { 2850 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2851 return; 2852 } 2853 2854 SmallVector<SDValue, 4> Values(NumValValues); 2855 2856 SDValue Agg = getValue(Op0); 2857 // Copy out the selected value(s). 2858 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2859 Values[i - LinearIndex] = 2860 OutOfUndef ? 2861 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2862 SDValue(Agg.getNode(), Agg.getResNo() + i); 2863 2864 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2865 DAG.getVTList(ValValueVTs), Values)); 2866 } 2867 2868 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2869 Value *Op0 = I.getOperand(0); 2870 // Note that the pointer operand may be a vector of pointers. Take the scalar 2871 // element which holds a pointer. 2872 Type *Ty = Op0->getType()->getScalarType(); 2873 unsigned AS = Ty->getPointerAddressSpace(); 2874 SDValue N = getValue(Op0); 2875 SDLoc dl = getCurSDLoc(); 2876 2877 // Normalize Vector GEP - all scalar operands should be converted to the 2878 // splat vector. 2879 unsigned VectorWidth = I.getType()->isVectorTy() ? 2880 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2881 2882 if (VectorWidth && !N.getValueType().isVector()) { 2883 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2884 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2885 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2886 } 2887 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2888 OI != E; ++OI) { 2889 const Value *Idx = *OI; 2890 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2891 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2892 if (Field) { 2893 // N = N + Offset 2894 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2895 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2896 DAG.getConstant(Offset, dl, N.getValueType())); 2897 } 2898 2899 Ty = StTy->getElementType(Field); 2900 } else { 2901 Ty = cast<SequentialType>(Ty)->getElementType(); 2902 MVT PtrTy = 2903 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2904 unsigned PtrSize = PtrTy.getSizeInBits(); 2905 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2906 2907 // If this is a scalar constant or a splat vector of constants, 2908 // handle it quickly. 2909 const auto *CI = dyn_cast<ConstantInt>(Idx); 2910 if (!CI && isa<ConstantDataVector>(Idx) && 2911 cast<ConstantDataVector>(Idx)->getSplatValue()) 2912 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2913 2914 if (CI) { 2915 if (CI->isZero()) 2916 continue; 2917 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2918 SDValue OffsVal = VectorWidth ? 2919 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2920 DAG.getConstant(Offs, dl, PtrTy); 2921 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2922 continue; 2923 } 2924 2925 // N = N + Idx * ElementSize; 2926 SDValue IdxN = getValue(Idx); 2927 2928 if (!IdxN.getValueType().isVector() && VectorWidth) { 2929 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2930 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2931 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2932 } 2933 // If the index is smaller or larger than intptr_t, truncate or extend 2934 // it. 2935 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2936 2937 // If this is a multiply by a power of two, turn it into a shl 2938 // immediately. This is a very common case. 2939 if (ElementSize != 1) { 2940 if (ElementSize.isPowerOf2()) { 2941 unsigned Amt = ElementSize.logBase2(); 2942 IdxN = DAG.getNode(ISD::SHL, dl, 2943 N.getValueType(), IdxN, 2944 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2945 } else { 2946 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2947 IdxN = DAG.getNode(ISD::MUL, dl, 2948 N.getValueType(), IdxN, Scale); 2949 } 2950 } 2951 2952 N = DAG.getNode(ISD::ADD, dl, 2953 N.getValueType(), N, IdxN); 2954 } 2955 } 2956 2957 setValue(&I, N); 2958 } 2959 2960 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2961 // If this is a fixed sized alloca in the entry block of the function, 2962 // allocate it statically on the stack. 2963 if (FuncInfo.StaticAllocaMap.count(&I)) 2964 return; // getValue will auto-populate this. 2965 2966 SDLoc dl = getCurSDLoc(); 2967 Type *Ty = I.getAllocatedType(); 2968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2969 auto &DL = DAG.getDataLayout(); 2970 uint64_t TySize = DL.getTypeAllocSize(Ty); 2971 unsigned Align = 2972 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2973 2974 SDValue AllocSize = getValue(I.getArraySize()); 2975 2976 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2977 if (AllocSize.getValueType() != IntPtr) 2978 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2979 2980 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2981 AllocSize, 2982 DAG.getConstant(TySize, dl, IntPtr)); 2983 2984 // Handle alignment. If the requested alignment is less than or equal to 2985 // the stack alignment, ignore it. If the size is greater than or equal to 2986 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2987 unsigned StackAlign = 2988 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2989 if (Align <= StackAlign) 2990 Align = 0; 2991 2992 // Round the size of the allocation up to the stack alignment size 2993 // by add SA-1 to the size. 2994 AllocSize = DAG.getNode(ISD::ADD, dl, 2995 AllocSize.getValueType(), AllocSize, 2996 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2997 2998 // Mask out the low bits for alignment purposes. 2999 AllocSize = DAG.getNode(ISD::AND, dl, 3000 AllocSize.getValueType(), AllocSize, 3001 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3002 dl)); 3003 3004 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3005 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3006 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3007 setValue(&I, DSA); 3008 DAG.setRoot(DSA.getValue(1)); 3009 3010 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3011 } 3012 3013 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3014 if (I.isAtomic()) 3015 return visitAtomicLoad(I); 3016 3017 const Value *SV = I.getOperand(0); 3018 SDValue Ptr = getValue(SV); 3019 3020 Type *Ty = I.getType(); 3021 3022 bool isVolatile = I.isVolatile(); 3023 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3024 3025 // The IR notion of invariant_load only guarantees that all *non-faulting* 3026 // invariant loads result in the same value. The MI notion of invariant load 3027 // guarantees that the load can be legally moved to any location within its 3028 // containing function. The MI notion of invariant_load is stronger than the 3029 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3030 // with a guarantee that the location being loaded from is dereferenceable 3031 // throughout the function's lifetime. 3032 3033 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3034 isDereferenceablePointer(SV, DAG.getDataLayout()); 3035 unsigned Alignment = I.getAlignment(); 3036 3037 AAMDNodes AAInfo; 3038 I.getAAMetadata(AAInfo); 3039 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3040 3041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3042 SmallVector<EVT, 4> ValueVTs; 3043 SmallVector<uint64_t, 4> Offsets; 3044 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3045 unsigned NumValues = ValueVTs.size(); 3046 if (NumValues == 0) 3047 return; 3048 3049 SDValue Root; 3050 bool ConstantMemory = false; 3051 if (isVolatile || NumValues > MaxParallelChains) 3052 // Serialize volatile loads with other side effects. 3053 Root = getRoot(); 3054 else if (AA->pointsToConstantMemory(MemoryLocation( 3055 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3056 // Do not serialize (non-volatile) loads of constant memory with anything. 3057 Root = DAG.getEntryNode(); 3058 ConstantMemory = true; 3059 } else { 3060 // Do not serialize non-volatile loads against each other. 3061 Root = DAG.getRoot(); 3062 } 3063 3064 SDLoc dl = getCurSDLoc(); 3065 3066 if (isVolatile) 3067 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3068 3069 SmallVector<SDValue, 4> Values(NumValues); 3070 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3071 EVT PtrVT = Ptr.getValueType(); 3072 unsigned ChainI = 0; 3073 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3074 // Serializing loads here may result in excessive register pressure, and 3075 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3076 // could recover a bit by hoisting nodes upward in the chain by recognizing 3077 // they are side-effect free or do not alias. The optimizer should really 3078 // avoid this case by converting large object/array copies to llvm.memcpy 3079 // (MaxParallelChains should always remain as failsafe). 3080 if (ChainI == MaxParallelChains) { 3081 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3082 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3083 makeArrayRef(Chains.data(), ChainI)); 3084 Root = Chain; 3085 ChainI = 0; 3086 } 3087 SDValue A = DAG.getNode(ISD::ADD, dl, 3088 PtrVT, Ptr, 3089 DAG.getConstant(Offsets[i], dl, PtrVT)); 3090 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3091 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3092 isNonTemporal, isInvariant, Alignment, AAInfo, 3093 Ranges); 3094 3095 Values[i] = L; 3096 Chains[ChainI] = L.getValue(1); 3097 } 3098 3099 if (!ConstantMemory) { 3100 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3101 makeArrayRef(Chains.data(), ChainI)); 3102 if (isVolatile) 3103 DAG.setRoot(Chain); 3104 else 3105 PendingLoads.push_back(Chain); 3106 } 3107 3108 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3109 DAG.getVTList(ValueVTs), Values)); 3110 } 3111 3112 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3113 if (I.isAtomic()) 3114 return visitAtomicStore(I); 3115 3116 const Value *SrcV = I.getOperand(0); 3117 const Value *PtrV = I.getOperand(1); 3118 3119 SmallVector<EVT, 4> ValueVTs; 3120 SmallVector<uint64_t, 4> Offsets; 3121 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3122 SrcV->getType(), ValueVTs, &Offsets); 3123 unsigned NumValues = ValueVTs.size(); 3124 if (NumValues == 0) 3125 return; 3126 3127 // Get the lowered operands. Note that we do this after 3128 // checking if NumResults is zero, because with zero results 3129 // the operands won't have values in the map. 3130 SDValue Src = getValue(SrcV); 3131 SDValue Ptr = getValue(PtrV); 3132 3133 SDValue Root = getRoot(); 3134 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3135 EVT PtrVT = Ptr.getValueType(); 3136 bool isVolatile = I.isVolatile(); 3137 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3138 unsigned Alignment = I.getAlignment(); 3139 SDLoc dl = getCurSDLoc(); 3140 3141 AAMDNodes AAInfo; 3142 I.getAAMetadata(AAInfo); 3143 3144 unsigned ChainI = 0; 3145 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3146 // See visitLoad comments. 3147 if (ChainI == MaxParallelChains) { 3148 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3149 makeArrayRef(Chains.data(), ChainI)); 3150 Root = Chain; 3151 ChainI = 0; 3152 } 3153 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3154 DAG.getConstant(Offsets[i], dl, PtrVT)); 3155 SDValue St = DAG.getStore(Root, dl, 3156 SDValue(Src.getNode(), Src.getResNo() + i), 3157 Add, MachinePointerInfo(PtrV, Offsets[i]), 3158 isVolatile, isNonTemporal, Alignment, AAInfo); 3159 Chains[ChainI] = St; 3160 } 3161 3162 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3163 makeArrayRef(Chains.data(), ChainI)); 3164 DAG.setRoot(StoreNode); 3165 } 3166 3167 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3168 SDLoc sdl = getCurSDLoc(); 3169 3170 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3171 Value *PtrOperand = I.getArgOperand(1); 3172 SDValue Ptr = getValue(PtrOperand); 3173 SDValue Src0 = getValue(I.getArgOperand(0)); 3174 SDValue Mask = getValue(I.getArgOperand(3)); 3175 EVT VT = Src0.getValueType(); 3176 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3177 if (!Alignment) 3178 Alignment = DAG.getEVTAlignment(VT); 3179 3180 AAMDNodes AAInfo; 3181 I.getAAMetadata(AAInfo); 3182 3183 MachineMemOperand *MMO = 3184 DAG.getMachineFunction(). 3185 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3186 MachineMemOperand::MOStore, VT.getStoreSize(), 3187 Alignment, AAInfo); 3188 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3189 MMO, false); 3190 DAG.setRoot(StoreNode); 3191 setValue(&I, StoreNode); 3192 } 3193 3194 // Get a uniform base for the Gather/Scatter intrinsic. 3195 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3196 // We try to represent it as a base pointer + vector of indices. 3197 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3198 // The first operand of the GEP may be a single pointer or a vector of pointers 3199 // Example: 3200 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3201 // or 3202 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3203 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3204 // 3205 // When the first GEP operand is a single pointer - it is the uniform base we 3206 // are looking for. If first operand of the GEP is a splat vector - we 3207 // extract the spalt value and use it as a uniform base. 3208 // In all other cases the function returns 'false'. 3209 // 3210 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3211 SelectionDAGBuilder* SDB) { 3212 3213 SelectionDAG& DAG = SDB->DAG; 3214 LLVMContext &Context = *DAG.getContext(); 3215 3216 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3217 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3218 if (!GEP || GEP->getNumOperands() > 2) 3219 return false; 3220 3221 Value *GEPPtr = GEP->getPointerOperand(); 3222 if (!GEPPtr->getType()->isVectorTy()) 3223 Ptr = GEPPtr; 3224 else if (!(Ptr = getSplatValue(GEPPtr))) 3225 return false; 3226 3227 Value *IndexVal = GEP->getOperand(1); 3228 3229 // The operands of the GEP may be defined in another basic block. 3230 // In this case we'll not find nodes for the operands. 3231 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3232 return false; 3233 3234 Base = SDB->getValue(Ptr); 3235 Index = SDB->getValue(IndexVal); 3236 3237 // Suppress sign extension. 3238 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3239 if (SDB->findValue(Sext->getOperand(0))) { 3240 IndexVal = Sext->getOperand(0); 3241 Index = SDB->getValue(IndexVal); 3242 } 3243 } 3244 if (!Index.getValueType().isVector()) { 3245 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3246 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3247 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3248 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3249 } 3250 return true; 3251 } 3252 3253 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3254 SDLoc sdl = getCurSDLoc(); 3255 3256 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3257 Value *Ptr = I.getArgOperand(1); 3258 SDValue Src0 = getValue(I.getArgOperand(0)); 3259 SDValue Mask = getValue(I.getArgOperand(3)); 3260 EVT VT = Src0.getValueType(); 3261 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3262 if (!Alignment) 3263 Alignment = DAG.getEVTAlignment(VT); 3264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3265 3266 AAMDNodes AAInfo; 3267 I.getAAMetadata(AAInfo); 3268 3269 SDValue Base; 3270 SDValue Index; 3271 Value *BasePtr = Ptr; 3272 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3273 3274 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3275 MachineMemOperand *MMO = DAG.getMachineFunction(). 3276 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3277 MachineMemOperand::MOStore, VT.getStoreSize(), 3278 Alignment, AAInfo); 3279 if (!UniformBase) { 3280 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3281 Index = getValue(Ptr); 3282 } 3283 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3284 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3285 Ops, MMO); 3286 DAG.setRoot(Scatter); 3287 setValue(&I, Scatter); 3288 } 3289 3290 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3291 SDLoc sdl = getCurSDLoc(); 3292 3293 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3294 Value *PtrOperand = I.getArgOperand(0); 3295 SDValue Ptr = getValue(PtrOperand); 3296 SDValue Src0 = getValue(I.getArgOperand(3)); 3297 SDValue Mask = getValue(I.getArgOperand(2)); 3298 3299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3300 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3301 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3302 if (!Alignment) 3303 Alignment = DAG.getEVTAlignment(VT); 3304 3305 AAMDNodes AAInfo; 3306 I.getAAMetadata(AAInfo); 3307 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3308 3309 SDValue InChain = DAG.getRoot(); 3310 if (AA->pointsToConstantMemory(MemoryLocation( 3311 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3312 AAInfo))) { 3313 // Do not serialize (non-volatile) loads of constant memory with anything. 3314 InChain = DAG.getEntryNode(); 3315 } 3316 3317 MachineMemOperand *MMO = 3318 DAG.getMachineFunction(). 3319 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3320 MachineMemOperand::MOLoad, VT.getStoreSize(), 3321 Alignment, AAInfo, Ranges); 3322 3323 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3324 ISD::NON_EXTLOAD); 3325 SDValue OutChain = Load.getValue(1); 3326 DAG.setRoot(OutChain); 3327 setValue(&I, Load); 3328 } 3329 3330 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3331 SDLoc sdl = getCurSDLoc(); 3332 3333 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3334 Value *Ptr = I.getArgOperand(0); 3335 SDValue Src0 = getValue(I.getArgOperand(3)); 3336 SDValue Mask = getValue(I.getArgOperand(2)); 3337 3338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3339 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3340 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3341 if (!Alignment) 3342 Alignment = DAG.getEVTAlignment(VT); 3343 3344 AAMDNodes AAInfo; 3345 I.getAAMetadata(AAInfo); 3346 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3347 3348 SDValue Root = DAG.getRoot(); 3349 SDValue Base; 3350 SDValue Index; 3351 Value *BasePtr = Ptr; 3352 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3353 bool ConstantMemory = false; 3354 if (UniformBase && 3355 AA->pointsToConstantMemory(MemoryLocation( 3356 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3357 AAInfo))) { 3358 // Do not serialize (non-volatile) loads of constant memory with anything. 3359 Root = DAG.getEntryNode(); 3360 ConstantMemory = true; 3361 } 3362 3363 MachineMemOperand *MMO = 3364 DAG.getMachineFunction(). 3365 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3366 MachineMemOperand::MOLoad, VT.getStoreSize(), 3367 Alignment, AAInfo, Ranges); 3368 3369 if (!UniformBase) { 3370 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3371 Index = getValue(Ptr); 3372 } 3373 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3374 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3375 Ops, MMO); 3376 3377 SDValue OutChain = Gather.getValue(1); 3378 if (!ConstantMemory) 3379 PendingLoads.push_back(OutChain); 3380 setValue(&I, Gather); 3381 } 3382 3383 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3384 SDLoc dl = getCurSDLoc(); 3385 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3386 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3387 SynchronizationScope Scope = I.getSynchScope(); 3388 3389 SDValue InChain = getRoot(); 3390 3391 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3392 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3393 SDValue L = DAG.getAtomicCmpSwap( 3394 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3395 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3396 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3397 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3398 3399 SDValue OutChain = L.getValue(2); 3400 3401 setValue(&I, L); 3402 DAG.setRoot(OutChain); 3403 } 3404 3405 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3406 SDLoc dl = getCurSDLoc(); 3407 ISD::NodeType NT; 3408 switch (I.getOperation()) { 3409 default: llvm_unreachable("Unknown atomicrmw operation"); 3410 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3411 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3412 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3413 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3414 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3415 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3416 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3417 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3418 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3419 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3420 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3421 } 3422 AtomicOrdering Order = I.getOrdering(); 3423 SynchronizationScope Scope = I.getSynchScope(); 3424 3425 SDValue InChain = getRoot(); 3426 3427 SDValue L = 3428 DAG.getAtomic(NT, dl, 3429 getValue(I.getValOperand()).getSimpleValueType(), 3430 InChain, 3431 getValue(I.getPointerOperand()), 3432 getValue(I.getValOperand()), 3433 I.getPointerOperand(), 3434 /* Alignment=*/ 0, Order, Scope); 3435 3436 SDValue OutChain = L.getValue(1); 3437 3438 setValue(&I, L); 3439 DAG.setRoot(OutChain); 3440 } 3441 3442 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3443 SDLoc dl = getCurSDLoc(); 3444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3445 SDValue Ops[3]; 3446 Ops[0] = getRoot(); 3447 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3448 TLI.getPointerTy(DAG.getDataLayout())); 3449 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3450 TLI.getPointerTy(DAG.getDataLayout())); 3451 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3452 } 3453 3454 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3455 SDLoc dl = getCurSDLoc(); 3456 AtomicOrdering Order = I.getOrdering(); 3457 SynchronizationScope Scope = I.getSynchScope(); 3458 3459 SDValue InChain = getRoot(); 3460 3461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3462 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3463 3464 if (I.getAlignment() < VT.getSizeInBits() / 8) 3465 report_fatal_error("Cannot generate unaligned atomic load"); 3466 3467 MachineMemOperand *MMO = 3468 DAG.getMachineFunction(). 3469 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3470 MachineMemOperand::MOVolatile | 3471 MachineMemOperand::MOLoad, 3472 VT.getStoreSize(), 3473 I.getAlignment() ? I.getAlignment() : 3474 DAG.getEVTAlignment(VT)); 3475 3476 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3477 SDValue L = 3478 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3479 getValue(I.getPointerOperand()), MMO, 3480 Order, Scope); 3481 3482 SDValue OutChain = L.getValue(1); 3483 3484 setValue(&I, L); 3485 DAG.setRoot(OutChain); 3486 } 3487 3488 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3489 SDLoc dl = getCurSDLoc(); 3490 3491 AtomicOrdering Order = I.getOrdering(); 3492 SynchronizationScope Scope = I.getSynchScope(); 3493 3494 SDValue InChain = getRoot(); 3495 3496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3497 EVT VT = 3498 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3499 3500 if (I.getAlignment() < VT.getSizeInBits() / 8) 3501 report_fatal_error("Cannot generate unaligned atomic store"); 3502 3503 SDValue OutChain = 3504 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3505 InChain, 3506 getValue(I.getPointerOperand()), 3507 getValue(I.getValueOperand()), 3508 I.getPointerOperand(), I.getAlignment(), 3509 Order, Scope); 3510 3511 DAG.setRoot(OutChain); 3512 } 3513 3514 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3515 /// node. 3516 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3517 unsigned Intrinsic) { 3518 bool HasChain = !I.doesNotAccessMemory(); 3519 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3520 3521 // Build the operand list. 3522 SmallVector<SDValue, 8> Ops; 3523 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3524 if (OnlyLoad) { 3525 // We don't need to serialize loads against other loads. 3526 Ops.push_back(DAG.getRoot()); 3527 } else { 3528 Ops.push_back(getRoot()); 3529 } 3530 } 3531 3532 // Info is set by getTgtMemInstrinsic 3533 TargetLowering::IntrinsicInfo Info; 3534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3535 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3536 3537 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3538 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3539 Info.opc == ISD::INTRINSIC_W_CHAIN) 3540 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3541 TLI.getPointerTy(DAG.getDataLayout()))); 3542 3543 // Add all operands of the call to the operand list. 3544 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3545 SDValue Op = getValue(I.getArgOperand(i)); 3546 Ops.push_back(Op); 3547 } 3548 3549 SmallVector<EVT, 4> ValueVTs; 3550 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3551 3552 if (HasChain) 3553 ValueVTs.push_back(MVT::Other); 3554 3555 SDVTList VTs = DAG.getVTList(ValueVTs); 3556 3557 // Create the node. 3558 SDValue Result; 3559 if (IsTgtIntrinsic) { 3560 // This is target intrinsic that touches memory 3561 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3562 VTs, Ops, Info.memVT, 3563 MachinePointerInfo(Info.ptrVal, Info.offset), 3564 Info.align, Info.vol, 3565 Info.readMem, Info.writeMem, Info.size); 3566 } else if (!HasChain) { 3567 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3568 } else if (!I.getType()->isVoidTy()) { 3569 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3570 } else { 3571 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3572 } 3573 3574 if (HasChain) { 3575 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3576 if (OnlyLoad) 3577 PendingLoads.push_back(Chain); 3578 else 3579 DAG.setRoot(Chain); 3580 } 3581 3582 if (!I.getType()->isVoidTy()) { 3583 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3584 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3585 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3586 } 3587 3588 setValue(&I, Result); 3589 } 3590 } 3591 3592 /// GetSignificand - Get the significand and build it into a floating-point 3593 /// number with exponent of 1: 3594 /// 3595 /// Op = (Op & 0x007fffff) | 0x3f800000; 3596 /// 3597 /// where Op is the hexadecimal representation of floating point value. 