1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI.getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = 1771 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1805 EVT PtrTy = TLI.getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 1817 SDValue Guard; 1818 1819 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1820 // guard value from the virtual register holding the value. Otherwise, emit a 1821 // volatile load to retrieve the stack guard value. 1822 unsigned GuardReg = SPD.getGuardReg(); 1823 1824 if (GuardReg && TLI.useLoadStackGuardNode()) 1825 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1826 PtrTy); 1827 else 1828 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = 1842 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1845 1846 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1847 // branch to failure MBB. 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1849 MVT::Other, StackSlot.getOperand(0), 1850 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1851 // Otherwise branch to success MBB. 1852 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1853 MVT::Other, BrCond, 1854 DAG.getBasicBlock(SPD.getSuccessMBB())); 1855 1856 DAG.setRoot(Br); 1857 } 1858 1859 /// Codegen the failure basic block for a stack protector check. 1860 /// 1861 /// A failure stack protector machine basic block consists simply of a call to 1862 /// __stack_chk_fail(). 1863 /// 1864 /// For a high level explanation of how this fits into the stack protector 1865 /// generation see the comment on the declaration of class 1866 /// StackProtectorDescriptor. 1867 void 1868 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SDValue Chain = 1871 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1872 nullptr, 0, false, getCurSDLoc(), false, false).second; 1873 DAG.setRoot(Chain); 1874 } 1875 1876 /// visitBitTestHeader - This function emits necessary code to produce value 1877 /// suitable for "bit tests" 1878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1879 MachineBasicBlock *SwitchBB) { 1880 // Subtract the minimum value 1881 SDValue SwitchOp = getValue(B.SValue); 1882 EVT VT = SwitchOp.getValueType(); 1883 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1884 DAG.getConstant(B.First, VT)); 1885 1886 // Check range 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SDValue RangeCmp = 1889 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI.isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI.getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC( 1961 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1962 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1963 } else { 1964 // Make desired shift 1965 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1966 DAG.getConstant(1, VT), ShiftOp); 1967 1968 // Emit bit tests and jumps 1969 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1970 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1971 Cmp = DAG.getSetCC(getCurSDLoc(), 1972 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1973 DAG.getConstant(0, VT), ISD::SETNE); 1974 } 1975 1976 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1977 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1978 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1979 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1980 1981 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 Cmp, DAG.getBasicBlock(B.TargetBB)); 1984 1985 // Set NextBlock to be the MBB immediately after the current one, if any. 1986 // This is used to avoid emitting unnecessary branches to the next block. 1987 MachineBasicBlock *NextBlock = nullptr; 1988 MachineFunction::iterator BBI = SwitchBB; 1989 if (++BBI != FuncInfo.MF->end()) 1990 NextBlock = BBI; 1991 1992 if (NextMBB != NextBlock) 1993 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 switch (Fn->getIntrinsicID()) { 2012 default: 2013 llvm_unreachable("Cannot invoke this intrinsic"); 2014 case Intrinsic::donothing: 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 break; 2017 case Intrinsic::experimental_patchpoint_void: 2018 case Intrinsic::experimental_patchpoint_i64: 2019 visitPatchpoint(&I, LandingPad); 2020 break; 2021 } 2022 } else 2023 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2024 2025 // If the value of the invoke is used outside of its defining block, make it 2026 // available as a virtual register. 2027 CopyToExportRegsIfNeeded(&I); 2028 2029 // Update successor info 2030 addSuccessorWithWeight(InvokeMBB, Return); 2031 addSuccessorWithWeight(InvokeMBB, LandingPad); 2032 2033 // Drop into normal successor. 2034 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2035 MVT::Other, getControlRoot(), 2036 DAG.getBasicBlock(Return))); 2037 } 2038 2039 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2040 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2041 } 2042 2043 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2044 assert(FuncInfo.MBB->isLandingPad() && 2045 "Call to landingpad not in landing pad!"); 2046 2047 MachineBasicBlock *MBB = FuncInfo.MBB; 2048 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2049 AddLandingPadInfo(LP, MMI, MBB); 2050 2051 // If there aren't registers to copy the values into (e.g., during SjLj 2052 // exceptions), then don't bother to create these DAG nodes. 2053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2054 if (TLI.getExceptionPointerRegister() == 0 && 2055 TLI.getExceptionSelectorRegister() == 0) 2056 return; 2057 2058 SmallVector<EVT, 2> ValueVTs; 2059 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2060 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2061 2062 // Get the two live-in registers as SDValues. The physregs have already been 2063 // copied into virtual registers. 2064 SDValue Ops[2]; 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 Ops[1] = DAG.getZExtOrTrunc( 2070 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2071 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2072 getCurSDLoc(), ValueVTs[1]); 2073 2074 // Merge into one. 2075 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2076 DAG.getVTList(ValueVTs), Ops); 2077 setValue(&LP, Res); 2078 } 2079 2080 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2081 /// small case ranges). 2082 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2083 CaseRecVector& WorkList, 2084 const Value* SV, 2085 MachineBasicBlock *Default, 2086 MachineBasicBlock *SwitchBB) { 2087 // Size is the number of Cases represented by this range. 2088 size_t Size = CR.Range.second - CR.Range.first; 2089 if (Size > 3) 2090 return false; 2091 2092 // Get the MachineFunction which holds the current MBB. This is used when 2093 // inserting any additional MBBs necessary to represent the switch. 2094 MachineFunction *CurMF = FuncInfo.MF; 2095 2096 // Figure out which block is immediately after the current one. 2097 MachineBasicBlock *NextBlock = nullptr; 2098 MachineFunction::iterator BBI = CR.CaseBB; 2099 2100 if (++BBI != FuncInfo.MF->end()) 2101 NextBlock = BBI; 2102 2103 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2104 // If any two of the cases has the same destination, and if one value 2105 // is the same as the other, but has one bit unset that the other has set, 2106 // use bit manipulation to do two compares at once. For example: 2107 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2108 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2109 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2110 if (Size == 2 && CR.CaseBB == SwitchBB) { 2111 Case &Small = *CR.Range.first; 2112 Case &Big = *(CR.Range.second-1); 2113 2114 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2115 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2116 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2117 2118 // Check that there is only one bit different. 2119 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2120 (SmallValue | BigValue) == BigValue) { 2121 // Isolate the common bit. 2122 APInt CommonBit = BigValue & ~SmallValue; 2123 assert((SmallValue | CommonBit) == BigValue && 2124 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2125 2126 SDValue CondLHS = getValue(SV); 2127 EVT VT = CondLHS.getValueType(); 2128 SDLoc DL = getCurSDLoc(); 2129 2130 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2131 DAG.getConstant(CommonBit, VT)); 2132 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2133 Or, DAG.getConstant(BigValue, VT), 2134 ISD::SETEQ); 2135 2136 // Update successor info. 2137 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2138 addSuccessorWithWeight(SwitchBB, Small.BB, 2139 Small.ExtraWeight + Big.ExtraWeight); 2140 addSuccessorWithWeight(SwitchBB, Default, 2141 // The default destination is the first successor in IR. 2142 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2143 2144 // Insert the true branch. 2145 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2146 getControlRoot(), Cond, 2147 DAG.getBasicBlock(Small.BB)); 2148 2149 // Insert the false branch. 2150 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2151 DAG.getBasicBlock(Default)); 2152 2153 DAG.setRoot(BrCond); 2154 return true; 2155 } 2156 } 2157 } 2158 2159 // Order cases by weight so the most likely case will be checked first. 2160 uint32_t UnhandledWeights = 0; 2161 if (BPI) { 2162 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2163 uint32_t IWeight = I->ExtraWeight; 2164 UnhandledWeights += IWeight; 2165 for (CaseItr J = CR.Range.first; J < I; ++J) { 2166 uint32_t JWeight = J->ExtraWeight; 2167 if (IWeight > JWeight) 2168 std::swap(*I, *J); 2169 } 2170 } 2171 } 2172 // Rearrange the case blocks so that the last one falls through if possible. 2173 Case &BackCase = *(CR.Range.second-1); 2174 if (Size > 1 && 2175 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2176 // The last case block won't fall through into 'NextBlock' if we emit the 2177 // branches in this order. See if rearranging a case value would help. 2178 // We start at the bottom as it's the case with the least weight. 2179 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2180 if (I->BB == NextBlock) { 2181 std::swap(*I, BackCase); 2182 break; 2183 } 2184 } 2185 2186 // Create a CaseBlock record representing a conditional branch to 2187 // the Case's target mbb if the value being switched on SV is equal 2188 // to C. 2189 MachineBasicBlock *CurBlock = CR.CaseBB; 2190 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2191 MachineBasicBlock *FallThrough; 2192 if (I != E-1) { 2193 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2194 CurMF->insert(BBI, FallThrough); 2195 2196 // Put SV in a virtual register to make it available from the new blocks. 2197 ExportFromCurrentBlock(SV); 2198 } else { 2199 // If the last case doesn't match, go to the default block. 2200 FallThrough = Default; 2201 } 2202 2203 const Value *RHS, *LHS, *MHS; 2204 ISD::CondCode CC; 2205 if (I->High == I->Low) { 2206 // This is just small small case range :) containing exactly 1 case 2207 CC = ISD::SETEQ; 2208 LHS = SV; RHS = I->High; MHS = nullptr; 2209 } else { 2210 CC = ISD::SETLE; 2211 LHS = I->Low; MHS = SV; RHS = I->High; 2212 } 2213 2214 // The false weight should be sum of all un-handled cases. 2215 UnhandledWeights -= I->ExtraWeight; 2216 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2217 /* me */ CurBlock, 2218 /* trueweight */ I->ExtraWeight, 2219 /* falseweight */ UnhandledWeights); 2220 2221 // If emitting the first comparison, just call visitSwitchCase to emit the 2222 // code into the current block. Otherwise, push the CaseBlock onto the 2223 // vector to be later processed by SDISel, and insert the node's MBB 2224 // before the next MBB. 2225 if (CurBlock == SwitchBB) 2226 visitSwitchCase(CB, SwitchBB); 2227 else 2228 SwitchCases.push_back(CB); 2229 2230 CurBlock = FallThrough; 2231 } 2232 2233 return true; 2234 } 2235 2236 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2237 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2238 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2239 } 2240 2241 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2242 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2243 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2244 return (LastExt - FirstExt + 1ULL); 2245 } 2246 2247 /// handleJTSwitchCase - Emit jumptable for current switch case range 2248 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2249 CaseRecVector &WorkList, 2250 const Value *SV, 2251 MachineBasicBlock *Default, 2252 MachineBasicBlock *SwitchBB) { 2253 Case& FrontCase = *CR.Range.first; 2254 Case& BackCase = *(CR.Range.second-1); 2255 2256 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2257 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2258 2259 APInt TSize(First.getBitWidth(), 0); 2260 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2261 TSize += I->size(); 2262 2263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2264 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2265 return false; 2266 2267 APInt Range = ComputeRange(First, Last); 2268 // The density is TSize / Range. Require at least 40%. 2269 // It should not be possible for IntTSize to saturate for sane code, but make 2270 // sure we handle Range saturation correctly. 2271 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2272 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2273 if (IntTSize * 10 < IntRange * 4) 2274 return false; 2275 2276 DEBUG(dbgs() << "Lowering jump table\n" 2277 << "First entry: " << First << ". Last entry: " << Last << '\n' 2278 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2279 2280 // Get the MachineFunction which holds the current MBB. This is used when 2281 // inserting any additional MBBs necessary to represent the switch. 2282 MachineFunction *CurMF = FuncInfo.MF; 2283 2284 // Figure out which block is immediately after the current one. 2285 MachineFunction::iterator BBI = CR.CaseBB; 2286 ++BBI; 2287 2288 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2289 2290 // Create a new basic block to hold the code for loading the address 2291 // of the jump table, and jumping to it. Update successor information; 2292 // we will either branch to the default case for the switch, or the jump 2293 // table. 2294 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2295 CurMF->insert(BBI, JumpTableBB); 2296 2297 addSuccessorWithWeight(CR.CaseBB, Default); 2298 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2299 2300 // Build a vector of destination BBs, corresponding to each target 2301 // of the jump table. If the value of the jump table slot corresponds to 2302 // a case statement, push the case's BB onto the vector, otherwise, push 2303 // the default BB. 2304 std::vector<MachineBasicBlock*> DestBBs; 2305 APInt TEI = First; 2306 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2307 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2308 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2309 2310 if (Low.sle(TEI) && TEI.sle(High)) { 2311 DestBBs.push_back(I->BB); 2312 if (TEI==High) 2313 ++I; 2314 } else { 2315 DestBBs.push_back(Default); 2316 } 2317 } 2318 2319 // Calculate weight for each unique destination in CR. 2320 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2321 if (FuncInfo.BPI) 2322 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2323 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2324 DestWeights.find(I->BB); 2325 if (Itr != DestWeights.end()) 2326 Itr->second += I->ExtraWeight; 2327 else 2328 DestWeights[I->BB] = I->ExtraWeight; 2329 } 2330 2331 // Update successor info. Add one edge to each unique successor. 2332 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2333 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2334 E = DestBBs.end(); I != E; ++I) { 2335 if (!SuccsHandled[(*I)->getNumber()]) { 2336 SuccsHandled[(*I)->getNumber()] = true; 2337 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2338 DestWeights.find(*I); 2339 addSuccessorWithWeight(JumpTableBB, *I, 2340 Itr != DestWeights.end() ? Itr->second : 0); 2341 } 2342 } 2343 2344 // Create a jump table index for this jump table. 2345 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2346 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2347 ->createJumpTableIndex(DestBBs); 2348 2349 // Set the jump table information so that we can codegen it as a second 2350 // MachineBasicBlock 2351 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2352 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2353 if (CR.CaseBB == SwitchBB) 2354 visitJumpTableHeader(JT, JTH, SwitchBB); 2355 2356 JTCases.push_back(JumpTableBlock(JTH, JT)); 2357 return true; 2358 } 2359 2360 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2361 /// 2 subtrees. 2362 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2363 CaseRecVector& WorkList, 2364 const Value* SV, 2365 MachineBasicBlock* SwitchBB) { 2366 // Get the MachineFunction which holds the current MBB. This is used when 2367 // inserting any additional MBBs necessary to represent the switch. 2368 MachineFunction *CurMF = FuncInfo.MF; 2369 2370 // Figure out which block is immediately after the current one. 2371 MachineFunction::iterator BBI = CR.CaseBB; 2372 ++BBI; 2373 2374 Case& FrontCase = *CR.Range.first; 2375 Case& BackCase = *(CR.Range.second-1); 2376 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2377 2378 // Size is the number of Cases represented by this range. 2379 unsigned Size = CR.Range.second - CR.Range.first; 2380 2381 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2382 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2383 double FMetric = 0; 2384 CaseItr Pivot = CR.Range.first + Size/2; 2385 2386 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2387 // (heuristically) allow us to emit JumpTable's later. 2388 APInt TSize(First.getBitWidth(), 0); 2389 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2390 I!=E; ++I) 2391 TSize += I->size(); 2392 2393 APInt LSize = FrontCase.size(); 2394 APInt RSize = TSize-LSize; 2395 DEBUG(dbgs() << "Selecting best pivot: \n" 2396 << "First: " << First << ", Last: " << Last <<'\n' 2397 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2398 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2399 J!=E; ++I, ++J) { 2400 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2401 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2402 APInt Range = ComputeRange(LEnd, RBegin); 2403 assert((Range - 2ULL).isNonNegative() && 2404 "Invalid case distance"); 2405 // Use volatile double here to avoid excess precision issues on some hosts, 2406 // e.g. that use 80-bit X87 registers. 2407 volatile double LDensity = 2408 (double)LSize.roundToDouble() / 2409 (LEnd - First + 1ULL).roundToDouble(); 2410 volatile double RDensity = 2411 (double)RSize.roundToDouble() / 2412 (Last - RBegin + 1ULL).roundToDouble(); 2413 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2414 // Should always split in some non-trivial place 2415 DEBUG(dbgs() <<"=>Step\n" 2416 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2417 << "LDensity: " << LDensity 2418 << ", RDensity: " << RDensity << '\n' 2419 << "Metric: " << Metric << '\n'); 2420 if (FMetric < Metric) { 2421 Pivot = J; 2422 FMetric = Metric; 2423 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2424 } 2425 2426 LSize += J->size(); 2427 RSize -= J->size(); 2428 } 2429 2430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2431 if (areJTsAllowed(TLI)) { 2432 // If our case is dense we *really* should handle it earlier! 2433 assert((FMetric > 0) && "Should handle dense range earlier!"); 2434 } else { 2435 Pivot = CR.Range.first + Size/2; 2436 } 2437 2438 CaseRange LHSR(CR.Range.first, Pivot); 2439 CaseRange RHSR(Pivot, CR.Range.second); 2440 const Constant *C = Pivot->Low; 2441 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2442 2443 // We know that we branch to the LHS if the Value being switched on is 2444 // less than the Pivot value, C. We use this to optimize our binary 2445 // tree a bit, by recognizing that if SV is greater than or equal to the 2446 // LHS's Case Value, and that Case Value is exactly one less than the 2447 // Pivot's Value, then we can branch directly to the LHS's Target, 2448 // rather than creating a leaf node for it. 2449 if ((LHSR.second - LHSR.first) == 1 && 2450 LHSR.first->High == CR.GE && 2451 cast<ConstantInt>(C)->getValue() == 2452 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2453 TrueBB = LHSR.first->BB; 2454 } else { 2455 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2456 CurMF->insert(BBI, TrueBB); 2457 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2458 2459 // Put SV in a virtual register to make it available from the new blocks. 2460 ExportFromCurrentBlock(SV); 2461 } 2462 2463 // Similar to the optimization above, if the Value being switched on is 2464 // known to be less than the Constant CR.LT, and the current Case Value 2465 // is CR.LT - 1, then we can branch directly to the target block for 2466 // the current Case Value, rather than emitting a RHS leaf node for it. 2467 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2468 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2469 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2470 FalseBB = RHSR.first->BB; 2471 } else { 2472 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2473 CurMF->insert(BBI, FalseBB); 2474 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2475 2476 // Put SV in a virtual register to make it available from the new blocks. 2477 ExportFromCurrentBlock(SV); 2478 } 2479 2480 // Create a CaseBlock record representing a conditional branch to 2481 // the LHS node if the value being switched on SV is less than C. 2482 // Otherwise, branch to LHS. 2483 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2484 2485 if (CR.CaseBB == SwitchBB) 2486 visitSwitchCase(CB, SwitchBB); 2487 else 2488 SwitchCases.push_back(CB); 2489 2490 return true; 2491 } 2492 2493 /// handleBitTestsSwitchCase - if current case range has few destination and 2494 /// range span less, than machine word bitwidth, encode case range into series 2495 /// of masks and emit bit tests with these masks. 2496 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2497 CaseRecVector& WorkList, 2498 const Value* SV, 2499 MachineBasicBlock* Default, 2500 MachineBasicBlock* SwitchBB) { 2501 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2502 EVT PTy = TLI.getPointerTy(); 2503 unsigned IntPtrBits = PTy.getSizeInBits(); 2504 2505 Case& FrontCase = *CR.Range.first; 2506 Case& BackCase = *(CR.Range.second-1); 2507 2508 // Get the MachineFunction which holds the current MBB. This is used when 2509 // inserting any additional MBBs necessary to represent the switch. 2510 MachineFunction *CurMF = FuncInfo.MF; 2511 2512 // If target does not have legal shift left, do not emit bit tests at all. 2513 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2514 return false; 2515 2516 size_t numCmps = 0; 2517 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2518 I!=E; ++I) { 2519 // Single case counts one, case range - two. 2520 numCmps += (I->Low == I->High ? 1 : 2); 2521 } 2522 2523 // Count unique destinations 2524 SmallSet<MachineBasicBlock*, 4> Dests; 2525 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2526 Dests.insert(I->BB); 2527 if (Dests.size() > 3) 2528 // Don't bother the code below, if there are too much unique destinations 2529 return false; 2530 } 2531 DEBUG(dbgs() << "Total number of unique destinations: " 2532 << Dests.size() << '\n' 2533 << "Total number of comparisons: " << numCmps << '\n'); 2534 2535 // Compute span of values. 2536 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2537 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2538 APInt cmpRange = maxValue - minValue; 2539 2540 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2541 << "Low bound: " << minValue << '\n' 2542 << "High bound: " << maxValue << '\n'); 2543 2544 if (cmpRange.uge(IntPtrBits) || 2545 (!(Dests.size() == 1 && numCmps >= 3) && 2546 !(Dests.size() == 2 && numCmps >= 5) && 2547 !(Dests.size() >= 3 && numCmps >= 6))) 2548 return false; 2549 2550 DEBUG(dbgs() << "Emitting bit tests\n"); 2551 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2552 2553 // Optimize the case where all the case values fit in a 2554 // word without having to subtract minValue. In this case, 2555 // we can optimize away the subtraction. 2556 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2557 cmpRange = maxValue; 2558 } else { 2559 lowBound = minValue; 2560 } 2561 2562 CaseBitsVector CasesBits; 2563 unsigned i, count = 0; 2564 2565 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2566 MachineBasicBlock* Dest = I->BB; 2567 for (i = 0; i < count; ++i) 2568 if (Dest == CasesBits[i].BB) 2569 break; 2570 2571 if (i == count) { 2572 assert((count < 3) && "Too much destinations to test!"); 2573 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2574 count++; 2575 } 2576 2577 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2578 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2579 2580 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2581 uint64_t hi = (highValue - lowBound).getZExtValue(); 2582 CasesBits[i].ExtraWeight += I->ExtraWeight; 2583 2584 for (uint64_t j = lo; j <= hi; j++) { 2585 CasesBits[i].Mask |= 1ULL << j; 2586 CasesBits[i].Bits++; 2587 } 2588 2589 } 2590 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2591 2592 BitTestInfo BTC; 2593 2594 // Figure out which block is immediately after the current one. 2595 MachineFunction::iterator BBI = CR.CaseBB; 2596 ++BBI; 2597 2598 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2599 2600 DEBUG(dbgs() << "Cases:\n"); 2601 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2602 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2603 << ", Bits: " << CasesBits[i].Bits 2604 << ", BB: " << CasesBits[i].BB << '\n'); 2605 2606 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2607 CurMF->insert(BBI, CaseBB); 2608 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2609 CaseBB, 2610 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2611 2612 // Put SV in a virtual register to make it available from the new blocks. 