1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 41 #include "llvm/CodeGen/MachineMemOperand.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RuntimeLibcalls.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 48 #include "llvm/CodeGen/StackMaps.h" 49 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 50 #include "llvm/CodeGen/TargetFrameLowering.h" 51 #include "llvm/CodeGen/TargetInstrInfo.h" 52 #include "llvm/CodeGen/TargetOpcodes.h" 53 #include "llvm/CodeGen/TargetRegisterInfo.h" 54 #include "llvm/CodeGen/TargetSubtargetInfo.h" 55 #include "llvm/CodeGen/WinEHFuncInfo.h" 56 #include "llvm/IR/Argument.h" 57 #include "llvm/IR/Attributes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/CFG.h" 60 #include "llvm/IR/CallingConv.h" 61 #include "llvm/IR/Constant.h" 62 #include "llvm/IR/ConstantRange.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/DiagnosticInfo.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GetElementPtrTypeIterator.h" 70 #include "llvm/IR/InlineAsm.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instructions.h" 73 #include "llvm/IR/IntrinsicInst.h" 74 #include "llvm/IR/Intrinsics.h" 75 #include "llvm/IR/IntrinsicsAArch64.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Statepoint.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/Support/AtomicOrdering.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/MathExtras.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Target/TargetIntrinsicInfo.h" 95 #include "llvm/Target/TargetMachine.h" 96 #include "llvm/Target/TargetOptions.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include <cstddef> 99 #include <iterator> 100 #include <limits> 101 #include <tuple> 102 103 using namespace llvm; 104 using namespace PatternMatch; 105 using namespace SwitchCG; 106 107 #define DEBUG_TYPE "isel" 108 109 /// LimitFloatPrecision - Generate low-precision inline sequences for 110 /// some float libcalls (6, 8 or 12 bits). 111 static unsigned LimitFloatPrecision; 112 113 static cl::opt<bool> 114 InsertAssertAlign("insert-assert-align", cl::init(true), 115 cl::desc("Insert the experimental `assertalign` node."), 116 cl::ReallyHidden); 117 118 static cl::opt<unsigned, true> 119 LimitFPPrecision("limit-float-precision", 120 cl::desc("Generate low-precision inline sequences " 121 "for some float libcalls"), 122 cl::location(LimitFloatPrecision), cl::Hidden, 123 cl::init(0)); 124 125 static cl::opt<unsigned> SwitchPeelThreshold( 126 "switch-peel-threshold", cl::Hidden, cl::init(66), 127 cl::desc("Set the case probability threshold for peeling the case from a " 128 "switch statement. A value greater than 100 will void this " 129 "optimization")); 130 131 // Limit the width of DAG chains. This is important in general to prevent 132 // DAG-based analysis from blowing up. For example, alias analysis and 133 // load clustering may not complete in reasonable time. It is difficult to 134 // recognize and avoid this situation within each individual analysis, and 135 // future analyses are likely to have the same behavior. Limiting DAG width is 136 // the safe approach and will be especially important with global DAGs. 137 // 138 // MaxParallelChains default is arbitrarily high to avoid affecting 139 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 140 // sequence over this should have been converted to llvm.memcpy by the 141 // frontend. It is easy to induce this behavior with .ll code such as: 142 // %buffer = alloca [4096 x i8] 143 // %data = load [4096 x i8]* %argPtr 144 // store [4096 x i8] %data, [4096 x i8]* %buffer 145 static const unsigned MaxParallelChains = 64; 146 147 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 148 const SDValue *Parts, unsigned NumParts, 149 MVT PartVT, EVT ValueVT, const Value *V, 150 Optional<CallingConv::ID> CC); 151 152 /// getCopyFromParts - Create a value that contains the specified legal parts 153 /// combined into the value they represent. If the parts combine to a type 154 /// larger than ValueVT then AssertOp can be used to specify whether the extra 155 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 156 /// (ISD::AssertSext). 157 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 158 const SDValue *Parts, unsigned NumParts, 159 MVT PartVT, EVT ValueVT, const Value *V, 160 Optional<CallingConv::ID> CC = None, 161 Optional<ISD::NodeType> AssertOp = None) { 162 // Let the target assemble the parts if it wants to 163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 164 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 165 PartVT, ValueVT, CC)) 166 return Val; 167 168 if (ValueVT.isVector()) 169 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 170 CC); 171 172 assert(NumParts > 0 && "No parts to assemble!"); 173 SDValue Val = Parts[0]; 174 175 if (NumParts > 1) { 176 // Assemble the value from multiple parts. 177 if (ValueVT.isInteger()) { 178 unsigned PartBits = PartVT.getSizeInBits(); 179 unsigned ValueBits = ValueVT.getSizeInBits(); 180 181 // Assemble the power of 2 part. 182 unsigned RoundParts = 183 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 184 unsigned RoundBits = PartBits * RoundParts; 185 EVT RoundVT = RoundBits == ValueBits ? 186 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 187 SDValue Lo, Hi; 188 189 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 190 191 if (RoundParts > 2) { 192 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 193 PartVT, HalfVT, V); 194 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 195 RoundParts / 2, PartVT, HalfVT, V); 196 } else { 197 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 199 } 200 201 if (DAG.getDataLayout().isBigEndian()) 202 std::swap(Lo, Hi); 203 204 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 205 206 if (RoundParts < NumParts) { 207 // Assemble the trailing non-power-of-2 part. 208 unsigned OddParts = NumParts - RoundParts; 209 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 210 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 211 OddVT, V, CC); 212 213 // Combine the round and odd parts. 214 Lo = Val; 215 if (DAG.getDataLayout().isBigEndian()) 216 std::swap(Lo, Hi); 217 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 218 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 219 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 220 DAG.getConstant(Lo.getValueSizeInBits(), DL, 221 TLI.getShiftAmountTy( 222 TotalVT, DAG.getDataLayout()))); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 225 } 226 } else if (PartVT.isFloatingPoint()) { 227 // FP split into multiple FP parts (for ppcf128) 228 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 229 "Unexpected split"); 230 SDValue Lo, Hi; 231 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 232 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 233 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 234 std::swap(Lo, Hi); 235 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 236 } else { 237 // FP split into integer parts (soft fp) 238 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 239 !PartVT.isVector() && "Unexpected split"); 240 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 241 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 242 } 243 } 244 245 // There is now one part, held in Val. Correct it to match ValueVT. 246 // PartEVT is the type of the register class that holds the value. 247 // ValueVT is the type of the inline asm operation. 248 EVT PartEVT = Val.getValueType(); 249 250 if (PartEVT == ValueVT) 251 return Val; 252 253 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 254 ValueVT.bitsLT(PartEVT)) { 255 // For an FP value in an integer part, we need to truncate to the right 256 // width first. 257 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 258 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 259 } 260 261 // Handle types that have the same size. 262 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 263 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 264 265 // Handle types with different sizes. 266 if (PartEVT.isInteger() && ValueVT.isInteger()) { 267 if (ValueVT.bitsLT(PartEVT)) { 268 // For a truncate, see if we have any information to 269 // indicate whether the truncated bits will always be 270 // zero or sign-extension. 271 if (AssertOp.hasValue()) 272 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 273 DAG.getValueType(ValueVT)); 274 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 275 } 276 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 277 } 278 279 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 280 // FP_ROUND's are always exact here. 281 if (ValueVT.bitsLT(Val.getValueType())) 282 return DAG.getNode( 283 ISD::FP_ROUND, DL, ValueVT, Val, 284 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 285 286 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 287 } 288 289 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 290 // then truncating. 291 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 292 ValueVT.bitsLT(PartEVT)) { 293 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 294 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 295 } 296 297 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 298 } 299 300 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 301 const Twine &ErrMsg) { 302 const Instruction *I = dyn_cast_or_null<Instruction>(V); 303 if (!V) 304 return Ctx.emitError(ErrMsg); 305 306 const char *AsmError = ", possible invalid constraint for vector type"; 307 if (const CallInst *CI = dyn_cast<CallInst>(I)) 308 if (CI->isInlineAsm()) 309 return Ctx.emitError(I, ErrMsg + AsmError); 310 311 return Ctx.emitError(I, ErrMsg); 312 } 313 314 /// getCopyFromPartsVector - Create a value that contains the specified legal 315 /// parts combined into the value they represent. If the parts combine to a 316 /// type larger than ValueVT then AssertOp can be used to specify whether the 317 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 318 /// ValueVT (ISD::AssertSext). 319 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 320 const SDValue *Parts, unsigned NumParts, 321 MVT PartVT, EVT ValueVT, const Value *V, 322 Optional<CallingConv::ID> CallConv) { 323 assert(ValueVT.isVector() && "Not a vector value"); 324 assert(NumParts > 0 && "No parts to assemble!"); 325 const bool IsABIRegCopy = CallConv.hasValue(); 326 327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 328 SDValue Val = Parts[0]; 329 330 // Handle a multi-element vector. 331 if (NumParts > 1) { 332 EVT IntermediateVT; 333 MVT RegisterVT; 334 unsigned NumIntermediates; 335 unsigned NumRegs; 336 337 if (IsABIRegCopy) { 338 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 339 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 340 NumIntermediates, RegisterVT); 341 } else { 342 NumRegs = 343 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } 346 347 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 348 NumParts = NumRegs; // Silence a compiler warning. 349 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 350 assert(RegisterVT.getSizeInBits() == 351 Parts[0].getSimpleValueType().getSizeInBits() && 352 "Part type sizes don't match!"); 353 354 // Assemble the parts into intermediate operands. 355 SmallVector<SDValue, 8> Ops(NumIntermediates); 356 if (NumIntermediates == NumParts) { 357 // If the register was not expanded, truncate or copy the value, 358 // as appropriate. 359 for (unsigned i = 0; i != NumParts; ++i) 360 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 361 PartVT, IntermediateVT, V, CallConv); 362 } else if (NumParts > 0) { 363 // If the intermediate type was expanded, build the intermediate 364 // operands from the parts. 365 assert(NumParts % NumIntermediates == 0 && 366 "Must expand into a divisible number of parts!"); 367 unsigned Factor = NumParts / NumIntermediates; 368 for (unsigned i = 0; i != NumIntermediates; ++i) 369 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 370 PartVT, IntermediateVT, V, CallConv); 371 } 372 373 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 374 // intermediate operands. 375 EVT BuiltVectorTy = 376 IntermediateVT.isVector() 377 ? EVT::getVectorVT( 378 *DAG.getContext(), IntermediateVT.getScalarType(), 379 IntermediateVT.getVectorElementCount() * NumParts) 380 : EVT::getVectorVT(*DAG.getContext(), 381 IntermediateVT.getScalarType(), 382 NumIntermediates); 383 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 384 : ISD::BUILD_VECTOR, 385 DL, BuiltVectorTy, Ops); 386 } 387 388 // There is now one part, held in Val. Correct it to match ValueVT. 389 EVT PartEVT = Val.getValueType(); 390 391 if (PartEVT == ValueVT) 392 return Val; 393 394 if (PartEVT.isVector()) { 395 // Vector/Vector bitcast. 396 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 397 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 398 399 // If the element type of the source/dest vectors are the same, but the 400 // parts vector has more elements than the value vector, then we have a 401 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 402 // elements we want. 403 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 404 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 405 ValueVT.getVectorElementCount().getKnownMinValue()) && 406 (PartEVT.getVectorElementCount().isScalable() == 407 ValueVT.getVectorElementCount().isScalable()) && 408 "Cannot narrow, it would be a lossy transformation"); 409 PartEVT = 410 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 411 ValueVT.getVectorElementCount()); 412 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 if (PartEVT == ValueVT) 415 return Val; 416 } 417 418 // Promoted vector extract 419 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 420 } 421 422 // Trivial bitcast if the types are the same size and the destination 423 // vector type is legal. 424 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 425 TLI.isTypeLegal(ValueVT)) 426 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 427 428 if (ValueVT.getVectorNumElements() != 1) { 429 // Certain ABIs require that vectors are passed as integers. For vectors 430 // are the same size, this is an obvious bitcast. 431 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 432 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 433 } else if (ValueVT.bitsLT(PartEVT)) { 434 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 435 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 436 // Drop the extra bits. 437 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 438 return DAG.getBitcast(ValueVT, Val); 439 } 440 441 diagnosePossiblyInvalidConstraint( 442 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 443 return DAG.getUNDEF(ValueVT); 444 } 445 446 // Handle cases such as i8 -> <1 x i1> 447 EVT ValueSVT = ValueVT.getVectorElementType(); 448 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 449 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 450 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 451 else 452 Val = ValueVT.isFloatingPoint() 453 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 454 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 455 } 456 457 return DAG.getBuildVector(ValueVT, DL, Val); 458 } 459 460 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 461 SDValue Val, SDValue *Parts, unsigned NumParts, 462 MVT PartVT, const Value *V, 463 Optional<CallingConv::ID> CallConv); 464 465 /// getCopyToParts - Create a series of nodes that contain the specified value 466 /// split into legal parts. If the parts contain more bits than Val, then, for 467 /// integers, ExtendKind can be used to specify how to generate the extra bits. 468 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 469 SDValue *Parts, unsigned NumParts, MVT PartVT, 470 const Value *V, 471 Optional<CallingConv::ID> CallConv = None, 472 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 473 // Let the target split the parts if it wants to 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 476 CallConv)) 477 return; 478 EVT ValueVT = Val.getValueType(); 479 480 // Handle the vector case separately. 481 if (ValueVT.isVector()) 482 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 483 CallConv); 484 485 unsigned PartBits = PartVT.getSizeInBits(); 486 unsigned OrigNumParts = NumParts; 487 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 488 "Copying to an illegal type!"); 489 490 if (NumParts == 0) 491 return; 492 493 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 494 EVT PartEVT = PartVT; 495 if (PartEVT == ValueVT) { 496 assert(NumParts == 1 && "No-op copy with multiple parts!"); 497 Parts[0] = Val; 498 return; 499 } 500 501 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 502 // If the parts cover more bits than the value has, promote the value. 503 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 504 assert(NumParts == 1 && "Do not know what to promote to!"); 505 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 506 } else { 507 if (ValueVT.isFloatingPoint()) { 508 // FP values need to be bitcast, then extended if they are being put 509 // into a larger container. 510 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 511 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 512 } 513 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 514 ValueVT.isInteger() && 515 "Unknown mismatch!"); 516 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 517 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 518 if (PartVT == MVT::x86mmx) 519 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 520 } 521 } else if (PartBits == ValueVT.getSizeInBits()) { 522 // Different types of the same size. 523 assert(NumParts == 1 && PartEVT != ValueVT); 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 526 // If the parts cover less bits than value has, truncate the value. 527 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 528 ValueVT.isInteger() && 529 "Unknown mismatch!"); 530 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 531 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 532 if (PartVT == MVT::x86mmx) 533 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 534 } 535 536 // The value may have changed - recompute ValueVT. 537 ValueVT = Val.getValueType(); 538 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 539 "Failed to tile the value with PartVT!"); 540 541 if (NumParts == 1) { 542 if (PartEVT != ValueVT) { 543 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 544 "scalar-to-vector conversion failed"); 545 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 546 } 547 548 Parts[0] = Val; 549 return; 550 } 551 552 // Expand the value into multiple parts. 553 if (NumParts & (NumParts - 1)) { 554 // The number of parts is not a power of 2. Split off and copy the tail. 555 assert(PartVT.isInteger() && ValueVT.isInteger() && 556 "Do not know what to expand to!"); 557 unsigned RoundParts = 1 << Log2_32(NumParts); 558 unsigned RoundBits = RoundParts * PartBits; 559 unsigned OddParts = NumParts - RoundParts; 560 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 561 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 562 563 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 564 CallConv); 565 566 if (DAG.getDataLayout().isBigEndian()) 567 // The odd parts were reversed by getCopyToParts - unreverse them. 568 std::reverse(Parts + RoundParts, Parts + NumParts); 569 570 NumParts = RoundParts; 571 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 572 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 573 } 574 575 // The number of parts is a power of 2. Repeatedly bisect the value using 576 // EXTRACT_ELEMENT. 577 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 578 EVT::getIntegerVT(*DAG.getContext(), 579 ValueVT.getSizeInBits()), 580 Val); 581 582 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 583 for (unsigned i = 0; i < NumParts; i += StepSize) { 584 unsigned ThisBits = StepSize * PartBits / 2; 585 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 586 SDValue &Part0 = Parts[i]; 587 SDValue &Part1 = Parts[i+StepSize/2]; 588 589 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 590 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 591 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 592 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 593 594 if (ThisBits == PartBits && ThisVT != PartVT) { 595 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 596 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 597 } 598 } 599 } 600 601 if (DAG.getDataLayout().isBigEndian()) 602 std::reverse(Parts, Parts + OrigNumParts); 603 } 604 605 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 606 const SDLoc &DL, EVT PartVT) { 607 if (!PartVT.isVector()) 608 return SDValue(); 609 610 EVT ValueVT = Val.getValueType(); 611 ElementCount PartNumElts = PartVT.getVectorElementCount(); 612 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 613 614 // We only support widening vectors with equivalent element types and 615 // fixed/scalable properties. If a target needs to widen a fixed-length type 616 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 617 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 618 PartNumElts.isScalable() != ValueNumElts.isScalable() || 619 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 620 return SDValue(); 621 622 // Widening a scalable vector to another scalable vector is done by inserting 623 // the vector into a larger undef one. 624 if (PartNumElts.isScalable()) 625 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 626 Val, DAG.getVectorIdxConstant(0, DL)); 627 628 EVT ElementVT = PartVT.getVectorElementType(); 629 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 630 // undef elements. 631 SmallVector<SDValue, 16> Ops; 632 DAG.ExtractVectorElements(Val, Ops); 633 SDValue EltUndef = DAG.getUNDEF(ElementVT); 634 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 635 636 // FIXME: Use CONCAT for 2x -> 4x. 637 return DAG.getBuildVector(PartVT, DL, Ops); 638 } 639 640 /// getCopyToPartsVector - Create a series of nodes that contain the specified 641 /// value split into legal parts. 642 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 643 SDValue Val, SDValue *Parts, unsigned NumParts, 644 MVT PartVT, const Value *V, 645 Optional<CallingConv::ID> CallConv) { 646 EVT ValueVT = Val.getValueType(); 647 assert(ValueVT.isVector() && "Not a vector"); 648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 649 const bool IsABIRegCopy = CallConv.hasValue(); 650 651 if (NumParts == 1) { 652 EVT PartEVT = PartVT; 653 if (PartEVT == ValueVT) { 654 // Nothing to do. 655 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 656 // Bitconvert vector->vector case. 657 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 658 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 659 Val = Widened; 660 } else if (PartVT.isVector() && 661 PartEVT.getVectorElementType().bitsGE( 662 ValueVT.getVectorElementType()) && 663 PartEVT.getVectorElementCount() == 664 ValueVT.getVectorElementCount()) { 665 666 // Promoted vector extract 667 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 668 } else if (PartEVT.isVector() && 669 PartEVT.getVectorElementType() != 670 ValueVT.getVectorElementType() && 671 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 672 TargetLowering::TypeWidenVector) { 673 // Combination of widening and promotion. 674 EVT WidenVT = 675 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 676 PartVT.getVectorElementCount()); 677 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 678 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 679 } else { 680 if (ValueVT.getVectorElementCount().isScalar()) { 681 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 682 DAG.getVectorIdxConstant(0, DL)); 683 } else { 684 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 685 assert(PartVT.getFixedSizeInBits() > ValueSize && 686 "lossy conversion of vector to scalar type"); 687 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 688 Val = DAG.getBitcast(IntermediateType, Val); 689 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 690 } 691 } 692 693 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 694 Parts[0] = Val; 695 return; 696 } 697 698 // Handle a multi-element vector. 699 EVT IntermediateVT; 700 MVT RegisterVT; 701 unsigned NumIntermediates; 702 unsigned NumRegs; 703 if (IsABIRegCopy) { 704 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 705 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 706 NumIntermediates, RegisterVT); 707 } else { 708 NumRegs = 709 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 710 NumIntermediates, RegisterVT); 711 } 712 713 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 714 NumParts = NumRegs; // Silence a compiler warning. 715 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 716 717 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 718 "Mixing scalable and fixed vectors when copying in parts"); 719 720 Optional<ElementCount> DestEltCnt; 721 722 if (IntermediateVT.isVector()) 723 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 724 else 725 DestEltCnt = ElementCount::getFixed(NumIntermediates); 726 727 EVT BuiltVectorTy = EVT::getVectorVT( 728 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 729 730 if (ValueVT == BuiltVectorTy) { 731 // Nothing to do. 732 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 733 // Bitconvert vector->vector case. 734 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 735 } else { 736 if (BuiltVectorTy.getVectorElementType().bitsGT( 737 ValueVT.getVectorElementType())) { 738 // Integer promotion. 739 ValueVT = EVT::getVectorVT(*DAG.getContext(), 740 BuiltVectorTy.getVectorElementType(), 741 ValueVT.getVectorElementCount()); 742 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 743 } 744 745 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 746 Val = Widened; 747 } 748 } 749 750 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 751 752 // Split the vector into intermediate operands. 753 SmallVector<SDValue, 8> Ops(NumIntermediates); 754 for (unsigned i = 0; i != NumIntermediates; ++i) { 755 if (IntermediateVT.isVector()) { 756 // This does something sensible for scalable vectors - see the 757 // definition of EXTRACT_SUBVECTOR for further details. 758 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 759 Ops[i] = 760 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 761 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 762 } else { 763 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 764 DAG.getVectorIdxConstant(i, DL)); 765 } 766 } 767 768 // Split the intermediate operands into legal parts. 769 if (NumParts == NumIntermediates) { 770 // If the register was not expanded, promote or copy the value, 771 // as appropriate. 772 for (unsigned i = 0; i != NumParts; ++i) 773 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 774 } else if (NumParts > 0) { 775 // If the intermediate type was expanded, split each the value into 776 // legal parts. 777 assert(NumIntermediates != 0 && "division by zero"); 778 assert(NumParts % NumIntermediates == 0 && 779 "Must expand into a divisible number of parts!"); 780 unsigned Factor = NumParts / NumIntermediates; 781 for (unsigned i = 0; i != NumIntermediates; ++i) 782 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 783 CallConv); 784 } 785 } 786 787 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 788 EVT valuevt, Optional<CallingConv::ID> CC) 789 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 790 RegCount(1, regs.size()), CallConv(CC) {} 791 792 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 793 const DataLayout &DL, unsigned Reg, Type *Ty, 794 Optional<CallingConv::ID> CC) { 795 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 796 797 CallConv = CC; 798 799 for (EVT ValueVT : ValueVTs) { 800 unsigned NumRegs = 801 isABIMangled() 802 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 803 : TLI.getNumRegisters(Context, ValueVT); 804 MVT RegisterVT = 805 isABIMangled() 806 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 807 : TLI.getRegisterType(Context, ValueVT); 808 for (unsigned i = 0; i != NumRegs; ++i) 809 Regs.push_back(Reg + i); 810 RegVTs.push_back(RegisterVT); 811 RegCount.push_back(NumRegs); 812 Reg += NumRegs; 813 } 814 } 815 816 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 817 FunctionLoweringInfo &FuncInfo, 818 const SDLoc &dl, SDValue &Chain, 819 SDValue *Flag, const Value *V) const { 820 // A Value with type {} or [0 x %t] needs no registers. 821 if (ValueVTs.empty()) 822 return SDValue(); 823 824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 825 826 // Assemble the legal parts into the final values. 827 SmallVector<SDValue, 4> Values(ValueVTs.size()); 828 SmallVector<SDValue, 8> Parts; 829 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 830 // Copy the legal parts from the registers. 831 EVT ValueVT = ValueVTs[Value]; 832 unsigned NumRegs = RegCount[Value]; 833 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 834 *DAG.getContext(), 835 CallConv.getValue(), RegVTs[Value]) 836 : RegVTs[Value]; 837 838 Parts.resize(NumRegs); 839 for (unsigned i = 0; i != NumRegs; ++i) { 840 SDValue P; 841 if (!Flag) { 842 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 843 } else { 844 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 845 *Flag = P.getValue(2); 846 } 847 848 Chain = P.getValue(1); 849 Parts[i] = P; 850 851 // If the source register was virtual and if we know something about it, 852 // add an assert node. 853 if (!Register::isVirtualRegister(Regs[Part + i]) || 854 !RegisterVT.isInteger()) 855 continue; 856 857 const FunctionLoweringInfo::LiveOutInfo *LOI = 858 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 859 if (!LOI) 860 continue; 861 862 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 863 unsigned NumSignBits = LOI->NumSignBits; 864 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 865 866 if (NumZeroBits == RegSize) { 867 // The current value is a zero. 868 // Explicitly express that as it would be easier for 869 // optimizations to kick in. 870 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 871 continue; 872 } 873 874 // FIXME: We capture more information than the dag can represent. For 875 // now, just use the tightest assertzext/assertsext possible. 876 bool isSExt; 877 EVT FromVT(MVT::Other); 878 if (NumZeroBits) { 879 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 880 isSExt = false; 881 } else if (NumSignBits > 1) { 882 FromVT = 883 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 884 isSExt = true; 885 } else { 886 continue; 887 } 888 // Add an assertion node. 889 assert(FromVT != MVT::Other); 890 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 891 RegisterVT, P, DAG.getValueType(FromVT)); 892 } 893 894 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 895 RegisterVT, ValueVT, V, CallConv); 896 Part += NumRegs; 897 Parts.clear(); 898 } 899 900 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 901 } 902 903 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 904 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 905 const Value *V, 906 ISD::NodeType PreferredExtendType) const { 907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 908 ISD::NodeType ExtendKind = PreferredExtendType; 909 910 // Get the list of the values's legal parts. 911 unsigned NumRegs = Regs.size(); 912 SmallVector<SDValue, 8> Parts(NumRegs); 913 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 914 unsigned NumParts = RegCount[Value]; 915 916 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 917 *DAG.getContext(), 918 CallConv.getValue(), RegVTs[Value]) 919 : RegVTs[Value]; 920 921 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 922 ExtendKind = ISD::ZERO_EXTEND; 923 924 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 925 NumParts, RegisterVT, V, CallConv, ExtendKind); 926 Part += NumParts; 927 } 928 929 // Copy the parts into the registers. 930 SmallVector<SDValue, 8> Chains(NumRegs); 931 for (unsigned i = 0; i != NumRegs; ++i) { 932 SDValue Part; 933 if (!Flag) { 934 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 935 } else { 936 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 937 *Flag = Part.getValue(1); 938 } 939 940 Chains[i] = Part.getValue(0); 941 } 942 943 if (NumRegs == 1 || Flag) 944 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 945 // flagged to it. That is the CopyToReg nodes and the user are considered 946 // a single scheduling unit. If we create a TokenFactor and return it as 947 // chain, then the TokenFactor is both a predecessor (operand) of the 948 // user as well as a successor (the TF operands are flagged to the user). 949 // c1, f1 = CopyToReg 950 // c2, f2 = CopyToReg 951 // c3 = TokenFactor c1, c2 952 // ... 953 // = op c3, ..., f2 954 Chain = Chains[NumRegs-1]; 955 else 956 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 957 } 958 959 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 960 unsigned MatchingIdx, const SDLoc &dl, 961 SelectionDAG &DAG, 962 std::vector<SDValue> &Ops) const { 963 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 964 965 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 966 if (HasMatching) 967 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 968 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 969 // Put the register class of the virtual registers in the flag word. That 970 // way, later passes can recompute register class constraints for inline 971 // assembly as well as normal instructions. 972 // Don't do this for tied operands that can use the regclass information 973 // from the def. 974 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 975 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 976 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 977 } 978 979 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 980 Ops.push_back(Res); 981 982 if (Code == InlineAsm::Kind_Clobber) { 983 // Clobbers should always have a 1:1 mapping with registers, and may 984 // reference registers that have illegal (e.g. vector) types. Hence, we 985 // shouldn't try to apply any sort of splitting logic to them. 986 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 987 "No 1:1 mapping from clobbers to regs?"); 988 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 989 (void)SP; 990 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 991 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 992 assert( 993 (Regs[I] != SP || 994 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 995 "If we clobbered the stack pointer, MFI should know about it."); 996 } 997 return; 998 } 999 1000 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1001 MVT RegisterVT = RegVTs[Value]; 1002 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1003 RegisterVT); 1004 for (unsigned i = 0; i != NumRegs; ++i) { 1005 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1006 unsigned TheReg = Regs[Reg++]; 1007 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1008 } 1009 } 1010 } 1011 1012 SmallVector<std::pair<unsigned, TypeSize>, 4> 1013 RegsForValue::getRegsAndSizes() const { 1014 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1015 unsigned I = 0; 1016 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1017 unsigned RegCount = std::get<0>(CountAndVT); 1018 MVT RegisterVT = std::get<1>(CountAndVT); 1019 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1020 for (unsigned E = I + RegCount; I != E; ++I) 1021 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1022 } 1023 return OutVec; 1024 } 1025 1026 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1027 const TargetLibraryInfo *li) { 1028 AA = aa; 1029 GFI = gfi; 1030 LibInfo = li; 1031 Context = DAG.getContext(); 1032 LPadToCallSiteMap.clear(); 1033 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1034 } 1035 1036 void SelectionDAGBuilder::clear() { 1037 NodeMap.clear(); 1038 UnusedArgNodeMap.clear(); 1039 PendingLoads.clear(); 1040 PendingExports.clear(); 1041 PendingConstrainedFP.clear(); 1042 PendingConstrainedFPStrict.clear(); 1043 CurInst = nullptr; 1044 HasTailCall = false; 1045 SDNodeOrder = LowestSDNodeOrder; 1046 StatepointLowering.clear(); 1047 } 1048 1049 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1050 DanglingDebugInfoMap.clear(); 1051 } 1052 1053 // Update DAG root to include dependencies on Pending chains. 