3598 static SDValue 3599 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3600 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3601 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3602 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3603 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3604 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3605 } 3606 3607 /// GetExponent - Get the exponent: 3608 /// 3609 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3610 /// 3611 /// where Op is the hexadecimal representation of floating point value. 3612 static SDValue 3613 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3614 SDLoc dl) { 3615 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3616 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3617 SDValue t1 = DAG.getNode( 3618 ISD::SRL, dl, MVT::i32, t0, 3619 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3620 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3621 DAG.getConstant(127, dl, MVT::i32)); 3622 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3623 } 3624 3625 /// getF32Constant - Get 32-bit floating point constant. 3626 static SDValue 3627 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3628 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3629 MVT::f32); 3630 } 3631 3632 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3633 SelectionDAG &DAG) { 3634 // TODO: What fast-math-flags should be set on the floating-point nodes? 3635 3636 // IntegerPartOfX = ((int32_t)(t0); 3637 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3638 3639 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3640 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3641 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3642 3643 // IntegerPartOfX <<= 23; 3644 IntegerPartOfX = DAG.getNode( 3645 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3646 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3647 DAG.getDataLayout()))); 3648 3649 SDValue TwoToFractionalPartOfX; 3650 if (LimitFloatPrecision <= 6) { 3651 // For floating-point precision of 6: 3652 // 3653 // TwoToFractionalPartOfX = 3654 // 0.997535578f + 3655 // (0.735607626f + 0.252464424f * x) * x; 3656 // 3657 // error 0.0144103317, which is 6 bits 3658 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3659 getF32Constant(DAG, 0x3e814304, dl)); 3660 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3661 getF32Constant(DAG, 0x3f3c50c8, dl)); 3662 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3663 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3664 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3665 } else if (LimitFloatPrecision <= 12) { 3666 // For floating-point precision of 12: 3667 // 3668 // TwoToFractionalPartOfX = 3669 // 0.999892986f + 3670 // (0.696457318f + 3671 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3672 // 3673 // error 0.000107046256, which is 13 to 14 bits 3674 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3675 getF32Constant(DAG, 0x3da235e3, dl)); 3676 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3677 getF32Constant(DAG, 0x3e65b8f3, dl)); 3678 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3679 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3680 getF32Constant(DAG, 0x3f324b07, dl)); 3681 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3682 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3683 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3684 } else { // LimitFloatPrecision <= 18 3685 // For floating-point precision of 18: 3686 // 3687 // TwoToFractionalPartOfX = 3688 // 0.999999982f + 3689 // (0.693148872f + 3690 // (0.240227044f + 3691 // (0.554906021e-1f + 3692 // (0.961591928e-2f + 3693 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3694 // error 2.47208000*10^(-7), which is better than 18 bits 3695 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3696 getF32Constant(DAG, 0x3924b03e, dl)); 3697 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3698 getF32Constant(DAG, 0x3ab24b87, dl)); 3699 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3700 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3701 getF32Constant(DAG, 0x3c1d8c17, dl)); 3702 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3703 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3704 getF32Constant(DAG, 0x3d634a1d, dl)); 3705 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3706 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3707 getF32Constant(DAG, 0x3e75fe14, dl)); 3708 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3709 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3710 getF32Constant(DAG, 0x3f317234, dl)); 3711 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3712 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3713 getF32Constant(DAG, 0x3f800000, dl)); 3714 } 3715 3716 // Add the exponent into the result in integer domain. 3717 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3718 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3719 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3720 } 3721 3722 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3723 /// limited-precision mode. 3724 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3725 const TargetLowering &TLI) { 3726 if (Op.getValueType() == MVT::f32 && 3727 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3728 3729 // Put the exponent in the right bit position for later addition to the 3730 // final result: 3731 // 3732 // #define LOG2OFe 1.4426950f 3733 // t0 = Op * LOG2OFe 3734 3735 // TODO: What fast-math-flags should be set here? 3736 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3737 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3738 return getLimitedPrecisionExp2(t0, dl, DAG); 3739 } 3740 3741 // No special expansion. 3742 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3743 } 3744 3745 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3746 /// limited-precision mode. 3747 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3748 const TargetLowering &TLI) { 3749 3750 // TODO: What fast-math-flags should be set on the floating-point nodes? 3751 3752 if (Op.getValueType() == MVT::f32 && 3753 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3754 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3755 3756 // Scale the exponent by log(2) [0.69314718f]. 3757 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3758 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3759 getF32Constant(DAG, 0x3f317218, dl)); 3760 3761 // Get the significand and build it into a floating-point number with 3762 // exponent of 1. 3763 SDValue X = GetSignificand(DAG, Op1, dl); 3764 3765 SDValue LogOfMantissa; 3766 if (LimitFloatPrecision <= 6) { 3767 // For floating-point precision of 6: 3768 // 3769 // LogofMantissa = 3770 // -1.1609546f + 3771 // (1.4034025f - 0.23903021f * x) * x; 3772 // 3773 // error 0.0034276066, which is better than 8 bits 3774 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3775 getF32Constant(DAG, 0xbe74c456, dl)); 3776 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3777 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3778 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3779 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3780 getF32Constant(DAG, 0x3f949a29, dl)); 3781 } else if (LimitFloatPrecision <= 12) { 3782 // For floating-point precision of 12: 3783 // 3784 // LogOfMantissa = 3785 // -1.7417939f + 3786 // (2.8212026f + 3787 // (-1.4699568f + 3788 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3789 // 3790 // error 0.000061011436, which is 14 bits 3791 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3792 getF32Constant(DAG, 0xbd67b6d6, dl)); 3793 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3794 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3795 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3796 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3797 getF32Constant(DAG, 0x3fbc278b, dl)); 3798 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3799 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3800 getF32Constant(DAG, 0x40348e95, dl)); 3801 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3802 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3803 getF32Constant(DAG, 0x3fdef31a, dl)); 3804 } else { // LimitFloatPrecision <= 18 3805 // For floating-point precision of 18: 3806 // 3807 // LogOfMantissa = 3808 // -2.1072184f + 3809 // (4.2372794f + 3810 // (-3.7029485f + 3811 // (2.2781945f + 3812 // (-0.87823314f + 3813 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3814 // 3815 // error 0.0000023660568, which is better than 18 bits 3816 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3817 getF32Constant(DAG, 0xbc91e5ac, dl)); 3818 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3819 getF32Constant(DAG, 0x3e4350aa, dl)); 3820 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3821 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3822 getF32Constant(DAG, 0x3f60d3e3, dl)); 3823 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3824 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3825 getF32Constant(DAG, 0x4011cdf0, dl)); 3826 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3827 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3828 getF32Constant(DAG, 0x406cfd1c, dl)); 3829 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3830 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3831 getF32Constant(DAG, 0x408797cb, dl)); 3832 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3833 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3834 getF32Constant(DAG, 0x4006dcab, dl)); 3835 } 3836 3837 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3838 } 3839 3840 // No special expansion. 3841 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3842 } 3843 3844 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3845 /// limited-precision mode. 3846 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3847 const TargetLowering &TLI) { 3848 3849 // TODO: What fast-math-flags should be set on the floating-point nodes? 3850 3851 if (Op.getValueType() == MVT::f32 && 3852 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3853 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3854 3855 // Get the exponent. 3856 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3857 3858 // Get the significand and build it into a floating-point number with 3859 // exponent of 1. 3860 SDValue X = GetSignificand(DAG, Op1, dl); 3861 3862 // Different possible minimax approximations of significand in 3863 // floating-point for various degrees of accuracy over [1,2]. 3864 SDValue Log2ofMantissa; 3865 if (LimitFloatPrecision <= 6) { 3866 // For floating-point precision of 6: 3867 // 3868 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3869 // 3870 // error 0.0049451742, which is more than 7 bits 3871 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3872 getF32Constant(DAG, 0xbeb08fe0, dl)); 3873 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3874 getF32Constant(DAG, 0x40019463, dl)); 3875 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3876 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3877 getF32Constant(DAG, 0x3fd6633d, dl)); 3878 } else if (LimitFloatPrecision <= 12) { 3879 // For floating-point precision of 12: 3880 // 3881 // Log2ofMantissa = 3882 // -2.51285454f + 3883 // (4.07009056f + 3884 // (-2.12067489f + 3885 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3886 // 3887 // error 0.0000876136000, which is better than 13 bits 3888 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3889 getF32Constant(DAG, 0xbda7262e, dl)); 3890 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3891 getF32Constant(DAG, 0x3f25280b, dl)); 3892 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3893 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3894 getF32Constant(DAG, 0x4007b923, dl)); 3895 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3896 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3897 getF32Constant(DAG, 0x40823e2f, dl)); 3898 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3899 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3900 getF32Constant(DAG, 0x4020d29c, dl)); 3901 } else { // LimitFloatPrecision <= 18 3902 // For floating-point precision of 18: 3903 // 3904 // Log2ofMantissa = 3905 // -3.0400495f + 3906 // (6.1129976f + 3907 // (-5.3420409f + 3908 // (3.2865683f + 3909 // (-1.2669343f + 3910 // (0.27515199f - 3911 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3912 // 3913 // error 0.0000018516, which is better than 18 bits 3914 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3915 getF32Constant(DAG, 0xbcd2769e, dl)); 3916 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3917 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3918 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3919 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3920 getF32Constant(DAG, 0x3fa22ae7, dl)); 3921 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3922 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3923 getF32Constant(DAG, 0x40525723, dl)); 3924 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3925 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3926 getF32Constant(DAG, 0x40aaf200, dl)); 3927 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3928 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3929 getF32Constant(DAG, 0x40c39dad, dl)); 3930 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3931 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3932 getF32Constant(DAG, 0x4042902c, dl)); 3933 } 3934 3935 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3936 } 3937 3938 // No special expansion. 3939 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3940 } 3941 3942 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3943 /// limited-precision mode. 3944 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3945 const TargetLowering &TLI) { 3946 3947 // TODO: What fast-math-flags should be set on the floating-point nodes? 3948 3949 if (Op.getValueType() == MVT::f32 && 3950 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3951 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3952 3953 // Scale the exponent by log10(2) [0.30102999f]. 3954 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3955 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3956 getF32Constant(DAG, 0x3e9a209a, dl)); 3957 3958 // Get the significand and build it into a floating-point number with 3959 // exponent of 1. 3960 SDValue X = GetSignificand(DAG, Op1, dl); 3961 3962 SDValue Log10ofMantissa; 3963 if (LimitFloatPrecision <= 6) { 3964 // For floating-point precision of 6: 3965 // 3966 // Log10ofMantissa = 3967 // -0.50419619f + 3968 // (0.60948995f - 0.10380950f * x) * x; 3969 // 3970 // error 0.0014886165, which is 6 bits 3971 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3972 getF32Constant(DAG, 0xbdd49a13, dl)); 3973 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3974 getF32Constant(DAG, 0x3f1c0789, dl)); 3975 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3976 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3977 getF32Constant(DAG, 0x3f011300, dl)); 3978 } else if (LimitFloatPrecision <= 12) { 3979 // For floating-point precision of 12: 3980 // 3981 // Log10ofMantissa = 3982 // -0.64831180f + 3983 // (0.91751397f + 3984 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3985 // 3986 // error 0.00019228036, which is better than 12 bits 3987 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3988 getF32Constant(DAG, 0x3d431f31, dl)); 3989 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3990 getF32Constant(DAG, 0x3ea21fb2, dl)); 3991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3992 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3993 getF32Constant(DAG, 0x3f6ae232, dl)); 3994 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3995 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3996 getF32Constant(DAG, 0x3f25f7c3, dl)); 3997 } else { // LimitFloatPrecision <= 18 3998 // For floating-point precision of 18: 3999 // 4000 // Log10ofMantissa = 4001 // -0.84299375f + 4002 // (1.5327582f + 4003 // (-1.0688956f + 4004 // (0.49102474f + 4005 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4006 // 4007 // error 0.0000037995730, which is better than 18 bits 4008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4009 getF32Constant(DAG, 0x3c5d51ce, dl)); 4010 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4011 getF32Constant(DAG, 0x3e00685a, dl)); 4012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4013 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4014 getF32Constant(DAG, 0x3efb6798, dl)); 4015 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4016 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4017 getF32Constant(DAG, 0x3f88d192, dl)); 4018 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4019 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4020 getF32Constant(DAG, 0x3fc4316c, dl)); 4021 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4022 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4023 getF32Constant(DAG, 0x3f57ce70, dl)); 4024 } 4025 4026 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4027 } 4028 4029 // No special expansion. 4030 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4031 } 4032 4033 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4034 /// limited-precision mode. 4035 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4036 const TargetLowering &TLI) { 4037 if (Op.getValueType() == MVT::f32 && 4038 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4039 return getLimitedPrecisionExp2(Op, dl, DAG); 4040 4041 // No special expansion. 4042 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4043 } 4044 4045 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4046 /// limited-precision mode with x == 10.0f. 4047 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4048 SelectionDAG &DAG, const TargetLowering &TLI) { 4049 bool IsExp10 = false; 4050 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4051 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4052 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4053 APFloat Ten(10.0f); 4054 IsExp10 = LHSC->isExactlyValue(Ten); 4055 } 4056 } 4057 4058 // TODO: What fast-math-flags should be set on the FMUL node? 4059 if (IsExp10) { 4060 // Put the exponent in the right bit position for later addition to the 4061 // final result: 4062 // 4063 // #define LOG2OF10 3.3219281f 4064 // t0 = Op * LOG2OF10; 4065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4066 getF32Constant(DAG, 0x40549a78, dl)); 4067 return getLimitedPrecisionExp2(t0, dl, DAG); 4068 } 4069 4070 // No special expansion. 4071 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4072 } 4073 4074 4075 /// ExpandPowI - Expand a llvm.powi intrinsic. 4076 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4077 SelectionDAG &DAG) { 4078 // If RHS is a constant, we can expand this out to a multiplication tree, 4079 // otherwise we end up lowering to a call to __powidf2 (for example). When 4080 // optimizing for size, we only want to do this if the expansion would produce 4081 // a small number of multiplies, otherwise we do the full expansion. 4082 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4083 // Get the exponent as a positive value. 4084 unsigned Val = RHSC->getSExtValue(); 4085 if ((int)Val < 0) Val = -Val; 4086 4087 // powi(x, 0) -> 1.0 4088 if (Val == 0) 4089 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4090 4091 const Function *F = DAG.getMachineFunction().getFunction(); 4092 if (!F->optForSize() || 4093 // If optimizing for size, don't insert too many multiplies. 4094 // This inserts up to 5 multiplies. 4095 countPopulation(Val) + Log2_32(Val) < 7) { 4096 // We use the simple binary decomposition method to generate the multiply 4097 // sequence. There are more optimal ways to do this (for example, 4098 // powi(x,15) generates one more multiply than it should), but this has 4099 // the benefit of being both really simple and much better than a libcall. 4100 SDValue Res; // Logically starts equal to 1.0 4101 SDValue CurSquare = LHS; 4102 // TODO: Intrinsics should have fast-math-flags that propagate to these 4103 // nodes. 4104 while (Val) { 4105 if (Val & 1) { 4106 if (Res.getNode()) 4107 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4108 else 4109 Res = CurSquare; // 1.0*CurSquare. 4110 } 4111 4112 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4113 CurSquare, CurSquare); 4114 Val >>= 1; 4115 } 4116 4117 // If the original was negative, invert the result, producing 1/(x*x*x). 4118 if (RHSC->getSExtValue() < 0) 4119 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4120 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4121 return Res; 4122 } 4123 } 4124 4125 // Otherwise, expand to a libcall. 4126 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4127 } 4128 4129 // getTruncatedArgReg - Find underlying register used for an truncated 4130 // argument. 4131 static unsigned getTruncatedArgReg(const SDValue &N) { 4132 if (N.getOpcode() != ISD::TRUNCATE) 4133 return 0; 4134 4135 const SDValue &Ext = N.getOperand(0); 4136 if (Ext.getOpcode() == ISD::AssertZext || 4137 Ext.getOpcode() == ISD::AssertSext) { 4138 const SDValue &CFR = Ext.getOperand(0); 4139 if (CFR.getOpcode() == ISD::CopyFromReg) 4140 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4141 if (CFR.getOpcode() == ISD::TRUNCATE) 4142 return getTruncatedArgReg(CFR); 4143 } 4144 return 0; 4145 } 4146 4147 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4148 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4149 /// At the end of instruction selection, they will be inserted to the entry BB. 4150 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4151 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4152 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4153 const Argument *Arg = dyn_cast<Argument>(V); 4154 if (!Arg) 4155 return false; 4156 4157 MachineFunction &MF = DAG.getMachineFunction(); 4158 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4159 4160 // Ignore inlined function arguments here. 4161 // 4162 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4163 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4164 return false; 4165 4166 Optional<MachineOperand> Op; 4167 // Some arguments' frame index is recorded during argument lowering. 4168 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4169 Op = MachineOperand::CreateFI(FI); 4170 4171 if (!Op && N.getNode()) { 4172 unsigned Reg; 4173 if (N.getOpcode() == ISD::CopyFromReg) 4174 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4175 else 4176 Reg = getTruncatedArgReg(N); 4177 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4178 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4179 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4180 if (PR) 4181 Reg = PR; 4182 } 4183 if (Reg) 4184 Op = MachineOperand::CreateReg(Reg, false); 4185 } 4186 4187 if (!Op) { 4188 // Check if ValueMap has reg number. 4189 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4190 if (VMI != FuncInfo.ValueMap.end()) 4191 Op = MachineOperand::CreateReg(VMI->second, false); 4192 } 4193 4194 if (!Op && N.getNode()) 4195 // Check if frame index is available. 4196 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4197 if (FrameIndexSDNode *FINode = 4198 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4199 Op = MachineOperand::CreateFI(FINode->getIndex()); 4200 4201 if (!Op) 4202 return false; 4203 4204 assert(Variable->isValidLocationForIntrinsic(DL) && 4205 "Expected inlined-at fields to agree"); 4206 if (Op->isReg()) 4207 FuncInfo.ArgDbgValues.push_back( 4208 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4209 Op->getReg(), Offset, Variable, Expr)); 4210 else 4211 FuncInfo.ArgDbgValues.push_back( 4212 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4213 .addOperand(*Op) 4214 .addImm(Offset) 4215 .addMetadata(Variable) 4216 .addMetadata(Expr)); 4217 4218 return true; 4219 } 4220 4221 // VisualStudio defines setjmp as _setjmp 4222 #if defined(_MSC_VER) && defined(setjmp) && \ 4223 !defined(setjmp_undefined_for_msvc) 4224 # pragma push_macro("setjmp") 4225 # undef setjmp 4226 # define setjmp_undefined_for_msvc 4227 #endif 4228 4229 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4230 /// we want to emit this as a call to a named external function, return the name 4231 /// otherwise lower it and return null. 4232 const char * 4233 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4235 SDLoc sdl = getCurSDLoc(); 4236 DebugLoc dl = getCurDebugLoc(); 4237 SDValue Res; 4238 4239 switch (Intrinsic) { 4240 default: 4241 // By default, turn this into a target intrinsic node. 4242 visitTargetIntrinsic(I, Intrinsic); 4243 return nullptr; 4244 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4245 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4246 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4247 case Intrinsic::returnaddress: 4248 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4249 TLI.getPointerTy(DAG.getDataLayout()), 4250 getValue(I.getArgOperand(0)))); 4251 return nullptr; 4252 case Intrinsic::frameaddress: 4253 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4254 TLI.getPointerTy(DAG.getDataLayout()), 4255 getValue(I.getArgOperand(0)))); 4256 return nullptr; 4257 case Intrinsic::read_register: { 4258 Value *Reg = I.getArgOperand(0); 4259 SDValue Chain = getRoot(); 4260 SDValue RegName = 4261 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4262 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4263 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4264 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4265 setValue(&I, Res); 4266 DAG.setRoot(Res.getValue(1)); 4267 return nullptr; 4268 } 4269 case Intrinsic::write_register: { 4270 Value *Reg = I.getArgOperand(0); 4271 Value *RegValue = I.getArgOperand(1); 4272 SDValue Chain = getRoot(); 4273 SDValue RegName = 4274 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4275 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4276 RegName, getValue(RegValue))); 4277 return nullptr; 4278 } 4279 case Intrinsic::setjmp: 4280 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4281 case Intrinsic::longjmp: 4282 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4283 case Intrinsic::memcpy: { 4284 // FIXME: this definition of "user defined address space" is x86-specific 4285 // Assert for address < 256 since we support only user defined address 4286 // spaces. 