2613 ExportFromCurrentBlock(SV); 2614 } 2615 2616 BitTestBlock BTB(lowBound, cmpRange, SV, 2617 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2618 CR.CaseBB, Default, std::move(BTC)); 2619 2620 if (CR.CaseBB == SwitchBB) 2621 visitBitTestHeader(BTB, SwitchBB); 2622 2623 BitTestCases.push_back(std::move(BTB)); 2624 2625 return true; 2626 } 2627 2628 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2629 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2630 const SwitchInst& SI) { 2631 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2632 // Start with "simple" cases 2633 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2634 i != e; ++i) { 2635 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2636 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2637 2638 uint32_t ExtraWeight = 2639 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2640 2641 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2642 SMBB, ExtraWeight)); 2643 } 2644 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2645 2646 // Merge case into clusters 2647 if (Cases.size() >= 2) 2648 // Must recompute end() each iteration because it may be 2649 // invalidated by erase if we hold on to it 2650 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2651 J != Cases.end(); ) { 2652 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2653 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2654 MachineBasicBlock* nextBB = J->BB; 2655 MachineBasicBlock* currentBB = I->BB; 2656 2657 // If the two neighboring cases go to the same destination, merge them 2658 // into a single case. 2659 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2660 I->High = J->High; 2661 I->ExtraWeight += J->ExtraWeight; 2662 J = Cases.erase(J); 2663 } else { 2664 I = J++; 2665 } 2666 } 2667 2668 DEBUG({ 2669 size_t numCmps = 0; 2670 for (auto &I : Cases) 2671 // A range counts double, since it requires two compares. 2672 numCmps += I.Low != I.High ? 2 : 1; 2673 2674 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2675 << ". Total compares: " << numCmps << '\n'; 2676 }); 2677 } 2678 2679 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2680 MachineBasicBlock *Last) { 2681 // Update JTCases. 2682 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2683 if (JTCases[i].first.HeaderBB == First) 2684 JTCases[i].first.HeaderBB = Last; 2685 2686 // Update BitTestCases. 2687 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2688 if (BitTestCases[i].Parent == First) 2689 BitTestCases[i].Parent = Last; 2690 } 2691 2692 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2693 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2694 2695 // Figure out which block is immediately after the current one. 2696 MachineBasicBlock *NextBlock = nullptr; 2697 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2698 NextBlock = SwitchMBB + 1; 2699 2700 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2701 2702 // If there is only the default destination, branch to it if it is not the 2703 // next basic block. Otherwise, just fall through. 2704 if (!SI.getNumCases()) { 2705 // Update machine-CFG edges. 2706 2707 // If this is not a fall-through branch, emit the branch. 2708 SwitchMBB->addSuccessor(Default); 2709 if (Default != NextBlock) 2710 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2711 MVT::Other, getControlRoot(), 2712 DAG.getBasicBlock(Default))); 2713 2714 return; 2715 } 2716 2717 // If there are any non-default case statements, create a vector of Cases 2718 // representing each one, and sort the vector so that we can efficiently 2719 // create a binary search tree from them. 2720 CaseVector Cases; 2721 Clusterify(Cases, SI); 2722 2723 // Get the Value to be switched on and default basic blocks, which will be 2724 // inserted into CaseBlock records, representing basic blocks in the binary 2725 // search tree. 2726 const Value *SV = SI.getCondition(); 2727 2728 // Push the initial CaseRec onto the worklist 2729 CaseRecVector WorkList; 2730 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2731 CaseRange(Cases.begin(),Cases.end()))); 2732 2733 while (!WorkList.empty()) { 2734 // Grab a record representing a case range to process off the worklist 2735 CaseRec CR = WorkList.back(); 2736 WorkList.pop_back(); 2737 2738 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2739 continue; 2740 2741 // If the range has few cases (two or less) emit a series of specific 2742 // tests. 2743 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2744 continue; 2745 2746 // If the switch has more than N blocks, and is at least 40% dense, and the 2747 // target supports indirect branches, then emit a jump table rather than 2748 // lowering the switch to a binary tree of conditional branches. 2749 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2750 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2751 continue; 2752 2753 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2754 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2755 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2756 } 2757 } 2758 2759 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2760 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2761 2762 // Update machine-CFG edges with unique successors. 2763 SmallSet<BasicBlock*, 32> Done; 2764 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2765 BasicBlock *BB = I.getSuccessor(i); 2766 bool Inserted = Done.insert(BB).second; 2767 if (!Inserted) 2768 continue; 2769 2770 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2771 addSuccessorWithWeight(IndirectBrMBB, Succ); 2772 } 2773 2774 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2775 MVT::Other, getControlRoot(), 2776 getValue(I.getAddress()))); 2777 } 2778 2779 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2780 if (DAG.getTarget().Options.TrapUnreachable) 2781 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2782 } 2783 2784 void SelectionDAGBuilder::visitFSub(const User &I) { 2785 // -0.0 - X --> fneg 2786 Type *Ty = I.getType(); 2787 if (isa<Constant>(I.getOperand(0)) && 2788 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2789 SDValue Op2 = getValue(I.getOperand(1)); 2790 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2791 Op2.getValueType(), Op2)); 2792 return; 2793 } 2794 2795 visitBinary(I, ISD::FSUB); 2796 } 2797 2798 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2799 SDValue Op1 = getValue(I.getOperand(0)); 2800 SDValue Op2 = getValue(I.getOperand(1)); 2801 2802 bool nuw = false; 2803 bool nsw = false; 2804 bool exact = false; 2805 if (const OverflowingBinaryOperator *OFBinOp = 2806 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2807 nuw = OFBinOp->hasNoUnsignedWrap(); 2808 nsw = OFBinOp->hasNoSignedWrap(); 2809 } 2810 if (const PossiblyExactOperator *ExactOp = 2811 dyn_cast<const PossiblyExactOperator>(&I)) 2812 exact = ExactOp->isExact(); 2813 2814 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2815 Op1, Op2, nuw, nsw, exact); 2816 setValue(&I, BinNodeValue); 2817 } 2818 2819 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2820 SDValue Op1 = getValue(I.getOperand(0)); 2821 SDValue Op2 = getValue(I.getOperand(1)); 2822 2823 EVT ShiftTy = 2824 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2825 2826 // Coerce the shift amount to the right type if we can. 2827 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2828 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2829 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2830 SDLoc DL = getCurSDLoc(); 2831 2832 // If the operand is smaller than the shift count type, promote it. 2833 if (ShiftSize > Op2Size) 2834 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2835 2836 // If the operand is larger than the shift count type but the shift 2837 // count type has enough bits to represent any shift value, truncate 2838 // it now. This is a common case and it exposes the truncate to 2839 // optimization early. 2840 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2841 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2842 // Otherwise we'll need to temporarily settle for some other convenient 2843 // type. Type legalization will make adjustments once the shiftee is split. 2844 else 2845 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2846 } 2847 2848 bool nuw = false; 2849 bool nsw = false; 2850 bool exact = false; 2851 2852 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2853 2854 if (const OverflowingBinaryOperator *OFBinOp = 2855 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2856 nuw = OFBinOp->hasNoUnsignedWrap(); 2857 nsw = OFBinOp->hasNoSignedWrap(); 2858 } 2859 if (const PossiblyExactOperator *ExactOp = 2860 dyn_cast<const PossiblyExactOperator>(&I)) 2861 exact = ExactOp->isExact(); 2862 } 2863 2864 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2865 nuw, nsw, exact); 2866 setValue(&I, Res); 2867 } 2868 2869 void SelectionDAGBuilder::visitSDiv(const User &I) { 2870 SDValue Op1 = getValue(I.getOperand(0)); 2871 SDValue Op2 = getValue(I.getOperand(1)); 2872 2873 // Turn exact SDivs into multiplications. 2874 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2875 // exact bit. 2876 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2877 !isa<ConstantSDNode>(Op1) && 2878 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2879 setValue(&I, DAG.getTargetLoweringInfo() 2880 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2881 else 2882 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2883 Op1, Op2)); 2884 } 2885 2886 void SelectionDAGBuilder::visitICmp(const User &I) { 2887 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2888 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2889 predicate = IC->getPredicate(); 2890 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2891 predicate = ICmpInst::Predicate(IC->getPredicate()); 2892 SDValue Op1 = getValue(I.getOperand(0)); 2893 SDValue Op2 = getValue(I.getOperand(1)); 2894 ISD::CondCode Opcode = getICmpCondCode(predicate); 2895 2896 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2897 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2898 } 2899 2900 void SelectionDAGBuilder::visitFCmp(const User &I) { 2901 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2902 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2903 predicate = FC->getPredicate(); 2904 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2905 predicate = FCmpInst::Predicate(FC->getPredicate()); 2906 SDValue Op1 = getValue(I.getOperand(0)); 2907 SDValue Op2 = getValue(I.getOperand(1)); 2908 ISD::CondCode Condition = getFCmpCondCode(predicate); 2909 if (TM.Options.NoNaNsFPMath) 2910 Condition = getFCmpCodeWithoutNaN(Condition); 2911 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2912 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2913 } 2914 2915 void SelectionDAGBuilder::visitSelect(const User &I) { 2916 SmallVector<EVT, 4> ValueVTs; 2917 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2918 unsigned NumValues = ValueVTs.size(); 2919 if (NumValues == 0) return; 2920 2921 SmallVector<SDValue, 4> Values(NumValues); 2922 SDValue Cond = getValue(I.getOperand(0)); 2923 SDValue TrueVal = getValue(I.getOperand(1)); 2924 SDValue FalseVal = getValue(I.getOperand(2)); 2925 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2926 ISD::VSELECT : ISD::SELECT; 2927 2928 for (unsigned i = 0; i != NumValues; ++i) 2929 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2930 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2931 Cond, 2932 SDValue(TrueVal.getNode(), 2933 TrueVal.getResNo() + i), 2934 SDValue(FalseVal.getNode(), 2935 FalseVal.getResNo() + i)); 2936 2937 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2938 DAG.getVTList(ValueVTs), Values)); 2939 } 2940 2941 void SelectionDAGBuilder::visitTrunc(const User &I) { 2942 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2943 SDValue N = getValue(I.getOperand(0)); 2944 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2945 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2946 } 2947 2948 void SelectionDAGBuilder::visitZExt(const User &I) { 2949 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2950 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2951 SDValue N = getValue(I.getOperand(0)); 2952 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2953 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitSExt(const User &I) { 2957 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2958 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2959 SDValue N = getValue(I.getOperand(0)); 2960 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2961 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2962 } 2963 2964 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2965 // FPTrunc is never a no-op cast, no need to check 2966 SDValue N = getValue(I.getOperand(0)); 2967 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2968 EVT DestVT = TLI.getValueType(I.getType()); 2969 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2970 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2971 } 2972 2973 void SelectionDAGBuilder::visitFPExt(const User &I) { 2974 // FPExt is never a no-op cast, no need to check 2975 SDValue N = getValue(I.getOperand(0)); 2976 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2977 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2978 } 2979 2980 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2981 // FPToUI is never a no-op cast, no need to check 2982 SDValue N = getValue(I.getOperand(0)); 2983 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2984 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2985 } 2986 2987 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2988 // FPToSI is never a no-op cast, no need to check 2989 SDValue N = getValue(I.getOperand(0)); 2990 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2991 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2992 } 2993 2994 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2995 // UIToFP is never a no-op cast, no need to check 2996 SDValue N = getValue(I.getOperand(0)); 2997 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2998 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2999 } 3000 3001 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3002 // SIToFP is never a no-op cast, no need to check 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3005 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3006 } 3007 3008 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3009 // What to do depends on the size of the integer and the size of the pointer. 3010 // We can either truncate, zero extend, or no-op, accordingly. 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3013 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3014 } 3015 3016 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3017 // What to do depends on the size of the integer and the size of the pointer. 3018 // We can either truncate, zero extend, or no-op, accordingly. 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3021 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3022 } 3023 3024 void SelectionDAGBuilder::visitBitCast(const User &I) { 3025 SDValue N = getValue(I.getOperand(0)); 3026 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3027 3028 // BitCast assures us that source and destination are the same size so this is 3029 // either a BITCAST or a no-op. 3030 if (DestVT != N.getValueType()) 3031 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3032 DestVT, N)); // convert types. 3033 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3034 // might fold any kind of constant expression to an integer constant and that 3035 // is not what we are looking for. Only regcognize a bitcast of a genuine 3036 // constant integer as an opaque constant. 3037 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3038 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3039 /*isOpaque*/true)); 3040 else 3041 setValue(&I, N); // noop cast. 3042 } 3043 3044 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3045 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3046 const Value *SV = I.getOperand(0); 3047 SDValue N = getValue(SV); 3048 EVT DestVT = TLI.getValueType(I.getType()); 3049 3050 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3051 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3052 3053 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3054 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3055 3056 setValue(&I, N); 3057 } 3058 3059 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3061 SDValue InVec = getValue(I.getOperand(0)); 3062 SDValue InVal = getValue(I.getOperand(1)); 3063 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3064 getCurSDLoc(), TLI.getVectorIdxTy()); 3065 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3066 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3067 } 3068 3069 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3071 SDValue InVec = getValue(I.getOperand(0)); 3072 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3073 getCurSDLoc(), TLI.getVectorIdxTy()); 3074 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3075 TLI.getValueType(I.getType()), InVec, InIdx)); 3076 } 3077 3078 // Utility for visitShuffleVector - Return true if every element in Mask, 3079 // beginning from position Pos and ending in Pos+Size, falls within the 3080 // specified sequential range [L, L+Pos). or is undef. 3081 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3082 unsigned Pos, unsigned Size, int Low) { 3083 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3084 if (Mask[i] >= 0 && Mask[i] != Low) 3085 return false; 3086 return true; 3087 } 3088 3089 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3090 SDValue Src1 = getValue(I.getOperand(0)); 3091 SDValue Src2 = getValue(I.getOperand(1)); 3092 3093 SmallVector<int, 8> Mask; 3094 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3095 unsigned MaskNumElts = Mask.size(); 3096 3097 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3098 EVT VT = TLI.getValueType(I.getType()); 3099 EVT SrcVT = Src1.getValueType(); 3100 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3101 3102 if (SrcNumElts == MaskNumElts) { 3103 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3104 &Mask[0])); 3105 return; 3106 } 3107 3108 // Normalize the shuffle vector since mask and vector length don't match. 3109 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3110 // Mask is longer than the source vectors and is a multiple of the source 3111 // vectors. We can use concatenate vector to make the mask and vectors 3112 // lengths match. 3113 if (SrcNumElts*2 == MaskNumElts) { 3114 // First check for Src1 in low and Src2 in high 3115 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3116 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3117 // The shuffle is concatenating two vectors together. 3118 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3119 VT, Src1, Src2)); 3120 return; 3121 } 3122 // Then check for Src2 in low and Src1 in high 3123 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3124 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3125 // The shuffle is concatenating two vectors together. 3126 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3127 VT, Src2, Src1)); 3128 return; 3129 } 3130 } 3131 3132 // Pad both vectors with undefs to make them the same length as the mask. 3133 unsigned NumConcat = MaskNumElts / SrcNumElts; 3134 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3135 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3136 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3137 3138 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3139 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3140 MOps1[0] = Src1; 3141 MOps2[0] = Src2; 3142 3143 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3144 getCurSDLoc(), VT, MOps1); 3145 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3146 getCurSDLoc(), VT, MOps2); 3147 3148 // Readjust mask for new input vector length. 3149 SmallVector<int, 8> MappedOps; 3150 for (unsigned i = 0; i != MaskNumElts; ++i) { 3151 int Idx = Mask[i]; 3152 if (Idx >= (int)SrcNumElts) 3153 Idx -= SrcNumElts - MaskNumElts; 3154 MappedOps.push_back(Idx); 3155 } 3156 3157 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3158 &MappedOps[0])); 3159 return; 3160 } 3161 3162 if (SrcNumElts > MaskNumElts) { 3163 // Analyze the access pattern of the vector to see if we can extract 3164 // two subvectors and do the shuffle. The analysis is done by calculating 3165 // the range of elements the mask access on both vectors. 3166 int MinRange[2] = { static_cast<int>(SrcNumElts), 3167 static_cast<int>(SrcNumElts)}; 3168 int MaxRange[2] = {-1, -1}; 3169 3170 for (unsigned i = 0; i != MaskNumElts; ++i) { 3171 int Idx = Mask[i]; 3172 unsigned Input = 0; 3173 if (Idx < 0) 3174 continue; 3175 3176 if (Idx >= (int)SrcNumElts) { 3177 Input = 1; 3178 Idx -= SrcNumElts; 3179 } 3180 if (Idx > MaxRange[Input]) 3181 MaxRange[Input] = Idx; 3182 if (Idx < MinRange[Input]) 3183 MinRange[Input] = Idx; 3184 } 3185 3186 // Check if the access is smaller than the vector size and can we find 3187 // a reasonable extract index. 3188 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3189 // Extract. 3190 int StartIdx[2]; // StartIdx to extract from 3191 for (unsigned Input = 0; Input < 2; ++Input) { 3192 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3193 RangeUse[Input] = 0; // Unused 3194 StartIdx[Input] = 0; 3195 continue; 3196 } 3197 3198 // Find a good start index that is a multiple of the mask length. Then 3199 // see if the rest of the elements are in range. 3200 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3201 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3202 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3203 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3204 } 3205 3206 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3207 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3208 return; 3209 } 3210 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3211 // Extract appropriate subvector and generate a vector shuffle 3212 for (unsigned Input = 0; Input < 2; ++Input) { 3213 SDValue &Src = Input == 0 ? Src1 : Src2; 3214 if (RangeUse[Input] == 0) 3215 Src = DAG.getUNDEF(VT); 3216 else 3217 Src = DAG.getNode( 3218 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3219 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3220 } 3221 3222 // Calculate new mask. 3223 SmallVector<int, 8> MappedOps; 3224 for (unsigned i = 0; i != MaskNumElts; ++i) { 3225 int Idx = Mask[i]; 3226 if (Idx >= 0) { 3227 if (Idx < (int)SrcNumElts) 3228 Idx -= StartIdx[0]; 3229 else 3230 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3231 } 3232 MappedOps.push_back(Idx); 3233 } 3234 3235 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3236 &MappedOps[0])); 3237 return; 3238 } 3239 } 3240 3241 // We can't use either concat vectors or extract subvectors so fall back to 3242 // replacing the shuffle with extract and build vector. 3243 // to insert and build vector. 3244 EVT EltVT = VT.getVectorElementType(); 3245 EVT IdxVT = TLI.getVectorIdxTy(); 3246 SmallVector<SDValue,8> Ops; 3247 for (unsigned i = 0; i != MaskNumElts; ++i) { 3248 int Idx = Mask[i]; 3249 SDValue Res; 3250 3251 if (Idx < 0) { 3252 Res = DAG.getUNDEF(EltVT); 3253 } else { 3254 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3255 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3256 3257 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3258 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3259 } 3260 3261 Ops.push_back(Res); 3262 } 3263 3264 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3265 } 3266 3267 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3268 const Value *Op0 = I.getOperand(0); 3269 const Value *Op1 = I.getOperand(1); 3270 Type *AggTy = I.getType(); 3271 Type *ValTy = Op1->getType(); 3272 bool IntoUndef = isa<UndefValue>(Op0); 3273 bool FromUndef = isa<UndefValue>(Op1); 3274 3275 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3276 3277 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3278 SmallVector<EVT, 4> AggValueVTs; 3279 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3280 SmallVector<EVT, 4> ValValueVTs; 3281 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3282 3283 unsigned NumAggValues = AggValueVTs.size(); 3284 unsigned NumValValues = ValValueVTs.size(); 3285 SmallVector<SDValue, 4> Values(NumAggValues); 3286 3287 // Ignore an insertvalue that produces an empty object 3288 if (!NumAggValues) { 3289 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3290 return; 3291 } 3292 3293 SDValue Agg = getValue(Op0); 3294 unsigned i = 0; 3295 // Copy the beginning value(s) from the original aggregate. 3296 for (; i != LinearIndex; ++i) 3297 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3298 SDValue(Agg.getNode(), Agg.getResNo() + i); 3299 // Copy values from the inserted value(s). 3300 if (NumValValues) { 3301 SDValue Val = getValue(Op1); 3302 for (; i != LinearIndex + NumValValues; ++i) 3303 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3304 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3305 } 3306 // Copy remaining value(s) from the original aggregate. 3307 for (; i != NumAggValues; ++i) 3308 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3309 SDValue(Agg.getNode(), Agg.getResNo() + i); 3310 3311 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3312 DAG.getVTList(AggValueVTs), Values)); 3313 } 3314 3315 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3316 const Value *Op0 = I.getOperand(0); 3317 Type *AggTy = Op0->getType(); 3318 Type *ValTy = I.getType(); 3319 bool OutOfUndef = isa<UndefValue>(Op0); 3320 3321 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3322 3323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3324 SmallVector<EVT, 4> ValValueVTs; 3325 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3326 3327 unsigned NumValValues = ValValueVTs.size(); 3328 3329 // Ignore a extractvalue that produces an empty object 3330 if (!NumValValues) { 3331 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3332 return; 3333 } 3334 3335 SmallVector<SDValue, 4> Values(NumValValues); 3336 3337 SDValue Agg = getValue(Op0); 3338 // Copy out the selected value(s). 3339 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3340 Values[i - LinearIndex] = 3341 OutOfUndef ? 3342 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3343 SDValue(Agg.getNode(), Agg.getResNo() + i); 3344 3345 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3346 DAG.getVTList(ValValueVTs), Values)); 3347 } 3348 3349 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3350 Value *Op0 = I.getOperand(0); 3351 // Note that the pointer operand may be a vector of pointers. Take the scalar 3352 // element which holds a pointer. 3353 Type *Ty = Op0->getType()->getScalarType(); 3354 unsigned AS = Ty->getPointerAddressSpace(); 3355 SDValue N = getValue(Op0); 3356 3357 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3358 OI != E; ++OI) { 3359 const Value *Idx = *OI; 3360 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3361 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3362 if (Field) { 3363 // N = N + Offset 3364 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3365 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3366 DAG.getConstant(Offset, N.getValueType())); 3367 } 3368 3369 Ty = StTy->getElementType(Field); 3370 } else { 3371 Ty = cast<SequentialType>(Ty)->getElementType(); 3372 3373 // If this is a constant subscript, handle it quickly. 