1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 442 DAG.getVectorIdxConstant(0, DL)); 443 } 444 445 // Vector/Vector bitcast. 446 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 450 "Cannot handle this kind of promotion"); 451 // Promoted vector extract 452 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 453 454 } 455 456 // Trivial bitcast if the types are the same size and the destination 457 // vector type is legal. 458 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 459 TLI.isTypeLegal(ValueVT)) 460 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 461 462 if (ValueVT.getVectorNumElements() != 1) { 463 // Certain ABIs require that vectors are passed as integers. For vectors 464 // are the same size, this is an obvious bitcast. 465 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 466 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 467 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 468 // Bitcast Val back the original type and extract the corresponding 469 // vector we want. 470 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 471 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 472 ValueVT.getVectorElementType(), Elts); 473 Val = DAG.getBitcast(WiderVecType, Val); 474 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 475 DAG.getVectorIdxConstant(0, DL)); 476 } 477 478 diagnosePossiblyInvalidConstraint( 479 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 480 return DAG.getUNDEF(ValueVT); 481 } 482 483 // Handle cases such as i8 -> <1 x i1> 484 EVT ValueSVT = ValueVT.getVectorElementType(); 485 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 486 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 487 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 488 489 return DAG.getBuildVector(ValueVT, DL, Val); 490 } 491 492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V, 495 Optional<CallingConv::ID> CallConv); 496 497 /// getCopyToParts - Create a series of nodes that contain the specified value 498 /// split into legal parts. If the parts contain more bits than Val, then, for 499 /// integers, ExtendKind can be used to specify how to generate the extra bits. 500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 501 SDValue *Parts, unsigned NumParts, MVT PartVT, 502 const Value *V, 503 Optional<CallingConv::ID> CallConv = None, 504 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 505 EVT ValueVT = Val.getValueType(); 506 507 // Handle the vector case separately. 508 if (ValueVT.isVector()) 509 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 510 CallConv); 511 512 unsigned PartBits = PartVT.getSizeInBits(); 513 unsigned OrigNumParts = NumParts; 514 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 515 "Copying to an illegal type!"); 516 517 if (NumParts == 0) 518 return; 519 520 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 521 EVT PartEVT = PartVT; 522 if (PartEVT == ValueVT) { 523 assert(NumParts == 1 && "No-op copy with multiple parts!"); 524 Parts[0] = Val; 525 return; 526 } 527 528 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 529 // If the parts cover more bits than the value has, promote the value. 530 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 531 assert(NumParts == 1 && "Do not know what to promote to!"); 532 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 533 } else { 534 if (ValueVT.isFloatingPoint()) { 535 // FP values need to be bitcast, then extended if they are being put 536 // into a larger container. 537 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 538 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 539 } 540 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 541 ValueVT.isInteger() && 542 "Unknown mismatch!"); 543 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 544 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 545 if (PartVT == MVT::x86mmx) 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 } else if (PartBits == ValueVT.getSizeInBits()) { 549 // Different types of the same size. 550 assert(NumParts == 1 && PartEVT != ValueVT); 551 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 552 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 553 // If the parts cover less bits than value has, truncate the value. 554 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 555 ValueVT.isInteger() && 556 "Unknown mismatch!"); 557 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 558 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 559 if (PartVT == MVT::x86mmx) 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 // The value may have changed - recompute ValueVT. 564 ValueVT = Val.getValueType(); 565 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 566 "Failed to tile the value with PartVT!"); 567 568 if (NumParts == 1) { 569 if (PartEVT != ValueVT) { 570 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 571 "scalar-to-vector conversion failed"); 572 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 573 } 574 575 Parts[0] = Val; 576 return; 577 } 578 579 // Expand the value into multiple parts. 580 if (NumParts & (NumParts - 1)) { 581 // The number of parts is not a power of 2. Split off and copy the tail. 582 assert(PartVT.isInteger() && ValueVT.isInteger() && 583 "Do not know what to expand to!"); 584 unsigned RoundParts = 1 << Log2_32(NumParts); 585 unsigned RoundBits = RoundParts * PartBits; 586 unsigned OddParts = NumParts - RoundParts; 587 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 588 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 589 590 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 591 CallConv); 592 593 if (DAG.getDataLayout().isBigEndian()) 594 // The odd parts were reversed by getCopyToParts - unreverse them. 595 std::reverse(Parts + RoundParts, Parts + NumParts); 596 597 NumParts = RoundParts; 598 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 599 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 600 } 601 602 // The number of parts is a power of 2. Repeatedly bisect the value using 603 // EXTRACT_ELEMENT. 604 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 605 EVT::getIntegerVT(*DAG.getContext(), 606 ValueVT.getSizeInBits()), 607 Val); 608 609 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 610 for (unsigned i = 0; i < NumParts; i += StepSize) { 611 unsigned ThisBits = StepSize * PartBits / 2; 612 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 613 SDValue &Part0 = Parts[i]; 614 SDValue &Part1 = Parts[i+StepSize/2]; 615 616 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 618 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 620 621 if (ThisBits == PartBits && ThisVT != PartVT) { 622 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 623 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 624 } 625 } 626 } 627 628 if (DAG.getDataLayout().isBigEndian()) 629 std::reverse(Parts, Parts + OrigNumParts); 630 } 631 632 static SDValue widenVectorToPartType(SelectionDAG &DAG, 633 SDValue Val, const SDLoc &DL, EVT PartVT) { 634 if (!PartVT.isVector()) 635 return SDValue(); 636 637 EVT ValueVT = Val.getValueType(); 638 unsigned PartNumElts = PartVT.getVectorNumElements(); 639 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 640 if (PartNumElts > ValueNumElts && 641 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 642 EVT ElementVT = PartVT.getVectorElementType(); 643 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 644 // undef elements. 645 SmallVector<SDValue, 16> Ops; 646 DAG.ExtractVectorElements(Val, Ops); 647 SDValue EltUndef = DAG.getUNDEF(ElementVT); 648 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 649 Ops.push_back(EltUndef); 650 651 // FIXME: Use CONCAT for 2x -> 4x. 652 return DAG.getBuildVector(PartVT, DL, Ops); 653 } 654 655 return SDValue(); 656 } 657 658 /// getCopyToPartsVector - Create a series of nodes that contain the specified 659 /// value split into legal parts. 660 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 661 SDValue Val, SDValue *Parts, unsigned NumParts, 662 MVT PartVT, const Value *V, 663 Optional<CallingConv::ID> CallConv) { 664 EVT ValueVT = Val.getValueType(); 665 assert(ValueVT.isVector() && "Not a vector"); 666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 667 const bool IsABIRegCopy = CallConv.hasValue(); 668 669 if (NumParts == 1) { 670 EVT PartEVT = PartVT; 671 if (PartEVT == ValueVT) { 672 // Nothing to do. 673 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 674 // Bitconvert vector->vector case. 675 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 676 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 677 Val = Widened; 678 } else if (PartVT.isVector() && 679 PartEVT.getVectorElementType().bitsGE( 680 ValueVT.getVectorElementType()) && 681 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 682 683 // Promoted vector extract 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } else { 686 if (ValueVT.getVectorNumElements() == 1) { 687 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 688 DAG.getVectorIdxConstant(0, DL)); 689 } else { 690 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 691 "lossy conversion of vector to scalar type"); 692 EVT IntermediateType = 693 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 694 Val = DAG.getBitcast(IntermediateType, Val); 695 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 696 } 697 } 698 699 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 700 Parts[0] = Val; 701 return; 702 } 703 704 // Handle a multi-element vector. 705 EVT IntermediateVT; 706 MVT RegisterVT; 707 unsigned NumIntermediates; 708 unsigned NumRegs; 709 if (IsABIRegCopy) { 710 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 711 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 712 NumIntermediates, RegisterVT); 713 } else { 714 NumRegs = 715 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 716 NumIntermediates, RegisterVT); 717 } 718 719 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 720 NumParts = NumRegs; // Silence a compiler warning. 721 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 722 723 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 724 IntermediateVT.getVectorNumElements() : 1; 725 726 // Convert the vector to the appropriate type if necessary. 727 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 728 729 EVT BuiltVectorTy = EVT::getVectorVT( 730 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = 743 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 744 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 745 } else { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getVectorIdxConstant(i, DL)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!Register::isVirtualRegister(Regs[Part + i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 952 // Put the register class of the virtual registers in the flag word. That 953 // way, later passes can recompute register class constraints for inline 954 // assembly as well as normal instructions. 955 // Don't do this for tied operands that can use the regclass information 956 // from the def. 957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 960 } 961 962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 963 Ops.push_back(Res); 964 965 if (Code == InlineAsm::Kind_Clobber) { 966 // Clobbers should always have a 1:1 mapping with registers, and may 967 // reference registers that have illegal (e.g. vector) types. Hence, we 968 // shouldn't try to apply any sort of splitting logic to them. 969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 970 "No 1:1 mapping from clobbers to regs?"); 971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 972 (void)SP; 973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 975 assert( 976 (Regs[I] != SP || 977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 978 "If we clobbered the stack pointer, MFI should know about it."); 979 } 980 return; 981 } 982 983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 985 MVT RegisterVT = RegVTs[Value]; 986 for (unsigned i = 0; i != NumRegs; ++i) { 987 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 988 unsigned TheReg = Regs[Reg++]; 989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 990 } 991 } 992 } 993 994 SmallVector<std::pair<unsigned, unsigned>, 4> 995 RegsForValue::getRegsAndSizes() const { 996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 997 unsigned I = 0; 998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 999 unsigned RegCount = std::get<0>(CountAndVT); 1000 MVT RegisterVT = std::get<1>(CountAndVT); 1001 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1002 for (unsigned E = I + RegCount; I != E; ++I) 1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1004 } 1005 return OutVec; 1006 } 1007 1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1009 const TargetLibraryInfo *li) { 1010 AA = aa; 1011 GFI = gfi; 1012 LibInfo = li; 1013 DL = &DAG.getDataLayout(); 1014 Context = DAG.getContext(); 1015 LPadToCallSiteMap.clear(); 1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1017 } 1018 1019 void SelectionDAGBuilder::clear() { 1020 NodeMap.clear(); 1021 UnusedArgNodeMap.clear(); 1022 PendingLoads.clear(); 1023 PendingExports.clear(); 1024 PendingConstrainedFP.clear(); 1025 PendingConstrainedFPStrict.clear(); 1026 CurInst = nullptr; 1027 HasTailCall = false; 1028 SDNodeOrder = LowestSDNodeOrder; 1029 StatepointLowering.clear(); 1030 } 1031 1032 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1033 DanglingDebugInfoMap.clear(); 1034 } 1035 1036 // Update DAG root to include dependencies on Pending chains. 1037 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1038 SDValue Root = DAG.getRoot(); 1039 1040 if (Pending.empty()) 1041 return Root; 1042 1043 // Add current root to PendingChains, unless we already indirectly 1044 // depend on it. 1045 if (Root.getOpcode() != ISD::EntryToken) { 1046 unsigned i = 0, e = Pending.size(); 1047 for (; i != e; ++i) { 1048 assert(Pending[i].getNode()->getNumOperands() > 1); 1049 if (Pending[i].getNode()->getOperand(0) == Root) 1050 break; // Don't add the root if we already indirectly depend on it. 1051 } 1052 1053 if (i == e) 1054 Pending.push_back(Root); 1055 } 1056 1057 if (Pending.size() == 1) 1058 Root = Pending[0]; 1059 else 1060 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1061 1062 DAG.setRoot(Root); 1063 Pending.clear(); 1064 return Root; 1065 } 1066 1067 SDValue SelectionDAGBuilder::getMemoryRoot() { 1068 return updateRoot(PendingLoads); 1069 } 1070 1071 SDValue SelectionDAGBuilder::getRoot() { 1072 // Chain up all pending constrained intrinsics together with all 1073 // pending loads, by simply appending them to PendingLoads and 1074 // then calling getMemoryRoot(). 1075 PendingLoads.reserve(PendingLoads.size() + 1076 PendingConstrainedFP.size() + 1077 PendingConstrainedFPStrict.size()); 1078 PendingLoads.append(PendingConstrainedFP.begin(), 1079 PendingConstrainedFP.end()); 1080 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1081 PendingConstrainedFPStrict.end()); 1082 PendingConstrainedFP.clear(); 1083 PendingConstrainedFPStrict.clear(); 1084 return getMemoryRoot(); 1085 } 1086 1087 SDValue SelectionDAGBuilder::getControlRoot() { 1088 // We need to emit pending fpexcept.strict constrained intrinsics, 1089 // so append them to the PendingExports list. 1090 PendingExports.append(PendingConstrainedFPStrict.begin(), 1091 PendingConstrainedFPStrict.end()); 1092 PendingConstrainedFPStrict.clear(); 1093 return updateRoot(PendingExports); 1094 } 1095 1096 void SelectionDAGBuilder::visit(const Instruction &I) { 1097 // Set up outgoing PHI node register values before emitting the terminator. 1098 if (I.isTerminator()) { 1099 HandlePHINodesInSuccessorBlocks(I.getParent()); 1100 } 1101 1102 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1103 if (!isa<DbgInfoIntrinsic>(I)) 1104 ++SDNodeOrder; 1105 1106 CurInst = &I; 1107 1108 visit(I.getOpcode(), I); 1109 1110 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1111 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1112 // maps to this instruction. 1113 // TODO: We could handle all flags (nsw, etc) here. 1114 // TODO: If an IR instruction maps to >1 node, only the final node will have 1115 // flags set. 1116 if (SDNode *Node = getNodeForIRValue(&I)) { 1117 SDNodeFlags IncomingFlags; 1118 IncomingFlags.copyFMF(*FPMO); 1119 if (!Node->getFlags().isDefined()) 1120 Node->setFlags(IncomingFlags); 1121 else 1122 Node->intersectFlagsWith(IncomingFlags); 1123 } 1124 } 1125 // Constrained FP intrinsics with fpexcept.ignore should also get 1126 // the NoFPExcept flag. 1127 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I)) 1128 if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore) 1129 if (SDNode *Node = getNodeForIRValue(&I)) { 1130 SDNodeFlags Flags = Node->getFlags(); 1131 Flags.setNoFPExcept(true); 1132 Node->setFlags(Flags); 1133 } 1134 1135 if (!I.isTerminator() && !HasTailCall && 1136 !isStatepoint(&I)) // statepoints handle their exports internally 1137 CopyToExportRegsIfNeeded(&I); 1138 1139 CurInst = nullptr; 1140 } 1141 1142 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1143 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1144 } 1145 1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1147 // Note: this doesn't use InstVisitor, because it has to work with 1148 // ConstantExpr's in addition to instructions. 1149 switch (Opcode) { 1150 default: llvm_unreachable("Unknown instruction type encountered!"); 1151 // Build the switch statement using the Instruction.def file. 1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1153 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1154 #include "llvm/IR/Instruction.def" 1155 } 1156 } 1157 1158 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1159 const DIExpression *Expr) { 1160 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1161 const DbgValueInst *DI = DDI.getDI(); 1162 DIVariable *DanglingVariable = DI->getVariable(); 1163 DIExpression *DanglingExpr = DI->getExpression(); 1164 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1165 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1166 return true; 1167 } 1168 return false; 1169 }; 1170 1171 for (auto &DDIMI : DanglingDebugInfoMap) { 1172 DanglingDebugInfoVector &DDIV = DDIMI.second; 1173 1174 // If debug info is to be dropped, run it through final checks to see 1175 // whether it can be salvaged. 1176 for (auto &DDI : DDIV) 1177 if (isMatchingDbgValue(DDI)) 1178 salvageUnresolvedDbgValue(DDI); 1179 1180 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1181 } 1182 } 1183 1184 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1185 // generate the debug data structures now that we've seen its definition. 1186 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1187 SDValue Val) { 1188 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1189 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1190 return; 1191 1192 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1193 for (auto &DDI : DDIV) { 1194 const DbgValueInst *DI = DDI.getDI(); 1195 assert(DI && "Ill-formed DanglingDebugInfo"); 1196 DebugLoc dl = DDI.getdl(); 1197 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1198 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1199 DILocalVariable *Variable = DI->getVariable(); 1200 DIExpression *Expr = DI->getExpression(); 1201 assert(Variable->isValidLocationForIntrinsic(dl) && 1202 "Expected inlined-at fields to agree"); 1203 SDDbgValue *SDV; 1204 if (Val.getNode()) { 1205 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1206 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1207 // we couldn't resolve it directly when examining the DbgValue intrinsic 1208 // in the first place we should not be more successful here). Unless we 1209 // have some test case that prove this to be correct we should avoid 1210 // calling EmitFuncArgumentDbgValue here. 1211 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1212 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1213 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1214 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1215 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1216 // inserted after the definition of Val when emitting the instructions 1217 // after ISel. An alternative could be to teach 1218 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1219 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1220 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1221 << ValSDNodeOrder << "\n"); 1222 SDV = getDbgValue(Val, Variable, Expr, dl, 1223 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1224 DAG.AddDbgValue(SDV, Val.getNode(), false); 1225 } else 1226 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1227 << "in EmitFuncArgumentDbgValue\n"); 1228 } else { 1229 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1230 auto Undef = 1231 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1232 auto SDV = 1233 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1234 DAG.AddDbgValue(SDV, nullptr, false); 1235 } 1236 } 1237 DDIV.clear(); 1238 } 1239 1240 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1241 Value *V = DDI.getDI()->getValue(); 1242 DILocalVariable *Var = DDI.getDI()->getVariable(); 1243 DIExpression *Expr = DDI.getDI()->getExpression(); 1244 DebugLoc DL = DDI.getdl(); 1245 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1246 unsigned SDOrder = DDI.getSDNodeOrder(); 1247 1248 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1249 // that DW_OP_stack_value is desired. 1250 assert(isa<DbgValueInst>(DDI.getDI())); 1251 bool StackValue = true; 1252 1253 // Can this Value can be encoded without any further work? 1254 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1255 return; 1256 1257 // Attempt to salvage back through as many instructions as possible. Bail if 1258 // a non-instruction is seen, such as a constant expression or global 1259 // variable. FIXME: Further work could recover those too. 1260 while (isa<Instruction>(V)) { 1261 Instruction &VAsInst = *cast<Instruction>(V); 1262 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1263 1264 // If we cannot salvage any further, and haven't yet found a suitable debug 1265 // expression, bail out. 1266 if (!NewExpr) 1267 break; 1268 1269 // New value and expr now represent this debuginfo. 1270 V = VAsInst.getOperand(0); 1271 Expr = NewExpr; 1272 1273 // Some kind of simplification occurred: check whether the operand of the 1274 // salvaged debug expression can be encoded in this DAG. 1275 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1276 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1277 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1278 return; 1279 } 1280 } 1281 1282 // This was the final opportunity to salvage this debug information, and it 1283 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1284 // any earlier variable location. 1285 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1286 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1287 DAG.AddDbgValue(SDV, nullptr, false); 1288 1289 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1290 << "\n"); 1291 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1292 << "\n"); 1293 } 1294 1295 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1296 DIExpression *Expr, DebugLoc dl, 1297 DebugLoc InstDL, unsigned Order) { 1298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1299 SDDbgValue *SDV; 1300 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1301 isa<ConstantPointerNull>(V)) { 1302 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1303 DAG.AddDbgValue(SDV, nullptr, false); 1304 return true; 1305 } 1306 1307 // If the Value is a frame index, we can create a FrameIndex debug value 1308 // without relying on the DAG at all. 1309 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1310 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1311 if (SI != FuncInfo.StaticAllocaMap.end()) { 1312 auto SDV = 1313 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1314 /*IsIndirect*/ false, dl, SDNodeOrder); 1315 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1316 // is still available even if the SDNode gets optimized out. 1317 DAG.AddDbgValue(SDV, nullptr, false); 1318 return true; 1319 } 1320 } 1321 1322 // Do not use getValue() in here; we don't want to generate code at 1323 // this point if it hasn't been done yet. 1324 SDValue N = NodeMap[V]; 1325 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1326 N = UnusedArgNodeMap[V]; 1327 if (N.getNode()) { 1328 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1329 return true; 1330 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1331 DAG.AddDbgValue(SDV, N.getNode(), false); 1332 return true; 1333 } 1334 1335 // Special rules apply for the first dbg.values of parameter variables in a 1336 // function. Identify them by the fact they reference Argument Values, that 1337 // they're parameters, and they are parameters of the current function. We 1338 // need to let them dangle until they get an SDNode. 1339 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1340 !InstDL.getInlinedAt(); 1341 if (!IsParamOfFunc) { 1342 // The value is not used in this block yet (or it would have an SDNode). 1343 // We still want the value to appear for the user if possible -- if it has 1344 // an associated VReg, we can refer to that instead. 1345 auto VMI = FuncInfo.ValueMap.find(V); 1346 if (VMI != FuncInfo.ValueMap.end()) { 1347 unsigned Reg = VMI->second; 1348 // If this is a PHI node, it may be split up into several MI PHI nodes 1349 // (in FunctionLoweringInfo::set). 1350 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1351 V->getType(), None); 1352 if (RFV.occupiesMultipleRegs()) { 1353 unsigned Offset = 0; 1354 unsigned BitsToDescribe = 0; 1355 if (auto VarSize = Var->getSizeInBits()) 1356 BitsToDescribe = *VarSize; 1357 if (auto Fragment = Expr->getFragmentInfo()) 1358 BitsToDescribe = Fragment->SizeInBits; 1359 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1360 unsigned RegisterSize = RegAndSize.second; 1361 // Bail out if all bits are described already. 1362 if (Offset >= BitsToDescribe) 1363 break; 1364 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1365 ? BitsToDescribe - Offset 1366 : RegisterSize; 1367 auto FragmentExpr = DIExpression::createFragmentExpression( 1368 Expr, Offset, FragmentSize); 1369 if (!FragmentExpr) 1370 continue; 1371 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1372 false, dl, SDNodeOrder); 1373 DAG.AddDbgValue(SDV, nullptr, false); 1374 Offset += RegisterSize; 1375 } 1376 } else { 1377 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1378 DAG.AddDbgValue(SDV, nullptr, false); 1379 } 1380 return true; 1381 } 1382 } 1383 1384 return false; 1385 } 1386 1387 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1388 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1389 for (auto &Pair : DanglingDebugInfoMap) 1390 for (auto &DDI : Pair.second) 1391 salvageUnresolvedDbgValue(DDI); 1392 clearDanglingDebugInfo(); 1393 } 1394 1395 /// getCopyFromRegs - If there was virtual register allocated for the value V 1396 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1397 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1398 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1399 SDValue Result; 1400 1401 if (It != FuncInfo.ValueMap.end()) { 1402 unsigned InReg = It->second; 1403 1404 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1405 DAG.getDataLayout(), InReg, Ty, 1406 None); // This is not an ABI copy. 1407 SDValue Chain = DAG.getEntryNode(); 1408 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1409 V); 1410 resolveDanglingDebugInfo(V, Result); 1411 } 1412 1413 return Result; 1414 } 1415 1416 /// getValue - Return an SDValue for the given Value. 1417 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1418 // If we already have an SDValue for this value, use it. It's important 1419 // to do this first, so that we don't create a CopyFromReg if we already 1420 // have a regular SDValue. 1421 SDValue &N = NodeMap[V]; 1422 if (N.getNode()) return N; 1423 1424 // If there's a virtual register allocated and initialized for this 1425 // value, use it. 1426 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1427 return copyFromReg; 1428 1429 // Otherwise create a new SDValue and remember it. 1430 SDValue Val = getValueImpl(V); 1431 NodeMap[V] = Val; 1432 resolveDanglingDebugInfo(V, Val); 1433 return Val; 1434 } 1435 1436 // Return true if SDValue exists for the given Value 1437 bool SelectionDAGBuilder::findValue(const Value *V) const { 1438 return (NodeMap.find(V) != NodeMap.end()) || 1439 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1440 } 1441 1442 /// getNonRegisterValue - Return an SDValue for the given Value, but 1443 /// don't look in FuncInfo.ValueMap for a virtual register. 1444 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1445 // If we already have an SDValue for this value, use it. 1446 SDValue &N = NodeMap[V]; 1447 if (N.getNode()) { 1448 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1449 // Remove the debug location from the node as the node is about to be used 1450 // in a location which may differ from the original debug location. This 1451 // is relevant to Constant and ConstantFP nodes because they can appear 1452 // as constant expressions inside PHI nodes. 1453 N->setDebugLoc(DebugLoc()); 1454 } 1455 return N; 1456 } 1457 1458 // Otherwise create a new SDValue and remember it. 1459 SDValue Val = getValueImpl(V); 1460 NodeMap[V] = Val; 1461 resolveDanglingDebugInfo(V, Val); 1462 return Val; 1463 } 1464 1465 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1466 /// Create an SDValue for the given value. 1467 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1469 1470 if (const Constant *C = dyn_cast<Constant>(V)) { 1471 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1472 1473 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1474 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1475 1476 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1477 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1478 1479 if (isa<ConstantPointerNull>(C)) { 1480 unsigned AS = V->getType()->getPointerAddressSpace(); 1481 return DAG.getConstant(0, getCurSDLoc(), 1482 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1483 } 1484 1485 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1486 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1487 1488 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1489 return DAG.getUNDEF(VT); 1490 1491 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1492 visit(CE->getOpcode(), *CE); 1493 SDValue N1 = NodeMap[V]; 1494 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1495 return N1; 1496 } 1497 1498 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1499 SmallVector<SDValue, 4> Constants; 1500 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1501 OI != OE; ++OI) { 1502 SDNode *Val = getValue(*OI).getNode(); 1503 // If the operand is an empty aggregate, there are no values. 1504 if (!Val) continue; 1505 // Add each leaf value from the operand to the Constants list 1506 // to form a flattened list of all the values. 1507 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1508 Constants.push_back(SDValue(Val, i)); 1509 } 1510 1511 return DAG.getMergeValues(Constants, getCurSDLoc()); 1512 } 1513 1514 if (const ConstantDataSequential *CDS = 1515 dyn_cast<ConstantDataSequential>(C)) { 1516 SmallVector<SDValue, 4> Ops; 1517 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1518 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1519 // Add each leaf value from the operand to the Constants list 1520 // to form a flattened list of all the values. 1521 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1522 Ops.push_back(SDValue(Val, i)); 1523 } 1524 1525 if (isa<ArrayType>(CDS->getType())) 1526 return DAG.getMergeValues(Ops, getCurSDLoc()); 1527 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1528 } 1529 1530 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1531 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1532 "Unknown struct or array constant!"); 1533 1534 SmallVector<EVT, 4> ValueVTs; 1535 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1536 unsigned NumElts = ValueVTs.size(); 1537 if (NumElts == 0) 1538 return SDValue(); // empty struct 1539 SmallVector<SDValue, 4> Constants(NumElts); 1540 for (unsigned i = 0; i != NumElts; ++i) { 1541 EVT EltVT = ValueVTs[i]; 1542 if (isa<UndefValue>(C)) 1543 Constants[i] = DAG.getUNDEF(EltVT); 1544 else if (EltVT.isFloatingPoint()) 1545 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1546 else 1547 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1548 } 1549 1550 return DAG.getMergeValues(Constants, getCurSDLoc()); 1551 } 1552 1553 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1554 return DAG.getBlockAddress(BA, VT); 1555 1556 VectorType *VecTy = cast<VectorType>(V->getType()); 1557 unsigned NumElements = VecTy->getNumElements(); 1558 1559 // Now that we know the number and type of the elements, get that number of 1560 // elements into the Ops array based on what kind of constant it is. 1561 SmallVector<SDValue, 16> Ops; 1562 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1563 for (unsigned i = 0; i != NumElements; ++i) 1564 Ops.push_back(getValue(CV->getOperand(i))); 1565 } else { 1566 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1567 EVT EltVT = 1568 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1569 1570 SDValue Op; 1571 if (EltVT.isFloatingPoint()) 1572 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1573 else 1574 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1575 Ops.assign(NumElements, Op); 1576 } 1577 1578 // Create a BUILD_VECTOR node. 1579 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1580 } 1581 1582 // If this is a static alloca, generate it as the frameindex instead of 1583 // computation. 1584 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1585 DenseMap<const AllocaInst*, int>::iterator SI = 1586 FuncInfo.StaticAllocaMap.find(AI); 1587 if (SI != FuncInfo.StaticAllocaMap.end()) 1588 return DAG.getFrameIndex(SI->second, 1589 TLI.getFrameIndexTy(DAG.getDataLayout())); 1590 } 1591 1592 // If this is an instruction which fast-isel has deferred, select it now. 1593 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1594 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1595 1596 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1597 Inst->getType(), getABIRegCopyCC(V)); 1598 SDValue Chain = DAG.getEntryNode(); 1599 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1600 } 1601 1602 llvm_unreachable("Can't get register for value!"); 1603 } 1604 1605 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1606 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1607 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1608 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1609 bool IsSEH = isAsynchronousEHPersonality(Pers); 1610 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1611 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1612 if (!IsSEH) 1613 CatchPadMBB->setIsEHScopeEntry(); 1614 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1615 if (IsMSVCCXX || IsCoreCLR) 1616 CatchPadMBB->setIsEHFuncletEntry(); 1617 // Wasm does not need catchpads anymore 1618 if (!IsWasmCXX) 1619 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1620 getControlRoot())); 1621 } 1622 1623 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1624 // Update machine-CFG edge. 1625 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1626 FuncInfo.MBB->addSuccessor(TargetMBB); 1627 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 bool IsSEH = isAsynchronousEHPersonality(Pers); 1630 if (IsSEH) { 1631 // If this is not a fall-through branch or optimizations are switched off, 1632 // emit the branch. 1633 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1634 TM.getOptLevel() == CodeGenOpt::None) 1635 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1636 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1637 return; 1638 } 1639 1640 // Figure out the funclet membership for the catchret's successor. 1641 // This will be used by the FuncletLayout pass to determine how to order the 1642 // BB's. 1643 // A 'catchret' returns to the outer scope's color. 1644 Value *ParentPad = I.getCatchSwitchParentPad(); 1645 const BasicBlock *SuccessorColor; 1646 if (isa<ConstantTokenNone>(ParentPad)) 1647 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1648 else 1649 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1650 assert(SuccessorColor && "No parent funclet for catchret!"); 1651 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1652 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1653 1654 // Create the terminator node. 1655 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1656 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1657 DAG.getBasicBlock(SuccessorColorMBB)); 1658 DAG.setRoot(Ret); 1659 } 1660 1661 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1662 // Don't emit any special code for the cleanuppad instruction. It just marks 1663 // the start of an EH scope/funclet. 1664 FuncInfo.MBB->setIsEHScopeEntry(); 1665 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1666 if (Pers != EHPersonality::Wasm_CXX) { 1667 FuncInfo.MBB->setIsEHFuncletEntry(); 1668 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1669 } 1670 } 1671 1672 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1673 // the control flow always stops at the single catch pad, as it does for a 1674 // cleanup pad. In case the exception caught is not of the types the catch pad 1675 // catches, it will be rethrown by a rethrow. 1676 static void findWasmUnwindDestinations( 1677 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1678 BranchProbability Prob, 1679 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1680 &UnwindDests) { 1681 while (EHPadBB) { 1682 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1683 if (isa<CleanupPadInst>(Pad)) { 1684 // Stop on cleanup pads. 1685 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1686 UnwindDests.back().first->setIsEHScopeEntry(); 1687 break; 1688 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1689 // Add the catchpad handlers to the possible destinations. We don't 1690 // continue to the unwind destination of the catchswitch for wasm. 1691 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1692 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1693 UnwindDests.back().first->setIsEHScopeEntry(); 1694 } 1695 break; 1696 } else { 1697 continue; 1698 } 1699 } 1700 } 1701 1702 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1703 /// many places it could ultimately go. In the IR, we have a single unwind 1704 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1705 /// This function skips over imaginary basic blocks that hold catchswitch 1706 /// instructions, and finds all the "real" machine 1707 /// basic block destinations. As those destinations may not be successors of 1708 /// EHPadBB, here we also calculate the edge probability to those destinations. 1709 /// The passed-in Prob is the edge probability to EHPadBB. 1710 static void findUnwindDestinations( 1711 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1712 BranchProbability Prob, 1713 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1714 &UnwindDests) { 1715 EHPersonality Personality = 1716 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1717 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1718 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1719 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1720 bool IsSEH = isAsynchronousEHPersonality(Personality); 1721 1722 if (IsWasmCXX) { 1723 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1724 assert(UnwindDests.size() <= 1 && 1725 "There should be at most one unwind destination for wasm"); 1726 return; 1727 } 1728 1729 while (EHPadBB) { 1730 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1731 BasicBlock *NewEHPadBB = nullptr; 1732 if (isa<LandingPadInst>(Pad)) { 1733 // Stop on landingpads. They are not funclets. 1734 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1735 break; 1736 } else if (isa<CleanupPadInst>(Pad)) { 1737 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1738 // personalities. 1739 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1740 UnwindDests.back().first->setIsEHScopeEntry(); 1741 UnwindDests.back().first->setIsEHFuncletEntry(); 1742 break; 1743 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1744 // Add the catchpad handlers to the possible destinations. 1745 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1746 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1747 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1748 if (IsMSVCCXX || IsCoreCLR) 1749 UnwindDests.back().first->setIsEHFuncletEntry(); 1750 if (!IsSEH) 1751 UnwindDests.back().first->setIsEHScopeEntry(); 1752 } 1753 NewEHPadBB = CatchSwitch->getUnwindDest(); 1754 } else { 1755 continue; 1756 } 1757 1758 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1759 if (BPI && NewEHPadBB) 1760 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1761 EHPadBB = NewEHPadBB; 1762 } 1763 } 1764 1765 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1766 // Update successor info. 1767 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1768 auto UnwindDest = I.getUnwindDest(); 1769 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1770 BranchProbability UnwindDestProb = 1771 (BPI && UnwindDest) 1772 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1773 : BranchProbability::getZero(); 1774 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1775 for (auto &UnwindDest : UnwindDests) { 1776 UnwindDest.first->setIsEHPad(); 1777 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1778 } 1779 FuncInfo.MBB->normalizeSuccProbs(); 1780 1781 // Create the terminator node. 1782 SDValue Ret = 1783 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1784 DAG.setRoot(Ret); 1785 } 1786 1787 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1788 report_fatal_error("visitCatchSwitch not yet implemented!"); 1789 } 1790 1791 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1792 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1793 auto &DL = DAG.getDataLayout(); 1794 SDValue Chain = getControlRoot(); 1795 SmallVector<ISD::OutputArg, 8> Outs; 1796 SmallVector<SDValue, 8> OutVals; 1797 1798 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1799 // lower 1800 // 1801 // %val = call <ty> @llvm.experimental.deoptimize() 1802 // ret <ty> %val 1803 // 1804 // differently. 1805 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1806 LowerDeoptimizingReturn(); 1807 return; 1808 } 1809 1810 if (!FuncInfo.CanLowerReturn) { 1811 unsigned DemoteReg = FuncInfo.DemoteRegister; 1812 const Function *F = I.getParent()->getParent(); 1813 1814 // Emit a store of the return value through the virtual register. 1815 // Leave Outs empty so that LowerReturn won't try to load return 1816 // registers the usual way. 1817 SmallVector<EVT, 1> PtrValueVTs; 1818 ComputeValueVTs(TLI, DL, 1819 F->getReturnType()->getPointerTo( 1820 DAG.getDataLayout().getAllocaAddrSpace()), 1821 PtrValueVTs); 1822 1823 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1824 DemoteReg, PtrValueVTs[0]); 1825 SDValue RetOp = getValue(I.getOperand(0)); 1826 1827 SmallVector<EVT, 4> ValueVTs, MemVTs; 1828 SmallVector<uint64_t, 4> Offsets; 1829 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1830 &Offsets); 1831 unsigned NumValues = ValueVTs.size(); 1832 1833 SmallVector<SDValue, 4> Chains(NumValues); 1834 for (unsigned i = 0; i != NumValues; ++i) { 1835 // An aggregate return value cannot wrap around the address space, so 1836 // offsets to its parts don't wrap either. 1837 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1838 1839 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1840 if (MemVTs[i] != ValueVTs[i]) 1841 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1842 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1843 // FIXME: better loc info would be nice. 1844 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1845 } 1846 1847 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1848 MVT::Other, Chains); 1849 } else if (I.getNumOperands() != 0) { 1850 SmallVector<EVT, 4> ValueVTs; 1851 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1852 unsigned NumValues = ValueVTs.size(); 1853 if (NumValues) { 1854 SDValue RetOp = getValue(I.getOperand(0)); 1855 1856 const Function *F = I.getParent()->getParent(); 1857 1858 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1859 I.getOperand(0)->getType(), F->getCallingConv(), 1860 /*IsVarArg*/ false); 1861 1862 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1863 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1864 Attribute::SExt)) 1865 ExtendKind = ISD::SIGN_EXTEND; 1866 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1867 Attribute::ZExt)) 1868 ExtendKind = ISD::ZERO_EXTEND; 1869 1870 LLVMContext &Context = F->getContext(); 1871 bool RetInReg = F->getAttributes().hasAttribute( 1872 AttributeList::ReturnIndex, Attribute::InReg); 1873 1874 for (unsigned j = 0; j != NumValues; ++j) { 1875 EVT VT = ValueVTs[j]; 1876 1877 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1878 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1879 1880 CallingConv::ID CC = F->getCallingConv(); 1881 1882 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1883 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1884 SmallVector<SDValue, 4> Parts(NumParts); 1885 getCopyToParts(DAG, getCurSDLoc(), 1886 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1887 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1888 1889 // 'inreg' on function refers to return value 1890 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1891 if (RetInReg) 1892 Flags.setInReg(); 1893 1894 if (I.getOperand(0)->getType()->isPointerTy()) { 1895 Flags.setPointer(); 1896 Flags.setPointerAddrSpace( 1897 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1898 } 1899 1900 if (NeedsRegBlock) { 1901 Flags.setInConsecutiveRegs(); 1902 if (j == NumValues - 1) 1903 Flags.setInConsecutiveRegsLast(); 1904 } 1905 1906 // Propagate extension type if any 1907 if (ExtendKind == ISD::SIGN_EXTEND) 1908 Flags.setSExt(); 1909 else if (ExtendKind == ISD::ZERO_EXTEND) 1910 Flags.setZExt(); 1911 1912 for (unsigned i = 0; i < NumParts; ++i) { 1913 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1914 VT, /*isfixed=*/true, 0, 0)); 1915 OutVals.push_back(Parts[i]); 1916 } 1917 } 1918 } 1919 } 1920 1921 // Push in swifterror virtual register as the last element of Outs. This makes 1922 // sure swifterror virtual register will be returned in the swifterror 1923 // physical register. 