1054 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1055 SDValue Root = DAG.getRoot(); 1056 1057 if (Pending.empty()) 1058 return Root; 1059 1060 // Add current root to PendingChains, unless we already indirectly 1061 // depend on it. 1062 if (Root.getOpcode() != ISD::EntryToken) { 1063 unsigned i = 0, e = Pending.size(); 1064 for (; i != e; ++i) { 1065 assert(Pending[i].getNode()->getNumOperands() > 1); 1066 if (Pending[i].getNode()->getOperand(0) == Root) 1067 break; // Don't add the root if we already indirectly depend on it. 1068 } 1069 1070 if (i == e) 1071 Pending.push_back(Root); 1072 } 1073 1074 if (Pending.size() == 1) 1075 Root = Pending[0]; 1076 else 1077 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1078 1079 DAG.setRoot(Root); 1080 Pending.clear(); 1081 return Root; 1082 } 1083 1084 SDValue SelectionDAGBuilder::getMemoryRoot() { 1085 return updateRoot(PendingLoads); 1086 } 1087 1088 SDValue SelectionDAGBuilder::getRoot() { 1089 // Chain up all pending constrained intrinsics together with all 1090 // pending loads, by simply appending them to PendingLoads and 1091 // then calling getMemoryRoot(). 1092 PendingLoads.reserve(PendingLoads.size() + 1093 PendingConstrainedFP.size() + 1094 PendingConstrainedFPStrict.size()); 1095 PendingLoads.append(PendingConstrainedFP.begin(), 1096 PendingConstrainedFP.end()); 1097 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1098 PendingConstrainedFPStrict.end()); 1099 PendingConstrainedFP.clear(); 1100 PendingConstrainedFPStrict.clear(); 1101 return getMemoryRoot(); 1102 } 1103 1104 SDValue SelectionDAGBuilder::getControlRoot() { 1105 // We need to emit pending fpexcept.strict constrained intrinsics, 1106 // so append them to the PendingExports list. 1107 PendingExports.append(PendingConstrainedFPStrict.begin(), 1108 PendingConstrainedFPStrict.end()); 1109 PendingConstrainedFPStrict.clear(); 1110 return updateRoot(PendingExports); 1111 } 1112 1113 void SelectionDAGBuilder::visit(const Instruction &I) { 1114 // Set up outgoing PHI node register values before emitting the terminator. 1115 if (I.isTerminator()) { 1116 HandlePHINodesInSuccessorBlocks(I.getParent()); 1117 } 1118 1119 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1120 if (!isa<DbgInfoIntrinsic>(I)) 1121 ++SDNodeOrder; 1122 1123 CurInst = &I; 1124 1125 visit(I.getOpcode(), I); 1126 1127 if (!I.isTerminator() && !HasTailCall && 1128 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1129 CopyToExportRegsIfNeeded(&I); 1130 1131 CurInst = nullptr; 1132 } 1133 1134 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1135 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1136 } 1137 1138 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1139 // Note: this doesn't use InstVisitor, because it has to work with 1140 // ConstantExpr's in addition to instructions. 1141 switch (Opcode) { 1142 default: llvm_unreachable("Unknown instruction type encountered!"); 1143 // Build the switch statement using the Instruction.def file. 1144 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1145 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1146 #include "llvm/IR/Instruction.def" 1147 } 1148 } 1149 1150 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1151 DebugLoc DL, unsigned Order) { 1152 // We treat variadic dbg_values differently at this stage. 1153 if (DI->hasArgList()) { 1154 // For variadic dbg_values we will now insert an undef. 1155 // FIXME: We can potentially recover these! 1156 SmallVector<SDDbgOperand, 2> Locs; 1157 for (const Value *V : DI->getValues()) { 1158 auto Undef = UndefValue::get(V->getType()); 1159 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1160 } 1161 SDDbgValue *SDV = DAG.getDbgValueList( 1162 DI->getVariable(), DI->getExpression(), Locs, {}, 1163 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1164 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1165 } else { 1166 // TODO: Dangling debug info will eventually either be resolved or produce 1167 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1168 // between the original dbg.value location and its resolved DBG_VALUE, 1169 // which we should ideally fill with an extra Undef DBG_VALUE. 1170 assert(DI->getNumVariableLocationOps() == 1 && 1171 "DbgValueInst without an ArgList should have a single location " 1172 "operand."); 1173 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1174 } 1175 } 1176 1177 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1178 const DIExpression *Expr) { 1179 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1180 const DbgValueInst *DI = DDI.getDI(); 1181 DIVariable *DanglingVariable = DI->getVariable(); 1182 DIExpression *DanglingExpr = DI->getExpression(); 1183 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1184 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1185 return true; 1186 } 1187 return false; 1188 }; 1189 1190 for (auto &DDIMI : DanglingDebugInfoMap) { 1191 DanglingDebugInfoVector &DDIV = DDIMI.second; 1192 1193 // If debug info is to be dropped, run it through final checks to see 1194 // whether it can be salvaged. 1195 for (auto &DDI : DDIV) 1196 if (isMatchingDbgValue(DDI)) 1197 salvageUnresolvedDbgValue(DDI); 1198 1199 erase_if(DDIV, isMatchingDbgValue); 1200 } 1201 } 1202 1203 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1204 // generate the debug data structures now that we've seen its definition. 1205 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1206 SDValue Val) { 1207 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1208 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1209 return; 1210 1211 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1212 for (auto &DDI : DDIV) { 1213 const DbgValueInst *DI = DDI.getDI(); 1214 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1215 assert(DI && "Ill-formed DanglingDebugInfo"); 1216 DebugLoc dl = DDI.getdl(); 1217 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1218 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1219 DILocalVariable *Variable = DI->getVariable(); 1220 DIExpression *Expr = DI->getExpression(); 1221 assert(Variable->isValidLocationForIntrinsic(dl) && 1222 "Expected inlined-at fields to agree"); 1223 SDDbgValue *SDV; 1224 if (Val.getNode()) { 1225 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1226 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1227 // we couldn't resolve it directly when examining the DbgValue intrinsic 1228 // in the first place we should not be more successful here). Unless we 1229 // have some test case that prove this to be correct we should avoid 1230 // calling EmitFuncArgumentDbgValue here. 1231 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1232 FuncArgumentDbgValueKind::Value, Val)) { 1233 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1234 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1235 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1236 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1237 // inserted after the definition of Val when emitting the instructions 1238 // after ISel. An alternative could be to teach 1239 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1240 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1241 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1242 << ValSDNodeOrder << "\n"); 1243 SDV = getDbgValue(Val, Variable, Expr, dl, 1244 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1245 DAG.AddDbgValue(SDV, false); 1246 } else 1247 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1248 << "in EmitFuncArgumentDbgValue\n"); 1249 } else { 1250 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1251 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1252 auto SDV = 1253 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1254 DAG.AddDbgValue(SDV, false); 1255 } 1256 } 1257 DDIV.clear(); 1258 } 1259 1260 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1261 // TODO: For the variadic implementation, instead of only checking the fail 1262 // state of `handleDebugValue`, we need know specifically which values were 1263 // invalid, so that we attempt to salvage only those values when processing 1264 // a DIArgList. 1265 assert(!DDI.getDI()->hasArgList() && 1266 "Not implemented for variadic dbg_values"); 1267 Value *V = DDI.getDI()->getValue(0); 1268 DILocalVariable *Var = DDI.getDI()->getVariable(); 1269 DIExpression *Expr = DDI.getDI()->getExpression(); 1270 DebugLoc DL = DDI.getdl(); 1271 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1272 unsigned SDOrder = DDI.getSDNodeOrder(); 1273 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1274 // that DW_OP_stack_value is desired. 1275 assert(isa<DbgValueInst>(DDI.getDI())); 1276 bool StackValue = true; 1277 1278 // Can this Value can be encoded without any further work? 1279 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1280 return; 1281 1282 // Attempt to salvage back through as many instructions as possible. Bail if 1283 // a non-instruction is seen, such as a constant expression or global 1284 // variable. FIXME: Further work could recover those too. 1285 while (isa<Instruction>(V)) { 1286 Instruction &VAsInst = *cast<Instruction>(V); 1287 // Temporary "0", awaiting real implementation. 1288 SmallVector<uint64_t, 16> Ops; 1289 SmallVector<Value *, 4> AdditionalValues; 1290 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1291 AdditionalValues); 1292 // If we cannot salvage any further, and haven't yet found a suitable debug 1293 // expression, bail out. 1294 if (!V) 1295 break; 1296 1297 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1298 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1299 // here for variadic dbg_values, remove that condition. 1300 if (!AdditionalValues.empty()) 1301 break; 1302 1303 // New value and expr now represent this debuginfo. 1304 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1305 1306 // Some kind of simplification occurred: check whether the operand of the 1307 // salvaged debug expression can be encoded in this DAG. 1308 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1309 /*IsVariadic=*/false)) { 1310 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1311 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1312 return; 1313 } 1314 } 1315 1316 // This was the final opportunity to salvage this debug information, and it 1317 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1318 // any earlier variable location. 1319 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1320 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1321 DAG.AddDbgValue(SDV, false); 1322 1323 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1324 << "\n"); 1325 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1326 << "\n"); 1327 } 1328 1329 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1330 DILocalVariable *Var, 1331 DIExpression *Expr, DebugLoc dl, 1332 DebugLoc InstDL, unsigned Order, 1333 bool IsVariadic) { 1334 if (Values.empty()) 1335 return true; 1336 SmallVector<SDDbgOperand> LocationOps; 1337 SmallVector<SDNode *> Dependencies; 1338 for (const Value *V : Values) { 1339 // Constant value. 1340 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1341 isa<ConstantPointerNull>(V)) { 1342 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1343 continue; 1344 } 1345 1346 // If the Value is a frame index, we can create a FrameIndex debug value 1347 // without relying on the DAG at all. 1348 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1349 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1350 if (SI != FuncInfo.StaticAllocaMap.end()) { 1351 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1352 continue; 1353 } 1354 } 1355 1356 // Do not use getValue() in here; we don't want to generate code at 1357 // this point if it hasn't been done yet. 1358 SDValue N = NodeMap[V]; 1359 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1360 N = UnusedArgNodeMap[V]; 1361 if (N.getNode()) { 1362 // Only emit func arg dbg value for non-variadic dbg.values for now. 1363 if (!IsVariadic && 1364 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1365 FuncArgumentDbgValueKind::Value, N)) 1366 return true; 1367 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1368 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1369 // describe stack slot locations. 1370 // 1371 // Consider "int x = 0; int *px = &x;". There are two kinds of 1372 // interesting debug values here after optimization: 1373 // 1374 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1375 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1376 // 1377 // Both describe the direct values of their associated variables. 1378 Dependencies.push_back(N.getNode()); 1379 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1380 continue; 1381 } 1382 LocationOps.emplace_back( 1383 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1384 continue; 1385 } 1386 1387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1388 // Special rules apply for the first dbg.values of parameter variables in a 1389 // function. Identify them by the fact they reference Argument Values, that 1390 // they're parameters, and they are parameters of the current function. We 1391 // need to let them dangle until they get an SDNode. 1392 bool IsParamOfFunc = 1393 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1394 if (IsParamOfFunc) 1395 return false; 1396 1397 // The value is not used in this block yet (or it would have an SDNode). 1398 // We still want the value to appear for the user if possible -- if it has 1399 // an associated VReg, we can refer to that instead. 1400 auto VMI = FuncInfo.ValueMap.find(V); 1401 if (VMI != FuncInfo.ValueMap.end()) { 1402 unsigned Reg = VMI->second; 1403 // If this is a PHI node, it may be split up into several MI PHI nodes 1404 // (in FunctionLoweringInfo::set). 1405 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1406 V->getType(), None); 1407 if (RFV.occupiesMultipleRegs()) { 1408 // FIXME: We could potentially support variadic dbg_values here. 1409 if (IsVariadic) 1410 return false; 1411 unsigned Offset = 0; 1412 unsigned BitsToDescribe = 0; 1413 if (auto VarSize = Var->getSizeInBits()) 1414 BitsToDescribe = *VarSize; 1415 if (auto Fragment = Expr->getFragmentInfo()) 1416 BitsToDescribe = Fragment->SizeInBits; 1417 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1418 // Bail out if all bits are described already. 1419 if (Offset >= BitsToDescribe) 1420 break; 1421 // TODO: handle scalable vectors. 1422 unsigned RegisterSize = RegAndSize.second; 1423 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1424 ? BitsToDescribe - Offset 1425 : RegisterSize; 1426 auto FragmentExpr = DIExpression::createFragmentExpression( 1427 Expr, Offset, FragmentSize); 1428 if (!FragmentExpr) 1429 continue; 1430 SDDbgValue *SDV = DAG.getVRegDbgValue( 1431 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1432 DAG.AddDbgValue(SDV, false); 1433 Offset += RegisterSize; 1434 } 1435 return true; 1436 } 1437 // We can use simple vreg locations for variadic dbg_values as well. 1438 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1439 continue; 1440 } 1441 // We failed to create a SDDbgOperand for V. 1442 return false; 1443 } 1444 1445 // We have created a SDDbgOperand for each Value in Values. 1446 // Should use Order instead of SDNodeOrder? 1447 assert(!LocationOps.empty()); 1448 SDDbgValue *SDV = 1449 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1450 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1451 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1452 return true; 1453 } 1454 1455 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1456 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1457 for (auto &Pair : DanglingDebugInfoMap) 1458 for (auto &DDI : Pair.second) 1459 salvageUnresolvedDbgValue(DDI); 1460 clearDanglingDebugInfo(); 1461 } 1462 1463 /// getCopyFromRegs - If there was virtual register allocated for the value V 1464 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1465 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1466 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1467 SDValue Result; 1468 1469 if (It != FuncInfo.ValueMap.end()) { 1470 Register InReg = It->second; 1471 1472 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1473 DAG.getDataLayout(), InReg, Ty, 1474 None); // This is not an ABI copy. 1475 SDValue Chain = DAG.getEntryNode(); 1476 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1477 V); 1478 resolveDanglingDebugInfo(V, Result); 1479 } 1480 1481 return Result; 1482 } 1483 1484 /// getValue - Return an SDValue for the given Value. 1485 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1486 // If we already have an SDValue for this value, use it. It's important 1487 // to do this first, so that we don't create a CopyFromReg if we already 1488 // have a regular SDValue. 1489 SDValue &N = NodeMap[V]; 1490 if (N.getNode()) return N; 1491 1492 // If there's a virtual register allocated and initialized for this 1493 // value, use it. 1494 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1495 return copyFromReg; 1496 1497 // Otherwise create a new SDValue and remember it. 1498 SDValue Val = getValueImpl(V); 1499 NodeMap[V] = Val; 1500 resolveDanglingDebugInfo(V, Val); 1501 return Val; 1502 } 1503 1504 /// getNonRegisterValue - Return an SDValue for the given Value, but 1505 /// don't look in FuncInfo.ValueMap for a virtual register. 1506 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1507 // If we already have an SDValue for this value, use it. 1508 SDValue &N = NodeMap[V]; 1509 if (N.getNode()) { 1510 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1511 // Remove the debug location from the node as the node is about to be used 1512 // in a location which may differ from the original debug location. This 1513 // is relevant to Constant and ConstantFP nodes because they can appear 1514 // as constant expressions inside PHI nodes. 1515 N->setDebugLoc(DebugLoc()); 1516 } 1517 return N; 1518 } 1519 1520 // Otherwise create a new SDValue and remember it. 1521 SDValue Val = getValueImpl(V); 1522 NodeMap[V] = Val; 1523 resolveDanglingDebugInfo(V, Val); 1524 return Val; 1525 } 1526 1527 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1528 /// Create an SDValue for the given value. 1529 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1531 1532 if (const Constant *C = dyn_cast<Constant>(V)) { 1533 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1534 1535 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1536 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1537 1538 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1539 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1540 1541 if (isa<ConstantPointerNull>(C)) { 1542 unsigned AS = V->getType()->getPointerAddressSpace(); 1543 return DAG.getConstant(0, getCurSDLoc(), 1544 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1545 } 1546 1547 if (match(C, m_VScale(DAG.getDataLayout()))) 1548 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1549 1550 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1551 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1552 1553 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1554 return DAG.getUNDEF(VT); 1555 1556 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1557 visit(CE->getOpcode(), *CE); 1558 SDValue N1 = NodeMap[V]; 1559 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1560 return N1; 1561 } 1562 1563 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1564 SmallVector<SDValue, 4> Constants; 1565 for (const Use &U : C->operands()) { 1566 SDNode *Val = getValue(U).getNode(); 1567 // If the operand is an empty aggregate, there are no values. 1568 if (!Val) continue; 1569 // Add each leaf value from the operand to the Constants list 1570 // to form a flattened list of all the values. 1571 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1572 Constants.push_back(SDValue(Val, i)); 1573 } 1574 1575 return DAG.getMergeValues(Constants, getCurSDLoc()); 1576 } 1577 1578 if (const ConstantDataSequential *CDS = 1579 dyn_cast<ConstantDataSequential>(C)) { 1580 SmallVector<SDValue, 4> Ops; 1581 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1582 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1583 // Add each leaf value from the operand to the Constants list 1584 // to form a flattened list of all the values. 1585 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1586 Ops.push_back(SDValue(Val, i)); 1587 } 1588 1589 if (isa<ArrayType>(CDS->getType())) 1590 return DAG.getMergeValues(Ops, getCurSDLoc()); 1591 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1592 } 1593 1594 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1595 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1596 "Unknown struct or array constant!"); 1597 1598 SmallVector<EVT, 4> ValueVTs; 1599 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1600 unsigned NumElts = ValueVTs.size(); 1601 if (NumElts == 0) 1602 return SDValue(); // empty struct 1603 SmallVector<SDValue, 4> Constants(NumElts); 1604 for (unsigned i = 0; i != NumElts; ++i) { 1605 EVT EltVT = ValueVTs[i]; 1606 if (isa<UndefValue>(C)) 1607 Constants[i] = DAG.getUNDEF(EltVT); 1608 else if (EltVT.isFloatingPoint()) 1609 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1610 else 1611 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1612 } 1613 1614 return DAG.getMergeValues(Constants, getCurSDLoc()); 1615 } 1616 1617 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1618 return DAG.getBlockAddress(BA, VT); 1619 1620 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1621 return getValue(Equiv->getGlobalValue()); 1622 1623 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1624 return getValue(NC->getGlobalValue()); 1625 1626 VectorType *VecTy = cast<VectorType>(V->getType()); 1627 1628 // Now that we know the number and type of the elements, get that number of 1629 // elements into the Ops array based on what kind of constant it is. 1630 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1631 SmallVector<SDValue, 16> Ops; 1632 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1633 for (unsigned i = 0; i != NumElements; ++i) 1634 Ops.push_back(getValue(CV->getOperand(i))); 1635 1636 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1637 } 1638 1639 if (isa<ConstantAggregateZero>(C)) { 1640 EVT EltVT = 1641 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1642 1643 SDValue Op; 1644 if (EltVT.isFloatingPoint()) 1645 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1646 else 1647 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1648 1649 if (isa<ScalableVectorType>(VecTy)) 1650 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1651 1652 SmallVector<SDValue, 16> Ops; 1653 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1654 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1655 } 1656 1657 llvm_unreachable("Unknown vector constant"); 1658 } 1659 1660 // If this is a static alloca, generate it as the frameindex instead of 1661 // computation. 1662 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1663 DenseMap<const AllocaInst*, int>::iterator SI = 1664 FuncInfo.StaticAllocaMap.find(AI); 1665 if (SI != FuncInfo.StaticAllocaMap.end()) 1666 return DAG.getFrameIndex(SI->second, 1667 TLI.getFrameIndexTy(DAG.getDataLayout())); 1668 } 1669 1670 // If this is an instruction which fast-isel has deferred, select it now. 1671 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1672 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1673 1674 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1675 Inst->getType(), None); 1676 SDValue Chain = DAG.getEntryNode(); 1677 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1678 } 1679 1680 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1681 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1682 1683 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1684 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1685 1686 llvm_unreachable("Can't get register for value!"); 1687 } 1688 1689 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1690 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1691 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1692 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1693 bool IsSEH = isAsynchronousEHPersonality(Pers); 1694 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1695 if (!IsSEH) 1696 CatchPadMBB->setIsEHScopeEntry(); 1697 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1698 if (IsMSVCCXX || IsCoreCLR) 1699 CatchPadMBB->setIsEHFuncletEntry(); 1700 } 1701 1702 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1703 // Update machine-CFG edge. 1704 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1705 FuncInfo.MBB->addSuccessor(TargetMBB); 1706 TargetMBB->setIsEHCatchretTarget(true); 1707 DAG.getMachineFunction().setHasEHCatchret(true); 1708 1709 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1710 bool IsSEH = isAsynchronousEHPersonality(Pers); 1711 if (IsSEH) { 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1715 TM.getOptLevel() == CodeGenOpt::None) 1716 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1717 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1718 return; 1719 } 1720 1721 // Figure out the funclet membership for the catchret's successor. 1722 // This will be used by the FuncletLayout pass to determine how to order the 1723 // BB's. 1724 // A 'catchret' returns to the outer scope's color. 1725 Value *ParentPad = I.getCatchSwitchParentPad(); 1726 const BasicBlock *SuccessorColor; 1727 if (isa<ConstantTokenNone>(ParentPad)) 1728 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1729 else 1730 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1731 assert(SuccessorColor && "No parent funclet for catchret!"); 1732 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1733 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1734 1735 // Create the terminator node. 1736 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1737 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1738 DAG.getBasicBlock(SuccessorColorMBB)); 1739 DAG.setRoot(Ret); 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1743 // Don't emit any special code for the cleanuppad instruction. It just marks 1744 // the start of an EH scope/funclet. 1745 FuncInfo.MBB->setIsEHScopeEntry(); 1746 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1747 if (Pers != EHPersonality::Wasm_CXX) { 1748 FuncInfo.MBB->setIsEHFuncletEntry(); 1749 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1750 } 1751 } 1752 1753 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1754 // not match, it is OK to add only the first unwind destination catchpad to the 1755 // successors, because there will be at least one invoke instruction within the 1756 // catch scope that points to the next unwind destination, if one exists, so 1757 // CFGSort cannot mess up with BB sorting order. 1758 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1759 // call within them, and catchpads only consisting of 'catch (...)' have a 1760 // '__cxa_end_catch' call within them, both of which generate invokes in case 1761 // the next unwind destination exists, i.e., the next unwind destination is not 1762 // the caller.) 1763 // 1764 // Having at most one EH pad successor is also simpler and helps later 1765 // transformations. 1766 // 1767 // For example, 1768 // current: 1769 // invoke void @foo to ... unwind label %catch.dispatch 1770 // catch.dispatch: 1771 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1772 // catch.start: 1773 // ... 1774 // ... in this BB or some other child BB dominated by this BB there will be an 1775 // invoke that points to 'next' BB as an unwind destination 1776 // 1777 // next: ; We don't need to add this to 'current' BB's successor 1778 // ... 1779 static void findWasmUnwindDestinations( 1780 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1781 BranchProbability Prob, 1782 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1783 &UnwindDests) { 1784 while (EHPadBB) { 1785 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1786 if (isa<CleanupPadInst>(Pad)) { 1787 // Stop on cleanup pads. 1788 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1789 UnwindDests.back().first->setIsEHScopeEntry(); 1790 break; 1791 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1792 // Add the catchpad handlers to the possible destinations. We don't 1793 // continue to the unwind destination of the catchswitch for wasm. 1794 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1795 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1796 UnwindDests.back().first->setIsEHScopeEntry(); 1797 } 1798 break; 1799 } else { 1800 continue; 1801 } 1802 } 1803 } 1804 1805 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1806 /// many places it could ultimately go. In the IR, we have a single unwind 1807 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1808 /// This function skips over imaginary basic blocks that hold catchswitch 1809 /// instructions, and finds all the "real" machine 1810 /// basic block destinations. As those destinations may not be successors of 1811 /// EHPadBB, here we also calculate the edge probability to those destinations. 1812 /// The passed-in Prob is the edge probability to EHPadBB. 1813 static void findUnwindDestinations( 1814 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1815 BranchProbability Prob, 1816 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1817 &UnwindDests) { 1818 EHPersonality Personality = 1819 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1821 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1822 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1823 bool IsSEH = isAsynchronousEHPersonality(Personality); 1824 1825 if (IsWasmCXX) { 1826 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1827 assert(UnwindDests.size() <= 1 && 1828 "There should be at most one unwind destination for wasm"); 1829 return; 1830 } 1831 1832 while (EHPadBB) { 1833 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1834 BasicBlock *NewEHPadBB = nullptr; 1835 if (isa<LandingPadInst>(Pad)) { 1836 // Stop on landingpads. They are not funclets. 1837 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1838 break; 1839 } else if (isa<CleanupPadInst>(Pad)) { 1840 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1841 // personalities. 1842 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1843 UnwindDests.back().first->setIsEHScopeEntry(); 1844 UnwindDests.back().first->setIsEHFuncletEntry(); 1845 break; 1846 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1847 // Add the catchpad handlers to the possible destinations. 1848 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1849 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1850 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1851 if (IsMSVCCXX || IsCoreCLR) 1852 UnwindDests.back().first->setIsEHFuncletEntry(); 1853 if (!IsSEH) 1854 UnwindDests.back().first->setIsEHScopeEntry(); 1855 } 1856 NewEHPadBB = CatchSwitch->getUnwindDest(); 1857 } else { 1858 continue; 1859 } 1860 1861 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1862 if (BPI && NewEHPadBB) 1863 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1864 EHPadBB = NewEHPadBB; 1865 } 1866 } 1867 1868 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1869 // Update successor info. 1870 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1871 auto UnwindDest = I.getUnwindDest(); 1872 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1873 BranchProbability UnwindDestProb = 1874 (BPI && UnwindDest) 1875 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1876 : BranchProbability::getZero(); 1877 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1878 for (auto &UnwindDest : UnwindDests) { 1879 UnwindDest.first->setIsEHPad(); 1880 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1881 } 1882 FuncInfo.MBB->normalizeSuccProbs(); 1883 1884 // Create the terminator node. 1885 SDValue Ret = 1886 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1887 DAG.setRoot(Ret); 1888 } 1889 1890 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1891 report_fatal_error("visitCatchSwitch not yet implemented!"); 1892 } 1893 1894 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1896 auto &DL = DAG.getDataLayout(); 1897 SDValue Chain = getControlRoot(); 1898 SmallVector<ISD::OutputArg, 8> Outs; 1899 SmallVector<SDValue, 8> OutVals; 1900 1901 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1902 // lower 1903 // 1904 // %val = call <ty> @llvm.experimental.deoptimize() 1905 // ret <ty> %val 1906 // 1907 // differently. 1908 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1909 LowerDeoptimizingReturn(); 1910 return; 1911 } 1912 1913 if (!FuncInfo.CanLowerReturn) { 1914 unsigned DemoteReg = FuncInfo.DemoteRegister; 1915 const Function *F = I.getParent()->getParent(); 1916 1917 // Emit a store of the return value through the virtual register. 1918 // Leave Outs empty so that LowerReturn won't try to load return 1919 // registers the usual way. 1920 SmallVector<EVT, 1> PtrValueVTs; 1921 ComputeValueVTs(TLI, DL, 1922 F->getReturnType()->getPointerTo( 1923 DAG.getDataLayout().getAllocaAddrSpace()), 1924 PtrValueVTs); 1925 1926 SDValue RetPtr = 1927 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1928 SDValue RetOp = getValue(I.getOperand(0)); 1929 1930 SmallVector<EVT, 4> ValueVTs, MemVTs; 1931 SmallVector<uint64_t, 4> Offsets; 1932 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1933 &Offsets); 1934 unsigned NumValues = ValueVTs.size(); 1935 1936 SmallVector<SDValue, 4> Chains(NumValues); 1937 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1938 for (unsigned i = 0; i != NumValues; ++i) { 1939 // An aggregate return value cannot wrap around the address space, so 1940 // offsets to its parts don't wrap either. 