3374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3375 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3376 if (CI->isZero()) continue; 3377 uint64_t Offs = 3378 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3379 SDValue OffsVal; 3380 EVT PTy = TLI.getPointerTy(AS); 3381 unsigned PtrBits = PTy.getSizeInBits(); 3382 if (PtrBits < 64) 3383 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3384 DAG.getConstant(Offs, MVT::i64)); 3385 else 3386 OffsVal = DAG.getConstant(Offs, PTy); 3387 3388 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3389 OffsVal); 3390 continue; 3391 } 3392 3393 // N = N + Idx * ElementSize; 3394 APInt ElementSize = 3395 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3396 SDValue IdxN = getValue(Idx); 3397 3398 // If the index is smaller or larger than intptr_t, truncate or extend 3399 // it. 3400 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3401 3402 // If this is a multiply by a power of two, turn it into a shl 3403 // immediately. This is a very common case. 3404 if (ElementSize != 1) { 3405 if (ElementSize.isPowerOf2()) { 3406 unsigned Amt = ElementSize.logBase2(); 3407 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3408 N.getValueType(), IdxN, 3409 DAG.getConstant(Amt, IdxN.getValueType())); 3410 } else { 3411 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3412 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3413 N.getValueType(), IdxN, Scale); 3414 } 3415 } 3416 3417 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3418 N.getValueType(), N, IdxN); 3419 } 3420 } 3421 3422 setValue(&I, N); 3423 } 3424 3425 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3426 // If this is a fixed sized alloca in the entry block of the function, 3427 // allocate it statically on the stack. 3428 if (FuncInfo.StaticAllocaMap.count(&I)) 3429 return; // getValue will auto-populate this. 3430 3431 Type *Ty = I.getAllocatedType(); 3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3433 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3434 unsigned Align = 3435 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3436 I.getAlignment()); 3437 3438 SDValue AllocSize = getValue(I.getArraySize()); 3439 3440 EVT IntPtr = TLI.getPointerTy(); 3441 if (AllocSize.getValueType() != IntPtr) 3442 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3443 3444 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3445 AllocSize, 3446 DAG.getConstant(TySize, IntPtr)); 3447 3448 // Handle alignment. If the requested alignment is less than or equal to 3449 // the stack alignment, ignore it. If the size is greater than or equal to 3450 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3451 unsigned StackAlign = 3452 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3453 if (Align <= StackAlign) 3454 Align = 0; 3455 3456 // Round the size of the allocation up to the stack alignment size 3457 // by add SA-1 to the size. 3458 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3459 AllocSize.getValueType(), AllocSize, 3460 DAG.getIntPtrConstant(StackAlign-1)); 3461 3462 // Mask out the low bits for alignment purposes. 3463 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3464 AllocSize.getValueType(), AllocSize, 3465 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3466 3467 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3468 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3469 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3470 setValue(&I, DSA); 3471 DAG.setRoot(DSA.getValue(1)); 3472 3473 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3474 } 3475 3476 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3477 if (I.isAtomic()) 3478 return visitAtomicLoad(I); 3479 3480 const Value *SV = I.getOperand(0); 3481 SDValue Ptr = getValue(SV); 3482 3483 Type *Ty = I.getType(); 3484 3485 bool isVolatile = I.isVolatile(); 3486 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3487 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3488 unsigned Alignment = I.getAlignment(); 3489 3490 AAMDNodes AAInfo; 3491 I.getAAMetadata(AAInfo); 3492 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3493 3494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3495 SmallVector<EVT, 4> ValueVTs; 3496 SmallVector<uint64_t, 4> Offsets; 3497 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3498 unsigned NumValues = ValueVTs.size(); 3499 if (NumValues == 0) 3500 return; 3501 3502 SDValue Root; 3503 bool ConstantMemory = false; 3504 if (isVolatile || NumValues > MaxParallelChains) 3505 // Serialize volatile loads with other side effects. 3506 Root = getRoot(); 3507 else if (AA->pointsToConstantMemory( 3508 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3509 // Do not serialize (non-volatile) loads of constant memory with anything. 3510 Root = DAG.getEntryNode(); 3511 ConstantMemory = true; 3512 } else { 3513 // Do not serialize non-volatile loads against each other. 3514 Root = DAG.getRoot(); 3515 } 3516 3517 if (isVolatile) 3518 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3519 3520 SmallVector<SDValue, 4> Values(NumValues); 3521 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3522 NumValues)); 3523 EVT PtrVT = Ptr.getValueType(); 3524 unsigned ChainI = 0; 3525 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3526 // Serializing loads here may result in excessive register pressure, and 3527 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3528 // could recover a bit by hoisting nodes upward in the chain by recognizing 3529 // they are side-effect free or do not alias. The optimizer should really 3530 // avoid this case by converting large object/array copies to llvm.memcpy 3531 // (MaxParallelChains should always remain as failsafe). 3532 if (ChainI == MaxParallelChains) { 3533 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3534 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3535 makeArrayRef(Chains.data(), ChainI)); 3536 Root = Chain; 3537 ChainI = 0; 3538 } 3539 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3540 PtrVT, Ptr, 3541 DAG.getConstant(Offsets[i], PtrVT)); 3542 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3543 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3544 isNonTemporal, isInvariant, Alignment, AAInfo, 3545 Ranges); 3546 3547 Values[i] = L; 3548 Chains[ChainI] = L.getValue(1); 3549 } 3550 3551 if (!ConstantMemory) { 3552 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3553 makeArrayRef(Chains.data(), ChainI)); 3554 if (isVolatile) 3555 DAG.setRoot(Chain); 3556 else 3557 PendingLoads.push_back(Chain); 3558 } 3559 3560 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3561 DAG.getVTList(ValueVTs), Values)); 3562 } 3563 3564 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3565 if (I.isAtomic()) 3566 return visitAtomicStore(I); 3567 3568 const Value *SrcV = I.getOperand(0); 3569 const Value *PtrV = I.getOperand(1); 3570 3571 SmallVector<EVT, 4> ValueVTs; 3572 SmallVector<uint64_t, 4> Offsets; 3573 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3574 ValueVTs, &Offsets); 3575 unsigned NumValues = ValueVTs.size(); 3576 if (NumValues == 0) 3577 return; 3578 3579 // Get the lowered operands. Note that we do this after 3580 // checking if NumResults is zero, because with zero results 3581 // the operands won't have values in the map. 3582 SDValue Src = getValue(SrcV); 3583 SDValue Ptr = getValue(PtrV); 3584 3585 SDValue Root = getRoot(); 3586 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3587 NumValues)); 3588 EVT PtrVT = Ptr.getValueType(); 3589 bool isVolatile = I.isVolatile(); 3590 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3591 unsigned Alignment = I.getAlignment(); 3592 3593 AAMDNodes AAInfo; 3594 I.getAAMetadata(AAInfo); 3595 3596 unsigned ChainI = 0; 3597 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3598 // See visitLoad comments. 3599 if (ChainI == MaxParallelChains) { 3600 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3601 makeArrayRef(Chains.data(), ChainI)); 3602 Root = Chain; 3603 ChainI = 0; 3604 } 3605 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3606 DAG.getConstant(Offsets[i], PtrVT)); 3607 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3608 SDValue(Src.getNode(), Src.getResNo() + i), 3609 Add, MachinePointerInfo(PtrV, Offsets[i]), 3610 isVolatile, isNonTemporal, Alignment, AAInfo); 3611 Chains[ChainI] = St; 3612 } 3613 3614 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3615 makeArrayRef(Chains.data(), ChainI)); 3616 DAG.setRoot(StoreNode); 3617 } 3618 3619 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3620 SDLoc dl = getCurSDLoc(); 3621 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3622 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3623 SynchronizationScope Scope = I.getSynchScope(); 3624 3625 SDValue InChain = getRoot(); 3626 3627 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3628 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3629 SDValue L = DAG.getAtomicCmpSwap( 3630 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3631 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3632 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3633 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3634 3635 SDValue OutChain = L.getValue(2); 3636 3637 setValue(&I, L); 3638 DAG.setRoot(OutChain); 3639 } 3640 3641 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3642 SDLoc dl = getCurSDLoc(); 3643 ISD::NodeType NT; 3644 switch (I.getOperation()) { 3645 default: llvm_unreachable("Unknown atomicrmw operation"); 3646 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3647 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3648 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3649 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3650 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3651 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3652 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3653 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3654 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3655 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3656 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3657 } 3658 AtomicOrdering Order = I.getOrdering(); 3659 SynchronizationScope Scope = I.getSynchScope(); 3660 3661 SDValue InChain = getRoot(); 3662 3663 SDValue L = 3664 DAG.getAtomic(NT, dl, 3665 getValue(I.getValOperand()).getSimpleValueType(), 3666 InChain, 3667 getValue(I.getPointerOperand()), 3668 getValue(I.getValOperand()), 3669 I.getPointerOperand(), 3670 /* Alignment=*/ 0, Order, Scope); 3671 3672 SDValue OutChain = L.getValue(1); 3673 3674 setValue(&I, L); 3675 DAG.setRoot(OutChain); 3676 } 3677 3678 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3679 SDLoc dl = getCurSDLoc(); 3680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3681 SDValue Ops[3]; 3682 Ops[0] = getRoot(); 3683 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3684 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3685 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3686 } 3687 3688 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3689 SDLoc dl = getCurSDLoc(); 3690 AtomicOrdering Order = I.getOrdering(); 3691 SynchronizationScope Scope = I.getSynchScope(); 3692 3693 SDValue InChain = getRoot(); 3694 3695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3696 EVT VT = TLI.getValueType(I.getType()); 3697 3698 if (I.getAlignment() < VT.getSizeInBits() / 8) 3699 report_fatal_error("Cannot generate unaligned atomic load"); 3700 3701 MachineMemOperand *MMO = 3702 DAG.getMachineFunction(). 3703 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3704 MachineMemOperand::MOVolatile | 3705 MachineMemOperand::MOLoad, 3706 VT.getStoreSize(), 3707 I.getAlignment() ? I.getAlignment() : 3708 DAG.getEVTAlignment(VT)); 3709 3710 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3711 SDValue L = 3712 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3713 getValue(I.getPointerOperand()), MMO, 3714 Order, Scope); 3715 3716 SDValue OutChain = L.getValue(1); 3717 3718 setValue(&I, L); 3719 DAG.setRoot(OutChain); 3720 } 3721 3722 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3723 SDLoc dl = getCurSDLoc(); 3724 3725 AtomicOrdering Order = I.getOrdering(); 3726 SynchronizationScope Scope = I.getSynchScope(); 3727 3728 SDValue InChain = getRoot(); 3729 3730 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3731 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3732 3733 if (I.getAlignment() < VT.getSizeInBits() / 8) 3734 report_fatal_error("Cannot generate unaligned atomic store"); 3735 3736 SDValue OutChain = 3737 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3738 InChain, 3739 getValue(I.getPointerOperand()), 3740 getValue(I.getValueOperand()), 3741 I.getPointerOperand(), I.getAlignment(), 3742 Order, Scope); 3743 3744 DAG.setRoot(OutChain); 3745 } 3746 3747 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3748 /// node. 3749 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3750 unsigned Intrinsic) { 3751 bool HasChain = !I.doesNotAccessMemory(); 3752 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3753 3754 // Build the operand list. 3755 SmallVector<SDValue, 8> Ops; 3756 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3757 if (OnlyLoad) { 3758 // We don't need to serialize loads against other loads. 3759 Ops.push_back(DAG.getRoot()); 3760 } else { 3761 Ops.push_back(getRoot()); 3762 } 3763 } 3764 3765 // Info is set by getTgtMemInstrinsic 3766 TargetLowering::IntrinsicInfo Info; 3767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3768 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3769 3770 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3771 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3772 Info.opc == ISD::INTRINSIC_W_CHAIN) 3773 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3774 3775 // Add all operands of the call to the operand list. 3776 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3777 SDValue Op = getValue(I.getArgOperand(i)); 3778 Ops.push_back(Op); 3779 } 3780 3781 SmallVector<EVT, 4> ValueVTs; 3782 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3783 3784 if (HasChain) 3785 ValueVTs.push_back(MVT::Other); 3786 3787 SDVTList VTs = DAG.getVTList(ValueVTs); 3788 3789 // Create the node. 3790 SDValue Result; 3791 if (IsTgtIntrinsic) { 3792 // This is target intrinsic that touches memory 3793 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3794 VTs, Ops, Info.memVT, 3795 MachinePointerInfo(Info.ptrVal, Info.offset), 3796 Info.align, Info.vol, 3797 Info.readMem, Info.writeMem, Info.size); 3798 } else if (!HasChain) { 3799 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3800 } else if (!I.getType()->isVoidTy()) { 3801 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3802 } else { 3803 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3804 } 3805 3806 if (HasChain) { 3807 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3808 if (OnlyLoad) 3809 PendingLoads.push_back(Chain); 3810 else 3811 DAG.setRoot(Chain); 3812 } 3813 3814 if (!I.getType()->isVoidTy()) { 3815 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3816 EVT VT = TLI.getValueType(PTy); 3817 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3818 } 3819 3820 setValue(&I, Result); 3821 } 3822 } 3823 3824 /// GetSignificand - Get the significand and build it into a floating-point 3825 /// number with exponent of 1: 3826 /// 3827 /// Op = (Op & 0x007fffff) | 0x3f800000; 3828 /// 3829 /// where Op is the hexadecimal representation of floating point value. 3830 static SDValue 3831 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3832 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3833 DAG.getConstant(0x007fffff, MVT::i32)); 3834 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3835 DAG.getConstant(0x3f800000, MVT::i32)); 3836 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3837 } 3838 3839 /// GetExponent - Get the exponent: 3840 /// 3841 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3842 /// 3843 /// where Op is the hexadecimal representation of floating point value. 3844 static SDValue 3845 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3846 SDLoc dl) { 3847 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3848 DAG.getConstant(0x7f800000, MVT::i32)); 3849 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3850 DAG.getConstant(23, TLI.getPointerTy())); 3851 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3852 DAG.getConstant(127, MVT::i32)); 3853 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3854 } 3855 3856 /// getF32Constant - Get 32-bit floating point constant. 3857 static SDValue 3858 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3859 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3860 MVT::f32); 3861 } 3862 3863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3864 /// limited-precision mode. 3865 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3866 const TargetLowering &TLI) { 3867 if (Op.getValueType() == MVT::f32 && 3868 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3869 3870 // Put the exponent in the right bit position for later addition to the 3871 // final result: 3872 // 3873 // #define LOG2OFe 1.4426950f 3874 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3876 getF32Constant(DAG, 0x3fb8aa3b)); 3877 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3878 3879 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3880 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3881 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3882 3883 // IntegerPartOfX <<= 23; 3884 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3885 DAG.getConstant(23, TLI.getPointerTy())); 3886 3887 SDValue TwoToFracPartOfX; 3888 if (LimitFloatPrecision <= 6) { 3889 // For floating-point precision of 6: 3890 // 3891 // TwoToFractionalPartOfX = 3892 // 0.997535578f + 3893 // (0.735607626f + 0.252464424f * x) * x; 3894 // 3895 // error 0.0144103317, which is 6 bits 3896 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3897 getF32Constant(DAG, 0x3e814304)); 3898 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3899 getF32Constant(DAG, 0x3f3c50c8)); 3900 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3901 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3902 getF32Constant(DAG, 0x3f7f5e7e)); 3903 } else if (LimitFloatPrecision <= 12) { 3904 // For floating-point precision of 12: 3905 // 3906 // TwoToFractionalPartOfX = 3907 // 0.999892986f + 3908 // (0.696457318f + 3909 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3910 // 3911 // 0.000107046256 error, which is 13 to 14 bits 3912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3913 getF32Constant(DAG, 0x3da235e3)); 3914 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3915 getF32Constant(DAG, 0x3e65b8f3)); 3916 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3917 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3918 getF32Constant(DAG, 0x3f324b07)); 3919 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3920 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3921 getF32Constant(DAG, 0x3f7ff8fd)); 3922 } else { // LimitFloatPrecision <= 18 3923 // For floating-point precision of 18: 3924 // 3925 // TwoToFractionalPartOfX = 3926 // 0.999999982f + 3927 // (0.693148872f + 3928 // (0.240227044f + 3929 // (0.554906021e-1f + 3930 // (0.961591928e-2f + 3931 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3932 // 3933 // error 2.47208000*10^(-7), which is better than 18 bits 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3935 getF32Constant(DAG, 0x3924b03e)); 3936 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3937 getF32Constant(DAG, 0x3ab24b87)); 3938 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3939 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3940 getF32Constant(DAG, 0x3c1d8c17)); 3941 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3942 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3943 getF32Constant(DAG, 0x3d634a1d)); 3944 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3945 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3946 getF32Constant(DAG, 0x3e75fe14)); 3947 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3948 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3949 getF32Constant(DAG, 0x3f317234)); 3950 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3951 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3952 getF32Constant(DAG, 0x3f800000)); 3953 } 3954 3955 // Add the exponent into the result in integer domain. 3956 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3957 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3958 DAG.getNode(ISD::ADD, dl, MVT::i32, 3959 t13, IntegerPartOfX)); 3960 } 3961 3962 // No special expansion. 3963 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3964 } 3965 3966 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3967 /// limited-precision mode. 3968 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3969 const TargetLowering &TLI) { 3970 if (Op.getValueType() == MVT::f32 && 3971 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3972 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3973 3974 // Scale the exponent by log(2) [0.69314718f]. 3975 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3976 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3977 getF32Constant(DAG, 0x3f317218)); 3978 3979 // Get the significand and build it into a floating-point number with 3980 // exponent of 1. 3981 SDValue X = GetSignificand(DAG, Op1, dl); 3982 3983 SDValue LogOfMantissa; 3984 if (LimitFloatPrecision <= 6) { 3985 // For floating-point precision of 6: 3986 // 3987 // LogofMantissa = 3988 // -1.1609546f + 3989 // (1.4034025f - 0.23903021f * x) * x; 3990 // 3991 // error 0.0034276066, which is better than 8 bits 3992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3993 getF32Constant(DAG, 0xbe74c456)); 3994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3995 getF32Constant(DAG, 0x3fb3a2b1)); 3996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3997 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3998 getF32Constant(DAG, 0x3f949a29)); 3999 } else if (LimitFloatPrecision <= 12) { 4000 // For floating-point precision of 12: 4001 // 4002 // LogOfMantissa = 4003 // -1.7417939f + 4004 // (2.8212026f + 4005 // (-1.4699568f + 4006 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4007 // 4008 // error 0.000061011436, which is 14 bits 4009 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4010 getF32Constant(DAG, 0xbd67b6d6)); 4011 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4012 getF32Constant(DAG, 0x3ee4f4b8)); 4013 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4014 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4015 getF32Constant(DAG, 0x3fbc278b)); 4016 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4017 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4018 getF32Constant(DAG, 0x40348e95)); 4019 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4020 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4021 getF32Constant(DAG, 0x3fdef31a)); 4022 } else { // LimitFloatPrecision <= 18 4023 // For floating-point precision of 18: 4024 // 4025 // LogOfMantissa = 4026 // -2.1072184f + 4027 // (4.2372794f + 4028 // (-3.7029485f + 4029 // (2.2781945f + 4030 // (-0.87823314f + 4031 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4032 // 4033 // error 0.0000023660568, which is better than 18 bits 4034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4035 getF32Constant(DAG, 0xbc91e5ac)); 4036 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4037 getF32Constant(DAG, 0x3e4350aa)); 4038 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4039 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4040 getF32Constant(DAG, 0x3f60d3e3)); 4041 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4042 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4043 getF32Constant(DAG, 0x4011cdf0)); 4044 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4045 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4046 getF32Constant(DAG, 0x406cfd1c)); 4047 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4048 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4049 getF32Constant(DAG, 0x408797cb)); 4050 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4051 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4052 getF32Constant(DAG, 0x4006dcab)); 4053 } 4054 4055 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4056 } 4057 4058 // No special expansion. 4059 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4060 } 4061 4062 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4063 /// limited-precision mode. 4064 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4065 const TargetLowering &TLI) { 4066 if (Op.getValueType() == MVT::f32 && 4067 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4068 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4069 4070 // Get the exponent. 4071 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4072 4073 // Get the significand and build it into a floating-point number with 4074 // exponent of 1. 4075 SDValue X = GetSignificand(DAG, Op1, dl); 4076 4077 // Different possible minimax approximations of significand in 4078 // floating-point for various degrees of accuracy over [1,2]. 4079 SDValue Log2ofMantissa; 4080 if (LimitFloatPrecision <= 6) { 4081 // For floating-point precision of 6: 4082 // 4083 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4084 // 4085 // error 0.0049451742, which is more than 7 bits 4086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0xbeb08fe0)); 4088 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4089 getF32Constant(DAG, 0x40019463)); 4090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4091 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4092 getF32Constant(DAG, 0x3fd6633d)); 4093 } else if (LimitFloatPrecision <= 12) { 4094 // For floating-point precision of 12: 4095 // 4096 // Log2ofMantissa = 4097 // -2.51285454f + 4098 // (4.07009056f + 4099 // (-2.12067489f + 4100 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4101 // 4102 // error 0.0000876136000, which is better than 13 bits 4103 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4104 getF32Constant(DAG, 0xbda7262e)); 4105 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4106 getF32Constant(DAG, 0x3f25280b)); 4107 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4108 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4109 getF32Constant(DAG, 0x4007b923)); 4110 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4111 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4112 getF32Constant(DAG, 0x40823e2f)); 4113 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4114 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4115 getF32Constant(DAG, 0x4020d29c)); 4116 } else { // LimitFloatPrecision <= 18 4117 // For floating-point precision of 18: 4118 // 4119 // Log2ofMantissa = 4120 // -3.0400495f + 4121 // (6.1129976f + 4122 // (-5.3420409f + 4123 // (3.2865683f + 4124 // (-1.2669343f + 4125 // (0.27515199f - 4126 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4127 // 4128 // error 0.0000018516, which is better than 18 bits 4129 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4130 getF32Constant(DAG, 0xbcd2769e)); 4131 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4132 getF32Constant(DAG, 0x3e8ce0b9)); 4133 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4134 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4135 getF32Constant(DAG, 0x3fa22ae7)); 4136 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4137 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4138 getF32Constant(DAG, 0x40525723)); 4139 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4140 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4141 getF32Constant(DAG, 0x40aaf200)); 4142 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4143 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4144 getF32Constant(DAG, 0x40c39dad)); 4145 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4146 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4147 getF32Constant(DAG, 0x4042902c)); 4148 } 4149 4150 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4151 } 4152 4153 // No special expansion. 