1924 const Function *F = I.getParent()->getParent(); 1925 if (TLI.supportSwiftError() && 1926 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1927 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1928 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1929 Flags.setSwiftError(); 1930 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1931 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1932 true /*isfixed*/, 1 /*origidx*/, 1933 0 /*partOffs*/)); 1934 // Create SDNode for the swifterror virtual register. 1935 OutVals.push_back( 1936 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1937 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1938 EVT(TLI.getPointerTy(DL)))); 1939 } 1940 1941 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1942 CallingConv::ID CallConv = 1943 DAG.getMachineFunction().getFunction().getCallingConv(); 1944 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1945 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1946 1947 // Verify that the target's LowerReturn behaved as expected. 1948 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1949 "LowerReturn didn't return a valid chain!"); 1950 1951 // Update the DAG with the new chain value resulting from return lowering. 1952 DAG.setRoot(Chain); 1953 } 1954 1955 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1956 /// created for it, emit nodes to copy the value into the virtual 1957 /// registers. 1958 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1959 // Skip empty types 1960 if (V->getType()->isEmptyTy()) 1961 return; 1962 1963 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1964 if (VMI != FuncInfo.ValueMap.end()) { 1965 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1966 CopyValueToVirtualRegister(V, VMI->second); 1967 } 1968 } 1969 1970 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1971 /// the current basic block, add it to ValueMap now so that we'll get a 1972 /// CopyTo/FromReg. 1973 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1974 // No need to export constants. 1975 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1976 1977 // Already exported? 1978 if (FuncInfo.isExportedInst(V)) return; 1979 1980 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1981 CopyValueToVirtualRegister(V, Reg); 1982 } 1983 1984 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1985 const BasicBlock *FromBB) { 1986 // The operands of the setcc have to be in this block. We don't know 1987 // how to export them from some other block. 1988 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1989 // Can export from current BB. 1990 if (VI->getParent() == FromBB) 1991 return true; 1992 1993 // Is already exported, noop. 1994 return FuncInfo.isExportedInst(V); 1995 } 1996 1997 // If this is an argument, we can export it if the BB is the entry block or 1998 // if it is already exported. 1999 if (isa<Argument>(V)) { 2000 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2001 return true; 2002 2003 // Otherwise, can only export this if it is already exported. 2004 return FuncInfo.isExportedInst(V); 2005 } 2006 2007 // Otherwise, constants can always be exported. 2008 return true; 2009 } 2010 2011 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2012 BranchProbability 2013 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2014 const MachineBasicBlock *Dst) const { 2015 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2016 const BasicBlock *SrcBB = Src->getBasicBlock(); 2017 const BasicBlock *DstBB = Dst->getBasicBlock(); 2018 if (!BPI) { 2019 // If BPI is not available, set the default probability as 1 / N, where N is 2020 // the number of successors. 2021 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2022 return BranchProbability(1, SuccSize); 2023 } 2024 return BPI->getEdgeProbability(SrcBB, DstBB); 2025 } 2026 2027 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2028 MachineBasicBlock *Dst, 2029 BranchProbability Prob) { 2030 if (!FuncInfo.BPI) 2031 Src->addSuccessorWithoutProb(Dst); 2032 else { 2033 if (Prob.isUnknown()) 2034 Prob = getEdgeProbability(Src, Dst); 2035 Src->addSuccessor(Dst, Prob); 2036 } 2037 } 2038 2039 static bool InBlock(const Value *V, const BasicBlock *BB) { 2040 if (const Instruction *I = dyn_cast<Instruction>(V)) 2041 return I->getParent() == BB; 2042 return true; 2043 } 2044 2045 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2046 /// This function emits a branch and is used at the leaves of an OR or an 2047 /// AND operator tree. 2048 void 2049 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2050 MachineBasicBlock *TBB, 2051 MachineBasicBlock *FBB, 2052 MachineBasicBlock *CurBB, 2053 MachineBasicBlock *SwitchBB, 2054 BranchProbability TProb, 2055 BranchProbability FProb, 2056 bool InvertCond) { 2057 const BasicBlock *BB = CurBB->getBasicBlock(); 2058 2059 // If the leaf of the tree is a comparison, merge the condition into 2060 // the caseblock. 2061 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2062 // The operands of the cmp have to be in this block. We don't know 2063 // how to export them from some other block. If this is the first block 2064 // of the sequence, no exporting is needed. 2065 if (CurBB == SwitchBB || 2066 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2067 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2068 ISD::CondCode Condition; 2069 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2070 ICmpInst::Predicate Pred = 2071 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2072 Condition = getICmpCondCode(Pred); 2073 } else { 2074 const FCmpInst *FC = cast<FCmpInst>(Cond); 2075 FCmpInst::Predicate Pred = 2076 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2077 Condition = getFCmpCondCode(Pred); 2078 if (TM.Options.NoNaNsFPMath) 2079 Condition = getFCmpCodeWithoutNaN(Condition); 2080 } 2081 2082 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2083 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2084 SL->SwitchCases.push_back(CB); 2085 return; 2086 } 2087 } 2088 2089 // Create a CaseBlock record representing this branch. 2090 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2091 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2092 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2093 SL->SwitchCases.push_back(CB); 2094 } 2095 2096 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2097 MachineBasicBlock *TBB, 2098 MachineBasicBlock *FBB, 2099 MachineBasicBlock *CurBB, 2100 MachineBasicBlock *SwitchBB, 2101 Instruction::BinaryOps Opc, 2102 BranchProbability TProb, 2103 BranchProbability FProb, 2104 bool InvertCond) { 2105 // Skip over not part of the tree and remember to invert op and operands at 2106 // next level. 2107 Value *NotCond; 2108 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2109 InBlock(NotCond, CurBB->getBasicBlock())) { 2110 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2111 !InvertCond); 2112 return; 2113 } 2114 2115 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2116 // Compute the effective opcode for Cond, taking into account whether it needs 2117 // to be inverted, e.g. 2118 // and (not (or A, B)), C 2119 // gets lowered as 2120 // and (and (not A, not B), C) 2121 unsigned BOpc = 0; 2122 if (BOp) { 2123 BOpc = BOp->getOpcode(); 2124 if (InvertCond) { 2125 if (BOpc == Instruction::And) 2126 BOpc = Instruction::Or; 2127 else if (BOpc == Instruction::Or) 2128 BOpc = Instruction::And; 2129 } 2130 } 2131 2132 // If this node is not part of the or/and tree, emit it as a branch. 2133 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2134 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2135 BOp->getParent() != CurBB->getBasicBlock() || 2136 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2137 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2138 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2139 TProb, FProb, InvertCond); 2140 return; 2141 } 2142 2143 // Create TmpBB after CurBB. 2144 MachineFunction::iterator BBI(CurBB); 2145 MachineFunction &MF = DAG.getMachineFunction(); 2146 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2147 CurBB->getParent()->insert(++BBI, TmpBB); 2148 2149 if (Opc == Instruction::Or) { 2150 // Codegen X | Y as: 2151 // BB1: 2152 // jmp_if_X TBB 2153 // jmp TmpBB 2154 // TmpBB: 2155 // jmp_if_Y TBB 2156 // jmp FBB 2157 // 2158 2159 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2160 // The requirement is that 2161 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2162 // = TrueProb for original BB. 2163 // Assuming the original probabilities are A and B, one choice is to set 2164 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2165 // A/(1+B) and 2B/(1+B). This choice assumes that 2166 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2167 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2168 // TmpBB, but the math is more complicated. 2169 2170 auto NewTrueProb = TProb / 2; 2171 auto NewFalseProb = TProb / 2 + FProb; 2172 // Emit the LHS condition. 2173 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2174 NewTrueProb, NewFalseProb, InvertCond); 2175 2176 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2177 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2178 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2179 // Emit the RHS condition into TmpBB. 2180 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2181 Probs[0], Probs[1], InvertCond); 2182 } else { 2183 assert(Opc == Instruction::And && "Unknown merge op!"); 2184 // Codegen X & Y as: 2185 // BB1: 2186 // jmp_if_X TmpBB 2187 // jmp FBB 2188 // TmpBB: 2189 // jmp_if_Y TBB 2190 // jmp FBB 2191 // 2192 // This requires creation of TmpBB after CurBB. 2193 2194 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2195 // The requirement is that 2196 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2197 // = FalseProb for original BB. 2198 // Assuming the original probabilities are A and B, one choice is to set 2199 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2200 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2201 // TrueProb for BB1 * FalseProb for TmpBB. 2202 2203 auto NewTrueProb = TProb + FProb / 2; 2204 auto NewFalseProb = FProb / 2; 2205 // Emit the LHS condition. 2206 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2207 NewTrueProb, NewFalseProb, InvertCond); 2208 2209 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2210 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2211 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2212 // Emit the RHS condition into TmpBB. 2213 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2214 Probs[0], Probs[1], InvertCond); 2215 } 2216 } 2217 2218 /// If the set of cases should be emitted as a series of branches, return true. 2219 /// If we should emit this as a bunch of and/or'd together conditions, return 2220 /// false. 2221 bool 2222 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2223 if (Cases.size() != 2) return true; 2224 2225 // If this is two comparisons of the same values or'd or and'd together, they 2226 // will get folded into a single comparison, so don't emit two blocks. 2227 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2228 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2229 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2230 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2231 return false; 2232 } 2233 2234 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2235 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2236 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2237 Cases[0].CC == Cases[1].CC && 2238 isa<Constant>(Cases[0].CmpRHS) && 2239 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2240 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2241 return false; 2242 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2243 return false; 2244 } 2245 2246 return true; 2247 } 2248 2249 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2250 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2251 2252 // Update machine-CFG edges. 2253 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2254 2255 if (I.isUnconditional()) { 2256 // Update machine-CFG edges. 2257 BrMBB->addSuccessor(Succ0MBB); 2258 2259 // If this is not a fall-through branch or optimizations are switched off, 2260 // emit the branch. 2261 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2262 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2263 MVT::Other, getControlRoot(), 2264 DAG.getBasicBlock(Succ0MBB))); 2265 2266 return; 2267 } 2268 2269 // If this condition is one of the special cases we handle, do special stuff 2270 // now. 2271 const Value *CondVal = I.getCondition(); 2272 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2273 2274 // If this is a series of conditions that are or'd or and'd together, emit 2275 // this as a sequence of branches instead of setcc's with and/or operations. 2276 // As long as jumps are not expensive, this should improve performance. 2277 // For example, instead of something like: 2278 // cmp A, B 2279 // C = seteq 2280 // cmp D, E 2281 // F = setle 2282 // or C, F 2283 // jnz foo 2284 // Emit: 2285 // cmp A, B 2286 // je foo 2287 // cmp D, E 2288 // jle foo 2289 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2290 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2291 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2292 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2293 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2294 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2295 Opcode, 2296 getEdgeProbability(BrMBB, Succ0MBB), 2297 getEdgeProbability(BrMBB, Succ1MBB), 2298 /*InvertCond=*/false); 2299 // If the compares in later blocks need to use values not currently 2300 // exported from this block, export them now. This block should always 2301 // be the first entry. 2302 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2303 2304 // Allow some cases to be rejected. 2305 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2306 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2307 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2308 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2309 } 2310 2311 // Emit the branch for this block. 2312 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2313 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2314 return; 2315 } 2316 2317 // Okay, we decided not to do this, remove any inserted MBB's and clear 2318 // SwitchCases. 2319 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2320 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2321 2322 SL->SwitchCases.clear(); 2323 } 2324 } 2325 2326 // Create a CaseBlock record representing this branch. 2327 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2328 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2329 2330 // Use visitSwitchCase to actually insert the fast branch sequence for this 2331 // cond branch. 2332 visitSwitchCase(CB, BrMBB); 2333 } 2334 2335 /// visitSwitchCase - Emits the necessary code to represent a single node in 2336 /// the binary search tree resulting from lowering a switch instruction. 2337 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2338 MachineBasicBlock *SwitchBB) { 2339 SDValue Cond; 2340 SDValue CondLHS = getValue(CB.CmpLHS); 2341 SDLoc dl = CB.DL; 2342 2343 if (CB.CC == ISD::SETTRUE) { 2344 // Branch or fall through to TrueBB. 2345 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2346 SwitchBB->normalizeSuccProbs(); 2347 if (CB.TrueBB != NextBlock(SwitchBB)) { 2348 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2349 DAG.getBasicBlock(CB.TrueBB))); 2350 } 2351 return; 2352 } 2353 2354 auto &TLI = DAG.getTargetLoweringInfo(); 2355 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2356 2357 // Build the setcc now. 2358 if (!CB.CmpMHS) { 2359 // Fold "(X == true)" to X and "(X == false)" to !X to 2360 // handle common cases produced by branch lowering. 2361 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2362 CB.CC == ISD::SETEQ) 2363 Cond = CondLHS; 2364 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2365 CB.CC == ISD::SETEQ) { 2366 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2367 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2368 } else { 2369 SDValue CondRHS = getValue(CB.CmpRHS); 2370 2371 // If a pointer's DAG type is larger than its memory type then the DAG 2372 // values are zero-extended. This breaks signed comparisons so truncate 2373 // back to the underlying type before doing the compare. 2374 if (CondLHS.getValueType() != MemVT) { 2375 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2376 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2377 } 2378 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2379 } 2380 } else { 2381 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2382 2383 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2384 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2385 2386 SDValue CmpOp = getValue(CB.CmpMHS); 2387 EVT VT = CmpOp.getValueType(); 2388 2389 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2390 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2391 ISD::SETLE); 2392 } else { 2393 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2394 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2395 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2396 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2397 } 2398 } 2399 2400 // Update successor info 2401 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2402 // TrueBB and FalseBB are always different unless the incoming IR is 2403 // degenerate. This only happens when running llc on weird IR. 2404 if (CB.TrueBB != CB.FalseBB) 2405 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2406 SwitchBB->normalizeSuccProbs(); 2407 2408 // If the lhs block is the next block, invert the condition so that we can 2409 // fall through to the lhs instead of the rhs block. 2410 if (CB.TrueBB == NextBlock(SwitchBB)) { 2411 std::swap(CB.TrueBB, CB.FalseBB); 2412 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2413 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2414 } 2415 2416 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2417 MVT::Other, getControlRoot(), Cond, 2418 DAG.getBasicBlock(CB.TrueBB)); 2419 2420 // Insert the false branch. Do this even if it's a fall through branch, 2421 // this makes it easier to do DAG optimizations which require inverting 2422 // the branch condition. 2423 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2424 DAG.getBasicBlock(CB.FalseBB)); 2425 2426 DAG.setRoot(BrCond); 2427 } 2428 2429 /// visitJumpTable - Emit JumpTable node in the current MBB 2430 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2431 // Emit the code for the jump table 2432 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2433 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2434 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2435 JT.Reg, PTy); 2436 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2437 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2438 MVT::Other, Index.getValue(1), 2439 Table, Index); 2440 DAG.setRoot(BrJumpTable); 2441 } 2442 2443 /// visitJumpTableHeader - This function emits necessary code to produce index 2444 /// in the JumpTable from switch case. 2445 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2446 JumpTableHeader &JTH, 2447 MachineBasicBlock *SwitchBB) { 2448 SDLoc dl = getCurSDLoc(); 2449 2450 // Subtract the lowest switch case value from the value being switched on. 2451 SDValue SwitchOp = getValue(JTH.SValue); 2452 EVT VT = SwitchOp.getValueType(); 2453 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2454 DAG.getConstant(JTH.First, dl, VT)); 2455 2456 // The SDNode we just created, which holds the value being switched on minus 2457 // the smallest case value, needs to be copied to a virtual register so it 2458 // can be used as an index into the jump table in a subsequent basic block. 2459 // This value may be smaller or larger than the target's pointer type, and 2460 // therefore require extension or truncating. 2461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2462 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2463 2464 unsigned JumpTableReg = 2465 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2466 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2467 JumpTableReg, SwitchOp); 2468 JT.Reg = JumpTableReg; 2469 2470 if (!JTH.OmitRangeCheck) { 2471 // Emit the range check for the jump table, and branch to the default block 2472 // for the switch statement if the value being switched on exceeds the 2473 // largest case in the switch. 2474 SDValue CMP = DAG.getSetCC( 2475 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2476 Sub.getValueType()), 2477 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2478 2479 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2480 MVT::Other, CopyTo, CMP, 2481 DAG.getBasicBlock(JT.Default)); 2482 2483 // Avoid emitting unnecessary branches to the next block. 2484 if (JT.MBB != NextBlock(SwitchBB)) 2485 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2486 DAG.getBasicBlock(JT.MBB)); 2487 2488 DAG.setRoot(BrCond); 2489 } else { 2490 // Avoid emitting unnecessary branches to the next block. 2491 if (JT.MBB != NextBlock(SwitchBB)) 2492 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2493 DAG.getBasicBlock(JT.MBB))); 2494 else 2495 DAG.setRoot(CopyTo); 2496 } 2497 } 2498 2499 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2500 /// variable if there exists one. 2501 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2502 SDValue &Chain) { 2503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2504 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2505 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2506 MachineFunction &MF = DAG.getMachineFunction(); 2507 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2508 MachineSDNode *Node = 2509 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2510 if (Global) { 2511 MachinePointerInfo MPInfo(Global); 2512 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2513 MachineMemOperand::MODereferenceable; 2514 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2515 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2516 DAG.setNodeMemRefs(Node, {MemRef}); 2517 } 2518 if (PtrTy != PtrMemTy) 2519 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2520 return SDValue(Node, 0); 2521 } 2522 2523 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2524 /// tail spliced into a stack protector check success bb. 2525 /// 2526 /// For a high level explanation of how this fits into the stack protector 2527 /// generation see the comment on the declaration of class 2528 /// StackProtectorDescriptor. 2529 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2530 MachineBasicBlock *ParentBB) { 2531 2532 // First create the loads to the guard/stack slot for the comparison. 2533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2534 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2535 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2536 2537 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2538 int FI = MFI.getStackProtectorIndex(); 2539 2540 SDValue Guard; 2541 SDLoc dl = getCurSDLoc(); 2542 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2543 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2544 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2545 2546 // Generate code to load the content of the guard slot. 2547 SDValue GuardVal = DAG.getLoad( 2548 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2549 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2550 MachineMemOperand::MOVolatile); 2551 2552 if (TLI.useStackGuardXorFP()) 2553 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2554 2555 // Retrieve guard check function, nullptr if instrumentation is inlined. 2556 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2557 // The target provides a guard check function to validate the guard value. 2558 // Generate a call to that function with the content of the guard slot as 2559 // argument. 2560 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2561 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2562 2563 TargetLowering::ArgListTy Args; 2564 TargetLowering::ArgListEntry Entry; 2565 Entry.Node = GuardVal; 2566 Entry.Ty = FnTy->getParamType(0); 2567 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2568 Entry.IsInReg = true; 2569 Args.push_back(Entry); 2570 2571 TargetLowering::CallLoweringInfo CLI(DAG); 2572 CLI.setDebugLoc(getCurSDLoc()) 2573 .setChain(DAG.getEntryNode()) 2574 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2575 getValue(GuardCheckFn), std::move(Args)); 2576 2577 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2578 DAG.setRoot(Result.second); 2579 return; 2580 } 2581 2582 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2583 // Otherwise, emit a volatile load to retrieve the stack guard value. 2584 SDValue Chain = DAG.getEntryNode(); 2585 if (TLI.useLoadStackGuardNode()) { 2586 Guard = getLoadStackGuard(DAG, dl, Chain); 2587 } else { 2588 const Value *IRGuard = TLI.getSDagStackGuard(M); 2589 SDValue GuardPtr = getValue(IRGuard); 2590 2591 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2592 MachinePointerInfo(IRGuard, 0), Align, 2593 MachineMemOperand::MOVolatile); 2594 } 2595 2596 // Perform the comparison via a subtract/getsetcc. 2597 EVT VT = Guard.getValueType(); 2598 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2599 2600 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2601 *DAG.getContext(), 2602 Sub.getValueType()), 2603 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2604 2605 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2606 // branch to failure MBB. 2607 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2608 MVT::Other, GuardVal.getOperand(0), 2609 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2610 // Otherwise branch to success MBB. 2611 SDValue Br = DAG.getNode(ISD::BR, dl, 2612 MVT::Other, BrCond, 2613 DAG.getBasicBlock(SPD.getSuccessMBB())); 2614 2615 DAG.setRoot(Br); 2616 } 2617 2618 /// Codegen the failure basic block for a stack protector check. 2619 /// 2620 /// A failure stack protector machine basic block consists simply of a call to 2621 /// __stack_chk_fail(). 2622 /// 2623 /// For a high level explanation of how this fits into the stack protector 2624 /// generation see the comment on the declaration of class 2625 /// StackProtectorDescriptor. 2626 void 2627 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2629 TargetLowering::MakeLibCallOptions CallOptions; 2630 CallOptions.setDiscardResult(true); 2631 SDValue Chain = 2632 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2633 None, CallOptions, getCurSDLoc()).second; 2634 // On PS4, the "return address" must still be within the calling function, 2635 // even if it's at the very end, so emit an explicit TRAP here. 2636 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2637 if (TM.getTargetTriple().isPS4CPU()) 2638 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2639 2640 DAG.setRoot(Chain); 2641 } 2642 2643 /// visitBitTestHeader - This function emits necessary code to produce value 2644 /// suitable for "bit tests" 2645 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2646 MachineBasicBlock *SwitchBB) { 2647 SDLoc dl = getCurSDLoc(); 2648 2649 // Subtract the minimum value. 2650 SDValue SwitchOp = getValue(B.SValue); 2651 EVT VT = SwitchOp.getValueType(); 2652 SDValue RangeSub = 2653 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2654 2655 // Determine the type of the test operands. 2656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2657 bool UsePtrType = false; 2658 if (!TLI.isTypeLegal(VT)) { 2659 UsePtrType = true; 2660 } else { 2661 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2662 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2663 // Switch table case range are encoded into series of masks. 2664 // Just use pointer type, it's guaranteed to fit. 2665 UsePtrType = true; 2666 break; 2667 } 2668 } 2669 SDValue Sub = RangeSub; 2670 if (UsePtrType) { 2671 VT = TLI.getPointerTy(DAG.getDataLayout()); 2672 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2673 } 2674 2675 B.RegVT = VT.getSimpleVT(); 2676 B.Reg = FuncInfo.CreateReg(B.RegVT); 2677 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2678 2679 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2680 2681 if (!B.OmitRangeCheck) 2682 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2683 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2684 SwitchBB->normalizeSuccProbs(); 2685 2686 SDValue Root = CopyTo; 2687 if (!B.OmitRangeCheck) { 2688 // Conditional branch to the default block. 2689 SDValue RangeCmp = DAG.getSetCC(dl, 2690 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2691 RangeSub.getValueType()), 2692 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2693 ISD::SETUGT); 2694 2695 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2696 DAG.getBasicBlock(B.Default)); 2697 } 2698 2699 // Avoid emitting unnecessary branches to the next block. 2700 if (MBB != NextBlock(SwitchBB)) 2701 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2702 2703 DAG.setRoot(Root); 2704 } 2705 2706 /// visitBitTestCase - this function produces one "bit test" 2707 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2708 MachineBasicBlock* NextMBB, 2709 BranchProbability BranchProbToNext, 2710 unsigned Reg, 2711 BitTestCase &B, 2712 MachineBasicBlock *SwitchBB) { 2713 SDLoc dl = getCurSDLoc(); 2714 MVT VT = BB.RegVT; 2715 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2716 SDValue Cmp; 2717 unsigned PopCount = countPopulation(B.Mask); 2718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2719 if (PopCount == 1) { 2720 // Testing for a single bit; just compare the shift count with what it 2721 // would need to be to shift a 1 bit in that position. 2722 Cmp = DAG.getSetCC( 2723 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2724 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2725 ISD::SETEQ); 2726 } else if (PopCount == BB.Range) { 2727 // There is only one zero bit in the range, test for it directly. 2728 Cmp = DAG.getSetCC( 2729 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2730 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2731 ISD::SETNE); 2732 } else { 2733 // Make desired shift 2734 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2735 DAG.getConstant(1, dl, VT), ShiftOp); 2736 2737 // Emit bit tests and jumps 2738 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2739 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2740 Cmp = DAG.getSetCC( 2741 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2742 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2743 } 2744 2745 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2746 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2747 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2748 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2749 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2750 // one as they are relative probabilities (and thus work more like weights), 2751 // and hence we need to normalize them to let the sum of them become one. 2752 SwitchBB->normalizeSuccProbs(); 2753 2754 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2755 MVT::Other, getControlRoot(), 2756 Cmp, DAG.getBasicBlock(B.TargetBB)); 2757 2758 // Avoid emitting unnecessary branches to the next block. 2759 if (NextMBB != NextBlock(SwitchBB)) 2760 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2761 DAG.getBasicBlock(NextMBB)); 2762 2763 DAG.setRoot(BrAnd); 2764 } 2765 2766 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2767 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2768 2769 // Retrieve successors. Look through artificial IR level blocks like 2770 // catchswitch for successors. 2771 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2772 const BasicBlock *EHPadBB = I.getSuccessor(1); 2773 2774 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2775 // have to do anything here to lower funclet bundles. 2776 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2777 LLVMContext::OB_funclet, 2778 LLVMContext::OB_cfguardtarget}) && 2779 "Cannot lower invokes with arbitrary operand bundles yet!"); 2780 2781 const Value *Callee(I.getCalledValue()); 2782 const Function *Fn = dyn_cast<Function>(Callee); 2783 if (isa<InlineAsm>(Callee)) 2784 visitInlineAsm(&I); 2785 else if (Fn && Fn->isIntrinsic()) { 2786 switch (Fn->getIntrinsicID()) { 2787 default: 2788 llvm_unreachable("Cannot invoke this intrinsic"); 2789 case Intrinsic::donothing: 2790 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2791 break; 2792 case Intrinsic::experimental_patchpoint_void: 2793 case Intrinsic::experimental_patchpoint_i64: 2794 visitPatchpoint(&I, EHPadBB); 2795 break; 2796 case Intrinsic::experimental_gc_statepoint: 2797 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2798 break; 2799 case Intrinsic::wasm_rethrow_in_catch: { 2800 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2801 // special because it can be invoked, so we manually lower it to a DAG 2802 // node here. 2803 SmallVector<SDValue, 8> Ops; 2804 Ops.push_back(getRoot()); // inchain 2805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2806 Ops.push_back( 2807 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2808 TLI.getPointerTy(DAG.getDataLayout()))); 2809 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2810 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2811 break; 2812 } 2813 } 2814 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2815 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2816 // Eventually we will support lowering the @llvm.experimental.deoptimize 2817 // intrinsic, and right now there are no plans to support other intrinsics 2818 // with deopt state. 2819 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2820 } else { 2821 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2822 } 2823 2824 // If the value of the invoke is used outside of its defining block, make it 2825 // available as a virtual register. 2826 // We already took care of the exported value for the statepoint instruction 2827 // during call to the LowerStatepoint. 2828 if (!isStatepoint(I)) { 2829 CopyToExportRegsIfNeeded(&I); 2830 } 2831 2832 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2833 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2834 BranchProbability EHPadBBProb = 2835 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2836 : BranchProbability::getZero(); 2837 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2838 2839 // Update successor info. 2840 addSuccessorWithProb(InvokeMBB, Return); 2841 for (auto &UnwindDest : UnwindDests) { 2842 UnwindDest.first->setIsEHPad(); 2843 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2844 } 2845 InvokeMBB->normalizeSuccProbs(); 2846 2847 // Drop into normal successor. 2848 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2849 DAG.getBasicBlock(Return))); 2850 } 2851 2852 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2853 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2854 2855 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2856 // have to do anything here to lower funclet bundles. 2857 assert(!I.hasOperandBundlesOtherThan( 2858 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2859 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2860 2861 assert(isa<InlineAsm>(I.getCalledValue()) && 2862 "Only know how to handle inlineasm callbr"); 2863 visitInlineAsm(&I); 2864 2865 // Retrieve successors. 2866 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2867 2868 // Update successor info. 2869 addSuccessorWithProb(CallBrMBB, Return); 2870 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2871 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2872 addSuccessorWithProb(CallBrMBB, Target); 2873 } 2874 CallBrMBB->normalizeSuccProbs(); 2875 2876 // Drop into default successor. 2877 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2878 MVT::Other, getControlRoot(), 2879 DAG.getBasicBlock(Return))); 2880 } 2881 2882 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2883 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2884 } 2885 2886 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2887 assert(FuncInfo.MBB->isEHPad() && 2888 "Call to landingpad not in landing pad!"); 2889 2890 // If there aren't registers to copy the values into (e.g., during SjLj 2891 // exceptions), then don't bother to create these DAG nodes. 2892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2893 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2894 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2895 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2896 return; 2897 2898 // If landingpad's return type is token type, we don't create DAG nodes 2899 // for its exception pointer and selector value. The extraction of exception 2900 // pointer or selector value from token type landingpads is not currently 2901 // supported. 2902 if (LP.getType()->isTokenTy()) 2903 return; 2904 2905 SmallVector<EVT, 2> ValueVTs; 2906 SDLoc dl = getCurSDLoc(); 2907 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2908 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2909 2910 // Get the two live-in registers as SDValues. The physregs have already been 2911 // copied into virtual registers. 2912 SDValue Ops[2]; 2913 if (FuncInfo.ExceptionPointerVirtReg) { 2914 Ops[0] = DAG.getZExtOrTrunc( 2915 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2916 FuncInfo.ExceptionPointerVirtReg, 2917 TLI.getPointerTy(DAG.getDataLayout())), 2918 dl, ValueVTs[0]); 2919 } else { 2920 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2921 } 2922 Ops[1] = DAG.getZExtOrTrunc( 2923 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2924 FuncInfo.ExceptionSelectorVirtReg, 2925 TLI.getPointerTy(DAG.getDataLayout())), 2926 dl, ValueVTs[1]); 2927 2928 // Merge into one. 2929 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2930 DAG.getVTList(ValueVTs), Ops); 2931 setValue(&LP, Res); 2932 } 2933 2934 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2935 MachineBasicBlock *Last) { 2936 // Update JTCases. 2937 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2938 if (SL->JTCases[i].first.HeaderBB == First) 2939 SL->JTCases[i].first.HeaderBB = Last; 2940 2941 // Update BitTestCases. 2942 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2943 if (SL->BitTestCases[i].Parent == First) 2944 SL->BitTestCases[i].Parent = Last; 2945 } 2946 2947 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2948 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2949 2950 // Update machine-CFG edges with unique successors. 2951 SmallSet<BasicBlock*, 32> Done; 2952 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2953 BasicBlock *BB = I.getSuccessor(i); 2954 bool Inserted = Done.insert(BB).second; 2955 if (!Inserted) 2956 continue; 2957 2958 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2959 addSuccessorWithProb(IndirectBrMBB, Succ); 2960 } 2961 IndirectBrMBB->normalizeSuccProbs(); 2962 2963 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2964 MVT::Other, getControlRoot(), 2965 getValue(I.getAddress()))); 2966 } 2967 2968 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2969 if (!DAG.getTarget().Options.TrapUnreachable) 2970 return; 2971 2972 // We may be able to ignore unreachable behind a noreturn call. 2973 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2974 const BasicBlock &BB = *I.getParent(); 2975 if (&I != &BB.front()) { 2976 BasicBlock::const_iterator PredI = 2977 std::prev(BasicBlock::const_iterator(&I)); 2978 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2979 if (Call->doesNotReturn()) 2980 return; 2981 } 2982 } 2983 } 2984 2985 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2986 } 2987 2988 void SelectionDAGBuilder::visitFSub(const User &I) { 2989 // -0.0 - X --> fneg 2990 Type *Ty = I.getType(); 2991 if (isa<Constant>(I.getOperand(0)) && 2992 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2993 SDValue Op2 = getValue(I.getOperand(1)); 2994 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2995 Op2.getValueType(), Op2)); 2996 return; 2997 } 2998 2999 visitBinary(I, ISD::FSUB); 3000 } 3001 3002 /// Checks if the given instruction performs a vector reduction, in which case 3003 /// we have the freedom to alter the elements in the result as long as the 3004 /// reduction of them stays unchanged. 3005 static bool isVectorReductionOp(const User *I) { 3006 const Instruction *Inst = dyn_cast<Instruction>(I); 3007 if (!Inst || !Inst->getType()->isVectorTy()) 3008 return false; 3009 3010 auto OpCode = Inst->getOpcode(); 3011 switch (OpCode) { 3012 case Instruction::Add: 3013 case Instruction::Mul: 3014 case Instruction::And: 3015 case Instruction::Or: 3016 case Instruction::Xor: 3017 break; 3018 case Instruction::FAdd: 3019 case Instruction::FMul: 3020 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3021 if (FPOp->getFastMathFlags().isFast()) 3022 break; 3023 LLVM_FALLTHROUGH; 3024 default: 3025 return false; 3026 } 3027 3028 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3029 // Ensure the reduction size is a power of 2. 3030 if (!isPowerOf2_32(ElemNum)) 3031 return false; 3032 3033 unsigned ElemNumToReduce = ElemNum; 3034 3035 // Do DFS search on the def-use chain from the given instruction. We only 3036 // allow four kinds of operations during the search until we reach the 3037 // instruction that extracts the first element from the vector: 3038 // 3039 // 1. The reduction operation of the same opcode as the given instruction. 3040 // 3041 // 2. PHI node. 3042 // 3043 // 3. ShuffleVector instruction together with a reduction operation that 3044 // does a partial reduction. 3045 // 3046 // 4. ExtractElement that extracts the first element from the vector, and we 3047 // stop searching the def-use chain here. 3048 // 3049 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3050 // from 1-3 to the stack to continue the DFS. The given instruction is not 3051 // a reduction operation if we meet any other instructions other than those 3052 // listed above. 3053 3054 SmallVector<const User *, 16> UsersToVisit{Inst}; 3055 SmallPtrSet<const User *, 16> Visited; 3056 bool ReduxExtracted = false; 3057 3058 while (!UsersToVisit.empty()) { 3059 auto User = UsersToVisit.back(); 3060 UsersToVisit.pop_back(); 3061 if (!Visited.insert(User).second) 3062 continue; 3063 3064 for (const auto *U : User->users()) { 3065 auto Inst = dyn_cast<Instruction>(U); 3066 if (!Inst) 3067 return false; 3068 3069 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3070 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3071 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3072 return false; 3073 UsersToVisit.push_back(U); 3074 } else if (const ShuffleVectorInst *ShufInst = 3075 dyn_cast<ShuffleVectorInst>(U)) { 3076 // Detect the following pattern: A ShuffleVector instruction together 3077 // with a reduction that do partial reduction on the first and second 3078 // ElemNumToReduce / 2 elements, and store the result in 3079 // ElemNumToReduce / 2 elements in another vector. 3080 3081 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3082 if (ResultElements < ElemNum) 3083 return false; 3084 3085 if (ElemNumToReduce == 1) 3086 return false; 3087 if (!isa<UndefValue>(U->getOperand(1))) 3088 return false; 3089 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3090 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3091 return false; 3092 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3093 if (ShufInst->getMaskValue(i) != -1) 3094 return false; 3095 3096 // There is only one user of this ShuffleVector instruction, which 3097 // must be a reduction operation. 3098 if (!U->hasOneUse()) 3099 return false; 3100 3101 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3102 if (!U2 || U2->getOpcode() != OpCode) 3103 return false; 3104 3105 // Check operands of the reduction operation. 3106 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3107 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3108 UsersToVisit.push_back(U2); 3109 ElemNumToReduce /= 2; 3110 } else 3111 return false; 3112 } else if (isa<ExtractElementInst>(U)) { 3113 // At this moment we should have reduced all elements in the vector. 