4287 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4288 < 256 && 4289 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4290 < 256 && 4291 "Unknown address space"); 4292 SDValue Op1 = getValue(I.getArgOperand(0)); 4293 SDValue Op2 = getValue(I.getArgOperand(1)); 4294 SDValue Op3 = getValue(I.getArgOperand(2)); 4295 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4296 if (!Align) 4297 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4298 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4299 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4300 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4301 false, isTC, 4302 MachinePointerInfo(I.getArgOperand(0)), 4303 MachinePointerInfo(I.getArgOperand(1))); 4304 updateDAGForMaybeTailCall(MC); 4305 return nullptr; 4306 } 4307 case Intrinsic::memset: { 4308 // FIXME: this definition of "user defined address space" is x86-specific 4309 // Assert for address < 256 since we support only user defined address 4310 // spaces. 4311 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4312 < 256 && 4313 "Unknown address space"); 4314 SDValue Op1 = getValue(I.getArgOperand(0)); 4315 SDValue Op2 = getValue(I.getArgOperand(1)); 4316 SDValue Op3 = getValue(I.getArgOperand(2)); 4317 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4318 if (!Align) 4319 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4320 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4321 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4322 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4323 isTC, MachinePointerInfo(I.getArgOperand(0))); 4324 updateDAGForMaybeTailCall(MS); 4325 return nullptr; 4326 } 4327 case Intrinsic::memmove: { 4328 // FIXME: this definition of "user defined address space" is x86-specific 4329 // Assert for address < 256 since we support only user defined address 4330 // spaces. 4331 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4332 < 256 && 4333 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4334 < 256 && 4335 "Unknown address space"); 4336 SDValue Op1 = getValue(I.getArgOperand(0)); 4337 SDValue Op2 = getValue(I.getArgOperand(1)); 4338 SDValue Op3 = getValue(I.getArgOperand(2)); 4339 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4340 if (!Align) 4341 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4342 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4343 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4344 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4345 isTC, MachinePointerInfo(I.getArgOperand(0)), 4346 MachinePointerInfo(I.getArgOperand(1))); 4347 updateDAGForMaybeTailCall(MM); 4348 return nullptr; 4349 } 4350 case Intrinsic::dbg_declare: { 4351 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4352 DILocalVariable *Variable = DI.getVariable(); 4353 DIExpression *Expression = DI.getExpression(); 4354 const Value *Address = DI.getAddress(); 4355 assert(Variable && "Missing variable"); 4356 if (!Address) { 4357 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4358 return nullptr; 4359 } 4360 4361 // Check if address has undef value. 4362 if (isa<UndefValue>(Address) || 4363 (Address->use_empty() && !isa<Argument>(Address))) { 4364 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4365 return nullptr; 4366 } 4367 4368 SDValue &N = NodeMap[Address]; 4369 if (!N.getNode() && isa<Argument>(Address)) 4370 // Check unused arguments map. 4371 N = UnusedArgNodeMap[Address]; 4372 SDDbgValue *SDV; 4373 if (N.getNode()) { 4374 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4375 Address = BCI->getOperand(0); 4376 // Parameters are handled specially. 4377 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4378 4379 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4380 4381 if (isParameter && !AI) { 4382 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4383 if (FINode) 4384 // Byval parameter. We have a frame index at this point. 4385 SDV = DAG.getFrameIndexDbgValue( 4386 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4387 else { 4388 // Address is an argument, so try to emit its dbg value using 4389 // virtual register info from the FuncInfo.ValueMap. 4390 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4391 N); 4392 return nullptr; 4393 } 4394 } else { 4395 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4396 true, 0, dl, SDNodeOrder); 4397 } 4398 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4399 } else { 4400 // If Address is an argument then try to emit its dbg value using 4401 // virtual register info from the FuncInfo.ValueMap. 4402 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4403 N)) { 4404 // If variable is pinned by a alloca in dominating bb then 4405 // use StaticAllocaMap. 4406 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4407 if (AI->getParent() != DI.getParent()) { 4408 DenseMap<const AllocaInst*, int>::iterator SI = 4409 FuncInfo.StaticAllocaMap.find(AI); 4410 if (SI != FuncInfo.StaticAllocaMap.end()) { 4411 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4412 0, dl, SDNodeOrder); 4413 DAG.AddDbgValue(SDV, nullptr, false); 4414 return nullptr; 4415 } 4416 } 4417 } 4418 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4419 } 4420 } 4421 return nullptr; 4422 } 4423 case Intrinsic::dbg_value: { 4424 const DbgValueInst &DI = cast<DbgValueInst>(I); 4425 assert(DI.getVariable() && "Missing variable"); 4426 4427 DILocalVariable *Variable = DI.getVariable(); 4428 DIExpression *Expression = DI.getExpression(); 4429 uint64_t Offset = DI.getOffset(); 4430 const Value *V = DI.getValue(); 4431 if (!V) 4432 return nullptr; 4433 4434 SDDbgValue *SDV; 4435 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4436 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4437 SDNodeOrder); 4438 DAG.AddDbgValue(SDV, nullptr, false); 4439 } else { 4440 // Do not use getValue() in here; we don't want to generate code at 4441 // this point if it hasn't been done yet. 4442 SDValue N = NodeMap[V]; 4443 if (!N.getNode() && isa<Argument>(V)) 4444 // Check unused arguments map. 4445 N = UnusedArgNodeMap[V]; 4446 if (N.getNode()) { 4447 // A dbg.value for an alloca is always indirect. 4448 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4449 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4450 IsIndirect, N)) { 4451 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4452 IsIndirect, Offset, dl, SDNodeOrder); 4453 DAG.AddDbgValue(SDV, N.getNode(), false); 4454 } 4455 } else if (!V->use_empty() ) { 4456 // Do not call getValue(V) yet, as we don't want to generate code. 4457 // Remember it for later. 4458 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4459 DanglingDebugInfoMap[V] = DDI; 4460 } else { 4461 // We may expand this to cover more cases. One case where we have no 4462 // data available is an unreferenced parameter. 4463 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4464 } 4465 } 4466 4467 // Build a debug info table entry. 4468 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4469 V = BCI->getOperand(0); 4470 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4471 // Don't handle byval struct arguments or VLAs, for example. 4472 if (!AI) { 4473 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4474 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4475 return nullptr; 4476 } 4477 DenseMap<const AllocaInst*, int>::iterator SI = 4478 FuncInfo.StaticAllocaMap.find(AI); 4479 if (SI == FuncInfo.StaticAllocaMap.end()) 4480 return nullptr; // VLAs. 4481 return nullptr; 4482 } 4483 4484 case Intrinsic::eh_typeid_for: { 4485 // Find the type id for the given typeinfo. 4486 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4487 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4488 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4489 setValue(&I, Res); 4490 return nullptr; 4491 } 4492 4493 case Intrinsic::eh_return_i32: 4494 case Intrinsic::eh_return_i64: 4495 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4496 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4497 MVT::Other, 4498 getControlRoot(), 4499 getValue(I.getArgOperand(0)), 4500 getValue(I.getArgOperand(1)))); 4501 return nullptr; 4502 case Intrinsic::eh_unwind_init: 4503 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4504 return nullptr; 4505 case Intrinsic::eh_dwarf_cfa: { 4506 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4507 TLI.getPointerTy(DAG.getDataLayout())); 4508 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4509 CfaArg.getValueType(), 4510 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4511 CfaArg.getValueType()), 4512 CfaArg); 4513 SDValue FA = DAG.getNode( 4514 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4515 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4516 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4517 FA, Offset)); 4518 return nullptr; 4519 } 4520 case Intrinsic::eh_sjlj_callsite: { 4521 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4522 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4523 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4524 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4525 4526 MMI.setCurrentCallSite(CI->getZExtValue()); 4527 return nullptr; 4528 } 4529 case Intrinsic::eh_sjlj_functioncontext: { 4530 // Get and store the index of the function context. 4531 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4532 AllocaInst *FnCtx = 4533 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4534 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4535 MFI->setFunctionContextIndex(FI); 4536 return nullptr; 4537 } 4538 case Intrinsic::eh_sjlj_setjmp: { 4539 SDValue Ops[2]; 4540 Ops[0] = getRoot(); 4541 Ops[1] = getValue(I.getArgOperand(0)); 4542 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4543 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4544 setValue(&I, Op.getValue(0)); 4545 DAG.setRoot(Op.getValue(1)); 4546 return nullptr; 4547 } 4548 case Intrinsic::eh_sjlj_longjmp: { 4549 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4550 getRoot(), getValue(I.getArgOperand(0)))); 4551 return nullptr; 4552 } 4553 case Intrinsic::eh_sjlj_setup_dispatch: { 4554 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4555 getRoot())); 4556 return nullptr; 4557 } 4558 4559 case Intrinsic::masked_gather: 4560 visitMaskedGather(I); 4561 return nullptr; 4562 case Intrinsic::masked_load: 4563 visitMaskedLoad(I); 4564 return nullptr; 4565 case Intrinsic::masked_scatter: 4566 visitMaskedScatter(I); 4567 return nullptr; 4568 case Intrinsic::masked_store: 4569 visitMaskedStore(I); 4570 return nullptr; 4571 case Intrinsic::x86_mmx_pslli_w: 4572 case Intrinsic::x86_mmx_pslli_d: 4573 case Intrinsic::x86_mmx_pslli_q: 4574 case Intrinsic::x86_mmx_psrli_w: 4575 case Intrinsic::x86_mmx_psrli_d: 4576 case Intrinsic::x86_mmx_psrli_q: 4577 case Intrinsic::x86_mmx_psrai_w: 4578 case Intrinsic::x86_mmx_psrai_d: { 4579 SDValue ShAmt = getValue(I.getArgOperand(1)); 4580 if (isa<ConstantSDNode>(ShAmt)) { 4581 visitTargetIntrinsic(I, Intrinsic); 4582 return nullptr; 4583 } 4584 unsigned NewIntrinsic = 0; 4585 EVT ShAmtVT = MVT::v2i32; 4586 switch (Intrinsic) { 4587 case Intrinsic::x86_mmx_pslli_w: 4588 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4589 break; 4590 case Intrinsic::x86_mmx_pslli_d: 4591 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4592 break; 4593 case Intrinsic::x86_mmx_pslli_q: 4594 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4595 break; 4596 case Intrinsic::x86_mmx_psrli_w: 4597 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4598 break; 4599 case Intrinsic::x86_mmx_psrli_d: 4600 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4601 break; 4602 case Intrinsic::x86_mmx_psrli_q: 4603 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4604 break; 4605 case Intrinsic::x86_mmx_psrai_w: 4606 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4607 break; 4608 case Intrinsic::x86_mmx_psrai_d: 4609 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4610 break; 4611 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4612 } 4613 4614 // The vector shift intrinsics with scalars uses 32b shift amounts but 4615 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4616 // to be zero. 4617 // We must do this early because v2i32 is not a legal type. 4618 SDValue ShOps[2]; 4619 ShOps[0] = ShAmt; 4620 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4621 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4622 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4623 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4624 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4625 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4626 getValue(I.getArgOperand(0)), ShAmt); 4627 setValue(&I, Res); 4628 return nullptr; 4629 } 4630 case Intrinsic::convertff: 4631 case Intrinsic::convertfsi: 4632 case Intrinsic::convertfui: 4633 case Intrinsic::convertsif: 4634 case Intrinsic::convertuif: 4635 case Intrinsic::convertss: 4636 case Intrinsic::convertsu: 4637 case Intrinsic::convertus: 4638 case Intrinsic::convertuu: { 4639 ISD::CvtCode Code = ISD::CVT_INVALID; 4640 switch (Intrinsic) { 4641 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4642 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4643 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4644 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4645 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4646 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4647 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4648 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4649 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4650 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4651 } 4652 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4653 const Value *Op1 = I.getArgOperand(0); 4654 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4655 DAG.getValueType(DestVT), 4656 DAG.getValueType(getValue(Op1).getValueType()), 4657 getValue(I.getArgOperand(1)), 4658 getValue(I.getArgOperand(2)), 4659 Code); 4660 setValue(&I, Res); 4661 return nullptr; 4662 } 4663 case Intrinsic::powi: 4664 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4665 getValue(I.getArgOperand(1)), DAG)); 4666 return nullptr; 4667 case Intrinsic::log: 4668 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4669 return nullptr; 4670 case Intrinsic::log2: 4671 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4672 return nullptr; 4673 case Intrinsic::log10: 4674 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4675 return nullptr; 4676 case Intrinsic::exp: 4677 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4678 return nullptr; 4679 case Intrinsic::exp2: 4680 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4681 return nullptr; 4682 case Intrinsic::pow: 4683 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4684 getValue(I.getArgOperand(1)), DAG, TLI)); 4685 return nullptr; 4686 case Intrinsic::sqrt: 4687 case Intrinsic::fabs: 4688 case Intrinsic::sin: 4689 case Intrinsic::cos: 4690 case Intrinsic::floor: 4691 case Intrinsic::ceil: 4692 case Intrinsic::trunc: 4693 case Intrinsic::rint: 4694 case Intrinsic::nearbyint: 4695 case Intrinsic::round: { 4696 unsigned Opcode; 4697 switch (Intrinsic) { 4698 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4699 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4700 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4701 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4702 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4703 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4704 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4705 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4706 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4707 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4708 case Intrinsic::round: Opcode = ISD::FROUND; break; 4709 } 4710 4711 setValue(&I, DAG.getNode(Opcode, sdl, 4712 getValue(I.getArgOperand(0)).getValueType(), 4713 getValue(I.getArgOperand(0)))); 4714 return nullptr; 4715 } 4716 case Intrinsic::minnum: 4717 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4718 getValue(I.getArgOperand(0)).getValueType(), 4719 getValue(I.getArgOperand(0)), 4720 getValue(I.getArgOperand(1)))); 4721 return nullptr; 4722 case Intrinsic::maxnum: 4723 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4724 getValue(I.getArgOperand(0)).getValueType(), 4725 getValue(I.getArgOperand(0)), 4726 getValue(I.getArgOperand(1)))); 4727 return nullptr; 4728 case Intrinsic::copysign: 4729 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4730 getValue(I.getArgOperand(0)).getValueType(), 4731 getValue(I.getArgOperand(0)), 4732 getValue(I.getArgOperand(1)))); 4733 return nullptr; 4734 case Intrinsic::fma: 4735 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4736 getValue(I.getArgOperand(0)).getValueType(), 4737 getValue(I.getArgOperand(0)), 4738 getValue(I.getArgOperand(1)), 4739 getValue(I.getArgOperand(2)))); 4740 return nullptr; 4741 case Intrinsic::fmuladd: { 4742 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4743 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4744 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4745 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4746 getValue(I.getArgOperand(0)).getValueType(), 4747 getValue(I.getArgOperand(0)), 4748 getValue(I.getArgOperand(1)), 4749 getValue(I.getArgOperand(2)))); 4750 } else { 4751 // TODO: Intrinsic calls should have fast-math-flags. 4752 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4753 getValue(I.getArgOperand(0)).getValueType(), 4754 getValue(I.getArgOperand(0)), 4755 getValue(I.getArgOperand(1))); 4756 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4757 getValue(I.getArgOperand(0)).getValueType(), 4758 Mul, 4759 getValue(I.getArgOperand(2))); 4760 setValue(&I, Add); 4761 } 4762 return nullptr; 4763 } 4764 case Intrinsic::convert_to_fp16: 4765 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4766 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4767 getValue(I.getArgOperand(0)), 4768 DAG.getTargetConstant(0, sdl, 4769 MVT::i32)))); 4770 return nullptr; 4771 case Intrinsic::convert_from_fp16: 4772 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4773 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4774 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4775 getValue(I.getArgOperand(0))))); 4776 return nullptr; 4777 case Intrinsic::pcmarker: { 4778 SDValue Tmp = getValue(I.getArgOperand(0)); 4779 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4780 return nullptr; 4781 } 4782 case Intrinsic::readcyclecounter: { 4783 SDValue Op = getRoot(); 4784 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4785 DAG.getVTList(MVT::i64, MVT::Other), Op); 4786 setValue(&I, Res); 4787 DAG.setRoot(Res.getValue(1)); 4788 return nullptr; 4789 } 4790 case Intrinsic::bswap: 4791 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4792 getValue(I.getArgOperand(0)).getValueType(), 4793 getValue(I.getArgOperand(0)))); 4794 return nullptr; 4795 case Intrinsic::uabsdiff: 4796 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4797 getValue(I.getArgOperand(0)).getValueType(), 4798 getValue(I.getArgOperand(0)), 4799 getValue(I.getArgOperand(1)))); 4800 return nullptr; 4801 case Intrinsic::sabsdiff: 4802 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4803 getValue(I.getArgOperand(0)).getValueType(), 4804 getValue(I.getArgOperand(0)), 4805 getValue(I.getArgOperand(1)))); 4806 return nullptr; 4807 case Intrinsic::cttz: { 4808 SDValue Arg = getValue(I.getArgOperand(0)); 4809 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4810 EVT Ty = Arg.getValueType(); 4811 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4812 sdl, Ty, Arg)); 4813 return nullptr; 4814 } 4815 case Intrinsic::ctlz: { 4816 SDValue Arg = getValue(I.getArgOperand(0)); 4817 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4818 EVT Ty = Arg.getValueType(); 4819 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4820 sdl, Ty, Arg)); 4821 return nullptr; 4822 } 4823 case Intrinsic::ctpop: { 4824 SDValue Arg = getValue(I.getArgOperand(0)); 4825 EVT Ty = Arg.getValueType(); 4826 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4827 return nullptr; 4828 } 4829 case Intrinsic::stacksave: { 4830 SDValue Op = getRoot(); 4831 Res = DAG.getNode( 4832 ISD::STACKSAVE, sdl, 4833 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4834 setValue(&I, Res); 4835 DAG.setRoot(Res.getValue(1)); 4836 return nullptr; 4837 } 4838 case Intrinsic::stackrestore: { 4839 Res = getValue(I.getArgOperand(0)); 4840 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4841 return nullptr; 4842 } 4843 case Intrinsic::stackprotector: { 4844 // Emit code into the DAG to store the stack guard onto the stack. 4845 MachineFunction &MF = DAG.getMachineFunction(); 4846 MachineFrameInfo *MFI = MF.getFrameInfo(); 4847 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4848 SDValue Src, Chain = getRoot(); 4849 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4850 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4851 4852 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4853 // global variable __stack_chk_guard. 4854 if (!GV) 4855 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4856 if (BC->getOpcode() == Instruction::BitCast) 4857 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4858 4859 if (GV && TLI.useLoadStackGuardNode()) { 4860 // Emit a LOAD_STACK_GUARD node. 4861 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4862 sdl, PtrTy, Chain); 4863 MachinePointerInfo MPInfo(GV); 4864 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4865 unsigned Flags = MachineMemOperand::MOLoad | 4866 MachineMemOperand::MOInvariant; 4867 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4868 PtrTy.getSizeInBits() / 8, 4869 DAG.getEVTAlignment(PtrTy)); 4870 Node->setMemRefs(MemRefs, MemRefs + 1); 4871 4872 // Copy the guard value to a virtual register so that it can be 4873 // retrieved in the epilogue. 4874 Src = SDValue(Node, 0); 4875 const TargetRegisterClass *RC = 4876 TLI.getRegClassFor(Src.getSimpleValueType()); 4877 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4878 4879 SPDescriptor.setGuardReg(Reg); 4880 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4881 } else { 4882 Src = getValue(I.getArgOperand(0)); // The guard's value. 4883 } 4884 4885 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4886 4887 int FI = FuncInfo.StaticAllocaMap[Slot]; 4888 MFI->setStackProtectorIndex(FI); 4889 4890 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4891 4892 // Store the stack protector onto the stack. 