4154 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4155 } 4156 4157 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4158 /// limited-precision mode. 4159 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4160 const TargetLowering &TLI) { 4161 if (Op.getValueType() == MVT::f32 && 4162 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4163 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4164 4165 // Scale the exponent by log10(2) [0.30102999f]. 4166 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4167 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4168 getF32Constant(DAG, 0x3e9a209a)); 4169 4170 // Get the significand and build it into a floating-point number with 4171 // exponent of 1. 4172 SDValue X = GetSignificand(DAG, Op1, dl); 4173 4174 SDValue Log10ofMantissa; 4175 if (LimitFloatPrecision <= 6) { 4176 // For floating-point precision of 6: 4177 // 4178 // Log10ofMantissa = 4179 // -0.50419619f + 4180 // (0.60948995f - 0.10380950f * x) * x; 4181 // 4182 // error 0.0014886165, which is 6 bits 4183 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4184 getF32Constant(DAG, 0xbdd49a13)); 4185 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4186 getF32Constant(DAG, 0x3f1c0789)); 4187 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4188 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4189 getF32Constant(DAG, 0x3f011300)); 4190 } else if (LimitFloatPrecision <= 12) { 4191 // For floating-point precision of 12: 4192 // 4193 // Log10ofMantissa = 4194 // -0.64831180f + 4195 // (0.91751397f + 4196 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4197 // 4198 // error 0.00019228036, which is better than 12 bits 4199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4200 getF32Constant(DAG, 0x3d431f31)); 4201 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4202 getF32Constant(DAG, 0x3ea21fb2)); 4203 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4204 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4205 getF32Constant(DAG, 0x3f6ae232)); 4206 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4207 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4208 getF32Constant(DAG, 0x3f25f7c3)); 4209 } else { // LimitFloatPrecision <= 18 4210 // For floating-point precision of 18: 4211 // 4212 // Log10ofMantissa = 4213 // -0.84299375f + 4214 // (1.5327582f + 4215 // (-1.0688956f + 4216 // (0.49102474f + 4217 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4218 // 4219 // error 0.0000037995730, which is better than 18 bits 4220 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4221 getF32Constant(DAG, 0x3c5d51ce)); 4222 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4223 getF32Constant(DAG, 0x3e00685a)); 4224 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4225 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4226 getF32Constant(DAG, 0x3efb6798)); 4227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4228 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4229 getF32Constant(DAG, 0x3f88d192)); 4230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4231 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4232 getF32Constant(DAG, 0x3fc4316c)); 4233 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4234 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4235 getF32Constant(DAG, 0x3f57ce70)); 4236 } 4237 4238 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4239 } 4240 4241 // No special expansion. 4242 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4243 } 4244 4245 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4246 /// limited-precision mode. 4247 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4248 const TargetLowering &TLI) { 4249 if (Op.getValueType() == MVT::f32 && 4250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4251 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4252 4253 // FractionalPartOfX = x - (float)IntegerPartOfX; 4254 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4255 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4256 4257 // IntegerPartOfX <<= 23; 4258 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4259 DAG.getConstant(23, TLI.getPointerTy())); 4260 4261 SDValue TwoToFractionalPartOfX; 4262 if (LimitFloatPrecision <= 6) { 4263 // For floating-point precision of 6: 4264 // 4265 // TwoToFractionalPartOfX = 4266 // 0.997535578f + 4267 // (0.735607626f + 0.252464424f * x) * x; 4268 // 4269 // error 0.0144103317, which is 6 bits 4270 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4271 getF32Constant(DAG, 0x3e814304)); 4272 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4273 getF32Constant(DAG, 0x3f3c50c8)); 4274 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4275 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4276 getF32Constant(DAG, 0x3f7f5e7e)); 4277 } else if (LimitFloatPrecision <= 12) { 4278 // For floating-point precision of 12: 4279 // 4280 // TwoToFractionalPartOfX = 4281 // 0.999892986f + 4282 // (0.696457318f + 4283 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4284 // 4285 // error 0.000107046256, which is 13 to 14 bits 4286 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4287 getF32Constant(DAG, 0x3da235e3)); 4288 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4289 getF32Constant(DAG, 0x3e65b8f3)); 4290 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4291 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4292 getF32Constant(DAG, 0x3f324b07)); 4293 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4294 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4295 getF32Constant(DAG, 0x3f7ff8fd)); 4296 } else { // LimitFloatPrecision <= 18 4297 // For floating-point precision of 18: 4298 // 4299 // TwoToFractionalPartOfX = 4300 // 0.999999982f + 4301 // (0.693148872f + 4302 // (0.240227044f + 4303 // (0.554906021e-1f + 4304 // (0.961591928e-2f + 4305 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4306 // error 2.47208000*10^(-7), which is better than 18 bits 4307 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4308 getF32Constant(DAG, 0x3924b03e)); 4309 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4310 getF32Constant(DAG, 0x3ab24b87)); 4311 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4312 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4313 getF32Constant(DAG, 0x3c1d8c17)); 4314 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4315 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4316 getF32Constant(DAG, 0x3d634a1d)); 4317 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4318 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4319 getF32Constant(DAG, 0x3e75fe14)); 4320 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4321 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4322 getF32Constant(DAG, 0x3f317234)); 4323 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4324 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4325 getF32Constant(DAG, 0x3f800000)); 4326 } 4327 4328 // Add the exponent into the result in integer domain. 4329 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4330 TwoToFractionalPartOfX); 4331 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4332 DAG.getNode(ISD::ADD, dl, MVT::i32, 4333 t13, IntegerPartOfX)); 4334 } 4335 4336 // No special expansion. 4337 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4338 } 4339 4340 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4341 /// limited-precision mode with x == 10.0f. 4342 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4343 SelectionDAG &DAG, const TargetLowering &TLI) { 4344 bool IsExp10 = false; 4345 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4346 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4347 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4348 APFloat Ten(10.0f); 4349 IsExp10 = LHSC->isExactlyValue(Ten); 4350 } 4351 } 4352 4353 if (IsExp10) { 4354 // Put the exponent in the right bit position for later addition to the 4355 // final result: 4356 // 4357 // #define LOG2OF10 3.3219281f 4358 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4359 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4360 getF32Constant(DAG, 0x40549a78)); 4361 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4362 4363 // FractionalPartOfX = x - (float)IntegerPartOfX; 4364 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4365 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4366 4367 // IntegerPartOfX <<= 23; 4368 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4369 DAG.getConstant(23, TLI.getPointerTy())); 4370 4371 SDValue TwoToFractionalPartOfX; 4372 if (LimitFloatPrecision <= 6) { 4373 // For floating-point precision of 6: 4374 // 4375 // twoToFractionalPartOfX = 4376 // 0.997535578f + 4377 // (0.735607626f + 0.252464424f * x) * x; 4378 // 4379 // error 0.0144103317, which is 6 bits 4380 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4381 getF32Constant(DAG, 0x3e814304)); 4382 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4383 getF32Constant(DAG, 0x3f3c50c8)); 4384 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4385 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4386 getF32Constant(DAG, 0x3f7f5e7e)); 4387 } else if (LimitFloatPrecision <= 12) { 4388 // For floating-point precision of 12: 4389 // 4390 // TwoToFractionalPartOfX = 4391 // 0.999892986f + 4392 // (0.696457318f + 4393 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4394 // 4395 // error 0.000107046256, which is 13 to 14 bits 4396 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4397 getF32Constant(DAG, 0x3da235e3)); 4398 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4399 getF32Constant(DAG, 0x3e65b8f3)); 4400 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4401 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4402 getF32Constant(DAG, 0x3f324b07)); 4403 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4404 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4405 getF32Constant(DAG, 0x3f7ff8fd)); 4406 } else { // LimitFloatPrecision <= 18 4407 // For floating-point precision of 18: 4408 // 4409 // TwoToFractionalPartOfX = 4410 // 0.999999982f + 4411 // (0.693148872f + 4412 // (0.240227044f + 4413 // (0.554906021e-1f + 4414 // (0.961591928e-2f + 4415 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4416 // error 2.47208000*10^(-7), which is better than 18 bits 4417 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4418 getF32Constant(DAG, 0x3924b03e)); 4419 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4420 getF32Constant(DAG, 0x3ab24b87)); 4421 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4422 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4423 getF32Constant(DAG, 0x3c1d8c17)); 4424 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4425 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4426 getF32Constant(DAG, 0x3d634a1d)); 4427 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4428 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4429 getF32Constant(DAG, 0x3e75fe14)); 4430 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4431 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4432 getF32Constant(DAG, 0x3f317234)); 4433 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4434 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4435 getF32Constant(DAG, 0x3f800000)); 4436 } 4437 4438 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4439 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4440 DAG.getNode(ISD::ADD, dl, MVT::i32, 4441 t13, IntegerPartOfX)); 4442 } 4443 4444 // No special expansion. 4445 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4446 } 4447 4448 4449 /// ExpandPowI - Expand a llvm.powi intrinsic. 4450 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4451 SelectionDAG &DAG) { 4452 // If RHS is a constant, we can expand this out to a multiplication tree, 4453 // otherwise we end up lowering to a call to __powidf2 (for example). When 4454 // optimizing for size, we only want to do this if the expansion would produce 4455 // a small number of multiplies, otherwise we do the full expansion. 4456 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4457 // Get the exponent as a positive value. 4458 unsigned Val = RHSC->getSExtValue(); 4459 if ((int)Val < 0) Val = -Val; 4460 4461 // powi(x, 0) -> 1.0 4462 if (Val == 0) 4463 return DAG.getConstantFP(1.0, LHS.getValueType()); 4464 4465 const Function *F = DAG.getMachineFunction().getFunction(); 4466 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4467 Attribute::OptimizeForSize) || 4468 // If optimizing for size, don't insert too many multiplies. This 4469 // inserts up to 5 multiplies. 4470 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4471 // We use the simple binary decomposition method to generate the multiply 4472 // sequence. There are more optimal ways to do this (for example, 4473 // powi(x,15) generates one more multiply than it should), but this has 4474 // the benefit of being both really simple and much better than a libcall. 4475 SDValue Res; // Logically starts equal to 1.0 4476 SDValue CurSquare = LHS; 4477 while (Val) { 4478 if (Val & 1) { 4479 if (Res.getNode()) 4480 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4481 else 4482 Res = CurSquare; // 1.0*CurSquare. 4483 } 4484 4485 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4486 CurSquare, CurSquare); 4487 Val >>= 1; 4488 } 4489 4490 // If the original was negative, invert the result, producing 1/(x*x*x). 4491 if (RHSC->getSExtValue() < 0) 4492 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4493 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4494 return Res; 4495 } 4496 } 4497 4498 // Otherwise, expand to a libcall. 4499 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4500 } 4501 4502 // getTruncatedArgReg - Find underlying register used for an truncated 4503 // argument. 4504 static unsigned getTruncatedArgReg(const SDValue &N) { 4505 if (N.getOpcode() != ISD::TRUNCATE) 4506 return 0; 4507 4508 const SDValue &Ext = N.getOperand(0); 4509 if (Ext.getOpcode() == ISD::AssertZext || 4510 Ext.getOpcode() == ISD::AssertSext) { 4511 const SDValue &CFR = Ext.getOperand(0); 4512 if (CFR.getOpcode() == ISD::CopyFromReg) 4513 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4514 if (CFR.getOpcode() == ISD::TRUNCATE) 4515 return getTruncatedArgReg(CFR); 4516 } 4517 return 0; 4518 } 4519 4520 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4521 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4522 /// At the end of instruction selection, they will be inserted to the entry BB. 4523 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4524 MDNode *Variable, 4525 MDNode *Expr, int64_t Offset, 4526 bool IsIndirect, 4527 const SDValue &N) { 4528 const Argument *Arg = dyn_cast<Argument>(V); 4529 if (!Arg) 4530 return false; 4531 4532 MachineFunction &MF = DAG.getMachineFunction(); 4533 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4534 4535 // Ignore inlined function arguments here. 4536 DIVariable DV(Variable); 4537 if (DV.isInlinedFnArgument(MF.getFunction())) 4538 return false; 4539 4540 Optional<MachineOperand> Op; 4541 // Some arguments' frame index is recorded during argument lowering. 4542 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4543 Op = MachineOperand::CreateFI(FI); 4544 4545 if (!Op && N.getNode()) { 4546 unsigned Reg; 4547 if (N.getOpcode() == ISD::CopyFromReg) 4548 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4549 else 4550 Reg = getTruncatedArgReg(N); 4551 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4552 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4553 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4554 if (PR) 4555 Reg = PR; 4556 } 4557 if (Reg) 4558 Op = MachineOperand::CreateReg(Reg, false); 4559 } 4560 4561 if (!Op) { 4562 // Check if ValueMap has reg number. 4563 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4564 if (VMI != FuncInfo.ValueMap.end()) 4565 Op = MachineOperand::CreateReg(VMI->second, false); 4566 } 4567 4568 if (!Op && N.getNode()) 4569 // Check if frame index is available. 4570 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4571 if (FrameIndexSDNode *FINode = 4572 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4573 Op = MachineOperand::CreateFI(FINode->getIndex()); 4574 4575 if (!Op) 4576 return false; 4577 4578 if (Op->isReg()) 4579 FuncInfo.ArgDbgValues.push_back( 4580 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4581 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4582 else 4583 FuncInfo.ArgDbgValues.push_back( 4584 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4585 .addOperand(*Op) 4586 .addImm(Offset) 4587 .addMetadata(Variable) 4588 .addMetadata(Expr)); 4589 4590 return true; 4591 } 4592 4593 // VisualStudio defines setjmp as _setjmp 4594 #if defined(_MSC_VER) && defined(setjmp) && \ 4595 !defined(setjmp_undefined_for_msvc) 4596 # pragma push_macro("setjmp") 4597 # undef setjmp 4598 # define setjmp_undefined_for_msvc 4599 #endif 4600 4601 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4602 /// we want to emit this as a call to a named external function, return the name 4603 /// otherwise lower it and return null. 4604 const char * 4605 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4607 SDLoc sdl = getCurSDLoc(); 4608 DebugLoc dl = getCurDebugLoc(); 4609 SDValue Res; 4610 4611 switch (Intrinsic) { 4612 default: 4613 // By default, turn this into a target intrinsic node. 4614 visitTargetIntrinsic(I, Intrinsic); 4615 return nullptr; 4616 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4617 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4618 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4619 case Intrinsic::returnaddress: 4620 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4621 getValue(I.getArgOperand(0)))); 4622 return nullptr; 4623 case Intrinsic::frameaddress: 4624 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4625 getValue(I.getArgOperand(0)))); 4626 return nullptr; 4627 case Intrinsic::read_register: { 4628 Value *Reg = I.getArgOperand(0); 4629 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4630 EVT VT = TLI.getValueType(I.getType()); 4631 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4632 return nullptr; 4633 } 4634 case Intrinsic::write_register: { 4635 Value *Reg = I.getArgOperand(0); 4636 Value *RegValue = I.getArgOperand(1); 4637 SDValue Chain = getValue(RegValue).getOperand(0); 4638 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4639 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4640 RegName, getValue(RegValue))); 4641 return nullptr; 4642 } 4643 case Intrinsic::setjmp: 4644 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4645 case Intrinsic::longjmp: 4646 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4647 case Intrinsic::memcpy: { 4648 // Assert for address < 256 since we support only user defined address 4649 // spaces. 4650 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4651 < 256 && 4652 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4653 < 256 && 4654 "Unknown address space"); 4655 SDValue Op1 = getValue(I.getArgOperand(0)); 4656 SDValue Op2 = getValue(I.getArgOperand(1)); 4657 SDValue Op3 = getValue(I.getArgOperand(2)); 4658 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4659 if (!Align) 4660 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4661 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4662 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4663 MachinePointerInfo(I.getArgOperand(0)), 4664 MachinePointerInfo(I.getArgOperand(1)))); 4665 return nullptr; 4666 } 4667 case Intrinsic::memset: { 4668 // Assert for address < 256 since we support only user defined address 4669 // spaces. 4670 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4671 < 256 && 4672 "Unknown address space"); 4673 SDValue Op1 = getValue(I.getArgOperand(0)); 4674 SDValue Op2 = getValue(I.getArgOperand(1)); 4675 SDValue Op3 = getValue(I.getArgOperand(2)); 4676 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4677 if (!Align) 4678 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4679 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4680 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4681 MachinePointerInfo(I.getArgOperand(0)))); 4682 return nullptr; 4683 } 4684 case Intrinsic::memmove: { 4685 // Assert for address < 256 since we support only user defined address 4686 // spaces. 4687 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4688 < 256 && 4689 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4690 < 256 && 4691 "Unknown address space"); 4692 SDValue Op1 = getValue(I.getArgOperand(0)); 4693 SDValue Op2 = getValue(I.getArgOperand(1)); 4694 SDValue Op3 = getValue(I.getArgOperand(2)); 4695 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4696 if (!Align) 4697 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4698 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4699 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4700 MachinePointerInfo(I.getArgOperand(0)), 4701 MachinePointerInfo(I.getArgOperand(1)))); 4702 return nullptr; 4703 } 4704 case Intrinsic::dbg_declare: { 4705 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4706 MDNode *Variable = DI.getVariable(); 4707 MDNode *Expression = DI.getExpression(); 4708 const Value *Address = DI.getAddress(); 4709 DIVariable DIVar(Variable); 4710 assert((!DIVar || DIVar.isVariable()) && 4711 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4712 if (!Address || !DIVar) { 4713 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4714 return nullptr; 4715 } 4716 4717 // Check if address has undef value. 4718 if (isa<UndefValue>(Address) || 4719 (Address->use_empty() && !isa<Argument>(Address))) { 4720 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4721 return nullptr; 4722 } 4723 4724 SDValue &N = NodeMap[Address]; 4725 if (!N.getNode() && isa<Argument>(Address)) 4726 // Check unused arguments map. 4727 N = UnusedArgNodeMap[Address]; 4728 SDDbgValue *SDV; 4729 if (N.getNode()) { 4730 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4731 Address = BCI->getOperand(0); 4732 // Parameters are handled specially. 4733 bool isParameter = 4734 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4735 isa<Argument>(Address)); 4736 4737 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4738 4739 if (isParameter && !AI) { 4740 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4741 if (FINode) 4742 // Byval parameter. We have a frame index at this point. 4743 SDV = DAG.getFrameIndexDbgValue( 4744 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4745 else { 4746 // Address is an argument, so try to emit its dbg value using 4747 // virtual register info from the FuncInfo.ValueMap. 4748 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4749 return nullptr; 4750 } 4751 } else if (AI) 4752 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4753 true, 0, dl, SDNodeOrder); 4754 else { 4755 // Can't do anything with other non-AI cases yet. 4756 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4757 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4758 DEBUG(Address->dump()); 4759 return nullptr; 4760 } 4761 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4762 } else { 4763 // If Address is an argument then try to emit its dbg value using 4764 // virtual register info from the FuncInfo.ValueMap. 4765 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4766 N)) { 4767 // If variable is pinned by a alloca in dominating bb then 4768 // use StaticAllocaMap. 4769 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4770 if (AI->getParent() != DI.getParent()) { 4771 DenseMap<const AllocaInst*, int>::iterator SI = 4772 FuncInfo.StaticAllocaMap.find(AI); 4773 if (SI != FuncInfo.StaticAllocaMap.end()) { 4774 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4775 0, dl, SDNodeOrder); 4776 DAG.AddDbgValue(SDV, nullptr, false); 4777 return nullptr; 4778 } 4779 } 4780 } 4781 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4782 } 4783 } 4784 return nullptr; 4785 } 4786 case Intrinsic::dbg_value: { 4787 const DbgValueInst &DI = cast<DbgValueInst>(I); 4788 DIVariable DIVar(DI.getVariable()); 4789 assert((!DIVar || DIVar.isVariable()) && 4790 "Variable in DbgValueInst should be either null or a DIVariable."); 4791 if (!DIVar) 4792 return nullptr; 4793 4794 MDNode *Variable = DI.getVariable(); 4795 MDNode *Expression = DI.getExpression(); 4796 uint64_t Offset = DI.getOffset(); 4797 const Value *V = DI.getValue(); 4798 if (!V) 4799 return nullptr; 4800 4801 SDDbgValue *SDV; 4802 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4803 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4804 SDNodeOrder); 4805 DAG.AddDbgValue(SDV, nullptr, false); 4806 } else { 4807 // Do not use getValue() in here; we don't want to generate code at 4808 // this point if it hasn't been done yet. 4809 SDValue N = NodeMap[V]; 4810 if (!N.getNode() && isa<Argument>(V)) 4811 // Check unused arguments map. 4812 N = UnusedArgNodeMap[V]; 4813 if (N.getNode()) { 4814 // A dbg.value for an alloca is always indirect. 4815 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4816 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4817 IsIndirect, N)) { 4818 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4819 IsIndirect, Offset, dl, SDNodeOrder); 4820 DAG.AddDbgValue(SDV, N.getNode(), false); 4821 } 4822 } else if (!V->use_empty() ) { 4823 // Do not call getValue(V) yet, as we don't want to generate code. 4824 // Remember it for later. 