3114 if (ElemNumToReduce != 1) 3115 return false; 3116 3117 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3118 if (!Val || !Val->isZero()) 3119 return false; 3120 3121 ReduxExtracted = true; 3122 } else 3123 return false; 3124 } 3125 } 3126 return ReduxExtracted; 3127 } 3128 3129 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3130 SDNodeFlags Flags; 3131 3132 SDValue Op = getValue(I.getOperand(0)); 3133 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3134 Op, Flags); 3135 setValue(&I, UnNodeValue); 3136 } 3137 3138 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3139 SDNodeFlags Flags; 3140 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3141 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3142 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3143 } 3144 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3145 Flags.setExact(ExactOp->isExact()); 3146 } 3147 if (isVectorReductionOp(&I)) { 3148 Flags.setVectorReduction(true); 3149 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3150 3151 // If no flags are set we will propagate the incoming flags, if any flags 3152 // are set, we will intersect them with the incoming flag and so we need to 3153 // copy the FMF flags here. 3154 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) { 3155 Flags.copyFMF(*FPOp); 3156 } 3157 } 3158 3159 SDValue Op1 = getValue(I.getOperand(0)); 3160 SDValue Op2 = getValue(I.getOperand(1)); 3161 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3162 Op1, Op2, Flags); 3163 setValue(&I, BinNodeValue); 3164 } 3165 3166 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3167 SDValue Op1 = getValue(I.getOperand(0)); 3168 SDValue Op2 = getValue(I.getOperand(1)); 3169 3170 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3171 Op1.getValueType(), DAG.getDataLayout()); 3172 3173 // Coerce the shift amount to the right type if we can. 3174 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3175 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3176 unsigned Op2Size = Op2.getValueSizeInBits(); 3177 SDLoc DL = getCurSDLoc(); 3178 3179 // If the operand is smaller than the shift count type, promote it. 3180 if (ShiftSize > Op2Size) 3181 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3182 3183 // If the operand is larger than the shift count type but the shift 3184 // count type has enough bits to represent any shift value, truncate 3185 // it now. This is a common case and it exposes the truncate to 3186 // optimization early. 3187 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3188 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3189 // Otherwise we'll need to temporarily settle for some other convenient 3190 // type. Type legalization will make adjustments once the shiftee is split. 3191 else 3192 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3193 } 3194 3195 bool nuw = false; 3196 bool nsw = false; 3197 bool exact = false; 3198 3199 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3200 3201 if (const OverflowingBinaryOperator *OFBinOp = 3202 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3203 nuw = OFBinOp->hasNoUnsignedWrap(); 3204 nsw = OFBinOp->hasNoSignedWrap(); 3205 } 3206 if (const PossiblyExactOperator *ExactOp = 3207 dyn_cast<const PossiblyExactOperator>(&I)) 3208 exact = ExactOp->isExact(); 3209 } 3210 SDNodeFlags Flags; 3211 Flags.setExact(exact); 3212 Flags.setNoSignedWrap(nsw); 3213 Flags.setNoUnsignedWrap(nuw); 3214 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3215 Flags); 3216 setValue(&I, Res); 3217 } 3218 3219 void SelectionDAGBuilder::visitSDiv(const User &I) { 3220 SDValue Op1 = getValue(I.getOperand(0)); 3221 SDValue Op2 = getValue(I.getOperand(1)); 3222 3223 SDNodeFlags Flags; 3224 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3225 cast<PossiblyExactOperator>(&I)->isExact()); 3226 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3227 Op2, Flags)); 3228 } 3229 3230 void SelectionDAGBuilder::visitICmp(const User &I) { 3231 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3232 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3233 predicate = IC->getPredicate(); 3234 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3235 predicate = ICmpInst::Predicate(IC->getPredicate()); 3236 SDValue Op1 = getValue(I.getOperand(0)); 3237 SDValue Op2 = getValue(I.getOperand(1)); 3238 ISD::CondCode Opcode = getICmpCondCode(predicate); 3239 3240 auto &TLI = DAG.getTargetLoweringInfo(); 3241 EVT MemVT = 3242 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3243 3244 // If a pointer's DAG type is larger than its memory type then the DAG values 3245 // are zero-extended. This breaks signed comparisons so truncate back to the 3246 // underlying type before doing the compare. 3247 if (Op1.getValueType() != MemVT) { 3248 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3249 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3250 } 3251 3252 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3253 I.getType()); 3254 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3255 } 3256 3257 void SelectionDAGBuilder::visitFCmp(const User &I) { 3258 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3259 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3260 predicate = FC->getPredicate(); 3261 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3262 predicate = FCmpInst::Predicate(FC->getPredicate()); 3263 SDValue Op1 = getValue(I.getOperand(0)); 3264 SDValue Op2 = getValue(I.getOperand(1)); 3265 3266 ISD::CondCode Condition = getFCmpCondCode(predicate); 3267 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3268 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3269 Condition = getFCmpCodeWithoutNaN(Condition); 3270 3271 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3272 I.getType()); 3273 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3274 } 3275 3276 // Check if the condition of the select has one use or two users that are both 3277 // selects with the same condition. 3278 static bool hasOnlySelectUsers(const Value *Cond) { 3279 return llvm::all_of(Cond->users(), [](const Value *V) { 3280 return isa<SelectInst>(V); 3281 }); 3282 } 3283 3284 void SelectionDAGBuilder::visitSelect(const User &I) { 3285 SmallVector<EVT, 4> ValueVTs; 3286 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3287 ValueVTs); 3288 unsigned NumValues = ValueVTs.size(); 3289 if (NumValues == 0) return; 3290 3291 SmallVector<SDValue, 4> Values(NumValues); 3292 SDValue Cond = getValue(I.getOperand(0)); 3293 SDValue LHSVal = getValue(I.getOperand(1)); 3294 SDValue RHSVal = getValue(I.getOperand(2)); 3295 auto BaseOps = {Cond}; 3296 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3297 ISD::VSELECT : ISD::SELECT; 3298 3299 bool IsUnaryAbs = false; 3300 3301 // Min/max matching is only viable if all output VTs are the same. 3302 if (is_splat(ValueVTs)) { 3303 EVT VT = ValueVTs[0]; 3304 LLVMContext &Ctx = *DAG.getContext(); 3305 auto &TLI = DAG.getTargetLoweringInfo(); 3306 3307 // We care about the legality of the operation after it has been type 3308 // legalized. 3309 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3310 VT = TLI.getTypeToTransformTo(Ctx, VT); 3311 3312 // If the vselect is legal, assume we want to leave this as a vector setcc + 3313 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3314 // min/max is legal on the scalar type. 3315 bool UseScalarMinMax = VT.isVector() && 3316 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3317 3318 Value *LHS, *RHS; 3319 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3320 ISD::NodeType Opc = ISD::DELETED_NODE; 3321 switch (SPR.Flavor) { 3322 case SPF_UMAX: Opc = ISD::UMAX; break; 3323 case SPF_UMIN: Opc = ISD::UMIN; break; 3324 case SPF_SMAX: Opc = ISD::SMAX; break; 3325 case SPF_SMIN: Opc = ISD::SMIN; break; 3326 case SPF_FMINNUM: 3327 switch (SPR.NaNBehavior) { 3328 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3329 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3330 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3331 case SPNB_RETURNS_ANY: { 3332 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3333 Opc = ISD::FMINNUM; 3334 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3335 Opc = ISD::FMINIMUM; 3336 else if (UseScalarMinMax) 3337 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3338 ISD::FMINNUM : ISD::FMINIMUM; 3339 break; 3340 } 3341 } 3342 break; 3343 case SPF_FMAXNUM: 3344 switch (SPR.NaNBehavior) { 3345 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3346 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3347 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3348 case SPNB_RETURNS_ANY: 3349 3350 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3351 Opc = ISD::FMAXNUM; 3352 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3353 Opc = ISD::FMAXIMUM; 3354 else if (UseScalarMinMax) 3355 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3356 ISD::FMAXNUM : ISD::FMAXIMUM; 3357 break; 3358 } 3359 break; 3360 case SPF_ABS: 3361 IsUnaryAbs = true; 3362 Opc = ISD::ABS; 3363 break; 3364 case SPF_NABS: 3365 // TODO: we need to produce sub(0, abs(X)). 3366 default: break; 3367 } 3368 3369 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3370 (TLI.isOperationLegalOrCustom(Opc, VT) || 3371 (UseScalarMinMax && 3372 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3373 // If the underlying comparison instruction is used by any other 3374 // instruction, the consumed instructions won't be destroyed, so it is 3375 // not profitable to convert to a min/max. 3376 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3377 OpCode = Opc; 3378 LHSVal = getValue(LHS); 3379 RHSVal = getValue(RHS); 3380 BaseOps = {}; 3381 } 3382 3383 if (IsUnaryAbs) { 3384 OpCode = Opc; 3385 LHSVal = getValue(LHS); 3386 BaseOps = {}; 3387 } 3388 } 3389 3390 if (IsUnaryAbs) { 3391 for (unsigned i = 0; i != NumValues; ++i) { 3392 Values[i] = 3393 DAG.getNode(OpCode, getCurSDLoc(), 3394 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3395 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3396 } 3397 } else { 3398 for (unsigned i = 0; i != NumValues; ++i) { 3399 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3400 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3401 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3402 Values[i] = DAG.getNode( 3403 OpCode, getCurSDLoc(), 3404 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3405 } 3406 } 3407 3408 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3409 DAG.getVTList(ValueVTs), Values)); 3410 } 3411 3412 void SelectionDAGBuilder::visitTrunc(const User &I) { 3413 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3414 SDValue N = getValue(I.getOperand(0)); 3415 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3416 I.getType()); 3417 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3418 } 3419 3420 void SelectionDAGBuilder::visitZExt(const User &I) { 3421 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3422 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3423 SDValue N = getValue(I.getOperand(0)); 3424 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3425 I.getType()); 3426 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3427 } 3428 3429 void SelectionDAGBuilder::visitSExt(const User &I) { 3430 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3431 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3432 SDValue N = getValue(I.getOperand(0)); 3433 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3434 I.getType()); 3435 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3436 } 3437 3438 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3439 // FPTrunc is never a no-op cast, no need to check 3440 SDValue N = getValue(I.getOperand(0)); 3441 SDLoc dl = getCurSDLoc(); 3442 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3443 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3444 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3445 DAG.getTargetConstant( 3446 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3447 } 3448 3449 void SelectionDAGBuilder::visitFPExt(const User &I) { 3450 // FPExt is never a no-op cast, no need to check 3451 SDValue N = getValue(I.getOperand(0)); 3452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3453 I.getType()); 3454 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3455 } 3456 3457 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3458 // FPToUI is never a no-op cast, no need to check 3459 SDValue N = getValue(I.getOperand(0)); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3463 } 3464 3465 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3466 // FPToSI is never a no-op cast, no need to check 3467 SDValue N = getValue(I.getOperand(0)); 3468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3469 I.getType()); 3470 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3471 } 3472 3473 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3474 // UIToFP is never a no-op cast, no need to check 3475 SDValue N = getValue(I.getOperand(0)); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3479 } 3480 3481 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3482 // SIToFP is never a no-op cast, no need to check 3483 SDValue N = getValue(I.getOperand(0)); 3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3485 I.getType()); 3486 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3487 } 3488 3489 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3490 // What to do depends on the size of the integer and the size of the pointer. 3491 // We can either truncate, zero extend, or no-op, accordingly. 3492 SDValue N = getValue(I.getOperand(0)); 3493 auto &TLI = DAG.getTargetLoweringInfo(); 3494 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3495 I.getType()); 3496 EVT PtrMemVT = 3497 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3498 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3499 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3500 setValue(&I, N); 3501 } 3502 3503 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3504 // What to do depends on the size of the integer and the size of the pointer. 3505 // We can either truncate, zero extend, or no-op, accordingly. 3506 SDValue N = getValue(I.getOperand(0)); 3507 auto &TLI = DAG.getTargetLoweringInfo(); 3508 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3509 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3510 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3511 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3512 setValue(&I, N); 3513 } 3514 3515 void SelectionDAGBuilder::visitBitCast(const User &I) { 3516 SDValue N = getValue(I.getOperand(0)); 3517 SDLoc dl = getCurSDLoc(); 3518 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3519 I.getType()); 3520 3521 // BitCast assures us that source and destination are the same size so this is 3522 // either a BITCAST or a no-op. 3523 if (DestVT != N.getValueType()) 3524 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3525 DestVT, N)); // convert types. 3526 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3527 // might fold any kind of constant expression to an integer constant and that 3528 // is not what we are looking for. Only recognize a bitcast of a genuine 3529 // constant integer as an opaque constant. 3530 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3531 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3532 /*isOpaque*/true)); 3533 else 3534 setValue(&I, N); // noop cast. 3535 } 3536 3537 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3539 const Value *SV = I.getOperand(0); 3540 SDValue N = getValue(SV); 3541 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3542 3543 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3544 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3545 3546 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3547 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3548 3549 setValue(&I, N); 3550 } 3551 3552 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3554 SDValue InVec = getValue(I.getOperand(0)); 3555 SDValue InVal = getValue(I.getOperand(1)); 3556 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3557 TLI.getVectorIdxTy(DAG.getDataLayout())); 3558 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3559 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3560 InVec, InVal, InIdx)); 3561 } 3562 3563 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3564 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3565 SDValue InVec = getValue(I.getOperand(0)); 3566 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3567 TLI.getVectorIdxTy(DAG.getDataLayout())); 3568 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3569 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3570 InVec, InIdx)); 3571 } 3572 3573 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3574 SDValue Src1 = getValue(I.getOperand(0)); 3575 SDValue Src2 = getValue(I.getOperand(1)); 3576 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3577 SDLoc DL = getCurSDLoc(); 3578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3579 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3580 EVT SrcVT = Src1.getValueType(); 3581 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3582 3583 if (MaskV->isNullValue() && VT.isScalableVector()) { 3584 // Canonical splat form of first element of first input vector. 3585 SDValue FirstElt = 3586 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3587 DAG.getVectorIdxConstant(0, DL)); 3588 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3589 return; 3590 } 3591 3592 // For now, we only handle splats for scalable vectors. 3593 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3594 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3595 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3596 3597 SmallVector<int, 8> Mask; 3598 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3599 unsigned MaskNumElts = Mask.size(); 3600 3601 if (SrcNumElts == MaskNumElts) { 3602 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3603 return; 3604 } 3605 3606 // Normalize the shuffle vector since mask and vector length don't match. 3607 if (SrcNumElts < MaskNumElts) { 3608 // Mask is longer than the source vectors. We can use concatenate vector to 3609 // make the mask and vectors lengths match. 3610 3611 if (MaskNumElts % SrcNumElts == 0) { 3612 // Mask length is a multiple of the source vector length. 3613 // Check if the shuffle is some kind of concatenation of the input 3614 // vectors. 3615 unsigned NumConcat = MaskNumElts / SrcNumElts; 3616 bool IsConcat = true; 3617 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3618 for (unsigned i = 0; i != MaskNumElts; ++i) { 3619 int Idx = Mask[i]; 3620 if (Idx < 0) 3621 continue; 3622 // Ensure the indices in each SrcVT sized piece are sequential and that 3623 // the same source is used for the whole piece. 3624 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3625 (ConcatSrcs[i / SrcNumElts] >= 0 && 3626 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3627 IsConcat = false; 3628 break; 3629 } 3630 // Remember which source this index came from. 3631 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3632 } 3633 3634 // The shuffle is concatenating multiple vectors together. Just emit 3635 // a CONCAT_VECTORS operation. 3636 if (IsConcat) { 3637 SmallVector<SDValue, 8> ConcatOps; 3638 for (auto Src : ConcatSrcs) { 3639 if (Src < 0) 3640 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3641 else if (Src == 0) 3642 ConcatOps.push_back(Src1); 3643 else 3644 ConcatOps.push_back(Src2); 3645 } 3646 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3647 return; 3648 } 3649 } 3650 3651 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3652 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3653 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3654 PaddedMaskNumElts); 3655 3656 // Pad both vectors with undefs to make them the same length as the mask. 3657 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3658 3659 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3660 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3661 MOps1[0] = Src1; 3662 MOps2[0] = Src2; 3663 3664 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3665 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3666 3667 // Readjust mask for new input vector length. 3668 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3669 for (unsigned i = 0; i != MaskNumElts; ++i) { 3670 int Idx = Mask[i]; 3671 if (Idx >= (int)SrcNumElts) 3672 Idx -= SrcNumElts - PaddedMaskNumElts; 3673 MappedOps[i] = Idx; 3674 } 3675 3676 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3677 3678 // If the concatenated vector was padded, extract a subvector with the 3679 // correct number of elements. 3680 if (MaskNumElts != PaddedMaskNumElts) 3681 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3682 DAG.getVectorIdxConstant(0, DL)); 3683 3684 setValue(&I, Result); 3685 return; 3686 } 3687 3688 if (SrcNumElts > MaskNumElts) { 3689 // Analyze the access pattern of the vector to see if we can extract 3690 // two subvectors and do the shuffle. 3691 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3692 bool CanExtract = true; 3693 for (int Idx : Mask) { 3694 unsigned Input = 0; 3695 if (Idx < 0) 3696 continue; 3697 3698 if (Idx >= (int)SrcNumElts) { 3699 Input = 1; 3700 Idx -= SrcNumElts; 3701 } 3702 3703 // If all the indices come from the same MaskNumElts sized portion of 3704 // the sources we can use extract. Also make sure the extract wouldn't 3705 // extract past the end of the source. 3706 int NewStartIdx = alignDown(Idx, MaskNumElts); 3707 if (NewStartIdx + MaskNumElts > SrcNumElts || 3708 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3709 CanExtract = false; 3710 // Make sure we always update StartIdx as we use it to track if all 3711 // elements are undef. 3712 StartIdx[Input] = NewStartIdx; 3713 } 3714 3715 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3716 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3717 return; 3718 } 3719 if (CanExtract) { 3720 // Extract appropriate subvector and generate a vector shuffle 3721 for (unsigned Input = 0; Input < 2; ++Input) { 3722 SDValue &Src = Input == 0 ? Src1 : Src2; 3723 if (StartIdx[Input] < 0) 3724 Src = DAG.getUNDEF(VT); 3725 else { 3726 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3727 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3728 } 3729 } 3730 3731 // Calculate new mask. 3732 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3733 for (int &Idx : MappedOps) { 3734 if (Idx >= (int)SrcNumElts) 3735 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3736 else if (Idx >= 0) 3737 Idx -= StartIdx[0]; 3738 } 3739 3740 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3741 return; 3742 } 3743 } 3744 3745 // We can't use either concat vectors or extract subvectors so fall back to 3746 // replacing the shuffle with extract and build vector. 3747 // to insert and build vector. 3748 EVT EltVT = VT.getVectorElementType(); 3749 SmallVector<SDValue,8> Ops; 3750 for (int Idx : Mask) { 3751 SDValue Res; 3752 3753 if (Idx < 0) { 3754 Res = DAG.getUNDEF(EltVT); 3755 } else { 3756 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3757 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3758 3759 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3760 DAG.getVectorIdxConstant(Idx, DL)); 3761 } 3762 3763 Ops.push_back(Res); 3764 } 3765 3766 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3767 } 3768 3769 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3770 ArrayRef<unsigned> Indices; 3771 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3772 Indices = IV->getIndices(); 3773 else 3774 Indices = cast<ConstantExpr>(&I)->getIndices(); 3775 3776 const Value *Op0 = I.getOperand(0); 3777 const Value *Op1 = I.getOperand(1); 3778 Type *AggTy = I.getType(); 3779 Type *ValTy = Op1->getType(); 3780 bool IntoUndef = isa<UndefValue>(Op0); 3781 bool FromUndef = isa<UndefValue>(Op1); 3782 3783 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3784 3785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3786 SmallVector<EVT, 4> AggValueVTs; 3787 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3788 SmallVector<EVT, 4> ValValueVTs; 3789 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3790 3791 unsigned NumAggValues = AggValueVTs.size(); 3792 unsigned NumValValues = ValValueVTs.size(); 3793 SmallVector<SDValue, 4> Values(NumAggValues); 3794 3795 // Ignore an insertvalue that produces an empty object 3796 if (!NumAggValues) { 3797 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3798 return; 3799 } 3800 3801 SDValue Agg = getValue(Op0); 3802 unsigned i = 0; 3803 // Copy the beginning value(s) from the original aggregate. 3804 for (; i != LinearIndex; ++i) 3805 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3806 SDValue(Agg.getNode(), Agg.getResNo() + i); 3807 // Copy values from the inserted value(s). 3808 if (NumValValues) { 3809 SDValue Val = getValue(Op1); 3810 for (; i != LinearIndex + NumValValues; ++i) 3811 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3812 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3813 } 3814 // Copy remaining value(s) from the original aggregate. 3815 for (; i != NumAggValues; ++i) 3816 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3817 SDValue(Agg.getNode(), Agg.getResNo() + i); 3818 3819 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3820 DAG.getVTList(AggValueVTs), Values)); 3821 } 3822 3823 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3824 ArrayRef<unsigned> Indices; 3825 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3826 Indices = EV->getIndices(); 3827 else 3828 Indices = cast<ConstantExpr>(&I)->getIndices(); 3829 3830 const Value *Op0 = I.getOperand(0); 3831 Type *AggTy = Op0->getType(); 3832 Type *ValTy = I.getType(); 3833 bool OutOfUndef = isa<UndefValue>(Op0); 3834 3835 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3836 3837 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3838 SmallVector<EVT, 4> ValValueVTs; 3839 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3840 3841 unsigned NumValValues = ValValueVTs.size(); 3842 3843 // Ignore a extractvalue that produces an empty object 3844 if (!NumValValues) { 3845 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3846 return; 3847 } 3848 3849 SmallVector<SDValue, 4> Values(NumValValues); 3850 3851 SDValue Agg = getValue(Op0); 3852 // Copy out the selected value(s). 3853 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3854 Values[i - LinearIndex] = 3855 OutOfUndef ? 3856 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3857 SDValue(Agg.getNode(), Agg.getResNo() + i); 3858 3859 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3860 DAG.getVTList(ValValueVTs), Values)); 3861 } 3862 3863 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3864 Value *Op0 = I.getOperand(0); 3865 // Note that the pointer operand may be a vector of pointers. Take the scalar 3866 // element which holds a pointer. 3867 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3868 SDValue N = getValue(Op0); 3869 SDLoc dl = getCurSDLoc(); 3870 auto &TLI = DAG.getTargetLoweringInfo(); 3871 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3872 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3873 3874 // Normalize Vector GEP - all scalar operands should be converted to the 3875 // splat vector. 3876 unsigned VectorWidth = I.getType()->isVectorTy() ? 3877 I.getType()->getVectorNumElements() : 0; 3878 3879 if (VectorWidth && !N.getValueType().isVector()) { 3880 LLVMContext &Context = *DAG.getContext(); 3881 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3882 N = DAG.getSplatBuildVector(VT, dl, N); 3883 } 3884 3885 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3886 GTI != E; ++GTI) { 3887 const Value *Idx = GTI.getOperand(); 3888 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3889 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3890 if (Field) { 3891 // N = N + Offset 3892 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3893 3894 // In an inbounds GEP with an offset that is nonnegative even when 3895 // interpreted as signed, assume there is no unsigned overflow. 3896 SDNodeFlags Flags; 3897 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3898 Flags.setNoUnsignedWrap(true); 3899 3900 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3901 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3902 } 3903 } else { 3904 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3905 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3906 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3907 3908 // If this is a scalar constant or a splat vector of constants, 3909 // handle it quickly. 3910 const auto *C = dyn_cast<Constant>(Idx); 3911 if (C && isa<VectorType>(C->getType())) 3912 C = C->getSplatValue(); 3913 3914 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3915 if (CI->isZero()) 3916 continue; 3917 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3918 LLVMContext &Context = *DAG.getContext(); 3919 SDValue OffsVal = VectorWidth ? 3920 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3921 DAG.getConstant(Offs, dl, IdxTy); 3922 3923 // In an inbounds GEP with an offset that is nonnegative even when 3924 // interpreted as signed, assume there is no unsigned overflow. 3925 SDNodeFlags Flags; 3926 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3927 Flags.setNoUnsignedWrap(true); 3928 3929 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3930 3931 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3932 continue; 3933 } 3934 3935 // N = N + Idx * ElementSize; 3936 SDValue IdxN = getValue(Idx); 3937 3938 if (!IdxN.getValueType().isVector() && VectorWidth) { 3939 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3940 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3941 } 3942 3943 // If the index is smaller or larger than intptr_t, truncate or extend 3944 // it. 3945 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3946 3947 // If this is a multiply by a power of two, turn it into a shl 3948 // immediately. This is a very common case. 3949 if (ElementSize != 1) { 3950 if (ElementSize.isPowerOf2()) { 3951 unsigned Amt = ElementSize.logBase2(); 3952 IdxN = DAG.getNode(ISD::SHL, dl, 3953 N.getValueType(), IdxN, 3954 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3955 } else { 3956 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3957 IdxN.getValueType()); 3958 IdxN = DAG.getNode(ISD::MUL, dl, 3959 N.getValueType(), IdxN, Scale); 3960 } 3961 } 3962 3963 N = DAG.getNode(ISD::ADD, dl, 3964 N.getValueType(), N, IdxN); 3965 } 3966 } 3967 3968 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3969 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3970 3971 setValue(&I, N); 3972 } 3973 3974 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3975 // If this is a fixed sized alloca in the entry block of the function, 3976 // allocate it statically on the stack. 3977 if (FuncInfo.StaticAllocaMap.count(&I)) 3978 return; // getValue will auto-populate this. 3979 3980 SDLoc dl = getCurSDLoc(); 3981 Type *Ty = I.getAllocatedType(); 3982 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3983 auto &DL = DAG.getDataLayout(); 3984 uint64_t TySize = DL.getTypeAllocSize(Ty); 3985 unsigned Align = 3986 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3987 3988 SDValue AllocSize = getValue(I.getArraySize()); 3989 3990 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3991 if (AllocSize.getValueType() != IntPtr) 3992 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3993 3994 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3995 AllocSize, 3996 DAG.getConstant(TySize, dl, IntPtr)); 3997 3998 // Handle alignment. If the requested alignment is less than or equal to 3999 // the stack alignment, ignore it. If the size is greater than or equal to 4000 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4001 unsigned StackAlign = 4002 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 4003 if (Align <= StackAlign) 4004 Align = 0; 4005 4006 // Round the size of the allocation up to the stack alignment size 4007 // by add SA-1 to the size. This doesn't overflow because we're computing 4008 // an address inside an alloca. 4009 SDNodeFlags Flags; 4010 Flags.setNoUnsignedWrap(true); 4011 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4012 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 4013 4014 // Mask out the low bits for alignment purposes. 4015 AllocSize = 4016 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4017 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 4018 4019 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 4020 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4021 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4022 setValue(&I, DSA); 4023 DAG.setRoot(DSA.getValue(1)); 4024 4025 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4026 } 4027 4028 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4029 if (I.isAtomic()) 4030 return visitAtomicLoad(I); 4031 4032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4033 const Value *SV = I.getOperand(0); 4034 if (TLI.supportSwiftError()) { 4035 // Swifterror values can come from either a function parameter with 4036 // swifterror attribute or an alloca with swifterror attribute. 4037 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4038 if (Arg->hasSwiftErrorAttr()) 4039 return visitLoadFromSwiftError(I); 4040 } 4041 4042 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4043 if (Alloca->isSwiftError()) 4044 return visitLoadFromSwiftError(I); 4045 } 4046 } 4047 4048 SDValue Ptr = getValue(SV); 4049 4050 Type *Ty = I.getType(); 4051 unsigned Alignment = I.getAlignment(); 4052 4053 AAMDNodes AAInfo; 4054 I.getAAMetadata(AAInfo); 4055 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4056 4057 SmallVector<EVT, 4> ValueVTs, MemVTs; 4058 SmallVector<uint64_t, 4> Offsets; 4059 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4060 unsigned NumValues = ValueVTs.size(); 4061 if (NumValues == 0) 4062 return; 4063 4064 bool isVolatile = I.isVolatile(); 4065 4066 SDValue Root; 4067 bool ConstantMemory = false; 4068 if (isVolatile) 4069 // Serialize volatile loads with other side effects. 4070 Root = getRoot(); 4071 else if (NumValues > MaxParallelChains) 4072 Root = getMemoryRoot(); 4073 else if (AA && 4074 AA->pointsToConstantMemory(MemoryLocation( 4075 SV, 4076 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4077 AAInfo))) { 4078 // Do not serialize (non-volatile) loads of constant memory with anything. 4079 Root = DAG.getEntryNode(); 4080 ConstantMemory = true; 4081 } else { 4082 // Do not serialize non-volatile loads against each other. 4083 Root = DAG.getRoot(); 4084 } 4085 4086 SDLoc dl = getCurSDLoc(); 4087 4088 if (isVolatile) 4089 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4090 4091 // An aggregate load cannot wrap around the address space, so offsets to its 4092 // parts don't wrap either. 4093 SDNodeFlags Flags; 4094 Flags.setNoUnsignedWrap(true); 4095 4096 SmallVector<SDValue, 4> Values(NumValues); 4097 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4098 EVT PtrVT = Ptr.getValueType(); 4099 4100 MachineMemOperand::Flags MMOFlags 4101 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4102 4103 unsigned ChainI = 0; 4104 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4105 // Serializing loads here may result in excessive register pressure, and 4106 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4107 // could recover a bit by hoisting nodes upward in the chain by recognizing 4108 // they are side-effect free or do not alias. The optimizer should really 4109 // avoid this case by converting large object/array copies to llvm.memcpy 4110 // (MaxParallelChains should always remain as failsafe). 4111 if (ChainI == MaxParallelChains) { 4112 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4113 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4114 makeArrayRef(Chains.data(), ChainI)); 4115 Root = Chain; 4116 ChainI = 0; 4117 } 4118 SDValue A = DAG.getNode(ISD::ADD, dl, 4119 PtrVT, Ptr, 4120 DAG.getConstant(Offsets[i], dl, PtrVT), 4121 Flags); 4122 4123 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4124 MachinePointerInfo(SV, Offsets[i]), Alignment, 4125 MMOFlags, AAInfo, Ranges); 4126 Chains[ChainI] = L.getValue(1); 4127 4128 if (MemVTs[i] != ValueVTs[i]) 4129 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4130 4131 Values[i] = L; 4132 } 4133 4134 if (!ConstantMemory) { 4135 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4136 makeArrayRef(Chains.data(), ChainI)); 4137 if (isVolatile) 4138 DAG.setRoot(Chain); 4139 else 4140 PendingLoads.push_back(Chain); 4141 } 4142 4143 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4144 DAG.getVTList(ValueVTs), Values)); 4145 } 4146 4147 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4148 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4149 "call visitStoreToSwiftError when backend supports swifterror"); 4150 4151 SmallVector<EVT, 4> ValueVTs; 4152 SmallVector<uint64_t, 4> Offsets; 4153 const Value *SrcV = I.getOperand(0); 4154 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4155 SrcV->getType(), ValueVTs, &Offsets); 4156 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4157 "expect a single EVT for swifterror"); 4158 4159 SDValue Src = getValue(SrcV); 4160 // Create a virtual register, then update the virtual register. 4161 Register VReg = 4162 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4163 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4164 // Chain can be getRoot or getControlRoot. 4165 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4166 SDValue(Src.getNode(), Src.getResNo())); 4167 DAG.setRoot(CopyNode); 4168 } 4169 4170 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4171 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4172 "call visitLoadFromSwiftError when backend supports swifterror"); 4173 4174 assert(!I.isVolatile() && 4175 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4176 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4177 "Support volatile, non temporal, invariant for load_from_swift_error"); 4178 4179 const Value *SV = I.getOperand(0); 4180 Type *Ty = I.getType(); 4181 AAMDNodes AAInfo; 4182 I.getAAMetadata(AAInfo); 4183 assert( 4184 (!AA || 4185 !AA->pointsToConstantMemory(MemoryLocation( 4186 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4187 AAInfo))) && 4188 "load_from_swift_error should not be constant memory"); 4189 4190 SmallVector<EVT, 4> ValueVTs; 4191 SmallVector<uint64_t, 4> Offsets; 4192 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4193 ValueVTs, &Offsets); 4194 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4195 "expect a single EVT for swifterror"); 4196 4197 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4198 SDValue L = DAG.getCopyFromReg( 4199 getRoot(), getCurSDLoc(), 4200 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4201 4202 setValue(&I, L); 4203 } 4204 4205 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4206 if (I.isAtomic()) 4207 return visitAtomicStore(I); 4208 4209 const Value *SrcV = I.getOperand(0); 4210 const Value *PtrV = I.getOperand(1); 4211 4212 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4213 if (TLI.supportSwiftError()) { 4214 // Swifterror values can come from either a function parameter with 4215 // swifterror attribute or an alloca with swifterror attribute. 4216 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4217 if (Arg->hasSwiftErrorAttr()) 4218 return visitStoreToSwiftError(I); 4219 } 4220 4221 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4222 if (Alloca->isSwiftError()) 4223 return visitStoreToSwiftError(I); 4224 } 4225 } 4226 4227 SmallVector<EVT, 4> ValueVTs, MemVTs; 4228 SmallVector<uint64_t, 4> Offsets; 4229 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4230 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4231 unsigned NumValues = ValueVTs.size(); 4232 if (NumValues == 0) 4233 return; 4234 4235 // Get the lowered operands. Note that we do this after 4236 // checking if NumResults is zero, because with zero results 4237 // the operands won't have values in the map. 4238 SDValue Src = getValue(SrcV); 4239 SDValue Ptr = getValue(PtrV); 4240 4241 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4242 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4243 SDLoc dl = getCurSDLoc(); 4244 unsigned Alignment = I.getAlignment(); 4245 AAMDNodes AAInfo; 4246 I.getAAMetadata(AAInfo); 4247 4248 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4249 4250 // An aggregate load cannot wrap around the address space, so offsets to its 4251 // parts don't wrap either. 4252 SDNodeFlags Flags; 4253 Flags.setNoUnsignedWrap(true); 4254 4255 unsigned ChainI = 0; 4256 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4257 // See visitLoad comments. 4258 if (ChainI == MaxParallelChains) { 4259 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4260 makeArrayRef(Chains.data(), ChainI)); 4261 Root = Chain; 4262 ChainI = 0; 4263 } 4264 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4265 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4266 if (MemVTs[i] != ValueVTs[i]) 4267 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4268 SDValue St = 4269 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4270 Alignment, MMOFlags, AAInfo); 4271 Chains[ChainI] = St; 4272 } 4273 4274 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4275 makeArrayRef(Chains.data(), ChainI)); 4276 DAG.setRoot(StoreNode); 4277 } 4278 4279 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4280 bool IsCompressing) { 4281 SDLoc sdl = getCurSDLoc(); 4282 4283 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4284 unsigned& Alignment) { 4285 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4286 Src0 = I.getArgOperand(0); 4287 Ptr = I.getArgOperand(1); 4288 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4289 Mask = I.getArgOperand(3); 4290 }; 4291 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4292 unsigned& Alignment) { 4293 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4294 Src0 = I.getArgOperand(0); 4295 Ptr = I.getArgOperand(1); 4296 Mask = I.getArgOperand(2); 4297 Alignment = 0; 4298 }; 4299 4300 Value *PtrOperand, *MaskOperand, *Src0Operand; 4301 unsigned Alignment; 4302 if (IsCompressing) 4303 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4304 else 4305 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4306 4307 SDValue Ptr = getValue(PtrOperand); 4308 SDValue Src0 = getValue(Src0Operand); 4309 SDValue Mask = getValue(MaskOperand); 4310 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4311 4312 EVT VT = Src0.getValueType(); 4313 if (!Alignment) 4314 Alignment = DAG.getEVTAlignment(VT); 4315 4316 AAMDNodes AAInfo; 4317 I.getAAMetadata(AAInfo); 4318 4319 MachineMemOperand *MMO = 4320 DAG.getMachineFunction(). 4321 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4322 MachineMemOperand::MOStore, 4323 // TODO: Make MachineMemOperands aware of scalable 4324 // vectors. 4325 VT.getStoreSize().getKnownMinSize(), 4326 Alignment, AAInfo); 4327 SDValue StoreNode = 4328 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4329 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4330 DAG.setRoot(StoreNode); 4331 setValue(&I, StoreNode); 4332 } 4333 4334 // Get a uniform base for the Gather/Scatter intrinsic. 4335 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4336 // We try to represent it as a base pointer + vector of indices. 4337 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4338 // The first operand of the GEP may be a single pointer or a vector of pointers 4339 // Example: 4340 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4341 // or 4342 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4343 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4344 // 4345 // When the first GEP operand is a single pointer - it is the uniform base we 4346 // are looking for. If first operand of the GEP is a splat vector - we 4347 // extract the splat value and use it as a uniform base. 4348 // In all other cases the function returns 'false'. 4349 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4350 ISD::MemIndexType &IndexType, SDValue &Scale, 4351 SelectionDAGBuilder *SDB) { 4352 SelectionDAG& DAG = SDB->DAG; 4353 LLVMContext &Context = *DAG.getContext(); 4354 4355 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4356 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4357 if (!GEP) 4358 return false; 4359 4360 const Value *GEPPtr = GEP->getPointerOperand(); 4361 if (!GEPPtr->getType()->isVectorTy()) 4362 Ptr = GEPPtr; 4363 else if (!(Ptr = getSplatValue(GEPPtr))) 4364 return false; 4365 4366 unsigned FinalIndex = GEP->getNumOperands() - 1; 4367 Value *IndexVal = GEP->getOperand(FinalIndex); 4368 gep_type_iterator GTI = gep_type_begin(*GEP); 4369 4370 // Ensure all the other indices are 0. 4371 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4372 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4373 if (!C) 4374 return false; 4375 if (isa<VectorType>(C->getType())) 4376 C = C->getSplatValue(); 4377 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4378 if (!CI || !CI->isZero()) 4379 return false; 4380 } 4381 4382 // The operands of the GEP may be defined in another basic block. 4383 // In this case we'll not find nodes for the operands. 4384 if (!SDB->findValue(Ptr)) 4385 return false; 4386 Constant *C = dyn_cast<Constant>(IndexVal); 4387 if (!C && !SDB->findValue(IndexVal)) 4388 return false; 4389 4390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4391 const DataLayout &DL = DAG.getDataLayout(); 4392 StructType *STy = GTI.getStructTypeOrNull(); 4393 4394 if (STy) { 4395 const StructLayout *SL = DL.getStructLayout(STy); 4396 if (isa<VectorType>(C->getType())) { 4397 C = C->getSplatValue(); 4398 // FIXME: If getSplatValue may return nullptr for a structure? 4399 // If not, the following check can be removed. 4400 if (!C) 4401 return false; 4402 } 4403 auto *CI = cast<ConstantInt>(C); 4404 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4405 Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()), 4406 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4407 } else { 4408 Scale = DAG.getTargetConstant( 4409 DL.getTypeAllocSize(GEP->getResultElementType()), 4410 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4411 Index = SDB->getValue(IndexVal); 4412 } 4413 Base = SDB->getValue(Ptr); 4414 IndexType = ISD::SIGNED_SCALED; 4415 4416 if (STy || !Index.getValueType().isVector()) { 4417 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4418 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4419 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4420 } 4421 return true; 4422 } 4423 4424 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4425 SDLoc sdl = getCurSDLoc(); 4426 4427 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4428 const Value *Ptr = I.getArgOperand(1); 4429 SDValue Src0 = getValue(I.getArgOperand(0)); 4430 SDValue Mask = getValue(I.getArgOperand(3)); 4431 EVT VT = Src0.getValueType(); 4432 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4433 if (!Alignment) 4434 Alignment = DAG.getEVTAlignment(VT); 4435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4436 4437 AAMDNodes AAInfo; 4438 I.getAAMetadata(AAInfo); 4439 4440 SDValue Base; 4441 SDValue Index; 4442 ISD::MemIndexType IndexType; 4443 SDValue Scale; 4444 const Value *BasePtr = Ptr; 4445 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4446 this); 4447 4448 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4449 MachineMemOperand *MMO = DAG.getMachineFunction(). 