4893 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4894 DAG.getMachineFunction(), FI), 4895 true, false, 0); 4896 setValue(&I, Res); 4897 DAG.setRoot(Res); 4898 return nullptr; 4899 } 4900 case Intrinsic::objectsize: { 4901 // If we don't know by now, we're never going to know. 4902 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4903 4904 assert(CI && "Non-constant type in __builtin_object_size?"); 4905 4906 SDValue Arg = getValue(I.getCalledValue()); 4907 EVT Ty = Arg.getValueType(); 4908 4909 if (CI->isZero()) 4910 Res = DAG.getConstant(-1ULL, sdl, Ty); 4911 else 4912 Res = DAG.getConstant(0, sdl, Ty); 4913 4914 setValue(&I, Res); 4915 return nullptr; 4916 } 4917 case Intrinsic::annotation: 4918 case Intrinsic::ptr_annotation: 4919 // Drop the intrinsic, but forward the value 4920 setValue(&I, getValue(I.getOperand(0))); 4921 return nullptr; 4922 case Intrinsic::assume: 4923 case Intrinsic::var_annotation: 4924 // Discard annotate attributes and assumptions 4925 return nullptr; 4926 4927 case Intrinsic::init_trampoline: { 4928 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4929 4930 SDValue Ops[6]; 4931 Ops[0] = getRoot(); 4932 Ops[1] = getValue(I.getArgOperand(0)); 4933 Ops[2] = getValue(I.getArgOperand(1)); 4934 Ops[3] = getValue(I.getArgOperand(2)); 4935 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4936 Ops[5] = DAG.getSrcValue(F); 4937 4938 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4939 4940 DAG.setRoot(Res); 4941 return nullptr; 4942 } 4943 case Intrinsic::adjust_trampoline: { 4944 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4945 TLI.getPointerTy(DAG.getDataLayout()), 4946 getValue(I.getArgOperand(0)))); 4947 return nullptr; 4948 } 4949 case Intrinsic::gcroot: 4950 if (GFI) { 4951 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4952 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4953 4954 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4955 GFI->addStackRoot(FI->getIndex(), TypeMap); 4956 } 4957 return nullptr; 4958 case Intrinsic::gcread: 4959 case Intrinsic::gcwrite: 4960 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4961 case Intrinsic::flt_rounds: 4962 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4963 return nullptr; 4964 4965 case Intrinsic::expect: { 4966 // Just replace __builtin_expect(exp, c) with EXP. 4967 setValue(&I, getValue(I.getArgOperand(0))); 4968 return nullptr; 4969 } 4970 4971 case Intrinsic::debugtrap: 4972 case Intrinsic::trap: { 4973 StringRef TrapFuncName = 4974 I.getAttributes() 4975 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4976 .getValueAsString(); 4977 if (TrapFuncName.empty()) { 4978 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4979 ISD::TRAP : ISD::DEBUGTRAP; 4980 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4981 return nullptr; 4982 } 4983 TargetLowering::ArgListTy Args; 4984 4985 TargetLowering::CallLoweringInfo CLI(DAG); 4986 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4987 CallingConv::C, I.getType(), 4988 DAG.getExternalSymbol(TrapFuncName.data(), 4989 TLI.getPointerTy(DAG.getDataLayout())), 4990 std::move(Args), 0); 4991 4992 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4993 DAG.setRoot(Result.second); 4994 return nullptr; 4995 } 4996 4997 case Intrinsic::uadd_with_overflow: 4998 case Intrinsic::sadd_with_overflow: 4999 case Intrinsic::usub_with_overflow: 5000 case Intrinsic::ssub_with_overflow: 5001 case Intrinsic::umul_with_overflow: 5002 case Intrinsic::smul_with_overflow: { 5003 ISD::NodeType Op; 5004 switch (Intrinsic) { 5005 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5006 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5007 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5008 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5009 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5010 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5011 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5012 } 5013 SDValue Op1 = getValue(I.getArgOperand(0)); 5014 SDValue Op2 = getValue(I.getArgOperand(1)); 5015 5016 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5017 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5018 return nullptr; 5019 } 5020 case Intrinsic::prefetch: { 5021 SDValue Ops[5]; 5022 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5023 Ops[0] = getRoot(); 5024 Ops[1] = getValue(I.getArgOperand(0)); 5025 Ops[2] = getValue(I.getArgOperand(1)); 5026 Ops[3] = getValue(I.getArgOperand(2)); 5027 Ops[4] = getValue(I.getArgOperand(3)); 5028 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5029 DAG.getVTList(MVT::Other), Ops, 5030 EVT::getIntegerVT(*Context, 8), 5031 MachinePointerInfo(I.getArgOperand(0)), 5032 0, /* align */ 5033 false, /* volatile */ 5034 rw==0, /* read */ 5035 rw==1)); /* write */ 5036 return nullptr; 5037 } 5038 case Intrinsic::lifetime_start: 5039 case Intrinsic::lifetime_end: { 5040 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5041 // Stack coloring is not enabled in O0, discard region information. 5042 if (TM.getOptLevel() == CodeGenOpt::None) 5043 return nullptr; 5044 5045 SmallVector<Value *, 4> Allocas; 5046 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5047 5048 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5049 E = Allocas.end(); Object != E; ++Object) { 5050 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5051 5052 // Could not find an Alloca. 5053 if (!LifetimeObject) 5054 continue; 5055 5056 // First check that the Alloca is static, otherwise it won't have a 5057 // valid frame index. 5058 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5059 if (SI == FuncInfo.StaticAllocaMap.end()) 5060 return nullptr; 5061 5062 int FI = SI->second; 5063 5064 SDValue Ops[2]; 5065 Ops[0] = getRoot(); 5066 Ops[1] = 5067 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5068 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5069 5070 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5071 DAG.setRoot(Res); 5072 } 5073 return nullptr; 5074 } 5075 case Intrinsic::invariant_start: 5076 // Discard region information. 5077 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5078 return nullptr; 5079 case Intrinsic::invariant_end: 5080 // Discard region information. 5081 return nullptr; 5082 case Intrinsic::stackprotectorcheck: { 5083 // Do not actually emit anything for this basic block. Instead we initialize 5084 // the stack protector descriptor and export the guard variable so we can 5085 // access it in FinishBasicBlock. 5086 const BasicBlock *BB = I.getParent(); 5087 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5088 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5089 5090 // Flush our exports since we are going to process a terminator. 5091 (void)getControlRoot(); 5092 return nullptr; 5093 } 5094 case Intrinsic::clear_cache: 5095 return TLI.getClearCacheBuiltinName(); 5096 case Intrinsic::eh_actions: 5097 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5098 return nullptr; 5099 case Intrinsic::donothing: 5100 // ignore 5101 return nullptr; 5102 case Intrinsic::experimental_stackmap: { 5103 visitStackmap(I); 5104 return nullptr; 5105 } 5106 case Intrinsic::experimental_patchpoint_void: 5107 case Intrinsic::experimental_patchpoint_i64: { 5108 visitPatchpoint(&I); 5109 return nullptr; 5110 } 5111 case Intrinsic::experimental_gc_statepoint: { 5112 visitStatepoint(I); 5113 return nullptr; 5114 } 5115 case Intrinsic::experimental_gc_result_int: 5116 case Intrinsic::experimental_gc_result_float: 5117 case Intrinsic::experimental_gc_result_ptr: 5118 case Intrinsic::experimental_gc_result: { 5119 visitGCResult(I); 5120 return nullptr; 5121 } 5122 case Intrinsic::experimental_gc_relocate: { 5123 visitGCRelocate(I); 5124 return nullptr; 5125 } 5126 case Intrinsic::instrprof_increment: 5127 llvm_unreachable("instrprof failed to lower an increment"); 5128 5129 case Intrinsic::localescape: { 5130 MachineFunction &MF = DAG.getMachineFunction(); 5131 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5132 5133 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5134 // is the same on all targets. 5135 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5136 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5137 if (isa<ConstantPointerNull>(Arg)) 5138 continue; // Skip null pointers. They represent a hole in index space. 5139 AllocaInst *Slot = cast<AllocaInst>(Arg); 5140 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5141 "can only escape static allocas"); 5142 int FI = FuncInfo.StaticAllocaMap[Slot]; 5143 MCSymbol *FrameAllocSym = 5144 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5145 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5147 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5148 .addSym(FrameAllocSym) 5149 .addFrameIndex(FI); 5150 } 5151 5152 return nullptr; 5153 } 5154 5155 case Intrinsic::localrecover: { 5156 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5157 MachineFunction &MF = DAG.getMachineFunction(); 5158 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5159 5160 // Get the symbol that defines the frame offset. 5161 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5162 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5163 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5164 MCSymbol *FrameAllocSym = 5165 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5166 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5167 5168 // Create a MCSymbol for the label to avoid any target lowering 5169 // that would make this PC relative. 5170 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5171 SDValue OffsetVal = 5172 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5173 5174 // Add the offset to the FP. 5175 Value *FP = I.getArgOperand(1); 5176 SDValue FPVal = getValue(FP); 5177 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5178 setValue(&I, Add); 5179 5180 return nullptr; 5181 } 5182 case Intrinsic::eh_begincatch: 5183 case Intrinsic::eh_endcatch: 5184 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5185 case Intrinsic::eh_exceptioncode: { 5186 unsigned Reg = TLI.getExceptionPointerRegister(); 5187 assert(Reg && "cannot get exception code on this platform"); 5188 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5189 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5190 assert(FuncInfo.MBB->isEHPad() && "eh.exceptioncode in non-lpad"); 5191 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5192 SDValue N = 5193 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5194 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5195 setValue(&I, N); 5196 return nullptr; 5197 } 5198 } 5199 } 5200 5201 std::pair<SDValue, SDValue> 5202 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5203 const BasicBlock *EHPadBB) { 5204 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5205 MCSymbol *BeginLabel = nullptr; 5206 5207 if (EHPadBB) { 5208 // Insert a label before the invoke call to mark the try range. This can be 5209 // used to detect deletion of the invoke via the MachineModuleInfo. 5210 BeginLabel = MMI.getContext().createTempSymbol(); 5211 5212 // For SjLj, keep track of which landing pads go with which invokes 5213 // so as to maintain the ordering of pads in the LSDA. 5214 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5215 if (CallSiteIndex) { 5216 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5217 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5218 5219 // Now that the call site is handled, stop tracking it. 5220 MMI.setCurrentCallSite(0); 5221 } 5222 5223 // Both PendingLoads and PendingExports must be flushed here; 5224 // this call might not return. 5225 (void)getRoot(); 5226 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5227 5228 CLI.setChain(getRoot()); 5229 } 5230 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5231 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5232 5233 assert((CLI.IsTailCall || Result.second.getNode()) && 5234 "Non-null chain expected with non-tail call!"); 5235 assert((Result.second.getNode() || !Result.first.getNode()) && 5236 "Null value expected with tail call!"); 5237 5238 if (!Result.second.getNode()) { 5239 // As a special case, a null chain means that a tail call has been emitted 5240 // and the DAG root is already updated. 5241 HasTailCall = true; 5242 5243 // Since there's no actual continuation from this block, nothing can be 5244 // relying on us setting vregs for them. 5245 PendingExports.clear(); 5246 } else { 5247 DAG.setRoot(Result.second); 5248 } 5249 5250 if (EHPadBB) { 5251 // Insert a label at the end of the invoke call to mark the try range. This 5252 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5253 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5254 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5255 5256 // Inform MachineModuleInfo of range. 5257 if (MMI.hasEHFunclets()) { 5258 WinEHFuncInfo &EHInfo = 5259 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5260 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5261 } else { 5262 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5263 } 5264 } 5265 5266 return Result; 5267 } 5268 5269 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5270 bool isTailCall, 5271 const BasicBlock *EHPadBB) { 5272 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5273 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5274 Type *RetTy = FTy->getReturnType(); 5275 5276 TargetLowering::ArgListTy Args; 5277 TargetLowering::ArgListEntry Entry; 5278 Args.reserve(CS.arg_size()); 5279 5280 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5281 i != e; ++i) { 5282 const Value *V = *i; 5283 5284 // Skip empty types 5285 if (V->getType()->isEmptyTy()) 5286 continue; 5287 5288 SDValue ArgNode = getValue(V); 5289 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5290 5291 // Skip the first return-type Attribute to get to params. 5292 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5293 Args.push_back(Entry); 5294 5295 // If we have an explicit sret argument that is an Instruction, (i.e., it 5296 // might point to function-local memory), we can't meaningfully tail-call. 5297 if (Entry.isSRet && isa<Instruction>(V)) 5298 isTailCall = false; 5299 } 5300 5301 // Check if target-independent constraints permit a tail call here. 5302 // Target-dependent constraints are checked within TLI->LowerCallTo. 5303 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5304 isTailCall = false; 5305 5306 TargetLowering::CallLoweringInfo CLI(DAG); 5307 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5308 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5309 .setTailCall(isTailCall); 5310 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5311 5312 if (Result.first.getNode()) 5313 setValue(CS.getInstruction(), Result.first); 5314 } 5315 5316 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5317 /// value is equal or not-equal to zero. 5318 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5319 for (const User *U : V->users()) { 5320 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5321 if (IC->isEquality()) 5322 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5323 if (C->isNullValue()) 5324 continue; 5325 // Unknown instruction. 5326 return false; 5327 } 5328 return true; 5329 } 5330 5331 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5332 Type *LoadTy, 5333 SelectionDAGBuilder &Builder) { 5334 5335 // Check to see if this load can be trivially constant folded, e.g. if the 5336 // input is from a string literal. 5337 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5338 // Cast pointer to the type we really want to load. 5339 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5340 PointerType::getUnqual(LoadTy)); 5341 5342 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5343 const_cast<Constant *>(LoadInput), *Builder.DL)) 5344 return Builder.getValue(LoadCst); 5345 } 5346 5347 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5348 // still constant memory, the input chain can be the entry node. 5349 SDValue Root; 5350 bool ConstantMemory = false; 5351 5352 // Do not serialize (non-volatile) loads of constant memory with anything. 5353 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5354 Root = Builder.DAG.getEntryNode(); 5355 ConstantMemory = true; 5356 } else { 5357 // Do not serialize non-volatile loads against each other. 5358 Root = Builder.DAG.getRoot(); 5359 } 5360 5361 SDValue Ptr = Builder.getValue(PtrVal); 5362 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5363 Ptr, MachinePointerInfo(PtrVal), 5364 false /*volatile*/, 5365 false /*nontemporal*/, 5366 false /*isinvariant*/, 1 /* align=1 */); 5367 5368 if (!ConstantMemory) 5369 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5370 return LoadVal; 5371 } 5372 5373 /// processIntegerCallValue - Record the value for an instruction that 5374 /// produces an integer result, converting the type where necessary. 5375 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5376 SDValue Value, 5377 bool IsSigned) { 5378 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5379 I.getType(), true); 5380 if (IsSigned) 5381 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5382 else 5383 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5384 setValue(&I, Value); 5385 } 5386 5387 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5388 /// If so, return true and lower it, otherwise return false and it will be 5389 /// lowered like a normal call. 5390 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5391 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5392 if (I.getNumArgOperands() != 3) 5393 return false; 5394 5395 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5396 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5397 !I.getArgOperand(2)->getType()->isIntegerTy() || 5398 !I.getType()->isIntegerTy()) 5399 return false; 5400 5401 const Value *Size = I.getArgOperand(2); 5402 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5403 if (CSize && CSize->getZExtValue() == 0) { 5404 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5405 I.getType(), true); 5406 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5407 return true; 5408 } 5409 5410 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5411 std::pair<SDValue, SDValue> Res = 5412 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5413 getValue(LHS), getValue(RHS), getValue(Size), 5414 MachinePointerInfo(LHS), 5415 MachinePointerInfo(RHS)); 5416 if (Res.first.getNode()) { 5417 processIntegerCallValue(I, Res.first, true); 5418 PendingLoads.push_back(Res.second); 5419 return true; 5420 } 5421 5422 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5423 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5424 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5425 bool ActuallyDoIt = true; 5426 MVT LoadVT; 5427 Type *LoadTy; 5428 switch (CSize->getZExtValue()) { 5429 default: 5430 LoadVT = MVT::Other; 5431 LoadTy = nullptr; 5432 ActuallyDoIt = false; 5433 break; 5434 case 2: 5435 LoadVT = MVT::i16; 5436 LoadTy = Type::getInt16Ty(CSize->getContext()); 5437 break; 5438 case 4: 5439 LoadVT = MVT::i32; 5440 LoadTy = Type::getInt32Ty(CSize->getContext()); 5441 break; 5442 case 8: 5443 LoadVT = MVT::i64; 5444 LoadTy = Type::getInt64Ty(CSize->getContext()); 5445 break; 5446 /* 5447 case 16: 5448 LoadVT = MVT::v4i32; 5449 LoadTy = Type::getInt32Ty(CSize->getContext()); 5450 LoadTy = VectorType::get(LoadTy, 4); 5451 break; 5452 */ 5453 } 5454 5455 // This turns into unaligned loads. We only do this if the target natively 5456 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5457 // we'll only produce a small number of byte loads. 5458 5459 // Require that we can find a legal MVT, and only do this if the target 5460 // supports unaligned loads of that type. Expanding into byte loads would 5461 // bloat the code. 5462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5463 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5464 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5465 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5466 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5467 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5468 // TODO: Check alignment of src and dest ptrs. 5469 if (!TLI.isTypeLegal(LoadVT) || 5470 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5471 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5472 ActuallyDoIt = false; 5473 } 5474 5475 if (ActuallyDoIt) { 5476 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5477 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5478 5479 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5480 ISD::SETNE); 5481 processIntegerCallValue(I, Res, false); 5482 return true; 5483 } 5484 } 5485 5486 5487 return false; 5488 } 5489 5490 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5491 /// form. If so, return true and lower it, otherwise return false and it 5492 /// will be lowered like a normal call. 5493 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5494 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5495 if (I.getNumArgOperands() != 3) 5496 return false; 5497 5498 const Value *Src = I.getArgOperand(0); 5499 const Value *Char = I.getArgOperand(1); 5500 const Value *Length = I.getArgOperand(2); 5501 if (!Src->getType()->isPointerTy() || 5502 !Char->getType()->isIntegerTy() || 5503 !Length->getType()->isIntegerTy() || 5504 !I.getType()->isPointerTy()) 5505 return false; 5506 5507 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5508 std::pair<SDValue, SDValue> Res = 5509 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5510 getValue(Src), getValue(Char), getValue(Length), 5511 MachinePointerInfo(Src)); 5512 if (Res.first.getNode()) { 5513 setValue(&I, Res.first); 5514 PendingLoads.push_back(Res.second); 5515 return true; 5516 } 5517 5518 return false; 5519 } 5520 5521 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5522 /// optimized form. If so, return true and lower it, otherwise return false 5523 /// and it will be lowered like a normal call. 5524 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5525 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5526 if (I.getNumArgOperands() != 2) 5527 return false; 5528 5529 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5530 if (!Arg0->getType()->isPointerTy() || 5531 !Arg1->getType()->isPointerTy() || 5532 !I.getType()->isPointerTy()) 5533 return false; 5534 5535 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5536 std::pair<SDValue, SDValue> Res = 5537 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5538 getValue(Arg0), getValue(Arg1), 5539 MachinePointerInfo(Arg0), 5540 MachinePointerInfo(Arg1), isStpcpy); 5541 if (Res.first.getNode()) { 5542 setValue(&I, Res.first); 5543 DAG.setRoot(Res.second); 5544 return true; 5545 } 5546 5547 return false; 5548 } 5549 5550 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5551 /// If so, return true and lower it, otherwise return false and it will be 5552 /// lowered like a normal call. 5553 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5554 // Verify that the prototype makes sense. int strcmp(void*,void*) 5555 if (I.getNumArgOperands() != 2) 5556 return false; 5557 5558 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5559 if (!Arg0->getType()->isPointerTy() || 5560 !Arg1->getType()->isPointerTy() || 5561 !I.getType()->isIntegerTy()) 5562 return false; 5563 5564 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5565 std::pair<SDValue, SDValue> Res = 5566 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5567 getValue(Arg0), getValue(Arg1), 5568 MachinePointerInfo(Arg0), 5569 MachinePointerInfo(Arg1)); 5570 if (Res.first.getNode()) { 5571 processIntegerCallValue(I, Res.first, true); 5572 PendingLoads.push_back(Res.second); 5573 return true; 5574 } 5575 5576 return false; 5577 } 5578 5579 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5580 /// form. If so, return true and lower it, otherwise return false and it 5581 /// will be lowered like a normal call. 5582 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5583 // Verify that the prototype makes sense. size_t strlen(char *) 5584 if (I.getNumArgOperands() != 1) 5585 return false; 5586 5587 const Value *Arg0 = I.getArgOperand(0); 5588 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5589 return false; 5590 5591 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5592 std::pair<SDValue, SDValue> Res = 5593 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5594 getValue(Arg0), MachinePointerInfo(Arg0)); 5595 if (Res.first.getNode()) { 5596 processIntegerCallValue(I, Res.first, false); 5597 PendingLoads.push_back(Res.second); 5598 return true; 5599 } 5600 5601 return false; 5602 } 5603 5604 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5605 /// form. If so, return true and lower it, otherwise return false and it 5606 /// will be lowered like a normal call. 5607 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5608 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5609 if (I.getNumArgOperands() != 2) 5610 return false; 5611 5612 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5613 if (!Arg0->getType()->isPointerTy() || 5614 !Arg1->getType()->isIntegerTy() || 5615 !I.getType()->isIntegerTy()) 5616 return false; 5617 5618 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5619 std::pair<SDValue, SDValue> Res = 5620 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5621 getValue(Arg0), getValue(Arg1), 5622 MachinePointerInfo(Arg0)); 5623 if (Res.first.getNode()) { 5624 processIntegerCallValue(I, Res.first, false); 5625 PendingLoads.push_back(Res.second); 5626 return true; 5627 } 5628 5629 return false; 5630 } 5631 5632 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5633 /// operation (as expected), translate it to an SDNode with the specified opcode 5634 /// and return true. 5635 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5636 unsigned Opcode) { 5637 // Sanity check that it really is a unary floating-point call. 5638 if (I.getNumArgOperands() != 1 || 5639 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5640 I.getType() != I.getArgOperand(0)->getType() || 5641 !I.onlyReadsMemory()) 5642 return false; 5643 5644 SDValue Tmp = getValue(I.getArgOperand(0)); 5645 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5646 return true; 5647 } 5648 5649 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5650 /// operation (as expected), translate it to an SDNode with the specified opcode 5651 /// and return true. 5652 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5653 unsigned Opcode) { 5654 // Sanity check that it really is a binary floating-point call. 5655 if (I.getNumArgOperands() != 2 || 5656 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5657 I.getType() != I.getArgOperand(0)->getType() || 5658 I.getType() != I.getArgOperand(1)->getType() || 5659 !I.onlyReadsMemory()) 5660 return false; 5661 5662 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5663 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5664 EVT VT = Tmp0.getValueType(); 5665 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5666 return true; 5667 } 5668 5669 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5670 // Handle inline assembly differently. 