4825 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4826 DanglingDebugInfoMap[V] = DDI; 4827 } else { 4828 // We may expand this to cover more cases. One case where we have no 4829 // data available is an unreferenced parameter. 4830 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4831 } 4832 } 4833 4834 // Build a debug info table entry. 4835 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4836 V = BCI->getOperand(0); 4837 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4838 // Don't handle byval struct arguments or VLAs, for example. 4839 if (!AI) { 4840 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4841 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4842 return nullptr; 4843 } 4844 DenseMap<const AllocaInst*, int>::iterator SI = 4845 FuncInfo.StaticAllocaMap.find(AI); 4846 if (SI == FuncInfo.StaticAllocaMap.end()) 4847 return nullptr; // VLAs. 4848 return nullptr; 4849 } 4850 4851 case Intrinsic::eh_typeid_for: { 4852 // Find the type id for the given typeinfo. 4853 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4854 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4855 Res = DAG.getConstant(TypeID, MVT::i32); 4856 setValue(&I, Res); 4857 return nullptr; 4858 } 4859 4860 case Intrinsic::eh_return_i32: 4861 case Intrinsic::eh_return_i64: 4862 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4863 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4864 MVT::Other, 4865 getControlRoot(), 4866 getValue(I.getArgOperand(0)), 4867 getValue(I.getArgOperand(1)))); 4868 return nullptr; 4869 case Intrinsic::eh_unwind_init: 4870 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4871 return nullptr; 4872 case Intrinsic::eh_dwarf_cfa: { 4873 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4874 TLI.getPointerTy()); 4875 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4876 CfaArg.getValueType(), 4877 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4878 CfaArg.getValueType()), 4879 CfaArg); 4880 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4881 DAG.getConstant(0, TLI.getPointerTy())); 4882 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4883 FA, Offset)); 4884 return nullptr; 4885 } 4886 case Intrinsic::eh_sjlj_callsite: { 4887 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4888 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4889 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4890 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4891 4892 MMI.setCurrentCallSite(CI->getZExtValue()); 4893 return nullptr; 4894 } 4895 case Intrinsic::eh_sjlj_functioncontext: { 4896 // Get and store the index of the function context. 4897 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4898 AllocaInst *FnCtx = 4899 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4900 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4901 MFI->setFunctionContextIndex(FI); 4902 return nullptr; 4903 } 4904 case Intrinsic::eh_sjlj_setjmp: { 4905 SDValue Ops[2]; 4906 Ops[0] = getRoot(); 4907 Ops[1] = getValue(I.getArgOperand(0)); 4908 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4909 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4910 setValue(&I, Op.getValue(0)); 4911 DAG.setRoot(Op.getValue(1)); 4912 return nullptr; 4913 } 4914 case Intrinsic::eh_sjlj_longjmp: { 4915 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4916 getRoot(), getValue(I.getArgOperand(0)))); 4917 return nullptr; 4918 } 4919 4920 case Intrinsic::x86_mmx_pslli_w: 4921 case Intrinsic::x86_mmx_pslli_d: 4922 case Intrinsic::x86_mmx_pslli_q: 4923 case Intrinsic::x86_mmx_psrli_w: 4924 case Intrinsic::x86_mmx_psrli_d: 4925 case Intrinsic::x86_mmx_psrli_q: 4926 case Intrinsic::x86_mmx_psrai_w: 4927 case Intrinsic::x86_mmx_psrai_d: { 4928 SDValue ShAmt = getValue(I.getArgOperand(1)); 4929 if (isa<ConstantSDNode>(ShAmt)) { 4930 visitTargetIntrinsic(I, Intrinsic); 4931 return nullptr; 4932 } 4933 unsigned NewIntrinsic = 0; 4934 EVT ShAmtVT = MVT::v2i32; 4935 switch (Intrinsic) { 4936 case Intrinsic::x86_mmx_pslli_w: 4937 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4938 break; 4939 case Intrinsic::x86_mmx_pslli_d: 4940 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4941 break; 4942 case Intrinsic::x86_mmx_pslli_q: 4943 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4944 break; 4945 case Intrinsic::x86_mmx_psrli_w: 4946 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4947 break; 4948 case Intrinsic::x86_mmx_psrli_d: 4949 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4950 break; 4951 case Intrinsic::x86_mmx_psrli_q: 4952 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4953 break; 4954 case Intrinsic::x86_mmx_psrai_w: 4955 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4956 break; 4957 case Intrinsic::x86_mmx_psrai_d: 4958 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4959 break; 4960 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4961 } 4962 4963 // The vector shift intrinsics with scalars uses 32b shift amounts but 4964 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4965 // to be zero. 4966 // We must do this early because v2i32 is not a legal type. 4967 SDValue ShOps[2]; 4968 ShOps[0] = ShAmt; 4969 ShOps[1] = DAG.getConstant(0, MVT::i32); 4970 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4971 EVT DestVT = TLI.getValueType(I.getType()); 4972 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4973 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4974 DAG.getConstant(NewIntrinsic, MVT::i32), 4975 getValue(I.getArgOperand(0)), ShAmt); 4976 setValue(&I, Res); 4977 return nullptr; 4978 } 4979 case Intrinsic::x86_avx_vinsertf128_pd_256: 4980 case Intrinsic::x86_avx_vinsertf128_ps_256: 4981 case Intrinsic::x86_avx_vinsertf128_si_256: 4982 case Intrinsic::x86_avx2_vinserti128: { 4983 EVT DestVT = TLI.getValueType(I.getType()); 4984 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4985 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4986 ElVT.getVectorNumElements(); 4987 Res = 4988 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4989 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 4990 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4991 setValue(&I, Res); 4992 return nullptr; 4993 } 4994 case Intrinsic::x86_avx_vextractf128_pd_256: 4995 case Intrinsic::x86_avx_vextractf128_ps_256: 4996 case Intrinsic::x86_avx_vextractf128_si_256: 4997 case Intrinsic::x86_avx2_vextracti128: { 4998 EVT DestVT = TLI.getValueType(I.getType()); 4999 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5000 DestVT.getVectorNumElements(); 5001 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5002 getValue(I.getArgOperand(0)), 5003 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5004 setValue(&I, Res); 5005 return nullptr; 5006 } 5007 case Intrinsic::convertff: 5008 case Intrinsic::convertfsi: 5009 case Intrinsic::convertfui: 5010 case Intrinsic::convertsif: 5011 case Intrinsic::convertuif: 5012 case Intrinsic::convertss: 5013 case Intrinsic::convertsu: 5014 case Intrinsic::convertus: 5015 case Intrinsic::convertuu: { 5016 ISD::CvtCode Code = ISD::CVT_INVALID; 5017 switch (Intrinsic) { 5018 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5019 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5020 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5021 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5022 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5023 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5024 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5025 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5026 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5027 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5028 } 5029 EVT DestVT = TLI.getValueType(I.getType()); 5030 const Value *Op1 = I.getArgOperand(0); 5031 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5032 DAG.getValueType(DestVT), 5033 DAG.getValueType(getValue(Op1).getValueType()), 5034 getValue(I.getArgOperand(1)), 5035 getValue(I.getArgOperand(2)), 5036 Code); 5037 setValue(&I, Res); 5038 return nullptr; 5039 } 5040 case Intrinsic::powi: 5041 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5042 getValue(I.getArgOperand(1)), DAG)); 5043 return nullptr; 5044 case Intrinsic::log: 5045 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5046 return nullptr; 5047 case Intrinsic::log2: 5048 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5049 return nullptr; 5050 case Intrinsic::log10: 5051 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5052 return nullptr; 5053 case Intrinsic::exp: 5054 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5055 return nullptr; 5056 case Intrinsic::exp2: 5057 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5058 return nullptr; 5059 case Intrinsic::pow: 5060 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5061 getValue(I.getArgOperand(1)), DAG, TLI)); 5062 return nullptr; 5063 case Intrinsic::sqrt: 5064 case Intrinsic::fabs: 5065 case Intrinsic::sin: 5066 case Intrinsic::cos: 5067 case Intrinsic::floor: 5068 case Intrinsic::ceil: 5069 case Intrinsic::trunc: 5070 case Intrinsic::rint: 5071 case Intrinsic::nearbyint: 5072 case Intrinsic::round: { 5073 unsigned Opcode; 5074 switch (Intrinsic) { 5075 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5076 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5077 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5078 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5079 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5080 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5081 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5082 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5083 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5084 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5085 case Intrinsic::round: Opcode = ISD::FROUND; break; 5086 } 5087 5088 setValue(&I, DAG.getNode(Opcode, sdl, 5089 getValue(I.getArgOperand(0)).getValueType(), 5090 getValue(I.getArgOperand(0)))); 5091 return nullptr; 5092 } 5093 case Intrinsic::minnum: 5094 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5095 getValue(I.getArgOperand(0)).getValueType(), 5096 getValue(I.getArgOperand(0)), 5097 getValue(I.getArgOperand(1)))); 5098 return nullptr; 5099 case Intrinsic::maxnum: 5100 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5101 getValue(I.getArgOperand(0)).getValueType(), 5102 getValue(I.getArgOperand(0)), 5103 getValue(I.getArgOperand(1)))); 5104 return nullptr; 5105 case Intrinsic::copysign: 5106 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5107 getValue(I.getArgOperand(0)).getValueType(), 5108 getValue(I.getArgOperand(0)), 5109 getValue(I.getArgOperand(1)))); 5110 return nullptr; 5111 case Intrinsic::fma: 5112 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5113 getValue(I.getArgOperand(0)).getValueType(), 5114 getValue(I.getArgOperand(0)), 5115 getValue(I.getArgOperand(1)), 5116 getValue(I.getArgOperand(2)))); 5117 return nullptr; 5118 case Intrinsic::fmuladd: { 5119 EVT VT = TLI.getValueType(I.getType()); 5120 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5121 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5122 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5123 getValue(I.getArgOperand(0)).getValueType(), 5124 getValue(I.getArgOperand(0)), 5125 getValue(I.getArgOperand(1)), 5126 getValue(I.getArgOperand(2)))); 5127 } else { 5128 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5129 getValue(I.getArgOperand(0)).getValueType(), 5130 getValue(I.getArgOperand(0)), 5131 getValue(I.getArgOperand(1))); 5132 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5133 getValue(I.getArgOperand(0)).getValueType(), 5134 Mul, 5135 getValue(I.getArgOperand(2))); 5136 setValue(&I, Add); 5137 } 5138 return nullptr; 5139 } 5140 case Intrinsic::convert_to_fp16: 5141 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5142 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5143 getValue(I.getArgOperand(0)), 5144 DAG.getTargetConstant(0, MVT::i32)))); 5145 return nullptr; 5146 case Intrinsic::convert_from_fp16: 5147 setValue(&I, 5148 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5149 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5150 getValue(I.getArgOperand(0))))); 5151 return nullptr; 5152 case Intrinsic::pcmarker: { 5153 SDValue Tmp = getValue(I.getArgOperand(0)); 5154 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5155 return nullptr; 5156 } 5157 case Intrinsic::readcyclecounter: { 5158 SDValue Op = getRoot(); 5159 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5160 DAG.getVTList(MVT::i64, MVT::Other), Op); 5161 setValue(&I, Res); 5162 DAG.setRoot(Res.getValue(1)); 5163 return nullptr; 5164 } 5165 case Intrinsic::bswap: 5166 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5167 getValue(I.getArgOperand(0)).getValueType(), 5168 getValue(I.getArgOperand(0)))); 5169 return nullptr; 5170 case Intrinsic::cttz: { 5171 SDValue Arg = getValue(I.getArgOperand(0)); 5172 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5173 EVT Ty = Arg.getValueType(); 5174 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5175 sdl, Ty, Arg)); 5176 return nullptr; 5177 } 5178 case Intrinsic::ctlz: { 5179 SDValue Arg = getValue(I.getArgOperand(0)); 5180 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5181 EVT Ty = Arg.getValueType(); 5182 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5183 sdl, Ty, Arg)); 5184 return nullptr; 5185 } 5186 case Intrinsic::ctpop: { 5187 SDValue Arg = getValue(I.getArgOperand(0)); 5188 EVT Ty = Arg.getValueType(); 5189 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5190 return nullptr; 5191 } 5192 case Intrinsic::stacksave: { 5193 SDValue Op = getRoot(); 5194 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5195 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5196 setValue(&I, Res); 5197 DAG.setRoot(Res.getValue(1)); 5198 return nullptr; 5199 } 5200 case Intrinsic::stackrestore: { 5201 Res = getValue(I.getArgOperand(0)); 5202 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5203 return nullptr; 5204 } 5205 case Intrinsic::stackprotector: { 5206 // Emit code into the DAG to store the stack guard onto the stack. 5207 MachineFunction &MF = DAG.getMachineFunction(); 5208 MachineFrameInfo *MFI = MF.getFrameInfo(); 5209 EVT PtrTy = TLI.getPointerTy(); 5210 SDValue Src, Chain = getRoot(); 5211 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5212 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5213 5214 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5215 // global variable __stack_chk_guard. 5216 if (!GV) 5217 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5218 if (BC->getOpcode() == Instruction::BitCast) 5219 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5220 5221 if (GV && TLI.useLoadStackGuardNode()) { 5222 // Emit a LOAD_STACK_GUARD node. 5223 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5224 sdl, PtrTy, Chain); 5225 MachinePointerInfo MPInfo(GV); 5226 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5227 unsigned Flags = MachineMemOperand::MOLoad | 5228 MachineMemOperand::MOInvariant; 5229 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5230 PtrTy.getSizeInBits() / 8, 5231 DAG.getEVTAlignment(PtrTy)); 5232 Node->setMemRefs(MemRefs, MemRefs + 1); 5233 5234 // Copy the guard value to a virtual register so that it can be 5235 // retrieved in the epilogue. 5236 Src = SDValue(Node, 0); 5237 const TargetRegisterClass *RC = 5238 TLI.getRegClassFor(Src.getSimpleValueType()); 5239 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5240 5241 SPDescriptor.setGuardReg(Reg); 5242 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5243 } else { 5244 Src = getValue(I.getArgOperand(0)); // The guard's value. 5245 } 5246 5247 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5248 5249 int FI = FuncInfo.StaticAllocaMap[Slot]; 5250 MFI->setStackProtectorIndex(FI); 5251 5252 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5253 5254 // Store the stack protector onto the stack. 5255 Res = DAG.getStore(Chain, sdl, Src, FIN, 5256 MachinePointerInfo::getFixedStack(FI), 5257 true, false, 0); 5258 setValue(&I, Res); 5259 DAG.setRoot(Res); 5260 return nullptr; 5261 } 5262 case Intrinsic::objectsize: { 5263 // If we don't know by now, we're never going to know. 5264 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5265 5266 assert(CI && "Non-constant type in __builtin_object_size?"); 5267 5268 SDValue Arg = getValue(I.getCalledValue()); 5269 EVT Ty = Arg.getValueType(); 5270 5271 if (CI->isZero()) 5272 Res = DAG.getConstant(-1ULL, Ty); 5273 else 5274 Res = DAG.getConstant(0, Ty); 5275 5276 setValue(&I, Res); 5277 return nullptr; 5278 } 5279 case Intrinsic::annotation: 5280 case Intrinsic::ptr_annotation: 5281 // Drop the intrinsic, but forward the value 5282 setValue(&I, getValue(I.getOperand(0))); 5283 return nullptr; 5284 case Intrinsic::assume: 5285 case Intrinsic::var_annotation: 5286 // Discard annotate attributes and assumptions 5287 return nullptr; 5288 5289 case Intrinsic::init_trampoline: { 5290 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5291 5292 SDValue Ops[6]; 5293 Ops[0] = getRoot(); 5294 Ops[1] = getValue(I.getArgOperand(0)); 5295 Ops[2] = getValue(I.getArgOperand(1)); 5296 Ops[3] = getValue(I.getArgOperand(2)); 5297 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5298 Ops[5] = DAG.getSrcValue(F); 5299 5300 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5301 5302 DAG.setRoot(Res); 5303 return nullptr; 5304 } 5305 case Intrinsic::adjust_trampoline: { 5306 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5307 TLI.getPointerTy(), 5308 getValue(I.getArgOperand(0)))); 5309 return nullptr; 5310 } 5311 case Intrinsic::gcroot: 5312 if (GFI) { 5313 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5314 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5315 5316 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5317 GFI->addStackRoot(FI->getIndex(), TypeMap); 5318 } 5319 return nullptr; 5320 case Intrinsic::gcread: 5321 case Intrinsic::gcwrite: 5322 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5323 case Intrinsic::flt_rounds: 5324 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5325 return nullptr; 5326 5327 case Intrinsic::expect: { 5328 // Just replace __builtin_expect(exp, c) with EXP. 5329 setValue(&I, getValue(I.getArgOperand(0))); 5330 return nullptr; 5331 } 5332 5333 case Intrinsic::debugtrap: 5334 case Intrinsic::trap: { 5335 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5336 if (TrapFuncName.empty()) { 5337 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5338 ISD::TRAP : ISD::DEBUGTRAP; 5339 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5340 return nullptr; 5341 } 5342 TargetLowering::ArgListTy Args; 5343 5344 TargetLowering::CallLoweringInfo CLI(DAG); 5345 CLI.setDebugLoc(sdl).setChain(getRoot()) 5346 .setCallee(CallingConv::C, I.getType(), 5347 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5348 std::move(Args), 0); 5349 5350 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5351 DAG.setRoot(Result.second); 5352 return nullptr; 5353 } 5354 5355 case Intrinsic::uadd_with_overflow: 5356 case Intrinsic::sadd_with_overflow: 5357 case Intrinsic::usub_with_overflow: 5358 case Intrinsic::ssub_with_overflow: 5359 case Intrinsic::umul_with_overflow: 5360 case Intrinsic::smul_with_overflow: { 5361 ISD::NodeType Op; 5362 switch (Intrinsic) { 5363 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5364 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5365 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5366 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5367 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5368 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5369 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5370 } 5371 SDValue Op1 = getValue(I.getArgOperand(0)); 5372 SDValue Op2 = getValue(I.getArgOperand(1)); 5373 5374 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5375 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5376 return nullptr; 5377 } 5378 case Intrinsic::prefetch: { 5379 SDValue Ops[5]; 5380 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5381 Ops[0] = getRoot(); 5382 Ops[1] = getValue(I.getArgOperand(0)); 5383 Ops[2] = getValue(I.getArgOperand(1)); 5384 Ops[3] = getValue(I.getArgOperand(2)); 5385 Ops[4] = getValue(I.getArgOperand(3)); 5386 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5387 DAG.getVTList(MVT::Other), Ops, 5388 EVT::getIntegerVT(*Context, 8), 5389 MachinePointerInfo(I.getArgOperand(0)), 5390 0, /* align */ 5391 false, /* volatile */ 5392 rw==0, /* read */ 5393 rw==1)); /* write */ 5394 return nullptr; 5395 } 5396 case Intrinsic::lifetime_start: 5397 case Intrinsic::lifetime_end: { 5398 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5399 // Stack coloring is not enabled in O0, discard region information. 5400 if (TM.getOptLevel() == CodeGenOpt::None) 5401 return nullptr; 5402 5403 SmallVector<Value *, 4> Allocas; 5404 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5405 5406 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5407 E = Allocas.end(); Object != E; ++Object) { 5408 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5409 5410 // Could not find an Alloca. 5411 if (!LifetimeObject) 5412 continue; 5413 5414 // First check that the Alloca is static, otherwise it won't have a 5415 // valid frame index. 5416 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5417 if (SI == FuncInfo.StaticAllocaMap.end()) 5418 return nullptr; 5419 5420 int FI = SI->second; 5421 5422 SDValue Ops[2]; 5423 Ops[0] = getRoot(); 5424 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5425 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5426 5427 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5428 DAG.setRoot(Res); 5429 } 5430 return nullptr; 5431 } 5432 case Intrinsic::invariant_start: 5433 // Discard region information. 5434 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5435 return nullptr; 5436 case Intrinsic::invariant_end: 5437 // Discard region information. 5438 return nullptr; 5439 case Intrinsic::stackprotectorcheck: { 5440 // Do not actually emit anything for this basic block. Instead we initialize 5441 // the stack protector descriptor and export the guard variable so we can 5442 // access it in FinishBasicBlock. 5443 const BasicBlock *BB = I.getParent(); 5444 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5445 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5446 5447 // Flush our exports since we are going to process a terminator. 5448 (void)getControlRoot(); 5449 return nullptr; 5450 } 5451 case Intrinsic::clear_cache: 5452 return TLI.getClearCacheBuiltinName(); 5453 case Intrinsic::donothing: 5454 // ignore 5455 return nullptr; 5456 case Intrinsic::experimental_stackmap: { 5457 visitStackmap(I); 5458 return nullptr; 5459 } 5460 case Intrinsic::experimental_patchpoint_void: 5461 case Intrinsic::experimental_patchpoint_i64: { 5462 visitPatchpoint(&I); 5463 return nullptr; 5464 } 5465 } 5466 } 5467 5468 std::pair<SDValue, SDValue> 5469 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5470 MachineBasicBlock *LandingPad) { 5471 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5472 MCSymbol *BeginLabel = nullptr; 5473 5474 if (LandingPad) { 5475 // Insert a label before the invoke call to mark the try range. This can be 5476 // used to detect deletion of the invoke via the MachineModuleInfo. 5477 BeginLabel = MMI.getContext().CreateTempSymbol(); 5478 5479 // For SjLj, keep track of which landing pads go with which invokes 5480 // so as to maintain the ordering of pads in the LSDA. 5481 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5482 if (CallSiteIndex) { 5483 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5484 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5485 5486 // Now that the call site is handled, stop tracking it. 5487 MMI.setCurrentCallSite(0); 5488 } 5489 5490 // Both PendingLoads and PendingExports must be flushed here; 5491 // this call might not return. 5492 (void)getRoot(); 5493 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5494 5495 CLI.setChain(getRoot()); 5496 } 5497 5498 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5499 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5500 5501 assert((CLI.IsTailCall || Result.second.getNode()) && 5502 "Non-null chain expected with non-tail call!"); 5503 assert((Result.second.getNode() || !Result.first.getNode()) && 5504 "Null value expected with tail call!"); 5505 5506 if (!Result.second.getNode()) { 5507 // As a special case, a null chain means that a tail call has been emitted 5508 // and the DAG root is already updated. 5509 HasTailCall = true; 5510 5511 // Since there's no actual continuation from this block, nothing can be 5512 // relying on us setting vregs for them. 5513 PendingExports.clear(); 5514 } else { 5515 DAG.setRoot(Result.second); 5516 } 5517 5518 if (LandingPad) { 5519 // Insert a label at the end of the invoke call to mark the try range. This 5520 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5521 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5522 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5523 5524 // Inform MachineModuleInfo of range. 5525 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5526 } 5527 5528 return Result; 5529 } 5530 5531 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5532 bool isTailCall, 5533 MachineBasicBlock *LandingPad) { 5534 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5535 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5536 Type *RetTy = FTy->getReturnType(); 5537 5538 TargetLowering::ArgListTy Args; 5539 TargetLowering::ArgListEntry Entry; 5540 Args.reserve(CS.arg_size()); 5541 5542 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5543 i != e; ++i) { 5544 const Value *V = *i; 5545 5546 // Skip empty types 5547 if (V->getType()->isEmptyTy()) 5548 continue; 5549 5550 SDValue ArgNode = getValue(V); 5551 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5552 5553 // Skip the first return-type Attribute to get to params. 5554 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5555 Args.push_back(Entry); 5556 } 5557 5558 // Check if target-independent constraints permit a tail call here. 5559 // Target-dependent constraints are checked within TLI->LowerCallTo. 5560 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5561 isTailCall = false; 5562 5563 TargetLowering::CallLoweringInfo CLI(DAG); 5564 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5565 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5566 .setTailCall(isTailCall); 5567 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5568 5569 if (Result.first.getNode()) 5570 setValue(CS.getInstruction(), Result.first); 5571 } 5572 5573 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5574 /// value is equal or not-equal to zero. 5575 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5576 for (const User *U : V->users()) { 5577 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5578 if (IC->isEquality()) 5579 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5580 if (C->isNullValue()) 5581 continue; 5582 // Unknown instruction. 