4450 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4451 MachineMemOperand::MOStore, 4452 // TODO: Make MachineMemOperands aware of scalable 4453 // vectors. 4454 VT.getStoreSize().getKnownMinSize(), 4455 Alignment, AAInfo); 4456 if (!UniformBase) { 4457 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4458 Index = getValue(Ptr); 4459 IndexType = ISD::SIGNED_SCALED; 4460 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4461 } 4462 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4463 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4464 Ops, MMO, IndexType); 4465 DAG.setRoot(Scatter); 4466 setValue(&I, Scatter); 4467 } 4468 4469 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4470 SDLoc sdl = getCurSDLoc(); 4471 4472 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4473 unsigned& Alignment) { 4474 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4475 Ptr = I.getArgOperand(0); 4476 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4477 Mask = I.getArgOperand(2); 4478 Src0 = I.getArgOperand(3); 4479 }; 4480 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4481 unsigned& Alignment) { 4482 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4483 Ptr = I.getArgOperand(0); 4484 Alignment = 0; 4485 Mask = I.getArgOperand(1); 4486 Src0 = I.getArgOperand(2); 4487 }; 4488 4489 Value *PtrOperand, *MaskOperand, *Src0Operand; 4490 unsigned Alignment; 4491 if (IsExpanding) 4492 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4493 else 4494 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4495 4496 SDValue Ptr = getValue(PtrOperand); 4497 SDValue Src0 = getValue(Src0Operand); 4498 SDValue Mask = getValue(MaskOperand); 4499 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4500 4501 EVT VT = Src0.getValueType(); 4502 if (!Alignment) 4503 Alignment = DAG.getEVTAlignment(VT); 4504 4505 AAMDNodes AAInfo; 4506 I.getAAMetadata(AAInfo); 4507 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4508 4509 // Do not serialize masked loads of constant memory with anything. 4510 MemoryLocation ML; 4511 if (VT.isScalableVector()) 4512 ML = MemoryLocation(PtrOperand); 4513 else 4514 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4515 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4516 AAInfo); 4517 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4518 4519 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4520 4521 MachineMemOperand *MMO = 4522 DAG.getMachineFunction(). 4523 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4524 MachineMemOperand::MOLoad, 4525 // TODO: Make MachineMemOperands aware of scalable 4526 // vectors. 4527 VT.getStoreSize().getKnownMinSize(), 4528 Alignment, AAInfo, Ranges); 4529 4530 SDValue Load = 4531 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4532 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4533 if (AddToChain) 4534 PendingLoads.push_back(Load.getValue(1)); 4535 setValue(&I, Load); 4536 } 4537 4538 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4539 SDLoc sdl = getCurSDLoc(); 4540 4541 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4542 const Value *Ptr = I.getArgOperand(0); 4543 SDValue Src0 = getValue(I.getArgOperand(3)); 4544 SDValue Mask = getValue(I.getArgOperand(2)); 4545 4546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4547 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4548 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4549 if (!Alignment) 4550 Alignment = DAG.getEVTAlignment(VT); 4551 4552 AAMDNodes AAInfo; 4553 I.getAAMetadata(AAInfo); 4554 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4555 4556 SDValue Root = DAG.getRoot(); 4557 SDValue Base; 4558 SDValue Index; 4559 ISD::MemIndexType IndexType; 4560 SDValue Scale; 4561 const Value *BasePtr = Ptr; 4562 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4563 this); 4564 bool ConstantMemory = false; 4565 if (UniformBase && AA && 4566 AA->pointsToConstantMemory( 4567 MemoryLocation(BasePtr, 4568 LocationSize::precise( 4569 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4570 AAInfo))) { 4571 // Do not serialize (non-volatile) loads of constant memory with anything. 4572 Root = DAG.getEntryNode(); 4573 ConstantMemory = true; 4574 } 4575 4576 MachineMemOperand *MMO = 4577 DAG.getMachineFunction(). 4578 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4579 MachineMemOperand::MOLoad, 4580 // TODO: Make MachineMemOperands aware of scalable 4581 // vectors. 4582 VT.getStoreSize().getKnownMinSize(), 4583 Alignment, AAInfo, Ranges); 4584 4585 if (!UniformBase) { 4586 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4587 Index = getValue(Ptr); 4588 IndexType = ISD::SIGNED_SCALED; 4589 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4590 } 4591 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4592 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4593 Ops, MMO, IndexType); 4594 4595 SDValue OutChain = Gather.getValue(1); 4596 if (!ConstantMemory) 4597 PendingLoads.push_back(OutChain); 4598 setValue(&I, Gather); 4599 } 4600 4601 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4602 SDLoc dl = getCurSDLoc(); 4603 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4604 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4605 SyncScope::ID SSID = I.getSyncScopeID(); 4606 4607 SDValue InChain = getRoot(); 4608 4609 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4610 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4611 4612 auto Alignment = DAG.getEVTAlignment(MemVT); 4613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4614 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4615 4616 MachineFunction &MF = DAG.getMachineFunction(); 4617 MachineMemOperand *MMO = 4618 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4619 Flags, MemVT.getStoreSize(), Alignment, 4620 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4621 FailureOrdering); 4622 4623 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4624 dl, MemVT, VTs, InChain, 4625 getValue(I.getPointerOperand()), 4626 getValue(I.getCompareOperand()), 4627 getValue(I.getNewValOperand()), MMO); 4628 4629 SDValue OutChain = L.getValue(2); 4630 4631 setValue(&I, L); 4632 DAG.setRoot(OutChain); 4633 } 4634 4635 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4636 SDLoc dl = getCurSDLoc(); 4637 ISD::NodeType NT; 4638 switch (I.getOperation()) { 4639 default: llvm_unreachable("Unknown atomicrmw operation"); 4640 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4641 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4642 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4643 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4644 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4645 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4646 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4647 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4648 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4649 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4650 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4651 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4652 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4653 } 4654 AtomicOrdering Ordering = I.getOrdering(); 4655 SyncScope::ID SSID = I.getSyncScopeID(); 4656 4657 SDValue InChain = getRoot(); 4658 4659 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4660 auto Alignment = DAG.getEVTAlignment(MemVT); 4661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4662 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4663 4664 MachineFunction &MF = DAG.getMachineFunction(); 4665 MachineMemOperand *MMO = 4666 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4667 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4668 nullptr, SSID, Ordering); 4669 4670 SDValue L = 4671 DAG.getAtomic(NT, dl, MemVT, InChain, 4672 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4673 MMO); 4674 4675 SDValue OutChain = L.getValue(1); 4676 4677 setValue(&I, L); 4678 DAG.setRoot(OutChain); 4679 } 4680 4681 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4682 SDLoc dl = getCurSDLoc(); 4683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4684 SDValue Ops[3]; 4685 Ops[0] = getRoot(); 4686 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4687 TLI.getFenceOperandTy(DAG.getDataLayout())); 4688 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4689 TLI.getFenceOperandTy(DAG.getDataLayout())); 4690 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4691 } 4692 4693 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4694 SDLoc dl = getCurSDLoc(); 4695 AtomicOrdering Order = I.getOrdering(); 4696 SyncScope::ID SSID = I.getSyncScopeID(); 4697 4698 SDValue InChain = getRoot(); 4699 4700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4701 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4702 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4703 4704 if (!TLI.supportsUnalignedAtomics() && 4705 I.getAlignment() < MemVT.getSizeInBits() / 8) 4706 report_fatal_error("Cannot generate unaligned atomic load"); 4707 4708 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4709 4710 MachineMemOperand *MMO = 4711 DAG.getMachineFunction(). 4712 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4713 Flags, MemVT.getStoreSize(), 4714 I.getAlignment() ? I.getAlignment() : 4715 DAG.getEVTAlignment(MemVT), 4716 AAMDNodes(), nullptr, SSID, Order); 4717 4718 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4719 4720 SDValue Ptr = getValue(I.getPointerOperand()); 4721 4722 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4723 // TODO: Once this is better exercised by tests, it should be merged with 4724 // the normal path for loads to prevent future divergence. 4725 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4726 if (MemVT != VT) 4727 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4728 4729 setValue(&I, L); 4730 SDValue OutChain = L.getValue(1); 4731 if (!I.isUnordered()) 4732 DAG.setRoot(OutChain); 4733 else 4734 PendingLoads.push_back(OutChain); 4735 return; 4736 } 4737 4738 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4739 Ptr, MMO); 4740 4741 SDValue OutChain = L.getValue(1); 4742 if (MemVT != VT) 4743 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4744 4745 setValue(&I, L); 4746 DAG.setRoot(OutChain); 4747 } 4748 4749 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4750 SDLoc dl = getCurSDLoc(); 4751 4752 AtomicOrdering Ordering = I.getOrdering(); 4753 SyncScope::ID SSID = I.getSyncScopeID(); 4754 4755 SDValue InChain = getRoot(); 4756 4757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4758 EVT MemVT = 4759 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4760 4761 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4762 report_fatal_error("Cannot generate unaligned atomic store"); 4763 4764 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4765 4766 MachineFunction &MF = DAG.getMachineFunction(); 4767 MachineMemOperand *MMO = 4768 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4769 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4770 nullptr, SSID, Ordering); 4771 4772 SDValue Val = getValue(I.getValueOperand()); 4773 if (Val.getValueType() != MemVT) 4774 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4775 SDValue Ptr = getValue(I.getPointerOperand()); 4776 4777 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4778 // TODO: Once this is better exercised by tests, it should be merged with 4779 // the normal path for stores to prevent future divergence. 4780 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4781 DAG.setRoot(S); 4782 return; 4783 } 4784 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4785 Ptr, Val, MMO); 4786 4787 4788 DAG.setRoot(OutChain); 4789 } 4790 4791 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4792 /// node. 4793 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4794 unsigned Intrinsic) { 4795 // Ignore the callsite's attributes. A specific call site may be marked with 4796 // readnone, but the lowering code will expect the chain based on the 4797 // definition. 4798 const Function *F = I.getCalledFunction(); 4799 bool HasChain = !F->doesNotAccessMemory(); 4800 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4801 4802 // Build the operand list. 4803 SmallVector<SDValue, 8> Ops; 4804 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4805 if (OnlyLoad) { 4806 // We don't need to serialize loads against other loads. 4807 Ops.push_back(DAG.getRoot()); 4808 } else { 4809 Ops.push_back(getRoot()); 4810 } 4811 } 4812 4813 // Info is set by getTgtMemInstrinsic 4814 TargetLowering::IntrinsicInfo Info; 4815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4816 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4817 DAG.getMachineFunction(), 4818 Intrinsic); 4819 4820 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4821 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4822 Info.opc == ISD::INTRINSIC_W_CHAIN) 4823 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4824 TLI.getPointerTy(DAG.getDataLayout()))); 4825 4826 // Add all operands of the call to the operand list. 4827 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4828 const Value *Arg = I.getArgOperand(i); 4829 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4830 Ops.push_back(getValue(Arg)); 4831 continue; 4832 } 4833 4834 // Use TargetConstant instead of a regular constant for immarg. 4835 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4836 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4837 assert(CI->getBitWidth() <= 64 && 4838 "large intrinsic immediates not handled"); 4839 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4840 } else { 4841 Ops.push_back( 4842 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4843 } 4844 } 4845 4846 SmallVector<EVT, 4> ValueVTs; 4847 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4848 4849 if (HasChain) 4850 ValueVTs.push_back(MVT::Other); 4851 4852 SDVTList VTs = DAG.getVTList(ValueVTs); 4853 4854 // Create the node. 4855 SDValue Result; 4856 if (IsTgtIntrinsic) { 4857 // This is target intrinsic that touches memory 4858 AAMDNodes AAInfo; 4859 I.getAAMetadata(AAInfo); 4860 Result = DAG.getMemIntrinsicNode( 4861 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4862 MachinePointerInfo(Info.ptrVal, Info.offset), 4863 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4864 } else if (!HasChain) { 4865 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4866 } else if (!I.getType()->isVoidTy()) { 4867 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4868 } else { 4869 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4870 } 4871 4872 if (HasChain) { 4873 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4874 if (OnlyLoad) 4875 PendingLoads.push_back(Chain); 4876 else 4877 DAG.setRoot(Chain); 4878 } 4879 4880 if (!I.getType()->isVoidTy()) { 4881 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4882 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4883 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4884 } else 4885 Result = lowerRangeToAssertZExt(DAG, I, Result); 4886 4887 setValue(&I, Result); 4888 } 4889 } 4890 4891 /// GetSignificand - Get the significand and build it into a floating-point 4892 /// number with exponent of 1: 4893 /// 4894 /// Op = (Op & 0x007fffff) | 0x3f800000; 4895 /// 4896 /// where Op is the hexadecimal representation of floating point value. 4897 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4898 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4899 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4900 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4901 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4902 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4903 } 4904 4905 /// GetExponent - Get the exponent: 4906 /// 4907 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4908 /// 4909 /// where Op is the hexadecimal representation of floating point value. 4910 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4911 const TargetLowering &TLI, const SDLoc &dl) { 4912 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4913 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4914 SDValue t1 = DAG.getNode( 4915 ISD::SRL, dl, MVT::i32, t0, 4916 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4917 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4918 DAG.getConstant(127, dl, MVT::i32)); 4919 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4920 } 4921 4922 /// getF32Constant - Get 32-bit floating point constant. 4923 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4924 const SDLoc &dl) { 4925 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4926 MVT::f32); 4927 } 4928 4929 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4930 SelectionDAG &DAG) { 4931 // TODO: What fast-math-flags should be set on the floating-point nodes? 4932 4933 // IntegerPartOfX = ((int32_t)(t0); 4934 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4935 4936 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4937 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4938 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4939 4940 // IntegerPartOfX <<= 23; 4941 IntegerPartOfX = DAG.getNode( 4942 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4943 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4944 DAG.getDataLayout()))); 4945 4946 SDValue TwoToFractionalPartOfX; 4947 if (LimitFloatPrecision <= 6) { 4948 // For floating-point precision of 6: 4949 // 4950 // TwoToFractionalPartOfX = 4951 // 0.997535578f + 4952 // (0.735607626f + 0.252464424f * x) * x; 4953 // 4954 // error 0.0144103317, which is 6 bits 4955 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4956 getF32Constant(DAG, 0x3e814304, dl)); 4957 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4958 getF32Constant(DAG, 0x3f3c50c8, dl)); 4959 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4960 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4961 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4962 } else if (LimitFloatPrecision <= 12) { 4963 // For floating-point precision of 12: 4964 // 4965 // TwoToFractionalPartOfX = 4966 // 0.999892986f + 4967 // (0.696457318f + 4968 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4969 // 4970 // error 0.000107046256, which is 13 to 14 bits 4971 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4972 getF32Constant(DAG, 0x3da235e3, dl)); 4973 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4974 getF32Constant(DAG, 0x3e65b8f3, dl)); 4975 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4976 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4977 getF32Constant(DAG, 0x3f324b07, dl)); 4978 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4979 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4980 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4981 } else { // LimitFloatPrecision <= 18 4982 // For floating-point precision of 18: 4983 // 4984 // TwoToFractionalPartOfX = 4985 // 0.999999982f + 4986 // (0.693148872f + 4987 // (0.240227044f + 4988 // (0.554906021e-1f + 4989 // (0.961591928e-2f + 4990 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4991 // error 2.47208000*10^(-7), which is better than 18 bits 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4993 getF32Constant(DAG, 0x3924b03e, dl)); 4994 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4995 getF32Constant(DAG, 0x3ab24b87, dl)); 4996 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4997 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4998 getF32Constant(DAG, 0x3c1d8c17, dl)); 4999 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5000 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5001 getF32Constant(DAG, 0x3d634a1d, dl)); 5002 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5003 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5004 getF32Constant(DAG, 0x3e75fe14, dl)); 5005 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5006 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5007 getF32Constant(DAG, 0x3f317234, dl)); 5008 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5009 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5010 getF32Constant(DAG, 0x3f800000, dl)); 5011 } 5012 5013 // Add the exponent into the result in integer domain. 5014 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5015 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5016 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5017 } 5018 5019 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5020 /// limited-precision mode. 5021 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5022 const TargetLowering &TLI) { 5023 if (Op.getValueType() == MVT::f32 && 5024 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5025 5026 // Put the exponent in the right bit position for later addition to the 5027 // final result: 5028 // 5029 // t0 = Op * log2(e) 5030 5031 // TODO: What fast-math-flags should be set here? 5032 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5033 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5034 return getLimitedPrecisionExp2(t0, dl, DAG); 5035 } 5036 5037 // No special expansion. 5038 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5039 } 5040 5041 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5042 /// limited-precision mode. 5043 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5044 const TargetLowering &TLI) { 5045 // TODO: What fast-math-flags should be set on the floating-point nodes? 5046 5047 if (Op.getValueType() == MVT::f32 && 5048 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5049 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5050 5051 // Scale the exponent by log(2). 5052 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5053 SDValue LogOfExponent = 5054 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5055 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5056 5057 // Get the significand and build it into a floating-point number with 5058 // exponent of 1. 5059 SDValue X = GetSignificand(DAG, Op1, dl); 5060 5061 SDValue LogOfMantissa; 5062 if (LimitFloatPrecision <= 6) { 5063 // For floating-point precision of 6: 5064 // 5065 // LogofMantissa = 5066 // -1.1609546f + 5067 // (1.4034025f - 0.23903021f * x) * x; 5068 // 5069 // error 0.0034276066, which is better than 8 bits 5070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5071 getF32Constant(DAG, 0xbe74c456, dl)); 5072 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5073 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5074 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5075 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5076 getF32Constant(DAG, 0x3f949a29, dl)); 5077 } else if (LimitFloatPrecision <= 12) { 5078 // For floating-point precision of 12: 5079 // 5080 // LogOfMantissa = 5081 // -1.7417939f + 5082 // (2.8212026f + 5083 // (-1.4699568f + 5084 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5085 // 5086 // error 0.000061011436, which is 14 bits 5087 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5088 getF32Constant(DAG, 0xbd67b6d6, dl)); 5089 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5090 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5091 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5092 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5093 getF32Constant(DAG, 0x3fbc278b, dl)); 5094 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5095 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5096 getF32Constant(DAG, 0x40348e95, dl)); 5097 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5098 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5099 getF32Constant(DAG, 0x3fdef31a, dl)); 5100 } else { // LimitFloatPrecision <= 18 5101 // For floating-point precision of 18: 5102 // 5103 // LogOfMantissa = 5104 // -2.1072184f + 5105 // (4.2372794f + 5106 // (-3.7029485f + 5107 // (2.2781945f + 5108 // (-0.87823314f + 5109 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5110 // 5111 // error 0.0000023660568, which is better than 18 bits 5112 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5113 getF32Constant(DAG, 0xbc91e5ac, dl)); 5114 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5115 getF32Constant(DAG, 0x3e4350aa, dl)); 5116 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5117 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5118 getF32Constant(DAG, 0x3f60d3e3, dl)); 5119 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5120 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5121 getF32Constant(DAG, 0x4011cdf0, dl)); 5122 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5123 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5124 getF32Constant(DAG, 0x406cfd1c, dl)); 5125 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5126 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5127 getF32Constant(DAG, 0x408797cb, dl)); 5128 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5129 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5130 getF32Constant(DAG, 0x4006dcab, dl)); 5131 } 5132 5133 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5134 } 5135 5136 // No special expansion. 5137 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5138 } 5139 5140 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5141 /// limited-precision mode. 5142 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5143 const TargetLowering &TLI) { 5144 // TODO: What fast-math-flags should be set on the floating-point nodes? 5145 5146 if (Op.getValueType() == MVT::f32 && 5147 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5148 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5149 5150 // Get the exponent. 5151 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5152 5153 // Get the significand and build it into a floating-point number with 5154 // exponent of 1. 5155 SDValue X = GetSignificand(DAG, Op1, dl); 5156 5157 // Different possible minimax approximations of significand in 5158 // floating-point for various degrees of accuracy over [1,2]. 5159 SDValue Log2ofMantissa; 5160 if (LimitFloatPrecision <= 6) { 5161 // For floating-point precision of 6: 5162 // 5163 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5164 // 5165 // error 0.0049451742, which is more than 7 bits 5166 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5167 getF32Constant(DAG, 0xbeb08fe0, dl)); 5168 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5169 getF32Constant(DAG, 0x40019463, dl)); 5170 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5171 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5172 getF32Constant(DAG, 0x3fd6633d, dl)); 5173 } else if (LimitFloatPrecision <= 12) { 5174 // For floating-point precision of 12: 5175 // 5176 // Log2ofMantissa = 5177 // -2.51285454f + 5178 // (4.07009056f + 5179 // (-2.12067489f + 5180 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5181 // 5182 // error 0.0000876136000, which is better than 13 bits 5183 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5184 getF32Constant(DAG, 0xbda7262e, dl)); 5185 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5186 getF32Constant(DAG, 0x3f25280b, dl)); 5187 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5188 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5189 getF32Constant(DAG, 0x4007b923, dl)); 5190 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5191 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5192 getF32Constant(DAG, 0x40823e2f, dl)); 5193 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5194 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5195 getF32Constant(DAG, 0x4020d29c, dl)); 5196 } else { // LimitFloatPrecision <= 18 5197 // For floating-point precision of 18: 5198 // 5199 // Log2ofMantissa = 5200 // -3.0400495f + 5201 // (6.1129976f + 5202 // (-5.3420409f + 5203 // (3.2865683f + 5204 // (-1.2669343f + 5205 // (0.27515199f - 5206 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5207 // 5208 // error 0.0000018516, which is better than 18 bits 5209 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5210 getF32Constant(DAG, 0xbcd2769e, dl)); 5211 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5212 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5213 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5214 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5215 getF32Constant(DAG, 0x3fa22ae7, dl)); 5216 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5217 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5218 getF32Constant(DAG, 0x40525723, dl)); 5219 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5220 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5221 getF32Constant(DAG, 0x40aaf200, dl)); 5222 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5223 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5224 getF32Constant(DAG, 0x40c39dad, dl)); 5225 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5226 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5227 getF32Constant(DAG, 0x4042902c, dl)); 5228 } 5229 5230 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5231 } 5232 5233 // No special expansion. 5234 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5235 } 5236 5237 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5238 /// limited-precision mode. 5239 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5240 const TargetLowering &TLI) { 5241 // TODO: What fast-math-flags should be set on the floating-point nodes? 5242 5243 if (Op.getValueType() == MVT::f32 && 5244 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5245 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5246 5247 // Scale the exponent by log10(2) [0.30102999f]. 5248 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5249 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5250 getF32Constant(DAG, 0x3e9a209a, dl)); 5251 5252 // Get the significand and build it into a floating-point number with 5253 // exponent of 1. 5254 SDValue X = GetSignificand(DAG, Op1, dl); 5255 5256 SDValue Log10ofMantissa; 5257 if (LimitFloatPrecision <= 6) { 5258 // For floating-point precision of 6: 5259 // 5260 // Log10ofMantissa = 5261 // -0.50419619f + 5262 // (0.60948995f - 0.10380950f * x) * x; 5263 // 5264 // error 0.0014886165, which is 6 bits 5265 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5266 getF32Constant(DAG, 0xbdd49a13, dl)); 5267 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5268 getF32Constant(DAG, 0x3f1c0789, dl)); 5269 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5270 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5271 getF32Constant(DAG, 0x3f011300, dl)); 5272 } else if (LimitFloatPrecision <= 12) { 5273 // For floating-point precision of 12: 5274 // 5275 // Log10ofMantissa = 5276 // -0.64831180f + 5277 // (0.91751397f + 5278 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5279 // 5280 // error 0.00019228036, which is better than 12 bits 5281 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5282 getF32Constant(DAG, 0x3d431f31, dl)); 5283 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5284 getF32Constant(DAG, 0x3ea21fb2, dl)); 5285 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5286 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5287 getF32Constant(DAG, 0x3f6ae232, dl)); 5288 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5289 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5290 getF32Constant(DAG, 0x3f25f7c3, dl)); 5291 } else { // LimitFloatPrecision <= 18 5292 // For floating-point precision of 18: 5293 // 5294 // Log10ofMantissa = 5295 // -0.84299375f + 5296 // (1.5327582f + 5297 // (-1.0688956f + 5298 // (0.49102474f + 5299 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5300 // 5301 // error 0.0000037995730, which is better than 18 bits 5302 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5303 getF32Constant(DAG, 0x3c5d51ce, dl)); 5304 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5305 getF32Constant(DAG, 0x3e00685a, dl)); 5306 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5307 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5308 getF32Constant(DAG, 0x3efb6798, dl)); 5309 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5310 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5311 getF32Constant(DAG, 0x3f88d192, dl)); 5312 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5313 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5314 getF32Constant(DAG, 0x3fc4316c, dl)); 5315 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5316 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5317 getF32Constant(DAG, 0x3f57ce70, dl)); 5318 } 5319 5320 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5321 } 5322 5323 // No special expansion. 5324 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5325 } 5326 5327 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5328 /// limited-precision mode. 5329 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5330 const TargetLowering &TLI) { 5331 if (Op.getValueType() == MVT::f32 && 5332 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5333 return getLimitedPrecisionExp2(Op, dl, DAG); 5334 5335 // No special expansion. 5336 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5337 } 5338 5339 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5340 /// limited-precision mode with x == 10.0f. 5341 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5342 SelectionDAG &DAG, const TargetLowering &TLI) { 5343 bool IsExp10 = false; 5344 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5345 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5346 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5347 APFloat Ten(10.0f); 5348 IsExp10 = LHSC->isExactlyValue(Ten); 5349 } 5350 } 5351 5352 // TODO: What fast-math-flags should be set on the FMUL node? 5353 if (IsExp10) { 5354 // Put the exponent in the right bit position for later addition to the 5355 // final result: 5356 // 5357 // #define LOG2OF10 3.3219281f 5358 // t0 = Op * LOG2OF10; 5359 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5360 getF32Constant(DAG, 0x40549a78, dl)); 5361 return getLimitedPrecisionExp2(t0, dl, DAG); 5362 } 5363 5364 // No special expansion. 5365 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5366 } 5367 5368 /// ExpandPowI - Expand a llvm.powi intrinsic. 5369 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5370 SelectionDAG &DAG) { 5371 // If RHS is a constant, we can expand this out to a multiplication tree, 5372 // otherwise we end up lowering to a call to __powidf2 (for example). When 5373 // optimizing for size, we only want to do this if the expansion would produce 5374 // a small number of multiplies, otherwise we do the full expansion. 5375 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5376 // Get the exponent as a positive value. 5377 unsigned Val = RHSC->getSExtValue(); 5378 if ((int)Val < 0) Val = -Val; 5379 5380 // powi(x, 0) -> 1.0 5381 if (Val == 0) 5382 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5383 5384 bool OptForSize = DAG.shouldOptForSize(); 5385 if (!OptForSize || 5386 // If optimizing for size, don't insert too many multiplies. 5387 // This inserts up to 5 multiplies. 5388 countPopulation(Val) + Log2_32(Val) < 7) { 5389 // We use the simple binary decomposition method to generate the multiply 5390 // sequence. There are more optimal ways to do this (for example, 5391 // powi(x,15) generates one more multiply than it should), but this has 5392 // the benefit of being both really simple and much better than a libcall. 5393 SDValue Res; // Logically starts equal to 1.0 5394 SDValue CurSquare = LHS; 5395 // TODO: Intrinsics should have fast-math-flags that propagate to these 5396 // nodes. 5397 while (Val) { 5398 if (Val & 1) { 5399 if (Res.getNode()) 5400 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5401 else 5402 Res = CurSquare; // 1.0*CurSquare. 5403 } 5404 5405 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5406 CurSquare, CurSquare); 5407 Val >>= 1; 5408 } 5409 5410 // If the original was negative, invert the result, producing 1/(x*x*x). 5411 if (RHSC->getSExtValue() < 0) 5412 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5413 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5414 return Res; 5415 } 5416 } 5417 5418 // Otherwise, expand to a libcall. 5419 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5420 } 5421 5422 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5423 SDValue LHS, SDValue RHS, SDValue Scale, 5424 SelectionDAG &DAG, const TargetLowering &TLI) { 5425 EVT VT = LHS.getValueType(); 5426 bool Signed = Opcode == ISD::SDIVFIX; 5427 LLVMContext &Ctx = *DAG.getContext(); 5428 5429 // If the type is legal but the operation isn't, this node might survive all 5430 // the way to operation legalization. If we end up there and we do not have 5431 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5432 // node. 5433 5434 // Coax the legalizer into expanding the node during type legalization instead 5435 // by bumping the size by one bit. This will force it to Promote, enabling the 5436 // early expansion and avoiding the need to expand later. 5437 5438 // We don't have to do this if Scale is 0; that can always be expanded. 5439 5440 // FIXME: We wouldn't have to do this (or any of the early 5441 // expansion/promotion) if it was possible to expand a libcall of an 5442 // illegal type during operation legalization. But it's not, so things 5443 // get a bit hacky. 5444 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5445 if (ScaleInt > 0 && 5446 (TLI.isTypeLegal(VT) || 5447 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5448 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5449 Opcode, VT, ScaleInt); 5450 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5451 EVT PromVT; 5452 if (VT.isScalarInteger()) 5453 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5454 else if (VT.isVector()) { 5455 PromVT = VT.getVectorElementType(); 5456 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5457 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5458 } else 5459 llvm_unreachable("Wrong VT for DIVFIX?"); 5460 if (Signed) { 5461 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5462 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5463 } else { 5464 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5465 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5466 } 5467 // TODO: Saturation. 5468 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5469 return DAG.getZExtOrTrunc(Res, DL, VT); 5470 } 5471 } 5472 5473 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5474 } 5475 5476 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5477 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5478 static void 5479 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5480 const SDValue &N) { 5481 switch (N.getOpcode()) { 5482 case ISD::CopyFromReg: { 5483 SDValue Op = N.getOperand(1); 5484 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5485 Op.getValueType().getSizeInBits()); 5486 return; 5487 } 5488 case ISD::BITCAST: 5489 case ISD::AssertZext: 5490 case ISD::AssertSext: 5491 case ISD::TRUNCATE: 5492 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5493 return; 5494 case ISD::BUILD_PAIR: 5495 case ISD::BUILD_VECTOR: 5496 case ISD::CONCAT_VECTORS: 5497 for (SDValue Op : N->op_values()) 5498 getUnderlyingArgRegs(Regs, Op); 5499 return; 5500 default: 5501 return; 5502 } 5503 } 5504 5505 /// If the DbgValueInst is a dbg_value of a function argument, create the 5506 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5507 /// instruction selection, they will be inserted to the entry BB. 5508 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5509 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5510 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5511 const Argument *Arg = dyn_cast<Argument>(V); 5512 if (!Arg) 5513 return false; 5514 5515 if (!IsDbgDeclare) { 5516 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5517 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5518 // the entry block. 5519 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5520 if (!IsInEntryBlock) 5521 return false; 5522 5523 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5524 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5525 // variable that also is a param. 5526 // 5527 // Although, if we are at the top of the entry block already, we can still 5528 // emit using ArgDbgValue. This might catch some situations when the 5529 // dbg.value refers to an argument that isn't used in the entry block, so 5530 // any CopyToReg node would be optimized out and the only way to express 5531 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5532 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5533 // we should only emit as ArgDbgValue if the Variable is an argument to the 5534 // current function, and the dbg.value intrinsic is found in the entry 5535 // block. 5536 bool VariableIsFunctionInputArg = Variable->isParameter() && 5537 !DL->getInlinedAt(); 5538 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5539 if (!IsInPrologue && !VariableIsFunctionInputArg) 5540 return false; 5541 5542 // Here we assume that a function argument on IR level only can be used to 5543 // describe one input parameter on source level. If we for example have 5544 // source code like this 5545 // 5546 // struct A { long x, y; }; 5547 // void foo(struct A a, long b) { 5548 // ... 5549 // b = a.x; 5550 // ... 5551 // } 5552 // 5553 // and IR like this 5554 // 5555 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5556 // entry: 5557 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5558 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5559 // call void @llvm.dbg.value(metadata i32 %b, "b", 5560 // ... 5561 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5562 // ... 5563 // 5564 // then the last dbg.value is describing a parameter "b" using a value that 5565 // is an argument. But since we already has used %a1 to describe a parameter 5566 // we should not handle that last dbg.value here (that would result in an 5567 // incorrect hoisting of the DBG_VALUE to the function entry). 5568 // Notice that we allow one dbg.value per IR level argument, to accommodate 5569 // for the situation with fragments above. 5570 if (VariableIsFunctionInputArg) { 5571 unsigned ArgNo = Arg->getArgNo(); 5572 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5573 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5574 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5575 return false; 5576 FuncInfo.DescribedArgs.set(ArgNo); 5577 } 5578 } 5579 5580 MachineFunction &MF = DAG.getMachineFunction(); 5581 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5582 5583 Optional<MachineOperand> Op; 5584 // Some arguments' frame index is recorded during argument lowering. 5585 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5586 if (FI != std::numeric_limits<int>::max()) 5587 Op = MachineOperand::CreateFI(FI); 5588 5589 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5590 if (!Op && N.getNode()) { 5591 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5592 Register Reg; 5593 if (ArgRegsAndSizes.size() == 1) 5594 Reg = ArgRegsAndSizes.front().first; 5595 5596 if (Reg && Reg.isVirtual()) { 5597 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5598 Register PR = RegInfo.getLiveInPhysReg(Reg); 5599 if (PR) 5600 Reg = PR; 5601 } 5602 if (Reg) { 5603 Op = MachineOperand::CreateReg(Reg, false); 5604 } 5605 } 5606 5607 if (!Op && N.getNode()) { 5608 // Check if frame index is available. 5609 SDValue LCandidate = peekThroughBitcasts(N); 5610 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5611 if (FrameIndexSDNode *FINode = 5612 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5613 Op = MachineOperand::CreateFI(FINode->getIndex()); 5614 } 5615 5616 if (!Op) { 5617 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5618 auto splitMultiRegDbgValue 5619 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5620 unsigned Offset = 0; 5621 for (auto RegAndSize : SplitRegs) { 5622 // If the expression is already a fragment, the current register 5623 // offset+size might extend beyond the fragment. In this case, only 5624 // the register bits that are inside the fragment are relevant. 5625 int RegFragmentSizeInBits = RegAndSize.second; 5626 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5627 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5628 // The register is entirely outside the expression fragment, 5629 // so is irrelevant for debug info. 5630 if (Offset >= ExprFragmentSizeInBits) 5631 break; 5632 // The register is partially outside the expression fragment, only 5633 // the low bits within the fragment are relevant for debug info. 5634 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5635 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5636 } 5637 } 5638 5639 auto FragmentExpr = DIExpression::createFragmentExpression( 5640 Expr, Offset, RegFragmentSizeInBits); 5641 Offset += RegAndSize.second; 5642 // If a valid fragment expression cannot be created, the variable's 5643 // correct value cannot be determined and so it is set as Undef. 5644 if (!FragmentExpr) { 5645 SDDbgValue *SDV = DAG.getConstantDbgValue( 5646 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5647 DAG.AddDbgValue(SDV, nullptr, false); 5648 continue; 5649 } 5650 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5651 FuncInfo.ArgDbgValues.push_back( 5652 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5653 RegAndSize.first, Variable, *FragmentExpr)); 5654 } 5655 }; 5656 5657 // Check if ValueMap has reg number. 