1941 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1942 TypeSize::Fixed(Offsets[i])); 1943 1944 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1945 if (MemVTs[i] != ValueVTs[i]) 1946 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1947 Chains[i] = DAG.getStore( 1948 Chain, getCurSDLoc(), Val, 1949 // FIXME: better loc info would be nice. 1950 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1951 commonAlignment(BaseAlign, Offsets[i])); 1952 } 1953 1954 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1955 MVT::Other, Chains); 1956 } else if (I.getNumOperands() != 0) { 1957 SmallVector<EVT, 4> ValueVTs; 1958 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1959 unsigned NumValues = ValueVTs.size(); 1960 if (NumValues) { 1961 SDValue RetOp = getValue(I.getOperand(0)); 1962 1963 const Function *F = I.getParent()->getParent(); 1964 1965 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1966 I.getOperand(0)->getType(), F->getCallingConv(), 1967 /*IsVarArg*/ false, DL); 1968 1969 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1970 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1971 ExtendKind = ISD::SIGN_EXTEND; 1972 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1973 ExtendKind = ISD::ZERO_EXTEND; 1974 1975 LLVMContext &Context = F->getContext(); 1976 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1977 1978 for (unsigned j = 0; j != NumValues; ++j) { 1979 EVT VT = ValueVTs[j]; 1980 1981 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1982 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1983 1984 CallingConv::ID CC = F->getCallingConv(); 1985 1986 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1987 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1988 SmallVector<SDValue, 4> Parts(NumParts); 1989 getCopyToParts(DAG, getCurSDLoc(), 1990 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1991 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1992 1993 // 'inreg' on function refers to return value 1994 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1995 if (RetInReg) 1996 Flags.setInReg(); 1997 1998 if (I.getOperand(0)->getType()->isPointerTy()) { 1999 Flags.setPointer(); 2000 Flags.setPointerAddrSpace( 2001 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2002 } 2003 2004 if (NeedsRegBlock) { 2005 Flags.setInConsecutiveRegs(); 2006 if (j == NumValues - 1) 2007 Flags.setInConsecutiveRegsLast(); 2008 } 2009 2010 // Propagate extension type if any 2011 if (ExtendKind == ISD::SIGN_EXTEND) 2012 Flags.setSExt(); 2013 else if (ExtendKind == ISD::ZERO_EXTEND) 2014 Flags.setZExt(); 2015 2016 for (unsigned i = 0; i < NumParts; ++i) { 2017 Outs.push_back(ISD::OutputArg(Flags, 2018 Parts[i].getValueType().getSimpleVT(), 2019 VT, /*isfixed=*/true, 0, 0)); 2020 OutVals.push_back(Parts[i]); 2021 } 2022 } 2023 } 2024 } 2025 2026 // Push in swifterror virtual register as the last element of Outs. This makes 2027 // sure swifterror virtual register will be returned in the swifterror 2028 // physical register. 2029 const Function *F = I.getParent()->getParent(); 2030 if (TLI.supportSwiftError() && 2031 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2032 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2033 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2034 Flags.setSwiftError(); 2035 Outs.push_back(ISD::OutputArg( 2036 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2037 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2038 // Create SDNode for the swifterror virtual register. 2039 OutVals.push_back( 2040 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2041 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2042 EVT(TLI.getPointerTy(DL)))); 2043 } 2044 2045 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2046 CallingConv::ID CallConv = 2047 DAG.getMachineFunction().getFunction().getCallingConv(); 2048 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2049 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2050 2051 // Verify that the target's LowerReturn behaved as expected. 2052 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2053 "LowerReturn didn't return a valid chain!"); 2054 2055 // Update the DAG with the new chain value resulting from return lowering. 2056 DAG.setRoot(Chain); 2057 } 2058 2059 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2060 /// created for it, emit nodes to copy the value into the virtual 2061 /// registers. 2062 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2063 // Skip empty types 2064 if (V->getType()->isEmptyTy()) 2065 return; 2066 2067 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2068 if (VMI != FuncInfo.ValueMap.end()) { 2069 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2070 CopyValueToVirtualRegister(V, VMI->second); 2071 } 2072 } 2073 2074 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2075 /// the current basic block, add it to ValueMap now so that we'll get a 2076 /// CopyTo/FromReg. 2077 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2078 // No need to export constants. 2079 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2080 2081 // Already exported? 2082 if (FuncInfo.isExportedInst(V)) return; 2083 2084 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2085 CopyValueToVirtualRegister(V, Reg); 2086 } 2087 2088 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2089 const BasicBlock *FromBB) { 2090 // The operands of the setcc have to be in this block. We don't know 2091 // how to export them from some other block. 2092 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2093 // Can export from current BB. 2094 if (VI->getParent() == FromBB) 2095 return true; 2096 2097 // Is already exported, noop. 2098 return FuncInfo.isExportedInst(V); 2099 } 2100 2101 // If this is an argument, we can export it if the BB is the entry block or 2102 // if it is already exported. 2103 if (isa<Argument>(V)) { 2104 if (FromBB->isEntryBlock()) 2105 return true; 2106 2107 // Otherwise, can only export this if it is already exported. 2108 return FuncInfo.isExportedInst(V); 2109 } 2110 2111 // Otherwise, constants can always be exported. 2112 return true; 2113 } 2114 2115 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2116 BranchProbability 2117 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2118 const MachineBasicBlock *Dst) const { 2119 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2120 const BasicBlock *SrcBB = Src->getBasicBlock(); 2121 const BasicBlock *DstBB = Dst->getBasicBlock(); 2122 if (!BPI) { 2123 // If BPI is not available, set the default probability as 1 / N, where N is 2124 // the number of successors. 2125 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2126 return BranchProbability(1, SuccSize); 2127 } 2128 return BPI->getEdgeProbability(SrcBB, DstBB); 2129 } 2130 2131 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2132 MachineBasicBlock *Dst, 2133 BranchProbability Prob) { 2134 if (!FuncInfo.BPI) 2135 Src->addSuccessorWithoutProb(Dst); 2136 else { 2137 if (Prob.isUnknown()) 2138 Prob = getEdgeProbability(Src, Dst); 2139 Src->addSuccessor(Dst, Prob); 2140 } 2141 } 2142 2143 static bool InBlock(const Value *V, const BasicBlock *BB) { 2144 if (const Instruction *I = dyn_cast<Instruction>(V)) 2145 return I->getParent() == BB; 2146 return true; 2147 } 2148 2149 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2150 /// This function emits a branch and is used at the leaves of an OR or an 2151 /// AND operator tree. 2152 void 2153 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2154 MachineBasicBlock *TBB, 2155 MachineBasicBlock *FBB, 2156 MachineBasicBlock *CurBB, 2157 MachineBasicBlock *SwitchBB, 2158 BranchProbability TProb, 2159 BranchProbability FProb, 2160 bool InvertCond) { 2161 const BasicBlock *BB = CurBB->getBasicBlock(); 2162 2163 // If the leaf of the tree is a comparison, merge the condition into 2164 // the caseblock. 2165 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2166 // The operands of the cmp have to be in this block. We don't know 2167 // how to export them from some other block. If this is the first block 2168 // of the sequence, no exporting is needed. 2169 if (CurBB == SwitchBB || 2170 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2171 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2172 ISD::CondCode Condition; 2173 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2174 ICmpInst::Predicate Pred = 2175 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2176 Condition = getICmpCondCode(Pred); 2177 } else { 2178 const FCmpInst *FC = cast<FCmpInst>(Cond); 2179 FCmpInst::Predicate Pred = 2180 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2181 Condition = getFCmpCondCode(Pred); 2182 if (TM.Options.NoNaNsFPMath) 2183 Condition = getFCmpCodeWithoutNaN(Condition); 2184 } 2185 2186 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2187 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2188 SL->SwitchCases.push_back(CB); 2189 return; 2190 } 2191 } 2192 2193 // Create a CaseBlock record representing this branch. 2194 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2195 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2196 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2197 SL->SwitchCases.push_back(CB); 2198 } 2199 2200 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2201 MachineBasicBlock *TBB, 2202 MachineBasicBlock *FBB, 2203 MachineBasicBlock *CurBB, 2204 MachineBasicBlock *SwitchBB, 2205 Instruction::BinaryOps Opc, 2206 BranchProbability TProb, 2207 BranchProbability FProb, 2208 bool InvertCond) { 2209 // Skip over not part of the tree and remember to invert op and operands at 2210 // next level. 2211 Value *NotCond; 2212 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2213 InBlock(NotCond, CurBB->getBasicBlock())) { 2214 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2215 !InvertCond); 2216 return; 2217 } 2218 2219 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2220 const Value *BOpOp0, *BOpOp1; 2221 // Compute the effective opcode for Cond, taking into account whether it needs 2222 // to be inverted, e.g. 2223 // and (not (or A, B)), C 2224 // gets lowered as 2225 // and (and (not A, not B), C) 2226 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2227 if (BOp) { 2228 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2229 ? Instruction::And 2230 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2231 ? Instruction::Or 2232 : (Instruction::BinaryOps)0); 2233 if (InvertCond) { 2234 if (BOpc == Instruction::And) 2235 BOpc = Instruction::Or; 2236 else if (BOpc == Instruction::Or) 2237 BOpc = Instruction::And; 2238 } 2239 } 2240 2241 // If this node is not part of the or/and tree, emit it as a branch. 2242 // Note that all nodes in the tree should have same opcode. 2243 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2244 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2245 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2246 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2247 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2248 TProb, FProb, InvertCond); 2249 return; 2250 } 2251 2252 // Create TmpBB after CurBB. 2253 MachineFunction::iterator BBI(CurBB); 2254 MachineFunction &MF = DAG.getMachineFunction(); 2255 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2256 CurBB->getParent()->insert(++BBI, TmpBB); 2257 2258 if (Opc == Instruction::Or) { 2259 // Codegen X | Y as: 2260 // BB1: 2261 // jmp_if_X TBB 2262 // jmp TmpBB 2263 // TmpBB: 2264 // jmp_if_Y TBB 2265 // jmp FBB 2266 // 2267 2268 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2269 // The requirement is that 2270 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2271 // = TrueProb for original BB. 2272 // Assuming the original probabilities are A and B, one choice is to set 2273 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2274 // A/(1+B) and 2B/(1+B). This choice assumes that 2275 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2276 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2277 // TmpBB, but the math is more complicated. 2278 2279 auto NewTrueProb = TProb / 2; 2280 auto NewFalseProb = TProb / 2 + FProb; 2281 // Emit the LHS condition. 2282 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2283 NewFalseProb, InvertCond); 2284 2285 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2286 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2287 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2288 // Emit the RHS condition into TmpBB. 2289 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2290 Probs[1], InvertCond); 2291 } else { 2292 assert(Opc == Instruction::And && "Unknown merge op!"); 2293 // Codegen X & Y as: 2294 // BB1: 2295 // jmp_if_X TmpBB 2296 // jmp FBB 2297 // TmpBB: 2298 // jmp_if_Y TBB 2299 // jmp FBB 2300 // 2301 // This requires creation of TmpBB after CurBB. 2302 2303 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2304 // The requirement is that 2305 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2306 // = FalseProb for original BB. 2307 // Assuming the original probabilities are A and B, one choice is to set 2308 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2309 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2310 // TrueProb for BB1 * FalseProb for TmpBB. 2311 2312 auto NewTrueProb = TProb + FProb / 2; 2313 auto NewFalseProb = FProb / 2; 2314 // Emit the LHS condition. 2315 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2316 NewFalseProb, InvertCond); 2317 2318 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2319 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2320 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2321 // Emit the RHS condition into TmpBB. 2322 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2323 Probs[1], InvertCond); 2324 } 2325 } 2326 2327 /// If the set of cases should be emitted as a series of branches, return true. 2328 /// If we should emit this as a bunch of and/or'd together conditions, return 2329 /// false. 2330 bool 2331 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2332 if (Cases.size() != 2) return true; 2333 2334 // If this is two comparisons of the same values or'd or and'd together, they 2335 // will get folded into a single comparison, so don't emit two blocks. 2336 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2337 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2338 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2339 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2340 return false; 2341 } 2342 2343 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2344 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2345 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2346 Cases[0].CC == Cases[1].CC && 2347 isa<Constant>(Cases[0].CmpRHS) && 2348 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2349 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2350 return false; 2351 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2352 return false; 2353 } 2354 2355 return true; 2356 } 2357 2358 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2359 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2360 2361 // Update machine-CFG edges. 2362 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2363 2364 if (I.isUnconditional()) { 2365 // Update machine-CFG edges. 2366 BrMBB->addSuccessor(Succ0MBB); 2367 2368 // If this is not a fall-through branch or optimizations are switched off, 2369 // emit the branch. 2370 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2371 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2372 MVT::Other, getControlRoot(), 2373 DAG.getBasicBlock(Succ0MBB))); 2374 2375 return; 2376 } 2377 2378 // If this condition is one of the special cases we handle, do special stuff 2379 // now. 2380 const Value *CondVal = I.getCondition(); 2381 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2382 2383 // If this is a series of conditions that are or'd or and'd together, emit 2384 // this as a sequence of branches instead of setcc's with and/or operations. 2385 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2386 // unpredictable branches, and vector extracts because those jumps are likely 2387 // expensive for any target), this should improve performance. 2388 // For example, instead of something like: 2389 // cmp A, B 2390 // C = seteq 2391 // cmp D, E 2392 // F = setle 2393 // or C, F 2394 // jnz foo 2395 // Emit: 2396 // cmp A, B 2397 // je foo 2398 // cmp D, E 2399 // jle foo 2400 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2401 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2402 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2403 Value *Vec; 2404 const Value *BOp0, *BOp1; 2405 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2406 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2407 Opcode = Instruction::And; 2408 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2409 Opcode = Instruction::Or; 2410 2411 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2412 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2413 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2414 getEdgeProbability(BrMBB, Succ0MBB), 2415 getEdgeProbability(BrMBB, Succ1MBB), 2416 /*InvertCond=*/false); 2417 // If the compares in later blocks need to use values not currently 2418 // exported from this block, export them now. This block should always 2419 // be the first entry. 2420 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2421 2422 // Allow some cases to be rejected. 2423 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2424 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2425 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2426 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2427 } 2428 2429 // Emit the branch for this block. 2430 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2431 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2432 return; 2433 } 2434 2435 // Okay, we decided not to do this, remove any inserted MBB's and clear 2436 // SwitchCases. 2437 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2438 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2439 2440 SL->SwitchCases.clear(); 2441 } 2442 } 2443 2444 // Create a CaseBlock record representing this branch. 2445 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2446 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2447 2448 // Use visitSwitchCase to actually insert the fast branch sequence for this 2449 // cond branch. 2450 visitSwitchCase(CB, BrMBB); 2451 } 2452 2453 /// visitSwitchCase - Emits the necessary code to represent a single node in 2454 /// the binary search tree resulting from lowering a switch instruction. 2455 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2456 MachineBasicBlock *SwitchBB) { 2457 SDValue Cond; 2458 SDValue CondLHS = getValue(CB.CmpLHS); 2459 SDLoc dl = CB.DL; 2460 2461 if (CB.CC == ISD::SETTRUE) { 2462 // Branch or fall through to TrueBB. 2463 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2464 SwitchBB->normalizeSuccProbs(); 2465 if (CB.TrueBB != NextBlock(SwitchBB)) { 2466 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2467 DAG.getBasicBlock(CB.TrueBB))); 2468 } 2469 return; 2470 } 2471 2472 auto &TLI = DAG.getTargetLoweringInfo(); 2473 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2474 2475 // Build the setcc now. 2476 if (!CB.CmpMHS) { 2477 // Fold "(X == true)" to X and "(X == false)" to !X to 2478 // handle common cases produced by branch lowering. 2479 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2480 CB.CC == ISD::SETEQ) 2481 Cond = CondLHS; 2482 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2483 CB.CC == ISD::SETEQ) { 2484 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2485 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2486 } else { 2487 SDValue CondRHS = getValue(CB.CmpRHS); 2488 2489 // If a pointer's DAG type is larger than its memory type then the DAG 2490 // values are zero-extended. This breaks signed comparisons so truncate 2491 // back to the underlying type before doing the compare. 2492 if (CondLHS.getValueType() != MemVT) { 2493 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2494 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2495 } 2496 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2497 } 2498 } else { 2499 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2500 2501 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2502 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2503 2504 SDValue CmpOp = getValue(CB.CmpMHS); 2505 EVT VT = CmpOp.getValueType(); 2506 2507 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2508 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2509 ISD::SETLE); 2510 } else { 2511 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2512 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2513 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2514 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2515 } 2516 } 2517 2518 // Update successor info 2519 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2520 // TrueBB and FalseBB are always different unless the incoming IR is 2521 // degenerate. This only happens when running llc on weird IR. 2522 if (CB.TrueBB != CB.FalseBB) 2523 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2524 SwitchBB->normalizeSuccProbs(); 2525 2526 // If the lhs block is the next block, invert the condition so that we can 2527 // fall through to the lhs instead of the rhs block. 2528 if (CB.TrueBB == NextBlock(SwitchBB)) { 2529 std::swap(CB.TrueBB, CB.FalseBB); 2530 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2531 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2532 } 2533 2534 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2535 MVT::Other, getControlRoot(), Cond, 2536 DAG.getBasicBlock(CB.TrueBB)); 2537 2538 // Insert the false branch. Do this even if it's a fall through branch, 2539 // this makes it easier to do DAG optimizations which require inverting 2540 // the branch condition. 2541 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2542 DAG.getBasicBlock(CB.FalseBB)); 2543 2544 DAG.setRoot(BrCond); 2545 } 2546 2547 /// visitJumpTable - Emit JumpTable node in the current MBB 2548 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2549 // Emit the code for the jump table 2550 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2551 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2552 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2553 JT.Reg, PTy); 2554 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2555 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2556 MVT::Other, Index.getValue(1), 2557 Table, Index); 2558 DAG.setRoot(BrJumpTable); 2559 } 2560 2561 /// visitJumpTableHeader - This function emits necessary code to produce index 2562 /// in the JumpTable from switch case. 2563 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2564 JumpTableHeader &JTH, 2565 MachineBasicBlock *SwitchBB) { 2566 SDLoc dl = getCurSDLoc(); 2567 2568 // Subtract the lowest switch case value from the value being switched on. 2569 SDValue SwitchOp = getValue(JTH.SValue); 2570 EVT VT = SwitchOp.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2572 DAG.getConstant(JTH.First, dl, VT)); 2573 2574 // The SDNode we just created, which holds the value being switched on minus 2575 // the smallest case value, needs to be copied to a virtual register so it 2576 // can be used as an index into the jump table in a subsequent basic block. 2577 // This value may be smaller or larger than the target's pointer type, and 2578 // therefore require extension or truncating. 2579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2580 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2581 2582 unsigned JumpTableReg = 2583 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2584 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2585 JumpTableReg, SwitchOp); 2586 JT.Reg = JumpTableReg; 2587 2588 if (!JTH.FallthroughUnreachable) { 2589 // Emit the range check for the jump table, and branch to the default block 2590 // for the switch statement if the value being switched on exceeds the 2591 // largest case in the switch. 2592 SDValue CMP = DAG.getSetCC( 2593 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2594 Sub.getValueType()), 2595 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2596 2597 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2598 MVT::Other, CopyTo, CMP, 2599 DAG.getBasicBlock(JT.Default)); 2600 2601 // Avoid emitting unnecessary branches to the next block. 2602 if (JT.MBB != NextBlock(SwitchBB)) 2603 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2604 DAG.getBasicBlock(JT.MBB)); 2605 2606 DAG.setRoot(BrCond); 2607 } else { 2608 // Avoid emitting unnecessary branches to the next block. 2609 if (JT.MBB != NextBlock(SwitchBB)) 2610 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2611 DAG.getBasicBlock(JT.MBB))); 2612 else 2613 DAG.setRoot(CopyTo); 2614 } 2615 } 2616 2617 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2618 /// variable if there exists one. 2619 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2620 SDValue &Chain) { 2621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2622 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2623 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2624 MachineFunction &MF = DAG.getMachineFunction(); 2625 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2626 MachineSDNode *Node = 2627 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2628 if (Global) { 2629 MachinePointerInfo MPInfo(Global); 2630 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2631 MachineMemOperand::MODereferenceable; 2632 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2633 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2634 DAG.setNodeMemRefs(Node, {MemRef}); 2635 } 2636 if (PtrTy != PtrMemTy) 2637 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2638 return SDValue(Node, 0); 2639 } 2640 2641 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2642 /// tail spliced into a stack protector check success bb. 2643 /// 2644 /// For a high level explanation of how this fits into the stack protector 2645 /// generation see the comment on the declaration of class 2646 /// StackProtectorDescriptor. 2647 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2648 MachineBasicBlock *ParentBB) { 2649 2650 // First create the loads to the guard/stack slot for the comparison. 2651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2652 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2653 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2654 2655 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2656 int FI = MFI.getStackProtectorIndex(); 2657 2658 SDValue Guard; 2659 SDLoc dl = getCurSDLoc(); 2660 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2661 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2662 Align Align = 2663 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2664 2665 // Generate code to load the content of the guard slot. 2666 SDValue GuardVal = DAG.getLoad( 2667 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2668 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2669 MachineMemOperand::MOVolatile); 2670 2671 if (TLI.useStackGuardXorFP()) 2672 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2673 2674 // Retrieve guard check function, nullptr if instrumentation is inlined. 2675 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2676 // The target provides a guard check function to validate the guard value. 2677 // Generate a call to that function with the content of the guard slot as 2678 // argument. 2679 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2680 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2681 2682 TargetLowering::ArgListTy Args; 2683 TargetLowering::ArgListEntry Entry; 2684 Entry.Node = GuardVal; 2685 Entry.Ty = FnTy->getParamType(0); 2686 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2687 Entry.IsInReg = true; 2688 Args.push_back(Entry); 2689 2690 TargetLowering::CallLoweringInfo CLI(DAG); 2691 CLI.setDebugLoc(getCurSDLoc()) 2692 .setChain(DAG.getEntryNode()) 2693 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2694 getValue(GuardCheckFn), std::move(Args)); 2695 2696 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2697 DAG.setRoot(Result.second); 2698 return; 2699 } 2700 2701 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2702 // Otherwise, emit a volatile load to retrieve the stack guard value. 2703 SDValue Chain = DAG.getEntryNode(); 2704 if (TLI.useLoadStackGuardNode()) { 2705 Guard = getLoadStackGuard(DAG, dl, Chain); 2706 } else { 2707 const Value *IRGuard = TLI.getSDagStackGuard(M); 2708 SDValue GuardPtr = getValue(IRGuard); 2709 2710 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2711 MachinePointerInfo(IRGuard, 0), Align, 2712 MachineMemOperand::MOVolatile); 2713 } 2714 2715 // Perform the comparison via a getsetcc. 2716 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2717 *DAG.getContext(), 2718 Guard.getValueType()), 2719 Guard, GuardVal, ISD::SETNE); 2720 2721 // If the guard/stackslot do not equal, branch to failure MBB. 2722 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2723 MVT::Other, GuardVal.getOperand(0), 2724 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2725 // Otherwise branch to success MBB. 2726 SDValue Br = DAG.getNode(ISD::BR, dl, 2727 MVT::Other, BrCond, 2728 DAG.getBasicBlock(SPD.getSuccessMBB())); 2729 2730 DAG.setRoot(Br); 2731 } 2732 2733 /// Codegen the failure basic block for a stack protector check. 2734 /// 2735 /// A failure stack protector machine basic block consists simply of a call to 2736 /// __stack_chk_fail(). 2737 /// 2738 /// For a high level explanation of how this fits into the stack protector 2739 /// generation see the comment on the declaration of class 2740 /// StackProtectorDescriptor. 2741 void 2742 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2744 TargetLowering::MakeLibCallOptions CallOptions; 2745 CallOptions.setDiscardResult(true); 2746 SDValue Chain = 2747 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2748 None, CallOptions, getCurSDLoc()).second; 2749 // On PS4, the "return address" must still be within the calling function, 2750 // even if it's at the very end, so emit an explicit TRAP here. 2751 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2752 if (TM.getTargetTriple().isPS4()) 2753 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2754 // WebAssembly needs an unreachable instruction after a non-returning call, 2755 // because the function return type can be different from __stack_chk_fail's 2756 // return type (void). 2757 if (TM.getTargetTriple().isWasm()) 2758 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2759 2760 DAG.setRoot(Chain); 2761 } 2762 2763 /// visitBitTestHeader - This function emits necessary code to produce value 2764 /// suitable for "bit tests" 2765 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2766 MachineBasicBlock *SwitchBB) { 2767 SDLoc dl = getCurSDLoc(); 2768 2769 // Subtract the minimum value. 2770 SDValue SwitchOp = getValue(B.SValue); 2771 EVT VT = SwitchOp.getValueType(); 2772 SDValue RangeSub = 2773 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2774 2775 // Determine the type of the test operands. 2776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2777 bool UsePtrType = false; 2778 if (!TLI.isTypeLegal(VT)) { 2779 UsePtrType = true; 2780 } else { 2781 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2782 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2783 // Switch table case range are encoded into series of masks. 2784 // Just use pointer type, it's guaranteed to fit. 2785 UsePtrType = true; 2786 break; 2787 } 2788 } 2789 SDValue Sub = RangeSub; 2790 if (UsePtrType) { 2791 VT = TLI.getPointerTy(DAG.getDataLayout()); 2792 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2793 } 2794 2795 B.RegVT = VT.getSimpleVT(); 2796 B.Reg = FuncInfo.CreateReg(B.RegVT); 2797 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2798 2799 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2800 2801 if (!B.FallthroughUnreachable) 2802 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2803 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2804 SwitchBB->normalizeSuccProbs(); 2805 2806 SDValue Root = CopyTo; 2807 if (!B.FallthroughUnreachable) { 2808 // Conditional branch to the default block. 2809 SDValue RangeCmp = DAG.getSetCC(dl, 2810 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2811 RangeSub.getValueType()), 2812 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2813 ISD::SETUGT); 2814 2815 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2816 DAG.getBasicBlock(B.Default)); 2817 } 2818 2819 // Avoid emitting unnecessary branches to the next block. 2820 if (MBB != NextBlock(SwitchBB)) 2821 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2822 2823 DAG.setRoot(Root); 2824 } 2825 2826 /// visitBitTestCase - this function produces one "bit test" 2827 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2828 MachineBasicBlock* NextMBB, 2829 BranchProbability BranchProbToNext, 2830 unsigned Reg, 2831 BitTestCase &B, 2832 MachineBasicBlock *SwitchBB) { 2833 SDLoc dl = getCurSDLoc(); 2834 MVT VT = BB.RegVT; 2835 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2836 SDValue Cmp; 2837 unsigned PopCount = countPopulation(B.Mask); 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 if (PopCount == 1) { 2840 // Testing for a single bit; just compare the shift count with what it 2841 // would need to be to shift a 1 bit in that position. 2842 Cmp = DAG.getSetCC( 2843 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2844 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2845 ISD::SETEQ); 2846 } else if (PopCount == BB.Range) { 2847 // There is only one zero bit in the range, test for it directly. 2848 Cmp = DAG.getSetCC( 2849 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2850 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2851 ISD::SETNE); 2852 } else { 2853 // Make desired shift 2854 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2855 DAG.getConstant(1, dl, VT), ShiftOp); 2856 2857 // Emit bit tests and jumps 2858 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2859 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2860 Cmp = DAG.getSetCC( 2861 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2862 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2863 } 2864 2865 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2866 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2867 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2868 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2869 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2870 // one as they are relative probabilities (and thus work more like weights), 2871 // and hence we need to normalize them to let the sum of them become one. 2872 SwitchBB->normalizeSuccProbs(); 2873 2874 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2875 MVT::Other, getControlRoot(), 2876 Cmp, DAG.getBasicBlock(B.TargetBB)); 2877 2878 // Avoid emitting unnecessary branches to the next block. 2879 if (NextMBB != NextBlock(SwitchBB)) 2880 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2881 DAG.getBasicBlock(NextMBB)); 2882 2883 DAG.setRoot(BrAnd); 2884 } 2885 2886 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2887 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2888 2889 // Retrieve successors. Look through artificial IR level blocks like 2890 // catchswitch for successors. 2891 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2892 const BasicBlock *EHPadBB = I.getSuccessor(1); 2893 2894 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2895 // have to do anything here to lower funclet bundles. 