5583 return false; 5584 } 5585 return true; 5586 } 5587 5588 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5589 Type *LoadTy, 5590 SelectionDAGBuilder &Builder) { 5591 5592 // Check to see if this load can be trivially constant folded, e.g. if the 5593 // input is from a string literal. 5594 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5595 // Cast pointer to the type we really want to load. 5596 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5597 PointerType::getUnqual(LoadTy)); 5598 5599 if (const Constant *LoadCst = 5600 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5601 Builder.DL)) 5602 return Builder.getValue(LoadCst); 5603 } 5604 5605 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5606 // still constant memory, the input chain can be the entry node. 5607 SDValue Root; 5608 bool ConstantMemory = false; 5609 5610 // Do not serialize (non-volatile) loads of constant memory with anything. 5611 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5612 Root = Builder.DAG.getEntryNode(); 5613 ConstantMemory = true; 5614 } else { 5615 // Do not serialize non-volatile loads against each other. 5616 Root = Builder.DAG.getRoot(); 5617 } 5618 5619 SDValue Ptr = Builder.getValue(PtrVal); 5620 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5621 Ptr, MachinePointerInfo(PtrVal), 5622 false /*volatile*/, 5623 false /*nontemporal*/, 5624 false /*isinvariant*/, 1 /* align=1 */); 5625 5626 if (!ConstantMemory) 5627 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5628 return LoadVal; 5629 } 5630 5631 /// processIntegerCallValue - Record the value for an instruction that 5632 /// produces an integer result, converting the type where necessary. 5633 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5634 SDValue Value, 5635 bool IsSigned) { 5636 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5637 if (IsSigned) 5638 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5639 else 5640 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5641 setValue(&I, Value); 5642 } 5643 5644 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5645 /// If so, return true and lower it, otherwise return false and it will be 5646 /// lowered like a normal call. 5647 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5648 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5649 if (I.getNumArgOperands() != 3) 5650 return false; 5651 5652 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5653 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5654 !I.getArgOperand(2)->getType()->isIntegerTy() || 5655 !I.getType()->isIntegerTy()) 5656 return false; 5657 5658 const Value *Size = I.getArgOperand(2); 5659 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5660 if (CSize && CSize->getZExtValue() == 0) { 5661 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5662 setValue(&I, DAG.getConstant(0, CallVT)); 5663 return true; 5664 } 5665 5666 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5667 std::pair<SDValue, SDValue> Res = 5668 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5669 getValue(LHS), getValue(RHS), getValue(Size), 5670 MachinePointerInfo(LHS), 5671 MachinePointerInfo(RHS)); 5672 if (Res.first.getNode()) { 5673 processIntegerCallValue(I, Res.first, true); 5674 PendingLoads.push_back(Res.second); 5675 return true; 5676 } 5677 5678 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5679 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5680 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5681 bool ActuallyDoIt = true; 5682 MVT LoadVT; 5683 Type *LoadTy; 5684 switch (CSize->getZExtValue()) { 5685 default: 5686 LoadVT = MVT::Other; 5687 LoadTy = nullptr; 5688 ActuallyDoIt = false; 5689 break; 5690 case 2: 5691 LoadVT = MVT::i16; 5692 LoadTy = Type::getInt16Ty(CSize->getContext()); 5693 break; 5694 case 4: 5695 LoadVT = MVT::i32; 5696 LoadTy = Type::getInt32Ty(CSize->getContext()); 5697 break; 5698 case 8: 5699 LoadVT = MVT::i64; 5700 LoadTy = Type::getInt64Ty(CSize->getContext()); 5701 break; 5702 /* 5703 case 16: 5704 LoadVT = MVT::v4i32; 5705 LoadTy = Type::getInt32Ty(CSize->getContext()); 5706 LoadTy = VectorType::get(LoadTy, 4); 5707 break; 5708 */ 5709 } 5710 5711 // This turns into unaligned loads. We only do this if the target natively 5712 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5713 // we'll only produce a small number of byte loads. 5714 5715 // Require that we can find a legal MVT, and only do this if the target 5716 // supports unaligned loads of that type. Expanding into byte loads would 5717 // bloat the code. 5718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5719 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5720 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5721 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5722 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5723 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5724 // TODO: Check alignment of src and dest ptrs. 5725 if (!TLI.isTypeLegal(LoadVT) || 5726 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5727 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5728 ActuallyDoIt = false; 5729 } 5730 5731 if (ActuallyDoIt) { 5732 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5733 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5734 5735 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5736 ISD::SETNE); 5737 processIntegerCallValue(I, Res, false); 5738 return true; 5739 } 5740 } 5741 5742 5743 return false; 5744 } 5745 5746 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5747 /// form. If so, return true and lower it, otherwise return false and it 5748 /// will be lowered like a normal call. 5749 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5750 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5751 if (I.getNumArgOperands() != 3) 5752 return false; 5753 5754 const Value *Src = I.getArgOperand(0); 5755 const Value *Char = I.getArgOperand(1); 5756 const Value *Length = I.getArgOperand(2); 5757 if (!Src->getType()->isPointerTy() || 5758 !Char->getType()->isIntegerTy() || 5759 !Length->getType()->isIntegerTy() || 5760 !I.getType()->isPointerTy()) 5761 return false; 5762 5763 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5764 std::pair<SDValue, SDValue> Res = 5765 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5766 getValue(Src), getValue(Char), getValue(Length), 5767 MachinePointerInfo(Src)); 5768 if (Res.first.getNode()) { 5769 setValue(&I, Res.first); 5770 PendingLoads.push_back(Res.second); 5771 return true; 5772 } 5773 5774 return false; 5775 } 5776 5777 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5778 /// optimized form. If so, return true and lower it, otherwise return false 5779 /// and it will be lowered like a normal call. 5780 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5781 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5782 if (I.getNumArgOperands() != 2) 5783 return false; 5784 5785 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5786 if (!Arg0->getType()->isPointerTy() || 5787 !Arg1->getType()->isPointerTy() || 5788 !I.getType()->isPointerTy()) 5789 return false; 5790 5791 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5792 std::pair<SDValue, SDValue> Res = 5793 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5794 getValue(Arg0), getValue(Arg1), 5795 MachinePointerInfo(Arg0), 5796 MachinePointerInfo(Arg1), isStpcpy); 5797 if (Res.first.getNode()) { 5798 setValue(&I, Res.first); 5799 DAG.setRoot(Res.second); 5800 return true; 5801 } 5802 5803 return false; 5804 } 5805 5806 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5807 /// If so, return true and lower it, otherwise return false and it will be 5808 /// lowered like a normal call. 5809 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5810 // Verify that the prototype makes sense. int strcmp(void*,void*) 5811 if (I.getNumArgOperands() != 2) 5812 return false; 5813 5814 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5815 if (!Arg0->getType()->isPointerTy() || 5816 !Arg1->getType()->isPointerTy() || 5817 !I.getType()->isIntegerTy()) 5818 return false; 5819 5820 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5821 std::pair<SDValue, SDValue> Res = 5822 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5823 getValue(Arg0), getValue(Arg1), 5824 MachinePointerInfo(Arg0), 5825 MachinePointerInfo(Arg1)); 5826 if (Res.first.getNode()) { 5827 processIntegerCallValue(I, Res.first, true); 5828 PendingLoads.push_back(Res.second); 5829 return true; 5830 } 5831 5832 return false; 5833 } 5834 5835 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5836 /// form. If so, return true and lower it, otherwise return false and it 5837 /// will be lowered like a normal call. 5838 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5839 // Verify that the prototype makes sense. size_t strlen(char *) 5840 if (I.getNumArgOperands() != 1) 5841 return false; 5842 5843 const Value *Arg0 = I.getArgOperand(0); 5844 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5845 return false; 5846 5847 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5848 std::pair<SDValue, SDValue> Res = 5849 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5850 getValue(Arg0), MachinePointerInfo(Arg0)); 5851 if (Res.first.getNode()) { 5852 processIntegerCallValue(I, Res.first, false); 5853 PendingLoads.push_back(Res.second); 5854 return true; 5855 } 5856 5857 return false; 5858 } 5859 5860 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5861 /// form. If so, return true and lower it, otherwise return false and it 5862 /// will be lowered like a normal call. 5863 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5864 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5865 if (I.getNumArgOperands() != 2) 5866 return false; 5867 5868 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5869 if (!Arg0->getType()->isPointerTy() || 5870 !Arg1->getType()->isIntegerTy() || 5871 !I.getType()->isIntegerTy()) 5872 return false; 5873 5874 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5875 std::pair<SDValue, SDValue> Res = 5876 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5877 getValue(Arg0), getValue(Arg1), 5878 MachinePointerInfo(Arg0)); 5879 if (Res.first.getNode()) { 5880 processIntegerCallValue(I, Res.first, false); 5881 PendingLoads.push_back(Res.second); 5882 return true; 5883 } 5884 5885 return false; 5886 } 5887 5888 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5889 /// operation (as expected), translate it to an SDNode with the specified opcode 5890 /// and return true. 5891 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5892 unsigned Opcode) { 5893 // Sanity check that it really is a unary floating-point call. 5894 if (I.getNumArgOperands() != 1 || 5895 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5896 I.getType() != I.getArgOperand(0)->getType() || 5897 !I.onlyReadsMemory()) 5898 return false; 5899 5900 SDValue Tmp = getValue(I.getArgOperand(0)); 5901 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5902 return true; 5903 } 5904 5905 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5906 /// operation (as expected), translate it to an SDNode with the specified opcode 5907 /// and return true. 5908 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5909 unsigned Opcode) { 5910 // Sanity check that it really is a binary floating-point call. 5911 if (I.getNumArgOperands() != 2 || 5912 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5913 I.getType() != I.getArgOperand(0)->getType() || 5914 I.getType() != I.getArgOperand(1)->getType() || 5915 !I.onlyReadsMemory()) 5916 return false; 5917 5918 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5919 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5920 EVT VT = Tmp0.getValueType(); 5921 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5922 return true; 5923 } 5924 5925 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5926 // Handle inline assembly differently. 5927 if (isa<InlineAsm>(I.getCalledValue())) { 5928 visitInlineAsm(&I); 5929 return; 5930 } 5931 5932 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5933 ComputeUsesVAFloatArgument(I, &MMI); 5934 5935 const char *RenameFn = nullptr; 5936 if (Function *F = I.getCalledFunction()) { 5937 if (F->isDeclaration()) { 5938 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5939 if (unsigned IID = II->getIntrinsicID(F)) { 5940 RenameFn = visitIntrinsicCall(I, IID); 5941 if (!RenameFn) 5942 return; 5943 } 5944 } 5945 if (unsigned IID = F->getIntrinsicID()) { 5946 RenameFn = visitIntrinsicCall(I, IID); 5947 if (!RenameFn) 5948 return; 5949 } 5950 } 5951 5952 // Check for well-known libc/libm calls. If the function is internal, it 5953 // can't be a library call. 5954 LibFunc::Func Func; 5955 if (!F->hasLocalLinkage() && F->hasName() && 5956 LibInfo->getLibFunc(F->getName(), Func) && 5957 LibInfo->hasOptimizedCodeGen(Func)) { 5958 switch (Func) { 5959 default: break; 5960 case LibFunc::copysign: 5961 case LibFunc::copysignf: 5962 case LibFunc::copysignl: 5963 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5964 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5965 I.getType() == I.getArgOperand(0)->getType() && 5966 I.getType() == I.getArgOperand(1)->getType() && 5967 I.onlyReadsMemory()) { 5968 SDValue LHS = getValue(I.getArgOperand(0)); 5969 SDValue RHS = getValue(I.getArgOperand(1)); 5970 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5971 LHS.getValueType(), LHS, RHS)); 5972 return; 5973 } 5974 break; 5975 case LibFunc::fabs: 5976 case LibFunc::fabsf: 5977 case LibFunc::fabsl: 5978 if (visitUnaryFloatCall(I, ISD::FABS)) 5979 return; 5980 break; 5981 case LibFunc::fmin: 5982 case LibFunc::fminf: 5983 case LibFunc::fminl: 5984 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5985 return; 5986 break; 5987 case LibFunc::fmax: 5988 case LibFunc::fmaxf: 5989 case LibFunc::fmaxl: 5990 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5991 return; 5992 break; 5993 case LibFunc::sin: 5994 case LibFunc::sinf: 5995 case LibFunc::sinl: 5996 if (visitUnaryFloatCall(I, ISD::FSIN)) 5997 return; 5998 break; 5999 case LibFunc::cos: 6000 case LibFunc::cosf: 6001 case LibFunc::cosl: 6002 if (visitUnaryFloatCall(I, ISD::FCOS)) 6003 return; 6004 break; 6005 case LibFunc::sqrt: 6006 case LibFunc::sqrtf: 6007 case LibFunc::sqrtl: 6008 case LibFunc::sqrt_finite: 6009 case LibFunc::sqrtf_finite: 6010 case LibFunc::sqrtl_finite: 6011 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6012 return; 6013 break; 6014 case LibFunc::floor: 6015 case LibFunc::floorf: 6016 case LibFunc::floorl: 6017 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6018 return; 6019 break; 6020 case LibFunc::nearbyint: 6021 case LibFunc::nearbyintf: 6022 case LibFunc::nearbyintl: 6023 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6024 return; 6025 break; 6026 case LibFunc::ceil: 6027 case LibFunc::ceilf: 6028 case LibFunc::ceill: 6029 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6030 return; 6031 break; 6032 case LibFunc::rint: 6033 case LibFunc::rintf: 6034 case LibFunc::rintl: 6035 if (visitUnaryFloatCall(I, ISD::FRINT)) 6036 return; 6037 break; 6038 case LibFunc::round: 6039 case LibFunc::roundf: 6040 case LibFunc::roundl: 6041 if (visitUnaryFloatCall(I, ISD::FROUND)) 6042 return; 6043 break; 6044 case LibFunc::trunc: 6045 case LibFunc::truncf: 6046 case LibFunc::truncl: 6047 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6048 return; 6049 break; 6050 case LibFunc::log2: 6051 case LibFunc::log2f: 6052 case LibFunc::log2l: 6053 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6054 return; 6055 break; 6056 case LibFunc::exp2: 6057 case LibFunc::exp2f: 6058 case LibFunc::exp2l: 6059 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6060 return; 6061 break; 6062 case LibFunc::memcmp: 6063 if (visitMemCmpCall(I)) 6064 return; 6065 break; 6066 case LibFunc::memchr: 6067 if (visitMemChrCall(I)) 6068 return; 6069 break; 6070 case LibFunc::strcpy: 6071 if (visitStrCpyCall(I, false)) 6072 return; 6073 break; 6074 case LibFunc::stpcpy: 6075 if (visitStrCpyCall(I, true)) 6076 return; 6077 break; 6078 case LibFunc::strcmp: 6079 if (visitStrCmpCall(I)) 6080 return; 6081 break; 6082 case LibFunc::strlen: 6083 if (visitStrLenCall(I)) 6084 return; 6085 break; 6086 case LibFunc::strnlen: 6087 if (visitStrNLenCall(I)) 6088 return; 6089 break; 6090 } 6091 } 6092 } 6093 6094 SDValue Callee; 6095 if (!RenameFn) 6096 Callee = getValue(I.getCalledValue()); 6097 else 6098 Callee = DAG.getExternalSymbol(RenameFn, 6099 DAG.getTargetLoweringInfo().getPointerTy()); 6100 6101 // Check if we can potentially perform a tail call. More detailed checking is 6102 // be done within LowerCallTo, after more information about the call is known. 6103 LowerCallTo(&I, Callee, I.isTailCall()); 6104 } 6105 6106 namespace { 6107 6108 /// AsmOperandInfo - This contains information for each constraint that we are 6109 /// lowering. 6110 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6111 public: 6112 /// CallOperand - If this is the result output operand or a clobber 6113 /// this is null, otherwise it is the incoming operand to the CallInst. 6114 /// This gets modified as the asm is processed. 6115 SDValue CallOperand; 6116 6117 /// AssignedRegs - If this is a register or register class operand, this 6118 /// contains the set of register corresponding to the operand. 6119 RegsForValue AssignedRegs; 6120 6121 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6122 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6123 } 6124 6125 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6126 /// corresponds to. If there is no Value* for this operand, it returns 6127 /// MVT::Other. 6128 EVT getCallOperandValEVT(LLVMContext &Context, 6129 const TargetLowering &TLI, 6130 const DataLayout *DL) const { 6131 if (!CallOperandVal) return MVT::Other; 6132 6133 if (isa<BasicBlock>(CallOperandVal)) 6134 return TLI.getPointerTy(); 6135 6136 llvm::Type *OpTy = CallOperandVal->getType(); 6137 6138 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6139 // If this is an indirect operand, the operand is a pointer to the 6140 // accessed type. 6141 if (isIndirect) { 6142 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6143 if (!PtrTy) 6144 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6145 OpTy = PtrTy->getElementType(); 6146 } 6147 6148 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6149 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6150 if (STy->getNumElements() == 1) 6151 OpTy = STy->getElementType(0); 6152 6153 // If OpTy is not a single value, it may be a struct/union that we 6154 // can tile with integers. 6155 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6156 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6157 switch (BitSize) { 6158 default: break; 6159 case 1: 6160 case 8: 6161 case 16: 6162 case 32: 6163 case 64: 6164 case 128: 6165 OpTy = IntegerType::get(Context, BitSize); 6166 break; 6167 } 6168 } 6169 6170 return TLI.getValueType(OpTy, true); 6171 } 6172 }; 6173 6174 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6175 6176 } // end anonymous namespace 6177 6178 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6179 /// specified operand. We prefer to assign virtual registers, to allow the 6180 /// register allocator to handle the assignment process. However, if the asm 6181 /// uses features that we can't model on machineinstrs, we have SDISel do the 6182 /// allocation. This produces generally horrible, but correct, code. 6183 /// 6184 /// OpInfo describes the operand. 6185 /// 6186 static void GetRegistersForValue(SelectionDAG &DAG, 6187 const TargetLowering &TLI, 6188 SDLoc DL, 6189 SDISelAsmOperandInfo &OpInfo) { 6190 LLVMContext &Context = *DAG.getContext(); 6191 6192 MachineFunction &MF = DAG.getMachineFunction(); 6193 SmallVector<unsigned, 4> Regs; 6194 6195 // If this is a constraint for a single physreg, or a constraint for a 6196 // register class, find it. 6197 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6198 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6199 OpInfo.ConstraintVT); 6200 6201 unsigned NumRegs = 1; 6202 if (OpInfo.ConstraintVT != MVT::Other) { 6203 // If this is a FP input in an integer register (or visa versa) insert a bit 6204 // cast of the input value. More generally, handle any case where the input 6205 // value disagrees with the register class we plan to stick this in. 6206 if (OpInfo.Type == InlineAsm::isInput && 6207 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6208 // Try to convert to the first EVT that the reg class contains. If the 6209 // types are identical size, use a bitcast to convert (e.g. two differing 6210 // vector types). 6211 MVT RegVT = *PhysReg.second->vt_begin(); 6212 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6213 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6214 RegVT, OpInfo.CallOperand); 6215 OpInfo.ConstraintVT = RegVT; 6216 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6217 // If the input is a FP value and we want it in FP registers, do a 6218 // bitcast to the corresponding integer type. This turns an f64 value 6219 // into i64, which can be passed with two i32 values on a 32-bit 6220 // machine. 6221 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6222 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6223 RegVT, OpInfo.CallOperand); 6224 OpInfo.ConstraintVT = RegVT; 6225 } 6226 } 6227 6228 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6229 } 6230 6231 MVT RegVT; 6232 EVT ValueVT = OpInfo.ConstraintVT; 6233 6234 // If this is a constraint for a specific physical register, like {r17}, 6235 // assign it now. 6236 if (unsigned AssignedReg = PhysReg.first) { 6237 const TargetRegisterClass *RC = PhysReg.second; 6238 if (OpInfo.ConstraintVT == MVT::Other) 6239 ValueVT = *RC->vt_begin(); 6240 6241 // Get the actual register value type. This is important, because the user 6242 // may have asked for (e.g.) the AX register in i32 type. We need to 6243 // remember that AX is actually i16 to get the right extension. 6244 RegVT = *RC->vt_begin(); 6245 6246 // This is a explicit reference to a physical register. 6247 Regs.push_back(AssignedReg); 6248 6249 // If this is an expanded reference, add the rest of the regs to Regs. 6250 if (NumRegs != 1) { 6251 TargetRegisterClass::iterator I = RC->begin(); 6252 for (; *I != AssignedReg; ++I) 6253 assert(I != RC->end() && "Didn't find reg!"); 6254 6255 // Already added the first reg. 6256 --NumRegs; ++I; 6257 for (; NumRegs; --NumRegs, ++I) { 6258 assert(I != RC->end() && "Ran out of registers to allocate!"); 6259 Regs.push_back(*I); 6260 } 6261 } 6262 6263 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6264 return; 6265 } 6266 6267 // Otherwise, if this was a reference to an LLVM register class, create vregs 6268 // for this reference. 6269 if (const TargetRegisterClass *RC = PhysReg.second) { 6270 RegVT = *RC->vt_begin(); 6271 if (OpInfo.ConstraintVT == MVT::Other) 6272 ValueVT = RegVT; 6273 6274 // Create the appropriate number of virtual registers. 6275 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6276 for (; NumRegs; --NumRegs) 6277 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6278 6279 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6280 return; 6281 } 6282 6283 // Otherwise, we couldn't allocate enough registers for this. 6284 } 6285 6286 /// visitInlineAsm - Handle a call to an InlineAsm object. 6287 /// 6288 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6289 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6290 6291 /// ConstraintOperands - Information about all of the constraints. 6292 SDISelAsmOperandInfoVector ConstraintOperands; 6293 6294 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6295 TargetLowering::AsmOperandInfoVector 6296 TargetConstraints = TLI.ParseConstraints(CS); 6297 6298 bool hasMemory = false; 6299 6300 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6301 unsigned ResNo = 0; // ResNo - The result number of the next output. 6302 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6303 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6304 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6305 6306 MVT OpVT = MVT::Other; 6307 6308 // Compute the value type for each operand. 6309 switch (OpInfo.Type) { 6310 case InlineAsm::isOutput: 6311 // Indirect outputs just consume an argument. 6312 if (OpInfo.isIndirect) { 6313 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6314 break; 6315 } 6316 6317 // The return value of the call is this value. As such, there is no 6318 // corresponding argument. 6319 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6320 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6321 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6322 } else { 6323 assert(ResNo == 0 && "Asm only has one result!"); 6324 OpVT = TLI.getSimpleValueType(CS.getType()); 6325 } 6326 ++ResNo; 6327 break; 6328 case InlineAsm::isInput: 6329 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6330 break; 6331 case InlineAsm::isClobber: 6332 // Nothing to do. 6333 break; 6334 } 6335 6336 // If this is an input or an indirect output, process the call argument. 6337 // BasicBlocks are labels, currently appearing only in asm's. 6338 if (OpInfo.CallOperandVal) { 6339 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6340 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6341 } else { 6342 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6343 } 6344 6345 OpVT = 6346 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6347 } 6348 6349 OpInfo.ConstraintVT = OpVT; 6350 6351 // Indirect operand accesses access memory. 6352 if (OpInfo.isIndirect) 6353 hasMemory = true; 6354 else { 6355 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6356 TargetLowering::ConstraintType 6357 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6358 if (CType == TargetLowering::C_Memory) { 6359 hasMemory = true; 6360 break; 6361 } 6362 } 6363 } 6364 } 6365 6366 SDValue Chain, Flag; 6367 6368 // We won't need to flush pending loads if this asm doesn't touch 6369 // memory and is nonvolatile. 6370 if (hasMemory || IA->hasSideEffects()) 6371 Chain = getRoot(); 6372 else 6373 Chain = DAG.getRoot(); 6374 6375 // Second pass over the constraints: compute which constraint option to use 6376 // and assign registers to constraints that want a specific physreg. 6377 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6378 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6379 6380 // If this is an output operand with a matching input operand, look up the 6381 // matching input. If their types mismatch, e.g. one is an integer, the 6382 // other is floating point, or their sizes are different, flag it as an 6383 // error. 