5671 if (isa<InlineAsm>(I.getCalledValue())) { 5672 visitInlineAsm(&I); 5673 return; 5674 } 5675 5676 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5677 ComputeUsesVAFloatArgument(I, &MMI); 5678 5679 const char *RenameFn = nullptr; 5680 if (Function *F = I.getCalledFunction()) { 5681 if (F->isDeclaration()) { 5682 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5683 if (unsigned IID = II->getIntrinsicID(F)) { 5684 RenameFn = visitIntrinsicCall(I, IID); 5685 if (!RenameFn) 5686 return; 5687 } 5688 } 5689 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5690 RenameFn = visitIntrinsicCall(I, IID); 5691 if (!RenameFn) 5692 return; 5693 } 5694 } 5695 5696 // Check for well-known libc/libm calls. If the function is internal, it 5697 // can't be a library call. 5698 LibFunc::Func Func; 5699 if (!F->hasLocalLinkage() && F->hasName() && 5700 LibInfo->getLibFunc(F->getName(), Func) && 5701 LibInfo->hasOptimizedCodeGen(Func)) { 5702 switch (Func) { 5703 default: break; 5704 case LibFunc::copysign: 5705 case LibFunc::copysignf: 5706 case LibFunc::copysignl: 5707 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5708 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5709 I.getType() == I.getArgOperand(0)->getType() && 5710 I.getType() == I.getArgOperand(1)->getType() && 5711 I.onlyReadsMemory()) { 5712 SDValue LHS = getValue(I.getArgOperand(0)); 5713 SDValue RHS = getValue(I.getArgOperand(1)); 5714 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5715 LHS.getValueType(), LHS, RHS)); 5716 return; 5717 } 5718 break; 5719 case LibFunc::fabs: 5720 case LibFunc::fabsf: 5721 case LibFunc::fabsl: 5722 if (visitUnaryFloatCall(I, ISD::FABS)) 5723 return; 5724 break; 5725 case LibFunc::fmin: 5726 case LibFunc::fminf: 5727 case LibFunc::fminl: 5728 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5729 return; 5730 break; 5731 case LibFunc::fmax: 5732 case LibFunc::fmaxf: 5733 case LibFunc::fmaxl: 5734 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5735 return; 5736 break; 5737 case LibFunc::sin: 5738 case LibFunc::sinf: 5739 case LibFunc::sinl: 5740 if (visitUnaryFloatCall(I, ISD::FSIN)) 5741 return; 5742 break; 5743 case LibFunc::cos: 5744 case LibFunc::cosf: 5745 case LibFunc::cosl: 5746 if (visitUnaryFloatCall(I, ISD::FCOS)) 5747 return; 5748 break; 5749 case LibFunc::sqrt: 5750 case LibFunc::sqrtf: 5751 case LibFunc::sqrtl: 5752 case LibFunc::sqrt_finite: 5753 case LibFunc::sqrtf_finite: 5754 case LibFunc::sqrtl_finite: 5755 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5756 return; 5757 break; 5758 case LibFunc::floor: 5759 case LibFunc::floorf: 5760 case LibFunc::floorl: 5761 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5762 return; 5763 break; 5764 case LibFunc::nearbyint: 5765 case LibFunc::nearbyintf: 5766 case LibFunc::nearbyintl: 5767 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5768 return; 5769 break; 5770 case LibFunc::ceil: 5771 case LibFunc::ceilf: 5772 case LibFunc::ceill: 5773 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5774 return; 5775 break; 5776 case LibFunc::rint: 5777 case LibFunc::rintf: 5778 case LibFunc::rintl: 5779 if (visitUnaryFloatCall(I, ISD::FRINT)) 5780 return; 5781 break; 5782 case LibFunc::round: 5783 case LibFunc::roundf: 5784 case LibFunc::roundl: 5785 if (visitUnaryFloatCall(I, ISD::FROUND)) 5786 return; 5787 break; 5788 case LibFunc::trunc: 5789 case LibFunc::truncf: 5790 case LibFunc::truncl: 5791 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5792 return; 5793 break; 5794 case LibFunc::log2: 5795 case LibFunc::log2f: 5796 case LibFunc::log2l: 5797 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5798 return; 5799 break; 5800 case LibFunc::exp2: 5801 case LibFunc::exp2f: 5802 case LibFunc::exp2l: 5803 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5804 return; 5805 break; 5806 case LibFunc::memcmp: 5807 if (visitMemCmpCall(I)) 5808 return; 5809 break; 5810 case LibFunc::memchr: 5811 if (visitMemChrCall(I)) 5812 return; 5813 break; 5814 case LibFunc::strcpy: 5815 if (visitStrCpyCall(I, false)) 5816 return; 5817 break; 5818 case LibFunc::stpcpy: 5819 if (visitStrCpyCall(I, true)) 5820 return; 5821 break; 5822 case LibFunc::strcmp: 5823 if (visitStrCmpCall(I)) 5824 return; 5825 break; 5826 case LibFunc::strlen: 5827 if (visitStrLenCall(I)) 5828 return; 5829 break; 5830 case LibFunc::strnlen: 5831 if (visitStrNLenCall(I)) 5832 return; 5833 break; 5834 } 5835 } 5836 } 5837 5838 SDValue Callee; 5839 if (!RenameFn) 5840 Callee = getValue(I.getCalledValue()); 5841 else 5842 Callee = DAG.getExternalSymbol( 5843 RenameFn, 5844 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5845 5846 // Check if we can potentially perform a tail call. More detailed checking is 5847 // be done within LowerCallTo, after more information about the call is known. 5848 LowerCallTo(&I, Callee, I.isTailCall()); 5849 } 5850 5851 namespace { 5852 5853 /// AsmOperandInfo - This contains information for each constraint that we are 5854 /// lowering. 5855 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5856 public: 5857 /// CallOperand - If this is the result output operand or a clobber 5858 /// this is null, otherwise it is the incoming operand to the CallInst. 5859 /// This gets modified as the asm is processed. 5860 SDValue CallOperand; 5861 5862 /// AssignedRegs - If this is a register or register class operand, this 5863 /// contains the set of register corresponding to the operand. 5864 RegsForValue AssignedRegs; 5865 5866 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5867 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5868 } 5869 5870 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5871 /// corresponds to. If there is no Value* for this operand, it returns 5872 /// MVT::Other. 5873 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5874 const DataLayout &DL) const { 5875 if (!CallOperandVal) return MVT::Other; 5876 5877 if (isa<BasicBlock>(CallOperandVal)) 5878 return TLI.getPointerTy(DL); 5879 5880 llvm::Type *OpTy = CallOperandVal->getType(); 5881 5882 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5883 // If this is an indirect operand, the operand is a pointer to the 5884 // accessed type. 5885 if (isIndirect) { 5886 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5887 if (!PtrTy) 5888 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5889 OpTy = PtrTy->getElementType(); 5890 } 5891 5892 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5893 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5894 if (STy->getNumElements() == 1) 5895 OpTy = STy->getElementType(0); 5896 5897 // If OpTy is not a single value, it may be a struct/union that we 5898 // can tile with integers. 5899 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5900 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5901 switch (BitSize) { 5902 default: break; 5903 case 1: 5904 case 8: 5905 case 16: 5906 case 32: 5907 case 64: 5908 case 128: 5909 OpTy = IntegerType::get(Context, BitSize); 5910 break; 5911 } 5912 } 5913 5914 return TLI.getValueType(DL, OpTy, true); 5915 } 5916 }; 5917 5918 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5919 5920 } // end anonymous namespace 5921 5922 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5923 /// specified operand. We prefer to assign virtual registers, to allow the 5924 /// register allocator to handle the assignment process. However, if the asm 5925 /// uses features that we can't model on machineinstrs, we have SDISel do the 5926 /// allocation. This produces generally horrible, but correct, code. 5927 /// 5928 /// OpInfo describes the operand. 5929 /// 5930 static void GetRegistersForValue(SelectionDAG &DAG, 5931 const TargetLowering &TLI, 5932 SDLoc DL, 5933 SDISelAsmOperandInfo &OpInfo) { 5934 LLVMContext &Context = *DAG.getContext(); 5935 5936 MachineFunction &MF = DAG.getMachineFunction(); 5937 SmallVector<unsigned, 4> Regs; 5938 5939 // If this is a constraint for a single physreg, or a constraint for a 5940 // register class, find it. 5941 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5942 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5943 OpInfo.ConstraintCode, 5944 OpInfo.ConstraintVT); 5945 5946 unsigned NumRegs = 1; 5947 if (OpInfo.ConstraintVT != MVT::Other) { 5948 // If this is a FP input in an integer register (or visa versa) insert a bit 5949 // cast of the input value. More generally, handle any case where the input 5950 // value disagrees with the register class we plan to stick this in. 5951 if (OpInfo.Type == InlineAsm::isInput && 5952 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5953 // Try to convert to the first EVT that the reg class contains. If the 5954 // types are identical size, use a bitcast to convert (e.g. two differing 5955 // vector types). 5956 MVT RegVT = *PhysReg.second->vt_begin(); 5957 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5958 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5959 RegVT, OpInfo.CallOperand); 5960 OpInfo.ConstraintVT = RegVT; 5961 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5962 // If the input is a FP value and we want it in FP registers, do a 5963 // bitcast to the corresponding integer type. This turns an f64 value 5964 // into i64, which can be passed with two i32 values on a 32-bit 5965 // machine. 5966 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5967 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5968 RegVT, OpInfo.CallOperand); 5969 OpInfo.ConstraintVT = RegVT; 5970 } 5971 } 5972 5973 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5974 } 5975 5976 MVT RegVT; 5977 EVT ValueVT = OpInfo.ConstraintVT; 5978 5979 // If this is a constraint for a specific physical register, like {r17}, 5980 // assign it now. 5981 if (unsigned AssignedReg = PhysReg.first) { 5982 const TargetRegisterClass *RC = PhysReg.second; 5983 if (OpInfo.ConstraintVT == MVT::Other) 5984 ValueVT = *RC->vt_begin(); 5985 5986 // Get the actual register value type. This is important, because the user 5987 // may have asked for (e.g.) the AX register in i32 type. We need to 5988 // remember that AX is actually i16 to get the right extension. 5989 RegVT = *RC->vt_begin(); 5990 5991 // This is a explicit reference to a physical register. 5992 Regs.push_back(AssignedReg); 5993 5994 // If this is an expanded reference, add the rest of the regs to Regs. 5995 if (NumRegs != 1) { 5996 TargetRegisterClass::iterator I = RC->begin(); 5997 for (; *I != AssignedReg; ++I) 5998 assert(I != RC->end() && "Didn't find reg!"); 5999 6000 // Already added the first reg. 6001 --NumRegs; ++I; 6002 for (; NumRegs; --NumRegs, ++I) { 6003 assert(I != RC->end() && "Ran out of registers to allocate!"); 6004 Regs.push_back(*I); 6005 } 6006 } 6007 6008 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6009 return; 6010 } 6011 6012 // Otherwise, if this was a reference to an LLVM register class, create vregs 6013 // for this reference. 6014 if (const TargetRegisterClass *RC = PhysReg.second) { 6015 RegVT = *RC->vt_begin(); 6016 if (OpInfo.ConstraintVT == MVT::Other) 6017 ValueVT = RegVT; 6018 6019 // Create the appropriate number of virtual registers. 6020 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6021 for (; NumRegs; --NumRegs) 6022 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6023 6024 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6025 return; 6026 } 6027 6028 // Otherwise, we couldn't allocate enough registers for this. 6029 } 6030 6031 /// visitInlineAsm - Handle a call to an InlineAsm object. 6032 /// 6033 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6034 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6035 6036 /// ConstraintOperands - Information about all of the constraints. 6037 SDISelAsmOperandInfoVector ConstraintOperands; 6038 6039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6040 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6041 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6042 6043 bool hasMemory = false; 6044 6045 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6046 unsigned ResNo = 0; // ResNo - The result number of the next output. 6047 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6048 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6049 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6050 6051 MVT OpVT = MVT::Other; 6052 6053 // Compute the value type for each operand. 6054 switch (OpInfo.Type) { 6055 case InlineAsm::isOutput: 6056 // Indirect outputs just consume an argument. 6057 if (OpInfo.isIndirect) { 6058 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6059 break; 6060 } 6061 6062 // The return value of the call is this value. As such, there is no 6063 // corresponding argument. 6064 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6065 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6066 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6067 STy->getElementType(ResNo)); 6068 } else { 6069 assert(ResNo == 0 && "Asm only has one result!"); 6070 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6071 } 6072 ++ResNo; 6073 break; 6074 case InlineAsm::isInput: 6075 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6076 break; 6077 case InlineAsm::isClobber: 6078 // Nothing to do. 6079 break; 6080 } 6081 6082 // If this is an input or an indirect output, process the call argument. 6083 // BasicBlocks are labels, currently appearing only in asm's. 6084 if (OpInfo.CallOperandVal) { 6085 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6086 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6087 } else { 6088 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6089 } 6090 6091 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6092 DAG.getDataLayout()).getSimpleVT(); 6093 } 6094 6095 OpInfo.ConstraintVT = OpVT; 6096 6097 // Indirect operand accesses access memory. 6098 if (OpInfo.isIndirect) 6099 hasMemory = true; 6100 else { 6101 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6102 TargetLowering::ConstraintType 6103 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6104 if (CType == TargetLowering::C_Memory) { 6105 hasMemory = true; 6106 break; 6107 } 6108 } 6109 } 6110 } 6111 6112 SDValue Chain, Flag; 6113 6114 // We won't need to flush pending loads if this asm doesn't touch 6115 // memory and is nonvolatile. 6116 if (hasMemory || IA->hasSideEffects()) 6117 Chain = getRoot(); 6118 else 6119 Chain = DAG.getRoot(); 6120 6121 // Second pass over the constraints: compute which constraint option to use 6122 // and assign registers to constraints that want a specific physreg. 6123 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6124 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6125 6126 // If this is an output operand with a matching input operand, look up the 6127 // matching input. If their types mismatch, e.g. one is an integer, the 6128 // other is floating point, or their sizes are different, flag it as an 6129 // error. 6130 if (OpInfo.hasMatchingInput()) { 6131 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6132 6133 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6134 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6135 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6136 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6137 OpInfo.ConstraintVT); 6138 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6139 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6140 Input.ConstraintVT); 6141 if ((OpInfo.ConstraintVT.isInteger() != 6142 Input.ConstraintVT.isInteger()) || 6143 (MatchRC.second != InputRC.second)) { 6144 report_fatal_error("Unsupported asm: input constraint" 6145 " with a matching output constraint of" 6146 " incompatible type!"); 6147 } 6148 Input.ConstraintVT = OpInfo.ConstraintVT; 6149 } 6150 } 6151 6152 // Compute the constraint code and ConstraintType to use. 6153 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6154 6155 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6156 OpInfo.Type == InlineAsm::isClobber) 6157 continue; 6158 6159 // If this is a memory input, and if the operand is not indirect, do what we 6160 // need to to provide an address for the memory input. 6161 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6162 !OpInfo.isIndirect) { 6163 assert((OpInfo.isMultipleAlternative || 6164 (OpInfo.Type == InlineAsm::isInput)) && 6165 "Can only indirectify direct input operands!"); 6166 6167 // Memory operands really want the address of the value. If we don't have 6168 // an indirect input, put it in the constpool if we can, otherwise spill 6169 // it to a stack slot. 6170 // TODO: This isn't quite right. We need to handle these according to 6171 // the addressing mode that the constraint wants. Also, this may take 6172 // an additional register for the computation and we don't want that 6173 // either. 6174 6175 // If the operand is a float, integer, or vector constant, spill to a 6176 // constant pool entry to get its address. 6177 const Value *OpVal = OpInfo.CallOperandVal; 6178 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6179 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6180 OpInfo.CallOperand = DAG.getConstantPool( 6181 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6182 } else { 6183 // Otherwise, create a stack slot and emit a store to it before the 6184 // asm. 6185 Type *Ty = OpVal->getType(); 6186 auto &DL = DAG.getDataLayout(); 6187 uint64_t TySize = DL.getTypeAllocSize(Ty); 6188 unsigned Align = DL.getPrefTypeAlignment(Ty); 6189 MachineFunction &MF = DAG.getMachineFunction(); 6190 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6191 SDValue StackSlot = 6192 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6193 Chain = DAG.getStore( 6194 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6195 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6196 false, false, 0); 6197 OpInfo.CallOperand = StackSlot; 6198 } 6199 6200 // There is no longer a Value* corresponding to this operand. 6201 OpInfo.CallOperandVal = nullptr; 6202 6203 // It is now an indirect operand. 6204 OpInfo.isIndirect = true; 6205 } 6206 6207 // If this constraint is for a specific register, allocate it before 6208 // anything else. 6209 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6210 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6211 } 6212 6213 // Second pass - Loop over all of the operands, assigning virtual or physregs 6214 // to register class operands. 6215 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6216 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6217 6218 // C_Register operands have already been allocated, Other/Memory don't need 6219 // to be. 6220 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6221 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6222 } 6223 6224 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6225 std::vector<SDValue> AsmNodeOperands; 6226 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6227 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6228 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6229 6230 // If we have a !srcloc metadata node associated with it, we want to attach 6231 // this to the ultimately generated inline asm machineinstr. To do this, we 6232 // pass in the third operand as this (potentially null) inline asm MDNode. 6233 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6234 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6235 6236 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6237 // bits as operand 3. 6238 unsigned ExtraInfo = 0; 6239 if (IA->hasSideEffects()) 6240 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6241 if (IA->isAlignStack()) 6242 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6243 // Set the asm dialect. 6244 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6245 6246 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6247 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6248 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6249 6250 // Compute the constraint code and ConstraintType to use. 6251 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6252 6253 // Ideally, we would only check against memory constraints. However, the 6254 // meaning of an other constraint can be target-specific and we can't easily 6255 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6256 // for other constriants as well. 6257 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6258 OpInfo.ConstraintType == TargetLowering::C_Other) { 6259 if (OpInfo.Type == InlineAsm::isInput) 6260 ExtraInfo |= InlineAsm::Extra_MayLoad; 6261 else if (OpInfo.Type == InlineAsm::isOutput) 6262 ExtraInfo |= InlineAsm::Extra_MayStore; 6263 else if (OpInfo.Type == InlineAsm::isClobber) 6264 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6265 } 6266 } 6267 6268 AsmNodeOperands.push_back(DAG.getTargetConstant( 6269 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6270 6271 // Loop over all of the inputs, copying the operand values into the 6272 // appropriate registers and processing the output regs. 6273 RegsForValue RetValRegs; 6274 6275 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6276 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6277 6278 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6279 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6280 6281 switch (OpInfo.Type) { 6282 case InlineAsm::isOutput: { 6283 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6284 OpInfo.ConstraintType != TargetLowering::C_Register) { 6285 // Memory output, or 'other' output (e.g. 'X' constraint). 6286 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6287 6288 unsigned ConstraintID = 6289 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6290 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6291 "Failed to convert memory constraint code to constraint id."); 6292 6293 // Add information to the INLINEASM node to know about this output. 6294 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6295 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6296 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6297 MVT::i32)); 6298 AsmNodeOperands.push_back(OpInfo.CallOperand); 6299 break; 6300 } 6301 6302 // Otherwise, this is a register or register class output. 6303 6304 // Copy the output from the appropriate register. Find a register that 6305 // we can use. 6306 if (OpInfo.AssignedRegs.Regs.empty()) { 6307 LLVMContext &Ctx = *DAG.getContext(); 6308 Ctx.emitError(CS.getInstruction(), 6309 "couldn't allocate output register for constraint '" + 6310 Twine(OpInfo.ConstraintCode) + "'"); 6311 return; 6312 } 6313 6314 // If this is an indirect operand, store through the pointer after the 6315 // asm. 6316 if (OpInfo.isIndirect) { 6317 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6318 OpInfo.CallOperandVal)); 6319 } else { 6320 // This is the result value of the call. 6321 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6322 // Concatenate this output onto the outputs list. 6323 RetValRegs.append(OpInfo.AssignedRegs); 6324 } 6325 6326 // Add information to the INLINEASM node to know that this register is 6327 // set. 6328 OpInfo.AssignedRegs 6329 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6330 ? InlineAsm::Kind_RegDefEarlyClobber 6331 : InlineAsm::Kind_RegDef, 6332 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6333 break; 6334 } 6335 case InlineAsm::isInput: { 6336 SDValue InOperandVal = OpInfo.CallOperand; 6337 6338 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6339 // If this is required to match an output register we have already set, 6340 // just use its register. 6341 unsigned OperandNo = OpInfo.getMatchedOperand(); 6342 6343 // Scan until we find the definition we already emitted of this operand. 6344 // When we find it, create a RegsForValue operand. 6345 unsigned CurOp = InlineAsm::Op_FirstOperand; 6346 for (; OperandNo; --OperandNo) { 6347 // Advance to the next operand. 6348 unsigned OpFlag = 6349 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6350 assert((InlineAsm::isRegDefKind(OpFlag) || 6351 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6352 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6353 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6354 } 6355 6356 unsigned OpFlag = 6357 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6358 if (InlineAsm::isRegDefKind(OpFlag) || 6359 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6360 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6361 if (OpInfo.isIndirect) { 6362 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6363 LLVMContext &Ctx = *DAG.getContext(); 6364 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6365 " don't know how to handle tied " 6366 "indirect register inputs"); 6367 return; 6368 } 6369 6370 RegsForValue MatchedRegs; 6371 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6372 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6373 MatchedRegs.RegVTs.push_back(RegVT); 6374 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6375 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6376 i != e; ++i) { 6377 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6378 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6379 else { 6380 LLVMContext &Ctx = *DAG.getContext(); 6381 Ctx.emitError(CS.getInstruction(), 6382 "inline asm error: This value" 6383 " type register class is not natively supported!"); 6384 return; 6385 } 6386 } 6387 SDLoc dl = getCurSDLoc(); 6388 // Use the produced MatchedRegs object to 6389 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6390 Chain, &Flag, CS.getInstruction()); 6391 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6392 true, OpInfo.getMatchedOperand(), dl, 6393 DAG, AsmNodeOperands); 6394 break; 6395 } 6396 6397 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6398 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6399 "Unexpected number of operands"); 6400 // Add information to the INLINEASM node to know about this input. 6401 // See InlineAsm.h isUseOperandTiedToDef. 