2896 assert(!I.hasOperandBundlesOtherThan( 2897 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2898 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2899 LLVMContext::OB_cfguardtarget, 2900 LLVMContext::OB_clang_arc_attachedcall}) && 2901 "Cannot lower invokes with arbitrary operand bundles yet!"); 2902 2903 const Value *Callee(I.getCalledOperand()); 2904 const Function *Fn = dyn_cast<Function>(Callee); 2905 if (isa<InlineAsm>(Callee)) 2906 visitInlineAsm(I, EHPadBB); 2907 else if (Fn && Fn->isIntrinsic()) { 2908 switch (Fn->getIntrinsicID()) { 2909 default: 2910 llvm_unreachable("Cannot invoke this intrinsic"); 2911 case Intrinsic::donothing: 2912 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2913 case Intrinsic::seh_try_begin: 2914 case Intrinsic::seh_scope_begin: 2915 case Intrinsic::seh_try_end: 2916 case Intrinsic::seh_scope_end: 2917 break; 2918 case Intrinsic::experimental_patchpoint_void: 2919 case Intrinsic::experimental_patchpoint_i64: 2920 visitPatchpoint(I, EHPadBB); 2921 break; 2922 case Intrinsic::experimental_gc_statepoint: 2923 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2924 break; 2925 case Intrinsic::wasm_rethrow: { 2926 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2927 // special because it can be invoked, so we manually lower it to a DAG 2928 // node here. 2929 SmallVector<SDValue, 8> Ops; 2930 Ops.push_back(getRoot()); // inchain 2931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2932 Ops.push_back( 2933 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2934 TLI.getPointerTy(DAG.getDataLayout()))); 2935 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2936 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2937 break; 2938 } 2939 } 2940 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2941 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2942 // Eventually we will support lowering the @llvm.experimental.deoptimize 2943 // intrinsic, and right now there are no plans to support other intrinsics 2944 // with deopt state. 2945 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2946 } else { 2947 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2948 } 2949 2950 // If the value of the invoke is used outside of its defining block, make it 2951 // available as a virtual register. 2952 // We already took care of the exported value for the statepoint instruction 2953 // during call to the LowerStatepoint. 2954 if (!isa<GCStatepointInst>(I)) { 2955 CopyToExportRegsIfNeeded(&I); 2956 } 2957 2958 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2959 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2960 BranchProbability EHPadBBProb = 2961 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2962 : BranchProbability::getZero(); 2963 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2964 2965 // Update successor info. 2966 addSuccessorWithProb(InvokeMBB, Return); 2967 for (auto &UnwindDest : UnwindDests) { 2968 UnwindDest.first->setIsEHPad(); 2969 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2970 } 2971 InvokeMBB->normalizeSuccProbs(); 2972 2973 // Drop into normal successor. 2974 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2975 DAG.getBasicBlock(Return))); 2976 } 2977 2978 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2979 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2980 2981 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2982 // have to do anything here to lower funclet bundles. 2983 assert(!I.hasOperandBundlesOtherThan( 2984 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2985 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2986 2987 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2988 visitInlineAsm(I); 2989 CopyToExportRegsIfNeeded(&I); 2990 2991 // Retrieve successors. 2992 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2993 2994 // Update successor info. 2995 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2996 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2997 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2998 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2999 Target->setIsInlineAsmBrIndirectTarget(); 3000 } 3001 CallBrMBB->normalizeSuccProbs(); 3002 3003 // Drop into default successor. 3004 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3005 MVT::Other, getControlRoot(), 3006 DAG.getBasicBlock(Return))); 3007 } 3008 3009 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3010 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3011 } 3012 3013 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3014 assert(FuncInfo.MBB->isEHPad() && 3015 "Call to landingpad not in landing pad!"); 3016 3017 // If there aren't registers to copy the values into (e.g., during SjLj 3018 // exceptions), then don't bother to create these DAG nodes. 3019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3020 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3021 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3022 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3023 return; 3024 3025 // If landingpad's return type is token type, we don't create DAG nodes 3026 // for its exception pointer and selector value. The extraction of exception 3027 // pointer or selector value from token type landingpads is not currently 3028 // supported. 3029 if (LP.getType()->isTokenTy()) 3030 return; 3031 3032 SmallVector<EVT, 2> ValueVTs; 3033 SDLoc dl = getCurSDLoc(); 3034 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3035 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3036 3037 // Get the two live-in registers as SDValues. The physregs have already been 3038 // copied into virtual registers. 3039 SDValue Ops[2]; 3040 if (FuncInfo.ExceptionPointerVirtReg) { 3041 Ops[0] = DAG.getZExtOrTrunc( 3042 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3043 FuncInfo.ExceptionPointerVirtReg, 3044 TLI.getPointerTy(DAG.getDataLayout())), 3045 dl, ValueVTs[0]); 3046 } else { 3047 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3048 } 3049 Ops[1] = DAG.getZExtOrTrunc( 3050 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3051 FuncInfo.ExceptionSelectorVirtReg, 3052 TLI.getPointerTy(DAG.getDataLayout())), 3053 dl, ValueVTs[1]); 3054 3055 // Merge into one. 3056 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3057 DAG.getVTList(ValueVTs), Ops); 3058 setValue(&LP, Res); 3059 } 3060 3061 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3062 MachineBasicBlock *Last) { 3063 // Update JTCases. 3064 for (JumpTableBlock &JTB : SL->JTCases) 3065 if (JTB.first.HeaderBB == First) 3066 JTB.first.HeaderBB = Last; 3067 3068 // Update BitTestCases. 3069 for (BitTestBlock &BTB : SL->BitTestCases) 3070 if (BTB.Parent == First) 3071 BTB.Parent = Last; 3072 } 3073 3074 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3075 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3076 3077 // Update machine-CFG edges with unique successors. 3078 SmallSet<BasicBlock*, 32> Done; 3079 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3080 BasicBlock *BB = I.getSuccessor(i); 3081 bool Inserted = Done.insert(BB).second; 3082 if (!Inserted) 3083 continue; 3084 3085 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3086 addSuccessorWithProb(IndirectBrMBB, Succ); 3087 } 3088 IndirectBrMBB->normalizeSuccProbs(); 3089 3090 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3091 MVT::Other, getControlRoot(), 3092 getValue(I.getAddress()))); 3093 } 3094 3095 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3096 if (!DAG.getTarget().Options.TrapUnreachable) 3097 return; 3098 3099 // We may be able to ignore unreachable behind a noreturn call. 3100 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3101 const BasicBlock &BB = *I.getParent(); 3102 if (&I != &BB.front()) { 3103 BasicBlock::const_iterator PredI = 3104 std::prev(BasicBlock::const_iterator(&I)); 3105 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3106 if (Call->doesNotReturn()) 3107 return; 3108 } 3109 } 3110 } 3111 3112 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3113 } 3114 3115 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3118 Flags.copyFMF(*FPOp); 3119 3120 SDValue Op = getValue(I.getOperand(0)); 3121 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3122 Op, Flags); 3123 setValue(&I, UnNodeValue); 3124 } 3125 3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3127 SDNodeFlags Flags; 3128 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3129 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3130 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3131 } 3132 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3133 Flags.setExact(ExactOp->isExact()); 3134 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3135 Flags.copyFMF(*FPOp); 3136 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3140 Op1, Op2, Flags); 3141 setValue(&I, BinNodeValue); 3142 } 3143 3144 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3145 SDValue Op1 = getValue(I.getOperand(0)); 3146 SDValue Op2 = getValue(I.getOperand(1)); 3147 3148 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3149 Op1.getValueType(), DAG.getDataLayout()); 3150 3151 // Coerce the shift amount to the right type if we can. This exposes the 3152 // truncate or zext to optimization early. 3153 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3154 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3155 "Unexpected shift type"); 3156 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3157 } 3158 3159 bool nuw = false; 3160 bool nsw = false; 3161 bool exact = false; 3162 3163 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3164 3165 if (const OverflowingBinaryOperator *OFBinOp = 3166 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3167 nuw = OFBinOp->hasNoUnsignedWrap(); 3168 nsw = OFBinOp->hasNoSignedWrap(); 3169 } 3170 if (const PossiblyExactOperator *ExactOp = 3171 dyn_cast<const PossiblyExactOperator>(&I)) 3172 exact = ExactOp->isExact(); 3173 } 3174 SDNodeFlags Flags; 3175 Flags.setExact(exact); 3176 Flags.setNoSignedWrap(nsw); 3177 Flags.setNoUnsignedWrap(nuw); 3178 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3179 Flags); 3180 setValue(&I, Res); 3181 } 3182 3183 void SelectionDAGBuilder::visitSDiv(const User &I) { 3184 SDValue Op1 = getValue(I.getOperand(0)); 3185 SDValue Op2 = getValue(I.getOperand(1)); 3186 3187 SDNodeFlags Flags; 3188 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3189 cast<PossiblyExactOperator>(&I)->isExact()); 3190 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3191 Op2, Flags)); 3192 } 3193 3194 void SelectionDAGBuilder::visitICmp(const User &I) { 3195 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3196 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3197 predicate = IC->getPredicate(); 3198 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3199 predicate = ICmpInst::Predicate(IC->getPredicate()); 3200 SDValue Op1 = getValue(I.getOperand(0)); 3201 SDValue Op2 = getValue(I.getOperand(1)); 3202 ISD::CondCode Opcode = getICmpCondCode(predicate); 3203 3204 auto &TLI = DAG.getTargetLoweringInfo(); 3205 EVT MemVT = 3206 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3207 3208 // If a pointer's DAG type is larger than its memory type then the DAG values 3209 // are zero-extended. This breaks signed comparisons so truncate back to the 3210 // underlying type before doing the compare. 3211 if (Op1.getValueType() != MemVT) { 3212 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3213 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3214 } 3215 3216 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3217 I.getType()); 3218 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3219 } 3220 3221 void SelectionDAGBuilder::visitFCmp(const User &I) { 3222 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3223 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3224 predicate = FC->getPredicate(); 3225 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3226 predicate = FCmpInst::Predicate(FC->getPredicate()); 3227 SDValue Op1 = getValue(I.getOperand(0)); 3228 SDValue Op2 = getValue(I.getOperand(1)); 3229 3230 ISD::CondCode Condition = getFCmpCondCode(predicate); 3231 auto *FPMO = cast<FPMathOperator>(&I); 3232 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3233 Condition = getFCmpCodeWithoutNaN(Condition); 3234 3235 SDNodeFlags Flags; 3236 Flags.copyFMF(*FPMO); 3237 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3238 3239 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3240 I.getType()); 3241 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3242 } 3243 3244 // Check if the condition of the select has one use or two users that are both 3245 // selects with the same condition. 3246 static bool hasOnlySelectUsers(const Value *Cond) { 3247 return llvm::all_of(Cond->users(), [](const Value *V) { 3248 return isa<SelectInst>(V); 3249 }); 3250 } 3251 3252 void SelectionDAGBuilder::visitSelect(const User &I) { 3253 SmallVector<EVT, 4> ValueVTs; 3254 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3255 ValueVTs); 3256 unsigned NumValues = ValueVTs.size(); 3257 if (NumValues == 0) return; 3258 3259 SmallVector<SDValue, 4> Values(NumValues); 3260 SDValue Cond = getValue(I.getOperand(0)); 3261 SDValue LHSVal = getValue(I.getOperand(1)); 3262 SDValue RHSVal = getValue(I.getOperand(2)); 3263 SmallVector<SDValue, 1> BaseOps(1, Cond); 3264 ISD::NodeType OpCode = 3265 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3266 3267 bool IsUnaryAbs = false; 3268 bool Negate = false; 3269 3270 SDNodeFlags Flags; 3271 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3272 Flags.copyFMF(*FPOp); 3273 3274 // Min/max matching is only viable if all output VTs are the same. 3275 if (is_splat(ValueVTs)) { 3276 EVT VT = ValueVTs[0]; 3277 LLVMContext &Ctx = *DAG.getContext(); 3278 auto &TLI = DAG.getTargetLoweringInfo(); 3279 3280 // We care about the legality of the operation after it has been type 3281 // legalized. 3282 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3283 VT = TLI.getTypeToTransformTo(Ctx, VT); 3284 3285 // If the vselect is legal, assume we want to leave this as a vector setcc + 3286 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3287 // min/max is legal on the scalar type. 3288 bool UseScalarMinMax = VT.isVector() && 3289 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3290 3291 Value *LHS, *RHS; 3292 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3293 ISD::NodeType Opc = ISD::DELETED_NODE; 3294 switch (SPR.Flavor) { 3295 case SPF_UMAX: Opc = ISD::UMAX; break; 3296 case SPF_UMIN: Opc = ISD::UMIN; break; 3297 case SPF_SMAX: Opc = ISD::SMAX; break; 3298 case SPF_SMIN: Opc = ISD::SMIN; break; 3299 case SPF_FMINNUM: 3300 switch (SPR.NaNBehavior) { 3301 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3302 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3303 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3304 case SPNB_RETURNS_ANY: { 3305 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3306 Opc = ISD::FMINNUM; 3307 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3308 Opc = ISD::FMINIMUM; 3309 else if (UseScalarMinMax) 3310 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3311 ISD::FMINNUM : ISD::FMINIMUM; 3312 break; 3313 } 3314 } 3315 break; 3316 case SPF_FMAXNUM: 3317 switch (SPR.NaNBehavior) { 3318 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3319 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3320 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3321 case SPNB_RETURNS_ANY: 3322 3323 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3324 Opc = ISD::FMAXNUM; 3325 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3326 Opc = ISD::FMAXIMUM; 3327 else if (UseScalarMinMax) 3328 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3329 ISD::FMAXNUM : ISD::FMAXIMUM; 3330 break; 3331 } 3332 break; 3333 case SPF_NABS: 3334 Negate = true; 3335 LLVM_FALLTHROUGH; 3336 case SPF_ABS: 3337 IsUnaryAbs = true; 3338 Opc = ISD::ABS; 3339 break; 3340 default: break; 3341 } 3342 3343 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3344 (TLI.isOperationLegalOrCustom(Opc, VT) || 3345 (UseScalarMinMax && 3346 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3347 // If the underlying comparison instruction is used by any other 3348 // instruction, the consumed instructions won't be destroyed, so it is 3349 // not profitable to convert to a min/max. 3350 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3351 OpCode = Opc; 3352 LHSVal = getValue(LHS); 3353 RHSVal = getValue(RHS); 3354 BaseOps.clear(); 3355 } 3356 3357 if (IsUnaryAbs) { 3358 OpCode = Opc; 3359 LHSVal = getValue(LHS); 3360 BaseOps.clear(); 3361 } 3362 } 3363 3364 if (IsUnaryAbs) { 3365 for (unsigned i = 0; i != NumValues; ++i) { 3366 SDLoc dl = getCurSDLoc(); 3367 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3368 Values[i] = 3369 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3370 if (Negate) 3371 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3372 Values[i]); 3373 } 3374 } else { 3375 for (unsigned i = 0; i != NumValues; ++i) { 3376 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3377 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3378 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3379 Values[i] = DAG.getNode( 3380 OpCode, getCurSDLoc(), 3381 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3382 } 3383 } 3384 3385 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3386 DAG.getVTList(ValueVTs), Values)); 3387 } 3388 3389 void SelectionDAGBuilder::visitTrunc(const User &I) { 3390 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3391 SDValue N = getValue(I.getOperand(0)); 3392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3393 I.getType()); 3394 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3395 } 3396 3397 void SelectionDAGBuilder::visitZExt(const User &I) { 3398 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3399 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3400 SDValue N = getValue(I.getOperand(0)); 3401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3402 I.getType()); 3403 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3404 } 3405 3406 void SelectionDAGBuilder::visitSExt(const User &I) { 3407 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3408 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3409 SDValue N = getValue(I.getOperand(0)); 3410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3411 I.getType()); 3412 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3413 } 3414 3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3416 // FPTrunc is never a no-op cast, no need to check 3417 SDValue N = getValue(I.getOperand(0)); 3418 SDLoc dl = getCurSDLoc(); 3419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3420 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3421 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3422 DAG.getTargetConstant( 3423 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPExt(const User &I) { 3427 // FPExt is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3435 // FPToUI is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3443 // FPToSI is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3451 // UIToFP is never a no-op cast, no need to check 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3459 // SIToFP is never a no-op cast, no need to check 3460 SDValue N = getValue(I.getOperand(0)); 3461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3462 I.getType()); 3463 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3464 } 3465 3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3467 // What to do depends on the size of the integer and the size of the pointer. 3468 // We can either truncate, zero extend, or no-op, accordingly. 3469 SDValue N = getValue(I.getOperand(0)); 3470 auto &TLI = DAG.getTargetLoweringInfo(); 3471 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3472 I.getType()); 3473 EVT PtrMemVT = 3474 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3475 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3476 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3477 setValue(&I, N); 3478 } 3479 3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3481 // What to do depends on the size of the integer and the size of the pointer. 3482 // We can either truncate, zero extend, or no-op, accordingly. 3483 SDValue N = getValue(I.getOperand(0)); 3484 auto &TLI = DAG.getTargetLoweringInfo(); 3485 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3486 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3487 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3488 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3489 setValue(&I, N); 3490 } 3491 3492 void SelectionDAGBuilder::visitBitCast(const User &I) { 3493 SDValue N = getValue(I.getOperand(0)); 3494 SDLoc dl = getCurSDLoc(); 3495 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3496 I.getType()); 3497 3498 // BitCast assures us that source and destination are the same size so this is 3499 // either a BITCAST or a no-op. 3500 if (DestVT != N.getValueType()) 3501 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3502 DestVT, N)); // convert types. 3503 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3504 // might fold any kind of constant expression to an integer constant and that 3505 // is not what we are looking for. Only recognize a bitcast of a genuine 3506 // constant integer as an opaque constant. 3507 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3508 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3509 /*isOpaque*/true)); 3510 else 3511 setValue(&I, N); // noop cast. 3512 } 3513 3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 const Value *SV = I.getOperand(0); 3517 SDValue N = getValue(SV); 3518 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3519 3520 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3521 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3522 3523 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3524 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3525 3526 setValue(&I, N); 3527 } 3528 3529 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3531 SDValue InVec = getValue(I.getOperand(0)); 3532 SDValue InVal = getValue(I.getOperand(1)); 3533 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3534 TLI.getVectorIdxTy(DAG.getDataLayout())); 3535 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3536 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3537 InVec, InVal, InIdx)); 3538 } 3539 3540 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3542 SDValue InVec = getValue(I.getOperand(0)); 3543 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3544 TLI.getVectorIdxTy(DAG.getDataLayout())); 3545 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3546 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3547 InVec, InIdx)); 3548 } 3549 3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3551 SDValue Src1 = getValue(I.getOperand(0)); 3552 SDValue Src2 = getValue(I.getOperand(1)); 3553 ArrayRef<int> Mask; 3554 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3555 Mask = SVI->getShuffleMask(); 3556 else 3557 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3558 SDLoc DL = getCurSDLoc(); 3559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3560 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3561 EVT SrcVT = Src1.getValueType(); 3562 3563 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3564 VT.isScalableVector()) { 3565 // Canonical splat form of first element of first input vector. 3566 SDValue FirstElt = 3567 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3568 DAG.getVectorIdxConstant(0, DL)); 3569 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3570 return; 3571 } 3572 3573 // For now, we only handle splats for scalable vectors. 3574 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3575 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3576 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3577 3578 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3579 unsigned MaskNumElts = Mask.size(); 3580 3581 if (SrcNumElts == MaskNumElts) { 3582 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3583 return; 3584 } 3585 3586 // Normalize the shuffle vector since mask and vector length don't match. 3587 if (SrcNumElts < MaskNumElts) { 3588 // Mask is longer than the source vectors. We can use concatenate vector to 3589 // make the mask and vectors lengths match. 3590 3591 if (MaskNumElts % SrcNumElts == 0) { 3592 // Mask length is a multiple of the source vector length. 3593 // Check if the shuffle is some kind of concatenation of the input 3594 // vectors. 3595 unsigned NumConcat = MaskNumElts / SrcNumElts; 3596 bool IsConcat = true; 3597 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3598 for (unsigned i = 0; i != MaskNumElts; ++i) { 3599 int Idx = Mask[i]; 3600 if (Idx < 0) 3601 continue; 3602 // Ensure the indices in each SrcVT sized piece are sequential and that 3603 // the same source is used for the whole piece. 3604 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3605 (ConcatSrcs[i / SrcNumElts] >= 0 && 3606 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3607 IsConcat = false; 3608 break; 3609 } 3610 // Remember which source this index came from. 3611 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3612 } 3613 3614 // The shuffle is concatenating multiple vectors together. Just emit 3615 // a CONCAT_VECTORS operation. 3616 if (IsConcat) { 3617 SmallVector<SDValue, 8> ConcatOps; 3618 for (auto Src : ConcatSrcs) { 3619 if (Src < 0) 3620 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3621 else if (Src == 0) 3622 ConcatOps.push_back(Src1); 3623 else 3624 ConcatOps.push_back(Src2); 3625 } 3626 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3627 return; 3628 } 3629 } 3630 3631 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3632 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3633 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3634 PaddedMaskNumElts); 3635 3636 // Pad both vectors with undefs to make them the same length as the mask. 3637 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3638 3639 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3640 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3641 MOps1[0] = Src1; 3642 MOps2[0] = Src2; 3643 3644 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3645 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3646 3647 // Readjust mask for new input vector length. 3648 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3649 for (unsigned i = 0; i != MaskNumElts; ++i) { 3650 int Idx = Mask[i]; 3651 if (Idx >= (int)SrcNumElts) 3652 Idx -= SrcNumElts - PaddedMaskNumElts; 3653 MappedOps[i] = Idx; 3654 } 3655 3656 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3657 3658 // If the concatenated vector was padded, extract a subvector with the 3659 // correct number of elements. 3660 if (MaskNumElts != PaddedMaskNumElts) 3661 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3662 DAG.getVectorIdxConstant(0, DL)); 3663 3664 setValue(&I, Result); 3665 return; 3666 } 3667 3668 if (SrcNumElts > MaskNumElts) { 3669 // Analyze the access pattern of the vector to see if we can extract 3670 // two subvectors and do the shuffle. 3671 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3672 bool CanExtract = true; 3673 for (int Idx : Mask) { 3674 unsigned Input = 0; 3675 if (Idx < 0) 3676 continue; 3677 3678 if (Idx >= (int)SrcNumElts) { 3679 Input = 1; 3680 Idx -= SrcNumElts; 3681 } 3682 3683 // If all the indices come from the same MaskNumElts sized portion of 3684 // the sources we can use extract. Also make sure the extract wouldn't 3685 // extract past the end of the source. 3686 int NewStartIdx = alignDown(Idx, MaskNumElts); 3687 if (NewStartIdx + MaskNumElts > SrcNumElts || 3688 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3689 CanExtract = false; 3690 // Make sure we always update StartIdx as we use it to track if all 3691 // elements are undef. 3692 StartIdx[Input] = NewStartIdx; 3693 } 3694 3695 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3696 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3697 return; 3698 } 3699 if (CanExtract) { 3700 // Extract appropriate subvector and generate a vector shuffle 3701 for (unsigned Input = 0; Input < 2; ++Input) { 3702 SDValue &Src = Input == 0 ? Src1 : Src2; 3703 if (StartIdx[Input] < 0) 3704 Src = DAG.getUNDEF(VT); 3705 else { 3706 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3707 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3708 } 3709 } 3710 3711 // Calculate new mask. 3712 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3713 for (int &Idx : MappedOps) { 3714 if (Idx >= (int)SrcNumElts) 3715 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3716 else if (Idx >= 0) 3717 Idx -= StartIdx[0]; 3718 } 3719 3720 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3721 return; 3722 } 3723 } 3724 3725 // We can't use either concat vectors or extract subvectors so fall back to 3726 // replacing the shuffle with extract and build vector. 3727 // to insert and build vector. 3728 EVT EltVT = VT.getVectorElementType(); 3729 SmallVector<SDValue,8> Ops; 3730 for (int Idx : Mask) { 3731 SDValue Res; 3732 3733 if (Idx < 0) { 3734 Res = DAG.getUNDEF(EltVT); 3735 } else { 3736 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3737 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3738 3739 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3740 DAG.getVectorIdxConstant(Idx, DL)); 3741 } 3742 3743 Ops.push_back(Res); 3744 } 3745 3746 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3747 } 3748 3749 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3750 ArrayRef<unsigned> Indices; 3751 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3752 Indices = IV->getIndices(); 3753 else 3754 Indices = cast<ConstantExpr>(&I)->getIndices(); 3755 3756 const Value *Op0 = I.getOperand(0); 3757 const Value *Op1 = I.getOperand(1); 3758 Type *AggTy = I.getType(); 3759 Type *ValTy = Op1->getType(); 3760 bool IntoUndef = isa<UndefValue>(Op0); 3761 bool FromUndef = isa<UndefValue>(Op1); 3762 3763 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3764 3765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3766 SmallVector<EVT, 4> AggValueVTs; 3767 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3768 SmallVector<EVT, 4> ValValueVTs; 3769 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3770 3771 unsigned NumAggValues = AggValueVTs.size(); 3772 unsigned NumValValues = ValValueVTs.size(); 3773 SmallVector<SDValue, 4> Values(NumAggValues); 3774 3775 // Ignore an insertvalue that produces an empty object 3776 if (!NumAggValues) { 3777 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3778 return; 3779 } 3780 3781 SDValue Agg = getValue(Op0); 3782 unsigned i = 0; 3783 // Copy the beginning value(s) from the original aggregate. 3784 for (; i != LinearIndex; ++i) 3785 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3786 SDValue(Agg.getNode(), Agg.getResNo() + i); 3787 // Copy values from the inserted value(s). 3788 if (NumValValues) { 3789 SDValue Val = getValue(Op1); 3790 for (; i != LinearIndex + NumValValues; ++i) 3791 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3792 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3793 } 3794 // Copy remaining value(s) from the original aggregate. 3795 for (; i != NumAggValues; ++i) 3796 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3797 SDValue(Agg.getNode(), Agg.getResNo() + i); 3798 3799 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3800 DAG.getVTList(AggValueVTs), Values)); 3801 } 3802 3803 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3804 ArrayRef<unsigned> Indices; 3805 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3806 Indices = EV->getIndices(); 3807 else 3808 Indices = cast<ConstantExpr>(&I)->getIndices(); 3809 3810 const Value *Op0 = I.getOperand(0); 3811 Type *AggTy = Op0->getType(); 3812 Type *ValTy = I.getType(); 3813 bool OutOfUndef = isa<UndefValue>(Op0); 3814 3815 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3816 3817 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3818 SmallVector<EVT, 4> ValValueVTs; 3819 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3820 3821 unsigned NumValValues = ValValueVTs.size(); 3822 3823 // Ignore a extractvalue that produces an empty object 3824 if (!NumValValues) { 3825 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3826 return; 3827 } 3828 3829 SmallVector<SDValue, 4> Values(NumValValues); 3830 3831 SDValue Agg = getValue(Op0); 3832 // Copy out the selected value(s). 3833 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3834 Values[i - LinearIndex] = 3835 OutOfUndef ? 3836 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3837 SDValue(Agg.getNode(), Agg.getResNo() + i); 3838 3839 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3840 DAG.getVTList(ValValueVTs), Values)); 3841 } 3842 3843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3844 Value *Op0 = I.getOperand(0); 3845 // Note that the pointer operand may be a vector of pointers. Take the scalar 3846 // element which holds a pointer. 3847 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3848 SDValue N = getValue(Op0); 3849 SDLoc dl = getCurSDLoc(); 3850 auto &TLI = DAG.getTargetLoweringInfo(); 3851 3852 // Normalize Vector GEP - all scalar operands should be converted to the 3853 // splat vector. 3854 bool IsVectorGEP = I.getType()->isVectorTy(); 3855 ElementCount VectorElementCount = 3856 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3857 : ElementCount::getFixed(0); 3858 3859 if (IsVectorGEP && !N.getValueType().isVector()) { 3860 LLVMContext &Context = *DAG.getContext(); 3861 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3862 if (VectorElementCount.isScalable()) 3863 N = DAG.getSplatVector(VT, dl, N); 3864 else 3865 N = DAG.getSplatBuildVector(VT, dl, N); 3866 } 3867 3868 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3869 GTI != E; ++GTI) { 3870 const Value *Idx = GTI.getOperand(); 3871 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3872 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3873 if (Field) { 3874 // N = N + Offset 3875 uint64_t Offset = 3876 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3877 3878 // In an inbounds GEP with an offset that is nonnegative even when 3879 // interpreted as signed, assume there is no unsigned overflow. 3880 SDNodeFlags Flags; 3881 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3882 Flags.setNoUnsignedWrap(true); 3883 3884 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3885 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3886 } 3887 } else { 3888 // IdxSize is the width of the arithmetic according to IR semantics. 3889 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3890 // (and fix up the result later). 3891 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3892 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3893 TypeSize ElementSize = 3894 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3895 // We intentionally mask away the high bits here; ElementSize may not 3896 // fit in IdxTy. 3897 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3898 bool ElementScalable = ElementSize.isScalable(); 3899 3900 // If this is a scalar constant or a splat vector of constants, 3901 // handle it quickly. 