6384 if (OpInfo.hasMatchingInput()) { 6385 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6386 6387 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6388 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6389 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6390 OpInfo.ConstraintVT); 6391 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6392 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6393 Input.ConstraintVT); 6394 if ((OpInfo.ConstraintVT.isInteger() != 6395 Input.ConstraintVT.isInteger()) || 6396 (MatchRC.second != InputRC.second)) { 6397 report_fatal_error("Unsupported asm: input constraint" 6398 " with a matching output constraint of" 6399 " incompatible type!"); 6400 } 6401 Input.ConstraintVT = OpInfo.ConstraintVT; 6402 } 6403 } 6404 6405 // Compute the constraint code and ConstraintType to use. 6406 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6407 6408 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6409 OpInfo.Type == InlineAsm::isClobber) 6410 continue; 6411 6412 // If this is a memory input, and if the operand is not indirect, do what we 6413 // need to to provide an address for the memory input. 6414 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6415 !OpInfo.isIndirect) { 6416 assert((OpInfo.isMultipleAlternative || 6417 (OpInfo.Type == InlineAsm::isInput)) && 6418 "Can only indirectify direct input operands!"); 6419 6420 // Memory operands really want the address of the value. If we don't have 6421 // an indirect input, put it in the constpool if we can, otherwise spill 6422 // it to a stack slot. 6423 // TODO: This isn't quite right. We need to handle these according to 6424 // the addressing mode that the constraint wants. Also, this may take 6425 // an additional register for the computation and we don't want that 6426 // either. 6427 6428 // If the operand is a float, integer, or vector constant, spill to a 6429 // constant pool entry to get its address. 6430 const Value *OpVal = OpInfo.CallOperandVal; 6431 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6432 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6433 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6434 TLI.getPointerTy()); 6435 } else { 6436 // Otherwise, create a stack slot and emit a store to it before the 6437 // asm. 6438 Type *Ty = OpVal->getType(); 6439 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6440 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6441 MachineFunction &MF = DAG.getMachineFunction(); 6442 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6443 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6444 Chain = DAG.getStore(Chain, getCurSDLoc(), 6445 OpInfo.CallOperand, StackSlot, 6446 MachinePointerInfo::getFixedStack(SSFI), 6447 false, false, 0); 6448 OpInfo.CallOperand = StackSlot; 6449 } 6450 6451 // There is no longer a Value* corresponding to this operand. 6452 OpInfo.CallOperandVal = nullptr; 6453 6454 // It is now an indirect operand. 6455 OpInfo.isIndirect = true; 6456 } 6457 6458 // If this constraint is for a specific register, allocate it before 6459 // anything else. 6460 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6461 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6462 } 6463 6464 // Second pass - Loop over all of the operands, assigning virtual or physregs 6465 // to register class operands. 6466 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6467 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6468 6469 // C_Register operands have already been allocated, Other/Memory don't need 6470 // to be. 6471 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6472 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6473 } 6474 6475 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6476 std::vector<SDValue> AsmNodeOperands; 6477 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6478 AsmNodeOperands.push_back( 6479 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6480 TLI.getPointerTy())); 6481 6482 // If we have a !srcloc metadata node associated with it, we want to attach 6483 // this to the ultimately generated inline asm machineinstr. To do this, we 6484 // pass in the third operand as this (potentially null) inline asm MDNode. 6485 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6486 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6487 6488 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6489 // bits as operand 3. 6490 unsigned ExtraInfo = 0; 6491 if (IA->hasSideEffects()) 6492 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6493 if (IA->isAlignStack()) 6494 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6495 // Set the asm dialect. 6496 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6497 6498 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6499 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6500 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6501 6502 // Compute the constraint code and ConstraintType to use. 6503 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6504 6505 // Ideally, we would only check against memory constraints. However, the 6506 // meaning of an other constraint can be target-specific and we can't easily 6507 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6508 // for other constriants as well. 6509 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6510 OpInfo.ConstraintType == TargetLowering::C_Other) { 6511 if (OpInfo.Type == InlineAsm::isInput) 6512 ExtraInfo |= InlineAsm::Extra_MayLoad; 6513 else if (OpInfo.Type == InlineAsm::isOutput) 6514 ExtraInfo |= InlineAsm::Extra_MayStore; 6515 else if (OpInfo.Type == InlineAsm::isClobber) 6516 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6517 } 6518 } 6519 6520 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6521 TLI.getPointerTy())); 6522 6523 // Loop over all of the inputs, copying the operand values into the 6524 // appropriate registers and processing the output regs. 6525 RegsForValue RetValRegs; 6526 6527 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6528 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6529 6530 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6531 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6532 6533 switch (OpInfo.Type) { 6534 case InlineAsm::isOutput: { 6535 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6536 OpInfo.ConstraintType != TargetLowering::C_Register) { 6537 // Memory output, or 'other' output (e.g. 'X' constraint). 6538 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6539 6540 // Add information to the INLINEASM node to know about this output. 6541 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6542 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6543 TLI.getPointerTy())); 6544 AsmNodeOperands.push_back(OpInfo.CallOperand); 6545 break; 6546 } 6547 6548 // Otherwise, this is a register or register class output. 6549 6550 // Copy the output from the appropriate register. Find a register that 6551 // we can use. 6552 if (OpInfo.AssignedRegs.Regs.empty()) { 6553 LLVMContext &Ctx = *DAG.getContext(); 6554 Ctx.emitError(CS.getInstruction(), 6555 "couldn't allocate output register for constraint '" + 6556 Twine(OpInfo.ConstraintCode) + "'"); 6557 return; 6558 } 6559 6560 // If this is an indirect operand, store through the pointer after the 6561 // asm. 6562 if (OpInfo.isIndirect) { 6563 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6564 OpInfo.CallOperandVal)); 6565 } else { 6566 // This is the result value of the call. 6567 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6568 // Concatenate this output onto the outputs list. 6569 RetValRegs.append(OpInfo.AssignedRegs); 6570 } 6571 6572 // Add information to the INLINEASM node to know that this register is 6573 // set. 6574 OpInfo.AssignedRegs 6575 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6576 ? InlineAsm::Kind_RegDefEarlyClobber 6577 : InlineAsm::Kind_RegDef, 6578 false, 0, DAG, AsmNodeOperands); 6579 break; 6580 } 6581 case InlineAsm::isInput: { 6582 SDValue InOperandVal = OpInfo.CallOperand; 6583 6584 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6585 // If this is required to match an output register we have already set, 6586 // just use its register. 6587 unsigned OperandNo = OpInfo.getMatchedOperand(); 6588 6589 // Scan until we find the definition we already emitted of this operand. 6590 // When we find it, create a RegsForValue operand. 6591 unsigned CurOp = InlineAsm::Op_FirstOperand; 6592 for (; OperandNo; --OperandNo) { 6593 // Advance to the next operand. 6594 unsigned OpFlag = 6595 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6596 assert((InlineAsm::isRegDefKind(OpFlag) || 6597 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6598 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6599 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6600 } 6601 6602 unsigned OpFlag = 6603 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6604 if (InlineAsm::isRegDefKind(OpFlag) || 6605 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6606 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6607 if (OpInfo.isIndirect) { 6608 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6609 LLVMContext &Ctx = *DAG.getContext(); 6610 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6611 " don't know how to handle tied " 6612 "indirect register inputs"); 6613 return; 6614 } 6615 6616 RegsForValue MatchedRegs; 6617 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6618 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6619 MatchedRegs.RegVTs.push_back(RegVT); 6620 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6621 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6622 i != e; ++i) { 6623 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6624 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6625 else { 6626 LLVMContext &Ctx = *DAG.getContext(); 6627 Ctx.emitError(CS.getInstruction(), 6628 "inline asm error: This value" 6629 " type register class is not natively supported!"); 6630 return; 6631 } 6632 } 6633 // Use the produced MatchedRegs object to 6634 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6635 Chain, &Flag, CS.getInstruction()); 6636 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6637 true, OpInfo.getMatchedOperand(), 6638 DAG, AsmNodeOperands); 6639 break; 6640 } 6641 6642 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6643 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6644 "Unexpected number of operands"); 6645 // Add information to the INLINEASM node to know about this input. 6646 // See InlineAsm.h isUseOperandTiedToDef. 6647 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6648 OpInfo.getMatchedOperand()); 6649 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6650 TLI.getPointerTy())); 6651 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6652 break; 6653 } 6654 6655 // Treat indirect 'X' constraint as memory. 6656 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6657 OpInfo.isIndirect) 6658 OpInfo.ConstraintType = TargetLowering::C_Memory; 6659 6660 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6661 std::vector<SDValue> Ops; 6662 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6663 Ops, DAG); 6664 if (Ops.empty()) { 6665 LLVMContext &Ctx = *DAG.getContext(); 6666 Ctx.emitError(CS.getInstruction(), 6667 "invalid operand for inline asm constraint '" + 6668 Twine(OpInfo.ConstraintCode) + "'"); 6669 return; 6670 } 6671 6672 // Add information to the INLINEASM node to know about this input. 6673 unsigned ResOpType = 6674 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6675 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6676 TLI.getPointerTy())); 6677 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6678 break; 6679 } 6680 6681 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6682 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6683 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6684 "Memory operands expect pointer values"); 6685 6686 // Add information to the INLINEASM node to know about this input. 6687 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6688 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6689 TLI.getPointerTy())); 6690 AsmNodeOperands.push_back(InOperandVal); 6691 break; 6692 } 6693 6694 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6695 OpInfo.ConstraintType == TargetLowering::C_Register) && 6696 "Unknown constraint type!"); 6697 6698 // TODO: Support this. 6699 if (OpInfo.isIndirect) { 6700 LLVMContext &Ctx = *DAG.getContext(); 6701 Ctx.emitError(CS.getInstruction(), 6702 "Don't know how to handle indirect register inputs yet " 6703 "for constraint '" + 6704 Twine(OpInfo.ConstraintCode) + "'"); 6705 return; 6706 } 6707 6708 // Copy the input into the appropriate registers. 6709 if (OpInfo.AssignedRegs.Regs.empty()) { 6710 LLVMContext &Ctx = *DAG.getContext(); 6711 Ctx.emitError(CS.getInstruction(), 6712 "couldn't allocate input reg for constraint '" + 6713 Twine(OpInfo.ConstraintCode) + "'"); 6714 return; 6715 } 6716 6717 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6718 Chain, &Flag, CS.getInstruction()); 6719 6720 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6721 DAG, AsmNodeOperands); 6722 break; 6723 } 6724 case InlineAsm::isClobber: { 6725 // Add the clobbered value to the operand list, so that the register 6726 // allocator is aware that the physreg got clobbered. 6727 if (!OpInfo.AssignedRegs.Regs.empty()) 6728 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6729 false, 0, DAG, 6730 AsmNodeOperands); 6731 break; 6732 } 6733 } 6734 } 6735 6736 // Finish up input operands. Set the input chain and add the flag last. 6737 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6738 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6739 6740 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6741 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6742 Flag = Chain.getValue(1); 6743 6744 // If this asm returns a register value, copy the result from that register 6745 // and set it as the value of the call. 6746 if (!RetValRegs.Regs.empty()) { 6747 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6748 Chain, &Flag, CS.getInstruction()); 6749 6750 // FIXME: Why don't we do this for inline asms with MRVs? 6751 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6752 EVT ResultType = TLI.getValueType(CS.getType()); 6753 6754 // If any of the results of the inline asm is a vector, it may have the 6755 // wrong width/num elts. This can happen for register classes that can 6756 // contain multiple different value types. The preg or vreg allocated may 6757 // not have the same VT as was expected. Convert it to the right type 6758 // with bit_convert. 6759 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6760 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6761 ResultType, Val); 6762 6763 } else if (ResultType != Val.getValueType() && 6764 ResultType.isInteger() && Val.getValueType().isInteger()) { 6765 // If a result value was tied to an input value, the computed result may 6766 // have a wider width than the expected result. Extract the relevant 6767 // portion. 6768 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6769 } 6770 6771 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6772 } 6773 6774 setValue(CS.getInstruction(), Val); 6775 // Don't need to use this as a chain in this case. 6776 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6777 return; 6778 } 6779 6780 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6781 6782 // Process indirect outputs, first output all of the flagged copies out of 6783 // physregs. 6784 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6785 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6786 const Value *Ptr = IndirectStoresToEmit[i].second; 6787 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6788 Chain, &Flag, IA); 6789 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6790 } 6791 6792 // Emit the non-flagged stores from the physregs. 6793 SmallVector<SDValue, 8> OutChains; 6794 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6795 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6796 StoresToEmit[i].first, 6797 getValue(StoresToEmit[i].second), 6798 MachinePointerInfo(StoresToEmit[i].second), 6799 false, false, 0); 6800 OutChains.push_back(Val); 6801 } 6802 6803 if (!OutChains.empty()) 6804 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6805 6806 DAG.setRoot(Chain); 6807 } 6808 6809 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6810 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6811 MVT::Other, getRoot(), 6812 getValue(I.getArgOperand(0)), 6813 DAG.getSrcValue(I.getArgOperand(0)))); 6814 } 6815 6816 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6818 const DataLayout &DL = *TLI.getDataLayout(); 6819 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6820 getRoot(), getValue(I.getOperand(0)), 6821 DAG.getSrcValue(I.getOperand(0)), 6822 DL.getABITypeAlignment(I.getType())); 6823 setValue(&I, V); 6824 DAG.setRoot(V.getValue(1)); 6825 } 6826 6827 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6828 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6829 MVT::Other, getRoot(), 6830 getValue(I.getArgOperand(0)), 6831 DAG.getSrcValue(I.getArgOperand(0)))); 6832 } 6833 6834 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6835 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6836 MVT::Other, getRoot(), 6837 getValue(I.getArgOperand(0)), 6838 getValue(I.getArgOperand(1)), 6839 DAG.getSrcValue(I.getArgOperand(0)), 6840 DAG.getSrcValue(I.getArgOperand(1)))); 6841 } 6842 6843 /// \brief Lower an argument list according to the target calling convention. 6844 /// 6845 /// \return A tuple of <return-value, token-chain> 6846 /// 6847 /// This is a helper for lowering intrinsics that follow a target calling 6848 /// convention or require stack pointer adjustment. Only a subset of the 6849 /// intrinsic's operands need to participate in the calling convention. 6850 std::pair<SDValue, SDValue> 6851 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6852 unsigned NumArgs, SDValue Callee, 6853 bool UseVoidTy, 6854 MachineBasicBlock *LandingPad) { 6855 TargetLowering::ArgListTy Args; 6856 Args.reserve(NumArgs); 6857 6858 // Populate the argument list. 6859 // Attributes for args start at offset 1, after the return attribute. 6860 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6861 ArgI != ArgE; ++ArgI) { 6862 const Value *V = CS->getOperand(ArgI); 6863 6864 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6865 6866 TargetLowering::ArgListEntry Entry; 6867 Entry.Node = getValue(V); 6868 Entry.Ty = V->getType(); 6869 Entry.setAttributes(&CS, AttrI); 6870 Args.push_back(Entry); 6871 } 6872 6873 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6874 TargetLowering::CallLoweringInfo CLI(DAG); 6875 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6876 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6877 .setDiscardResult(CS->use_empty()); 6878 6879 return lowerInvokable(CLI, LandingPad); 6880 } 6881 6882 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6883 /// or patchpoint target node's operand list. 6884 /// 6885 /// Constants are converted to TargetConstants purely as an optimization to 6886 /// avoid constant materialization and register allocation. 6887 /// 6888 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6889 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6890 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6891 /// address materialization and register allocation, but may also be required 6892 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6893 /// alloca in the entry block, then the runtime may assume that the alloca's 6894 /// StackMap location can be read immediately after compilation and that the 6895 /// location is valid at any point during execution (this is similar to the 6896 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6897 /// only available in a register, then the runtime would need to trap when 6898 /// execution reaches the StackMap in order to read the alloca's location. 6899 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6900 SmallVectorImpl<SDValue> &Ops, 6901 SelectionDAGBuilder &Builder) { 6902 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6903 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6904 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6905 Ops.push_back( 6906 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6907 Ops.push_back( 6908 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6909 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6910 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6911 Ops.push_back( 6912 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6913 } else 6914 Ops.push_back(OpVal); 6915 } 6916 } 6917 6918 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6919 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6920 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6921 // [live variables...]) 6922 6923 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6924 6925 SDValue Chain, InFlag, Callee, NullPtr; 6926 SmallVector<SDValue, 32> Ops; 6927 6928 SDLoc DL = getCurSDLoc(); 6929 Callee = getValue(CI.getCalledValue()); 6930 NullPtr = DAG.getIntPtrConstant(0, true); 6931 6932 // The stackmap intrinsic only records the live variables (the arguemnts 6933 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6934 // intrinsic, this won't be lowered to a function call. This means we don't 6935 // have to worry about calling conventions and target specific lowering code. 6936 // Instead we perform the call lowering right here. 6937 // 6938 // chain, flag = CALLSEQ_START(chain, 0) 6939 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6940 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6941 // 6942 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6943 InFlag = Chain.getValue(1); 6944 6945 // Add the <id> and <numBytes> constants. 6946 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6947 Ops.push_back(DAG.getTargetConstant( 6948 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6949 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6950 Ops.push_back(DAG.getTargetConstant( 6951 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6952 6953 // Push live variables for the stack map. 6954 addStackMapLiveVars(&CI, 2, Ops, *this); 6955 6956 // We are not pushing any register mask info here on the operands list, 6957 // because the stackmap doesn't clobber anything. 6958 6959 // Push the chain and the glue flag. 6960 Ops.push_back(Chain); 6961 Ops.push_back(InFlag); 6962 6963 // Create the STACKMAP node. 6964 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6965 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6966 Chain = SDValue(SM, 0); 6967 InFlag = Chain.getValue(1); 6968 6969 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6970 6971 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6972 6973 // Set the root to the target-lowered call chain. 6974 DAG.setRoot(Chain); 6975 6976 // Inform the Frame Information that we have a stackmap in this function. 6977 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6978 } 6979 6980 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6981 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6982 MachineBasicBlock *LandingPad) { 6983 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6984 // i32 <numBytes>, 6985 // i8* <target>, 6986 // i32 <numArgs>, 6987 // [Args...], 6988 // [live variables...]) 6989 6990 CallingConv::ID CC = CS.getCallingConv(); 6991 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6992 bool HasDef = !CS->getType()->isVoidTy(); 6993 SDValue Callee = getValue(CS->getOperand(2)); // <target> 6994 6995 // Get the real number of arguments participating in the call <numArgs> 6996 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6997 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6998 6999 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7000 // Intrinsics include all meta-operands up to but not including CC. 7001 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7002 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7003 "Not enough arguments provided to the patchpoint intrinsic"); 7004 7005 // For AnyRegCC the arguments are lowered later on manually. 7006 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7007 std::pair<SDValue, SDValue> Result = 7008 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7009 LandingPad); 7010 7011 SDNode *CallEnd = Result.second.getNode(); 7012 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7013 CallEnd = CallEnd->getOperand(0).getNode(); 7014 7015 /// Get a call instruction from the call sequence chain. 7016 /// Tail calls are not allowed. 7017 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7018 "Expected a callseq node."); 7019 SDNode *Call = CallEnd->getOperand(0).getNode(); 7020 bool HasGlue = Call->getGluedNode(); 7021 7022 // Replace the target specific call node with the patchable intrinsic. 7023 SmallVector<SDValue, 8> Ops; 7024 7025 // Add the <id> and <numBytes> constants. 7026 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7027 Ops.push_back(DAG.getTargetConstant( 7028 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7029 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7030 Ops.push_back(DAG.getTargetConstant( 7031 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7032 7033 // Assume that the Callee is a constant address. 7034 // FIXME: handle function symbols in the future. 7035 Ops.push_back( 7036 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7037 /*isTarget=*/true)); 7038 7039 // Adjust <numArgs> to account for any arguments that have been passed on the 7040 // stack instead. 7041 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7042 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7043 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7044 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7045 7046 // Add the calling convention 7047 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7048 7049 // Add the arguments we omitted previously. The register allocator should 7050 // place these in any free register. 7051 if (IsAnyRegCC) 7052 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7053 Ops.push_back(getValue(CS.getArgument(i))); 7054 7055 // Push the arguments from the call instruction up to the register mask. 7056 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7057 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7058 Ops.push_back(*i); 7059 7060 // Push live variables for the stack map. 7061 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7062 7063 // Push the register mask info. 7064 if (HasGlue) 7065 Ops.push_back(*(Call->op_end()-2)); 7066 else 7067 Ops.push_back(*(Call->op_end()-1)); 7068 7069 // Push the chain (this is originally the first operand of the call, but 7070 // becomes now the last or second to last operand). 