5658 DenseMap<const Value *, unsigned>::const_iterator 5659 VMI = FuncInfo.ValueMap.find(V); 5660 if (VMI != FuncInfo.ValueMap.end()) { 5661 const auto &TLI = DAG.getTargetLoweringInfo(); 5662 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5663 V->getType(), getABIRegCopyCC(V)); 5664 if (RFV.occupiesMultipleRegs()) { 5665 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5666 return true; 5667 } 5668 5669 Op = MachineOperand::CreateReg(VMI->second, false); 5670 } else if (ArgRegsAndSizes.size() > 1) { 5671 // This was split due to the calling convention, and no virtual register 5672 // mapping exists for the value. 5673 splitMultiRegDbgValue(ArgRegsAndSizes); 5674 return true; 5675 } 5676 } 5677 5678 if (!Op) 5679 return false; 5680 5681 assert(Variable->isValidLocationForIntrinsic(DL) && 5682 "Expected inlined-at fields to agree"); 5683 5684 // If the argument arrives in a stack slot, then what the IR thought was a 5685 // normal Value is actually in memory, and we must add a deref to load it. 5686 if (Op->isFI()) { 5687 int FI = Op->getIndex(); 5688 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5689 if (Expr->isImplicit()) { 5690 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5691 Expr = DIExpression::prependOpcodes(Expr, Ops); 5692 } else { 5693 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5694 } 5695 } 5696 5697 // If this location was specified with a dbg.declare, then it and its 5698 // expression calculate the address of the variable. Append a deref to 5699 // force it to be a memory location. 5700 if (IsDbgDeclare) 5701 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5702 5703 FuncInfo.ArgDbgValues.push_back( 5704 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5705 *Op, Variable, Expr)); 5706 5707 return true; 5708 } 5709 5710 /// Return the appropriate SDDbgValue based on N. 5711 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5712 DILocalVariable *Variable, 5713 DIExpression *Expr, 5714 const DebugLoc &dl, 5715 unsigned DbgSDNodeOrder) { 5716 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5717 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5718 // stack slot locations. 5719 // 5720 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5721 // debug values here after optimization: 5722 // 5723 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5724 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5725 // 5726 // Both describe the direct values of their associated variables. 5727 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5728 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5729 } 5730 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5731 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5732 } 5733 5734 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5735 switch (Intrinsic) { 5736 case Intrinsic::smul_fix: 5737 return ISD::SMULFIX; 5738 case Intrinsic::umul_fix: 5739 return ISD::UMULFIX; 5740 case Intrinsic::smul_fix_sat: 5741 return ISD::SMULFIXSAT; 5742 case Intrinsic::umul_fix_sat: 5743 return ISD::UMULFIXSAT; 5744 case Intrinsic::sdiv_fix: 5745 return ISD::SDIVFIX; 5746 case Intrinsic::udiv_fix: 5747 return ISD::UDIVFIX; 5748 default: 5749 llvm_unreachable("Unhandled fixed point intrinsic"); 5750 } 5751 } 5752 5753 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5754 const char *FunctionName) { 5755 assert(FunctionName && "FunctionName must not be nullptr"); 5756 SDValue Callee = DAG.getExternalSymbol( 5757 FunctionName, 5758 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5759 LowerCallTo(&I, Callee, I.isTailCall()); 5760 } 5761 5762 /// Lower the call to the specified intrinsic function. 5763 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5764 unsigned Intrinsic) { 5765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5766 SDLoc sdl = getCurSDLoc(); 5767 DebugLoc dl = getCurDebugLoc(); 5768 SDValue Res; 5769 5770 switch (Intrinsic) { 5771 default: 5772 // By default, turn this into a target intrinsic node. 5773 visitTargetIntrinsic(I, Intrinsic); 5774 return; 5775 case Intrinsic::vastart: visitVAStart(I); return; 5776 case Intrinsic::vaend: visitVAEnd(I); return; 5777 case Intrinsic::vacopy: visitVACopy(I); return; 5778 case Intrinsic::returnaddress: 5779 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5780 TLI.getPointerTy(DAG.getDataLayout()), 5781 getValue(I.getArgOperand(0)))); 5782 return; 5783 case Intrinsic::addressofreturnaddress: 5784 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5785 TLI.getPointerTy(DAG.getDataLayout()))); 5786 return; 5787 case Intrinsic::sponentry: 5788 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5789 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5790 return; 5791 case Intrinsic::frameaddress: 5792 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5793 TLI.getFrameIndexTy(DAG.getDataLayout()), 5794 getValue(I.getArgOperand(0)))); 5795 return; 5796 case Intrinsic::read_register: { 5797 Value *Reg = I.getArgOperand(0); 5798 SDValue Chain = getRoot(); 5799 SDValue RegName = 5800 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5801 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5802 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5803 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5804 setValue(&I, Res); 5805 DAG.setRoot(Res.getValue(1)); 5806 return; 5807 } 5808 case Intrinsic::write_register: { 5809 Value *Reg = I.getArgOperand(0); 5810 Value *RegValue = I.getArgOperand(1); 5811 SDValue Chain = getRoot(); 5812 SDValue RegName = 5813 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5814 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5815 RegName, getValue(RegValue))); 5816 return; 5817 } 5818 case Intrinsic::memcpy: { 5819 const auto &MCI = cast<MemCpyInst>(I); 5820 SDValue Op1 = getValue(I.getArgOperand(0)); 5821 SDValue Op2 = getValue(I.getArgOperand(1)); 5822 SDValue Op3 = getValue(I.getArgOperand(2)); 5823 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5824 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5825 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5826 unsigned Align = MinAlign(DstAlign, SrcAlign); 5827 bool isVol = MCI.isVolatile(); 5828 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5829 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5830 // node. 5831 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5832 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol, 5833 false, isTC, 5834 MachinePointerInfo(I.getArgOperand(0)), 5835 MachinePointerInfo(I.getArgOperand(1))); 5836 updateDAGForMaybeTailCall(MC); 5837 return; 5838 } 5839 case Intrinsic::memset: { 5840 const auto &MSI = cast<MemSetInst>(I); 5841 SDValue Op1 = getValue(I.getArgOperand(0)); 5842 SDValue Op2 = getValue(I.getArgOperand(1)); 5843 SDValue Op3 = getValue(I.getArgOperand(2)); 5844 // @llvm.memset defines 0 and 1 to both mean no alignment. 5845 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5846 bool isVol = MSI.isVolatile(); 5847 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5848 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5849 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol, 5850 isTC, MachinePointerInfo(I.getArgOperand(0))); 5851 updateDAGForMaybeTailCall(MS); 5852 return; 5853 } 5854 case Intrinsic::memmove: { 5855 const auto &MMI = cast<MemMoveInst>(I); 5856 SDValue Op1 = getValue(I.getArgOperand(0)); 5857 SDValue Op2 = getValue(I.getArgOperand(1)); 5858 SDValue Op3 = getValue(I.getArgOperand(2)); 5859 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5860 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5861 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5862 unsigned Align = MinAlign(DstAlign, SrcAlign); 5863 bool isVol = MMI.isVolatile(); 5864 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5865 // FIXME: Support passing different dest/src alignments to the memmove DAG 5866 // node. 5867 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5868 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol, 5869 isTC, MachinePointerInfo(I.getArgOperand(0)), 5870 MachinePointerInfo(I.getArgOperand(1))); 5871 updateDAGForMaybeTailCall(MM); 5872 return; 5873 } 5874 case Intrinsic::memcpy_element_unordered_atomic: { 5875 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5876 SDValue Dst = getValue(MI.getRawDest()); 5877 SDValue Src = getValue(MI.getRawSource()); 5878 SDValue Length = getValue(MI.getLength()); 5879 5880 unsigned DstAlign = MI.getDestAlignment(); 5881 unsigned SrcAlign = MI.getSourceAlignment(); 5882 Type *LengthTy = MI.getLength()->getType(); 5883 unsigned ElemSz = MI.getElementSizeInBytes(); 5884 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5885 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5886 SrcAlign, Length, LengthTy, ElemSz, isTC, 5887 MachinePointerInfo(MI.getRawDest()), 5888 MachinePointerInfo(MI.getRawSource())); 5889 updateDAGForMaybeTailCall(MC); 5890 return; 5891 } 5892 case Intrinsic::memmove_element_unordered_atomic: { 5893 auto &MI = cast<AtomicMemMoveInst>(I); 5894 SDValue Dst = getValue(MI.getRawDest()); 5895 SDValue Src = getValue(MI.getRawSource()); 5896 SDValue Length = getValue(MI.getLength()); 5897 5898 unsigned DstAlign = MI.getDestAlignment(); 5899 unsigned SrcAlign = MI.getSourceAlignment(); 5900 Type *LengthTy = MI.getLength()->getType(); 5901 unsigned ElemSz = MI.getElementSizeInBytes(); 5902 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5903 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5904 SrcAlign, Length, LengthTy, ElemSz, isTC, 5905 MachinePointerInfo(MI.getRawDest()), 5906 MachinePointerInfo(MI.getRawSource())); 5907 updateDAGForMaybeTailCall(MC); 5908 return; 5909 } 5910 case Intrinsic::memset_element_unordered_atomic: { 5911 auto &MI = cast<AtomicMemSetInst>(I); 5912 SDValue Dst = getValue(MI.getRawDest()); 5913 SDValue Val = getValue(MI.getValue()); 5914 SDValue Length = getValue(MI.getLength()); 5915 5916 unsigned DstAlign = MI.getDestAlignment(); 5917 Type *LengthTy = MI.getLength()->getType(); 5918 unsigned ElemSz = MI.getElementSizeInBytes(); 5919 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5920 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5921 LengthTy, ElemSz, isTC, 5922 MachinePointerInfo(MI.getRawDest())); 5923 updateDAGForMaybeTailCall(MC); 5924 return; 5925 } 5926 case Intrinsic::dbg_addr: 5927 case Intrinsic::dbg_declare: { 5928 const auto &DI = cast<DbgVariableIntrinsic>(I); 5929 DILocalVariable *Variable = DI.getVariable(); 5930 DIExpression *Expression = DI.getExpression(); 5931 dropDanglingDebugInfo(Variable, Expression); 5932 assert(Variable && "Missing variable"); 5933 5934 // Check if address has undef value. 5935 const Value *Address = DI.getVariableLocation(); 5936 if (!Address || isa<UndefValue>(Address) || 5937 (Address->use_empty() && !isa<Argument>(Address))) { 5938 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5939 return; 5940 } 5941 5942 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5943 5944 // Check if this variable can be described by a frame index, typically 5945 // either as a static alloca or a byval parameter. 5946 int FI = std::numeric_limits<int>::max(); 5947 if (const auto *AI = 5948 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5949 if (AI->isStaticAlloca()) { 5950 auto I = FuncInfo.StaticAllocaMap.find(AI); 5951 if (I != FuncInfo.StaticAllocaMap.end()) 5952 FI = I->second; 5953 } 5954 } else if (const auto *Arg = dyn_cast<Argument>( 5955 Address->stripInBoundsConstantOffsets())) { 5956 FI = FuncInfo.getArgumentFrameIndex(Arg); 5957 } 5958 5959 // llvm.dbg.addr is control dependent and always generates indirect 5960 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5961 // the MachineFunction variable table. 5962 if (FI != std::numeric_limits<int>::max()) { 5963 if (Intrinsic == Intrinsic::dbg_addr) { 5964 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5965 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5966 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5967 } 5968 return; 5969 } 5970 5971 SDValue &N = NodeMap[Address]; 5972 if (!N.getNode() && isa<Argument>(Address)) 5973 // Check unused arguments map. 5974 N = UnusedArgNodeMap[Address]; 5975 SDDbgValue *SDV; 5976 if (N.getNode()) { 5977 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5978 Address = BCI->getOperand(0); 5979 // Parameters are handled specially. 5980 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5981 if (isParameter && FINode) { 5982 // Byval parameter. We have a frame index at this point. 5983 SDV = 5984 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5985 /*IsIndirect*/ true, dl, SDNodeOrder); 5986 } else if (isa<Argument>(Address)) { 5987 // Address is an argument, so try to emit its dbg value using 5988 // virtual register info from the FuncInfo.ValueMap. 5989 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5990 return; 5991 } else { 5992 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5993 true, dl, SDNodeOrder); 5994 } 5995 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5996 } else { 5997 // If Address is an argument then try to emit its dbg value using 5998 // virtual register info from the FuncInfo.ValueMap. 5999 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6000 N)) { 6001 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 6002 } 6003 } 6004 return; 6005 } 6006 case Intrinsic::dbg_label: { 6007 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6008 DILabel *Label = DI.getLabel(); 6009 assert(Label && "Missing label"); 6010 6011 SDDbgLabel *SDV; 6012 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6013 DAG.AddDbgLabel(SDV); 6014 return; 6015 } 6016 case Intrinsic::dbg_value: { 6017 const DbgValueInst &DI = cast<DbgValueInst>(I); 6018 assert(DI.getVariable() && "Missing variable"); 6019 6020 DILocalVariable *Variable = DI.getVariable(); 6021 DIExpression *Expression = DI.getExpression(); 6022 dropDanglingDebugInfo(Variable, Expression); 6023 const Value *V = DI.getValue(); 6024 if (!V) 6025 return; 6026 6027 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 6028 SDNodeOrder)) 6029 return; 6030 6031 // TODO: Dangling debug info will eventually either be resolved or produce 6032 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 6033 // between the original dbg.value location and its resolved DBG_VALUE, which 6034 // we should ideally fill with an extra Undef DBG_VALUE. 6035 6036 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 6037 return; 6038 } 6039 6040 case Intrinsic::eh_typeid_for: { 6041 // Find the type id for the given typeinfo. 6042 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6043 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6044 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6045 setValue(&I, Res); 6046 return; 6047 } 6048 6049 case Intrinsic::eh_return_i32: 6050 case Intrinsic::eh_return_i64: 6051 DAG.getMachineFunction().setCallsEHReturn(true); 6052 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6053 MVT::Other, 6054 getControlRoot(), 6055 getValue(I.getArgOperand(0)), 6056 getValue(I.getArgOperand(1)))); 6057 return; 6058 case Intrinsic::eh_unwind_init: 6059 DAG.getMachineFunction().setCallsUnwindInit(true); 6060 return; 6061 case Intrinsic::eh_dwarf_cfa: 6062 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6063 TLI.getPointerTy(DAG.getDataLayout()), 6064 getValue(I.getArgOperand(0)))); 6065 return; 6066 case Intrinsic::eh_sjlj_callsite: { 6067 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6068 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6069 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6070 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6071 6072 MMI.setCurrentCallSite(CI->getZExtValue()); 6073 return; 6074 } 6075 case Intrinsic::eh_sjlj_functioncontext: { 6076 // Get and store the index of the function context. 6077 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6078 AllocaInst *FnCtx = 6079 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6080 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6081 MFI.setFunctionContextIndex(FI); 6082 return; 6083 } 6084 case Intrinsic::eh_sjlj_setjmp: { 6085 SDValue Ops[2]; 6086 Ops[0] = getRoot(); 6087 Ops[1] = getValue(I.getArgOperand(0)); 6088 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6089 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6090 setValue(&I, Op.getValue(0)); 6091 DAG.setRoot(Op.getValue(1)); 6092 return; 6093 } 6094 case Intrinsic::eh_sjlj_longjmp: 6095 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6096 getRoot(), getValue(I.getArgOperand(0)))); 6097 return; 6098 case Intrinsic::eh_sjlj_setup_dispatch: 6099 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6100 getRoot())); 6101 return; 6102 case Intrinsic::masked_gather: 6103 visitMaskedGather(I); 6104 return; 6105 case Intrinsic::masked_load: 6106 visitMaskedLoad(I); 6107 return; 6108 case Intrinsic::masked_scatter: 6109 visitMaskedScatter(I); 6110 return; 6111 case Intrinsic::masked_store: 6112 visitMaskedStore(I); 6113 return; 6114 case Intrinsic::masked_expandload: 6115 visitMaskedLoad(I, true /* IsExpanding */); 6116 return; 6117 case Intrinsic::masked_compressstore: 6118 visitMaskedStore(I, true /* IsCompressing */); 6119 return; 6120 case Intrinsic::powi: 6121 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6122 getValue(I.getArgOperand(1)), DAG)); 6123 return; 6124 case Intrinsic::log: 6125 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6126 return; 6127 case Intrinsic::log2: 6128 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6129 return; 6130 case Intrinsic::log10: 6131 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6132 return; 6133 case Intrinsic::exp: 6134 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6135 return; 6136 case Intrinsic::exp2: 6137 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6138 return; 6139 case Intrinsic::pow: 6140 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6141 getValue(I.getArgOperand(1)), DAG, TLI)); 6142 return; 6143 case Intrinsic::sqrt: 6144 case Intrinsic::fabs: 6145 case Intrinsic::sin: 6146 case Intrinsic::cos: 6147 case Intrinsic::floor: 6148 case Intrinsic::ceil: 6149 case Intrinsic::trunc: 6150 case Intrinsic::rint: 6151 case Intrinsic::nearbyint: 6152 case Intrinsic::round: 6153 case Intrinsic::canonicalize: { 6154 unsigned Opcode; 6155 switch (Intrinsic) { 6156 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6157 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6158 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6159 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6160 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6161 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6162 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6163 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6164 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6165 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6166 case Intrinsic::round: Opcode = ISD::FROUND; break; 6167 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6168 } 6169 6170 setValue(&I, DAG.getNode(Opcode, sdl, 6171 getValue(I.getArgOperand(0)).getValueType(), 6172 getValue(I.getArgOperand(0)))); 6173 return; 6174 } 6175 case Intrinsic::lround: 6176 case Intrinsic::llround: 6177 case Intrinsic::lrint: 6178 case Intrinsic::llrint: { 6179 unsigned Opcode; 6180 switch (Intrinsic) { 6181 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6182 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6183 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6184 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6185 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6186 } 6187 6188 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6189 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6190 getValue(I.getArgOperand(0)))); 6191 return; 6192 } 6193 case Intrinsic::minnum: 6194 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6195 getValue(I.getArgOperand(0)).getValueType(), 6196 getValue(I.getArgOperand(0)), 6197 getValue(I.getArgOperand(1)))); 6198 return; 6199 case Intrinsic::maxnum: 6200 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6201 getValue(I.getArgOperand(0)).getValueType(), 6202 getValue(I.getArgOperand(0)), 6203 getValue(I.getArgOperand(1)))); 6204 return; 6205 case Intrinsic::minimum: 6206 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6207 getValue(I.getArgOperand(0)).getValueType(), 6208 getValue(I.getArgOperand(0)), 6209 getValue(I.getArgOperand(1)))); 6210 return; 6211 case Intrinsic::maximum: 6212 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6213 getValue(I.getArgOperand(0)).getValueType(), 6214 getValue(I.getArgOperand(0)), 6215 getValue(I.getArgOperand(1)))); 6216 return; 6217 case Intrinsic::copysign: 6218 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6219 getValue(I.getArgOperand(0)).getValueType(), 6220 getValue(I.getArgOperand(0)), 6221 getValue(I.getArgOperand(1)))); 6222 return; 6223 case Intrinsic::fma: 6224 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6225 getValue(I.getArgOperand(0)).getValueType(), 6226 getValue(I.getArgOperand(0)), 6227 getValue(I.getArgOperand(1)), 6228 getValue(I.getArgOperand(2)))); 6229 return; 6230 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6231 case Intrinsic::INTRINSIC: 6232 #include "llvm/IR/ConstrainedOps.def" 6233 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6234 return; 6235 case Intrinsic::fmuladd: { 6236 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6237 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6238 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6239 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6240 getValue(I.getArgOperand(0)).getValueType(), 6241 getValue(I.getArgOperand(0)), 6242 getValue(I.getArgOperand(1)), 6243 getValue(I.getArgOperand(2)))); 6244 } else { 6245 // TODO: Intrinsic calls should have fast-math-flags. 6246 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6247 getValue(I.getArgOperand(0)).getValueType(), 6248 getValue(I.getArgOperand(0)), 6249 getValue(I.getArgOperand(1))); 6250 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6251 getValue(I.getArgOperand(0)).getValueType(), 6252 Mul, 6253 getValue(I.getArgOperand(2))); 6254 setValue(&I, Add); 6255 } 6256 return; 6257 } 6258 case Intrinsic::convert_to_fp16: 6259 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6260 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6261 getValue(I.getArgOperand(0)), 6262 DAG.getTargetConstant(0, sdl, 6263 MVT::i32)))); 6264 return; 6265 case Intrinsic::convert_from_fp16: 6266 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6267 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6268 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6269 getValue(I.getArgOperand(0))))); 6270 return; 6271 case Intrinsic::pcmarker: { 6272 SDValue Tmp = getValue(I.getArgOperand(0)); 6273 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6274 return; 6275 } 6276 case Intrinsic::readcyclecounter: { 6277 SDValue Op = getRoot(); 6278 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6279 DAG.getVTList(MVT::i64, MVT::Other), Op); 6280 setValue(&I, Res); 6281 DAG.setRoot(Res.getValue(1)); 6282 return; 6283 } 6284 case Intrinsic::bitreverse: 6285 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6286 getValue(I.getArgOperand(0)).getValueType(), 6287 getValue(I.getArgOperand(0)))); 6288 return; 6289 case Intrinsic::bswap: 6290 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6291 getValue(I.getArgOperand(0)).getValueType(), 6292 getValue(I.getArgOperand(0)))); 6293 return; 6294 case Intrinsic::cttz: { 6295 SDValue Arg = getValue(I.getArgOperand(0)); 6296 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6297 EVT Ty = Arg.getValueType(); 6298 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6299 sdl, Ty, Arg)); 6300 return; 6301 } 6302 case Intrinsic::ctlz: { 6303 SDValue Arg = getValue(I.getArgOperand(0)); 6304 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6305 EVT Ty = Arg.getValueType(); 6306 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6307 sdl, Ty, Arg)); 6308 return; 6309 } 6310 case Intrinsic::ctpop: { 6311 SDValue Arg = getValue(I.getArgOperand(0)); 6312 EVT Ty = Arg.getValueType(); 6313 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6314 return; 6315 } 6316 case Intrinsic::fshl: 6317 case Intrinsic::fshr: { 6318 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6319 SDValue X = getValue(I.getArgOperand(0)); 6320 SDValue Y = getValue(I.getArgOperand(1)); 6321 SDValue Z = getValue(I.getArgOperand(2)); 6322 EVT VT = X.getValueType(); 6323 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6324 SDValue Zero = DAG.getConstant(0, sdl, VT); 6325 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6326 6327 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6328 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6329 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6330 return; 6331 } 6332 6333 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6334 // avoid the select that is necessary in the general case to filter out 6335 // the 0-shift possibility that leads to UB. 6336 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6337 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6338 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6339 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6340 return; 6341 } 6342 6343 // Some targets only rotate one way. Try the opposite direction. 6344 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6345 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6346 // Negate the shift amount because it is safe to ignore the high bits. 6347 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6348 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6349 return; 6350 } 6351 6352 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6353 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6354 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6355 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6356 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6357 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6358 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6359 return; 6360 } 6361 6362 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6363 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6364 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6365 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6366 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6367 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6368 6369 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6370 // and that is undefined. We must compare and select to avoid UB. 6371 EVT CCVT = MVT::i1; 6372 if (VT.isVector()) 6373 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6374 6375 // For fshl, 0-shift returns the 1st arg (X). 6376 // For fshr, 0-shift returns the 2nd arg (Y). 6377 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6378 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6379 return; 6380 } 6381 case Intrinsic::sadd_sat: { 6382 SDValue Op1 = getValue(I.getArgOperand(0)); 6383 SDValue Op2 = getValue(I.getArgOperand(1)); 6384 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6385 return; 6386 } 6387 case Intrinsic::uadd_sat: { 6388 SDValue Op1 = getValue(I.getArgOperand(0)); 6389 SDValue Op2 = getValue(I.getArgOperand(1)); 6390 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6391 return; 6392 } 6393 case Intrinsic::ssub_sat: { 6394 SDValue Op1 = getValue(I.getArgOperand(0)); 6395 SDValue Op2 = getValue(I.getArgOperand(1)); 6396 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6397 return; 6398 } 6399 case Intrinsic::usub_sat: { 6400 SDValue Op1 = getValue(I.getArgOperand(0)); 6401 SDValue Op2 = getValue(I.getArgOperand(1)); 6402 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6403 return; 6404 } 6405 case Intrinsic::smul_fix: 6406 case Intrinsic::umul_fix: 6407 case Intrinsic::smul_fix_sat: 6408 case Intrinsic::umul_fix_sat: { 6409 SDValue Op1 = getValue(I.getArgOperand(0)); 6410 SDValue Op2 = getValue(I.getArgOperand(1)); 6411 SDValue Op3 = getValue(I.getArgOperand(2)); 6412 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6413 Op1.getValueType(), Op1, Op2, Op3)); 6414 return; 6415 } 6416 case Intrinsic::sdiv_fix: 6417 case Intrinsic::udiv_fix: { 6418 SDValue Op1 = getValue(I.getArgOperand(0)); 6419 SDValue Op2 = getValue(I.getArgOperand(1)); 6420 SDValue Op3 = getValue(I.getArgOperand(2)); 6421 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6422 Op1, Op2, Op3, DAG, TLI)); 6423 return; 6424 } 6425 case Intrinsic::stacksave: { 6426 SDValue Op = getRoot(); 6427 Res = DAG.getNode( 6428 ISD::STACKSAVE, sdl, 6429 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6430 setValue(&I, Res); 6431 DAG.setRoot(Res.getValue(1)); 6432 return; 6433 } 6434 case Intrinsic::stackrestore: 6435 Res = getValue(I.getArgOperand(0)); 6436 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6437 return; 6438 case Intrinsic::get_dynamic_area_offset: { 6439 SDValue Op = getRoot(); 6440 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6441 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6442 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6443 // target. 6444 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6445 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6446 " intrinsic!"); 6447 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6448 Op); 6449 DAG.setRoot(Op); 6450 setValue(&I, Res); 6451 return; 6452 } 6453 case Intrinsic::stackguard: { 6454 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6455 MachineFunction &MF = DAG.getMachineFunction(); 6456 const Module &M = *MF.getFunction().getParent(); 6457 SDValue Chain = getRoot(); 6458 if (TLI.useLoadStackGuardNode()) { 6459 Res = getLoadStackGuard(DAG, sdl, Chain); 6460 } else { 6461 const Value *Global = TLI.getSDagStackGuard(M); 6462 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6463 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6464 MachinePointerInfo(Global, 0), Align, 6465 MachineMemOperand::MOVolatile); 6466 } 6467 if (TLI.useStackGuardXorFP()) 6468 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6469 DAG.setRoot(Chain); 6470 setValue(&I, Res); 6471 return; 6472 } 6473 case Intrinsic::stackprotector: { 6474 // Emit code into the DAG to store the stack guard onto the stack. 6475 MachineFunction &MF = DAG.getMachineFunction(); 6476 MachineFrameInfo &MFI = MF.getFrameInfo(); 6477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6478 SDValue Src, Chain = getRoot(); 6479 6480 if (TLI.useLoadStackGuardNode()) 6481 Src = getLoadStackGuard(DAG, sdl, Chain); 6482 else 6483 Src = getValue(I.getArgOperand(0)); // The guard's value. 6484 6485 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6486 6487 int FI = FuncInfo.StaticAllocaMap[Slot]; 6488 MFI.setStackProtectorIndex(FI); 6489 6490 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6491 6492 // Store the stack protector onto the stack. 6493 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6494 DAG.getMachineFunction(), FI), 6495 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6496 setValue(&I, Res); 6497 DAG.setRoot(Res); 6498 return; 6499 } 6500 case Intrinsic::objectsize: 6501 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6502 6503 case Intrinsic::is_constant: 6504 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6505 6506 case Intrinsic::annotation: 6507 case Intrinsic::ptr_annotation: 6508 case Intrinsic::launder_invariant_group: 6509 case Intrinsic::strip_invariant_group: 6510 // Drop the intrinsic, but forward the value 6511 setValue(&I, getValue(I.getOperand(0))); 6512 return; 6513 case Intrinsic::assume: 6514 case Intrinsic::var_annotation: 6515 case Intrinsic::sideeffect: 6516 // Discard annotate attributes, assumptions, and artificial side-effects. 6517 return; 6518 6519 case Intrinsic::codeview_annotation: { 6520 // Emit a label associated with this metadata. 6521 MachineFunction &MF = DAG.getMachineFunction(); 6522 MCSymbol *Label = 6523 MF.getMMI().getContext().createTempSymbol("annotation", true); 6524 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6525 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6526 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6527 DAG.setRoot(Res); 6528 return; 6529 } 6530 6531 case Intrinsic::init_trampoline: { 6532 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6533 6534 SDValue Ops[6]; 6535 Ops[0] = getRoot(); 6536 Ops[1] = getValue(I.getArgOperand(0)); 6537 Ops[2] = getValue(I.getArgOperand(1)); 6538 Ops[3] = getValue(I.getArgOperand(2)); 6539 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6540 Ops[5] = DAG.getSrcValue(F); 6541 6542 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6543 6544 DAG.setRoot(Res); 6545 return; 6546 } 6547 case Intrinsic::adjust_trampoline: 6548 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6549 TLI.getPointerTy(DAG.getDataLayout()), 6550 getValue(I.getArgOperand(0)))); 6551 return; 6552 case Intrinsic::gcroot: { 6553 assert(DAG.getMachineFunction().getFunction().hasGC() && 6554 "only valid in functions with gc specified, enforced by Verifier"); 6555 assert(GFI && "implied by previous"); 6556 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6557 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6558 6559 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6560 GFI->addStackRoot(FI->getIndex(), TypeMap); 6561 return; 6562 } 6563 case Intrinsic::gcread: 6564 case Intrinsic::gcwrite: 6565 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6566 case Intrinsic::flt_rounds: 6567 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6568 return; 6569 6570 case Intrinsic::expect: 6571 // Just replace __builtin_expect(exp, c) with EXP. 6572 setValue(&I, getValue(I.getArgOperand(0))); 6573 return; 6574 6575 case Intrinsic::debugtrap: 6576 case Intrinsic::trap: { 6577 StringRef TrapFuncName = 6578 I.getAttributes() 6579 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6580 .getValueAsString(); 6581 if (TrapFuncName.empty()) { 6582 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6583 ISD::TRAP : ISD::DEBUGTRAP; 6584 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6585 return; 6586 } 6587 TargetLowering::ArgListTy Args; 6588 6589 TargetLowering::CallLoweringInfo CLI(DAG); 6590 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6591 CallingConv::C, I.getType(), 6592 DAG.getExternalSymbol(TrapFuncName.data(), 6593 TLI.getPointerTy(DAG.getDataLayout())), 6594 std::move(Args)); 6595 6596 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6597 DAG.setRoot(Result.second); 6598 return; 6599 } 6600 6601 case Intrinsic::uadd_with_overflow: 6602 case Intrinsic::sadd_with_overflow: 6603 case Intrinsic::usub_with_overflow: 6604 case Intrinsic::ssub_with_overflow: 6605 case Intrinsic::umul_with_overflow: 6606 case Intrinsic::smul_with_overflow: { 6607 ISD::NodeType Op; 6608 switch (Intrinsic) { 6609 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6610 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6611 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6612 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6613 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6614 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6615 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6616 } 6617 SDValue Op1 = getValue(I.getArgOperand(0)); 6618 SDValue Op2 = getValue(I.getArgOperand(1)); 6619 6620 EVT ResultVT = Op1.getValueType(); 6621 EVT OverflowVT = MVT::i1; 6622 if (ResultVT.isVector()) 6623 OverflowVT = EVT::getVectorVT( 6624 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6625 6626 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6627 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6628 return; 6629 } 6630 case Intrinsic::prefetch: { 6631 SDValue Ops[5]; 6632 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6633 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6634 Ops[0] = DAG.getRoot(); 6635 Ops[1] = getValue(I.getArgOperand(0)); 6636 Ops[2] = getValue(I.getArgOperand(1)); 6637 Ops[3] = getValue(I.getArgOperand(2)); 6638 Ops[4] = getValue(I.getArgOperand(3)); 6639 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6640 DAG.getVTList(MVT::Other), Ops, 6641 EVT::getIntegerVT(*Context, 8), 6642 MachinePointerInfo(I.getArgOperand(0)), 6643 0, /* align */ 6644 Flags); 6645 6646 // Chain the prefetch in parallell with any pending loads, to stay out of 6647 // the way of later optimizations. 6648 PendingLoads.push_back(Result); 6649 Result = getRoot(); 6650 DAG.setRoot(Result); 6651 return; 6652 } 6653 case Intrinsic::lifetime_start: 6654 case Intrinsic::lifetime_end: { 6655 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6656 // Stack coloring is not enabled in O0, discard region information. 6657 if (TM.getOptLevel() == CodeGenOpt::None) 6658 return; 6659 6660 const int64_t ObjectSize = 6661 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6662 Value *const ObjectPtr = I.getArgOperand(1); 6663 SmallVector<const Value *, 4> Allocas; 6664 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6665 6666 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6667 E = Allocas.end(); Object != E; ++Object) { 6668 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6669 6670 // Could not find an Alloca. 6671 if (!LifetimeObject) 6672 continue; 6673 6674 // First check that the Alloca is static, otherwise it won't have a 6675 // valid frame index. 6676 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6677 if (SI == FuncInfo.StaticAllocaMap.end()) 6678 return; 6679 6680 const int FrameIndex = SI->second; 6681 int64_t Offset; 6682 if (GetPointerBaseWithConstantOffset( 6683 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6684 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6685 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6686 Offset); 6687 DAG.setRoot(Res); 6688 } 6689 return; 6690 } 6691 case Intrinsic::invariant_start: 6692 // Discard region information. 6693 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6694 return; 6695 case Intrinsic::invariant_end: 6696 // Discard region information. 6697 return; 6698 case Intrinsic::clear_cache: 6699 /// FunctionName may be null. 6700 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6701 lowerCallToExternalSymbol(I, FunctionName); 6702 return; 6703 case Intrinsic::donothing: 6704 // ignore 6705 return; 6706 case Intrinsic::experimental_stackmap: 6707 visitStackmap(I); 6708 return; 6709 case Intrinsic::experimental_patchpoint_void: 6710 case Intrinsic::experimental_patchpoint_i64: 6711 visitPatchpoint(&I); 6712 return; 6713 case Intrinsic::experimental_gc_statepoint: 6714 LowerStatepoint(ImmutableStatepoint(&I)); 6715 return; 6716 case Intrinsic::experimental_gc_result: 6717 visitGCResult(cast<GCResultInst>(I)); 6718 return; 6719 case Intrinsic::experimental_gc_relocate: 6720 visitGCRelocate(cast<GCRelocateInst>(I)); 6721 return; 6722 case Intrinsic::instrprof_increment: 6723 llvm_unreachable("instrprof failed to lower an increment"); 6724 case Intrinsic::instrprof_value_profile: 6725 llvm_unreachable("instrprof failed to lower a value profiling call"); 6726 case Intrinsic::localescape: { 6727 MachineFunction &MF = DAG.getMachineFunction(); 6728 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6729 6730 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6731 // is the same on all targets. 6732 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6733 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6734 if (isa<ConstantPointerNull>(Arg)) 6735 continue; // Skip null pointers. They represent a hole in index space. 6736 AllocaInst *Slot = cast<AllocaInst>(Arg); 6737 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6738 "can only escape static allocas"); 6739 int FI = FuncInfo.StaticAllocaMap[Slot]; 6740 MCSymbol *FrameAllocSym = 6741 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6742 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6744 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6745 .addSym(FrameAllocSym) 6746 .addFrameIndex(FI); 6747 } 6748 6749 return; 6750 } 6751 6752 case Intrinsic::localrecover: { 6753 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6754 MachineFunction &MF = DAG.getMachineFunction(); 6755 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6756 6757 // Get the symbol that defines the frame offset. 6758 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6759 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6760 unsigned IdxVal = 6761 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6762 MCSymbol *FrameAllocSym = 6763 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6764 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6765 6766 // Create a MCSymbol for the label to avoid any target lowering 6767 // that would make this PC relative. 6768 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6769 SDValue OffsetVal = 6770 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6771 6772 // Add the offset to the FP. 6773 Value *FP = I.getArgOperand(1); 6774 SDValue FPVal = getValue(FP); 6775 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6776 setValue(&I, Add); 6777 6778 return; 6779 } 6780 6781 case Intrinsic::eh_exceptionpointer: 6782 case Intrinsic::eh_exceptioncode: { 6783 // Get the exception pointer vreg, copy from it, and resize it to fit. 6784 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6785 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6786 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6787 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6788 SDValue N = 6789 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6790 if (Intrinsic == Intrinsic::eh_exceptioncode) 6791 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6792 setValue(&I, N); 6793 return; 6794 } 6795 case Intrinsic::xray_customevent: { 6796 // Here we want to make sure that the intrinsic behaves as if it has a 6797 // specific calling convention, and only for x86_64. 6798 // FIXME: Support other platforms later. 6799 const auto &Triple = DAG.getTarget().getTargetTriple(); 6800 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6801 return; 6802 6803 SDLoc DL = getCurSDLoc(); 6804 SmallVector<SDValue, 8> Ops; 6805 6806 // We want to say that we always want the arguments in registers. 6807 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6808 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6810 SDValue Chain = getRoot(); 6811 Ops.push_back(LogEntryVal); 6812 Ops.push_back(StrSizeVal); 6813 Ops.push_back(Chain); 6814 6815 // We need to enforce the calling convention for the callsite, so that 6816 // argument ordering is enforced correctly, and that register allocation can 6817 // see that some registers may be assumed clobbered and have to preserve 6818 // them across calls to the intrinsic. 6819 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6820 DL, NodeTys, Ops); 6821 SDValue patchableNode = SDValue(MN, 0); 6822 DAG.setRoot(patchableNode); 6823 setValue(&I, patchableNode); 6824 return; 6825 } 6826 case Intrinsic::xray_typedevent: { 6827 // Here we want to make sure that the intrinsic behaves as if it has a 6828 // specific calling convention, and only for x86_64. 6829 // FIXME: Support other platforms later. 6830 const auto &Triple = DAG.getTarget().getTargetTriple(); 6831 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6832 return; 6833 6834 SDLoc DL = getCurSDLoc(); 6835 SmallVector<SDValue, 8> Ops; 6836 6837 // We want to say that we always want the arguments in registers. 6838 // It's unclear to me how manipulating the selection DAG here forces callers 6839 // to provide arguments in registers instead of on the stack. 6840 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6841 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6842 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6843 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6844 SDValue Chain = getRoot(); 6845 Ops.push_back(LogTypeId); 6846 Ops.push_back(LogEntryVal); 6847 Ops.push_back(StrSizeVal); 6848 Ops.push_back(Chain); 6849 6850 // We need to enforce the calling convention for the callsite, so that 6851 // argument ordering is enforced correctly, and that register allocation can 6852 // see that some registers may be assumed clobbered and have to preserve 6853 // them across calls to the intrinsic. 