3902 const auto *C = dyn_cast<Constant>(Idx); 3903 if (C && isa<VectorType>(C->getType())) 3904 C = C->getSplatValue(); 3905 3906 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3907 if (CI && CI->isZero()) 3908 continue; 3909 if (CI && !ElementScalable) { 3910 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3911 LLVMContext &Context = *DAG.getContext(); 3912 SDValue OffsVal; 3913 if (IsVectorGEP) 3914 OffsVal = DAG.getConstant( 3915 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3916 else 3917 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3918 3919 // In an inbounds GEP with an offset that is nonnegative even when 3920 // interpreted as signed, assume there is no unsigned overflow. 3921 SDNodeFlags Flags; 3922 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3923 Flags.setNoUnsignedWrap(true); 3924 3925 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3926 3927 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3928 continue; 3929 } 3930 3931 // N = N + Idx * ElementMul; 3932 SDValue IdxN = getValue(Idx); 3933 3934 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3935 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3936 VectorElementCount); 3937 if (VectorElementCount.isScalable()) 3938 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3939 else 3940 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3941 } 3942 3943 // If the index is smaller or larger than intptr_t, truncate or extend 3944 // it. 3945 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3946 3947 if (ElementScalable) { 3948 EVT VScaleTy = N.getValueType().getScalarType(); 3949 SDValue VScale = DAG.getNode( 3950 ISD::VSCALE, dl, VScaleTy, 3951 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3952 if (IsVectorGEP) 3953 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3954 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3955 } else { 3956 // If this is a multiply by a power of two, turn it into a shl 3957 // immediately. This is a very common case. 3958 if (ElementMul != 1) { 3959 if (ElementMul.isPowerOf2()) { 3960 unsigned Amt = ElementMul.logBase2(); 3961 IdxN = DAG.getNode(ISD::SHL, dl, 3962 N.getValueType(), IdxN, 3963 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3964 } else { 3965 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3966 IdxN.getValueType()); 3967 IdxN = DAG.getNode(ISD::MUL, dl, 3968 N.getValueType(), IdxN, Scale); 3969 } 3970 } 3971 } 3972 3973 N = DAG.getNode(ISD::ADD, dl, 3974 N.getValueType(), N, IdxN); 3975 } 3976 } 3977 3978 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3979 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3980 if (IsVectorGEP) { 3981 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3982 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3983 } 3984 3985 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3986 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3987 3988 setValue(&I, N); 3989 } 3990 3991 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3992 // If this is a fixed sized alloca in the entry block of the function, 3993 // allocate it statically on the stack. 3994 if (FuncInfo.StaticAllocaMap.count(&I)) 3995 return; // getValue will auto-populate this. 3996 3997 SDLoc dl = getCurSDLoc(); 3998 Type *Ty = I.getAllocatedType(); 3999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4000 auto &DL = DAG.getDataLayout(); 4001 TypeSize TySize = DL.getTypeAllocSize(Ty); 4002 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4003 4004 SDValue AllocSize = getValue(I.getArraySize()); 4005 4006 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4007 if (AllocSize.getValueType() != IntPtr) 4008 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4009 4010 if (TySize.isScalable()) 4011 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4012 DAG.getVScale(dl, IntPtr, 4013 APInt(IntPtr.getScalarSizeInBits(), 4014 TySize.getKnownMinValue()))); 4015 else 4016 AllocSize = 4017 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4018 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4019 4020 // Handle alignment. If the requested alignment is less than or equal to 4021 // the stack alignment, ignore it. If the size is greater than or equal to 4022 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4023 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4024 if (*Alignment <= StackAlign) 4025 Alignment = None; 4026 4027 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4028 // Round the size of the allocation up to the stack alignment size 4029 // by add SA-1 to the size. This doesn't overflow because we're computing 4030 // an address inside an alloca. 4031 SDNodeFlags Flags; 4032 Flags.setNoUnsignedWrap(true); 4033 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4034 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4035 4036 // Mask out the low bits for alignment purposes. 4037 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4038 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4039 4040 SDValue Ops[] = { 4041 getRoot(), AllocSize, 4042 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4043 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4044 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4045 setValue(&I, DSA); 4046 DAG.setRoot(DSA.getValue(1)); 4047 4048 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4049 } 4050 4051 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4052 if (I.isAtomic()) 4053 return visitAtomicLoad(I); 4054 4055 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4056 const Value *SV = I.getOperand(0); 4057 if (TLI.supportSwiftError()) { 4058 // Swifterror values can come from either a function parameter with 4059 // swifterror attribute or an alloca with swifterror attribute. 4060 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4061 if (Arg->hasSwiftErrorAttr()) 4062 return visitLoadFromSwiftError(I); 4063 } 4064 4065 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4066 if (Alloca->isSwiftError()) 4067 return visitLoadFromSwiftError(I); 4068 } 4069 } 4070 4071 SDValue Ptr = getValue(SV); 4072 4073 Type *Ty = I.getType(); 4074 Align Alignment = I.getAlign(); 4075 4076 AAMDNodes AAInfo = I.getAAMetadata(); 4077 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4078 4079 SmallVector<EVT, 4> ValueVTs, MemVTs; 4080 SmallVector<uint64_t, 4> Offsets; 4081 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4082 unsigned NumValues = ValueVTs.size(); 4083 if (NumValues == 0) 4084 return; 4085 4086 bool isVolatile = I.isVolatile(); 4087 4088 SDValue Root; 4089 bool ConstantMemory = false; 4090 if (isVolatile) 4091 // Serialize volatile loads with other side effects. 4092 Root = getRoot(); 4093 else if (NumValues > MaxParallelChains) 4094 Root = getMemoryRoot(); 4095 else if (AA && 4096 AA->pointsToConstantMemory(MemoryLocation( 4097 SV, 4098 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4099 AAInfo))) { 4100 // Do not serialize (non-volatile) loads of constant memory with anything. 4101 Root = DAG.getEntryNode(); 4102 ConstantMemory = true; 4103 } else { 4104 // Do not serialize non-volatile loads against each other. 4105 Root = DAG.getRoot(); 4106 } 4107 4108 SDLoc dl = getCurSDLoc(); 4109 4110 if (isVolatile) 4111 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4112 4113 // An aggregate load cannot wrap around the address space, so offsets to its 4114 // parts don't wrap either. 4115 SDNodeFlags Flags; 4116 Flags.setNoUnsignedWrap(true); 4117 4118 SmallVector<SDValue, 4> Values(NumValues); 4119 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4120 EVT PtrVT = Ptr.getValueType(); 4121 4122 MachineMemOperand::Flags MMOFlags 4123 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4124 4125 unsigned ChainI = 0; 4126 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4127 // Serializing loads here may result in excessive register pressure, and 4128 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4129 // could recover a bit by hoisting nodes upward in the chain by recognizing 4130 // they are side-effect free or do not alias. The optimizer should really 4131 // avoid this case by converting large object/array copies to llvm.memcpy 4132 // (MaxParallelChains should always remain as failsafe). 4133 if (ChainI == MaxParallelChains) { 4134 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4135 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4136 makeArrayRef(Chains.data(), ChainI)); 4137 Root = Chain; 4138 ChainI = 0; 4139 } 4140 SDValue A = DAG.getNode(ISD::ADD, dl, 4141 PtrVT, Ptr, 4142 DAG.getConstant(Offsets[i], dl, PtrVT), 4143 Flags); 4144 4145 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4146 MachinePointerInfo(SV, Offsets[i]), Alignment, 4147 MMOFlags, AAInfo, Ranges); 4148 Chains[ChainI] = L.getValue(1); 4149 4150 if (MemVTs[i] != ValueVTs[i]) 4151 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4152 4153 Values[i] = L; 4154 } 4155 4156 if (!ConstantMemory) { 4157 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4158 makeArrayRef(Chains.data(), ChainI)); 4159 if (isVolatile) 4160 DAG.setRoot(Chain); 4161 else 4162 PendingLoads.push_back(Chain); 4163 } 4164 4165 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4166 DAG.getVTList(ValueVTs), Values)); 4167 } 4168 4169 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4170 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4171 "call visitStoreToSwiftError when backend supports swifterror"); 4172 4173 SmallVector<EVT, 4> ValueVTs; 4174 SmallVector<uint64_t, 4> Offsets; 4175 const Value *SrcV = I.getOperand(0); 4176 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4177 SrcV->getType(), ValueVTs, &Offsets); 4178 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4179 "expect a single EVT for swifterror"); 4180 4181 SDValue Src = getValue(SrcV); 4182 // Create a virtual register, then update the virtual register. 4183 Register VReg = 4184 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4185 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4186 // Chain can be getRoot or getControlRoot. 4187 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4188 SDValue(Src.getNode(), Src.getResNo())); 4189 DAG.setRoot(CopyNode); 4190 } 4191 4192 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4193 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4194 "call visitLoadFromSwiftError when backend supports swifterror"); 4195 4196 assert(!I.isVolatile() && 4197 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4198 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4199 "Support volatile, non temporal, invariant for load_from_swift_error"); 4200 4201 const Value *SV = I.getOperand(0); 4202 Type *Ty = I.getType(); 4203 assert( 4204 (!AA || 4205 !AA->pointsToConstantMemory(MemoryLocation( 4206 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4207 I.getAAMetadata()))) && 4208 "load_from_swift_error should not be constant memory"); 4209 4210 SmallVector<EVT, 4> ValueVTs; 4211 SmallVector<uint64_t, 4> Offsets; 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4213 ValueVTs, &Offsets); 4214 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4215 "expect a single EVT for swifterror"); 4216 4217 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4218 SDValue L = DAG.getCopyFromReg( 4219 getRoot(), getCurSDLoc(), 4220 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4221 4222 setValue(&I, L); 4223 } 4224 4225 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4226 if (I.isAtomic()) 4227 return visitAtomicStore(I); 4228 4229 const Value *SrcV = I.getOperand(0); 4230 const Value *PtrV = I.getOperand(1); 4231 4232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4233 if (TLI.supportSwiftError()) { 4234 // Swifterror values can come from either a function parameter with 4235 // swifterror attribute or an alloca with swifterror attribute. 4236 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4237 if (Arg->hasSwiftErrorAttr()) 4238 return visitStoreToSwiftError(I); 4239 } 4240 4241 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4242 if (Alloca->isSwiftError()) 4243 return visitStoreToSwiftError(I); 4244 } 4245 } 4246 4247 SmallVector<EVT, 4> ValueVTs, MemVTs; 4248 SmallVector<uint64_t, 4> Offsets; 4249 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4250 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4251 unsigned NumValues = ValueVTs.size(); 4252 if (NumValues == 0) 4253 return; 4254 4255 // Get the lowered operands. Note that we do this after 4256 // checking if NumResults is zero, because with zero results 4257 // the operands won't have values in the map. 4258 SDValue Src = getValue(SrcV); 4259 SDValue Ptr = getValue(PtrV); 4260 4261 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4262 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4263 SDLoc dl = getCurSDLoc(); 4264 Align Alignment = I.getAlign(); 4265 AAMDNodes AAInfo = I.getAAMetadata(); 4266 4267 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4268 4269 // An aggregate load cannot wrap around the address space, so offsets to its 4270 // parts don't wrap either. 4271 SDNodeFlags Flags; 4272 Flags.setNoUnsignedWrap(true); 4273 4274 unsigned ChainI = 0; 4275 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4276 // See visitLoad comments. 4277 if (ChainI == MaxParallelChains) { 4278 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4279 makeArrayRef(Chains.data(), ChainI)); 4280 Root = Chain; 4281 ChainI = 0; 4282 } 4283 SDValue Add = 4284 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4285 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4286 if (MemVTs[i] != ValueVTs[i]) 4287 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4288 SDValue St = 4289 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4290 Alignment, MMOFlags, AAInfo); 4291 Chains[ChainI] = St; 4292 } 4293 4294 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4295 makeArrayRef(Chains.data(), ChainI)); 4296 DAG.setRoot(StoreNode); 4297 } 4298 4299 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4300 bool IsCompressing) { 4301 SDLoc sdl = getCurSDLoc(); 4302 4303 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4304 MaybeAlign &Alignment) { 4305 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4306 Src0 = I.getArgOperand(0); 4307 Ptr = I.getArgOperand(1); 4308 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4309 Mask = I.getArgOperand(3); 4310 }; 4311 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4312 MaybeAlign &Alignment) { 4313 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4314 Src0 = I.getArgOperand(0); 4315 Ptr = I.getArgOperand(1); 4316 Mask = I.getArgOperand(2); 4317 Alignment = None; 4318 }; 4319 4320 Value *PtrOperand, *MaskOperand, *Src0Operand; 4321 MaybeAlign Alignment; 4322 if (IsCompressing) 4323 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4324 else 4325 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4326 4327 SDValue Ptr = getValue(PtrOperand); 4328 SDValue Src0 = getValue(Src0Operand); 4329 SDValue Mask = getValue(MaskOperand); 4330 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4331 4332 EVT VT = Src0.getValueType(); 4333 if (!Alignment) 4334 Alignment = DAG.getEVTAlign(VT); 4335 4336 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4337 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4338 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4339 SDValue StoreNode = 4340 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4341 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4342 DAG.setRoot(StoreNode); 4343 setValue(&I, StoreNode); 4344 } 4345 4346 // Get a uniform base for the Gather/Scatter intrinsic. 4347 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4348 // We try to represent it as a base pointer + vector of indices. 4349 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4350 // The first operand of the GEP may be a single pointer or a vector of pointers 4351 // Example: 4352 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4353 // or 4354 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4355 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4356 // 4357 // When the first GEP operand is a single pointer - it is the uniform base we 4358 // are looking for. If first operand of the GEP is a splat vector - we 4359 // extract the splat value and use it as a uniform base. 4360 // In all other cases the function returns 'false'. 4361 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4362 ISD::MemIndexType &IndexType, SDValue &Scale, 4363 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4364 SelectionDAG& DAG = SDB->DAG; 4365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4366 const DataLayout &DL = DAG.getDataLayout(); 4367 4368 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4369 4370 // Handle splat constant pointer. 4371 if (auto *C = dyn_cast<Constant>(Ptr)) { 4372 C = C->getSplatValue(); 4373 if (!C) 4374 return false; 4375 4376 Base = SDB->getValue(C); 4377 4378 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4379 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4380 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4381 IndexType = ISD::SIGNED_SCALED; 4382 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4383 return true; 4384 } 4385 4386 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4387 if (!GEP || GEP->getParent() != CurBB) 4388 return false; 4389 4390 if (GEP->getNumOperands() != 2) 4391 return false; 4392 4393 const Value *BasePtr = GEP->getPointerOperand(); 4394 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4395 4396 // Make sure the base is scalar and the index is a vector. 4397 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4398 return false; 4399 4400 Base = SDB->getValue(BasePtr); 4401 Index = SDB->getValue(IndexVal); 4402 IndexType = ISD::SIGNED_SCALED; 4403 Scale = DAG.getTargetConstant( 4404 DL.getTypeAllocSize(GEP->getResultElementType()), 4405 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4406 return true; 4407 } 4408 4409 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4410 SDLoc sdl = getCurSDLoc(); 4411 4412 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4413 const Value *Ptr = I.getArgOperand(1); 4414 SDValue Src0 = getValue(I.getArgOperand(0)); 4415 SDValue Mask = getValue(I.getArgOperand(3)); 4416 EVT VT = Src0.getValueType(); 4417 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4418 ->getMaybeAlignValue() 4419 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4421 4422 SDValue Base; 4423 SDValue Index; 4424 ISD::MemIndexType IndexType; 4425 SDValue Scale; 4426 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4427 I.getParent()); 4428 4429 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4430 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4431 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4432 // TODO: Make MachineMemOperands aware of scalable 4433 // vectors. 4434 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4435 if (!UniformBase) { 4436 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4437 Index = getValue(Ptr); 4438 IndexType = ISD::SIGNED_UNSCALED; 4439 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4440 } 4441 4442 EVT IdxVT = Index.getValueType(); 4443 EVT EltTy = IdxVT.getVectorElementType(); 4444 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4445 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4446 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4447 } 4448 4449 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4450 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4451 Ops, MMO, IndexType, false); 4452 DAG.setRoot(Scatter); 4453 setValue(&I, Scatter); 4454 } 4455 4456 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4457 SDLoc sdl = getCurSDLoc(); 4458 4459 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4460 MaybeAlign &Alignment) { 4461 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4462 Ptr = I.getArgOperand(0); 4463 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4464 Mask = I.getArgOperand(2); 4465 Src0 = I.getArgOperand(3); 4466 }; 4467 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4468 MaybeAlign &Alignment) { 4469 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4470 Ptr = I.getArgOperand(0); 4471 Alignment = None; 4472 Mask = I.getArgOperand(1); 4473 Src0 = I.getArgOperand(2); 4474 }; 4475 4476 Value *PtrOperand, *MaskOperand, *Src0Operand; 4477 MaybeAlign Alignment; 4478 if (IsExpanding) 4479 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4480 else 4481 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4482 4483 SDValue Ptr = getValue(PtrOperand); 4484 SDValue Src0 = getValue(Src0Operand); 4485 SDValue Mask = getValue(MaskOperand); 4486 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4487 4488 EVT VT = Src0.getValueType(); 4489 if (!Alignment) 4490 Alignment = DAG.getEVTAlign(VT); 4491 4492 AAMDNodes AAInfo = I.getAAMetadata(); 4493 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4494 4495 // Do not serialize masked loads of constant memory with anything. 4496 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4497 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4498 4499 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4500 4501 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4502 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4503 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4504 4505 SDValue Load = 4506 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4507 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4508 if (AddToChain) 4509 PendingLoads.push_back(Load.getValue(1)); 4510 setValue(&I, Load); 4511 } 4512 4513 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4514 SDLoc sdl = getCurSDLoc(); 4515 4516 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4517 const Value *Ptr = I.getArgOperand(0); 4518 SDValue Src0 = getValue(I.getArgOperand(3)); 4519 SDValue Mask = getValue(I.getArgOperand(2)); 4520 4521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4522 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4523 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4524 ->getMaybeAlignValue() 4525 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4526 4527 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4528 4529 SDValue Root = DAG.getRoot(); 4530 SDValue Base; 4531 SDValue Index; 4532 ISD::MemIndexType IndexType; 4533 SDValue Scale; 4534 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4535 I.getParent()); 4536 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4537 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4538 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4539 // TODO: Make MachineMemOperands aware of scalable 4540 // vectors. 4541 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4542 4543 if (!UniformBase) { 4544 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4545 Index = getValue(Ptr); 4546 IndexType = ISD::SIGNED_UNSCALED; 4547 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4548 } 4549 4550 EVT IdxVT = Index.getValueType(); 4551 EVT EltTy = IdxVT.getVectorElementType(); 4552 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4553 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4554 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4555 } 4556 4557 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4558 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4559 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4560 4561 PendingLoads.push_back(Gather.getValue(1)); 4562 setValue(&I, Gather); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4568 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4569 SyncScope::ID SSID = I.getSyncScopeID(); 4570 4571 SDValue InChain = getRoot(); 4572 4573 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4574 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4575 4576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4577 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4578 4579 MachineFunction &MF = DAG.getMachineFunction(); 4580 MachineMemOperand *MMO = MF.getMachineMemOperand( 4581 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4582 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4583 FailureOrdering); 4584 4585 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4586 dl, MemVT, VTs, InChain, 4587 getValue(I.getPointerOperand()), 4588 getValue(I.getCompareOperand()), 4589 getValue(I.getNewValOperand()), MMO); 4590 4591 SDValue OutChain = L.getValue(2); 4592 4593 setValue(&I, L); 4594 DAG.setRoot(OutChain); 4595 } 4596 4597 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4598 SDLoc dl = getCurSDLoc(); 4599 ISD::NodeType NT; 4600 switch (I.getOperation()) { 4601 default: llvm_unreachable("Unknown atomicrmw operation"); 4602 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4603 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4604 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4605 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4606 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4607 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4608 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4609 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4610 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4611 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4612 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4613 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4614 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4615 } 4616 AtomicOrdering Ordering = I.getOrdering(); 4617 SyncScope::ID SSID = I.getSyncScopeID(); 4618 4619 SDValue InChain = getRoot(); 4620 4621 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4623 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4624 4625 MachineFunction &MF = DAG.getMachineFunction(); 4626 MachineMemOperand *MMO = MF.getMachineMemOperand( 4627 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4628 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4629 4630 SDValue L = 4631 DAG.getAtomic(NT, dl, MemVT, InChain, 4632 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4633 MMO); 4634 4635 SDValue OutChain = L.getValue(1); 4636 4637 setValue(&I, L); 4638 DAG.setRoot(OutChain); 4639 } 4640 4641 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4642 SDLoc dl = getCurSDLoc(); 4643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4644 SDValue Ops[3]; 4645 Ops[0] = getRoot(); 4646 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4647 TLI.getFenceOperandTy(DAG.getDataLayout())); 4648 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4649 TLI.getFenceOperandTy(DAG.getDataLayout())); 4650 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4651 } 4652 4653 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4654 SDLoc dl = getCurSDLoc(); 4655 AtomicOrdering Order = I.getOrdering(); 4656 SyncScope::ID SSID = I.getSyncScopeID(); 4657 4658 SDValue InChain = getRoot(); 4659 4660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4661 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4662 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4663 4664 if (!TLI.supportsUnalignedAtomics() && 4665 I.getAlignment() < MemVT.getSizeInBits() / 8) 4666 report_fatal_error("Cannot generate unaligned atomic load"); 4667 4668 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4669 4670 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4671 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4672 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4673 4674 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4675 4676 SDValue Ptr = getValue(I.getPointerOperand()); 4677 4678 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4679 // TODO: Once this is better exercised by tests, it should be merged with 4680 // the normal path for loads to prevent future divergence. 4681 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4682 if (MemVT != VT) 4683 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4684 4685 setValue(&I, L); 4686 SDValue OutChain = L.getValue(1); 4687 if (!I.isUnordered()) 4688 DAG.setRoot(OutChain); 4689 else 4690 PendingLoads.push_back(OutChain); 4691 return; 4692 } 4693 4694 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4695 Ptr, MMO); 4696 4697 SDValue OutChain = L.getValue(1); 4698 if (MemVT != VT) 4699 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4700 4701 setValue(&I, L); 4702 DAG.setRoot(OutChain); 4703 } 4704 4705 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4706 SDLoc dl = getCurSDLoc(); 4707 4708 AtomicOrdering Ordering = I.getOrdering(); 4709 SyncScope::ID SSID = I.getSyncScopeID(); 4710 4711 SDValue InChain = getRoot(); 4712 4713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4714 EVT MemVT = 4715 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4716 4717 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4718 report_fatal_error("Cannot generate unaligned atomic store"); 4719 4720 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4721 4722 MachineFunction &MF = DAG.getMachineFunction(); 4723 MachineMemOperand *MMO = MF.getMachineMemOperand( 4724 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4725 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4726 4727 SDValue Val = getValue(I.getValueOperand()); 4728 if (Val.getValueType() != MemVT) 4729 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4730 SDValue Ptr = getValue(I.getPointerOperand()); 4731 4732 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4733 // TODO: Once this is better exercised by tests, it should be merged with 4734 // the normal path for stores to prevent future divergence. 4735 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4736 DAG.setRoot(S); 4737 return; 4738 } 4739 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4740 Ptr, Val, MMO); 4741 4742 4743 DAG.setRoot(OutChain); 4744 } 4745 4746 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4747 /// node. 4748 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4749 unsigned Intrinsic) { 4750 // Ignore the callsite's attributes. A specific call site may be marked with 4751 // readnone, but the lowering code will expect the chain based on the 4752 // definition. 4753 const Function *F = I.getCalledFunction(); 4754 bool HasChain = !F->doesNotAccessMemory(); 4755 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4756 4757 // Build the operand list. 4758 SmallVector<SDValue, 8> Ops; 4759 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4760 if (OnlyLoad) { 4761 // We don't need to serialize loads against other loads. 4762 Ops.push_back(DAG.getRoot()); 4763 } else { 4764 Ops.push_back(getRoot()); 4765 } 4766 } 4767 4768 // Info is set by getTgtMemInstrinsic 4769 TargetLowering::IntrinsicInfo Info; 4770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4771 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4772 DAG.getMachineFunction(), 4773 Intrinsic); 4774 4775 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4776 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4777 Info.opc == ISD::INTRINSIC_W_CHAIN) 4778 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4779 TLI.getPointerTy(DAG.getDataLayout()))); 4780 4781 // Add all operands of the call to the operand list. 4782 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4783 const Value *Arg = I.getArgOperand(i); 4784 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4785 Ops.push_back(getValue(Arg)); 4786 continue; 4787 } 4788 4789 // Use TargetConstant instead of a regular constant for immarg. 4790 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4791 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4792 assert(CI->getBitWidth() <= 64 && 4793 "large intrinsic immediates not handled"); 4794 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4795 } else { 4796 Ops.push_back( 4797 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4798 } 4799 } 4800 4801 SmallVector<EVT, 4> ValueVTs; 4802 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4803 4804 if (HasChain) 4805 ValueVTs.push_back(MVT::Other); 4806 4807 SDVTList VTs = DAG.getVTList(ValueVTs); 4808 4809 // Propagate fast-math-flags from IR to node(s). 4810 SDNodeFlags Flags; 4811 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4812 Flags.copyFMF(*FPMO); 4813 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4814 4815 // Create the node. 4816 SDValue Result; 4817 if (IsTgtIntrinsic) { 4818 // This is target intrinsic that touches memory 4819 Result = 4820 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4821 MachinePointerInfo(Info.ptrVal, Info.offset), 4822 Info.align, Info.flags, Info.size, 4823 I.getAAMetadata()); 4824 } else if (!HasChain) { 4825 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4826 } else if (!I.getType()->isVoidTy()) { 4827 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4828 } else { 4829 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4830 } 4831 4832 if (HasChain) { 4833 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4834 if (OnlyLoad) 4835 PendingLoads.push_back(Chain); 4836 else 4837 DAG.setRoot(Chain); 4838 } 4839 4840 if (!I.getType()->isVoidTy()) { 4841 if (!isa<VectorType>(I.getType())) 4842 Result = lowerRangeToAssertZExt(DAG, I, Result); 4843 4844 MaybeAlign Alignment = I.getRetAlign(); 4845 if (!Alignment) 4846 Alignment = F->getAttributes().getRetAlignment(); 4847 // Insert `assertalign` node if there's an alignment. 4848 if (InsertAssertAlign && Alignment) { 4849 Result = 4850 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4851 } 4852 4853 setValue(&I, Result); 4854 } 4855 } 4856 4857 /// GetSignificand - Get the significand and build it into a floating-point 4858 /// number with exponent of 1: 4859 /// 4860 /// Op = (Op & 0x007fffff) | 0x3f800000; 4861 /// 4862 /// where Op is the hexadecimal representation of floating point value. 4863 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4864 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4865 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4866 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4867 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4868 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4869 } 4870 4871 /// GetExponent - Get the exponent: 4872 /// 4873 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4874 /// 4875 /// where Op is the hexadecimal representation of floating point value. 4876 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4877 const TargetLowering &TLI, const SDLoc &dl) { 4878 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4879 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4880 SDValue t1 = DAG.getNode( 4881 ISD::SRL, dl, MVT::i32, t0, 4882 DAG.getConstant(23, dl, 4883 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4884 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4885 DAG.getConstant(127, dl, MVT::i32)); 4886 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4887 } 4888 4889 /// getF32Constant - Get 32-bit floating point constant. 4890 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4891 const SDLoc &dl) { 4892 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4893 MVT::f32); 4894 } 4895 4896 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4897 SelectionDAG &DAG) { 4898 // TODO: What fast-math-flags should be set on the floating-point nodes? 