7071 Ops.push_back(*(Call->op_begin())); 7072 7073 // Push the glue flag (last operand). 7074 if (HasGlue) 7075 Ops.push_back(*(Call->op_end()-1)); 7076 7077 SDVTList NodeTys; 7078 if (IsAnyRegCC && HasDef) { 7079 // Create the return types based on the intrinsic definition 7080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7081 SmallVector<EVT, 3> ValueVTs; 7082 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7083 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7084 7085 // There is always a chain and a glue type at the end 7086 ValueVTs.push_back(MVT::Other); 7087 ValueVTs.push_back(MVT::Glue); 7088 NodeTys = DAG.getVTList(ValueVTs); 7089 } else 7090 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7091 7092 // Replace the target specific call node with a PATCHPOINT node. 7093 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7094 getCurSDLoc(), NodeTys, Ops); 7095 7096 // Update the NodeMap. 7097 if (HasDef) { 7098 if (IsAnyRegCC) 7099 setValue(CS.getInstruction(), SDValue(MN, 0)); 7100 else 7101 setValue(CS.getInstruction(), Result.first); 7102 } 7103 7104 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7105 // call sequence. Furthermore the location of the chain and glue can change 7106 // when the AnyReg calling convention is used and the intrinsic returns a 7107 // value. 7108 if (IsAnyRegCC && HasDef) { 7109 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7110 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7111 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7112 } else 7113 DAG.ReplaceAllUsesWith(Call, MN); 7114 DAG.DeleteNode(Call); 7115 7116 // Inform the Frame Information that we have a patchpoint in this function. 7117 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7118 } 7119 7120 /// Returns an AttributeSet representing the attributes applied to the return 7121 /// value of the given call. 7122 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7123 SmallVector<Attribute::AttrKind, 2> Attrs; 7124 if (CLI.RetSExt) 7125 Attrs.push_back(Attribute::SExt); 7126 if (CLI.RetZExt) 7127 Attrs.push_back(Attribute::ZExt); 7128 if (CLI.IsInReg) 7129 Attrs.push_back(Attribute::InReg); 7130 7131 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7132 Attrs); 7133 } 7134 7135 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7136 /// implementation, which just calls LowerCall. 7137 /// FIXME: When all targets are 7138 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7139 std::pair<SDValue, SDValue> 7140 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7141 // Handle the incoming return values from the call. 7142 CLI.Ins.clear(); 7143 Type *OrigRetTy = CLI.RetTy; 7144 SmallVector<EVT, 4> RetTys; 7145 SmallVector<uint64_t, 4> Offsets; 7146 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7147 7148 SmallVector<ISD::OutputArg, 4> Outs; 7149 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7150 7151 bool CanLowerReturn = 7152 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7153 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7154 7155 SDValue DemoteStackSlot; 7156 int DemoteStackIdx = -100; 7157 if (!CanLowerReturn) { 7158 // FIXME: equivalent assert? 7159 // assert(!CS.hasInAllocaArgument() && 7160 // "sret demotion is incompatible with inalloca"); 7161 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7162 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7163 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7164 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7165 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7166 7167 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7168 ArgListEntry Entry; 7169 Entry.Node = DemoteStackSlot; 7170 Entry.Ty = StackSlotPtrType; 7171 Entry.isSExt = false; 7172 Entry.isZExt = false; 7173 Entry.isInReg = false; 7174 Entry.isSRet = true; 7175 Entry.isNest = false; 7176 Entry.isByVal = false; 7177 Entry.isReturned = false; 7178 Entry.Alignment = Align; 7179 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7180 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7181 } else { 7182 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7183 EVT VT = RetTys[I]; 7184 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7185 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7186 for (unsigned i = 0; i != NumRegs; ++i) { 7187 ISD::InputArg MyFlags; 7188 MyFlags.VT = RegisterVT; 7189 MyFlags.ArgVT = VT; 7190 MyFlags.Used = CLI.IsReturnValueUsed; 7191 if (CLI.RetSExt) 7192 MyFlags.Flags.setSExt(); 7193 if (CLI.RetZExt) 7194 MyFlags.Flags.setZExt(); 7195 if (CLI.IsInReg) 7196 MyFlags.Flags.setInReg(); 7197 CLI.Ins.push_back(MyFlags); 7198 } 7199 } 7200 } 7201 7202 // Handle all of the outgoing arguments. 7203 CLI.Outs.clear(); 7204 CLI.OutVals.clear(); 7205 ArgListTy &Args = CLI.getArgs(); 7206 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7207 SmallVector<EVT, 4> ValueVTs; 7208 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7209 Type *FinalType = Args[i].Ty; 7210 if (Args[i].isByVal) 7211 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7212 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7213 FinalType, CLI.CallConv, CLI.IsVarArg); 7214 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7215 ++Value) { 7216 EVT VT = ValueVTs[Value]; 7217 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7218 SDValue Op = SDValue(Args[i].Node.getNode(), 7219 Args[i].Node.getResNo() + Value); 7220 ISD::ArgFlagsTy Flags; 7221 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7222 7223 if (Args[i].isZExt) 7224 Flags.setZExt(); 7225 if (Args[i].isSExt) 7226 Flags.setSExt(); 7227 if (Args[i].isInReg) 7228 Flags.setInReg(); 7229 if (Args[i].isSRet) 7230 Flags.setSRet(); 7231 if (Args[i].isByVal) 7232 Flags.setByVal(); 7233 if (Args[i].isInAlloca) { 7234 Flags.setInAlloca(); 7235 // Set the byval flag for CCAssignFn callbacks that don't know about 7236 // inalloca. This way we can know how many bytes we should've allocated 7237 // and how many bytes a callee cleanup function will pop. If we port 7238 // inalloca to more targets, we'll have to add custom inalloca handling 7239 // in the various CC lowering callbacks. 7240 Flags.setByVal(); 7241 } 7242 if (Args[i].isByVal || Args[i].isInAlloca) { 7243 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7244 Type *ElementTy = Ty->getElementType(); 7245 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7246 // For ByVal, alignment should come from FE. BE will guess if this 7247 // info is not there but there are cases it cannot get right. 7248 unsigned FrameAlign; 7249 if (Args[i].Alignment) 7250 FrameAlign = Args[i].Alignment; 7251 else 7252 FrameAlign = getByValTypeAlignment(ElementTy); 7253 Flags.setByValAlign(FrameAlign); 7254 } 7255 if (Args[i].isNest) 7256 Flags.setNest(); 7257 if (NeedsRegBlock) { 7258 Flags.setInConsecutiveRegs(); 7259 if (Value == NumValues - 1) 7260 Flags.setInConsecutiveRegsLast(); 7261 } 7262 Flags.setOrigAlign(OriginalAlignment); 7263 7264 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7265 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7266 SmallVector<SDValue, 4> Parts(NumParts); 7267 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7268 7269 if (Args[i].isSExt) 7270 ExtendKind = ISD::SIGN_EXTEND; 7271 else if (Args[i].isZExt) 7272 ExtendKind = ISD::ZERO_EXTEND; 7273 7274 // Conservatively only handle 'returned' on non-vectors for now 7275 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7276 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7277 "unexpected use of 'returned'"); 7278 // Before passing 'returned' to the target lowering code, ensure that 7279 // either the register MVT and the actual EVT are the same size or that 7280 // the return value and argument are extended in the same way; in these 7281 // cases it's safe to pass the argument register value unchanged as the 7282 // return register value (although it's at the target's option whether 7283 // to do so) 7284 // TODO: allow code generation to take advantage of partially preserved 7285 // registers rather than clobbering the entire register when the 7286 // parameter extension method is not compatible with the return 7287 // extension method 7288 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7289 (ExtendKind != ISD::ANY_EXTEND && 7290 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7291 Flags.setReturned(); 7292 } 7293 7294 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7295 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7296 7297 for (unsigned j = 0; j != NumParts; ++j) { 7298 // if it isn't first piece, alignment must be 1 7299 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7300 i < CLI.NumFixedArgs, 7301 i, j*Parts[j].getValueType().getStoreSize()); 7302 if (NumParts > 1 && j == 0) 7303 MyFlags.Flags.setSplit(); 7304 else if (j != 0) 7305 MyFlags.Flags.setOrigAlign(1); 7306 7307 CLI.Outs.push_back(MyFlags); 7308 CLI.OutVals.push_back(Parts[j]); 7309 } 7310 } 7311 } 7312 7313 SmallVector<SDValue, 4> InVals; 7314 CLI.Chain = LowerCall(CLI, InVals); 7315 7316 // Verify that the target's LowerCall behaved as expected. 7317 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7318 "LowerCall didn't return a valid chain!"); 7319 assert((!CLI.IsTailCall || InVals.empty()) && 7320 "LowerCall emitted a return value for a tail call!"); 7321 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7322 "LowerCall didn't emit the correct number of values!"); 7323 7324 // For a tail call, the return value is merely live-out and there aren't 7325 // any nodes in the DAG representing it. Return a special value to 7326 // indicate that a tail call has been emitted and no more Instructions 7327 // should be processed in the current block. 7328 if (CLI.IsTailCall) { 7329 CLI.DAG.setRoot(CLI.Chain); 7330 return std::make_pair(SDValue(), SDValue()); 7331 } 7332 7333 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7334 assert(InVals[i].getNode() && 7335 "LowerCall emitted a null value!"); 7336 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7337 "LowerCall emitted a value with the wrong type!"); 7338 }); 7339 7340 SmallVector<SDValue, 4> ReturnValues; 7341 if (!CanLowerReturn) { 7342 // The instruction result is the result of loading from the 7343 // hidden sret parameter. 7344 SmallVector<EVT, 1> PVTs; 7345 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7346 7347 ComputeValueVTs(*this, PtrRetTy, PVTs); 7348 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7349 EVT PtrVT = PVTs[0]; 7350 7351 unsigned NumValues = RetTys.size(); 7352 ReturnValues.resize(NumValues); 7353 SmallVector<SDValue, 4> Chains(NumValues); 7354 7355 for (unsigned i = 0; i < NumValues; ++i) { 7356 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7357 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7358 SDValue L = CLI.DAG.getLoad( 7359 RetTys[i], CLI.DL, CLI.Chain, Add, 7360 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7361 false, false, 1); 7362 ReturnValues[i] = L; 7363 Chains[i] = L.getValue(1); 7364 } 7365 7366 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7367 } else { 7368 // Collect the legal value parts into potentially illegal values 7369 // that correspond to the original function's return values. 7370 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7371 if (CLI.RetSExt) 7372 AssertOp = ISD::AssertSext; 7373 else if (CLI.RetZExt) 7374 AssertOp = ISD::AssertZext; 7375 unsigned CurReg = 0; 7376 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7377 EVT VT = RetTys[I]; 7378 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7379 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7380 7381 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7382 NumRegs, RegisterVT, VT, nullptr, 7383 AssertOp)); 7384 CurReg += NumRegs; 7385 } 7386 7387 // For a function returning void, there is no return value. We can't create 7388 // such a node, so we just return a null return value in that case. In 7389 // that case, nothing will actually look at the value. 7390 if (ReturnValues.empty()) 7391 return std::make_pair(SDValue(), CLI.Chain); 7392 } 7393 7394 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7395 CLI.DAG.getVTList(RetTys), ReturnValues); 7396 return std::make_pair(Res, CLI.Chain); 7397 } 7398 7399 void TargetLowering::LowerOperationWrapper(SDNode *N, 7400 SmallVectorImpl<SDValue> &Results, 7401 SelectionDAG &DAG) const { 7402 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7403 if (Res.getNode()) 7404 Results.push_back(Res); 7405 } 7406 7407 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7408 llvm_unreachable("LowerOperation not implemented for this target!"); 7409 } 7410 7411 void 7412 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7413 SDValue Op = getNonRegisterValue(V); 7414 assert((Op.getOpcode() != ISD::CopyFromReg || 7415 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7416 "Copy from a reg to the same reg!"); 7417 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7418 7419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7420 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7421 SDValue Chain = DAG.getEntryNode(); 7422 7423 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7424 FuncInfo.PreferredExtendType.end()) 7425 ? ISD::ANY_EXTEND 7426 : FuncInfo.PreferredExtendType[V]; 7427 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7428 PendingExports.push_back(Chain); 7429 } 7430 7431 #include "llvm/CodeGen/SelectionDAGISel.h" 7432 7433 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7434 /// entry block, return true. This includes arguments used by switches, since 7435 /// the switch may expand into multiple basic blocks. 7436 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7437 // With FastISel active, we may be splitting blocks, so force creation 7438 // of virtual registers for all non-dead arguments. 7439 if (FastISel) 7440 return A->use_empty(); 7441 7442 const BasicBlock *Entry = A->getParent()->begin(); 7443 for (const User *U : A->users()) 7444 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7445 return false; // Use not in entry block. 7446 7447 return true; 7448 } 7449 7450 void SelectionDAGISel::LowerArguments(const Function &F) { 7451 SelectionDAG &DAG = SDB->DAG; 7452 SDLoc dl = SDB->getCurSDLoc(); 7453 const DataLayout *DL = TLI->getDataLayout(); 7454 SmallVector<ISD::InputArg, 16> Ins; 7455 7456 if (!FuncInfo->CanLowerReturn) { 7457 // Put in an sret pointer parameter before all the other parameters. 7458 SmallVector<EVT, 1> ValueVTs; 7459 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7460 7461 // NOTE: Assuming that a pointer will never break down to more than one VT 7462 // or one register. 7463 ISD::ArgFlagsTy Flags; 7464 Flags.setSRet(); 7465 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7466 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7467 Ins.push_back(RetArg); 7468 } 7469 7470 // Set up the incoming argument description vector. 7471 unsigned Idx = 1; 7472 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7473 I != E; ++I, ++Idx) { 7474 SmallVector<EVT, 4> ValueVTs; 7475 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7476 bool isArgValueUsed = !I->use_empty(); 7477 unsigned PartBase = 0; 7478 Type *FinalType = I->getType(); 7479 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7480 FinalType = cast<PointerType>(FinalType)->getElementType(); 7481 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7482 FinalType, F.getCallingConv(), F.isVarArg()); 7483 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7484 Value != NumValues; ++Value) { 7485 EVT VT = ValueVTs[Value]; 7486 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7487 ISD::ArgFlagsTy Flags; 7488 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7489 7490 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7491 Flags.setZExt(); 7492 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7493 Flags.setSExt(); 7494 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7495 Flags.setInReg(); 7496 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7497 Flags.setSRet(); 7498 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7499 Flags.setByVal(); 7500 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7501 Flags.setInAlloca(); 7502 // Set the byval flag for CCAssignFn callbacks that don't know about 7503 // inalloca. This way we can know how many bytes we should've allocated 7504 // and how many bytes a callee cleanup function will pop. If we port 7505 // inalloca to more targets, we'll have to add custom inalloca handling 7506 // in the various CC lowering callbacks. 7507 Flags.setByVal(); 7508 } 7509 if (Flags.isByVal() || Flags.isInAlloca()) { 7510 PointerType *Ty = cast<PointerType>(I->getType()); 7511 Type *ElementTy = Ty->getElementType(); 7512 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7513 // For ByVal, alignment should be passed from FE. BE will guess if 7514 // this info is not there but there are cases it cannot get right. 7515 unsigned FrameAlign; 7516 if (F.getParamAlignment(Idx)) 7517 FrameAlign = F.getParamAlignment(Idx); 7518 else 7519 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7520 Flags.setByValAlign(FrameAlign); 7521 } 7522 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7523 Flags.setNest(); 7524 if (NeedsRegBlock) { 7525 Flags.setInConsecutiveRegs(); 7526 if (Value == NumValues - 1) 7527 Flags.setInConsecutiveRegsLast(); 7528 } 7529 Flags.setOrigAlign(OriginalAlignment); 7530 7531 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7532 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7533 for (unsigned i = 0; i != NumRegs; ++i) { 7534 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7535 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7536 if (NumRegs > 1 && i == 0) 7537 MyFlags.Flags.setSplit(); 7538 // if it isn't first piece, alignment must be 1 7539 else if (i > 0) 7540 MyFlags.Flags.setOrigAlign(1); 7541 Ins.push_back(MyFlags); 7542 } 7543 PartBase += VT.getStoreSize(); 7544 } 7545 } 7546 7547 // Call the target to set up the argument values. 7548 SmallVector<SDValue, 8> InVals; 7549 SDValue NewRoot = TLI->LowerFormalArguments( 7550 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7551 7552 // Verify that the target's LowerFormalArguments behaved as expected. 7553 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7554 "LowerFormalArguments didn't return a valid chain!"); 7555 assert(InVals.size() == Ins.size() && 7556 "LowerFormalArguments didn't emit the correct number of values!"); 7557 DEBUG({ 7558 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7559 assert(InVals[i].getNode() && 7560 "LowerFormalArguments emitted a null value!"); 7561 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7562 "LowerFormalArguments emitted a value with the wrong type!"); 7563 } 7564 }); 7565 7566 // Update the DAG with the new chain value resulting from argument lowering. 7567 DAG.setRoot(NewRoot); 7568 7569 // Set up the argument values. 7570 unsigned i = 0; 7571 Idx = 1; 7572 if (!FuncInfo->CanLowerReturn) { 7573 // Create a virtual register for the sret pointer, and put in a copy 7574 // from the sret argument into it. 7575 SmallVector<EVT, 1> ValueVTs; 7576 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7577 MVT VT = ValueVTs[0].getSimpleVT(); 7578 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7579 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7580 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7581 RegVT, VT, nullptr, AssertOp); 7582 7583 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7584 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7585 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7586 FuncInfo->DemoteRegister = SRetReg; 7587 NewRoot = 7588 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7589 DAG.setRoot(NewRoot); 7590 7591 // i indexes lowered arguments. Bump it past the hidden sret argument. 7592 // Idx indexes LLVM arguments. Don't touch it. 7593 ++i; 7594 } 7595 7596 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7597 ++I, ++Idx) { 7598 SmallVector<SDValue, 4> ArgValues; 7599 SmallVector<EVT, 4> ValueVTs; 7600 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7601 unsigned NumValues = ValueVTs.size(); 7602 7603 // If this argument is unused then remember its value. It is used to generate 7604 // debugging information. 7605 if (I->use_empty() && NumValues) { 7606 SDB->setUnusedArgValue(I, InVals[i]); 7607 7608 // Also remember any frame index for use in FastISel. 7609 if (FrameIndexSDNode *FI = 7610 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7611 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7612 } 7613 7614 for (unsigned Val = 0; Val != NumValues; ++Val) { 7615 EVT VT = ValueVTs[Val]; 7616 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7617 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7618 7619 if (!I->use_empty()) { 7620 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7621 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7622 AssertOp = ISD::AssertSext; 7623 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7624 AssertOp = ISD::AssertZext; 7625 7626 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7627 NumParts, PartVT, VT, 7628 nullptr, AssertOp)); 7629 } 7630 7631 i += NumParts; 7632 } 7633 7634 // We don't need to do anything else for unused arguments. 7635 if (ArgValues.empty()) 7636 continue; 7637 7638 // Note down frame index. 7639 if (FrameIndexSDNode *FI = 7640 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7641 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7642 7643 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7644 SDB->getCurSDLoc()); 7645 7646 SDB->setValue(I, Res); 7647 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7648 if (LoadSDNode *LNode = 7649 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7650 if (FrameIndexSDNode *FI = 7651 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7652 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7653 } 7654 7655 // If this argument is live outside of the entry block, insert a copy from 7656 // wherever we got it to the vreg that other BB's will reference it as. 7657 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7658 // If we can, though, try to skip creating an unnecessary vreg. 7659 // FIXME: This isn't very clean... it would be nice to make this more 7660 // general. It's also subtly incompatible with the hacks FastISel 7661 // uses with vregs. 7662 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7663 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7664 FuncInfo->ValueMap[I] = Reg; 7665 continue; 7666 } 7667 } 7668 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7669 FuncInfo->InitializeRegForValue(I); 7670 SDB->CopyToExportRegsIfNeeded(I); 7671 } 7672 } 7673 7674 assert(i == InVals.size() && "Argument register count mismatch!"); 7675 7676 // Finally, if the target has anything special to do, allow it to do so. 7677 // FIXME: this should insert code into the DAG! 7678 EmitFunctionEntryCode(); 7679 } 7680 7681 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7682 /// ensure constants are generated when needed. Remember the virtual registers 7683 /// that need to be added to the Machine PHI nodes as input. We cannot just 7684 /// directly add them, because expansion might result in multiple MBB's for one 7685 /// BB. As such, the start of the BB might correspond to a different MBB than 7686 /// the end. 7687 /// 7688 void 7689 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7690 const TerminatorInst *TI = LLVMBB->getTerminator(); 7691 7692 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7693 7694 // Check successor nodes' PHI nodes that expect a constant to be available 7695 // from this block. 7696 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7697 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7698 if (!isa<PHINode>(SuccBB->begin())) continue; 7699 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7700 7701 // If this terminator has multiple identical successors (common for 7702 // switches), only handle each succ once. 7703 if (!SuccsHandled.insert(SuccMBB).second) 7704 continue; 7705 7706 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7707 7708 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7709 // nodes and Machine PHI nodes, but the incoming operands have not been 7710 // emitted yet. 7711 for (BasicBlock::const_iterator I = SuccBB->begin(); 7712 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7713 // Ignore dead phi's. 7714 if (PN->use_empty()) continue; 7715 7716 // Skip empty types 7717 if (PN->getType()->isEmptyTy()) 7718 continue; 7719 7720 unsigned Reg; 7721 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7722 7723 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7724 unsigned &RegOut = ConstantsOut[C]; 7725 if (RegOut == 0) { 7726 RegOut = FuncInfo.CreateRegs(C->getType()); 7727 CopyValueToVirtualRegister(C, RegOut); 7728 } 7729 Reg = RegOut; 7730 } else { 7731 DenseMap<const Value *, unsigned>::iterator I = 7732 FuncInfo.ValueMap.find(PHIOp); 7733 if (I != FuncInfo.ValueMap.end()) 7734 Reg = I->second; 7735 else { 7736 assert(isa<AllocaInst>(PHIOp) && 7737 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7738 "Didn't codegen value into a register!??"); 7739 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7740 CopyValueToVirtualRegister(PHIOp, Reg); 7741 } 7742 } 7743 7744 // Remember that this register needs to added to the machine PHI node as 7745 // the input for this MBB. 7746 SmallVector<EVT, 4> ValueVTs; 7747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7748 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7749 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7750 EVT VT = ValueVTs[vti]; 7751 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7752 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7753 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7754 Reg += NumRegisters; 7755 } 7756 } 7757 } 7758 7759 ConstantsOut.clear(); 7760 } 7761 7762 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7763 /// is 0. 7764 MachineBasicBlock * 7765 SelectionDAGBuilder::StackProtectorDescriptor:: 7766 AddSuccessorMBB(const BasicBlock *BB, 7767 MachineBasicBlock *ParentMBB, 7768 MachineBasicBlock *SuccMBB) { 7769 // If SuccBB has not been created yet, create it. 7770 if (!SuccMBB) { 7771 MachineFunction *MF = ParentMBB->getParent(); 7772 MachineFunction::iterator BBI = ParentMBB; 7773 SuccMBB = MF->CreateMachineBasicBlock(BB); 7774 MF->insert(++BBI, SuccMBB); 7775 } 7776 // Add it as a successor of ParentMBB. 7777 ParentMBB->addSuccessor(SuccMBB); 7778 return SuccMBB; 7779 } 7780