6402 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6403 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6404 OpInfo.getMatchedOperand()); 6405 AsmNodeOperands.push_back(DAG.getTargetConstant( 6406 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6407 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6408 break; 6409 } 6410 6411 // Treat indirect 'X' constraint as memory. 6412 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6413 OpInfo.isIndirect) 6414 OpInfo.ConstraintType = TargetLowering::C_Memory; 6415 6416 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6417 std::vector<SDValue> Ops; 6418 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6419 Ops, DAG); 6420 if (Ops.empty()) { 6421 LLVMContext &Ctx = *DAG.getContext(); 6422 Ctx.emitError(CS.getInstruction(), 6423 "invalid operand for inline asm constraint '" + 6424 Twine(OpInfo.ConstraintCode) + "'"); 6425 return; 6426 } 6427 6428 // Add information to the INLINEASM node to know about this input. 6429 unsigned ResOpType = 6430 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6431 AsmNodeOperands.push_back(DAG.getTargetConstant( 6432 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6433 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6434 break; 6435 } 6436 6437 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6438 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6439 assert(InOperandVal.getValueType() == 6440 TLI.getPointerTy(DAG.getDataLayout()) && 6441 "Memory operands expect pointer values"); 6442 6443 unsigned ConstraintID = 6444 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6445 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6446 "Failed to convert memory constraint code to constraint id."); 6447 6448 // Add information to the INLINEASM node to know about this input. 6449 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6450 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6451 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6452 getCurSDLoc(), 6453 MVT::i32)); 6454 AsmNodeOperands.push_back(InOperandVal); 6455 break; 6456 } 6457 6458 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6459 OpInfo.ConstraintType == TargetLowering::C_Register) && 6460 "Unknown constraint type!"); 6461 6462 // TODO: Support this. 6463 if (OpInfo.isIndirect) { 6464 LLVMContext &Ctx = *DAG.getContext(); 6465 Ctx.emitError(CS.getInstruction(), 6466 "Don't know how to handle indirect register inputs yet " 6467 "for constraint '" + 6468 Twine(OpInfo.ConstraintCode) + "'"); 6469 return; 6470 } 6471 6472 // Copy the input into the appropriate registers. 6473 if (OpInfo.AssignedRegs.Regs.empty()) { 6474 LLVMContext &Ctx = *DAG.getContext(); 6475 Ctx.emitError(CS.getInstruction(), 6476 "couldn't allocate input reg for constraint '" + 6477 Twine(OpInfo.ConstraintCode) + "'"); 6478 return; 6479 } 6480 6481 SDLoc dl = getCurSDLoc(); 6482 6483 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6484 Chain, &Flag, CS.getInstruction()); 6485 6486 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6487 dl, DAG, AsmNodeOperands); 6488 break; 6489 } 6490 case InlineAsm::isClobber: { 6491 // Add the clobbered value to the operand list, so that the register 6492 // allocator is aware that the physreg got clobbered. 6493 if (!OpInfo.AssignedRegs.Regs.empty()) 6494 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6495 false, 0, getCurSDLoc(), DAG, 6496 AsmNodeOperands); 6497 break; 6498 } 6499 } 6500 } 6501 6502 // Finish up input operands. Set the input chain and add the flag last. 6503 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6504 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6505 6506 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6507 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6508 Flag = Chain.getValue(1); 6509 6510 // If this asm returns a register value, copy the result from that register 6511 // and set it as the value of the call. 6512 if (!RetValRegs.Regs.empty()) { 6513 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6514 Chain, &Flag, CS.getInstruction()); 6515 6516 // FIXME: Why don't we do this for inline asms with MRVs? 6517 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6518 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6519 6520 // If any of the results of the inline asm is a vector, it may have the 6521 // wrong width/num elts. This can happen for register classes that can 6522 // contain multiple different value types. The preg or vreg allocated may 6523 // not have the same VT as was expected. Convert it to the right type 6524 // with bit_convert. 6525 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6526 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6527 ResultType, Val); 6528 6529 } else if (ResultType != Val.getValueType() && 6530 ResultType.isInteger() && Val.getValueType().isInteger()) { 6531 // If a result value was tied to an input value, the computed result may 6532 // have a wider width than the expected result. Extract the relevant 6533 // portion. 6534 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6535 } 6536 6537 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6538 } 6539 6540 setValue(CS.getInstruction(), Val); 6541 // Don't need to use this as a chain in this case. 6542 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6543 return; 6544 } 6545 6546 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6547 6548 // Process indirect outputs, first output all of the flagged copies out of 6549 // physregs. 6550 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6551 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6552 const Value *Ptr = IndirectStoresToEmit[i].second; 6553 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6554 Chain, &Flag, IA); 6555 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6556 } 6557 6558 // Emit the non-flagged stores from the physregs. 6559 SmallVector<SDValue, 8> OutChains; 6560 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6561 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6562 StoresToEmit[i].first, 6563 getValue(StoresToEmit[i].second), 6564 MachinePointerInfo(StoresToEmit[i].second), 6565 false, false, 0); 6566 OutChains.push_back(Val); 6567 } 6568 6569 if (!OutChains.empty()) 6570 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6571 6572 DAG.setRoot(Chain); 6573 } 6574 6575 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6576 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6577 MVT::Other, getRoot(), 6578 getValue(I.getArgOperand(0)), 6579 DAG.getSrcValue(I.getArgOperand(0)))); 6580 } 6581 6582 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6584 const DataLayout &DL = DAG.getDataLayout(); 6585 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6586 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6587 DAG.getSrcValue(I.getOperand(0)), 6588 DL.getABITypeAlignment(I.getType())); 6589 setValue(&I, V); 6590 DAG.setRoot(V.getValue(1)); 6591 } 6592 6593 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6594 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6595 MVT::Other, getRoot(), 6596 getValue(I.getArgOperand(0)), 6597 DAG.getSrcValue(I.getArgOperand(0)))); 6598 } 6599 6600 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6601 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6602 MVT::Other, getRoot(), 6603 getValue(I.getArgOperand(0)), 6604 getValue(I.getArgOperand(1)), 6605 DAG.getSrcValue(I.getArgOperand(0)), 6606 DAG.getSrcValue(I.getArgOperand(1)))); 6607 } 6608 6609 /// \brief Lower an argument list according to the target calling convention. 6610 /// 6611 /// \return A tuple of <return-value, token-chain> 6612 /// 6613 /// This is a helper for lowering intrinsics that follow a target calling 6614 /// convention or require stack pointer adjustment. Only a subset of the 6615 /// intrinsic's operands need to participate in the calling convention. 6616 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6617 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6618 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6619 TargetLowering::ArgListTy Args; 6620 Args.reserve(NumArgs); 6621 6622 // Populate the argument list. 6623 // Attributes for args start at offset 1, after the return attribute. 6624 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6625 ArgI != ArgE; ++ArgI) { 6626 const Value *V = CS->getOperand(ArgI); 6627 6628 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6629 6630 TargetLowering::ArgListEntry Entry; 6631 Entry.Node = getValue(V); 6632 Entry.Ty = V->getType(); 6633 Entry.setAttributes(&CS, AttrI); 6634 Args.push_back(Entry); 6635 } 6636 6637 TargetLowering::CallLoweringInfo CLI(DAG); 6638 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6639 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6640 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6641 6642 return lowerInvokable(CLI, EHPadBB); 6643 } 6644 6645 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6646 /// or patchpoint target node's operand list. 6647 /// 6648 /// Constants are converted to TargetConstants purely as an optimization to 6649 /// avoid constant materialization and register allocation. 6650 /// 6651 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6652 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6653 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6654 /// address materialization and register allocation, but may also be required 6655 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6656 /// alloca in the entry block, then the runtime may assume that the alloca's 6657 /// StackMap location can be read immediately after compilation and that the 6658 /// location is valid at any point during execution (this is similar to the 6659 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6660 /// only available in a register, then the runtime would need to trap when 6661 /// execution reaches the StackMap in order to read the alloca's location. 6662 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6663 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6664 SelectionDAGBuilder &Builder) { 6665 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6666 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6667 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6668 Ops.push_back( 6669 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6670 Ops.push_back( 6671 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6672 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6673 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6674 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6675 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6676 } else 6677 Ops.push_back(OpVal); 6678 } 6679 } 6680 6681 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6682 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6683 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6684 // [live variables...]) 6685 6686 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6687 6688 SDValue Chain, InFlag, Callee, NullPtr; 6689 SmallVector<SDValue, 32> Ops; 6690 6691 SDLoc DL = getCurSDLoc(); 6692 Callee = getValue(CI.getCalledValue()); 6693 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6694 6695 // The stackmap intrinsic only records the live variables (the arguemnts 6696 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6697 // intrinsic, this won't be lowered to a function call. This means we don't 6698 // have to worry about calling conventions and target specific lowering code. 6699 // Instead we perform the call lowering right here. 6700 // 6701 // chain, flag = CALLSEQ_START(chain, 0) 6702 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6703 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6704 // 6705 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6706 InFlag = Chain.getValue(1); 6707 6708 // Add the <id> and <numBytes> constants. 6709 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6710 Ops.push_back(DAG.getTargetConstant( 6711 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6712 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6713 Ops.push_back(DAG.getTargetConstant( 6714 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6715 MVT::i32)); 6716 6717 // Push live variables for the stack map. 6718 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6719 6720 // We are not pushing any register mask info here on the operands list, 6721 // because the stackmap doesn't clobber anything. 6722 6723 // Push the chain and the glue flag. 6724 Ops.push_back(Chain); 6725 Ops.push_back(InFlag); 6726 6727 // Create the STACKMAP node. 6728 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6729 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6730 Chain = SDValue(SM, 0); 6731 InFlag = Chain.getValue(1); 6732 6733 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6734 6735 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6736 6737 // Set the root to the target-lowered call chain. 6738 DAG.setRoot(Chain); 6739 6740 // Inform the Frame Information that we have a stackmap in this function. 6741 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6742 } 6743 6744 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6745 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6746 const BasicBlock *EHPadBB) { 6747 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6748 // i32 <numBytes>, 6749 // i8* <target>, 6750 // i32 <numArgs>, 6751 // [Args...], 6752 // [live variables...]) 6753 6754 CallingConv::ID CC = CS.getCallingConv(); 6755 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6756 bool HasDef = !CS->getType()->isVoidTy(); 6757 SDLoc dl = getCurSDLoc(); 6758 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6759 6760 // Handle immediate and symbolic callees. 6761 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6762 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6763 /*isTarget=*/true); 6764 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6765 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6766 SDLoc(SymbolicCallee), 6767 SymbolicCallee->getValueType(0)); 6768 6769 // Get the real number of arguments participating in the call <numArgs> 6770 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6771 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6772 6773 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6774 // Intrinsics include all meta-operands up to but not including CC. 6775 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6776 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6777 "Not enough arguments provided to the patchpoint intrinsic"); 6778 6779 // For AnyRegCC the arguments are lowered later on manually. 6780 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6781 Type *ReturnTy = 6782 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6783 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6784 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6785 6786 SDNode *CallEnd = Result.second.getNode(); 6787 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6788 CallEnd = CallEnd->getOperand(0).getNode(); 6789 6790 /// Get a call instruction from the call sequence chain. 6791 /// Tail calls are not allowed. 6792 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6793 "Expected a callseq node."); 6794 SDNode *Call = CallEnd->getOperand(0).getNode(); 6795 bool HasGlue = Call->getGluedNode(); 6796 6797 // Replace the target specific call node with the patchable intrinsic. 6798 SmallVector<SDValue, 8> Ops; 6799 6800 // Add the <id> and <numBytes> constants. 6801 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6802 Ops.push_back(DAG.getTargetConstant( 6803 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6804 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6805 Ops.push_back(DAG.getTargetConstant( 6806 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6807 MVT::i32)); 6808 6809 // Add the callee. 6810 Ops.push_back(Callee); 6811 6812 // Adjust <numArgs> to account for any arguments that have been passed on the 6813 // stack instead. 6814 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6815 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6816 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6817 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6818 6819 // Add the calling convention 6820 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6821 6822 // Add the arguments we omitted previously. The register allocator should 6823 // place these in any free register. 6824 if (IsAnyRegCC) 6825 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6826 Ops.push_back(getValue(CS.getArgument(i))); 6827 6828 // Push the arguments from the call instruction up to the register mask. 6829 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6830 Ops.append(Call->op_begin() + 2, e); 6831 6832 // Push live variables for the stack map. 6833 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6834 6835 // Push the register mask info. 6836 if (HasGlue) 6837 Ops.push_back(*(Call->op_end()-2)); 6838 else 6839 Ops.push_back(*(Call->op_end()-1)); 6840 6841 // Push the chain (this is originally the first operand of the call, but 6842 // becomes now the last or second to last operand). 6843 Ops.push_back(*(Call->op_begin())); 6844 6845 // Push the glue flag (last operand). 6846 if (HasGlue) 6847 Ops.push_back(*(Call->op_end()-1)); 6848 6849 SDVTList NodeTys; 6850 if (IsAnyRegCC && HasDef) { 6851 // Create the return types based on the intrinsic definition 6852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6853 SmallVector<EVT, 3> ValueVTs; 6854 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6855 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6856 6857 // There is always a chain and a glue type at the end 6858 ValueVTs.push_back(MVT::Other); 6859 ValueVTs.push_back(MVT::Glue); 6860 NodeTys = DAG.getVTList(ValueVTs); 6861 } else 6862 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6863 6864 // Replace the target specific call node with a PATCHPOINT node. 6865 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6866 dl, NodeTys, Ops); 6867 6868 // Update the NodeMap. 6869 if (HasDef) { 6870 if (IsAnyRegCC) 6871 setValue(CS.getInstruction(), SDValue(MN, 0)); 6872 else 6873 setValue(CS.getInstruction(), Result.first); 6874 } 6875 6876 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6877 // call sequence. Furthermore the location of the chain and glue can change 6878 // when the AnyReg calling convention is used and the intrinsic returns a 6879 // value. 6880 if (IsAnyRegCC && HasDef) { 6881 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6882 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6883 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6884 } else 6885 DAG.ReplaceAllUsesWith(Call, MN); 6886 DAG.DeleteNode(Call); 6887 6888 // Inform the Frame Information that we have a patchpoint in this function. 6889 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6890 } 6891 6892 /// Returns an AttributeSet representing the attributes applied to the return 6893 /// value of the given call. 6894 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6895 SmallVector<Attribute::AttrKind, 2> Attrs; 6896 if (CLI.RetSExt) 6897 Attrs.push_back(Attribute::SExt); 6898 if (CLI.RetZExt) 6899 Attrs.push_back(Attribute::ZExt); 6900 if (CLI.IsInReg) 6901 Attrs.push_back(Attribute::InReg); 6902 6903 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6904 Attrs); 6905 } 6906 6907 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6908 /// implementation, which just calls LowerCall. 6909 /// FIXME: When all targets are 6910 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6911 std::pair<SDValue, SDValue> 6912 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6913 // Handle the incoming return values from the call. 6914 CLI.Ins.clear(); 6915 Type *OrigRetTy = CLI.RetTy; 6916 SmallVector<EVT, 4> RetTys; 6917 SmallVector<uint64_t, 4> Offsets; 6918 auto &DL = CLI.DAG.getDataLayout(); 6919 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6920 6921 SmallVector<ISD::OutputArg, 4> Outs; 6922 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6923 6924 bool CanLowerReturn = 6925 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6926 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6927 6928 SDValue DemoteStackSlot; 6929 int DemoteStackIdx = -100; 6930 if (!CanLowerReturn) { 6931 // FIXME: equivalent assert? 6932 // assert(!CS.hasInAllocaArgument() && 6933 // "sret demotion is incompatible with inalloca"); 6934 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6935 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6936 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6937 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6938 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6939 6940 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6941 ArgListEntry Entry; 6942 Entry.Node = DemoteStackSlot; 6943 Entry.Ty = StackSlotPtrType; 6944 Entry.isSExt = false; 6945 Entry.isZExt = false; 6946 Entry.isInReg = false; 6947 Entry.isSRet = true; 6948 Entry.isNest = false; 6949 Entry.isByVal = false; 6950 Entry.isReturned = false; 6951 Entry.Alignment = Align; 6952 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6953 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6954 6955 // sret demotion isn't compatible with tail-calls, since the sret argument 6956 // points into the callers stack frame. 6957 CLI.IsTailCall = false; 6958 } else { 6959 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6960 EVT VT = RetTys[I]; 6961 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6962 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6963 for (unsigned i = 0; i != NumRegs; ++i) { 6964 ISD::InputArg MyFlags; 6965 MyFlags.VT = RegisterVT; 6966 MyFlags.ArgVT = VT; 6967 MyFlags.Used = CLI.IsReturnValueUsed; 6968 if (CLI.RetSExt) 6969 MyFlags.Flags.setSExt(); 6970 if (CLI.RetZExt) 6971 MyFlags.Flags.setZExt(); 6972 if (CLI.IsInReg) 6973 MyFlags.Flags.setInReg(); 6974 CLI.Ins.push_back(MyFlags); 6975 } 6976 } 6977 } 6978 6979 // Handle all of the outgoing arguments. 6980 CLI.Outs.clear(); 6981 CLI.OutVals.clear(); 6982 ArgListTy &Args = CLI.getArgs(); 6983 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6984 SmallVector<EVT, 4> ValueVTs; 6985 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6986 Type *FinalType = Args[i].Ty; 6987 if (Args[i].isByVal) 6988 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6989 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6990 FinalType, CLI.CallConv, CLI.IsVarArg); 6991 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6992 ++Value) { 6993 EVT VT = ValueVTs[Value]; 6994 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6995 SDValue Op = SDValue(Args[i].Node.getNode(), 6996 Args[i].Node.getResNo() + Value); 6997 ISD::ArgFlagsTy Flags; 6998 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6999 7000 if (Args[i].isZExt) 7001 Flags.setZExt(); 7002 if (Args[i].isSExt) 7003 Flags.setSExt(); 7004 if (Args[i].isInReg) 7005 Flags.setInReg(); 7006 if (Args[i].isSRet) 7007 Flags.setSRet(); 7008 if (Args[i].isByVal) 7009 Flags.setByVal(); 7010 if (Args[i].isInAlloca) { 7011 Flags.setInAlloca(); 7012 // Set the byval flag for CCAssignFn callbacks that don't know about 7013 // inalloca. This way we can know how many bytes we should've allocated 7014 // and how many bytes a callee cleanup function will pop. If we port 7015 // inalloca to more targets, we'll have to add custom inalloca handling 7016 // in the various CC lowering callbacks. 7017 Flags.setByVal(); 7018 } 7019 if (Args[i].isByVal || Args[i].isInAlloca) { 7020 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7021 Type *ElementTy = Ty->getElementType(); 7022 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7023 // For ByVal, alignment should come from FE. BE will guess if this 7024 // info is not there but there are cases it cannot get right. 7025 unsigned FrameAlign; 7026 if (Args[i].Alignment) 7027 FrameAlign = Args[i].Alignment; 7028 else 7029 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7030 Flags.setByValAlign(FrameAlign); 7031 } 7032 if (Args[i].isNest) 7033 Flags.setNest(); 7034 if (NeedsRegBlock) 7035 Flags.setInConsecutiveRegs(); 7036 Flags.setOrigAlign(OriginalAlignment); 7037 7038 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7039 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7040 SmallVector<SDValue, 4> Parts(NumParts); 7041 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7042 7043 if (Args[i].isSExt) 7044 ExtendKind = ISD::SIGN_EXTEND; 7045 else if (Args[i].isZExt) 7046 ExtendKind = ISD::ZERO_EXTEND; 7047 7048 // Conservatively only handle 'returned' on non-vectors for now 7049 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7050 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7051 "unexpected use of 'returned'"); 7052 // Before passing 'returned' to the target lowering code, ensure that 7053 // either the register MVT and the actual EVT are the same size or that 7054 // the return value and argument are extended in the same way; in these 7055 // cases it's safe to pass the argument register value unchanged as the 7056 // return register value (although it's at the target's option whether 7057 // to do so) 7058 // TODO: allow code generation to take advantage of partially preserved 7059 // registers rather than clobbering the entire register when the 7060 // parameter extension method is not compatible with the return 7061 // extension method 7062 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7063 (ExtendKind != ISD::ANY_EXTEND && 7064 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7065 Flags.setReturned(); 7066 } 7067 7068 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7069 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7070 7071 for (unsigned j = 0; j != NumParts; ++j) { 7072 // if it isn't first piece, alignment must be 1 7073 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7074 i < CLI.NumFixedArgs, 7075 i, j*Parts[j].getValueType().getStoreSize()); 7076 if (NumParts > 1 && j == 0) 7077 MyFlags.Flags.setSplit(); 7078 else if (j != 0) 7079 MyFlags.Flags.setOrigAlign(1); 7080 7081 CLI.Outs.push_back(MyFlags); 7082 CLI.OutVals.push_back(Parts[j]); 7083 } 7084 7085 if (NeedsRegBlock && Value == NumValues - 1) 7086 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7087 } 7088 } 7089 7090 SmallVector<SDValue, 4> InVals; 7091 CLI.Chain = LowerCall(CLI, InVals); 7092 7093 // Verify that the target's LowerCall behaved as expected. 