4899 4900 // IntegerPartOfX = ((int32_t)(t0); 4901 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4902 4903 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4904 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4905 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4906 4907 // IntegerPartOfX <<= 23; 4908 IntegerPartOfX = 4909 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4910 DAG.getConstant(23, dl, 4911 DAG.getTargetLoweringInfo().getShiftAmountTy( 4912 MVT::i32, DAG.getDataLayout()))); 4913 4914 SDValue TwoToFractionalPartOfX; 4915 if (LimitFloatPrecision <= 6) { 4916 // For floating-point precision of 6: 4917 // 4918 // TwoToFractionalPartOfX = 4919 // 0.997535578f + 4920 // (0.735607626f + 0.252464424f * x) * x; 4921 // 4922 // error 0.0144103317, which is 6 bits 4923 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4924 getF32Constant(DAG, 0x3e814304, dl)); 4925 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4926 getF32Constant(DAG, 0x3f3c50c8, dl)); 4927 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4928 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4929 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4930 } else if (LimitFloatPrecision <= 12) { 4931 // For floating-point precision of 12: 4932 // 4933 // TwoToFractionalPartOfX = 4934 // 0.999892986f + 4935 // (0.696457318f + 4936 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4937 // 4938 // error 0.000107046256, which is 13 to 14 bits 4939 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4940 getF32Constant(DAG, 0x3da235e3, dl)); 4941 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4942 getF32Constant(DAG, 0x3e65b8f3, dl)); 4943 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4944 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4945 getF32Constant(DAG, 0x3f324b07, dl)); 4946 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4947 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4948 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4949 } else { // LimitFloatPrecision <= 18 4950 // For floating-point precision of 18: 4951 // 4952 // TwoToFractionalPartOfX = 4953 // 0.999999982f + 4954 // (0.693148872f + 4955 // (0.240227044f + 4956 // (0.554906021e-1f + 4957 // (0.961591928e-2f + 4958 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4959 // error 2.47208000*10^(-7), which is better than 18 bits 4960 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4961 getF32Constant(DAG, 0x3924b03e, dl)); 4962 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4963 getF32Constant(DAG, 0x3ab24b87, dl)); 4964 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4965 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4966 getF32Constant(DAG, 0x3c1d8c17, dl)); 4967 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4968 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4969 getF32Constant(DAG, 0x3d634a1d, dl)); 4970 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4971 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4972 getF32Constant(DAG, 0x3e75fe14, dl)); 4973 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4974 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4975 getF32Constant(DAG, 0x3f317234, dl)); 4976 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4977 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4978 getF32Constant(DAG, 0x3f800000, dl)); 4979 } 4980 4981 // Add the exponent into the result in integer domain. 4982 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4983 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4984 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4985 } 4986 4987 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4988 /// limited-precision mode. 4989 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4990 const TargetLowering &TLI, SDNodeFlags Flags) { 4991 if (Op.getValueType() == MVT::f32 && 4992 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4993 4994 // Put the exponent in the right bit position for later addition to the 4995 // final result: 4996 // 4997 // t0 = Op * log2(e) 4998 4999 // TODO: What fast-math-flags should be set here? 5000 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5001 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5002 return getLimitedPrecisionExp2(t0, dl, DAG); 5003 } 5004 5005 // No special expansion. 5006 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5007 } 5008 5009 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5010 /// limited-precision mode. 5011 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5012 const TargetLowering &TLI, SDNodeFlags Flags) { 5013 // TODO: What fast-math-flags should be set on the floating-point nodes? 5014 5015 if (Op.getValueType() == MVT::f32 && 5016 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5017 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5018 5019 // Scale the exponent by log(2). 5020 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5021 SDValue LogOfExponent = 5022 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5023 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5024 5025 // Get the significand and build it into a floating-point number with 5026 // exponent of 1. 5027 SDValue X = GetSignificand(DAG, Op1, dl); 5028 5029 SDValue LogOfMantissa; 5030 if (LimitFloatPrecision <= 6) { 5031 // For floating-point precision of 6: 5032 // 5033 // LogofMantissa = 5034 // -1.1609546f + 5035 // (1.4034025f - 0.23903021f * x) * x; 5036 // 5037 // error 0.0034276066, which is better than 8 bits 5038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5039 getF32Constant(DAG, 0xbe74c456, dl)); 5040 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5041 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5042 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5043 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5044 getF32Constant(DAG, 0x3f949a29, dl)); 5045 } else if (LimitFloatPrecision <= 12) { 5046 // For floating-point precision of 12: 5047 // 5048 // LogOfMantissa = 5049 // -1.7417939f + 5050 // (2.8212026f + 5051 // (-1.4699568f + 5052 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5053 // 5054 // error 0.000061011436, which is 14 bits 5055 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5056 getF32Constant(DAG, 0xbd67b6d6, dl)); 5057 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5058 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5059 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5060 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5061 getF32Constant(DAG, 0x3fbc278b, dl)); 5062 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5063 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5064 getF32Constant(DAG, 0x40348e95, dl)); 5065 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5066 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5067 getF32Constant(DAG, 0x3fdef31a, dl)); 5068 } else { // LimitFloatPrecision <= 18 5069 // For floating-point precision of 18: 5070 // 5071 // LogOfMantissa = 5072 // -2.1072184f + 5073 // (4.2372794f + 5074 // (-3.7029485f + 5075 // (2.2781945f + 5076 // (-0.87823314f + 5077 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5078 // 5079 // error 0.0000023660568, which is better than 18 bits 5080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5081 getF32Constant(DAG, 0xbc91e5ac, dl)); 5082 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5083 getF32Constant(DAG, 0x3e4350aa, dl)); 5084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5085 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5086 getF32Constant(DAG, 0x3f60d3e3, dl)); 5087 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5088 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5089 getF32Constant(DAG, 0x4011cdf0, dl)); 5090 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5091 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5092 getF32Constant(DAG, 0x406cfd1c, dl)); 5093 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5094 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5095 getF32Constant(DAG, 0x408797cb, dl)); 5096 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5097 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5098 getF32Constant(DAG, 0x4006dcab, dl)); 5099 } 5100 5101 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5102 } 5103 5104 // No special expansion. 5105 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5106 } 5107 5108 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5109 /// limited-precision mode. 5110 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5111 const TargetLowering &TLI, SDNodeFlags Flags) { 5112 // TODO: What fast-math-flags should be set on the floating-point nodes? 5113 5114 if (Op.getValueType() == MVT::f32 && 5115 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5116 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5117 5118 // Get the exponent. 5119 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5120 5121 // Get the significand and build it into a floating-point number with 5122 // exponent of 1. 5123 SDValue X = GetSignificand(DAG, Op1, dl); 5124 5125 // Different possible minimax approximations of significand in 5126 // floating-point for various degrees of accuracy over [1,2]. 5127 SDValue Log2ofMantissa; 5128 if (LimitFloatPrecision <= 6) { 5129 // For floating-point precision of 6: 5130 // 5131 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5132 // 5133 // error 0.0049451742, which is more than 7 bits 5134 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5135 getF32Constant(DAG, 0xbeb08fe0, dl)); 5136 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5137 getF32Constant(DAG, 0x40019463, dl)); 5138 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5139 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5140 getF32Constant(DAG, 0x3fd6633d, dl)); 5141 } else if (LimitFloatPrecision <= 12) { 5142 // For floating-point precision of 12: 5143 // 5144 // Log2ofMantissa = 5145 // -2.51285454f + 5146 // (4.07009056f + 5147 // (-2.12067489f + 5148 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5149 // 5150 // error 0.0000876136000, which is better than 13 bits 5151 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5152 getF32Constant(DAG, 0xbda7262e, dl)); 5153 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5154 getF32Constant(DAG, 0x3f25280b, dl)); 5155 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5156 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5157 getF32Constant(DAG, 0x4007b923, dl)); 5158 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5159 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5160 getF32Constant(DAG, 0x40823e2f, dl)); 5161 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5162 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5163 getF32Constant(DAG, 0x4020d29c, dl)); 5164 } else { // LimitFloatPrecision <= 18 5165 // For floating-point precision of 18: 5166 // 5167 // Log2ofMantissa = 5168 // -3.0400495f + 5169 // (6.1129976f + 5170 // (-5.3420409f + 5171 // (3.2865683f + 5172 // (-1.2669343f + 5173 // (0.27515199f - 5174 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5175 // 5176 // error 0.0000018516, which is better than 18 bits 5177 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5178 getF32Constant(DAG, 0xbcd2769e, dl)); 5179 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5180 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5181 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5182 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5183 getF32Constant(DAG, 0x3fa22ae7, dl)); 5184 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5185 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5186 getF32Constant(DAG, 0x40525723, dl)); 5187 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5188 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5189 getF32Constant(DAG, 0x40aaf200, dl)); 5190 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5191 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5192 getF32Constant(DAG, 0x40c39dad, dl)); 5193 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5194 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5195 getF32Constant(DAG, 0x4042902c, dl)); 5196 } 5197 5198 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5199 } 5200 5201 // No special expansion. 5202 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5203 } 5204 5205 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5206 /// limited-precision mode. 5207 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5208 const TargetLowering &TLI, SDNodeFlags Flags) { 5209 // TODO: What fast-math-flags should be set on the floating-point nodes? 5210 5211 if (Op.getValueType() == MVT::f32 && 5212 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5213 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5214 5215 // Scale the exponent by log10(2) [0.30102999f]. 5216 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5217 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5218 getF32Constant(DAG, 0x3e9a209a, dl)); 5219 5220 // Get the significand and build it into a floating-point number with 5221 // exponent of 1. 5222 SDValue X = GetSignificand(DAG, Op1, dl); 5223 5224 SDValue Log10ofMantissa; 5225 if (LimitFloatPrecision <= 6) { 5226 // For floating-point precision of 6: 5227 // 5228 // Log10ofMantissa = 5229 // -0.50419619f + 5230 // (0.60948995f - 0.10380950f * x) * x; 5231 // 5232 // error 0.0014886165, which is 6 bits 5233 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5234 getF32Constant(DAG, 0xbdd49a13, dl)); 5235 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5236 getF32Constant(DAG, 0x3f1c0789, dl)); 5237 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5238 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5239 getF32Constant(DAG, 0x3f011300, dl)); 5240 } else if (LimitFloatPrecision <= 12) { 5241 // For floating-point precision of 12: 5242 // 5243 // Log10ofMantissa = 5244 // -0.64831180f + 5245 // (0.91751397f + 5246 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5247 // 5248 // error 0.00019228036, which is better than 12 bits 5249 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5250 getF32Constant(DAG, 0x3d431f31, dl)); 5251 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5252 getF32Constant(DAG, 0x3ea21fb2, dl)); 5253 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5254 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5255 getF32Constant(DAG, 0x3f6ae232, dl)); 5256 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5257 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5258 getF32Constant(DAG, 0x3f25f7c3, dl)); 5259 } else { // LimitFloatPrecision <= 18 5260 // For floating-point precision of 18: 5261 // 5262 // Log10ofMantissa = 5263 // -0.84299375f + 5264 // (1.5327582f + 5265 // (-1.0688956f + 5266 // (0.49102474f + 5267 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5268 // 5269 // error 0.0000037995730, which is better than 18 bits 5270 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5271 getF32Constant(DAG, 0x3c5d51ce, dl)); 5272 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5273 getF32Constant(DAG, 0x3e00685a, dl)); 5274 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5275 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5276 getF32Constant(DAG, 0x3efb6798, dl)); 5277 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5278 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5279 getF32Constant(DAG, 0x3f88d192, dl)); 5280 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5281 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5282 getF32Constant(DAG, 0x3fc4316c, dl)); 5283 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5284 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5285 getF32Constant(DAG, 0x3f57ce70, dl)); 5286 } 5287 5288 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5289 } 5290 5291 // No special expansion. 5292 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5293 } 5294 5295 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5296 /// limited-precision mode. 5297 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5298 const TargetLowering &TLI, SDNodeFlags Flags) { 5299 if (Op.getValueType() == MVT::f32 && 5300 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5301 return getLimitedPrecisionExp2(Op, dl, DAG); 5302 5303 // No special expansion. 5304 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5305 } 5306 5307 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5308 /// limited-precision mode with x == 10.0f. 5309 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5310 SelectionDAG &DAG, const TargetLowering &TLI, 5311 SDNodeFlags Flags) { 5312 bool IsExp10 = false; 5313 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5314 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5315 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5316 APFloat Ten(10.0f); 5317 IsExp10 = LHSC->isExactlyValue(Ten); 5318 } 5319 } 5320 5321 // TODO: What fast-math-flags should be set on the FMUL node? 5322 if (IsExp10) { 5323 // Put the exponent in the right bit position for later addition to the 5324 // final result: 5325 // 5326 // #define LOG2OF10 3.3219281f 5327 // t0 = Op * LOG2OF10; 5328 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5329 getF32Constant(DAG, 0x40549a78, dl)); 5330 return getLimitedPrecisionExp2(t0, dl, DAG); 5331 } 5332 5333 // No special expansion. 5334 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5335 } 5336 5337 /// ExpandPowI - Expand a llvm.powi intrinsic. 5338 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5339 SelectionDAG &DAG) { 5340 // If RHS is a constant, we can expand this out to a multiplication tree, 5341 // otherwise we end up lowering to a call to __powidf2 (for example). When 5342 // optimizing for size, we only want to do this if the expansion would produce 5343 // a small number of multiplies, otherwise we do the full expansion. 5344 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5345 // Get the exponent as a positive value. 5346 unsigned Val = RHSC->getSExtValue(); 5347 if ((int)Val < 0) Val = -Val; 5348 5349 // powi(x, 0) -> 1.0 5350 if (Val == 0) 5351 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5352 5353 bool OptForSize = DAG.shouldOptForSize(); 5354 if (!OptForSize || 5355 // If optimizing for size, don't insert too many multiplies. 5356 // This inserts up to 5 multiplies. 5357 countPopulation(Val) + Log2_32(Val) < 7) { 5358 // We use the simple binary decomposition method to generate the multiply 5359 // sequence. There are more optimal ways to do this (for example, 5360 // powi(x,15) generates one more multiply than it should), but this has 5361 // the benefit of being both really simple and much better than a libcall. 5362 SDValue Res; // Logically starts equal to 1.0 5363 SDValue CurSquare = LHS; 5364 // TODO: Intrinsics should have fast-math-flags that propagate to these 5365 // nodes. 5366 while (Val) { 5367 if (Val & 1) { 5368 if (Res.getNode()) 5369 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5370 else 5371 Res = CurSquare; // 1.0*CurSquare. 5372 } 5373 5374 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5375 CurSquare, CurSquare); 5376 Val >>= 1; 5377 } 5378 5379 // If the original was negative, invert the result, producing 1/(x*x*x). 5380 if (RHSC->getSExtValue() < 0) 5381 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5382 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5383 return Res; 5384 } 5385 } 5386 5387 // Otherwise, expand to a libcall. 5388 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5389 } 5390 5391 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5392 SDValue LHS, SDValue RHS, SDValue Scale, 5393 SelectionDAG &DAG, const TargetLowering &TLI) { 5394 EVT VT = LHS.getValueType(); 5395 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5396 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5397 LLVMContext &Ctx = *DAG.getContext(); 5398 5399 // If the type is legal but the operation isn't, this node might survive all 5400 // the way to operation legalization. If we end up there and we do not have 5401 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5402 // node. 5403 5404 // Coax the legalizer into expanding the node during type legalization instead 5405 // by bumping the size by one bit. This will force it to Promote, enabling the 5406 // early expansion and avoiding the need to expand later. 5407 5408 // We don't have to do this if Scale is 0; that can always be expanded, unless 5409 // it's a saturating signed operation. Those can experience true integer 5410 // division overflow, a case which we must avoid. 5411 5412 // FIXME: We wouldn't have to do this (or any of the early 5413 // expansion/promotion) if it was possible to expand a libcall of an 5414 // illegal type during operation legalization. But it's not, so things 5415 // get a bit hacky. 5416 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5417 if ((ScaleInt > 0 || (Saturating && Signed)) && 5418 (TLI.isTypeLegal(VT) || 5419 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5420 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5421 Opcode, VT, ScaleInt); 5422 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5423 EVT PromVT; 5424 if (VT.isScalarInteger()) 5425 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5426 else if (VT.isVector()) { 5427 PromVT = VT.getVectorElementType(); 5428 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5429 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5430 } else 5431 llvm_unreachable("Wrong VT for DIVFIX?"); 5432 if (Signed) { 5433 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5434 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5435 } else { 5436 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5437 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5438 } 5439 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5440 // For saturating operations, we need to shift up the LHS to get the 5441 // proper saturation width, and then shift down again afterwards. 5442 if (Saturating) 5443 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5444 DAG.getConstant(1, DL, ShiftTy)); 5445 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5446 if (Saturating) 5447 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5448 DAG.getConstant(1, DL, ShiftTy)); 5449 return DAG.getZExtOrTrunc(Res, DL, VT); 5450 } 5451 } 5452 5453 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5454 } 5455 5456 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5457 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5458 static void 5459 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5460 const SDValue &N) { 5461 switch (N.getOpcode()) { 5462 case ISD::CopyFromReg: { 5463 SDValue Op = N.getOperand(1); 5464 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5465 Op.getValueType().getSizeInBits()); 5466 return; 5467 } 5468 case ISD::BITCAST: 5469 case ISD::AssertZext: 5470 case ISD::AssertSext: 5471 case ISD::TRUNCATE: 5472 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5473 return; 5474 case ISD::BUILD_PAIR: 5475 case ISD::BUILD_VECTOR: 5476 case ISD::CONCAT_VECTORS: 5477 for (SDValue Op : N->op_values()) 5478 getUnderlyingArgRegs(Regs, Op); 5479 return; 5480 default: 5481 return; 5482 } 5483 } 5484 5485 /// If the DbgValueInst is a dbg_value of a function argument, create the 5486 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5487 /// instruction selection, they will be inserted to the entry BB. 5488 /// We don't currently support this for variadic dbg_values, as they shouldn't 5489 /// appear for function arguments or in the prologue. 5490 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5491 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5492 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5493 const Argument *Arg = dyn_cast<Argument>(V); 5494 if (!Arg) 5495 return false; 5496 5497 MachineFunction &MF = DAG.getMachineFunction(); 5498 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5499 5500 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5501 // we've been asked to pursue. 5502 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5503 bool Indirect) { 5504 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5505 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5506 // pointing at the VReg, which will be patched up later. 5507 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5508 auto MIB = BuildMI(MF, DL, Inst); 5509 MIB.addReg(Reg); 5510 MIB.addImm(0); 5511 MIB.addMetadata(Variable); 5512 auto *NewDIExpr = FragExpr; 5513 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5514 // the DIExpression. 5515 if (Indirect) 5516 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5517 MIB.addMetadata(NewDIExpr); 5518 return MIB; 5519 } else { 5520 // Create a completely standard DBG_VALUE. 5521 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5522 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5523 } 5524 }; 5525 5526 if (Kind == FuncArgumentDbgValueKind::Value) { 5527 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5528 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5529 // the entry block. 5530 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5531 if (!IsInEntryBlock) 5532 return false; 5533 5534 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5535 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5536 // variable that also is a param. 5537 // 5538 // Although, if we are at the top of the entry block already, we can still 5539 // emit using ArgDbgValue. This might catch some situations when the 5540 // dbg.value refers to an argument that isn't used in the entry block, so 5541 // any CopyToReg node would be optimized out and the only way to express 5542 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5543 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5544 // we should only emit as ArgDbgValue if the Variable is an argument to the 5545 // current function, and the dbg.value intrinsic is found in the entry 5546 // block. 5547 bool VariableIsFunctionInputArg = Variable->isParameter() && 5548 !DL->getInlinedAt(); 5549 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5550 if (!IsInPrologue && !VariableIsFunctionInputArg) 5551 return false; 5552 5553 // Here we assume that a function argument on IR level only can be used to 5554 // describe one input parameter on source level. If we for example have 5555 // source code like this 5556 // 5557 // struct A { long x, y; }; 5558 // void foo(struct A a, long b) { 5559 // ... 5560 // b = a.x; 5561 // ... 5562 // } 5563 // 5564 // and IR like this 5565 // 5566 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5567 // entry: 5568 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5569 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5570 // call void @llvm.dbg.value(metadata i32 %b, "b", 5571 // ... 5572 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5573 // ... 5574 // 5575 // then the last dbg.value is describing a parameter "b" using a value that 5576 // is an argument. But since we already has used %a1 to describe a parameter 5577 // we should not handle that last dbg.value here (that would result in an 5578 // incorrect hoisting of the DBG_VALUE to the function entry). 5579 // Notice that we allow one dbg.value per IR level argument, to accommodate 5580 // for the situation with fragments above. 5581 if (VariableIsFunctionInputArg) { 5582 unsigned ArgNo = Arg->getArgNo(); 5583 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5584 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5585 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5586 return false; 5587 FuncInfo.DescribedArgs.set(ArgNo); 5588 } 5589 } 5590 5591 bool IsIndirect = false; 5592 Optional<MachineOperand> Op; 5593 // Some arguments' frame index is recorded during argument lowering. 5594 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5595 if (FI != std::numeric_limits<int>::max()) 5596 Op = MachineOperand::CreateFI(FI); 5597 5598 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5599 if (!Op && N.getNode()) { 5600 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5601 Register Reg; 5602 if (ArgRegsAndSizes.size() == 1) 5603 Reg = ArgRegsAndSizes.front().first; 5604 5605 if (Reg && Reg.isVirtual()) { 5606 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5607 Register PR = RegInfo.getLiveInPhysReg(Reg); 5608 if (PR) 5609 Reg = PR; 5610 } 5611 if (Reg) { 5612 Op = MachineOperand::CreateReg(Reg, false); 5613 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5614 } 5615 } 5616 5617 if (!Op && N.getNode()) { 5618 // Check if frame index is available. 5619 SDValue LCandidate = peekThroughBitcasts(N); 5620 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5621 if (FrameIndexSDNode *FINode = 5622 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5623 Op = MachineOperand::CreateFI(FINode->getIndex()); 5624 } 5625 5626 if (!Op) { 5627 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5628 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5629 SplitRegs) { 5630 unsigned Offset = 0; 5631 for (const auto &RegAndSize : SplitRegs) { 5632 // If the expression is already a fragment, the current register 5633 // offset+size might extend beyond the fragment. In this case, only 5634 // the register bits that are inside the fragment are relevant. 5635 int RegFragmentSizeInBits = RegAndSize.second; 5636 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5637 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5638 // The register is entirely outside the expression fragment, 5639 // so is irrelevant for debug info. 5640 if (Offset >= ExprFragmentSizeInBits) 5641 break; 5642 // The register is partially outside the expression fragment, only 5643 // the low bits within the fragment are relevant for debug info. 5644 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5645 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5646 } 5647 } 5648 5649 auto FragmentExpr = DIExpression::createFragmentExpression( 5650 Expr, Offset, RegFragmentSizeInBits); 5651 Offset += RegAndSize.second; 5652 // If a valid fragment expression cannot be created, the variable's 5653 // correct value cannot be determined and so it is set as Undef. 5654 if (!FragmentExpr) { 5655 SDDbgValue *SDV = DAG.getConstantDbgValue( 5656 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5657 DAG.AddDbgValue(SDV, false); 5658 continue; 5659 } 5660 MachineInstr *NewMI = 5661 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5662 Kind != FuncArgumentDbgValueKind::Value); 5663 FuncInfo.ArgDbgValues.push_back(NewMI); 5664 } 5665 }; 5666 5667 // Check if ValueMap has reg number. 5668 DenseMap<const Value *, Register>::const_iterator 5669 VMI = FuncInfo.ValueMap.find(V); 5670 if (VMI != FuncInfo.ValueMap.end()) { 5671 const auto &TLI = DAG.getTargetLoweringInfo(); 5672 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5673 V->getType(), None); 5674 if (RFV.occupiesMultipleRegs()) { 5675 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5676 return true; 5677 } 5678 5679 Op = MachineOperand::CreateReg(VMI->second, false); 5680 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5681 } else if (ArgRegsAndSizes.size() > 1) { 5682 // This was split due to the calling convention, and no virtual register 5683 // mapping exists for the value. 5684 splitMultiRegDbgValue(ArgRegsAndSizes); 5685 return true; 5686 } 5687 } 5688 5689 if (!Op) 5690 return false; 5691 5692 assert(Variable->isValidLocationForIntrinsic(DL) && 5693 "Expected inlined-at fields to agree"); 5694 MachineInstr *NewMI = nullptr; 5695 5696 if (Op->isReg()) 5697 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5698 else 5699 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5700 Variable, Expr); 5701 5702 // Otherwise, use ArgDbgValues. 5703 FuncInfo.ArgDbgValues.push_back(NewMI); 5704 return true; 5705 } 5706 5707 /// Return the appropriate SDDbgValue based on N. 5708 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5709 DILocalVariable *Variable, 5710 DIExpression *Expr, 5711 const DebugLoc &dl, 5712 unsigned DbgSDNodeOrder) { 5713 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5714 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5715 // stack slot locations. 5716 // 5717 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5718 // debug values here after optimization: 5719 // 5720 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5721 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5722 // 5723 // Both describe the direct values of their associated variables. 5724 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5725 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5726 } 5727 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5728 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5729 } 5730 5731 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5732 switch (Intrinsic) { 5733 case Intrinsic::smul_fix: 5734 return ISD::SMULFIX; 5735 case Intrinsic::umul_fix: 5736 return ISD::UMULFIX; 5737 case Intrinsic::smul_fix_sat: 5738 return ISD::SMULFIXSAT; 5739 case Intrinsic::umul_fix_sat: 5740 return ISD::UMULFIXSAT; 5741 case Intrinsic::sdiv_fix: 5742 return ISD::SDIVFIX; 5743 case Intrinsic::udiv_fix: 5744 return ISD::UDIVFIX; 5745 case Intrinsic::sdiv_fix_sat: 5746 return ISD::SDIVFIXSAT; 5747 case Intrinsic::udiv_fix_sat: 5748 return ISD::UDIVFIXSAT; 5749 default: 5750 llvm_unreachable("Unhandled fixed point intrinsic"); 5751 } 5752 } 5753 5754 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5755 const char *FunctionName) { 5756 assert(FunctionName && "FunctionName must not be nullptr"); 5757 SDValue Callee = DAG.getExternalSymbol( 5758 FunctionName, 5759 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5760 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5761 } 5762 5763 /// Given a @llvm.call.preallocated.setup, return the corresponding 5764 /// preallocated call. 5765 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5766 assert(cast<CallBase>(PreallocatedSetup) 5767 ->getCalledFunction() 5768 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5769 "expected call_preallocated_setup Value"); 5770 for (auto *U : PreallocatedSetup->users()) { 5771 auto *UseCall = cast<CallBase>(U); 5772 const Function *Fn = UseCall->getCalledFunction(); 5773 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5774 return UseCall; 5775 } 5776 } 5777 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5778 } 5779 5780 /// Lower the call to the specified intrinsic function. 