6854 MachineSDNode *MN = DAG.getMachineNode( 6855 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6856 SDValue patchableNode = SDValue(MN, 0); 6857 DAG.setRoot(patchableNode); 6858 setValue(&I, patchableNode); 6859 return; 6860 } 6861 case Intrinsic::experimental_deoptimize: 6862 LowerDeoptimizeCall(&I); 6863 return; 6864 6865 case Intrinsic::experimental_vector_reduce_v2_fadd: 6866 case Intrinsic::experimental_vector_reduce_v2_fmul: 6867 case Intrinsic::experimental_vector_reduce_add: 6868 case Intrinsic::experimental_vector_reduce_mul: 6869 case Intrinsic::experimental_vector_reduce_and: 6870 case Intrinsic::experimental_vector_reduce_or: 6871 case Intrinsic::experimental_vector_reduce_xor: 6872 case Intrinsic::experimental_vector_reduce_smax: 6873 case Intrinsic::experimental_vector_reduce_smin: 6874 case Intrinsic::experimental_vector_reduce_umax: 6875 case Intrinsic::experimental_vector_reduce_umin: 6876 case Intrinsic::experimental_vector_reduce_fmax: 6877 case Intrinsic::experimental_vector_reduce_fmin: 6878 visitVectorReduce(I, Intrinsic); 6879 return; 6880 6881 case Intrinsic::icall_branch_funnel: { 6882 SmallVector<SDValue, 16> Ops; 6883 Ops.push_back(getValue(I.getArgOperand(0))); 6884 6885 int64_t Offset; 6886 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6887 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6888 if (!Base) 6889 report_fatal_error( 6890 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6891 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6892 6893 struct BranchFunnelTarget { 6894 int64_t Offset; 6895 SDValue Target; 6896 }; 6897 SmallVector<BranchFunnelTarget, 8> Targets; 6898 6899 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6900 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6901 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6902 if (ElemBase != Base) 6903 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6904 "to the same GlobalValue"); 6905 6906 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6907 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6908 if (!GA) 6909 report_fatal_error( 6910 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6911 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6912 GA->getGlobal(), getCurSDLoc(), 6913 Val.getValueType(), GA->getOffset())}); 6914 } 6915 llvm::sort(Targets, 6916 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6917 return T1.Offset < T2.Offset; 6918 }); 6919 6920 for (auto &T : Targets) { 6921 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6922 Ops.push_back(T.Target); 6923 } 6924 6925 Ops.push_back(DAG.getRoot()); // Chain 6926 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6927 getCurSDLoc(), MVT::Other, Ops), 6928 0); 6929 DAG.setRoot(N); 6930 setValue(&I, N); 6931 HasTailCall = true; 6932 return; 6933 } 6934 6935 case Intrinsic::wasm_landingpad_index: 6936 // Information this intrinsic contained has been transferred to 6937 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6938 // delete it now. 6939 return; 6940 6941 case Intrinsic::aarch64_settag: 6942 case Intrinsic::aarch64_settag_zero: { 6943 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6944 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6945 SDValue Val = TSI.EmitTargetCodeForSetTag( 6946 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6947 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6948 ZeroMemory); 6949 DAG.setRoot(Val); 6950 setValue(&I, Val); 6951 return; 6952 } 6953 case Intrinsic::ptrmask: { 6954 SDValue Ptr = getValue(I.getOperand(0)); 6955 SDValue Const = getValue(I.getOperand(1)); 6956 6957 EVT DestVT = 6958 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6959 6960 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6961 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6962 return; 6963 } 6964 } 6965 } 6966 6967 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6968 const ConstrainedFPIntrinsic &FPI) { 6969 SDLoc sdl = getCurSDLoc(); 6970 6971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6972 SmallVector<EVT, 4> ValueVTs; 6973 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6974 ValueVTs.push_back(MVT::Other); // Out chain 6975 6976 // We do not need to serialize constrained FP intrinsics against 6977 // each other or against (nonvolatile) loads, so they can be 6978 // chained like loads. 6979 SDValue Chain = DAG.getRoot(); 6980 SmallVector<SDValue, 4> Opers; 6981 Opers.push_back(Chain); 6982 if (FPI.isUnaryOp()) { 6983 Opers.push_back(getValue(FPI.getArgOperand(0))); 6984 } else if (FPI.isTernaryOp()) { 6985 Opers.push_back(getValue(FPI.getArgOperand(0))); 6986 Opers.push_back(getValue(FPI.getArgOperand(1))); 6987 Opers.push_back(getValue(FPI.getArgOperand(2))); 6988 } else { 6989 Opers.push_back(getValue(FPI.getArgOperand(0))); 6990 Opers.push_back(getValue(FPI.getArgOperand(1))); 6991 } 6992 6993 unsigned Opcode; 6994 switch (FPI.getIntrinsicID()) { 6995 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6996 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6997 case Intrinsic::INTRINSIC: \ 6998 Opcode = ISD::STRICT_##DAGN; \ 6999 break; 7000 #include "llvm/IR/ConstrainedOps.def" 7001 } 7002 7003 // A few strict DAG nodes carry additional operands that are not 7004 // set up by the default code above. 7005 switch (Opcode) { 7006 default: break; 7007 case ISD::STRICT_FP_ROUND: 7008 Opers.push_back( 7009 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7010 break; 7011 case ISD::STRICT_FSETCC: 7012 case ISD::STRICT_FSETCCS: { 7013 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7014 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7015 break; 7016 } 7017 } 7018 7019 SDVTList VTs = DAG.getVTList(ValueVTs); 7020 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 7021 7022 assert(Result.getNode()->getNumValues() == 2); 7023 7024 // Push node to the appropriate list so that future instructions can be 7025 // chained up correctly. 7026 SDValue OutChain = Result.getValue(1); 7027 switch (FPI.getExceptionBehavior().getValue()) { 7028 case fp::ExceptionBehavior::ebIgnore: 7029 // The only reason why ebIgnore nodes still need to be chained is that 7030 // they might depend on the current rounding mode, and therefore must 7031 // not be moved across instruction that may change that mode. 7032 LLVM_FALLTHROUGH; 7033 case fp::ExceptionBehavior::ebMayTrap: 7034 // These must not be moved across calls or instructions that may change 7035 // floating-point exception masks. 7036 PendingConstrainedFP.push_back(OutChain); 7037 break; 7038 case fp::ExceptionBehavior::ebStrict: 7039 // These must not be moved across calls or instructions that may change 7040 // floating-point exception masks or read floating-point exception flags. 7041 // In addition, they cannot be optimized out even if unused. 7042 PendingConstrainedFPStrict.push_back(OutChain); 7043 break; 7044 } 7045 7046 SDValue FPResult = Result.getValue(0); 7047 setValue(&FPI, FPResult); 7048 } 7049 7050 std::pair<SDValue, SDValue> 7051 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7052 const BasicBlock *EHPadBB) { 7053 MachineFunction &MF = DAG.getMachineFunction(); 7054 MachineModuleInfo &MMI = MF.getMMI(); 7055 MCSymbol *BeginLabel = nullptr; 7056 7057 if (EHPadBB) { 7058 // Insert a label before the invoke call to mark the try range. This can be 7059 // used to detect deletion of the invoke via the MachineModuleInfo. 7060 BeginLabel = MMI.getContext().createTempSymbol(); 7061 7062 // For SjLj, keep track of which landing pads go with which invokes 7063 // so as to maintain the ordering of pads in the LSDA. 7064 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7065 if (CallSiteIndex) { 7066 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7067 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7068 7069 // Now that the call site is handled, stop tracking it. 7070 MMI.setCurrentCallSite(0); 7071 } 7072 7073 // Both PendingLoads and PendingExports must be flushed here; 7074 // this call might not return. 7075 (void)getRoot(); 7076 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7077 7078 CLI.setChain(getRoot()); 7079 } 7080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7081 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7082 7083 assert((CLI.IsTailCall || Result.second.getNode()) && 7084 "Non-null chain expected with non-tail call!"); 7085 assert((Result.second.getNode() || !Result.first.getNode()) && 7086 "Null value expected with tail call!"); 7087 7088 if (!Result.second.getNode()) { 7089 // As a special case, a null chain means that a tail call has been emitted 7090 // and the DAG root is already updated. 7091 HasTailCall = true; 7092 7093 // Since there's no actual continuation from this block, nothing can be 7094 // relying on us setting vregs for them. 7095 PendingExports.clear(); 7096 } else { 7097 DAG.setRoot(Result.second); 7098 } 7099 7100 if (EHPadBB) { 7101 // Insert a label at the end of the invoke call to mark the try range. This 7102 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7103 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7104 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7105 7106 // Inform MachineModuleInfo of range. 7107 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7108 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7109 // actually use outlined funclets and their LSDA info style. 7110 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7111 assert(CLI.CS); 7112 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7113 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7114 BeginLabel, EndLabel); 7115 } else if (!isScopedEHPersonality(Pers)) { 7116 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7117 } 7118 } 7119 7120 return Result; 7121 } 7122 7123 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7124 bool isTailCall, 7125 const BasicBlock *EHPadBB) { 7126 auto &DL = DAG.getDataLayout(); 7127 FunctionType *FTy = CS.getFunctionType(); 7128 Type *RetTy = CS.getType(); 7129 7130 TargetLowering::ArgListTy Args; 7131 Args.reserve(CS.arg_size()); 7132 7133 const Value *SwiftErrorVal = nullptr; 7134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7135 7136 if (isTailCall) { 7137 // Avoid emitting tail calls in functions with the disable-tail-calls 7138 // attribute. 7139 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7140 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7141 "true") 7142 isTailCall = false; 7143 7144 // We can't tail call inside a function with a swifterror argument. Lowering 7145 // does not support this yet. It would have to move into the swifterror 7146 // register before the call. 7147 if (TLI.supportSwiftError() && 7148 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7149 isTailCall = false; 7150 } 7151 7152 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7153 i != e; ++i) { 7154 TargetLowering::ArgListEntry Entry; 7155 const Value *V = *i; 7156 7157 // Skip empty types 7158 if (V->getType()->isEmptyTy()) 7159 continue; 7160 7161 SDValue ArgNode = getValue(V); 7162 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7163 7164 Entry.setAttributes(&CS, i - CS.arg_begin()); 7165 7166 // Use swifterror virtual register as input to the call. 7167 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7168 SwiftErrorVal = V; 7169 // We find the virtual register for the actual swifterror argument. 7170 // Instead of using the Value, we use the virtual register instead. 7171 Entry.Node = DAG.getRegister( 7172 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7173 EVT(TLI.getPointerTy(DL))); 7174 } 7175 7176 Args.push_back(Entry); 7177 7178 // If we have an explicit sret argument that is an Instruction, (i.e., it 7179 // might point to function-local memory), we can't meaningfully tail-call. 7180 if (Entry.IsSRet && isa<Instruction>(V)) 7181 isTailCall = false; 7182 } 7183 7184 // If call site has a cfguardtarget operand bundle, create and add an 7185 // additional ArgListEntry. 7186 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7187 TargetLowering::ArgListEntry Entry; 7188 Value *V = Bundle->Inputs[0]; 7189 SDValue ArgNode = getValue(V); 7190 Entry.Node = ArgNode; 7191 Entry.Ty = V->getType(); 7192 Entry.IsCFGuardTarget = true; 7193 Args.push_back(Entry); 7194 } 7195 7196 // Check if target-independent constraints permit a tail call here. 7197 // Target-dependent constraints are checked within TLI->LowerCallTo. 7198 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7199 isTailCall = false; 7200 7201 // Disable tail calls if there is an swifterror argument. Targets have not 7202 // been updated to support tail calls. 7203 if (TLI.supportSwiftError() && SwiftErrorVal) 7204 isTailCall = false; 7205 7206 TargetLowering::CallLoweringInfo CLI(DAG); 7207 CLI.setDebugLoc(getCurSDLoc()) 7208 .setChain(getRoot()) 7209 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7210 .setTailCall(isTailCall) 7211 .setConvergent(CS.isConvergent()); 7212 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7213 7214 if (Result.first.getNode()) { 7215 const Instruction *Inst = CS.getInstruction(); 7216 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7217 setValue(Inst, Result.first); 7218 } 7219 7220 // The last element of CLI.InVals has the SDValue for swifterror return. 7221 // Here we copy it to a virtual register and update SwiftErrorMap for 7222 // book-keeping. 7223 if (SwiftErrorVal && TLI.supportSwiftError()) { 7224 // Get the last element of InVals. 7225 SDValue Src = CLI.InVals.back(); 7226 Register VReg = SwiftError.getOrCreateVRegDefAt( 7227 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7228 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7229 DAG.setRoot(CopyNode); 7230 } 7231 } 7232 7233 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7234 SelectionDAGBuilder &Builder) { 7235 // Check to see if this load can be trivially constant folded, e.g. if the 7236 // input is from a string literal. 7237 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7238 // Cast pointer to the type we really want to load. 7239 Type *LoadTy = 7240 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7241 if (LoadVT.isVector()) 7242 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7243 7244 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7245 PointerType::getUnqual(LoadTy)); 7246 7247 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7248 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7249 return Builder.getValue(LoadCst); 7250 } 7251 7252 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7253 // still constant memory, the input chain can be the entry node. 7254 SDValue Root; 7255 bool ConstantMemory = false; 7256 7257 // Do not serialize (non-volatile) loads of constant memory with anything. 7258 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7259 Root = Builder.DAG.getEntryNode(); 7260 ConstantMemory = true; 7261 } else { 7262 // Do not serialize non-volatile loads against each other. 7263 Root = Builder.DAG.getRoot(); 7264 } 7265 7266 SDValue Ptr = Builder.getValue(PtrVal); 7267 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7268 Ptr, MachinePointerInfo(PtrVal), 7269 /* Alignment = */ 1); 7270 7271 if (!ConstantMemory) 7272 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7273 return LoadVal; 7274 } 7275 7276 /// Record the value for an instruction that produces an integer result, 7277 /// converting the type where necessary. 7278 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7279 SDValue Value, 7280 bool IsSigned) { 7281 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7282 I.getType(), true); 7283 if (IsSigned) 7284 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7285 else 7286 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7287 setValue(&I, Value); 7288 } 7289 7290 /// See if we can lower a memcmp call into an optimized form. If so, return 7291 /// true and lower it. Otherwise return false, and it will be lowered like a 7292 /// normal call. 7293 /// The caller already checked that \p I calls the appropriate LibFunc with a 7294 /// correct prototype. 7295 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7296 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7297 const Value *Size = I.getArgOperand(2); 7298 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7299 if (CSize && CSize->getZExtValue() == 0) { 7300 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7301 I.getType(), true); 7302 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7303 return true; 7304 } 7305 7306 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7307 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7308 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7309 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7310 if (Res.first.getNode()) { 7311 processIntegerCallValue(I, Res.first, true); 7312 PendingLoads.push_back(Res.second); 7313 return true; 7314 } 7315 7316 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7317 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7318 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7319 return false; 7320 7321 // If the target has a fast compare for the given size, it will return a 7322 // preferred load type for that size. Require that the load VT is legal and 7323 // that the target supports unaligned loads of that type. Otherwise, return 7324 // INVALID. 7325 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7327 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7328 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7329 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7330 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7331 // TODO: Check alignment of src and dest ptrs. 7332 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7333 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7334 if (!TLI.isTypeLegal(LVT) || 7335 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7336 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7337 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7338 } 7339 7340 return LVT; 7341 }; 7342 7343 // This turns into unaligned loads. We only do this if the target natively 7344 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7345 // we'll only produce a small number of byte loads. 7346 MVT LoadVT; 7347 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7348 switch (NumBitsToCompare) { 7349 default: 7350 return false; 7351 case 16: 7352 LoadVT = MVT::i16; 7353 break; 7354 case 32: 7355 LoadVT = MVT::i32; 7356 break; 7357 case 64: 7358 case 128: 7359 case 256: 7360 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7361 break; 7362 } 7363 7364 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7365 return false; 7366 7367 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7368 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7369 7370 // Bitcast to a wide integer type if the loads are vectors. 7371 if (LoadVT.isVector()) { 7372 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7373 LoadL = DAG.getBitcast(CmpVT, LoadL); 7374 LoadR = DAG.getBitcast(CmpVT, LoadR); 7375 } 7376 7377 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7378 processIntegerCallValue(I, Cmp, false); 7379 return true; 7380 } 7381 7382 /// See if we can lower a memchr call into an optimized form. If so, return 7383 /// true and lower it. Otherwise return false, and it will be lowered like a 7384 /// normal call. 7385 /// The caller already checked that \p I calls the appropriate LibFunc with a 7386 /// correct prototype. 7387 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7388 const Value *Src = I.getArgOperand(0); 7389 const Value *Char = I.getArgOperand(1); 7390 const Value *Length = I.getArgOperand(2); 7391 7392 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7393 std::pair<SDValue, SDValue> Res = 7394 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7395 getValue(Src), getValue(Char), getValue(Length), 7396 MachinePointerInfo(Src)); 7397 if (Res.first.getNode()) { 7398 setValue(&I, Res.first); 7399 PendingLoads.push_back(Res.second); 7400 return true; 7401 } 7402 7403 return false; 7404 } 7405 7406 /// See if we can lower a mempcpy call into an optimized form. If so, return 7407 /// true and lower it. Otherwise return false, and it will be lowered like a 7408 /// normal call. 7409 /// The caller already checked that \p I calls the appropriate LibFunc with a 7410 /// correct prototype. 7411 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7412 SDValue Dst = getValue(I.getArgOperand(0)); 7413 SDValue Src = getValue(I.getArgOperand(1)); 7414 SDValue Size = getValue(I.getArgOperand(2)); 7415 7416 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7417 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7418 unsigned Align = std::min(DstAlign, SrcAlign); 7419 if (Align == 0) // Alignment of one or both could not be inferred. 7420 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7421 7422 bool isVol = false; 7423 SDLoc sdl = getCurSDLoc(); 7424 7425 // In the mempcpy context we need to pass in a false value for isTailCall 7426 // because the return pointer needs to be adjusted by the size of 7427 // the copied memory. 7428 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7429 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol, 7430 false, /*isTailCall=*/false, 7431 MachinePointerInfo(I.getArgOperand(0)), 7432 MachinePointerInfo(I.getArgOperand(1))); 7433 assert(MC.getNode() != nullptr && 7434 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7435 DAG.setRoot(MC); 7436 7437 // Check if Size needs to be truncated or extended. 7438 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7439 7440 // Adjust return pointer to point just past the last dst byte. 7441 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7442 Dst, Size); 7443 setValue(&I, DstPlusSize); 7444 return true; 7445 } 7446 7447 /// See if we can lower a strcpy call into an optimized form. If so, return 7448 /// true and lower it, otherwise return false and it will be lowered like a 7449 /// normal call. 7450 /// The caller already checked that \p I calls the appropriate LibFunc with a 7451 /// correct prototype. 7452 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7453 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7454 7455 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7456 std::pair<SDValue, SDValue> Res = 7457 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7458 getValue(Arg0), getValue(Arg1), 7459 MachinePointerInfo(Arg0), 7460 MachinePointerInfo(Arg1), isStpcpy); 7461 if (Res.first.getNode()) { 7462 setValue(&I, Res.first); 7463 DAG.setRoot(Res.second); 7464 return true; 7465 } 7466 7467 return false; 7468 } 7469 7470 /// See if we can lower a strcmp call into an optimized form. If so, return 7471 /// true and lower it, otherwise return false and it will be lowered like a 7472 /// normal call. 7473 /// The caller already checked that \p I calls the appropriate LibFunc with a 7474 /// correct prototype. 7475 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7476 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7477 7478 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7479 std::pair<SDValue, SDValue> Res = 7480 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7481 getValue(Arg0), getValue(Arg1), 7482 MachinePointerInfo(Arg0), 7483 MachinePointerInfo(Arg1)); 7484 if (Res.first.getNode()) { 7485 processIntegerCallValue(I, Res.first, true); 7486 PendingLoads.push_back(Res.second); 7487 return true; 7488 } 7489 7490 return false; 7491 } 7492 7493 /// See if we can lower a strlen call into an optimized form. If so, return 7494 /// true and lower it, otherwise return false and it will be lowered like a 7495 /// normal call. 7496 /// The caller already checked that \p I calls the appropriate LibFunc with a 7497 /// correct prototype. 7498 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7499 const Value *Arg0 = I.getArgOperand(0); 7500 7501 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7502 std::pair<SDValue, SDValue> Res = 7503 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7504 getValue(Arg0), MachinePointerInfo(Arg0)); 7505 if (Res.first.getNode()) { 7506 processIntegerCallValue(I, Res.first, false); 7507 PendingLoads.push_back(Res.second); 7508 return true; 7509 } 7510 7511 return false; 7512 } 7513 7514 /// See if we can lower a strnlen call into an optimized form. If so, return 7515 /// true and lower it, otherwise return false and it will be lowered like a 7516 /// normal call. 7517 /// The caller already checked that \p I calls the appropriate LibFunc with a 7518 /// correct prototype. 7519 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7520 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7521 7522 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7523 std::pair<SDValue, SDValue> Res = 7524 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7525 getValue(Arg0), getValue(Arg1), 7526 MachinePointerInfo(Arg0)); 7527 if (Res.first.getNode()) { 7528 processIntegerCallValue(I, Res.first, false); 7529 PendingLoads.push_back(Res.second); 7530 return true; 7531 } 7532 7533 return false; 7534 } 7535 7536 /// See if we can lower a unary floating-point operation into an SDNode with 7537 /// the specified Opcode. If so, return true and lower it, otherwise return 7538 /// false and it will be lowered like a normal call. 7539 /// The caller already checked that \p I calls the appropriate LibFunc with a 7540 /// correct prototype. 7541 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7542 unsigned Opcode) { 7543 // We already checked this call's prototype; verify it doesn't modify errno. 7544 if (!I.onlyReadsMemory()) 7545 return false; 7546 7547 SDValue Tmp = getValue(I.getArgOperand(0)); 7548 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7549 return true; 7550 } 7551 7552 /// See if we can lower a binary floating-point operation into an SDNode with 7553 /// the specified Opcode. If so, return true and lower it. Otherwise return 7554 /// false, and it will be lowered like a normal call. 7555 /// The caller already checked that \p I calls the appropriate LibFunc with a 7556 /// correct prototype. 7557 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7558 unsigned Opcode) { 7559 // We already checked this call's prototype; verify it doesn't modify errno. 7560 if (!I.onlyReadsMemory()) 7561 return false; 7562 7563 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7564 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7565 EVT VT = Tmp0.getValueType(); 7566 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7567 return true; 7568 } 7569 7570 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7571 // Handle inline assembly differently. 7572 if (isa<InlineAsm>(I.getCalledValue())) { 7573 visitInlineAsm(&I); 7574 return; 7575 } 7576 7577 if (Function *F = I.getCalledFunction()) { 7578 if (F->isDeclaration()) { 7579 // Is this an LLVM intrinsic or a target-specific intrinsic? 7580 unsigned IID = F->getIntrinsicID(); 7581 if (!IID) 7582 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7583 IID = II->getIntrinsicID(F); 7584 7585 if (IID) { 7586 visitIntrinsicCall(I, IID); 7587 return; 7588 } 7589 } 7590 7591 // Check for well-known libc/libm calls. If the function is internal, it 7592 // can't be a library call. Don't do the check if marked as nobuiltin for 7593 // some reason or the call site requires strict floating point semantics. 7594 LibFunc Func; 7595 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7596 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7597 LibInfo->hasOptimizedCodeGen(Func)) { 7598 switch (Func) { 7599 default: break; 7600 case LibFunc_copysign: 7601 case LibFunc_copysignf: 7602 case LibFunc_copysignl: 7603 // We already checked this call's prototype; verify it doesn't modify 7604 // errno. 7605 if (I.onlyReadsMemory()) { 7606 SDValue LHS = getValue(I.getArgOperand(0)); 7607 SDValue RHS = getValue(I.getArgOperand(1)); 7608 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7609 LHS.getValueType(), LHS, RHS)); 7610 return; 7611 } 7612 break; 7613 case LibFunc_fabs: 7614 case LibFunc_fabsf: 7615 case LibFunc_fabsl: 7616 if (visitUnaryFloatCall(I, ISD::FABS)) 7617 return; 7618 break; 7619 case LibFunc_fmin: 7620 case LibFunc_fminf: 7621 case LibFunc_fminl: 7622 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7623 return; 7624 break; 7625 case LibFunc_fmax: 7626 case LibFunc_fmaxf: 7627 case LibFunc_fmaxl: 7628 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7629 return; 7630 break; 7631 case LibFunc_sin: 7632 case LibFunc_sinf: 7633 case LibFunc_sinl: 7634 if (visitUnaryFloatCall(I, ISD::FSIN)) 7635 return; 7636 break; 7637 case LibFunc_cos: 7638 case LibFunc_cosf: 7639 case LibFunc_cosl: 7640 if (visitUnaryFloatCall(I, ISD::FCOS)) 7641 return; 7642 break; 7643 case LibFunc_sqrt: 7644 case LibFunc_sqrtf: 7645 case LibFunc_sqrtl: 7646 case LibFunc_sqrt_finite: 7647 case LibFunc_sqrtf_finite: 7648 case LibFunc_sqrtl_finite: 7649 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7650 return; 7651 break; 7652 case LibFunc_floor: 7653 case LibFunc_floorf: 7654 case LibFunc_floorl: 7655 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7656 return; 7657 break; 7658 case LibFunc_nearbyint: 7659 case LibFunc_nearbyintf: 7660 case LibFunc_nearbyintl: 7661 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7662 return; 7663 break; 7664 case LibFunc_ceil: 7665 case LibFunc_ceilf: 7666 case LibFunc_ceill: 7667 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7668 return; 7669 break; 7670 case LibFunc_rint: 7671 case LibFunc_rintf: 7672 case LibFunc_rintl: 7673 if (visitUnaryFloatCall(I, ISD::FRINT)) 7674 return; 7675 break; 7676 case LibFunc_round: 7677 case LibFunc_roundf: 7678 case LibFunc_roundl: 7679 if (visitUnaryFloatCall(I, ISD::FROUND)) 7680 return; 7681 break; 7682 case LibFunc_trunc: 7683 case LibFunc_truncf: 7684 case LibFunc_truncl: 7685 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7686 return; 7687 break; 7688 case LibFunc_log2: 7689 case LibFunc_log2f: 7690 case LibFunc_log2l: 7691 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7692 return; 7693 break; 7694 case LibFunc_exp2: 7695 case LibFunc_exp2f: 7696 case LibFunc_exp2l: 7697 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7698 return; 7699 break; 7700 case LibFunc_memcmp: 7701 if (visitMemCmpCall(I)) 7702 return; 7703 break; 7704 case LibFunc_mempcpy: 7705 if (visitMemPCpyCall(I)) 7706 return; 7707 break; 7708 case LibFunc_memchr: 7709 if (visitMemChrCall(I)) 7710 return; 7711 break; 7712 case LibFunc_strcpy: 7713 if (visitStrCpyCall(I, false)) 7714 return; 7715 break; 7716 case LibFunc_stpcpy: 7717 if (visitStrCpyCall(I, true)) 7718 return; 7719 break; 7720 case LibFunc_strcmp: 7721 if (visitStrCmpCall(I)) 7722 return; 7723 break; 7724 case LibFunc_strlen: 7725 if (visitStrLenCall(I)) 7726 return; 7727 break; 7728 case LibFunc_strnlen: 7729 if (visitStrNLenCall(I)) 7730 return; 7731 break; 7732 } 7733 } 7734 } 7735 7736 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7737 // have to do anything here to lower funclet bundles. 7738 // CFGuardTarget bundles are lowered in LowerCallTo. 7739 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7740 LLVMContext::OB_funclet, 7741 LLVMContext::OB_cfguardtarget}) && 7742 "Cannot lower calls with arbitrary operand bundles!"); 7743 7744 SDValue Callee = getValue(I.getCalledValue()); 7745 7746 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7747 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7748 else 7749 // Check if we can potentially perform a tail call. More detailed checking 7750 // is be done within LowerCallTo, after more information about the call is 7751 // known. 7752 LowerCallTo(&I, Callee, I.isTailCall()); 7753 } 7754 7755 namespace { 7756 7757 /// AsmOperandInfo - This contains information for each constraint that we are 7758 /// lowering. 7759 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7760 public: 7761 /// CallOperand - If this is the result output operand or a clobber 7762 /// this is null, otherwise it is the incoming operand to the CallInst. 7763 /// This gets modified as the asm is processed. 7764 SDValue CallOperand; 7765 7766 /// AssignedRegs - If this is a register or register class operand, this 7767 /// contains the set of register corresponding to the operand. 7768 RegsForValue AssignedRegs; 7769 7770 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7771 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7772 } 7773 7774 /// Whether or not this operand accesses memory 7775 bool hasMemory(const TargetLowering &TLI) const { 7776 // Indirect operand accesses access memory. 7777 if (isIndirect) 7778 return true; 7779 7780 for (const auto &Code : Codes) 7781 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7782 return true; 7783 7784 return false; 7785 } 7786 7787 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7788 /// corresponds to. If there is no Value* for this operand, it returns 7789 /// MVT::Other. 7790 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7791 const DataLayout &DL) const { 7792 if (!CallOperandVal) return MVT::Other; 7793 7794 if (isa<BasicBlock>(CallOperandVal)) 7795 return TLI.getPointerTy(DL); 7796 7797 llvm::Type *OpTy = CallOperandVal->getType(); 7798 7799 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7800 // If this is an indirect operand, the operand is a pointer to the 7801 // accessed type. 7802 if (isIndirect) { 7803 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7804 if (!PtrTy) 7805 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7806 OpTy = PtrTy->getElementType(); 7807 } 7808 7809 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7810 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7811 if (STy->getNumElements() == 1) 7812 OpTy = STy->getElementType(0); 7813 7814 // If OpTy is not a single value, it may be a struct/union that we 7815 // can tile with integers. 7816 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7817 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7818 switch (BitSize) { 7819 default: break; 7820 case 1: 7821 case 8: 7822 case 16: 7823 case 32: 7824 case 64: 7825 case 128: 7826 OpTy = IntegerType::get(Context, BitSize); 7827 break; 7828 } 7829 } 7830 7831 return TLI.getValueType(DL, OpTy, true); 7832 } 7833 }; 7834 7835 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7836 7837 } // end anonymous namespace 7838 7839 /// Make sure that the output operand \p OpInfo and its corresponding input 7840 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7841 /// out). 7842 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7843 SDISelAsmOperandInfo &MatchingOpInfo, 7844 SelectionDAG &DAG) { 7845 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7846 return; 7847 7848 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7849 const auto &TLI = DAG.getTargetLoweringInfo(); 7850 7851 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7852 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7853 OpInfo.ConstraintVT); 7854 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7855 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7856 MatchingOpInfo.ConstraintVT); 7857 if ((OpInfo.ConstraintVT.isInteger() != 7858 MatchingOpInfo.ConstraintVT.isInteger()) || 7859 (MatchRC.second != InputRC.second)) { 7860 // FIXME: error out in a more elegant fashion 7861 report_fatal_error("Unsupported asm: input constraint" 7862 " with a matching output constraint of" 7863 " incompatible type!"); 7864 } 7865 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7866 } 7867 7868 /// Get a direct memory input to behave well as an indirect operand. 7869 /// This may introduce stores, hence the need for a \p Chain. 7870 /// \return The (possibly updated) chain. 7871 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7872 SDISelAsmOperandInfo &OpInfo, 7873 SelectionDAG &DAG) { 7874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7875 7876 // If we don't have an indirect input, put it in the constpool if we can, 7877 // otherwise spill it to a stack slot. 7878 // TODO: This isn't quite right. We need to handle these according to 7879 // the addressing mode that the constraint wants. Also, this may take 7880 // an additional register for the computation and we don't want that 7881 // either. 7882 7883 // If the operand is a float, integer, or vector constant, spill to a 7884 // constant pool entry to get its address. 7885 const Value *OpVal = OpInfo.CallOperandVal; 7886 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7887 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7888 OpInfo.CallOperand = DAG.getConstantPool( 7889 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7890 return Chain; 7891 } 7892 7893 // Otherwise, create a stack slot and emit a store to it before the asm. 7894 Type *Ty = OpVal->getType(); 7895 auto &DL = DAG.getDataLayout(); 7896 uint64_t TySize = DL.getTypeAllocSize(Ty); 7897 unsigned Align = DL.getPrefTypeAlignment(Ty); 7898 MachineFunction &MF = DAG.getMachineFunction(); 7899 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7900 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7901 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7902 MachinePointerInfo::getFixedStack(MF, SSFI), 7903 TLI.getMemValueType(DL, Ty)); 7904 OpInfo.CallOperand = StackSlot; 7905 7906 return Chain; 7907 } 7908 7909 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7910 /// specified operand. We prefer to assign virtual registers, to allow the 7911 /// register allocator to handle the assignment process. However, if the asm 7912 /// uses features that we can't model on machineinstrs, we have SDISel do the 7913 /// allocation. This produces generally horrible, but correct, code. 7914 /// 7915 /// OpInfo describes the operand 7916 /// RefOpInfo describes the matching operand if any, the operand otherwise 7917 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7918 SDISelAsmOperandInfo &OpInfo, 7919 SDISelAsmOperandInfo &RefOpInfo) { 7920 LLVMContext &Context = *DAG.getContext(); 7921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7922 7923 MachineFunction &MF = DAG.getMachineFunction(); 7924 SmallVector<unsigned, 4> Regs; 7925 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7926 7927 // No work to do for memory operations. 7928 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7929 return; 7930 7931 // If this is a constraint for a single physreg, or a constraint for a 7932 // register class, find it. 7933 unsigned AssignedReg; 7934 const TargetRegisterClass *RC; 7935 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7936 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7937 // RC is unset only on failure. Return immediately. 7938 if (!RC) 7939 return; 7940 7941 // Get the actual register value type. This is important, because the user 7942 // may have asked for (e.g.) the AX register in i32 type. We need to 7943 // remember that AX is actually i16 to get the right extension. 7944 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7945 7946 if (OpInfo.ConstraintVT != MVT::Other) { 7947 // If this is an FP operand in an integer register (or visa versa), or more 7948 // generally if the operand value disagrees with the register class we plan 7949 // to stick it in, fix the operand type. 7950 // 7951 // If this is an input value, the bitcast to the new type is done now. 7952 // Bitcast for output value is done at the end of visitInlineAsm(). 7953 if ((OpInfo.Type == InlineAsm::isOutput || 7954 OpInfo.Type == InlineAsm::isInput) && 7955 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7956 // Try to convert to the first EVT that the reg class contains. If the 7957 // types are identical size, use a bitcast to convert (e.g. two differing 7958 // vector types). Note: output bitcast is done at the end of 7959 // visitInlineAsm(). 7960 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7961 // Exclude indirect inputs while they are unsupported because the code 7962 // to perform the load is missing and thus OpInfo.CallOperand still 7963 // refers to the input address rather than the pointed-to value. 7964 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7965 OpInfo.CallOperand = 7966 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7967 OpInfo.ConstraintVT = RegVT; 7968 // If the operand is an FP value and we want it in integer registers, 7969 // use the corresponding integer type. This turns an f64 value into 7970 // i64, which can be passed with two i32 values on a 32-bit machine. 7971 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7972 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7973 if (OpInfo.Type == InlineAsm::isInput) 7974 OpInfo.CallOperand = 7975 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7976 OpInfo.ConstraintVT = VT; 7977 } 7978 } 7979 } 7980 7981 // No need to allocate a matching input constraint since the constraint it's 7982 // matching to has already been allocated. 7983 if (OpInfo.isMatchingInputConstraint()) 7984 return; 7985 7986 EVT ValueVT = OpInfo.ConstraintVT; 7987 if (OpInfo.ConstraintVT == MVT::Other) 7988 ValueVT = RegVT; 7989 7990 // Initialize NumRegs. 7991 unsigned NumRegs = 1; 7992 if (OpInfo.ConstraintVT != MVT::Other) 7993 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7994 7995 // If this is a constraint for a specific physical register, like {r17}, 7996 // assign it now. 7997 7998 // If this associated to a specific register, initialize iterator to correct 7999 // place. If virtual, make sure we have enough registers 8000 8001 // Initialize iterator if necessary 8002 TargetRegisterClass::iterator I = RC->begin(); 8003 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8004 8005 // Do not check for single registers. 8006 if (AssignedReg) { 8007 for (; *I != AssignedReg; ++I) 8008 assert(I != RC->end() && "AssignedReg should be member of RC"); 8009 } 8010 8011 for (; NumRegs; --NumRegs, ++I) { 8012 assert(I != RC->end() && "Ran out of registers to allocate!"); 8013 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8014 Regs.push_back(R); 8015 } 8016 8017 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8018 } 8019 8020 static unsigned 8021 findMatchingInlineAsmOperand(unsigned OperandNo, 8022 const std::vector<SDValue> &AsmNodeOperands) { 8023 // Scan until we find the definition we already emitted of this operand. 8024 unsigned CurOp = InlineAsm::Op_FirstOperand; 8025 for (; OperandNo; --OperandNo) { 8026 // Advance to the next operand. 8027 unsigned OpFlag = 8028 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8029 assert((InlineAsm::isRegDefKind(OpFlag) || 8030 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8031 InlineAsm::isMemKind(OpFlag)) && 8032 "Skipped past definitions?"); 8033 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8034 } 8035 return CurOp; 8036 } 8037 8038 namespace { 8039 8040 class ExtraFlags { 8041 unsigned Flags = 0; 8042 8043 public: 8044 explicit ExtraFlags(ImmutableCallSite CS) { 8045 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8046 if (IA->hasSideEffects()) 8047 Flags |= InlineAsm::Extra_HasSideEffects; 8048 if (IA->isAlignStack()) 8049 Flags |= InlineAsm::Extra_IsAlignStack; 8050 if (CS.isConvergent()) 8051 Flags |= InlineAsm::Extra_IsConvergent; 8052 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8053 } 8054 8055 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8056 // Ideally, we would only check against memory constraints. However, the 8057 // meaning of an Other constraint can be target-specific and we can't easily 8058 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8059 // for Other constraints as well. 8060 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8061 OpInfo.ConstraintType == TargetLowering::C_Other) { 8062 if (OpInfo.Type == InlineAsm::isInput) 8063 Flags |= InlineAsm::Extra_MayLoad; 8064 else if (OpInfo.Type == InlineAsm::isOutput) 8065 Flags |= InlineAsm::Extra_MayStore; 8066 else if (OpInfo.Type == InlineAsm::isClobber) 8067 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8068 } 8069 } 8070 8071 unsigned get() const { return Flags; } 8072 }; 8073 8074 } // end anonymous namespace 8075 8076 /// visitInlineAsm - Handle a call to an InlineAsm object. 8077 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8078 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8079 8080 /// ConstraintOperands - Information about all of the constraints. 8081 SDISelAsmOperandInfoVector ConstraintOperands; 8082 8083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8084 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8085 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8086 8087 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8088 // AsmDialect, MayLoad, MayStore). 8089 bool HasSideEffect = IA->hasSideEffects(); 8090 ExtraFlags ExtraInfo(CS); 8091 8092 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8093 unsigned ResNo = 0; // ResNo - The result number of the next output. 8094 for (auto &T : TargetConstraints) { 8095 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8096 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8097 8098 // Compute the value type for each operand. 8099 if (OpInfo.Type == InlineAsm::isInput || 8100 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8101 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8102 8103 // Process the call argument. BasicBlocks are labels, currently appearing 8104 // only in asm's. 8105 const Instruction *I = CS.getInstruction(); 8106 if (isa<CallBrInst>(I) && 8107 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8108 cast<CallBrInst>(I)->getNumIndirectDests())) { 8109 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8110 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8111 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8112 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8113 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8114 } else { 8115 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8116 } 8117 8118 OpInfo.ConstraintVT = 8119 OpInfo 8120 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8121 .getSimpleVT(); 8122 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8123 // The return value of the call is this value. As such, there is no 8124 // corresponding argument. 8125 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8126 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8127 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8128 DAG.getDataLayout(), STy->getElementType(ResNo)); 8129 } else { 8130 assert(ResNo == 0 && "Asm only has one result!"); 8131 OpInfo.ConstraintVT = 8132 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8133 } 8134 ++ResNo; 8135 } else { 8136 OpInfo.ConstraintVT = MVT::Other; 8137 } 8138 8139 if (!HasSideEffect) 8140 HasSideEffect = OpInfo.hasMemory(TLI); 8141 8142 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8143 // FIXME: Could we compute this on OpInfo rather than T? 8144 8145 // Compute the constraint code and ConstraintType to use. 8146 TLI.ComputeConstraintToUse(T, SDValue()); 8147 8148 if (T.ConstraintType == TargetLowering::C_Immediate && 8149 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8150 // We've delayed emitting a diagnostic like the "n" constraint because 8151 // inlining could cause an integer showing up. 8152 return emitInlineAsmError( 8153 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8154 "integer constant expression"); 8155 8156 ExtraInfo.update(T); 8157 } 8158 8159 8160 // We won't need to flush pending loads if this asm doesn't touch 8161 // memory and is nonvolatile. 8162 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8163 8164 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8165 if (IsCallBr) { 8166 // If this is a callbr we need to flush pending exports since inlineasm_br 8167 // is a terminator. We need to do this before nodes are glued to 8168 // the inlineasm_br node. 8169 Chain = getControlRoot(); 8170 } 8171 8172 // Second pass over the constraints: compute which constraint option to use. 8173 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8174 // If this is an output operand with a matching input operand, look up the 8175 // matching input. If their types mismatch, e.g. one is an integer, the 8176 // other is floating point, or their sizes are different, flag it as an 8177 // error. 