7094 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7095 "LowerCall didn't return a valid chain!"); 7096 assert((!CLI.IsTailCall || InVals.empty()) && 7097 "LowerCall emitted a return value for a tail call!"); 7098 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7099 "LowerCall didn't emit the correct number of values!"); 7100 7101 // For a tail call, the return value is merely live-out and there aren't 7102 // any nodes in the DAG representing it. Return a special value to 7103 // indicate that a tail call has been emitted and no more Instructions 7104 // should be processed in the current block. 7105 if (CLI.IsTailCall) { 7106 CLI.DAG.setRoot(CLI.Chain); 7107 return std::make_pair(SDValue(), SDValue()); 7108 } 7109 7110 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7111 assert(InVals[i].getNode() && 7112 "LowerCall emitted a null value!"); 7113 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7114 "LowerCall emitted a value with the wrong type!"); 7115 }); 7116 7117 SmallVector<SDValue, 4> ReturnValues; 7118 if (!CanLowerReturn) { 7119 // The instruction result is the result of loading from the 7120 // hidden sret parameter. 7121 SmallVector<EVT, 1> PVTs; 7122 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7123 7124 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7125 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7126 EVT PtrVT = PVTs[0]; 7127 7128 unsigned NumValues = RetTys.size(); 7129 ReturnValues.resize(NumValues); 7130 SmallVector<SDValue, 4> Chains(NumValues); 7131 7132 for (unsigned i = 0; i < NumValues; ++i) { 7133 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7134 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7135 PtrVT)); 7136 SDValue L = CLI.DAG.getLoad( 7137 RetTys[i], CLI.DL, CLI.Chain, Add, 7138 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7139 DemoteStackIdx, Offsets[i]), 7140 false, false, false, 1); 7141 ReturnValues[i] = L; 7142 Chains[i] = L.getValue(1); 7143 } 7144 7145 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7146 } else { 7147 // Collect the legal value parts into potentially illegal values 7148 // that correspond to the original function's return values. 7149 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7150 if (CLI.RetSExt) 7151 AssertOp = ISD::AssertSext; 7152 else if (CLI.RetZExt) 7153 AssertOp = ISD::AssertZext; 7154 unsigned CurReg = 0; 7155 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7156 EVT VT = RetTys[I]; 7157 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7158 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7159 7160 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7161 NumRegs, RegisterVT, VT, nullptr, 7162 AssertOp)); 7163 CurReg += NumRegs; 7164 } 7165 7166 // For a function returning void, there is no return value. We can't create 7167 // such a node, so we just return a null return value in that case. In 7168 // that case, nothing will actually look at the value. 7169 if (ReturnValues.empty()) 7170 return std::make_pair(SDValue(), CLI.Chain); 7171 } 7172 7173 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7174 CLI.DAG.getVTList(RetTys), ReturnValues); 7175 return std::make_pair(Res, CLI.Chain); 7176 } 7177 7178 void TargetLowering::LowerOperationWrapper(SDNode *N, 7179 SmallVectorImpl<SDValue> &Results, 7180 SelectionDAG &DAG) const { 7181 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7182 if (Res.getNode()) 7183 Results.push_back(Res); 7184 } 7185 7186 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7187 llvm_unreachable("LowerOperation not implemented for this target!"); 7188 } 7189 7190 void 7191 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7192 SDValue Op = getNonRegisterValue(V); 7193 assert((Op.getOpcode() != ISD::CopyFromReg || 7194 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7195 "Copy from a reg to the same reg!"); 7196 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7197 7198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7199 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7200 V->getType()); 7201 SDValue Chain = DAG.getEntryNode(); 7202 7203 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7204 FuncInfo.PreferredExtendType.end()) 7205 ? ISD::ANY_EXTEND 7206 : FuncInfo.PreferredExtendType[V]; 7207 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7208 PendingExports.push_back(Chain); 7209 } 7210 7211 #include "llvm/CodeGen/SelectionDAGISel.h" 7212 7213 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7214 /// entry block, return true. This includes arguments used by switches, since 7215 /// the switch may expand into multiple basic blocks. 7216 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7217 // With FastISel active, we may be splitting blocks, so force creation 7218 // of virtual registers for all non-dead arguments. 7219 if (FastISel) 7220 return A->use_empty(); 7221 7222 const BasicBlock *Entry = A->getParent()->begin(); 7223 for (const User *U : A->users()) 7224 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7225 return false; // Use not in entry block. 7226 7227 return true; 7228 } 7229 7230 void SelectionDAGISel::LowerArguments(const Function &F) { 7231 SelectionDAG &DAG = SDB->DAG; 7232 SDLoc dl = SDB->getCurSDLoc(); 7233 const DataLayout &DL = DAG.getDataLayout(); 7234 SmallVector<ISD::InputArg, 16> Ins; 7235 7236 if (!FuncInfo->CanLowerReturn) { 7237 // Put in an sret pointer parameter before all the other parameters. 7238 SmallVector<EVT, 1> ValueVTs; 7239 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7240 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7241 7242 // NOTE: Assuming that a pointer will never break down to more than one VT 7243 // or one register. 7244 ISD::ArgFlagsTy Flags; 7245 Flags.setSRet(); 7246 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7247 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7248 ISD::InputArg::NoArgIndex, 0); 7249 Ins.push_back(RetArg); 7250 } 7251 7252 // Set up the incoming argument description vector. 7253 unsigned Idx = 1; 7254 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7255 I != E; ++I, ++Idx) { 7256 SmallVector<EVT, 4> ValueVTs; 7257 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7258 bool isArgValueUsed = !I->use_empty(); 7259 unsigned PartBase = 0; 7260 Type *FinalType = I->getType(); 7261 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7262 FinalType = cast<PointerType>(FinalType)->getElementType(); 7263 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7264 FinalType, F.getCallingConv(), F.isVarArg()); 7265 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7266 Value != NumValues; ++Value) { 7267 EVT VT = ValueVTs[Value]; 7268 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7269 ISD::ArgFlagsTy Flags; 7270 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7271 7272 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7273 Flags.setZExt(); 7274 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7275 Flags.setSExt(); 7276 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7277 Flags.setInReg(); 7278 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7279 Flags.setSRet(); 7280 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7281 Flags.setByVal(); 7282 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7283 Flags.setInAlloca(); 7284 // Set the byval flag for CCAssignFn callbacks that don't know about 7285 // inalloca. This way we can know how many bytes we should've allocated 7286 // and how many bytes a callee cleanup function will pop. If we port 7287 // inalloca to more targets, we'll have to add custom inalloca handling 7288 // in the various CC lowering callbacks. 7289 Flags.setByVal(); 7290 } 7291 if (Flags.isByVal() || Flags.isInAlloca()) { 7292 PointerType *Ty = cast<PointerType>(I->getType()); 7293 Type *ElementTy = Ty->getElementType(); 7294 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7295 // For ByVal, alignment should be passed from FE. BE will guess if 7296 // this info is not there but there are cases it cannot get right. 7297 unsigned FrameAlign; 7298 if (F.getParamAlignment(Idx)) 7299 FrameAlign = F.getParamAlignment(Idx); 7300 else 7301 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7302 Flags.setByValAlign(FrameAlign); 7303 } 7304 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7305 Flags.setNest(); 7306 if (NeedsRegBlock) 7307 Flags.setInConsecutiveRegs(); 7308 Flags.setOrigAlign(OriginalAlignment); 7309 7310 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7311 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7312 for (unsigned i = 0; i != NumRegs; ++i) { 7313 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7314 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7315 if (NumRegs > 1 && i == 0) 7316 MyFlags.Flags.setSplit(); 7317 // if it isn't first piece, alignment must be 1 7318 else if (i > 0) 7319 MyFlags.Flags.setOrigAlign(1); 7320 Ins.push_back(MyFlags); 7321 } 7322 if (NeedsRegBlock && Value == NumValues - 1) 7323 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7324 PartBase += VT.getStoreSize(); 7325 } 7326 } 7327 7328 // Call the target to set up the argument values. 7329 SmallVector<SDValue, 8> InVals; 7330 SDValue NewRoot = TLI->LowerFormalArguments( 7331 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7332 7333 // Verify that the target's LowerFormalArguments behaved as expected. 7334 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7335 "LowerFormalArguments didn't return a valid chain!"); 7336 assert(InVals.size() == Ins.size() && 7337 "LowerFormalArguments didn't emit the correct number of values!"); 7338 DEBUG({ 7339 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7340 assert(InVals[i].getNode() && 7341 "LowerFormalArguments emitted a null value!"); 7342 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7343 "LowerFormalArguments emitted a value with the wrong type!"); 7344 } 7345 }); 7346 7347 // Update the DAG with the new chain value resulting from argument lowering. 7348 DAG.setRoot(NewRoot); 7349 7350 // Set up the argument values. 7351 unsigned i = 0; 7352 Idx = 1; 7353 if (!FuncInfo->CanLowerReturn) { 7354 // Create a virtual register for the sret pointer, and put in a copy 7355 // from the sret argument into it. 7356 SmallVector<EVT, 1> ValueVTs; 7357 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7358 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7359 MVT VT = ValueVTs[0].getSimpleVT(); 7360 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7361 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7362 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7363 RegVT, VT, nullptr, AssertOp); 7364 7365 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7366 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7367 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7368 FuncInfo->DemoteRegister = SRetReg; 7369 NewRoot = 7370 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7371 DAG.setRoot(NewRoot); 7372 7373 // i indexes lowered arguments. Bump it past the hidden sret argument. 7374 // Idx indexes LLVM arguments. Don't touch it. 7375 ++i; 7376 } 7377 7378 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7379 ++I, ++Idx) { 7380 SmallVector<SDValue, 4> ArgValues; 7381 SmallVector<EVT, 4> ValueVTs; 7382 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7383 unsigned NumValues = ValueVTs.size(); 7384 7385 // If this argument is unused then remember its value. It is used to generate 7386 // debugging information. 7387 if (I->use_empty() && NumValues) { 7388 SDB->setUnusedArgValue(I, InVals[i]); 7389 7390 // Also remember any frame index for use in FastISel. 7391 if (FrameIndexSDNode *FI = 7392 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7393 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7394 } 7395 7396 for (unsigned Val = 0; Val != NumValues; ++Val) { 7397 EVT VT = ValueVTs[Val]; 7398 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7399 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7400 7401 if (!I->use_empty()) { 7402 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7403 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7404 AssertOp = ISD::AssertSext; 7405 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7406 AssertOp = ISD::AssertZext; 7407 7408 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7409 NumParts, PartVT, VT, 7410 nullptr, AssertOp)); 7411 } 7412 7413 i += NumParts; 7414 } 7415 7416 // We don't need to do anything else for unused arguments. 7417 if (ArgValues.empty()) 7418 continue; 7419 7420 // Note down frame index. 7421 if (FrameIndexSDNode *FI = 7422 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7423 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7424 7425 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7426 SDB->getCurSDLoc()); 7427 7428 SDB->setValue(I, Res); 7429 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7430 if (LoadSDNode *LNode = 7431 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7432 if (FrameIndexSDNode *FI = 7433 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7434 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7435 } 7436 7437 // If this argument is live outside of the entry block, insert a copy from 7438 // wherever we got it to the vreg that other BB's will reference it as. 7439 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7440 // If we can, though, try to skip creating an unnecessary vreg. 7441 // FIXME: This isn't very clean... it would be nice to make this more 7442 // general. It's also subtly incompatible with the hacks FastISel 7443 // uses with vregs. 7444 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7445 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7446 FuncInfo->ValueMap[I] = Reg; 7447 continue; 7448 } 7449 } 7450 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7451 FuncInfo->InitializeRegForValue(I); 7452 SDB->CopyToExportRegsIfNeeded(I); 7453 } 7454 } 7455 7456 assert(i == InVals.size() && "Argument register count mismatch!"); 7457 7458 // Finally, if the target has anything special to do, allow it to do so. 7459 EmitFunctionEntryCode(); 7460 } 7461 7462 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7463 /// ensure constants are generated when needed. Remember the virtual registers 7464 /// that need to be added to the Machine PHI nodes as input. We cannot just 7465 /// directly add them, because expansion might result in multiple MBB's for one 7466 /// BB. As such, the start of the BB might correspond to a different MBB than 7467 /// the end. 7468 /// 7469 void 7470 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7471 const TerminatorInst *TI = LLVMBB->getTerminator(); 7472 7473 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7474 7475 // Check PHI nodes in successors that expect a value to be available from this 7476 // block. 7477 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7478 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7479 if (!isa<PHINode>(SuccBB->begin())) continue; 7480 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7481 7482 // If this terminator has multiple identical successors (common for 7483 // switches), only handle each succ once. 7484 if (!SuccsHandled.insert(SuccMBB).second) 7485 continue; 7486 7487 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7488 7489 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7490 // nodes and Machine PHI nodes, but the incoming operands have not been 7491 // emitted yet. 7492 for (BasicBlock::const_iterator I = SuccBB->begin(); 7493 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7494 // Ignore dead phi's. 7495 if (PN->use_empty()) continue; 7496 7497 // Skip empty types 7498 if (PN->getType()->isEmptyTy()) 7499 continue; 7500 7501 unsigned Reg; 7502 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7503 7504 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7505 unsigned &RegOut = ConstantsOut[C]; 7506 if (RegOut == 0) { 7507 RegOut = FuncInfo.CreateRegs(C->getType()); 7508 CopyValueToVirtualRegister(C, RegOut); 7509 } 7510 Reg = RegOut; 7511 } else { 7512 DenseMap<const Value *, unsigned>::iterator I = 7513 FuncInfo.ValueMap.find(PHIOp); 7514 if (I != FuncInfo.ValueMap.end()) 7515 Reg = I->second; 7516 else { 7517 assert(isa<AllocaInst>(PHIOp) && 7518 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7519 "Didn't codegen value into a register!??"); 7520 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7521 CopyValueToVirtualRegister(PHIOp, Reg); 7522 } 7523 } 7524 7525 // Remember that this register needs to added to the machine PHI node as 7526 // the input for this MBB. 7527 SmallVector<EVT, 4> ValueVTs; 7528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7529 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7530 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7531 EVT VT = ValueVTs[vti]; 7532 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7533 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7534 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7535 Reg += NumRegisters; 7536 } 7537 } 7538 } 7539 7540 ConstantsOut.clear(); 7541 } 7542 7543 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7544 /// is 0. 7545 MachineBasicBlock * 7546 SelectionDAGBuilder::StackProtectorDescriptor:: 7547 AddSuccessorMBB(const BasicBlock *BB, 7548 MachineBasicBlock *ParentMBB, 7549 bool IsLikely, 7550 MachineBasicBlock *SuccMBB) { 7551 // If SuccBB has not been created yet, create it. 7552 if (!SuccMBB) { 7553 MachineFunction *MF = ParentMBB->getParent(); 7554 MachineFunction::iterator BBI = ParentMBB; 7555 SuccMBB = MF->CreateMachineBasicBlock(BB); 7556 MF->insert(++BBI, SuccMBB); 7557 } 7558 // Add it as a successor of ParentMBB. 7559 ParentMBB->addSuccessor( 7560 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7561 return SuccMBB; 7562 } 7563 7564 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7565 MachineFunction::iterator I = MBB; 7566 if (++I == FuncInfo.MF->end()) 7567 return nullptr; 7568 return I; 7569 } 7570 7571 /// During lowering new call nodes can be created (such as memset, etc.). 7572 /// Those will become new roots of the current DAG, but complications arise 7573 /// when they are tail calls. In such cases, the call lowering will update 7574 /// the root, but the builder still needs to know that a tail call has been 7575 /// lowered in order to avoid generating an additional return. 7576 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7577 // If the node is null, we do have a tail call. 7578 if (MaybeTC.getNode() != nullptr) 7579 DAG.setRoot(MaybeTC); 7580 else 7581 HasTailCall = true; 7582 } 7583 7584 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7585 unsigned *TotalCases, unsigned First, 7586 unsigned Last) { 7587 assert(Last >= First); 7588 assert(TotalCases[Last] >= TotalCases[First]); 7589 7590 APInt LowCase = Clusters[First].Low->getValue(); 7591 APInt HighCase = Clusters[Last].High->getValue(); 7592 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7593 7594 // FIXME: A range of consecutive cases has 100% density, but only requires one 7595 // comparison to lower. We should discriminate against such consecutive ranges 7596 // in jump tables. 7597 7598 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7599 uint64_t Range = Diff + 1; 7600 7601 uint64_t NumCases = 7602 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7603 7604 assert(NumCases < UINT64_MAX / 100); 7605 assert(Range >= NumCases); 7606 7607 return NumCases * 100 >= Range * MinJumpTableDensity; 7608 } 7609 7610 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7611 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7612 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7613 } 7614 7615 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7616 unsigned First, unsigned Last, 7617 const SwitchInst *SI, 7618 MachineBasicBlock *DefaultMBB, 7619 CaseCluster &JTCluster) { 7620 assert(First <= Last); 7621 7622 uint32_t Weight = 0; 7623 unsigned NumCmps = 0; 7624 std::vector<MachineBasicBlock*> Table; 7625 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7626 for (unsigned I = First; I <= Last; ++I) { 7627 assert(Clusters[I].Kind == CC_Range); 7628 Weight += Clusters[I].Weight; 7629 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7630 APInt Low = Clusters[I].Low->getValue(); 7631 APInt High = Clusters[I].High->getValue(); 7632 NumCmps += (Low == High) ? 1 : 2; 7633 if (I != First) { 7634 // Fill the gap between this and the previous cluster. 7635 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7636 assert(PreviousHigh.slt(Low)); 7637 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7638 for (uint64_t J = 0; J < Gap; J++) 7639 Table.push_back(DefaultMBB); 7640 } 7641 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7642 for (uint64_t J = 0; J < ClusterSize; ++J) 7643 Table.push_back(Clusters[I].MBB); 7644 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7645 } 7646 7647 unsigned NumDests = JTWeights.size(); 7648 if (isSuitableForBitTests(NumDests, NumCmps, 7649 Clusters[First].Low->getValue(), 7650 Clusters[Last].High->getValue())) { 7651 // Clusters[First..Last] should be lowered as bit tests instead. 7652 return false; 7653 } 7654 7655 // Create the MBB that will load from and jump through the table. 7656 // Note: We create it here, but it's not inserted into the function yet. 7657 MachineFunction *CurMF = FuncInfo.MF; 7658 MachineBasicBlock *JumpTableMBB = 7659 CurMF->CreateMachineBasicBlock(SI->getParent()); 7660 7661 // Add successors. Note: use table order for determinism. 7662 SmallPtrSet<MachineBasicBlock *, 8> Done; 7663 for (MachineBasicBlock *Succ : Table) { 7664 if (Done.count(Succ)) 7665 continue; 7666 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7667 Done.insert(Succ); 7668 } 7669 7670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7671 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7672 ->createJumpTableIndex(Table); 7673 7674 // Set up the jump table info. 7675 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7676 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7677 Clusters[Last].High->getValue(), SI->getCondition(), 7678 nullptr, false); 7679 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7680 7681 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7682 JTCases.size() - 1, Weight); 7683 return true; 7684 } 7685 7686 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7687 const SwitchInst *SI, 7688 MachineBasicBlock *DefaultMBB) { 7689 #ifndef NDEBUG 7690 // Clusters must be non-empty, sorted, and only contain Range clusters. 7691 assert(!Clusters.empty()); 7692 for (CaseCluster &C : Clusters) 7693 assert(C.Kind == CC_Range); 7694 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7695 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7696 #endif 7697 7698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7699 if (!areJTsAllowed(TLI)) 7700 return; 7701 7702 const int64_t N = Clusters.size(); 7703 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7704 7705 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7706 SmallVector<unsigned, 8> TotalCases(N); 7707 7708 for (unsigned i = 0; i < N; ++i) { 7709 APInt Hi = Clusters[i].High->getValue(); 7710 APInt Lo = Clusters[i].Low->getValue(); 7711 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7712 if (i != 0) 7713 TotalCases[i] += TotalCases[i - 1]; 7714 } 7715 7716 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7717 // Cheap case: the whole range might be suitable for jump table. 7718 CaseCluster JTCluster; 7719 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7720 Clusters[0] = JTCluster; 7721 Clusters.resize(1); 7722 return; 7723 } 7724 } 7725 7726 // The algorithm below is not suitable for -O0. 7727 if (TM.getOptLevel() == CodeGenOpt::None) 7728 return; 7729 7730 // Split Clusters into minimum number of dense partitions. The algorithm uses 7731 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7732 // for the Case Statement'" (1994), but builds the MinPartitions array in 7733 // reverse order to make it easier to reconstruct the partitions in ascending 7734 // order. In the choice between two optimal partitionings, it picks the one 7735 // which yields more jump tables. 7736 7737 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7738 SmallVector<unsigned, 8> MinPartitions(N); 7739 // LastElement[i] is the last element of the partition starting at i. 7740 SmallVector<unsigned, 8> LastElement(N); 7741 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7742 SmallVector<unsigned, 8> NumTables(N); 7743 7744 // Base case: There is only one way to partition Clusters[N-1]. 7745 MinPartitions[N - 1] = 1; 7746 LastElement[N - 1] = N - 1; 7747 assert(MinJumpTableSize > 1); 7748 NumTables[N - 1] = 0; 7749 7750 // Note: loop indexes are signed to avoid underflow. 7751 for (int64_t i = N - 2; i >= 0; i--) { 7752 // Find optimal partitioning of Clusters[i..N-1]. 7753 // Baseline: Put Clusters[i] into a partition on its own. 7754 MinPartitions[i] = MinPartitions[i + 1] + 1; 7755 LastElement[i] = i; 7756 NumTables[i] = NumTables[i + 1]; 7757 7758 // Search for a solution that results in fewer partitions. 