5781 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5782 unsigned Intrinsic) { 5783 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5784 SDLoc sdl = getCurSDLoc(); 5785 DebugLoc dl = getCurDebugLoc(); 5786 SDValue Res; 5787 5788 SDNodeFlags Flags; 5789 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5790 Flags.copyFMF(*FPOp); 5791 5792 switch (Intrinsic) { 5793 default: 5794 // By default, turn this into a target intrinsic node. 5795 visitTargetIntrinsic(I, Intrinsic); 5796 return; 5797 case Intrinsic::vscale: { 5798 match(&I, m_VScale(DAG.getDataLayout())); 5799 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5800 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5801 return; 5802 } 5803 case Intrinsic::vastart: visitVAStart(I); return; 5804 case Intrinsic::vaend: visitVAEnd(I); return; 5805 case Intrinsic::vacopy: visitVACopy(I); return; 5806 case Intrinsic::returnaddress: 5807 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5808 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5809 getValue(I.getArgOperand(0)))); 5810 return; 5811 case Intrinsic::addressofreturnaddress: 5812 setValue(&I, 5813 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5814 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5815 return; 5816 case Intrinsic::sponentry: 5817 setValue(&I, 5818 DAG.getNode(ISD::SPONENTRY, sdl, 5819 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5820 return; 5821 case Intrinsic::frameaddress: 5822 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5823 TLI.getFrameIndexTy(DAG.getDataLayout()), 5824 getValue(I.getArgOperand(0)))); 5825 return; 5826 case Intrinsic::read_volatile_register: 5827 case Intrinsic::read_register: { 5828 Value *Reg = I.getArgOperand(0); 5829 SDValue Chain = getRoot(); 5830 SDValue RegName = 5831 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5832 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5833 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5834 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5835 setValue(&I, Res); 5836 DAG.setRoot(Res.getValue(1)); 5837 return; 5838 } 5839 case Intrinsic::write_register: { 5840 Value *Reg = I.getArgOperand(0); 5841 Value *RegValue = I.getArgOperand(1); 5842 SDValue Chain = getRoot(); 5843 SDValue RegName = 5844 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5845 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5846 RegName, getValue(RegValue))); 5847 return; 5848 } 5849 case Intrinsic::memcpy: { 5850 const auto &MCI = cast<MemCpyInst>(I); 5851 SDValue Op1 = getValue(I.getArgOperand(0)); 5852 SDValue Op2 = getValue(I.getArgOperand(1)); 5853 SDValue Op3 = getValue(I.getArgOperand(2)); 5854 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5855 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5856 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5857 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5858 bool isVol = MCI.isVolatile(); 5859 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5860 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5861 // node. 5862 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5863 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5864 /* AlwaysInline */ false, isTC, 5865 MachinePointerInfo(I.getArgOperand(0)), 5866 MachinePointerInfo(I.getArgOperand(1)), 5867 I.getAAMetadata()); 5868 updateDAGForMaybeTailCall(MC); 5869 return; 5870 } 5871 case Intrinsic::memcpy_inline: { 5872 const auto &MCI = cast<MemCpyInlineInst>(I); 5873 SDValue Dst = getValue(I.getArgOperand(0)); 5874 SDValue Src = getValue(I.getArgOperand(1)); 5875 SDValue Size = getValue(I.getArgOperand(2)); 5876 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5877 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5878 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5879 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5880 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5881 bool isVol = MCI.isVolatile(); 5882 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5883 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5884 // node. 5885 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5886 /* AlwaysInline */ true, isTC, 5887 MachinePointerInfo(I.getArgOperand(0)), 5888 MachinePointerInfo(I.getArgOperand(1)), 5889 I.getAAMetadata()); 5890 updateDAGForMaybeTailCall(MC); 5891 return; 5892 } 5893 case Intrinsic::memset: { 5894 const auto &MSI = cast<MemSetInst>(I); 5895 SDValue Op1 = getValue(I.getArgOperand(0)); 5896 SDValue Op2 = getValue(I.getArgOperand(1)); 5897 SDValue Op3 = getValue(I.getArgOperand(2)); 5898 // @llvm.memset defines 0 and 1 to both mean no alignment. 5899 Align Alignment = MSI.getDestAlign().valueOrOne(); 5900 bool isVol = MSI.isVolatile(); 5901 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5902 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5903 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5904 MachinePointerInfo(I.getArgOperand(0)), 5905 I.getAAMetadata()); 5906 updateDAGForMaybeTailCall(MS); 5907 return; 5908 } 5909 case Intrinsic::memmove: { 5910 const auto &MMI = cast<MemMoveInst>(I); 5911 SDValue Op1 = getValue(I.getArgOperand(0)); 5912 SDValue Op2 = getValue(I.getArgOperand(1)); 5913 SDValue Op3 = getValue(I.getArgOperand(2)); 5914 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5915 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5916 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5917 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5918 bool isVol = MMI.isVolatile(); 5919 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5920 // FIXME: Support passing different dest/src alignments to the memmove DAG 5921 // node. 5922 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5923 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5924 isTC, MachinePointerInfo(I.getArgOperand(0)), 5925 MachinePointerInfo(I.getArgOperand(1)), 5926 I.getAAMetadata()); 5927 updateDAGForMaybeTailCall(MM); 5928 return; 5929 } 5930 case Intrinsic::memcpy_element_unordered_atomic: { 5931 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5932 SDValue Dst = getValue(MI.getRawDest()); 5933 SDValue Src = getValue(MI.getRawSource()); 5934 SDValue Length = getValue(MI.getLength()); 5935 5936 unsigned DstAlign = MI.getDestAlignment(); 5937 unsigned SrcAlign = MI.getSourceAlignment(); 5938 Type *LengthTy = MI.getLength()->getType(); 5939 unsigned ElemSz = MI.getElementSizeInBytes(); 5940 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5941 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5942 SrcAlign, Length, LengthTy, ElemSz, isTC, 5943 MachinePointerInfo(MI.getRawDest()), 5944 MachinePointerInfo(MI.getRawSource())); 5945 updateDAGForMaybeTailCall(MC); 5946 return; 5947 } 5948 case Intrinsic::memmove_element_unordered_atomic: { 5949 auto &MI = cast<AtomicMemMoveInst>(I); 5950 SDValue Dst = getValue(MI.getRawDest()); 5951 SDValue Src = getValue(MI.getRawSource()); 5952 SDValue Length = getValue(MI.getLength()); 5953 5954 unsigned DstAlign = MI.getDestAlignment(); 5955 unsigned SrcAlign = MI.getSourceAlignment(); 5956 Type *LengthTy = MI.getLength()->getType(); 5957 unsigned ElemSz = MI.getElementSizeInBytes(); 5958 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5959 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5960 SrcAlign, Length, LengthTy, ElemSz, isTC, 5961 MachinePointerInfo(MI.getRawDest()), 5962 MachinePointerInfo(MI.getRawSource())); 5963 updateDAGForMaybeTailCall(MC); 5964 return; 5965 } 5966 case Intrinsic::memset_element_unordered_atomic: { 5967 auto &MI = cast<AtomicMemSetInst>(I); 5968 SDValue Dst = getValue(MI.getRawDest()); 5969 SDValue Val = getValue(MI.getValue()); 5970 SDValue Length = getValue(MI.getLength()); 5971 5972 unsigned DstAlign = MI.getDestAlignment(); 5973 Type *LengthTy = MI.getLength()->getType(); 5974 unsigned ElemSz = MI.getElementSizeInBytes(); 5975 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5976 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5977 LengthTy, ElemSz, isTC, 5978 MachinePointerInfo(MI.getRawDest())); 5979 updateDAGForMaybeTailCall(MC); 5980 return; 5981 } 5982 case Intrinsic::call_preallocated_setup: { 5983 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5984 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5985 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5986 getRoot(), SrcValue); 5987 setValue(&I, Res); 5988 DAG.setRoot(Res); 5989 return; 5990 } 5991 case Intrinsic::call_preallocated_arg: { 5992 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5993 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5994 SDValue Ops[3]; 5995 Ops[0] = getRoot(); 5996 Ops[1] = SrcValue; 5997 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5998 MVT::i32); // arg index 5999 SDValue Res = DAG.getNode( 6000 ISD::PREALLOCATED_ARG, sdl, 6001 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6002 setValue(&I, Res); 6003 DAG.setRoot(Res.getValue(1)); 6004 return; 6005 } 6006 case Intrinsic::dbg_addr: 6007 case Intrinsic::dbg_declare: { 6008 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6009 // they are non-variadic. 6010 const auto &DI = cast<DbgVariableIntrinsic>(I); 6011 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6012 DILocalVariable *Variable = DI.getVariable(); 6013 DIExpression *Expression = DI.getExpression(); 6014 dropDanglingDebugInfo(Variable, Expression); 6015 assert(Variable && "Missing variable"); 6016 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6017 << "\n"); 6018 // Check if address has undef value. 6019 const Value *Address = DI.getVariableLocationOp(0); 6020 if (!Address || isa<UndefValue>(Address) || 6021 (Address->use_empty() && !isa<Argument>(Address))) { 6022 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6023 << " (bad/undef/unused-arg address)\n"); 6024 return; 6025 } 6026 6027 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6028 6029 // Check if this variable can be described by a frame index, typically 6030 // either as a static alloca or a byval parameter. 6031 int FI = std::numeric_limits<int>::max(); 6032 if (const auto *AI = 6033 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6034 if (AI->isStaticAlloca()) { 6035 auto I = FuncInfo.StaticAllocaMap.find(AI); 6036 if (I != FuncInfo.StaticAllocaMap.end()) 6037 FI = I->second; 6038 } 6039 } else if (const auto *Arg = dyn_cast<Argument>( 6040 Address->stripInBoundsConstantOffsets())) { 6041 FI = FuncInfo.getArgumentFrameIndex(Arg); 6042 } 6043 6044 // llvm.dbg.addr is control dependent and always generates indirect 6045 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6046 // the MachineFunction variable table. 6047 if (FI != std::numeric_limits<int>::max()) { 6048 if (Intrinsic == Intrinsic::dbg_addr) { 6049 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6050 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6051 dl, SDNodeOrder); 6052 DAG.AddDbgValue(SDV, isParameter); 6053 } else { 6054 LLVM_DEBUG(dbgs() << "Skipping " << DI 6055 << " (variable info stashed in MF side table)\n"); 6056 } 6057 return; 6058 } 6059 6060 SDValue &N = NodeMap[Address]; 6061 if (!N.getNode() && isa<Argument>(Address)) 6062 // Check unused arguments map. 6063 N = UnusedArgNodeMap[Address]; 6064 SDDbgValue *SDV; 6065 if (N.getNode()) { 6066 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6067 Address = BCI->getOperand(0); 6068 // Parameters are handled specially. 6069 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6070 if (isParameter && FINode) { 6071 // Byval parameter. We have a frame index at this point. 6072 SDV = 6073 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6074 /*IsIndirect*/ true, dl, SDNodeOrder); 6075 } else if (isa<Argument>(Address)) { 6076 // Address is an argument, so try to emit its dbg value using 6077 // virtual register info from the FuncInfo.ValueMap. 6078 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6079 FuncArgumentDbgValueKind::Declare, N); 6080 return; 6081 } else { 6082 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6083 true, dl, SDNodeOrder); 6084 } 6085 DAG.AddDbgValue(SDV, isParameter); 6086 } else { 6087 // If Address is an argument then try to emit its dbg value using 6088 // virtual register info from the FuncInfo.ValueMap. 6089 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6090 FuncArgumentDbgValueKind::Declare, N)) { 6091 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6092 << " (could not emit func-arg dbg_value)\n"); 6093 } 6094 } 6095 return; 6096 } 6097 case Intrinsic::dbg_label: { 6098 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6099 DILabel *Label = DI.getLabel(); 6100 assert(Label && "Missing label"); 6101 6102 SDDbgLabel *SDV; 6103 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6104 DAG.AddDbgLabel(SDV); 6105 return; 6106 } 6107 case Intrinsic::dbg_value: { 6108 const DbgValueInst &DI = cast<DbgValueInst>(I); 6109 assert(DI.getVariable() && "Missing variable"); 6110 6111 DILocalVariable *Variable = DI.getVariable(); 6112 DIExpression *Expression = DI.getExpression(); 6113 dropDanglingDebugInfo(Variable, Expression); 6114 SmallVector<Value *, 4> Values(DI.getValues()); 6115 if (Values.empty()) 6116 return; 6117 6118 if (llvm::is_contained(Values, nullptr)) 6119 return; 6120 6121 bool IsVariadic = DI.hasArgList(); 6122 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6123 SDNodeOrder, IsVariadic)) 6124 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6125 return; 6126 } 6127 6128 case Intrinsic::eh_typeid_for: { 6129 // Find the type id for the given typeinfo. 6130 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6131 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6132 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6133 setValue(&I, Res); 6134 return; 6135 } 6136 6137 case Intrinsic::eh_return_i32: 6138 case Intrinsic::eh_return_i64: 6139 DAG.getMachineFunction().setCallsEHReturn(true); 6140 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6141 MVT::Other, 6142 getControlRoot(), 6143 getValue(I.getArgOperand(0)), 6144 getValue(I.getArgOperand(1)))); 6145 return; 6146 case Intrinsic::eh_unwind_init: 6147 DAG.getMachineFunction().setCallsUnwindInit(true); 6148 return; 6149 case Intrinsic::eh_dwarf_cfa: 6150 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6151 TLI.getPointerTy(DAG.getDataLayout()), 6152 getValue(I.getArgOperand(0)))); 6153 return; 6154 case Intrinsic::eh_sjlj_callsite: { 6155 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6156 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6157 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6158 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6159 6160 MMI.setCurrentCallSite(CI->getZExtValue()); 6161 return; 6162 } 6163 case Intrinsic::eh_sjlj_functioncontext: { 6164 // Get and store the index of the function context. 6165 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6166 AllocaInst *FnCtx = 6167 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6168 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6169 MFI.setFunctionContextIndex(FI); 6170 return; 6171 } 6172 case Intrinsic::eh_sjlj_setjmp: { 6173 SDValue Ops[2]; 6174 Ops[0] = getRoot(); 6175 Ops[1] = getValue(I.getArgOperand(0)); 6176 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6177 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6178 setValue(&I, Op.getValue(0)); 6179 DAG.setRoot(Op.getValue(1)); 6180 return; 6181 } 6182 case Intrinsic::eh_sjlj_longjmp: 6183 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6184 getRoot(), getValue(I.getArgOperand(0)))); 6185 return; 6186 case Intrinsic::eh_sjlj_setup_dispatch: 6187 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6188 getRoot())); 6189 return; 6190 case Intrinsic::masked_gather: 6191 visitMaskedGather(I); 6192 return; 6193 case Intrinsic::masked_load: 6194 visitMaskedLoad(I); 6195 return; 6196 case Intrinsic::masked_scatter: 6197 visitMaskedScatter(I); 6198 return; 6199 case Intrinsic::masked_store: 6200 visitMaskedStore(I); 6201 return; 6202 case Intrinsic::masked_expandload: 6203 visitMaskedLoad(I, true /* IsExpanding */); 6204 return; 6205 case Intrinsic::masked_compressstore: 6206 visitMaskedStore(I, true /* IsCompressing */); 6207 return; 6208 case Intrinsic::powi: 6209 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6210 getValue(I.getArgOperand(1)), DAG)); 6211 return; 6212 case Intrinsic::log: 6213 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6214 return; 6215 case Intrinsic::log2: 6216 setValue(&I, 6217 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6218 return; 6219 case Intrinsic::log10: 6220 setValue(&I, 6221 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6222 return; 6223 case Intrinsic::exp: 6224 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6225 return; 6226 case Intrinsic::exp2: 6227 setValue(&I, 6228 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6229 return; 6230 case Intrinsic::pow: 6231 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6232 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6233 return; 6234 case Intrinsic::sqrt: 6235 case Intrinsic::fabs: 6236 case Intrinsic::sin: 6237 case Intrinsic::cos: 6238 case Intrinsic::floor: 6239 case Intrinsic::ceil: 6240 case Intrinsic::trunc: 6241 case Intrinsic::rint: 6242 case Intrinsic::nearbyint: 6243 case Intrinsic::round: 6244 case Intrinsic::roundeven: 6245 case Intrinsic::canonicalize: { 6246 unsigned Opcode; 6247 switch (Intrinsic) { 6248 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6249 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6250 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6251 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6252 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6253 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6254 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6255 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6256 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6257 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6258 case Intrinsic::round: Opcode = ISD::FROUND; break; 6259 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6260 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6261 } 6262 6263 setValue(&I, DAG.getNode(Opcode, sdl, 6264 getValue(I.getArgOperand(0)).getValueType(), 6265 getValue(I.getArgOperand(0)), Flags)); 6266 return; 6267 } 6268 case Intrinsic::lround: 6269 case Intrinsic::llround: 6270 case Intrinsic::lrint: 6271 case Intrinsic::llrint: { 6272 unsigned Opcode; 6273 switch (Intrinsic) { 6274 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6275 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6276 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6277 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6278 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6279 } 6280 6281 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6282 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6283 getValue(I.getArgOperand(0)))); 6284 return; 6285 } 6286 case Intrinsic::minnum: 6287 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6288 getValue(I.getArgOperand(0)).getValueType(), 6289 getValue(I.getArgOperand(0)), 6290 getValue(I.getArgOperand(1)), Flags)); 6291 return; 6292 case Intrinsic::maxnum: 6293 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6294 getValue(I.getArgOperand(0)).getValueType(), 6295 getValue(I.getArgOperand(0)), 6296 getValue(I.getArgOperand(1)), Flags)); 6297 return; 6298 case Intrinsic::minimum: 6299 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6300 getValue(I.getArgOperand(0)).getValueType(), 6301 getValue(I.getArgOperand(0)), 6302 getValue(I.getArgOperand(1)), Flags)); 6303 return; 6304 case Intrinsic::maximum: 6305 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6306 getValue(I.getArgOperand(0)).getValueType(), 6307 getValue(I.getArgOperand(0)), 6308 getValue(I.getArgOperand(1)), Flags)); 6309 return; 6310 case Intrinsic::copysign: 6311 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6312 getValue(I.getArgOperand(0)).getValueType(), 6313 getValue(I.getArgOperand(0)), 6314 getValue(I.getArgOperand(1)), Flags)); 6315 return; 6316 case Intrinsic::arithmetic_fence: { 6317 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6318 getValue(I.getArgOperand(0)).getValueType(), 6319 getValue(I.getArgOperand(0)), Flags)); 6320 return; 6321 } 6322 case Intrinsic::fma: 6323 setValue(&I, DAG.getNode( 6324 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6325 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6326 getValue(I.getArgOperand(2)), Flags)); 6327 return; 6328 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6329 case Intrinsic::INTRINSIC: 6330 #include "llvm/IR/ConstrainedOps.def" 6331 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6332 return; 6333 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6334 #include "llvm/IR/VPIntrinsics.def" 6335 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6336 return; 6337 case Intrinsic::fptrunc_round: { 6338 // Get the last argument, the metadata and convert it to an integer in the 6339 // call 6340 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6341 Optional<RoundingMode> RoundMode = 6342 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6343 6344 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6345 6346 // Propagate fast-math-flags from IR to node(s). 6347 SDNodeFlags Flags; 6348 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6349 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6350 6351 SDValue Result; 6352 Result = DAG.getNode( 6353 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6354 DAG.getTargetConstant((int)RoundMode.getValue(), sdl, 6355 TLI.getPointerTy(DAG.getDataLayout()))); 6356 setValue(&I, Result); 6357 6358 return; 6359 } 6360 case Intrinsic::fmuladd: { 6361 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6362 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6363 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6364 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6365 getValue(I.getArgOperand(0)).getValueType(), 6366 getValue(I.getArgOperand(0)), 6367 getValue(I.getArgOperand(1)), 6368 getValue(I.getArgOperand(2)), Flags)); 6369 } else { 6370 // TODO: Intrinsic calls should have fast-math-flags. 6371 SDValue Mul = DAG.getNode( 6372 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6373 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6374 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6375 getValue(I.getArgOperand(0)).getValueType(), 6376 Mul, getValue(I.getArgOperand(2)), Flags); 6377 setValue(&I, Add); 6378 } 6379 return; 6380 } 6381 case Intrinsic::convert_to_fp16: 6382 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6383 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6384 getValue(I.getArgOperand(0)), 6385 DAG.getTargetConstant(0, sdl, 6386 MVT::i32)))); 6387 return; 6388 case Intrinsic::convert_from_fp16: 6389 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6390 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6391 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6392 getValue(I.getArgOperand(0))))); 6393 return; 6394 case Intrinsic::fptosi_sat: { 6395 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6396 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6397 getValue(I.getArgOperand(0)), 6398 DAG.getValueType(VT.getScalarType()))); 6399 return; 6400 } 6401 case Intrinsic::fptoui_sat: { 6402 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6403 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6404 getValue(I.getArgOperand(0)), 6405 DAG.getValueType(VT.getScalarType()))); 6406 return; 6407 } 6408 case Intrinsic::set_rounding: 6409 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6410 {getRoot(), getValue(I.getArgOperand(0))}); 6411 setValue(&I, Res); 6412 DAG.setRoot(Res.getValue(0)); 6413 return; 6414 case Intrinsic::pcmarker: { 6415 SDValue Tmp = getValue(I.getArgOperand(0)); 6416 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6417 return; 6418 } 6419 case Intrinsic::readcyclecounter: { 6420 SDValue Op = getRoot(); 6421 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6422 DAG.getVTList(MVT::i64, MVT::Other), Op); 6423 setValue(&I, Res); 6424 DAG.setRoot(Res.getValue(1)); 6425 return; 6426 } 6427 case Intrinsic::bitreverse: 6428 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6429 getValue(I.getArgOperand(0)).getValueType(), 6430 getValue(I.getArgOperand(0)))); 6431 return; 6432 case Intrinsic::bswap: 6433 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6434 getValue(I.getArgOperand(0)).getValueType(), 6435 getValue(I.getArgOperand(0)))); 6436 return; 6437 case Intrinsic::cttz: { 6438 SDValue Arg = getValue(I.getArgOperand(0)); 6439 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6440 EVT Ty = Arg.getValueType(); 6441 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6442 sdl, Ty, Arg)); 6443 return; 6444 } 6445 case Intrinsic::ctlz: { 6446 SDValue Arg = getValue(I.getArgOperand(0)); 6447 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6448 EVT Ty = Arg.getValueType(); 6449 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6450 sdl, Ty, Arg)); 6451 return; 6452 } 6453 case Intrinsic::ctpop: { 6454 SDValue Arg = getValue(I.getArgOperand(0)); 6455 EVT Ty = Arg.getValueType(); 6456 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6457 return; 6458 } 6459 case Intrinsic::fshl: 6460 case Intrinsic::fshr: { 6461 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6462 SDValue X = getValue(I.getArgOperand(0)); 6463 SDValue Y = getValue(I.getArgOperand(1)); 6464 SDValue Z = getValue(I.getArgOperand(2)); 6465 EVT VT = X.getValueType(); 6466 6467 if (X == Y) { 6468 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6469 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6470 } else { 6471 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6472 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6473 } 6474 return; 6475 } 6476 case Intrinsic::sadd_sat: { 6477 SDValue Op1 = getValue(I.getArgOperand(0)); 6478 SDValue Op2 = getValue(I.getArgOperand(1)); 6479 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6480 return; 6481 } 6482 case Intrinsic::uadd_sat: { 6483 SDValue Op1 = getValue(I.getArgOperand(0)); 6484 SDValue Op2 = getValue(I.getArgOperand(1)); 6485 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6486 return; 6487 } 6488 case Intrinsic::ssub_sat: { 6489 SDValue Op1 = getValue(I.getArgOperand(0)); 6490 SDValue Op2 = getValue(I.getArgOperand(1)); 6491 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6492 return; 6493 } 6494 case Intrinsic::usub_sat: { 6495 SDValue Op1 = getValue(I.getArgOperand(0)); 6496 SDValue Op2 = getValue(I.getArgOperand(1)); 6497 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6498 return; 6499 } 6500 case Intrinsic::sshl_sat: { 6501 SDValue Op1 = getValue(I.getArgOperand(0)); 6502 SDValue Op2 = getValue(I.getArgOperand(1)); 6503 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6504 return; 6505 } 6506 case Intrinsic::ushl_sat: { 6507 SDValue Op1 = getValue(I.getArgOperand(0)); 6508 SDValue Op2 = getValue(I.getArgOperand(1)); 6509 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6510 return; 6511 } 6512 case Intrinsic::smul_fix: 6513 case Intrinsic::umul_fix: 6514 case Intrinsic::smul_fix_sat: 6515 case Intrinsic::umul_fix_sat: { 6516 SDValue Op1 = getValue(I.getArgOperand(0)); 6517 SDValue Op2 = getValue(I.getArgOperand(1)); 6518 SDValue Op3 = getValue(I.getArgOperand(2)); 6519 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6520 Op1.getValueType(), Op1, Op2, Op3)); 6521 return; 6522 } 6523 case Intrinsic::sdiv_fix: 6524 case Intrinsic::udiv_fix: 6525 case Intrinsic::sdiv_fix_sat: 6526 case Intrinsic::udiv_fix_sat: { 6527 SDValue Op1 = getValue(I.getArgOperand(0)); 6528 SDValue Op2 = getValue(I.getArgOperand(1)); 6529 SDValue Op3 = getValue(I.getArgOperand(2)); 6530 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6531 Op1, Op2, Op3, DAG, TLI)); 6532 return; 6533 } 6534 case Intrinsic::smax: { 6535 SDValue Op1 = getValue(I.getArgOperand(0)); 6536 SDValue Op2 = getValue(I.getArgOperand(1)); 6537 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6538 return; 6539 } 6540 case Intrinsic::smin: { 6541 SDValue Op1 = getValue(I.getArgOperand(0)); 6542 SDValue Op2 = getValue(I.getArgOperand(1)); 6543 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6544 return; 6545 } 6546 case Intrinsic::umax: { 6547 SDValue Op1 = getValue(I.getArgOperand(0)); 6548 SDValue Op2 = getValue(I.getArgOperand(1)); 6549 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6550 return; 6551 } 6552 case Intrinsic::umin: { 6553 SDValue Op1 = getValue(I.getArgOperand(0)); 6554 SDValue Op2 = getValue(I.getArgOperand(1)); 6555 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6556 return; 6557 } 6558 case Intrinsic::abs: { 6559 // TODO: Preserve "int min is poison" arg in SDAG? 6560 SDValue Op1 = getValue(I.getArgOperand(0)); 6561 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6562 return; 6563 } 6564 case Intrinsic::stacksave: { 6565 SDValue Op = getRoot(); 6566 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6567 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6568 setValue(&I, Res); 6569 DAG.setRoot(Res.getValue(1)); 6570 return; 6571 } 6572 case Intrinsic::stackrestore: 6573 Res = getValue(I.getArgOperand(0)); 6574 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6575 return; 6576 case Intrinsic::get_dynamic_area_offset: { 6577 SDValue Op = getRoot(); 6578 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6579 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6580 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6581 // target. 6582 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6583 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6584 " intrinsic!"); 6585 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6586 Op); 6587 DAG.setRoot(Op); 6588 setValue(&I, Res); 6589 return; 6590 } 6591 case Intrinsic::stackguard: { 6592 MachineFunction &MF = DAG.getMachineFunction(); 6593 const Module &M = *MF.getFunction().getParent(); 6594 SDValue Chain = getRoot(); 6595 if (TLI.useLoadStackGuardNode()) { 6596 Res = getLoadStackGuard(DAG, sdl, Chain); 6597 } else { 6598 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6599 const Value *Global = TLI.getSDagStackGuard(M); 6600 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6601 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6602 MachinePointerInfo(Global, 0), Align, 6603 MachineMemOperand::MOVolatile); 6604 } 6605 if (TLI.useStackGuardXorFP()) 6606 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6607 DAG.setRoot(Chain); 6608 setValue(&I, Res); 6609 return; 6610 } 6611 case Intrinsic::stackprotector: { 6612 // Emit code into the DAG to store the stack guard onto the stack. 6613 MachineFunction &MF = DAG.getMachineFunction(); 6614 MachineFrameInfo &MFI = MF.getFrameInfo(); 6615 SDValue Src, Chain = getRoot(); 6616 6617 if (TLI.useLoadStackGuardNode()) 6618 Src = getLoadStackGuard(DAG, sdl, Chain); 6619 else 6620 Src = getValue(I.getArgOperand(0)); // The guard's value. 6621 6622 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6623 6624 int FI = FuncInfo.StaticAllocaMap[Slot]; 6625 MFI.setStackProtectorIndex(FI); 6626 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6627 6628 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6629 6630 // Store the stack protector onto the stack. 6631 Res = DAG.getStore( 6632 Chain, sdl, Src, FIN, 6633 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6634 MaybeAlign(), MachineMemOperand::MOVolatile); 6635 setValue(&I, Res); 6636 DAG.setRoot(Res); 6637 return; 6638 } 6639 case Intrinsic::objectsize: 6640 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6641 6642 case Intrinsic::is_constant: 6643 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6644 6645 case Intrinsic::annotation: 6646 case Intrinsic::ptr_annotation: 6647 case Intrinsic::launder_invariant_group: 6648 case Intrinsic::strip_invariant_group: 6649 // Drop the intrinsic, but forward the value 6650 setValue(&I, getValue(I.getOperand(0))); 6651 return; 6652 6653 case Intrinsic::assume: 6654 case Intrinsic::experimental_noalias_scope_decl: 6655 case Intrinsic::var_annotation: 6656 case Intrinsic::sideeffect: 6657 // Discard annotate attributes, noalias scope declarations, assumptions, and 6658 // artificial side-effects. 6659 return; 6660 6661 case Intrinsic::codeview_annotation: { 6662 // Emit a label associated with this metadata. 6663 MachineFunction &MF = DAG.getMachineFunction(); 6664 MCSymbol *Label = 6665 MF.getMMI().getContext().createTempSymbol("annotation", true); 6666 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6667 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6668 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6669 DAG.setRoot(Res); 6670 return; 6671 } 6672 6673 case Intrinsic::init_trampoline: { 6674 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6675 6676 SDValue Ops[6]; 6677 Ops[0] = getRoot(); 6678 Ops[1] = getValue(I.getArgOperand(0)); 6679 Ops[2] = getValue(I.getArgOperand(1)); 6680 Ops[3] = getValue(I.getArgOperand(2)); 6681 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6682 Ops[5] = DAG.getSrcValue(F); 6683 6684 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6685 6686 DAG.setRoot(Res); 6687 return; 6688 } 6689 case Intrinsic::adjust_trampoline: 6690 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6691 TLI.getPointerTy(DAG.getDataLayout()), 6692 getValue(I.getArgOperand(0)))); 6693 return; 6694 case Intrinsic::gcroot: { 6695 assert(DAG.getMachineFunction().getFunction().hasGC() && 6696 "only valid in functions with gc specified, enforced by Verifier"); 6697 assert(GFI && "implied by previous"); 6698 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6699 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6700 6701 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6702 GFI->addStackRoot(FI->getIndex(), TypeMap); 6703 return; 6704 } 6705 case Intrinsic::gcread: 6706 case Intrinsic::gcwrite: 6707 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6708 case Intrinsic::flt_rounds: 6709 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6710 setValue(&I, Res); 6711 DAG.setRoot(Res.getValue(1)); 6712 return; 6713 6714 case Intrinsic::expect: 6715 // Just replace __builtin_expect(exp, c) with EXP. 6716 setValue(&I, getValue(I.getArgOperand(0))); 6717 return; 6718 6719 case Intrinsic::ubsantrap: 6720 case Intrinsic::debugtrap: 6721 case Intrinsic::trap: { 6722 StringRef TrapFuncName = 6723 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6724 if (TrapFuncName.empty()) { 6725 switch (Intrinsic) { 6726 case Intrinsic::trap: 6727 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6728 break; 6729 case Intrinsic::debugtrap: 6730 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6731 break; 6732 case Intrinsic::ubsantrap: 6733 DAG.setRoot(DAG.getNode( 6734 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6735 DAG.getTargetConstant( 6736 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6737 MVT::i32))); 6738 break; 6739 default: llvm_unreachable("unknown trap intrinsic"); 6740 } 6741 return; 6742 } 6743 TargetLowering::ArgListTy Args; 6744 if (Intrinsic == Intrinsic::ubsantrap) { 6745 Args.push_back(TargetLoweringBase::ArgListEntry()); 6746 Args[0].Val = I.getArgOperand(0); 6747 Args[0].Node = getValue(Args[0].Val); 6748 Args[0].Ty = Args[0].Val->getType(); 6749 } 6750 6751 TargetLowering::CallLoweringInfo CLI(DAG); 6752 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6753 CallingConv::C, I.getType(), 6754 DAG.getExternalSymbol(TrapFuncName.data(), 6755 TLI.getPointerTy(DAG.getDataLayout())), 6756 std::move(Args)); 6757 6758 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6759 DAG.setRoot(Result.second); 6760 return; 6761 } 6762 6763 case Intrinsic::uadd_with_overflow: 6764 case Intrinsic::sadd_with_overflow: 6765 case Intrinsic::usub_with_overflow: 6766 case Intrinsic::ssub_with_overflow: 6767 case Intrinsic::umul_with_overflow: 6768 case Intrinsic::smul_with_overflow: { 6769 ISD::NodeType Op; 6770 switch (Intrinsic) { 6771 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6772 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6773 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6774 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6775 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6776 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6777 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6778 } 6779 SDValue Op1 = getValue(I.getArgOperand(0)); 6780 SDValue Op2 = getValue(I.getArgOperand(1)); 6781 6782 EVT ResultVT = Op1.getValueType(); 6783 EVT OverflowVT = MVT::i1; 6784 if (ResultVT.isVector()) 6785 OverflowVT = EVT::getVectorVT( 6786 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6787 6788 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6789 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6790 return; 6791 } 6792 case Intrinsic::prefetch: { 6793 SDValue Ops[5]; 6794 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6795 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6796 Ops[0] = DAG.getRoot(); 6797 Ops[1] = getValue(I.getArgOperand(0)); 6798 Ops[2] = getValue(I.getArgOperand(1)); 6799 Ops[3] = getValue(I.getArgOperand(2)); 6800 Ops[4] = getValue(I.getArgOperand(3)); 6801 SDValue Result = DAG.getMemIntrinsicNode( 6802 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6803 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6804 /* align */ None, Flags); 6805 6806 // Chain the prefetch in parallell with any pending loads, to stay out of 6807 // the way of later optimizations. 