8178 if (OpInfo.hasMatchingInput()) { 8179 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8180 patchMatchingInput(OpInfo, Input, DAG); 8181 } 8182 8183 // Compute the constraint code and ConstraintType to use. 8184 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8185 8186 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8187 OpInfo.Type == InlineAsm::isClobber) 8188 continue; 8189 8190 // If this is a memory input, and if the operand is not indirect, do what we 8191 // need to provide an address for the memory input. 8192 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8193 !OpInfo.isIndirect) { 8194 assert((OpInfo.isMultipleAlternative || 8195 (OpInfo.Type == InlineAsm::isInput)) && 8196 "Can only indirectify direct input operands!"); 8197 8198 // Memory operands really want the address of the value. 8199 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8200 8201 // There is no longer a Value* corresponding to this operand. 8202 OpInfo.CallOperandVal = nullptr; 8203 8204 // It is now an indirect operand. 8205 OpInfo.isIndirect = true; 8206 } 8207 8208 } 8209 8210 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8211 std::vector<SDValue> AsmNodeOperands; 8212 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8213 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8214 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8215 8216 // If we have a !srcloc metadata node associated with it, we want to attach 8217 // this to the ultimately generated inline asm machineinstr. To do this, we 8218 // pass in the third operand as this (potentially null) inline asm MDNode. 8219 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8220 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8221 8222 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8223 // bits as operand 3. 8224 AsmNodeOperands.push_back(DAG.getTargetConstant( 8225 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8226 8227 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8228 // this, assign virtual and physical registers for inputs and otput. 8229 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8230 // Assign Registers. 8231 SDISelAsmOperandInfo &RefOpInfo = 8232 OpInfo.isMatchingInputConstraint() 8233 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8234 : OpInfo; 8235 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8236 8237 switch (OpInfo.Type) { 8238 case InlineAsm::isOutput: 8239 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8240 unsigned ConstraintID = 8241 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8242 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8243 "Failed to convert memory constraint code to constraint id."); 8244 8245 // Add information to the INLINEASM node to know about this output. 8246 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8247 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8248 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8249 MVT::i32)); 8250 AsmNodeOperands.push_back(OpInfo.CallOperand); 8251 } else { 8252 // Otherwise, this outputs to a register (directly for C_Register / 8253 // C_RegisterClass, and a target-defined fashion for 8254 // C_Immediate/C_Other). Find a register that we can use. 8255 if (OpInfo.AssignedRegs.Regs.empty()) { 8256 emitInlineAsmError( 8257 CS, "couldn't allocate output register for constraint '" + 8258 Twine(OpInfo.ConstraintCode) + "'"); 8259 return; 8260 } 8261 8262 // Add information to the INLINEASM node to know that this register is 8263 // set. 8264 OpInfo.AssignedRegs.AddInlineAsmOperands( 8265 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8266 : InlineAsm::Kind_RegDef, 8267 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8268 } 8269 break; 8270 8271 case InlineAsm::isInput: { 8272 SDValue InOperandVal = OpInfo.CallOperand; 8273 8274 if (OpInfo.isMatchingInputConstraint()) { 8275 // If this is required to match an output register we have already set, 8276 // just use its register. 8277 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8278 AsmNodeOperands); 8279 unsigned OpFlag = 8280 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8281 if (InlineAsm::isRegDefKind(OpFlag) || 8282 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8283 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8284 if (OpInfo.isIndirect) { 8285 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8286 emitInlineAsmError(CS, "inline asm not supported yet:" 8287 " don't know how to handle tied " 8288 "indirect register inputs"); 8289 return; 8290 } 8291 8292 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8293 SmallVector<unsigned, 4> Regs; 8294 8295 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8296 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8297 MachineRegisterInfo &RegInfo = 8298 DAG.getMachineFunction().getRegInfo(); 8299 for (unsigned i = 0; i != NumRegs; ++i) 8300 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8301 } else { 8302 emitInlineAsmError(CS, "inline asm error: This value type register " 8303 "class is not natively supported!"); 8304 return; 8305 } 8306 8307 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8308 8309 SDLoc dl = getCurSDLoc(); 8310 // Use the produced MatchedRegs object to 8311 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8312 CS.getInstruction()); 8313 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8314 true, OpInfo.getMatchedOperand(), dl, 8315 DAG, AsmNodeOperands); 8316 break; 8317 } 8318 8319 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8320 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8321 "Unexpected number of operands"); 8322 // Add information to the INLINEASM node to know about this input. 8323 // See InlineAsm.h isUseOperandTiedToDef. 8324 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8325 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8326 OpInfo.getMatchedOperand()); 8327 AsmNodeOperands.push_back(DAG.getTargetConstant( 8328 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8329 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8330 break; 8331 } 8332 8333 // Treat indirect 'X' constraint as memory. 8334 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8335 OpInfo.isIndirect) 8336 OpInfo.ConstraintType = TargetLowering::C_Memory; 8337 8338 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8339 OpInfo.ConstraintType == TargetLowering::C_Other) { 8340 std::vector<SDValue> Ops; 8341 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8342 Ops, DAG); 8343 if (Ops.empty()) { 8344 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8345 if (isa<ConstantSDNode>(InOperandVal)) { 8346 emitInlineAsmError(CS, "value out of range for constraint '" + 8347 Twine(OpInfo.ConstraintCode) + "'"); 8348 return; 8349 } 8350 8351 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8352 Twine(OpInfo.ConstraintCode) + "'"); 8353 return; 8354 } 8355 8356 // Add information to the INLINEASM node to know about this input. 8357 unsigned ResOpType = 8358 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8359 AsmNodeOperands.push_back(DAG.getTargetConstant( 8360 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8361 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8362 break; 8363 } 8364 8365 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8366 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8367 assert(InOperandVal.getValueType() == 8368 TLI.getPointerTy(DAG.getDataLayout()) && 8369 "Memory operands expect pointer values"); 8370 8371 unsigned ConstraintID = 8372 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8373 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8374 "Failed to convert memory constraint code to constraint id."); 8375 8376 // Add information to the INLINEASM node to know about this input. 8377 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8378 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8379 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8380 getCurSDLoc(), 8381 MVT::i32)); 8382 AsmNodeOperands.push_back(InOperandVal); 8383 break; 8384 } 8385 8386 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8387 OpInfo.ConstraintType == TargetLowering::C_Register) && 8388 "Unknown constraint type!"); 8389 8390 // TODO: Support this. 8391 if (OpInfo.isIndirect) { 8392 emitInlineAsmError( 8393 CS, "Don't know how to handle indirect register inputs yet " 8394 "for constraint '" + 8395 Twine(OpInfo.ConstraintCode) + "'"); 8396 return; 8397 } 8398 8399 // Copy the input into the appropriate registers. 8400 if (OpInfo.AssignedRegs.Regs.empty()) { 8401 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8402 Twine(OpInfo.ConstraintCode) + "'"); 8403 return; 8404 } 8405 8406 SDLoc dl = getCurSDLoc(); 8407 8408 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8409 Chain, &Flag, CS.getInstruction()); 8410 8411 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8412 dl, DAG, AsmNodeOperands); 8413 break; 8414 } 8415 case InlineAsm::isClobber: 8416 // Add the clobbered value to the operand list, so that the register 8417 // allocator is aware that the physreg got clobbered. 8418 if (!OpInfo.AssignedRegs.Regs.empty()) 8419 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8420 false, 0, getCurSDLoc(), DAG, 8421 AsmNodeOperands); 8422 break; 8423 } 8424 } 8425 8426 // Finish up input operands. Set the input chain and add the flag last. 8427 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8428 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8429 8430 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8431 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8432 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8433 Flag = Chain.getValue(1); 8434 8435 // Do additional work to generate outputs. 8436 8437 SmallVector<EVT, 1> ResultVTs; 8438 SmallVector<SDValue, 1> ResultValues; 8439 SmallVector<SDValue, 8> OutChains; 8440 8441 llvm::Type *CSResultType = CS.getType(); 8442 ArrayRef<Type *> ResultTypes; 8443 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8444 ResultTypes = StructResult->elements(); 8445 else if (!CSResultType->isVoidTy()) 8446 ResultTypes = makeArrayRef(CSResultType); 8447 8448 auto CurResultType = ResultTypes.begin(); 8449 auto handleRegAssign = [&](SDValue V) { 8450 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8451 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8452 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8453 ++CurResultType; 8454 // If the type of the inline asm call site return value is different but has 8455 // same size as the type of the asm output bitcast it. One example of this 8456 // is for vectors with different width / number of elements. This can 8457 // happen for register classes that can contain multiple different value 8458 // types. The preg or vreg allocated may not have the same VT as was 8459 // expected. 8460 // 8461 // This can also happen for a return value that disagrees with the register 8462 // class it is put in, eg. a double in a general-purpose register on a 8463 // 32-bit machine. 8464 if (ResultVT != V.getValueType() && 8465 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8466 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8467 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8468 V.getValueType().isInteger()) { 8469 // If a result value was tied to an input value, the computed result 8470 // may have a wider width than the expected result. Extract the 8471 // relevant portion. 8472 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8473 } 8474 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8475 ResultVTs.push_back(ResultVT); 8476 ResultValues.push_back(V); 8477 }; 8478 8479 // Deal with output operands. 8480 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8481 if (OpInfo.Type == InlineAsm::isOutput) { 8482 SDValue Val; 8483 // Skip trivial output operands. 8484 if (OpInfo.AssignedRegs.Regs.empty()) 8485 continue; 8486 8487 switch (OpInfo.ConstraintType) { 8488 case TargetLowering::C_Register: 8489 case TargetLowering::C_RegisterClass: 8490 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8491 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8492 break; 8493 case TargetLowering::C_Immediate: 8494 case TargetLowering::C_Other: 8495 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8496 OpInfo, DAG); 8497 break; 8498 case TargetLowering::C_Memory: 8499 break; // Already handled. 8500 case TargetLowering::C_Unknown: 8501 assert(false && "Unexpected unknown constraint"); 8502 } 8503 8504 // Indirect output manifest as stores. Record output chains. 8505 if (OpInfo.isIndirect) { 8506 const Value *Ptr = OpInfo.CallOperandVal; 8507 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8508 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8509 MachinePointerInfo(Ptr)); 8510 OutChains.push_back(Store); 8511 } else { 8512 // generate CopyFromRegs to associated registers. 8513 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8514 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8515 for (const SDValue &V : Val->op_values()) 8516 handleRegAssign(V); 8517 } else 8518 handleRegAssign(Val); 8519 } 8520 } 8521 } 8522 8523 // Set results. 8524 if (!ResultValues.empty()) { 8525 assert(CurResultType == ResultTypes.end() && 8526 "Mismatch in number of ResultTypes"); 8527 assert(ResultValues.size() == ResultTypes.size() && 8528 "Mismatch in number of output operands in asm result"); 8529 8530 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8531 DAG.getVTList(ResultVTs), ResultValues); 8532 setValue(CS.getInstruction(), V); 8533 } 8534 8535 // Collect store chains. 8536 if (!OutChains.empty()) 8537 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8538 8539 // Only Update Root if inline assembly has a memory effect. 8540 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8541 DAG.setRoot(Chain); 8542 } 8543 8544 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8545 const Twine &Message) { 8546 LLVMContext &Ctx = *DAG.getContext(); 8547 Ctx.emitError(CS.getInstruction(), Message); 8548 8549 // Make sure we leave the DAG in a valid state 8550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8551 SmallVector<EVT, 1> ValueVTs; 8552 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8553 8554 if (ValueVTs.empty()) 8555 return; 8556 8557 SmallVector<SDValue, 1> Ops; 8558 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8559 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8560 8561 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8562 } 8563 8564 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8565 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8566 MVT::Other, getRoot(), 8567 getValue(I.getArgOperand(0)), 8568 DAG.getSrcValue(I.getArgOperand(0)))); 8569 } 8570 8571 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8573 const DataLayout &DL = DAG.getDataLayout(); 8574 SDValue V = DAG.getVAArg( 8575 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8576 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8577 DL.getABITypeAlignment(I.getType())); 8578 DAG.setRoot(V.getValue(1)); 8579 8580 if (I.getType()->isPointerTy()) 8581 V = DAG.getPtrExtOrTrunc( 8582 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8583 setValue(&I, V); 8584 } 8585 8586 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8587 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8588 MVT::Other, getRoot(), 8589 getValue(I.getArgOperand(0)), 8590 DAG.getSrcValue(I.getArgOperand(0)))); 8591 } 8592 8593 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8594 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8595 MVT::Other, getRoot(), 8596 getValue(I.getArgOperand(0)), 8597 getValue(I.getArgOperand(1)), 8598 DAG.getSrcValue(I.getArgOperand(0)), 8599 DAG.getSrcValue(I.getArgOperand(1)))); 8600 } 8601 8602 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8603 const Instruction &I, 8604 SDValue Op) { 8605 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8606 if (!Range) 8607 return Op; 8608 8609 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8610 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8611 return Op; 8612 8613 APInt Lo = CR.getUnsignedMin(); 8614 if (!Lo.isMinValue()) 8615 return Op; 8616 8617 APInt Hi = CR.getUnsignedMax(); 8618 unsigned Bits = std::max(Hi.getActiveBits(), 8619 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8620 8621 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8622 8623 SDLoc SL = getCurSDLoc(); 8624 8625 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8626 DAG.getValueType(SmallVT)); 8627 unsigned NumVals = Op.getNode()->getNumValues(); 8628 if (NumVals == 1) 8629 return ZExt; 8630 8631 SmallVector<SDValue, 4> Ops; 8632 8633 Ops.push_back(ZExt); 8634 for (unsigned I = 1; I != NumVals; ++I) 8635 Ops.push_back(Op.getValue(I)); 8636 8637 return DAG.getMergeValues(Ops, SL); 8638 } 8639 8640 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8641 /// the call being lowered. 8642 /// 8643 /// This is a helper for lowering intrinsics that follow a target calling 8644 /// convention or require stack pointer adjustment. Only a subset of the 8645 /// intrinsic's operands need to participate in the calling convention. 8646 void SelectionDAGBuilder::populateCallLoweringInfo( 8647 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8648 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8649 bool IsPatchPoint) { 8650 TargetLowering::ArgListTy Args; 8651 Args.reserve(NumArgs); 8652 8653 // Populate the argument list. 8654 // Attributes for args start at offset 1, after the return attribute. 8655 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8656 ArgI != ArgE; ++ArgI) { 8657 const Value *V = Call->getOperand(ArgI); 8658 8659 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8660 8661 TargetLowering::ArgListEntry Entry; 8662 Entry.Node = getValue(V); 8663 Entry.Ty = V->getType(); 8664 Entry.setAttributes(Call, ArgI); 8665 Args.push_back(Entry); 8666 } 8667 8668 CLI.setDebugLoc(getCurSDLoc()) 8669 .setChain(getRoot()) 8670 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8671 .setDiscardResult(Call->use_empty()) 8672 .setIsPatchPoint(IsPatchPoint); 8673 } 8674 8675 /// Add a stack map intrinsic call's live variable operands to a stackmap 8676 /// or patchpoint target node's operand list. 8677 /// 8678 /// Constants are converted to TargetConstants purely as an optimization to 8679 /// avoid constant materialization and register allocation. 8680 /// 8681 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8682 /// generate addess computation nodes, and so FinalizeISel can convert the 8683 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8684 /// address materialization and register allocation, but may also be required 8685 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8686 /// alloca in the entry block, then the runtime may assume that the alloca's 8687 /// StackMap location can be read immediately after compilation and that the 8688 /// location is valid at any point during execution (this is similar to the 8689 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8690 /// only available in a register, then the runtime would need to trap when 8691 /// execution reaches the StackMap in order to read the alloca's location. 8692 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8693 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8694 SelectionDAGBuilder &Builder) { 8695 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8696 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8698 Ops.push_back( 8699 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8700 Ops.push_back( 8701 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8702 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8703 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8704 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8705 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8706 } else 8707 Ops.push_back(OpVal); 8708 } 8709 } 8710 8711 /// Lower llvm.experimental.stackmap directly to its target opcode. 8712 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8713 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8714 // [live variables...]) 8715 8716 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8717 8718 SDValue Chain, InFlag, Callee, NullPtr; 8719 SmallVector<SDValue, 32> Ops; 8720 8721 SDLoc DL = getCurSDLoc(); 8722 Callee = getValue(CI.getCalledValue()); 8723 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8724 8725 // The stackmap intrinsic only records the live variables (the arguments 8726 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8727 // intrinsic, this won't be lowered to a function call. This means we don't 8728 // have to worry about calling conventions and target specific lowering code. 8729 // Instead we perform the call lowering right here. 8730 // 8731 // chain, flag = CALLSEQ_START(chain, 0, 0) 8732 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8733 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8734 // 8735 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8736 InFlag = Chain.getValue(1); 8737 8738 // Add the <id> and <numBytes> constants. 8739 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8740 Ops.push_back(DAG.getTargetConstant( 8741 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8742 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8743 Ops.push_back(DAG.getTargetConstant( 8744 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8745 MVT::i32)); 8746 8747 // Push live variables for the stack map. 8748 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8749 8750 // We are not pushing any register mask info here on the operands list, 8751 // because the stackmap doesn't clobber anything. 8752 8753 // Push the chain and the glue flag. 8754 Ops.push_back(Chain); 8755 Ops.push_back(InFlag); 8756 8757 // Create the STACKMAP node. 8758 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8759 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8760 Chain = SDValue(SM, 0); 8761 InFlag = Chain.getValue(1); 8762 8763 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8764 8765 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8766 8767 // Set the root to the target-lowered call chain. 8768 DAG.setRoot(Chain); 8769 8770 // Inform the Frame Information that we have a stackmap in this function. 8771 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8772 } 8773 8774 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8775 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8776 const BasicBlock *EHPadBB) { 8777 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8778 // i32 <numBytes>, 8779 // i8* <target>, 8780 // i32 <numArgs>, 8781 // [Args...], 8782 // [live variables...]) 8783 8784 CallingConv::ID CC = CS.getCallingConv(); 8785 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8786 bool HasDef = !CS->getType()->isVoidTy(); 8787 SDLoc dl = getCurSDLoc(); 8788 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8789 8790 // Handle immediate and symbolic callees. 8791 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8792 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8793 /*isTarget=*/true); 8794 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8795 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8796 SDLoc(SymbolicCallee), 8797 SymbolicCallee->getValueType(0)); 8798 8799 // Get the real number of arguments participating in the call <numArgs> 8800 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8801 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8802 8803 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8804 // Intrinsics include all meta-operands up to but not including CC. 8805 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8806 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8807 "Not enough arguments provided to the patchpoint intrinsic"); 8808 8809 // For AnyRegCC the arguments are lowered later on manually. 8810 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8811 Type *ReturnTy = 8812 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8813 8814 TargetLowering::CallLoweringInfo CLI(DAG); 8815 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8816 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8817 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8818 8819 SDNode *CallEnd = Result.second.getNode(); 8820 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8821 CallEnd = CallEnd->getOperand(0).getNode(); 8822 8823 /// Get a call instruction from the call sequence chain. 8824 /// Tail calls are not allowed. 8825 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8826 "Expected a callseq node."); 8827 SDNode *Call = CallEnd->getOperand(0).getNode(); 8828 bool HasGlue = Call->getGluedNode(); 8829 8830 // Replace the target specific call node with the patchable intrinsic. 8831 SmallVector<SDValue, 8> Ops; 8832 8833 // Add the <id> and <numBytes> constants. 8834 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8835 Ops.push_back(DAG.getTargetConstant( 8836 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8837 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8838 Ops.push_back(DAG.getTargetConstant( 8839 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8840 MVT::i32)); 8841 8842 // Add the callee. 8843 Ops.push_back(Callee); 8844 8845 // Adjust <numArgs> to account for any arguments that have been passed on the 8846 // stack instead. 8847 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8848 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8849 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8850 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8851 8852 // Add the calling convention 8853 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8854 8855 // Add the arguments we omitted previously. The register allocator should 8856 // place these in any free register. 8857 if (IsAnyRegCC) 8858 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8859 Ops.push_back(getValue(CS.getArgument(i))); 8860 8861 // Push the arguments from the call instruction up to the register mask. 8862 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8863 Ops.append(Call->op_begin() + 2, e); 8864 8865 // Push live variables for the stack map. 8866 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8867 8868 // Push the register mask info. 8869 if (HasGlue) 8870 Ops.push_back(*(Call->op_end()-2)); 8871 else 8872 Ops.push_back(*(Call->op_end()-1)); 8873 8874 // Push the chain (this is originally the first operand of the call, but 8875 // becomes now the last or second to last operand). 8876 Ops.push_back(*(Call->op_begin())); 8877 8878 // Push the glue flag (last operand). 8879 if (HasGlue) 8880 Ops.push_back(*(Call->op_end()-1)); 8881 8882 SDVTList NodeTys; 8883 if (IsAnyRegCC && HasDef) { 8884 // Create the return types based on the intrinsic definition 8885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8886 SmallVector<EVT, 3> ValueVTs; 8887 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8888 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8889 8890 // There is always a chain and a glue type at the end 8891 ValueVTs.push_back(MVT::Other); 8892 ValueVTs.push_back(MVT::Glue); 8893 NodeTys = DAG.getVTList(ValueVTs); 8894 } else 8895 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8896 8897 // Replace the target specific call node with a PATCHPOINT node. 8898 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8899 dl, NodeTys, Ops); 8900 8901 // Update the NodeMap. 8902 if (HasDef) { 8903 if (IsAnyRegCC) 8904 setValue(CS.getInstruction(), SDValue(MN, 0)); 8905 else 8906 setValue(CS.getInstruction(), Result.first); 8907 } 8908 8909 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8910 // call sequence. Furthermore the location of the chain and glue can change 8911 // when the AnyReg calling convention is used and the intrinsic returns a 8912 // value. 8913 if (IsAnyRegCC && HasDef) { 8914 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8915 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8916 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8917 } else 8918 DAG.ReplaceAllUsesWith(Call, MN); 8919 DAG.DeleteNode(Call); 8920 8921 // Inform the Frame Information that we have a patchpoint in this function. 8922 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8923 } 8924 8925 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8926 unsigned Intrinsic) { 8927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8928 SDValue Op1 = getValue(I.getArgOperand(0)); 8929 SDValue Op2; 8930 if (I.getNumArgOperands() > 1) 8931 Op2 = getValue(I.getArgOperand(1)); 8932 SDLoc dl = getCurSDLoc(); 8933 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8934 SDValue Res; 8935 FastMathFlags FMF; 8936 if (isa<FPMathOperator>(I)) 8937 FMF = I.getFastMathFlags(); 8938 8939 switch (Intrinsic) { 8940 case Intrinsic::experimental_vector_reduce_v2_fadd: 8941 if (FMF.allowReassoc()) 8942 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8943 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8944 else 8945 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8946 break; 8947 case Intrinsic::experimental_vector_reduce_v2_fmul: 8948 if (FMF.allowReassoc()) 8949 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8950 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8951 else 8952 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8953 break; 8954 case Intrinsic::experimental_vector_reduce_add: 8955 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8956 break; 8957 case Intrinsic::experimental_vector_reduce_mul: 8958 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8959 break; 8960 case Intrinsic::experimental_vector_reduce_and: 8961 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8962 break; 8963 case Intrinsic::experimental_vector_reduce_or: 8964 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8965 break; 8966 case Intrinsic::experimental_vector_reduce_xor: 8967 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8968 break; 8969 case Intrinsic::experimental_vector_reduce_smax: 8970 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8971 break; 8972 case Intrinsic::experimental_vector_reduce_smin: 8973 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8974 break; 8975 case Intrinsic::experimental_vector_reduce_umax: 8976 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8977 break; 8978 case Intrinsic::experimental_vector_reduce_umin: 8979 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8980 break; 8981 case Intrinsic::experimental_vector_reduce_fmax: 8982 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8983 break; 8984 case Intrinsic::experimental_vector_reduce_fmin: 8985 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8986 break; 8987 default: 8988 llvm_unreachable("Unhandled vector reduce intrinsic"); 8989 } 8990 setValue(&I, Res); 8991 } 8992 8993 /// Returns an AttributeList representing the attributes applied to the return 8994 /// value of the given call. 8995 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8996 SmallVector<Attribute::AttrKind, 2> Attrs; 8997 if (CLI.RetSExt) 8998 Attrs.push_back(Attribute::SExt); 8999 if (CLI.RetZExt) 9000 Attrs.push_back(Attribute::ZExt); 9001 if (CLI.IsInReg) 9002 Attrs.push_back(Attribute::InReg); 9003 9004 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9005 Attrs); 9006 } 9007 9008 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9009 /// implementation, which just calls LowerCall. 9010 /// FIXME: When all targets are 9011 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9012 std::pair<SDValue, SDValue> 9013 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9014 // Handle the incoming return values from the call. 9015 CLI.Ins.clear(); 9016 Type *OrigRetTy = CLI.RetTy; 9017 SmallVector<EVT, 4> RetTys; 9018 SmallVector<uint64_t, 4> Offsets; 9019 auto &DL = CLI.DAG.getDataLayout(); 9020 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9021 9022 if (CLI.IsPostTypeLegalization) { 9023 // If we are lowering a libcall after legalization, split the return type. 9024 SmallVector<EVT, 4> OldRetTys; 9025 SmallVector<uint64_t, 4> OldOffsets; 9026 RetTys.swap(OldRetTys); 9027 Offsets.swap(OldOffsets); 9028 9029 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9030 EVT RetVT = OldRetTys[i]; 9031 uint64_t Offset = OldOffsets[i]; 9032 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9033 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9034 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9035 RetTys.append(NumRegs, RegisterVT); 9036 for (unsigned j = 0; j != NumRegs; ++j) 9037 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9038 } 9039 } 9040 9041 SmallVector<ISD::OutputArg, 4> Outs; 9042 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9043 9044 bool CanLowerReturn = 9045 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9046 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9047 9048 SDValue DemoteStackSlot; 9049 int DemoteStackIdx = -100; 9050 if (!CanLowerReturn) { 9051 // FIXME: equivalent assert? 9052 // assert(!CS.hasInAllocaArgument() && 9053 // "sret demotion is incompatible with inalloca"); 9054 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9055 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9056 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9057 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9058 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9059 DL.getAllocaAddrSpace()); 9060 9061 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9062 ArgListEntry Entry; 9063 Entry.Node = DemoteStackSlot; 9064 Entry.Ty = StackSlotPtrType; 9065 Entry.IsSExt = false; 9066 Entry.IsZExt = false; 9067 Entry.IsInReg = false; 9068 Entry.IsSRet = true; 9069 Entry.IsNest = false; 9070 Entry.IsByVal = false; 9071 Entry.IsReturned = false; 9072 Entry.IsSwiftSelf = false; 9073 Entry.IsSwiftError = false; 9074 Entry.IsCFGuardTarget = false; 9075 Entry.Alignment = Align; 9076 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9077 CLI.NumFixedArgs += 1; 9078 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9079 9080 // sret demotion isn't compatible with tail-calls, since the sret argument 9081 // points into the callers stack frame. 9082 CLI.IsTailCall = false; 9083 } else { 9084 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9085 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9086 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9087 ISD::ArgFlagsTy Flags; 9088 if (NeedsRegBlock) { 9089 Flags.setInConsecutiveRegs(); 9090 if (I == RetTys.size() - 1) 9091 Flags.setInConsecutiveRegsLast(); 9092 } 9093 EVT VT = RetTys[I]; 9094 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9095 CLI.CallConv, VT); 9096 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9097 CLI.CallConv, VT); 9098 for (unsigned i = 0; i != NumRegs; ++i) { 9099 ISD::InputArg MyFlags; 9100 MyFlags.Flags = Flags; 9101 MyFlags.VT = RegisterVT; 9102 MyFlags.ArgVT = VT; 9103 MyFlags.Used = CLI.IsReturnValueUsed; 9104 if (CLI.RetTy->isPointerTy()) { 9105 MyFlags.Flags.setPointer(); 9106 MyFlags.Flags.setPointerAddrSpace( 9107 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9108 } 9109 if (CLI.RetSExt) 9110 MyFlags.Flags.setSExt(); 9111 if (CLI.RetZExt) 9112 MyFlags.Flags.setZExt(); 9113 if (CLI.IsInReg) 9114 MyFlags.Flags.setInReg(); 9115 CLI.Ins.push_back(MyFlags); 9116 } 9117 } 9118 } 9119 9120 // We push in swifterror return as the last element of CLI.Ins. 9121 ArgListTy &Args = CLI.getArgs(); 9122 if (supportSwiftError()) { 9123 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9124 if (Args[i].IsSwiftError) { 9125 ISD::InputArg MyFlags; 9126 MyFlags.VT = getPointerTy(DL); 9127 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9128 MyFlags.Flags.setSwiftError(); 9129 CLI.Ins.push_back(MyFlags); 9130 } 9131 } 9132 } 9133 9134 // Handle all of the outgoing arguments. 9135 CLI.Outs.clear(); 9136 CLI.OutVals.clear(); 9137 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9138 SmallVector<EVT, 4> ValueVTs; 9139 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9140 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9141 Type *FinalType = Args[i].Ty; 9142 if (Args[i].IsByVal) 9143 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9144 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9145 FinalType, CLI.CallConv, CLI.IsVarArg); 9146 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9147 ++Value) { 9148 EVT VT = ValueVTs[Value]; 9149 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9150 SDValue Op = SDValue(Args[i].Node.getNode(), 9151 Args[i].Node.getResNo() + Value); 9152 ISD::ArgFlagsTy Flags; 9153 9154 // Certain targets (such as MIPS), may have a different ABI alignment 9155 // for a type depending on the context. Give the target a chance to 9156 // specify the alignment it wants. 9157 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9158 9159 if (Args[i].Ty->isPointerTy()) { 9160 Flags.setPointer(); 9161 Flags.setPointerAddrSpace( 9162 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9163 } 9164 if (Args[i].IsZExt) 9165 Flags.setZExt(); 9166 if (Args[i].IsSExt) 9167 Flags.setSExt(); 9168 if (Args[i].IsInReg) { 9169 // If we are using vectorcall calling convention, a structure that is 9170 // passed InReg - is surely an HVA 9171 if (CLI.CallConv == CallingConv::X86_VectorCall && 9172 isa<StructType>(FinalType)) { 9173 // The first value of a structure is marked 9174 if (0 == Value) 9175 Flags.setHvaStart(); 9176 Flags.setHva(); 9177 } 9178 // Set InReg Flag 9179 Flags.setInReg(); 9180 } 9181 if (Args[i].IsSRet) 9182 Flags.setSRet(); 9183 if (Args[i].IsSwiftSelf) 9184 Flags.setSwiftSelf(); 9185 if (Args[i].IsSwiftError) 9186 Flags.setSwiftError(); 9187 if (Args[i].IsCFGuardTarget) 9188 Flags.setCFGuardTarget(); 9189 if (Args[i].IsByVal) 9190 Flags.setByVal(); 9191 if (Args[i].IsInAlloca) { 9192 Flags.setInAlloca(); 9193 // Set the byval flag for CCAssignFn callbacks that don't know about 9194 // inalloca. This way we can know how many bytes we should've allocated 9195 // and how many bytes a callee cleanup function will pop. If we port 9196 // inalloca to more targets, we'll have to add custom inalloca handling 9197 // in the various CC lowering callbacks. 9198 Flags.setByVal(); 9199 } 9200 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9201 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9202 Type *ElementTy = Ty->getElementType(); 9203 9204 unsigned FrameSize = DL.getTypeAllocSize( 9205 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9206 Flags.setByValSize(FrameSize); 9207 9208 // info is not there but there are cases it cannot get right. 9209 unsigned FrameAlign; 9210 if (Args[i].Alignment) 9211 FrameAlign = Args[i].Alignment; 9212 else 9213 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9214 Flags.setByValAlign(Align(FrameAlign)); 9215 } 9216 if (Args[i].IsNest) 9217 Flags.setNest(); 9218 if (NeedsRegBlock) 9219 Flags.setInConsecutiveRegs(); 9220 Flags.setOrigAlign(OriginalAlignment); 9221 9222 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9223 CLI.CallConv, VT); 9224 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9225 CLI.CallConv, VT); 9226 SmallVector<SDValue, 4> Parts(NumParts); 9227 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9228 9229 if (Args[i].IsSExt) 9230 ExtendKind = ISD::SIGN_EXTEND; 9231 else if (Args[i].IsZExt) 9232 ExtendKind = ISD::ZERO_EXTEND; 9233 9234 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9235 // for now. 9236 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9237 CanLowerReturn) { 9238 assert((CLI.RetTy == Args[i].Ty || 9239 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9240 CLI.RetTy->getPointerAddressSpace() == 9241 Args[i].Ty->getPointerAddressSpace())) && 9242 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9243 // Before passing 'returned' to the target lowering code, ensure that 9244 // either the register MVT and the actual EVT are the same size or that 9245 // the return value and argument are extended in the same way; in these 9246 // cases it's safe to pass the argument register value unchanged as the 9247 // return register value (although it's at the target's option whether 9248 // to do so) 9249 // TODO: allow code generation to take advantage of partially preserved 9250 // registers rather than clobbering the entire register when the 9251 // parameter extension method is not compatible with the return 9252 // extension method 9253 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9254 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9255 CLI.RetZExt == Args[i].IsZExt)) 9256 Flags.setReturned(); 9257 } 9258 9259 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9260 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9261 9262 for (unsigned j = 0; j != NumParts; ++j) { 9263 // if it isn't first piece, alignment must be 1 9264 // For scalable vectors the scalable part is currently handled 9265 // by individual targets, so we just use the known minimum size here. 9266 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9267 i < CLI.NumFixedArgs, i, 9268 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9269 if (NumParts > 1 && j == 0) 9270 MyFlags.Flags.setSplit(); 9271 else if (j != 0) { 9272 MyFlags.Flags.setOrigAlign(Align::None()); 9273 if (j == NumParts - 1) 9274 MyFlags.Flags.setSplitEnd(); 9275 } 9276 9277 CLI.Outs.push_back(MyFlags); 9278 CLI.OutVals.push_back(Parts[j]); 9279 } 9280 9281 if (NeedsRegBlock && Value == NumValues - 1) 9282 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9283 } 9284 } 9285 9286 SmallVector<SDValue, 4> InVals; 9287 CLI.Chain = LowerCall(CLI, InVals); 9288 9289 // Update CLI.InVals to use outside of this function. 9290 CLI.InVals = InVals; 9291 9292 // Verify that the target's LowerCall behaved as expected. 9293 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9294 "LowerCall didn't return a valid chain!"); 9295 assert((!CLI.IsTailCall || InVals.empty()) && 9296 "LowerCall emitted a return value for a tail call!"); 9297 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9298 "LowerCall didn't emit the correct number of values!"); 9299 9300 // For a tail call, the return value is merely live-out and there aren't 9301 // any nodes in the DAG representing it. Return a special value to 9302 // indicate that a tail call has been emitted and no more Instructions 9303 // should be processed in the current block. 9304 if (CLI.IsTailCall) { 9305 CLI.DAG.setRoot(CLI.Chain); 9306 return std::make_pair(SDValue(), SDValue()); 9307 } 9308 9309 #ifndef NDEBUG 9310 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9311 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9312 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9313 "LowerCall emitted a value with the wrong type!"); 9314 } 9315 #endif 9316 9317 SmallVector<SDValue, 4> ReturnValues; 9318 if (!CanLowerReturn) { 9319 // The instruction result is the result of loading from the 9320 // hidden sret parameter. 9321 SmallVector<EVT, 1> PVTs; 9322 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9323 9324 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9325 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9326 EVT PtrVT = PVTs[0]; 9327 9328 unsigned NumValues = RetTys.size(); 9329 ReturnValues.resize(NumValues); 9330 SmallVector<SDValue, 4> Chains(NumValues); 9331 9332 // An aggregate return value cannot wrap around the address space, so 9333 // offsets to its parts don't wrap either. 9334 SDNodeFlags Flags; 9335 Flags.setNoUnsignedWrap(true); 9336 9337 for (unsigned i = 0; i < NumValues; ++i) { 9338 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9339 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9340 PtrVT), Flags); 9341 SDValue L = CLI.DAG.getLoad( 9342 RetTys[i], CLI.DL, CLI.Chain, Add, 9343 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9344 DemoteStackIdx, Offsets[i]), 9345 /* Alignment = */ 1); 9346 ReturnValues[i] = L; 9347 Chains[i] = L.getValue(1); 9348 } 9349 9350 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9351 } else { 9352 // Collect the legal value parts into potentially illegal values 9353 // that correspond to the original function's return values. 9354 Optional<ISD::NodeType> AssertOp; 9355 if (CLI.RetSExt) 9356 AssertOp = ISD::AssertSext; 9357 else if (CLI.RetZExt) 9358 AssertOp = ISD::AssertZext; 9359 unsigned CurReg = 0; 9360 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9361 EVT VT = RetTys[I]; 9362 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9363 CLI.CallConv, VT); 9364 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9365 CLI.CallConv, VT); 9366 9367 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9368 NumRegs, RegisterVT, VT, nullptr, 9369 CLI.CallConv, AssertOp)); 9370 CurReg += NumRegs; 9371 } 9372 9373 // For a function returning void, there is no return value. We can't create 9374 // such a node, so we just return a null return value in that case. In 9375 // that case, nothing will actually look at the value. 