7759 for (int64_t j = N - 1; j > i; j--) { 7760 // Try building a partition from Clusters[i..j]. 7761 if (isDense(Clusters, &TotalCases[0], i, j)) { 7762 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7763 bool IsTable = j - i + 1 >= MinJumpTableSize; 7764 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7765 7766 // If this j leads to fewer partitions, or same number of partitions 7767 // with more lookup tables, it is a better partitioning. 7768 if (NumPartitions < MinPartitions[i] || 7769 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7770 MinPartitions[i] = NumPartitions; 7771 LastElement[i] = j; 7772 NumTables[i] = Tables; 7773 } 7774 } 7775 } 7776 } 7777 7778 // Iterate over the partitions, replacing some with jump tables in-place. 7779 unsigned DstIndex = 0; 7780 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7781 Last = LastElement[First]; 7782 assert(Last >= First); 7783 assert(DstIndex <= First); 7784 unsigned NumClusters = Last - First + 1; 7785 7786 CaseCluster JTCluster; 7787 if (NumClusters >= MinJumpTableSize && 7788 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7789 Clusters[DstIndex++] = JTCluster; 7790 } else { 7791 for (unsigned I = First; I <= Last; ++I) 7792 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7793 } 7794 } 7795 Clusters.resize(DstIndex); 7796 } 7797 7798 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7799 // FIXME: Using the pointer type doesn't seem ideal. 7800 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7801 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7802 return Range <= BW; 7803 } 7804 7805 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7806 unsigned NumCmps, 7807 const APInt &Low, 7808 const APInt &High) { 7809 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7810 // range of cases both require only one branch to lower. Just looking at the 7811 // number of clusters and destinations should be enough to decide whether to 7812 // build bit tests. 7813 7814 // To lower a range with bit tests, the range must fit the bitwidth of a 7815 // machine word. 7816 if (!rangeFitsInWord(Low, High)) 7817 return false; 7818 7819 // Decide whether it's profitable to lower this range with bit tests. Each 7820 // destination requires a bit test and branch, and there is an overall range 7821 // check branch. For a small number of clusters, separate comparisons might be 7822 // cheaper, and for many destinations, splitting the range might be better. 7823 return (NumDests == 1 && NumCmps >= 3) || 7824 (NumDests == 2 && NumCmps >= 5) || 7825 (NumDests == 3 && NumCmps >= 6); 7826 } 7827 7828 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7829 unsigned First, unsigned Last, 7830 const SwitchInst *SI, 7831 CaseCluster &BTCluster) { 7832 assert(First <= Last); 7833 if (First == Last) 7834 return false; 7835 7836 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7837 unsigned NumCmps = 0; 7838 for (int64_t I = First; I <= Last; ++I) { 7839 assert(Clusters[I].Kind == CC_Range); 7840 Dests.set(Clusters[I].MBB->getNumber()); 7841 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7842 } 7843 unsigned NumDests = Dests.count(); 7844 7845 APInt Low = Clusters[First].Low->getValue(); 7846 APInt High = Clusters[Last].High->getValue(); 7847 assert(Low.slt(High)); 7848 7849 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7850 return false; 7851 7852 APInt LowBound; 7853 APInt CmpRange; 7854 7855 const int BitWidth = DAG.getTargetLoweringInfo() 7856 .getPointerTy(DAG.getDataLayout()) 7857 .getSizeInBits(); 7858 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7859 7860 // Check if the clusters cover a contiguous range such that no value in the 7861 // range will jump to the default statement. 7862 bool ContiguousRange = true; 7863 for (int64_t I = First + 1; I <= Last; ++I) { 7864 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7865 ContiguousRange = false; 7866 break; 7867 } 7868 } 7869 7870 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7871 // Optimize the case where all the case values fit in a word without having 7872 // to subtract minValue. In this case, we can optimize away the subtraction. 7873 LowBound = APInt::getNullValue(Low.getBitWidth()); 7874 CmpRange = High; 7875 ContiguousRange = false; 7876 } else { 7877 LowBound = Low; 7878 CmpRange = High - Low; 7879 } 7880 7881 CaseBitsVector CBV; 7882 uint32_t TotalWeight = 0; 7883 for (unsigned i = First; i <= Last; ++i) { 7884 // Find the CaseBits for this destination. 7885 unsigned j; 7886 for (j = 0; j < CBV.size(); ++j) 7887 if (CBV[j].BB == Clusters[i].MBB) 7888 break; 7889 if (j == CBV.size()) 7890 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7891 CaseBits *CB = &CBV[j]; 7892 7893 // Update Mask, Bits and ExtraWeight. 7894 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7895 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7896 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7897 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7898 CB->Bits += Hi - Lo + 1; 7899 CB->ExtraWeight += Clusters[i].Weight; 7900 TotalWeight += Clusters[i].Weight; 7901 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7902 } 7903 7904 BitTestInfo BTI; 7905 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7906 // Sort by weight first, number of bits second. 7907 if (a.ExtraWeight != b.ExtraWeight) 7908 return a.ExtraWeight > b.ExtraWeight; 7909 return a.Bits > b.Bits; 7910 }); 7911 7912 for (auto &CB : CBV) { 7913 MachineBasicBlock *BitTestBB = 7914 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7915 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7916 } 7917 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7918 SI->getCondition(), -1U, MVT::Other, false, 7919 ContiguousRange, nullptr, nullptr, std::move(BTI), 7920 TotalWeight); 7921 7922 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7923 BitTestCases.size() - 1, TotalWeight); 7924 return true; 7925 } 7926 7927 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7928 const SwitchInst *SI) { 7929 // Partition Clusters into as few subsets as possible, where each subset has a 7930 // range that fits in a machine word and has <= 3 unique destinations. 7931 7932 #ifndef NDEBUG 7933 // Clusters must be sorted and contain Range or JumpTable clusters. 7934 assert(!Clusters.empty()); 7935 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7936 for (const CaseCluster &C : Clusters) 7937 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7938 for (unsigned i = 1; i < Clusters.size(); ++i) 7939 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7940 #endif 7941 7942 // The algorithm below is not suitable for -O0. 7943 if (TM.getOptLevel() == CodeGenOpt::None) 7944 return; 7945 7946 // If target does not have legal shift left, do not emit bit tests at all. 7947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7948 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7949 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7950 return; 7951 7952 int BitWidth = PTy.getSizeInBits(); 7953 const int64_t N = Clusters.size(); 7954 7955 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7956 SmallVector<unsigned, 8> MinPartitions(N); 7957 // LastElement[i] is the last element of the partition starting at i. 7958 SmallVector<unsigned, 8> LastElement(N); 7959 7960 // FIXME: This might not be the best algorithm for finding bit test clusters. 7961 7962 // Base case: There is only one way to partition Clusters[N-1]. 7963 MinPartitions[N - 1] = 1; 7964 LastElement[N - 1] = N - 1; 7965 7966 // Note: loop indexes are signed to avoid underflow. 7967 for (int64_t i = N - 2; i >= 0; --i) { 7968 // Find optimal partitioning of Clusters[i..N-1]. 7969 // Baseline: Put Clusters[i] into a partition on its own. 7970 MinPartitions[i] = MinPartitions[i + 1] + 1; 7971 LastElement[i] = i; 7972 7973 // Search for a solution that results in fewer partitions. 7974 // Note: the search is limited by BitWidth, reducing time complexity. 7975 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7976 // Try building a partition from Clusters[i..j]. 7977 7978 // Check the range. 7979 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7980 Clusters[j].High->getValue())) 7981 continue; 7982 7983 // Check nbr of destinations and cluster types. 7984 // FIXME: This works, but doesn't seem very efficient. 7985 bool RangesOnly = true; 7986 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7987 for (int64_t k = i; k <= j; k++) { 7988 if (Clusters[k].Kind != CC_Range) { 7989 RangesOnly = false; 7990 break; 7991 } 7992 Dests.set(Clusters[k].MBB->getNumber()); 7993 } 7994 if (!RangesOnly || Dests.count() > 3) 7995 break; 7996 7997 // Check if it's a better partition. 7998 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7999 if (NumPartitions < MinPartitions[i]) { 8000 // Found a better partition. 8001 MinPartitions[i] = NumPartitions; 8002 LastElement[i] = j; 8003 } 8004 } 8005 } 8006 8007 // Iterate over the partitions, replacing with bit-test clusters in-place. 8008 unsigned DstIndex = 0; 8009 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8010 Last = LastElement[First]; 8011 assert(First <= Last); 8012 assert(DstIndex <= First); 8013 8014 CaseCluster BitTestCluster; 8015 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8016 Clusters[DstIndex++] = BitTestCluster; 8017 } else { 8018 size_t NumClusters = Last - First + 1; 8019 std::memmove(&Clusters[DstIndex], &Clusters[First], 8020 sizeof(Clusters[0]) * NumClusters); 8021 DstIndex += NumClusters; 8022 } 8023 } 8024 Clusters.resize(DstIndex); 8025 } 8026 8027 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8028 MachineBasicBlock *SwitchMBB, 8029 MachineBasicBlock *DefaultMBB) { 8030 MachineFunction *CurMF = FuncInfo.MF; 8031 MachineBasicBlock *NextMBB = nullptr; 8032 MachineFunction::iterator BBI = W.MBB; 8033 if (++BBI != FuncInfo.MF->end()) 8034 NextMBB = BBI; 8035 8036 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8037 8038 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8039 8040 if (Size == 2 && W.MBB == SwitchMBB) { 8041 // If any two of the cases has the same destination, and if one value 8042 // is the same as the other, but has one bit unset that the other has set, 8043 // use bit manipulation to do two compares at once. For example: 8044 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8045 // TODO: This could be extended to merge any 2 cases in switches with 3 8046 // cases. 8047 // TODO: Handle cases where W.CaseBB != SwitchBB. 8048 CaseCluster &Small = *W.FirstCluster; 8049 CaseCluster &Big = *W.LastCluster; 8050 8051 if (Small.Low == Small.High && Big.Low == Big.High && 8052 Small.MBB == Big.MBB) { 8053 const APInt &SmallValue = Small.Low->getValue(); 8054 const APInt &BigValue = Big.Low->getValue(); 8055 8056 // Check that there is only one bit different. 8057 APInt CommonBit = BigValue ^ SmallValue; 8058 if (CommonBit.isPowerOf2()) { 8059 SDValue CondLHS = getValue(Cond); 8060 EVT VT = CondLHS.getValueType(); 8061 SDLoc DL = getCurSDLoc(); 8062 8063 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8064 DAG.getConstant(CommonBit, DL, VT)); 8065 SDValue Cond = DAG.getSetCC( 8066 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8067 ISD::SETEQ); 8068 8069 // Update successor info. 8070 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8071 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8072 addSuccessorWithWeight( 8073 SwitchMBB, DefaultMBB, 8074 // The default destination is the first successor in IR. 8075 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8076 : 0); 8077 8078 // Insert the true branch. 8079 SDValue BrCond = 8080 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8081 DAG.getBasicBlock(Small.MBB)); 8082 // Insert the false branch. 8083 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8084 DAG.getBasicBlock(DefaultMBB)); 8085 8086 DAG.setRoot(BrCond); 8087 return; 8088 } 8089 } 8090 } 8091 8092 if (TM.getOptLevel() != CodeGenOpt::None) { 8093 // Order cases by weight so the most likely case will be checked first. 8094 std::sort(W.FirstCluster, W.LastCluster + 1, 8095 [](const CaseCluster &a, const CaseCluster &b) { 8096 return a.Weight > b.Weight; 8097 }); 8098 8099 // Rearrange the case blocks so that the last one falls through if possible 8100 // without without changing the order of weights. 8101 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8102 --I; 8103 if (I->Weight > W.LastCluster->Weight) 8104 break; 8105 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8106 std::swap(*I, *W.LastCluster); 8107 break; 8108 } 8109 } 8110 } 8111 8112 // Compute total weight. 8113 uint32_t DefaultWeight = W.DefaultWeight; 8114 uint32_t UnhandledWeights = DefaultWeight; 8115 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8116 UnhandledWeights += I->Weight; 8117 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8118 } 8119 8120 MachineBasicBlock *CurMBB = W.MBB; 8121 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8122 MachineBasicBlock *Fallthrough; 8123 if (I == W.LastCluster) { 8124 // For the last cluster, fall through to the default destination. 8125 Fallthrough = DefaultMBB; 8126 } else { 8127 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8128 CurMF->insert(BBI, Fallthrough); 8129 // Put Cond in a virtual register to make it available from the new blocks. 8130 ExportFromCurrentBlock(Cond); 8131 } 8132 UnhandledWeights -= I->Weight; 8133 8134 switch (I->Kind) { 8135 case CC_JumpTable: { 8136 // FIXME: Optimize away range check based on pivot comparisons. 8137 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8138 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8139 8140 // The jump block hasn't been inserted yet; insert it here. 8141 MachineBasicBlock *JumpMBB = JT->MBB; 8142 CurMF->insert(BBI, JumpMBB); 8143 8144 uint32_t JumpWeight = I->Weight; 8145 uint32_t FallthroughWeight = UnhandledWeights; 8146 8147 // If the default statement is a target of the jump table, we evenly 8148 // distribute the default weight to successors of CurMBB. Also update 8149 // the weight on the edge from JumpMBB to Fallthrough. 8150 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8151 SE = JumpMBB->succ_end(); 8152 SI != SE; ++SI) { 8153 if (*SI == DefaultMBB) { 8154 JumpWeight += DefaultWeight / 2; 8155 FallthroughWeight -= DefaultWeight / 2; 8156 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8157 break; 8158 } 8159 } 8160 8161 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8162 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8163 8164 // The jump table header will be inserted in our current block, do the 8165 // range check, and fall through to our fallthrough block. 8166 JTH->HeaderBB = CurMBB; 8167 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8168 8169 // If we're in the right place, emit the jump table header right now. 8170 if (CurMBB == SwitchMBB) { 8171 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8172 JTH->Emitted = true; 8173 } 8174 break; 8175 } 8176 case CC_BitTests: { 8177 // FIXME: Optimize away range check based on pivot comparisons. 8178 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8179 8180 // The bit test blocks haven't been inserted yet; insert them here. 8181 for (BitTestCase &BTC : BTB->Cases) 8182 CurMF->insert(BBI, BTC.ThisBB); 8183 8184 // Fill in fields of the BitTestBlock. 8185 BTB->Parent = CurMBB; 8186 BTB->Default = Fallthrough; 8187 8188 BTB->DefaultWeight = UnhandledWeights; 8189 // If the cases in bit test don't form a contiguous range, we evenly 8190 // distribute the weight on the edge to Fallthrough to two successors 8191 // of CurMBB. 8192 if (!BTB->ContiguousRange) { 8193 BTB->Weight += DefaultWeight / 2; 8194 BTB->DefaultWeight -= DefaultWeight / 2; 8195 } 8196 8197 // If we're in the right place, emit the bit test header right now. 8198 if (CurMBB == SwitchMBB) { 8199 visitBitTestHeader(*BTB, SwitchMBB); 8200 BTB->Emitted = true; 8201 } 8202 break; 8203 } 8204 case CC_Range: { 8205 const Value *RHS, *LHS, *MHS; 8206 ISD::CondCode CC; 8207 if (I->Low == I->High) { 8208 // Check Cond == I->Low. 8209 CC = ISD::SETEQ; 8210 LHS = Cond; 8211 RHS=I->Low; 8212 MHS = nullptr; 8213 } else { 8214 // Check I->Low <= Cond <= I->High. 8215 CC = ISD::SETLE; 8216 LHS = I->Low; 8217 MHS = Cond; 8218 RHS = I->High; 8219 } 8220 8221 // The false weight is the sum of all unhandled cases. 8222 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8223 UnhandledWeights); 8224 8225 if (CurMBB == SwitchMBB) 8226 visitSwitchCase(CB, SwitchMBB); 8227 else 8228 SwitchCases.push_back(CB); 8229 8230 break; 8231 } 8232 } 8233 CurMBB = Fallthrough; 8234 } 8235 } 8236 8237 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8238 CaseClusterIt First, 8239 CaseClusterIt Last) { 8240 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8241 if (X.Weight != CC.Weight) 8242 return X.Weight > CC.Weight; 8243 8244 // Ties are broken by comparing the case value. 8245 return X.Low->getValue().slt(CC.Low->getValue()); 8246 }); 8247 } 8248 8249 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8250 const SwitchWorkListItem &W, 8251 Value *Cond, 8252 MachineBasicBlock *SwitchMBB) { 8253 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8254 "Clusters not sorted?"); 8255 8256 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8257 8258 // Balance the tree based on branch weights to create a near-optimal (in terms 8259 // of search time given key frequency) binary search tree. See e.g. Kurt 8260 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8261 CaseClusterIt LastLeft = W.FirstCluster; 8262 CaseClusterIt FirstRight = W.LastCluster; 8263 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8264 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8265 8266 // Move LastLeft and FirstRight towards each other from opposite directions to 8267 // find a partitioning of the clusters which balances the weight on both 8268 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8269 // taken to ensure 0-weight nodes are distributed evenly. 8270 unsigned I = 0; 8271 while (LastLeft + 1 < FirstRight) { 8272 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8273 LeftWeight += (++LastLeft)->Weight; 8274 else 8275 RightWeight += (--FirstRight)->Weight; 8276 I++; 8277 } 8278 8279 for (;;) { 8280 // Our binary search tree differs from a typical BST in that ours can have up 8281 // to three values in each leaf. The pivot selection above doesn't take that 8282 // into account, which means the tree might require more nodes and be less 8283 // efficient. We compensate for this here. 8284 8285 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8286 unsigned NumRight = W.LastCluster - FirstRight + 1; 8287 8288 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8289 // If one side has less than 3 clusters, and the other has more than 3, 8290 // consider taking a cluster from the other side. 8291 8292 if (NumLeft < NumRight) { 8293 // Consider moving the first cluster on the right to the left side. 8294 CaseCluster &CC = *FirstRight; 8295 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8296 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8297 if (LeftSideRank <= RightSideRank) { 8298 // Moving the cluster to the left does not demote it. 8299 ++LastLeft; 8300 ++FirstRight; 8301 continue; 8302 } 8303 } else { 8304 assert(NumRight < NumLeft); 8305 // Consider moving the last element on the left to the right side. 8306 CaseCluster &CC = *LastLeft; 8307 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8308 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8309 if (RightSideRank <= LeftSideRank) { 8310 // Moving the cluster to the right does not demot it. 8311 --LastLeft; 8312 --FirstRight; 8313 continue; 8314 } 8315 } 8316 } 8317 break; 8318 } 8319 8320 assert(LastLeft + 1 == FirstRight); 8321 assert(LastLeft >= W.FirstCluster); 8322 assert(FirstRight <= W.LastCluster); 8323 8324 // Use the first element on the right as pivot since we will make less-than 8325 // comparisons against it. 8326 CaseClusterIt PivotCluster = FirstRight; 8327 assert(PivotCluster > W.FirstCluster); 8328 assert(PivotCluster <= W.LastCluster); 8329 8330 CaseClusterIt FirstLeft = W.FirstCluster; 8331 CaseClusterIt LastRight = W.LastCluster; 8332 8333 const ConstantInt *Pivot = PivotCluster->Low; 8334 8335 // New blocks will be inserted immediately after the current one. 8336 MachineFunction::iterator BBI = W.MBB; 8337 ++BBI; 8338 8339 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8340 // we can branch to its destination directly if it's squeezed exactly in 8341 // between the known lower bound and Pivot - 1. 8342 MachineBasicBlock *LeftMBB; 8343 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8344 FirstLeft->Low == W.GE && 8345 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8346 LeftMBB = FirstLeft->MBB; 8347 } else { 8348 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8349 FuncInfo.MF->insert(BBI, LeftMBB); 8350 WorkList.push_back( 8351 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8352 // Put Cond in a virtual register to make it available from the new blocks. 8353 ExportFromCurrentBlock(Cond); 8354 } 8355 8356 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8357 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8358 // directly if RHS.High equals the current upper bound. 8359 MachineBasicBlock *RightMBB; 8360 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8361 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8362 RightMBB = FirstRight->MBB; 8363 } else { 8364 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8365 FuncInfo.MF->insert(BBI, RightMBB); 8366 WorkList.push_back( 8367 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8368 // Put Cond in a virtual register to make it available from the new blocks. 8369 ExportFromCurrentBlock(Cond); 8370 } 8371 8372 // Create the CaseBlock record that will be used to lower the branch. 8373 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8374 LeftWeight, RightWeight); 8375 8376 if (W.MBB == SwitchMBB) 8377 visitSwitchCase(CB, SwitchMBB); 8378 else 8379 SwitchCases.push_back(CB); 8380 } 8381 8382 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8383 // Extract cases from the switch. 8384 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8385 CaseClusterVector Clusters; 8386 Clusters.reserve(SI.getNumCases()); 8387 for (auto I : SI.cases()) { 8388 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8389 const ConstantInt *CaseVal = I.getCaseValue(); 8390 uint32_t Weight = 8391 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8392 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8393 } 8394 8395 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8396 8397 // Cluster adjacent cases with the same destination. We do this at all 8398 // optimization levels because it's cheap to do and will make codegen faster 8399 // if there are many clusters. 8400 sortAndRangeify(Clusters); 8401 8402 if (TM.getOptLevel() != CodeGenOpt::None) { 8403 // Replace an unreachable default with the most popular destination. 8404 // FIXME: Exploit unreachable default more aggressively. 8405 bool UnreachableDefault = 8406 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8407 if (UnreachableDefault && !Clusters.empty()) { 8408 DenseMap<const BasicBlock *, unsigned> Popularity; 8409 unsigned MaxPop = 0; 8410 const BasicBlock *MaxBB = nullptr; 8411 for (auto I : SI.cases()) { 8412 const BasicBlock *BB = I.getCaseSuccessor(); 8413 if (++Popularity[BB] > MaxPop) { 8414 MaxPop = Popularity[BB]; 8415 MaxBB = BB; 8416 } 8417 } 8418 // Set new default. 8419 assert(MaxPop > 0 && MaxBB); 8420 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8421 8422 // Remove cases that were pointing to the destination that is now the 8423 // default. 8424 CaseClusterVector New; 8425 New.reserve(Clusters.size()); 8426 for (CaseCluster &CC : Clusters) { 8427 if (CC.MBB != DefaultMBB) 8428 New.push_back(CC); 8429 } 8430 Clusters = std::move(New); 8431 } 8432 } 8433 8434 // If there is only the default destination, jump there directly. 8435 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8436 if (Clusters.empty()) { 8437 SwitchMBB->addSuccessor(DefaultMBB); 8438 if (DefaultMBB != NextBlock(SwitchMBB)) { 8439 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8440 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8441 } 8442 return; 8443 } 8444 8445 findJumpTables(Clusters, &SI, DefaultMBB); 8446 findBitTestClusters(Clusters, &SI); 8447 8448 DEBUG({ 8449 dbgs() << "Case clusters: "; 8450 for (const CaseCluster &C : Clusters) { 8451 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8452 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8453 8454 C.Low->getValue().print(dbgs(), true); 8455 if (C.Low != C.High) { 8456 dbgs() << '-'; 8457 C.High->getValue().print(dbgs(), true); 8458 } 8459 dbgs() << ' '; 8460 } 8461 dbgs() << '\n'; 8462 }); 8463 8464 assert(!Clusters.empty()); 8465 SwitchWorkList WorkList; 8466 CaseClusterIt First = Clusters.begin(); 8467 CaseClusterIt Last = Clusters.end() - 1; 8468 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8469 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8470 8471 while (!WorkList.empty()) { 8472 SwitchWorkListItem W = WorkList.back(); 8473 WorkList.pop_back(); 8474 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8475 8476 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8477 // For optimized builds, lower large range as a balanced binary tree. 8478 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8479 continue; 8480 } 8481 8482 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8483 } 8484 } 8485