9376 if (ReturnValues.empty()) 9377 return std::make_pair(SDValue(), CLI.Chain); 9378 } 9379 9380 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9381 CLI.DAG.getVTList(RetTys), ReturnValues); 9382 return std::make_pair(Res, CLI.Chain); 9383 } 9384 9385 void TargetLowering::LowerOperationWrapper(SDNode *N, 9386 SmallVectorImpl<SDValue> &Results, 9387 SelectionDAG &DAG) const { 9388 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9389 Results.push_back(Res); 9390 } 9391 9392 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9393 llvm_unreachable("LowerOperation not implemented for this target!"); 9394 } 9395 9396 void 9397 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9398 SDValue Op = getNonRegisterValue(V); 9399 assert((Op.getOpcode() != ISD::CopyFromReg || 9400 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9401 "Copy from a reg to the same reg!"); 9402 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9403 9404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9405 // If this is an InlineAsm we have to match the registers required, not the 9406 // notional registers required by the type. 9407 9408 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9409 None); // This is not an ABI copy. 9410 SDValue Chain = DAG.getEntryNode(); 9411 9412 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9413 FuncInfo.PreferredExtendType.end()) 9414 ? ISD::ANY_EXTEND 9415 : FuncInfo.PreferredExtendType[V]; 9416 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9417 PendingExports.push_back(Chain); 9418 } 9419 9420 #include "llvm/CodeGen/SelectionDAGISel.h" 9421 9422 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9423 /// entry block, return true. This includes arguments used by switches, since 9424 /// the switch may expand into multiple basic blocks. 9425 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9426 // With FastISel active, we may be splitting blocks, so force creation 9427 // of virtual registers for all non-dead arguments. 9428 if (FastISel) 9429 return A->use_empty(); 9430 9431 const BasicBlock &Entry = A->getParent()->front(); 9432 for (const User *U : A->users()) 9433 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9434 return false; // Use not in entry block. 9435 9436 return true; 9437 } 9438 9439 using ArgCopyElisionMapTy = 9440 DenseMap<const Argument *, 9441 std::pair<const AllocaInst *, const StoreInst *>>; 9442 9443 /// Scan the entry block of the function in FuncInfo for arguments that look 9444 /// like copies into a local alloca. Record any copied arguments in 9445 /// ArgCopyElisionCandidates. 9446 static void 9447 findArgumentCopyElisionCandidates(const DataLayout &DL, 9448 FunctionLoweringInfo *FuncInfo, 9449 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9450 // Record the state of every static alloca used in the entry block. Argument 9451 // allocas are all used in the entry block, so we need approximately as many 9452 // entries as we have arguments. 9453 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9454 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9455 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9456 StaticAllocas.reserve(NumArgs * 2); 9457 9458 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9459 if (!V) 9460 return nullptr; 9461 V = V->stripPointerCasts(); 9462 const auto *AI = dyn_cast<AllocaInst>(V); 9463 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9464 return nullptr; 9465 auto Iter = StaticAllocas.insert({AI, Unknown}); 9466 return &Iter.first->second; 9467 }; 9468 9469 // Look for stores of arguments to static allocas. Look through bitcasts and 9470 // GEPs to handle type coercions, as long as the alloca is fully initialized 9471 // by the store. Any non-store use of an alloca escapes it and any subsequent 9472 // unanalyzed store might write it. 9473 // FIXME: Handle structs initialized with multiple stores. 9474 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9475 // Look for stores, and handle non-store uses conservatively. 9476 const auto *SI = dyn_cast<StoreInst>(&I); 9477 if (!SI) { 9478 // We will look through cast uses, so ignore them completely. 9479 if (I.isCast()) 9480 continue; 9481 // Ignore debug info intrinsics, they don't escape or store to allocas. 9482 if (isa<DbgInfoIntrinsic>(I)) 9483 continue; 9484 // This is an unknown instruction. Assume it escapes or writes to all 9485 // static alloca operands. 9486 for (const Use &U : I.operands()) { 9487 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9488 *Info = StaticAllocaInfo::Clobbered; 9489 } 9490 continue; 9491 } 9492 9493 // If the stored value is a static alloca, mark it as escaped. 9494 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9495 *Info = StaticAllocaInfo::Clobbered; 9496 9497 // Check if the destination is a static alloca. 9498 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9499 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9500 if (!Info) 9501 continue; 9502 const AllocaInst *AI = cast<AllocaInst>(Dst); 9503 9504 // Skip allocas that have been initialized or clobbered. 9505 if (*Info != StaticAllocaInfo::Unknown) 9506 continue; 9507 9508 // Check if the stored value is an argument, and that this store fully 9509 // initializes the alloca. Don't elide copies from the same argument twice. 9510 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9511 const auto *Arg = dyn_cast<Argument>(Val); 9512 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9513 Arg->getType()->isEmptyTy() || 9514 DL.getTypeStoreSize(Arg->getType()) != 9515 DL.getTypeAllocSize(AI->getAllocatedType()) || 9516 ArgCopyElisionCandidates.count(Arg)) { 9517 *Info = StaticAllocaInfo::Clobbered; 9518 continue; 9519 } 9520 9521 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9522 << '\n'); 9523 9524 // Mark this alloca and store for argument copy elision. 9525 *Info = StaticAllocaInfo::Elidable; 9526 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9527 9528 // Stop scanning if we've seen all arguments. This will happen early in -O0 9529 // builds, which is useful, because -O0 builds have large entry blocks and 9530 // many allocas. 9531 if (ArgCopyElisionCandidates.size() == NumArgs) 9532 break; 9533 } 9534 } 9535 9536 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9537 /// ArgVal is a load from a suitable fixed stack object. 9538 static void tryToElideArgumentCopy( 9539 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9540 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9541 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9542 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9543 SDValue ArgVal, bool &ArgHasUses) { 9544 // Check if this is a load from a fixed stack object. 9545 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9546 if (!LNode) 9547 return; 9548 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9549 if (!FINode) 9550 return; 9551 9552 // Check that the fixed stack object is the right size and alignment. 9553 // Look at the alignment that the user wrote on the alloca instead of looking 9554 // at the stack object. 9555 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9556 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9557 const AllocaInst *AI = ArgCopyIter->second.first; 9558 int FixedIndex = FINode->getIndex(); 9559 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9560 int OldIndex = AllocaIndex; 9561 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9562 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9563 LLVM_DEBUG( 9564 dbgs() << " argument copy elision failed due to bad fixed stack " 9565 "object size\n"); 9566 return; 9567 } 9568 unsigned RequiredAlignment = AI->getAlignment(); 9569 if (!RequiredAlignment) { 9570 RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment( 9571 AI->getAllocatedType()); 9572 } 9573 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9574 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9575 "greater than stack argument alignment (" 9576 << RequiredAlignment << " vs " 9577 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9578 return; 9579 } 9580 9581 // Perform the elision. Delete the old stack object and replace its only use 9582 // in the variable info map. Mark the stack object as mutable. 9583 LLVM_DEBUG({ 9584 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9585 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9586 << '\n'; 9587 }); 9588 MFI.RemoveStackObject(OldIndex); 9589 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9590 AllocaIndex = FixedIndex; 9591 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9592 Chains.push_back(ArgVal.getValue(1)); 9593 9594 // Avoid emitting code for the store implementing the copy. 9595 const StoreInst *SI = ArgCopyIter->second.second; 9596 ElidedArgCopyInstrs.insert(SI); 9597 9598 // Check for uses of the argument again so that we can avoid exporting ArgVal 9599 // if it is't used by anything other than the store. 9600 for (const Value *U : Arg.users()) { 9601 if (U != SI) { 9602 ArgHasUses = true; 9603 break; 9604 } 9605 } 9606 } 9607 9608 void SelectionDAGISel::LowerArguments(const Function &F) { 9609 SelectionDAG &DAG = SDB->DAG; 9610 SDLoc dl = SDB->getCurSDLoc(); 9611 const DataLayout &DL = DAG.getDataLayout(); 9612 SmallVector<ISD::InputArg, 16> Ins; 9613 9614 if (!FuncInfo->CanLowerReturn) { 9615 // Put in an sret pointer parameter before all the other parameters. 9616 SmallVector<EVT, 1> ValueVTs; 9617 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9618 F.getReturnType()->getPointerTo( 9619 DAG.getDataLayout().getAllocaAddrSpace()), 9620 ValueVTs); 9621 9622 // NOTE: Assuming that a pointer will never break down to more than one VT 9623 // or one register. 9624 ISD::ArgFlagsTy Flags; 9625 Flags.setSRet(); 9626 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9627 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9628 ISD::InputArg::NoArgIndex, 0); 9629 Ins.push_back(RetArg); 9630 } 9631 9632 // Look for stores of arguments to static allocas. Mark such arguments with a 9633 // flag to ask the target to give us the memory location of that argument if 9634 // available. 9635 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9636 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9637 ArgCopyElisionCandidates); 9638 9639 // Set up the incoming argument description vector. 9640 for (const Argument &Arg : F.args()) { 9641 unsigned ArgNo = Arg.getArgNo(); 9642 SmallVector<EVT, 4> ValueVTs; 9643 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9644 bool isArgValueUsed = !Arg.use_empty(); 9645 unsigned PartBase = 0; 9646 Type *FinalType = Arg.getType(); 9647 if (Arg.hasAttribute(Attribute::ByVal)) 9648 FinalType = Arg.getParamByValType(); 9649 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9650 FinalType, F.getCallingConv(), F.isVarArg()); 9651 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9652 Value != NumValues; ++Value) { 9653 EVT VT = ValueVTs[Value]; 9654 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9655 ISD::ArgFlagsTy Flags; 9656 9657 // Certain targets (such as MIPS), may have a different ABI alignment 9658 // for a type depending on the context. Give the target a chance to 9659 // specify the alignment it wants. 9660 const Align OriginalAlignment( 9661 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9662 9663 if (Arg.getType()->isPointerTy()) { 9664 Flags.setPointer(); 9665 Flags.setPointerAddrSpace( 9666 cast<PointerType>(Arg.getType())->getAddressSpace()); 9667 } 9668 if (Arg.hasAttribute(Attribute::ZExt)) 9669 Flags.setZExt(); 9670 if (Arg.hasAttribute(Attribute::SExt)) 9671 Flags.setSExt(); 9672 if (Arg.hasAttribute(Attribute::InReg)) { 9673 // If we are using vectorcall calling convention, a structure that is 9674 // passed InReg - is surely an HVA 9675 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9676 isa<StructType>(Arg.getType())) { 9677 // The first value of a structure is marked 9678 if (0 == Value) 9679 Flags.setHvaStart(); 9680 Flags.setHva(); 9681 } 9682 // Set InReg Flag 9683 Flags.setInReg(); 9684 } 9685 if (Arg.hasAttribute(Attribute::StructRet)) 9686 Flags.setSRet(); 9687 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9688 Flags.setSwiftSelf(); 9689 if (Arg.hasAttribute(Attribute::SwiftError)) 9690 Flags.setSwiftError(); 9691 if (Arg.hasAttribute(Attribute::ByVal)) 9692 Flags.setByVal(); 9693 if (Arg.hasAttribute(Attribute::InAlloca)) { 9694 Flags.setInAlloca(); 9695 // Set the byval flag for CCAssignFn callbacks that don't know about 9696 // inalloca. This way we can know how many bytes we should've allocated 9697 // and how many bytes a callee cleanup function will pop. If we port 9698 // inalloca to more targets, we'll have to add custom inalloca handling 9699 // in the various CC lowering callbacks. 9700 Flags.setByVal(); 9701 } 9702 if (F.getCallingConv() == CallingConv::X86_INTR) { 9703 // IA Interrupt passes frame (1st parameter) by value in the stack. 9704 if (ArgNo == 0) 9705 Flags.setByVal(); 9706 } 9707 if (Flags.isByVal() || Flags.isInAlloca()) { 9708 Type *ElementTy = Arg.getParamByValType(); 9709 9710 // For ByVal, size and alignment should be passed from FE. BE will 9711 // guess if this info is not there but there are cases it cannot get 9712 // right. 9713 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9714 Flags.setByValSize(FrameSize); 9715 9716 unsigned FrameAlign; 9717 if (Arg.getParamAlignment()) 9718 FrameAlign = Arg.getParamAlignment(); 9719 else 9720 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9721 Flags.setByValAlign(Align(FrameAlign)); 9722 } 9723 if (Arg.hasAttribute(Attribute::Nest)) 9724 Flags.setNest(); 9725 if (NeedsRegBlock) 9726 Flags.setInConsecutiveRegs(); 9727 Flags.setOrigAlign(OriginalAlignment); 9728 if (ArgCopyElisionCandidates.count(&Arg)) 9729 Flags.setCopyElisionCandidate(); 9730 if (Arg.hasAttribute(Attribute::Returned)) 9731 Flags.setReturned(); 9732 9733 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9734 *CurDAG->getContext(), F.getCallingConv(), VT); 9735 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9736 *CurDAG->getContext(), F.getCallingConv(), VT); 9737 for (unsigned i = 0; i != NumRegs; ++i) { 9738 // For scalable vectors, use the minimum size; individual targets 9739 // are responsible for handling scalable vector arguments and 9740 // return values. 9741 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9742 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9743 if (NumRegs > 1 && i == 0) 9744 MyFlags.Flags.setSplit(); 9745 // if it isn't first piece, alignment must be 1 9746 else if (i > 0) { 9747 MyFlags.Flags.setOrigAlign(Align::None()); 9748 if (i == NumRegs - 1) 9749 MyFlags.Flags.setSplitEnd(); 9750 } 9751 Ins.push_back(MyFlags); 9752 } 9753 if (NeedsRegBlock && Value == NumValues - 1) 9754 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9755 PartBase += VT.getStoreSize().getKnownMinSize(); 9756 } 9757 } 9758 9759 // Call the target to set up the argument values. 9760 SmallVector<SDValue, 8> InVals; 9761 SDValue NewRoot = TLI->LowerFormalArguments( 9762 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9763 9764 // Verify that the target's LowerFormalArguments behaved as expected. 9765 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9766 "LowerFormalArguments didn't return a valid chain!"); 9767 assert(InVals.size() == Ins.size() && 9768 "LowerFormalArguments didn't emit the correct number of values!"); 9769 LLVM_DEBUG({ 9770 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9771 assert(InVals[i].getNode() && 9772 "LowerFormalArguments emitted a null value!"); 9773 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9774 "LowerFormalArguments emitted a value with the wrong type!"); 9775 } 9776 }); 9777 9778 // Update the DAG with the new chain value resulting from argument lowering. 9779 DAG.setRoot(NewRoot); 9780 9781 // Set up the argument values. 9782 unsigned i = 0; 9783 if (!FuncInfo->CanLowerReturn) { 9784 // Create a virtual register for the sret pointer, and put in a copy 9785 // from the sret argument into it. 9786 SmallVector<EVT, 1> ValueVTs; 9787 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9788 F.getReturnType()->getPointerTo( 9789 DAG.getDataLayout().getAllocaAddrSpace()), 9790 ValueVTs); 9791 MVT VT = ValueVTs[0].getSimpleVT(); 9792 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9793 Optional<ISD::NodeType> AssertOp = None; 9794 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9795 nullptr, F.getCallingConv(), AssertOp); 9796 9797 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9798 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9799 Register SRetReg = 9800 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9801 FuncInfo->DemoteRegister = SRetReg; 9802 NewRoot = 9803 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9804 DAG.setRoot(NewRoot); 9805 9806 // i indexes lowered arguments. Bump it past the hidden sret argument. 9807 ++i; 9808 } 9809 9810 SmallVector<SDValue, 4> Chains; 9811 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9812 for (const Argument &Arg : F.args()) { 9813 SmallVector<SDValue, 4> ArgValues; 9814 SmallVector<EVT, 4> ValueVTs; 9815 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9816 unsigned NumValues = ValueVTs.size(); 9817 if (NumValues == 0) 9818 continue; 9819 9820 bool ArgHasUses = !Arg.use_empty(); 9821 9822 // Elide the copying store if the target loaded this argument from a 9823 // suitable fixed stack object. 9824 if (Ins[i].Flags.isCopyElisionCandidate()) { 9825 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9826 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9827 InVals[i], ArgHasUses); 9828 } 9829 9830 // If this argument is unused then remember its value. It is used to generate 9831 // debugging information. 9832 bool isSwiftErrorArg = 9833 TLI->supportSwiftError() && 9834 Arg.hasAttribute(Attribute::SwiftError); 9835 if (!ArgHasUses && !isSwiftErrorArg) { 9836 SDB->setUnusedArgValue(&Arg, InVals[i]); 9837 9838 // Also remember any frame index for use in FastISel. 9839 if (FrameIndexSDNode *FI = 9840 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9841 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9842 } 9843 9844 for (unsigned Val = 0; Val != NumValues; ++Val) { 9845 EVT VT = ValueVTs[Val]; 9846 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9847 F.getCallingConv(), VT); 9848 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9849 *CurDAG->getContext(), F.getCallingConv(), VT); 9850 9851 // Even an apparent 'unused' swifterror argument needs to be returned. So 9852 // we do generate a copy for it that can be used on return from the 9853 // function. 9854 if (ArgHasUses || isSwiftErrorArg) { 9855 Optional<ISD::NodeType> AssertOp; 9856 if (Arg.hasAttribute(Attribute::SExt)) 9857 AssertOp = ISD::AssertSext; 9858 else if (Arg.hasAttribute(Attribute::ZExt)) 9859 AssertOp = ISD::AssertZext; 9860 9861 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9862 PartVT, VT, nullptr, 9863 F.getCallingConv(), AssertOp)); 9864 } 9865 9866 i += NumParts; 9867 } 9868 9869 // We don't need to do anything else for unused arguments. 9870 if (ArgValues.empty()) 9871 continue; 9872 9873 // Note down frame index. 9874 if (FrameIndexSDNode *FI = 9875 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9876 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9877 9878 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9879 SDB->getCurSDLoc()); 9880 9881 SDB->setValue(&Arg, Res); 9882 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9883 // We want to associate the argument with the frame index, among 9884 // involved operands, that correspond to the lowest address. The 9885 // getCopyFromParts function, called earlier, is swapping the order of 9886 // the operands to BUILD_PAIR depending on endianness. The result of 9887 // that swapping is that the least significant bits of the argument will 9888 // be in the first operand of the BUILD_PAIR node, and the most 9889 // significant bits will be in the second operand. 9890 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9891 if (LoadSDNode *LNode = 9892 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9893 if (FrameIndexSDNode *FI = 9894 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9895 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9896 } 9897 9898 // Analyses past this point are naive and don't expect an assertion. 9899 if (Res.getOpcode() == ISD::AssertZext) 9900 Res = Res.getOperand(0); 9901 9902 // Update the SwiftErrorVRegDefMap. 9903 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9904 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9905 if (Register::isVirtualRegister(Reg)) 9906 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9907 Reg); 9908 } 9909 9910 // If this argument is live outside of the entry block, insert a copy from 9911 // wherever we got it to the vreg that other BB's will reference it as. 9912 if (Res.getOpcode() == ISD::CopyFromReg) { 9913 // If we can, though, try to skip creating an unnecessary vreg. 9914 // FIXME: This isn't very clean... it would be nice to make this more 9915 // general. 9916 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9917 if (Register::isVirtualRegister(Reg)) { 9918 FuncInfo->ValueMap[&Arg] = Reg; 9919 continue; 9920 } 9921 } 9922 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9923 FuncInfo->InitializeRegForValue(&Arg); 9924 SDB->CopyToExportRegsIfNeeded(&Arg); 9925 } 9926 } 9927 9928 if (!Chains.empty()) { 9929 Chains.push_back(NewRoot); 9930 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9931 } 9932 9933 DAG.setRoot(NewRoot); 9934 9935 assert(i == InVals.size() && "Argument register count mismatch!"); 9936 9937 // If any argument copy elisions occurred and we have debug info, update the 9938 // stale frame indices used in the dbg.declare variable info table. 9939 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9940 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9941 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9942 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9943 if (I != ArgCopyElisionFrameIndexMap.end()) 9944 VI.Slot = I->second; 9945 } 9946 } 9947 9948 // Finally, if the target has anything special to do, allow it to do so. 9949 EmitFunctionEntryCode(); 9950 } 9951 9952 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9953 /// ensure constants are generated when needed. Remember the virtual registers 9954 /// that need to be added to the Machine PHI nodes as input. We cannot just 9955 /// directly add them, because expansion might result in multiple MBB's for one 9956 /// BB. As such, the start of the BB might correspond to a different MBB than 9957 /// the end. 9958 void 9959 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9960 const Instruction *TI = LLVMBB->getTerminator(); 9961 9962 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9963 9964 // Check PHI nodes in successors that expect a value to be available from this 9965 // block. 9966 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9967 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9968 if (!isa<PHINode>(SuccBB->begin())) continue; 9969 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9970 9971 // If this terminator has multiple identical successors (common for 9972 // switches), only handle each succ once. 9973 if (!SuccsHandled.insert(SuccMBB).second) 9974 continue; 9975 9976 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9977 9978 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9979 // nodes and Machine PHI nodes, but the incoming operands have not been 9980 // emitted yet. 9981 for (const PHINode &PN : SuccBB->phis()) { 9982 // Ignore dead phi's. 9983 if (PN.use_empty()) 9984 continue; 9985 9986 // Skip empty types 9987 if (PN.getType()->isEmptyTy()) 9988 continue; 9989 9990 unsigned Reg; 9991 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9992 9993 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9994 unsigned &RegOut = ConstantsOut[C]; 9995 if (RegOut == 0) { 9996 RegOut = FuncInfo.CreateRegs(C); 9997 CopyValueToVirtualRegister(C, RegOut); 9998 } 9999 Reg = RegOut; 10000 } else { 10001 DenseMap<const Value *, unsigned>::iterator I = 10002 FuncInfo.ValueMap.find(PHIOp); 10003 if (I != FuncInfo.ValueMap.end()) 10004 Reg = I->second; 10005 else { 10006 assert(isa<AllocaInst>(PHIOp) && 10007 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10008 "Didn't codegen value into a register!??"); 10009 Reg = FuncInfo.CreateRegs(PHIOp); 10010 CopyValueToVirtualRegister(PHIOp, Reg); 10011 } 10012 } 10013 10014 // Remember that this register needs to added to the machine PHI node as 10015 // the input for this MBB. 10016 SmallVector<EVT, 4> ValueVTs; 10017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10018 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10019 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10020 EVT VT = ValueVTs[vti]; 10021 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10022 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10023 FuncInfo.PHINodesToUpdate.push_back( 10024 std::make_pair(&*MBBI++, Reg + i)); 10025 Reg += NumRegisters; 10026 } 10027 } 10028 } 10029 10030 ConstantsOut.clear(); 10031 } 10032 10033 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10034 /// is 0. 10035 MachineBasicBlock * 10036 SelectionDAGBuilder::StackProtectorDescriptor:: 10037 AddSuccessorMBB(const BasicBlock *BB, 10038 MachineBasicBlock *ParentMBB, 10039 bool IsLikely, 10040 MachineBasicBlock *SuccMBB) { 10041 // If SuccBB has not been created yet, create it. 10042 if (!SuccMBB) { 10043 MachineFunction *MF = ParentMBB->getParent(); 10044 MachineFunction::iterator BBI(ParentMBB); 10045 SuccMBB = MF->CreateMachineBasicBlock(BB); 10046 MF->insert(++BBI, SuccMBB); 10047 } 10048 // Add it as a successor of ParentMBB. 10049 ParentMBB->addSuccessor( 10050 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10051 return SuccMBB; 10052 } 10053 10054 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10055 MachineFunction::iterator I(MBB); 10056 if (++I == FuncInfo.MF->end()) 10057 return nullptr; 10058 return &*I; 10059 } 10060 10061 /// During lowering new call nodes can be created (such as memset, etc.). 10062 /// Those will become new roots of the current DAG, but complications arise 10063 /// when they are tail calls. In such cases, the call lowering will update 10064 /// the root, but the builder still needs to know that a tail call has been 10065 /// lowered in order to avoid generating an additional return. 10066 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10067 // If the node is null, we do have a tail call. 10068 if (MaybeTC.getNode() != nullptr) 10069 DAG.setRoot(MaybeTC); 10070 else 10071 HasTailCall = true; 10072 } 10073 10074 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10075 MachineBasicBlock *SwitchMBB, 10076 MachineBasicBlock *DefaultMBB) { 10077 MachineFunction *CurMF = FuncInfo.MF; 10078 MachineBasicBlock *NextMBB = nullptr; 10079 MachineFunction::iterator BBI(W.MBB); 10080 if (++BBI != FuncInfo.MF->end()) 10081 NextMBB = &*BBI; 10082 10083 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10084 10085 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10086 10087 if (Size == 2 && W.MBB == SwitchMBB) { 10088 // If any two of the cases has the same destination, and if one value 10089 // is the same as the other, but has one bit unset that the other has set, 10090 // use bit manipulation to do two compares at once. For example: 10091 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10092 // TODO: This could be extended to merge any 2 cases in switches with 3 10093 // cases. 10094 // TODO: Handle cases where W.CaseBB != SwitchBB. 10095 CaseCluster &Small = *W.FirstCluster; 10096 CaseCluster &Big = *W.LastCluster; 10097 10098 if (Small.Low == Small.High && Big.Low == Big.High && 10099 Small.MBB == Big.MBB) { 10100 const APInt &SmallValue = Small.Low->getValue(); 10101 const APInt &BigValue = Big.Low->getValue(); 10102 10103 // Check that there is only one bit different. 10104 APInt CommonBit = BigValue ^ SmallValue; 10105 if (CommonBit.isPowerOf2()) { 10106 SDValue CondLHS = getValue(Cond); 10107 EVT VT = CondLHS.getValueType(); 10108 SDLoc DL = getCurSDLoc(); 10109 10110 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10111 DAG.getConstant(CommonBit, DL, VT)); 10112 SDValue Cond = DAG.getSetCC( 10113 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10114 ISD::SETEQ); 10115 10116 // Update successor info. 10117 // Both Small and Big will jump to Small.BB, so we sum up the 10118 // probabilities. 10119 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10120 if (BPI) 10121 addSuccessorWithProb( 10122 SwitchMBB, DefaultMBB, 10123 // The default destination is the first successor in IR. 10124 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10125 else 10126 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10127 10128 // Insert the true branch. 10129 SDValue BrCond = 10130 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10131 DAG.getBasicBlock(Small.MBB)); 10132 // Insert the false branch. 10133 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10134 DAG.getBasicBlock(DefaultMBB)); 10135 10136 DAG.setRoot(BrCond); 10137 return; 10138 } 10139 } 10140 } 10141 10142 if (TM.getOptLevel() != CodeGenOpt::None) { 10143 // Here, we order cases by probability so the most likely case will be 10144 // checked first. However, two clusters can have the same probability in 10145 // which case their relative ordering is non-deterministic. So we use Low 10146 // as a tie-breaker as clusters are guaranteed to never overlap. 10147 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10148 [](const CaseCluster &a, const CaseCluster &b) { 10149 return a.Prob != b.Prob ? 10150 a.Prob > b.Prob : 10151 a.Low->getValue().slt(b.Low->getValue()); 10152 }); 10153 10154 // Rearrange the case blocks so that the last one falls through if possible 10155 // without changing the order of probabilities. 10156 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10157 --I; 10158 if (I->Prob > W.LastCluster->Prob) 10159 break; 10160 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10161 std::swap(*I, *W.LastCluster); 10162 break; 10163 } 10164 } 10165 } 10166 10167 // Compute total probability. 10168 BranchProbability DefaultProb = W.DefaultProb; 10169 BranchProbability UnhandledProbs = DefaultProb; 10170 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10171 UnhandledProbs += I->Prob; 10172 10173 MachineBasicBlock *CurMBB = W.MBB; 10174 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10175 bool FallthroughUnreachable = false; 10176 MachineBasicBlock *Fallthrough; 10177 if (I == W.LastCluster) { 10178 // For the last cluster, fall through to the default destination. 10179 Fallthrough = DefaultMBB; 10180 FallthroughUnreachable = isa<UnreachableInst>( 10181 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10182 } else { 10183 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10184 CurMF->insert(BBI, Fallthrough); 10185 // Put Cond in a virtual register to make it available from the new blocks. 10186 ExportFromCurrentBlock(Cond); 10187 } 10188 UnhandledProbs -= I->Prob; 10189 10190 switch (I->Kind) { 10191 case CC_JumpTable: { 10192 // FIXME: Optimize away range check based on pivot comparisons. 10193 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10194 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10195 10196 // The jump block hasn't been inserted yet; insert it here. 10197 MachineBasicBlock *JumpMBB = JT->MBB; 10198 CurMF->insert(BBI, JumpMBB); 10199 10200 auto JumpProb = I->Prob; 10201 auto FallthroughProb = UnhandledProbs; 10202 10203 // If the default statement is a target of the jump table, we evenly 10204 // distribute the default probability to successors of CurMBB. Also 10205 // update the probability on the edge from JumpMBB to Fallthrough. 10206 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10207 SE = JumpMBB->succ_end(); 10208 SI != SE; ++SI) { 10209 if (*SI == DefaultMBB) { 10210 JumpProb += DefaultProb / 2; 10211 FallthroughProb -= DefaultProb / 2; 10212 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10213 JumpMBB->normalizeSuccProbs(); 10214 break; 10215 } 10216 } 10217 10218 if (FallthroughUnreachable) { 10219 // Skip the range check if the fallthrough block is unreachable. 10220 JTH->OmitRangeCheck = true; 10221 } 10222 10223 if (!JTH->OmitRangeCheck) 10224 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10225 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10226 CurMBB->normalizeSuccProbs(); 10227 10228 // The jump table header will be inserted in our current block, do the 10229 // range check, and fall through to our fallthrough block. 10230 JTH->HeaderBB = CurMBB; 10231 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10232 10233 // If we're in the right place, emit the jump table header right now. 10234 if (CurMBB == SwitchMBB) { 10235 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10236 JTH->Emitted = true; 10237 } 10238 break; 10239 } 10240 case CC_BitTests: { 10241 // FIXME: Optimize away range check based on pivot comparisons. 10242 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10243 10244 // The bit test blocks haven't been inserted yet; insert them here. 10245 for (BitTestCase &BTC : BTB->Cases) 10246 CurMF->insert(BBI, BTC.ThisBB); 10247 10248 // Fill in fields of the BitTestBlock. 10249 BTB->Parent = CurMBB; 10250 BTB->Default = Fallthrough; 10251 10252 BTB->DefaultProb = UnhandledProbs; 10253 // If the cases in bit test don't form a contiguous range, we evenly 10254 // distribute the probability on the edge to Fallthrough to two 10255 // successors of CurMBB. 10256 if (!BTB->ContiguousRange) { 10257 BTB->Prob += DefaultProb / 2; 10258 BTB->DefaultProb -= DefaultProb / 2; 10259 } 10260 10261 if (FallthroughUnreachable) { 10262 // Skip the range check if the fallthrough block is unreachable. 10263 BTB->OmitRangeCheck = true; 10264 } 10265 10266 // If we're in the right place, emit the bit test header right now. 10267 if (CurMBB == SwitchMBB) { 10268 visitBitTestHeader(*BTB, SwitchMBB); 10269 BTB->Emitted = true; 10270 } 10271 break; 10272 } 10273 case CC_Range: { 10274 const Value *RHS, *LHS, *MHS; 10275 ISD::CondCode CC; 10276 if (I->Low == I->High) { 10277 // Check Cond == I->Low. 10278 CC = ISD::SETEQ; 10279 LHS = Cond; 10280 RHS=I->Low; 10281 MHS = nullptr; 10282 } else { 10283 // Check I->Low <= Cond <= I->High. 10284 CC = ISD::SETLE; 10285 LHS = I->Low; 10286 MHS = Cond; 10287 RHS = I->High; 10288 } 10289 10290 // If Fallthrough is unreachable, fold away the comparison. 10291 if (FallthroughUnreachable) 10292 CC = ISD::SETTRUE; 10293 10294 // The false probability is the sum of all unhandled cases. 10295 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10296 getCurSDLoc(), I->Prob, UnhandledProbs); 10297 10298 if (CurMBB == SwitchMBB) 10299 visitSwitchCase(CB, SwitchMBB); 10300 else 10301 SL->SwitchCases.push_back(CB); 10302 10303 break; 10304 } 10305 } 10306 CurMBB = Fallthrough; 10307 } 10308 } 10309 10310 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10311 CaseClusterIt First, 10312 CaseClusterIt Last) { 10313 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10314 if (X.Prob != CC.Prob) 10315 return X.Prob > CC.Prob; 10316 10317 // Ties are broken by comparing the case value. 10318 return X.Low->getValue().slt(CC.Low->getValue()); 10319 }); 10320 } 10321 10322 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10323 const SwitchWorkListItem &W, 10324 Value *Cond, 10325 MachineBasicBlock *SwitchMBB) { 10326 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10327 "Clusters not sorted?"); 10328 10329 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10330 10331 // Balance the tree based on branch probabilities to create a near-optimal (in 10332 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10333 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10334 CaseClusterIt LastLeft = W.FirstCluster; 10335 CaseClusterIt FirstRight = W.LastCluster; 10336 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10337 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10338 10339 // Move LastLeft and FirstRight towards each other from opposite directions to 10340 // find a partitioning of the clusters which balances the probability on both 10341 // sides. If LeftProb and RightProb are equal, alternate which side is 10342 // taken to ensure 0-probability nodes are distributed evenly. 10343 unsigned I = 0; 10344 while (LastLeft + 1 < FirstRight) { 10345 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10346 LeftProb += (++LastLeft)->Prob; 10347 else 10348 RightProb += (--FirstRight)->Prob; 10349 I++; 10350 } 10351 10352 while (true) { 10353 // Our binary search tree differs from a typical BST in that ours can have up 10354 // to three values in each leaf. The pivot selection above doesn't take that 10355 // into account, which means the tree might require more nodes and be less 10356 // efficient. We compensate for this here. 10357 10358 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10359 unsigned NumRight = W.LastCluster - FirstRight + 1; 10360 10361 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10362 // If one side has less than 3 clusters, and the other has more than 3, 10363 // consider taking a cluster from the other side. 10364 10365 if (NumLeft < NumRight) { 10366 // Consider moving the first cluster on the right to the left side. 10367 CaseCluster &CC = *FirstRight; 10368 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10369 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10370 if (LeftSideRank <= RightSideRank) { 10371 // Moving the cluster to the left does not demote it. 10372 ++LastLeft; 10373 ++FirstRight; 10374 continue; 10375 } 10376 } else { 10377 assert(NumRight < NumLeft); 10378 // Consider moving the last element on the left to the right side. 10379 CaseCluster &CC = *LastLeft; 10380 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10381 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10382 if (RightSideRank <= LeftSideRank) { 10383 // Moving the cluster to the right does not demot it. 10384 --LastLeft; 10385 --FirstRight; 10386 continue; 10387 } 10388 } 10389 } 10390 break; 10391 } 10392 10393 assert(LastLeft + 1 == FirstRight); 10394 assert(LastLeft >= W.FirstCluster); 10395 assert(FirstRight <= W.LastCluster); 10396 10397 // Use the first element on the right as pivot since we will make less-than 10398 // comparisons against it. 10399 CaseClusterIt PivotCluster = FirstRight; 10400 assert(PivotCluster > W.FirstCluster); 10401 assert(PivotCluster <= W.LastCluster); 10402 10403 CaseClusterIt FirstLeft = W.FirstCluster; 10404 CaseClusterIt LastRight = W.LastCluster; 10405 10406 const ConstantInt *Pivot = PivotCluster->Low; 10407 10408 // New blocks will be inserted immediately after the current one. 10409 MachineFunction::iterator BBI(W.MBB); 10410 ++BBI; 10411 10412 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10413 // we can branch to its destination directly if it's squeezed exactly in 10414 // between the known lower bound and Pivot - 1. 10415 MachineBasicBlock *LeftMBB; 10416 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10417 FirstLeft->Low == W.GE && 10418 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10419 LeftMBB = FirstLeft->MBB; 10420 } else { 10421 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10422 FuncInfo.MF->insert(BBI, LeftMBB); 10423 WorkList.push_back( 10424 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10425 // Put Cond in a virtual register to make it available from the new blocks. 10426 ExportFromCurrentBlock(Cond); 10427 } 10428 10429 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10430 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10431 // directly if RHS.High equals the current upper bound. 10432 MachineBasicBlock *RightMBB; 10433 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10434 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10435 RightMBB = FirstRight->MBB; 10436 } else { 10437 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10438 FuncInfo.MF->insert(BBI, RightMBB); 10439 WorkList.push_back( 10440 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10441 // Put Cond in a virtual register to make it available from the new blocks. 10442 ExportFromCurrentBlock(Cond); 10443 } 10444 10445 // Create the CaseBlock record that will be used to lower the branch. 10446 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10447 getCurSDLoc(), LeftProb, RightProb); 10448 10449 if (W.MBB == SwitchMBB) 10450 visitSwitchCase(CB, SwitchMBB); 10451 else 10452 SL->SwitchCases.push_back(CB); 10453 } 10454 10455 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10456 // from the swith statement. 10457 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10458 BranchProbability PeeledCaseProb) { 10459 if (PeeledCaseProb == BranchProbability::getOne()) 10460 return BranchProbability::getZero(); 10461 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10462 10463 uint32_t Numerator = CaseProb.getNumerator(); 10464 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10465 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10466 } 10467 10468 // Try to peel the top probability case if it exceeds the threshold. 10469 // Return current MachineBasicBlock for the switch statement if the peeling 10470 // does not occur. 10471 // If the peeling is performed, return the newly created MachineBasicBlock 10472 // for the peeled switch statement. Also update Clusters to remove the peeled 10473 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10474 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10475 const SwitchInst &SI, CaseClusterVector &Clusters, 10476 BranchProbability &PeeledCaseProb) { 10477 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10478 // Don't perform if there is only one cluster or optimizing for size. 10479 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10480 TM.getOptLevel() == CodeGenOpt::None || 10481 SwitchMBB->getParent()->getFunction().hasMinSize()) 10482 return SwitchMBB; 10483 10484 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10485 unsigned PeeledCaseIndex = 0; 10486 bool SwitchPeeled = false; 10487 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10488 CaseCluster &CC = Clusters[Index]; 10489 if (CC.Prob < TopCaseProb) 10490 continue; 10491 TopCaseProb = CC.Prob; 10492 PeeledCaseIndex = Index; 10493 SwitchPeeled = true; 10494 } 10495 if (!SwitchPeeled) 10496 return SwitchMBB; 10497 10498 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10499 << TopCaseProb << "\n"); 10500 10501 // Record the MBB for the peeled switch statement. 10502 MachineFunction::iterator BBI(SwitchMBB); 10503 ++BBI; 10504 MachineBasicBlock *PeeledSwitchMBB = 10505 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10506 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10507 10508 ExportFromCurrentBlock(SI.getCondition()); 10509 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10510 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10511 nullptr, nullptr, TopCaseProb.getCompl()}; 10512 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10513 10514 Clusters.erase(PeeledCaseIt); 10515 for (CaseCluster &CC : Clusters) { 10516 LLVM_DEBUG( 10517 dbgs() << "Scale the probablity for one cluster, before scaling: " 10518 << CC.Prob << "\n"); 10519 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10520 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10521 } 10522 PeeledCaseProb = TopCaseProb; 10523 return PeeledSwitchMBB; 10524 } 10525 10526 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10527 // Extract cases from the switch. 10528 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10529 CaseClusterVector Clusters; 10530 Clusters.reserve(SI.getNumCases()); 10531 for (auto I : SI.cases()) { 10532 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10533 const ConstantInt *CaseVal = I.getCaseValue(); 10534 BranchProbability Prob = 10535 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10536 : BranchProbability(1, SI.getNumCases() + 1); 10537 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10538 } 10539 10540 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10541 10542 // Cluster adjacent cases with the same destination. We do this at all 10543 // optimization levels because it's cheap to do and will make codegen faster 10544 // if there are many clusters. 10545 sortAndRangeify(Clusters); 10546 10547 // The branch probablity of the peeled case. 10548 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10549 MachineBasicBlock *PeeledSwitchMBB = 10550 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10551 10552 // If there is only the default destination, jump there directly. 10553 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10554 if (Clusters.empty()) { 10555 assert(PeeledSwitchMBB == SwitchMBB); 10556 SwitchMBB->addSuccessor(DefaultMBB); 10557 if (DefaultMBB != NextBlock(SwitchMBB)) { 10558 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10559 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10560 } 10561 return; 10562 } 10563 10564 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10565 SL->findBitTestClusters(Clusters, &SI); 10566 10567 LLVM_DEBUG({ 10568 dbgs() << "Case clusters: "; 10569 for (const CaseCluster &C : Clusters) { 10570 if (C.Kind == CC_JumpTable) 10571 dbgs() << "JT:"; 10572 if (C.Kind == CC_BitTests) 10573 dbgs() << "BT:"; 10574 10575 C.Low->getValue().print(dbgs(), true); 10576 if (C.Low != C.High) { 10577 dbgs() << '-'; 10578 C.High->getValue().print(dbgs(), true); 10579 } 10580 dbgs() << ' '; 10581 } 10582 dbgs() << '\n'; 10583 }); 10584 10585 assert(!Clusters.empty()); 10586 SwitchWorkList WorkList; 10587 CaseClusterIt First = Clusters.begin(); 10588 CaseClusterIt Last = Clusters.end() - 1; 10589 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10590 // Scale the branchprobability for DefaultMBB if the peel occurs and 10591 // DefaultMBB is not replaced. 10592 if (PeeledCaseProb != BranchProbability::getZero() && 10593 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10594 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10595 WorkList.push_back( 10596 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10597 10598 while (!WorkList.empty()) { 10599 SwitchWorkListItem W = WorkList.back(); 10600 WorkList.pop_back(); 10601 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10602 10603 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10604 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10605 // For optimized builds, lower large range as a balanced binary tree. 10606 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10607 continue; 10608 } 10609 10610 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10611 } 10612 } 10613 10614 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10615 SDValue N = getValue(I.getOperand(0)); 10616 setValue(&I, N); 10617 } 10618