6808 PendingLoads.push_back(Result); 6809 Result = getRoot(); 6810 DAG.setRoot(Result); 6811 return; 6812 } 6813 case Intrinsic::lifetime_start: 6814 case Intrinsic::lifetime_end: { 6815 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6816 // Stack coloring is not enabled in O0, discard region information. 6817 if (TM.getOptLevel() == CodeGenOpt::None) 6818 return; 6819 6820 const int64_t ObjectSize = 6821 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6822 Value *const ObjectPtr = I.getArgOperand(1); 6823 SmallVector<const Value *, 4> Allocas; 6824 getUnderlyingObjects(ObjectPtr, Allocas); 6825 6826 for (const Value *Alloca : Allocas) { 6827 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6828 6829 // Could not find an Alloca. 6830 if (!LifetimeObject) 6831 continue; 6832 6833 // First check that the Alloca is static, otherwise it won't have a 6834 // valid frame index. 6835 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6836 if (SI == FuncInfo.StaticAllocaMap.end()) 6837 return; 6838 6839 const int FrameIndex = SI->second; 6840 int64_t Offset; 6841 if (GetPointerBaseWithConstantOffset( 6842 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6843 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6844 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6845 Offset); 6846 DAG.setRoot(Res); 6847 } 6848 return; 6849 } 6850 case Intrinsic::pseudoprobe: { 6851 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6852 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6853 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6854 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6855 DAG.setRoot(Res); 6856 return; 6857 } 6858 case Intrinsic::invariant_start: 6859 // Discard region information. 6860 setValue(&I, 6861 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6862 return; 6863 case Intrinsic::invariant_end: 6864 // Discard region information. 6865 return; 6866 case Intrinsic::clear_cache: 6867 /// FunctionName may be null. 6868 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6869 lowerCallToExternalSymbol(I, FunctionName); 6870 return; 6871 case Intrinsic::donothing: 6872 case Intrinsic::seh_try_begin: 6873 case Intrinsic::seh_scope_begin: 6874 case Intrinsic::seh_try_end: 6875 case Intrinsic::seh_scope_end: 6876 // ignore 6877 return; 6878 case Intrinsic::experimental_stackmap: 6879 visitStackmap(I); 6880 return; 6881 case Intrinsic::experimental_patchpoint_void: 6882 case Intrinsic::experimental_patchpoint_i64: 6883 visitPatchpoint(I); 6884 return; 6885 case Intrinsic::experimental_gc_statepoint: 6886 LowerStatepoint(cast<GCStatepointInst>(I)); 6887 return; 6888 case Intrinsic::experimental_gc_result: 6889 visitGCResult(cast<GCResultInst>(I)); 6890 return; 6891 case Intrinsic::experimental_gc_relocate: 6892 visitGCRelocate(cast<GCRelocateInst>(I)); 6893 return; 6894 case Intrinsic::instrprof_cover: 6895 llvm_unreachable("instrprof failed to lower a cover"); 6896 case Intrinsic::instrprof_increment: 6897 llvm_unreachable("instrprof failed to lower an increment"); 6898 case Intrinsic::instrprof_value_profile: 6899 llvm_unreachable("instrprof failed to lower a value profiling call"); 6900 case Intrinsic::localescape: { 6901 MachineFunction &MF = DAG.getMachineFunction(); 6902 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6903 6904 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6905 // is the same on all targets. 6906 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6907 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6908 if (isa<ConstantPointerNull>(Arg)) 6909 continue; // Skip null pointers. They represent a hole in index space. 6910 AllocaInst *Slot = cast<AllocaInst>(Arg); 6911 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6912 "can only escape static allocas"); 6913 int FI = FuncInfo.StaticAllocaMap[Slot]; 6914 MCSymbol *FrameAllocSym = 6915 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6916 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6917 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6918 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6919 .addSym(FrameAllocSym) 6920 .addFrameIndex(FI); 6921 } 6922 6923 return; 6924 } 6925 6926 case Intrinsic::localrecover: { 6927 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6928 MachineFunction &MF = DAG.getMachineFunction(); 6929 6930 // Get the symbol that defines the frame offset. 6931 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6932 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6933 unsigned IdxVal = 6934 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6935 MCSymbol *FrameAllocSym = 6936 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6937 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6938 6939 Value *FP = I.getArgOperand(1); 6940 SDValue FPVal = getValue(FP); 6941 EVT PtrVT = FPVal.getValueType(); 6942 6943 // Create a MCSymbol for the label to avoid any target lowering 6944 // that would make this PC relative. 6945 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6946 SDValue OffsetVal = 6947 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6948 6949 // Add the offset to the FP. 6950 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6951 setValue(&I, Add); 6952 6953 return; 6954 } 6955 6956 case Intrinsic::eh_exceptionpointer: 6957 case Intrinsic::eh_exceptioncode: { 6958 // Get the exception pointer vreg, copy from it, and resize it to fit. 6959 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6960 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6961 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6962 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6963 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6964 if (Intrinsic == Intrinsic::eh_exceptioncode) 6965 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6966 setValue(&I, N); 6967 return; 6968 } 6969 case Intrinsic::xray_customevent: { 6970 // Here we want to make sure that the intrinsic behaves as if it has a 6971 // specific calling convention, and only for x86_64. 6972 // FIXME: Support other platforms later. 6973 const auto &Triple = DAG.getTarget().getTargetTriple(); 6974 if (Triple.getArch() != Triple::x86_64) 6975 return; 6976 6977 SmallVector<SDValue, 8> Ops; 6978 6979 // We want to say that we always want the arguments in registers. 6980 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6981 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6982 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6983 SDValue Chain = getRoot(); 6984 Ops.push_back(LogEntryVal); 6985 Ops.push_back(StrSizeVal); 6986 Ops.push_back(Chain); 6987 6988 // We need to enforce the calling convention for the callsite, so that 6989 // argument ordering is enforced correctly, and that register allocation can 6990 // see that some registers may be assumed clobbered and have to preserve 6991 // them across calls to the intrinsic. 6992 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6993 sdl, NodeTys, Ops); 6994 SDValue patchableNode = SDValue(MN, 0); 6995 DAG.setRoot(patchableNode); 6996 setValue(&I, patchableNode); 6997 return; 6998 } 6999 case Intrinsic::xray_typedevent: { 7000 // Here we want to make sure that the intrinsic behaves as if it has a 7001 // specific calling convention, and only for x86_64. 7002 // FIXME: Support other platforms later. 7003 const auto &Triple = DAG.getTarget().getTargetTriple(); 7004 if (Triple.getArch() != Triple::x86_64) 7005 return; 7006 7007 SmallVector<SDValue, 8> Ops; 7008 7009 // We want to say that we always want the arguments in registers. 7010 // It's unclear to me how manipulating the selection DAG here forces callers 7011 // to provide arguments in registers instead of on the stack. 7012 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7013 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7014 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7015 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7016 SDValue Chain = getRoot(); 7017 Ops.push_back(LogTypeId); 7018 Ops.push_back(LogEntryVal); 7019 Ops.push_back(StrSizeVal); 7020 Ops.push_back(Chain); 7021 7022 // We need to enforce the calling convention for the callsite, so that 7023 // argument ordering is enforced correctly, and that register allocation can 7024 // see that some registers may be assumed clobbered and have to preserve 7025 // them across calls to the intrinsic. 7026 MachineSDNode *MN = DAG.getMachineNode( 7027 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7028 SDValue patchableNode = SDValue(MN, 0); 7029 DAG.setRoot(patchableNode); 7030 setValue(&I, patchableNode); 7031 return; 7032 } 7033 case Intrinsic::experimental_deoptimize: 7034 LowerDeoptimizeCall(&I); 7035 return; 7036 case Intrinsic::experimental_stepvector: 7037 visitStepVector(I); 7038 return; 7039 case Intrinsic::vector_reduce_fadd: 7040 case Intrinsic::vector_reduce_fmul: 7041 case Intrinsic::vector_reduce_add: 7042 case Intrinsic::vector_reduce_mul: 7043 case Intrinsic::vector_reduce_and: 7044 case Intrinsic::vector_reduce_or: 7045 case Intrinsic::vector_reduce_xor: 7046 case Intrinsic::vector_reduce_smax: 7047 case Intrinsic::vector_reduce_smin: 7048 case Intrinsic::vector_reduce_umax: 7049 case Intrinsic::vector_reduce_umin: 7050 case Intrinsic::vector_reduce_fmax: 7051 case Intrinsic::vector_reduce_fmin: 7052 visitVectorReduce(I, Intrinsic); 7053 return; 7054 7055 case Intrinsic::icall_branch_funnel: { 7056 SmallVector<SDValue, 16> Ops; 7057 Ops.push_back(getValue(I.getArgOperand(0))); 7058 7059 int64_t Offset; 7060 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7061 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7062 if (!Base) 7063 report_fatal_error( 7064 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7065 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7066 7067 struct BranchFunnelTarget { 7068 int64_t Offset; 7069 SDValue Target; 7070 }; 7071 SmallVector<BranchFunnelTarget, 8> Targets; 7072 7073 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7074 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7075 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7076 if (ElemBase != Base) 7077 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7078 "to the same GlobalValue"); 7079 7080 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7081 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7082 if (!GA) 7083 report_fatal_error( 7084 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7085 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7086 GA->getGlobal(), sdl, Val.getValueType(), 7087 GA->getOffset())}); 7088 } 7089 llvm::sort(Targets, 7090 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7091 return T1.Offset < T2.Offset; 7092 }); 7093 7094 for (auto &T : Targets) { 7095 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7096 Ops.push_back(T.Target); 7097 } 7098 7099 Ops.push_back(DAG.getRoot()); // Chain 7100 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7101 MVT::Other, Ops), 7102 0); 7103 DAG.setRoot(N); 7104 setValue(&I, N); 7105 HasTailCall = true; 7106 return; 7107 } 7108 7109 case Intrinsic::wasm_landingpad_index: 7110 // Information this intrinsic contained has been transferred to 7111 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7112 // delete it now. 7113 return; 7114 7115 case Intrinsic::aarch64_settag: 7116 case Intrinsic::aarch64_settag_zero: { 7117 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7118 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7119 SDValue Val = TSI.EmitTargetCodeForSetTag( 7120 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7121 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7122 ZeroMemory); 7123 DAG.setRoot(Val); 7124 setValue(&I, Val); 7125 return; 7126 } 7127 case Intrinsic::ptrmask: { 7128 SDValue Ptr = getValue(I.getOperand(0)); 7129 SDValue Const = getValue(I.getOperand(1)); 7130 7131 EVT PtrVT = Ptr.getValueType(); 7132 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7133 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7134 return; 7135 } 7136 case Intrinsic::get_active_lane_mask: { 7137 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7138 SDValue Index = getValue(I.getOperand(0)); 7139 EVT ElementVT = Index.getValueType(); 7140 7141 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7142 visitTargetIntrinsic(I, Intrinsic); 7143 return; 7144 } 7145 7146 SDValue TripCount = getValue(I.getOperand(1)); 7147 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7148 7149 SDValue VectorIndex, VectorTripCount; 7150 if (VecTy.isScalableVector()) { 7151 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7152 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7153 } else { 7154 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7155 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7156 } 7157 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7158 SDValue VectorInduction = DAG.getNode( 7159 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7160 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7161 VectorTripCount, ISD::CondCode::SETULT); 7162 setValue(&I, SetCC); 7163 return; 7164 } 7165 case Intrinsic::experimental_vector_insert: { 7166 SDValue Vec = getValue(I.getOperand(0)); 7167 SDValue SubVec = getValue(I.getOperand(1)); 7168 SDValue Index = getValue(I.getOperand(2)); 7169 7170 // The intrinsic's index type is i64, but the SDNode requires an index type 7171 // suitable for the target. Convert the index as required. 7172 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7173 if (Index.getValueType() != VectorIdxTy) 7174 Index = DAG.getVectorIdxConstant( 7175 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7176 7177 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7178 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7179 Index)); 7180 return; 7181 } 7182 case Intrinsic::experimental_vector_extract: { 7183 SDValue Vec = getValue(I.getOperand(0)); 7184 SDValue Index = getValue(I.getOperand(1)); 7185 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7186 7187 // The intrinsic's index type is i64, but the SDNode requires an index type 7188 // suitable for the target. Convert the index as required. 7189 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7190 if (Index.getValueType() != VectorIdxTy) 7191 Index = DAG.getVectorIdxConstant( 7192 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7193 7194 setValue(&I, 7195 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7196 return; 7197 } 7198 case Intrinsic::experimental_vector_reverse: 7199 visitVectorReverse(I); 7200 return; 7201 case Intrinsic::experimental_vector_splice: 7202 visitVectorSplice(I); 7203 return; 7204 } 7205 } 7206 7207 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7208 const ConstrainedFPIntrinsic &FPI) { 7209 SDLoc sdl = getCurSDLoc(); 7210 7211 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7212 SmallVector<EVT, 4> ValueVTs; 7213 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7214 ValueVTs.push_back(MVT::Other); // Out chain 7215 7216 // We do not need to serialize constrained FP intrinsics against 7217 // each other or against (nonvolatile) loads, so they can be 7218 // chained like loads. 7219 SDValue Chain = DAG.getRoot(); 7220 SmallVector<SDValue, 4> Opers; 7221 Opers.push_back(Chain); 7222 if (FPI.isUnaryOp()) { 7223 Opers.push_back(getValue(FPI.getArgOperand(0))); 7224 } else if (FPI.isTernaryOp()) { 7225 Opers.push_back(getValue(FPI.getArgOperand(0))); 7226 Opers.push_back(getValue(FPI.getArgOperand(1))); 7227 Opers.push_back(getValue(FPI.getArgOperand(2))); 7228 } else { 7229 Opers.push_back(getValue(FPI.getArgOperand(0))); 7230 Opers.push_back(getValue(FPI.getArgOperand(1))); 7231 } 7232 7233 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7234 assert(Result.getNode()->getNumValues() == 2); 7235 7236 // Push node to the appropriate list so that future instructions can be 7237 // chained up correctly. 7238 SDValue OutChain = Result.getValue(1); 7239 switch (EB) { 7240 case fp::ExceptionBehavior::ebIgnore: 7241 // The only reason why ebIgnore nodes still need to be chained is that 7242 // they might depend on the current rounding mode, and therefore must 7243 // not be moved across instruction that may change that mode. 7244 LLVM_FALLTHROUGH; 7245 case fp::ExceptionBehavior::ebMayTrap: 7246 // These must not be moved across calls or instructions that may change 7247 // floating-point exception masks. 7248 PendingConstrainedFP.push_back(OutChain); 7249 break; 7250 case fp::ExceptionBehavior::ebStrict: 7251 // These must not be moved across calls or instructions that may change 7252 // floating-point exception masks or read floating-point exception flags. 7253 // In addition, they cannot be optimized out even if unused. 7254 PendingConstrainedFPStrict.push_back(OutChain); 7255 break; 7256 } 7257 }; 7258 7259 SDVTList VTs = DAG.getVTList(ValueVTs); 7260 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7261 7262 SDNodeFlags Flags; 7263 if (EB == fp::ExceptionBehavior::ebIgnore) 7264 Flags.setNoFPExcept(true); 7265 7266 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7267 Flags.copyFMF(*FPOp); 7268 7269 unsigned Opcode; 7270 switch (FPI.getIntrinsicID()) { 7271 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7272 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7273 case Intrinsic::INTRINSIC: \ 7274 Opcode = ISD::STRICT_##DAGN; \ 7275 break; 7276 #include "llvm/IR/ConstrainedOps.def" 7277 case Intrinsic::experimental_constrained_fmuladd: { 7278 Opcode = ISD::STRICT_FMA; 7279 // Break fmuladd into fmul and fadd. 7280 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7281 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7282 ValueVTs[0])) { 7283 Opers.pop_back(); 7284 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7285 pushOutChain(Mul, EB); 7286 Opcode = ISD::STRICT_FADD; 7287 Opers.clear(); 7288 Opers.push_back(Mul.getValue(1)); 7289 Opers.push_back(Mul.getValue(0)); 7290 Opers.push_back(getValue(FPI.getArgOperand(2))); 7291 } 7292 break; 7293 } 7294 } 7295 7296 // A few strict DAG nodes carry additional operands that are not 7297 // set up by the default code above. 7298 switch (Opcode) { 7299 default: break; 7300 case ISD::STRICT_FP_ROUND: 7301 Opers.push_back( 7302 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7303 break; 7304 case ISD::STRICT_FSETCC: 7305 case ISD::STRICT_FSETCCS: { 7306 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7307 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7308 if (TM.Options.NoNaNsFPMath) 7309 Condition = getFCmpCodeWithoutNaN(Condition); 7310 Opers.push_back(DAG.getCondCode(Condition)); 7311 break; 7312 } 7313 } 7314 7315 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7316 pushOutChain(Result, EB); 7317 7318 SDValue FPResult = Result.getValue(0); 7319 setValue(&FPI, FPResult); 7320 } 7321 7322 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7323 Optional<unsigned> ResOPC; 7324 auto IID = VPIntrin.getIntrinsicID(); 7325 // vp.fcmp and vp.icmp are handled specially 7326 if (IID == Intrinsic::vp_fcmp || IID == Intrinsic::vp_icmp) 7327 return ISD::VP_SETCC; 7328 7329 switch (IID) { 7330 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7331 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7332 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7333 #include "llvm/IR/VPIntrinsics.def" 7334 } 7335 7336 if (!ResOPC.hasValue()) 7337 llvm_unreachable( 7338 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7339 7340 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7341 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7342 if (VPIntrin.getFastMathFlags().allowReassoc()) 7343 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7344 : ISD::VP_REDUCE_FMUL; 7345 } 7346 7347 return ResOPC.getValue(); 7348 } 7349 7350 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7351 SmallVector<SDValue, 7> &OpValues, 7352 bool IsGather) { 7353 SDLoc DL = getCurSDLoc(); 7354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7355 Value *PtrOperand = VPIntrin.getArgOperand(0); 7356 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7357 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7358 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7359 SDValue LD; 7360 bool AddToChain = true; 7361 if (!IsGather) { 7362 // Do not serialize variable-length loads of constant memory with 7363 // anything. 7364 if (!Alignment) 7365 Alignment = DAG.getEVTAlign(VT); 7366 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7367 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7368 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7369 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7370 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7371 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7372 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7373 MMO, false /*IsExpanding */); 7374 } else { 7375 if (!Alignment) 7376 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7377 unsigned AS = 7378 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7379 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7380 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7381 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7382 SDValue Base, Index, Scale; 7383 ISD::MemIndexType IndexType; 7384 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7385 this, VPIntrin.getParent()); 7386 if (!UniformBase) { 7387 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7388 Index = getValue(PtrOperand); 7389 IndexType = ISD::SIGNED_UNSCALED; 7390 Scale = 7391 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7392 } 7393 EVT IdxVT = Index.getValueType(); 7394 EVT EltTy = IdxVT.getVectorElementType(); 7395 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7396 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7397 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7398 } 7399 LD = DAG.getGatherVP( 7400 DAG.getVTList(VT, MVT::Other), VT, DL, 7401 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7402 IndexType); 7403 } 7404 if (AddToChain) 7405 PendingLoads.push_back(LD.getValue(1)); 7406 setValue(&VPIntrin, LD); 7407 } 7408 7409 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7410 SmallVector<SDValue, 7> &OpValues, 7411 bool IsScatter) { 7412 SDLoc DL = getCurSDLoc(); 7413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7414 Value *PtrOperand = VPIntrin.getArgOperand(1); 7415 EVT VT = OpValues[0].getValueType(); 7416 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7417 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7418 SDValue ST; 7419 if (!IsScatter) { 7420 if (!Alignment) 7421 Alignment = DAG.getEVTAlign(VT); 7422 SDValue Ptr = OpValues[1]; 7423 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7424 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7425 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7426 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7427 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7428 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7429 /* IsTruncating */ false, /*IsCompressing*/ false); 7430 } else { 7431 if (!Alignment) 7432 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7433 unsigned AS = 7434 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7435 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7436 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7437 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7438 SDValue Base, Index, Scale; 7439 ISD::MemIndexType IndexType; 7440 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7441 this, VPIntrin.getParent()); 7442 if (!UniformBase) { 7443 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7444 Index = getValue(PtrOperand); 7445 IndexType = ISD::SIGNED_UNSCALED; 7446 Scale = 7447 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7448 } 7449 EVT IdxVT = Index.getValueType(); 7450 EVT EltTy = IdxVT.getVectorElementType(); 7451 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7452 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7453 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7454 } 7455 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7456 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7457 OpValues[2], OpValues[3]}, 7458 MMO, IndexType); 7459 } 7460 DAG.setRoot(ST); 7461 setValue(&VPIntrin, ST); 7462 } 7463 7464 void SelectionDAGBuilder::visitVPStridedLoad( 7465 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7466 SDLoc DL = getCurSDLoc(); 7467 Value *PtrOperand = VPIntrin.getArgOperand(0); 7468 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7469 if (!Alignment) 7470 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7471 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7472 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7473 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7474 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7475 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7476 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7477 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7478 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7479 7480 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7481 OpValues[2], OpValues[3], MMO, 7482 false /*IsExpanding*/); 7483 7484 if (AddToChain) 7485 PendingLoads.push_back(LD.getValue(1)); 7486 setValue(&VPIntrin, LD); 7487 } 7488 7489 void SelectionDAGBuilder::visitVPStridedStore( 7490 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7491 SDLoc DL = getCurSDLoc(); 7492 Value *PtrOperand = VPIntrin.getArgOperand(1); 7493 EVT VT = OpValues[0].getValueType(); 7494 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7495 if (!Alignment) 7496 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7497 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7498 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7499 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7500 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7501 7502 SDValue ST = DAG.getStridedStoreVP( 7503 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7504 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7505 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7506 /*IsCompressing*/ false); 7507 7508 DAG.setRoot(ST); 7509 setValue(&VPIntrin, ST); 7510 } 7511 7512 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7514 SDLoc DL = getCurSDLoc(); 7515 7516 ISD::CondCode Condition; 7517 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7518 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7519 if (IsFP) { 7520 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7521 // flags, but calls that don't return floating-point types can't be 7522 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7523 Condition = getFCmpCondCode(CondCode); 7524 if (TM.Options.NoNaNsFPMath) 7525 Condition = getFCmpCodeWithoutNaN(Condition); 7526 } else { 7527 Condition = getICmpCondCode(CondCode); 7528 } 7529 7530 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7531 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7532 // #2 is the condition code 7533 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7534 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7535 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7536 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7537 "Unexpected target EVL type"); 7538 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7539 7540 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7541 VPIntrin.getType()); 7542 setValue(&VPIntrin, 7543 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7544 } 7545 7546 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7547 const VPIntrinsic &VPIntrin) { 7548 SDLoc DL = getCurSDLoc(); 7549 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7550 7551 auto IID = VPIntrin.getIntrinsicID(); 7552 7553 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7554 return visitVPCmp(*CmpI); 7555 7556 SmallVector<EVT, 4> ValueVTs; 7557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7558 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7559 SDVTList VTs = DAG.getVTList(ValueVTs); 7560 7561 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7562 7563 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7564 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7565 "Unexpected target EVL type"); 7566 7567 // Request operands. 7568 SmallVector<SDValue, 7> OpValues; 7569 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7570 auto Op = getValue(VPIntrin.getArgOperand(I)); 7571 if (I == EVLParamPos) 7572 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7573 OpValues.push_back(Op); 7574 } 7575 7576 switch (Opcode) { 7577 default: { 7578 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7579 setValue(&VPIntrin, Result); 7580 break; 7581 } 7582 case ISD::VP_LOAD: 7583 case ISD::VP_GATHER: 7584 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7585 Opcode == ISD::VP_GATHER); 7586 break; 7587 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7588 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7589 break; 7590 case ISD::VP_STORE: 7591 case ISD::VP_SCATTER: 7592 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7593 break; 7594 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7595 visitVPStridedStore(VPIntrin, OpValues); 7596 break; 7597 } 7598 } 7599 7600 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7601 const BasicBlock *EHPadBB, 7602 MCSymbol *&BeginLabel) { 7603 MachineFunction &MF = DAG.getMachineFunction(); 7604 MachineModuleInfo &MMI = MF.getMMI(); 7605 7606 // Insert a label before the invoke call to mark the try range. This can be 7607 // used to detect deletion of the invoke via the MachineModuleInfo. 7608 BeginLabel = MMI.getContext().createTempSymbol(); 7609 7610 // For SjLj, keep track of which landing pads go with which invokes 7611 // so as to maintain the ordering of pads in the LSDA. 7612 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7613 if (CallSiteIndex) { 7614 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7615 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7616 7617 // Now that the call site is handled, stop tracking it. 7618 MMI.setCurrentCallSite(0); 7619 } 7620 7621 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7622 } 7623 7624 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7625 const BasicBlock *EHPadBB, 7626 MCSymbol *BeginLabel) { 7627 assert(BeginLabel && "BeginLabel should've been set"); 7628 7629 MachineFunction &MF = DAG.getMachineFunction(); 7630 MachineModuleInfo &MMI = MF.getMMI(); 7631 7632 // Insert a label at the end of the invoke call to mark the try range. This 7633 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7634 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7635 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7636 7637 // Inform MachineModuleInfo of range. 7638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7639 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7640 // actually use outlined funclets and their LSDA info style. 7641 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7642 assert(II && "II should've been set"); 7643 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7644 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7645 } else if (!isScopedEHPersonality(Pers)) { 7646 assert(EHPadBB); 7647 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7648 } 7649 7650 return Chain; 7651 } 7652 7653 std::pair<SDValue, SDValue> 7654 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7655 const BasicBlock *EHPadBB) { 7656 MCSymbol *BeginLabel = nullptr; 7657 7658 if (EHPadBB) { 7659 // Both PendingLoads and PendingExports must be flushed here; 7660 // this call might not return. 7661 (void)getRoot(); 7662 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7663 CLI.setChain(getRoot()); 7664 } 7665 7666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7667 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7668 7669 assert((CLI.IsTailCall || Result.second.getNode()) && 7670 "Non-null chain expected with non-tail call!"); 7671 assert((Result.second.getNode() || !Result.first.getNode()) && 7672 "Null value expected with tail call!"); 7673 7674 if (!Result.second.getNode()) { 7675 // As a special case, a null chain means that a tail call has been emitted 7676 // and the DAG root is already updated. 7677 HasTailCall = true; 7678 7679 // Since there's no actual continuation from this block, nothing can be 7680 // relying on us setting vregs for them. 7681 PendingExports.clear(); 7682 } else { 7683 DAG.setRoot(Result.second); 7684 } 7685 7686 if (EHPadBB) { 7687 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7688 BeginLabel)); 7689 } 7690 7691 return Result; 7692 } 7693 7694 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7695 bool isTailCall, 7696 bool isMustTailCall, 7697 const BasicBlock *EHPadBB) { 7698 auto &DL = DAG.getDataLayout(); 7699 FunctionType *FTy = CB.getFunctionType(); 7700 Type *RetTy = CB.getType(); 7701 7702 TargetLowering::ArgListTy Args; 7703 Args.reserve(CB.arg_size()); 7704 7705 const Value *SwiftErrorVal = nullptr; 7706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7707 7708 if (isTailCall) { 7709 // Avoid emitting tail calls in functions with the disable-tail-calls 7710 // attribute. 7711 auto *Caller = CB.getParent()->getParent(); 7712 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7713 "true" && !isMustTailCall) 7714 isTailCall = false; 7715 7716 // We can't tail call inside a function with a swifterror argument. Lowering 7717 // does not support this yet. It would have to move into the swifterror 7718 // register before the call. 7719 if (TLI.supportSwiftError() && 7720 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7721 isTailCall = false; 7722 } 7723 7724 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7725 TargetLowering::ArgListEntry Entry; 7726 const Value *V = *I; 7727 7728 // Skip empty types 7729 if (V->getType()->isEmptyTy()) 7730 continue; 7731 7732 SDValue ArgNode = getValue(V); 7733 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7734 7735 Entry.setAttributes(&CB, I - CB.arg_begin()); 7736 7737 // Use swifterror virtual register as input to the call. 7738 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7739 SwiftErrorVal = V; 7740 // We find the virtual register for the actual swifterror argument. 7741 // Instead of using the Value, we use the virtual register instead. 7742 Entry.Node = 7743 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7744 EVT(TLI.getPointerTy(DL))); 7745 } 7746 7747 Args.push_back(Entry); 7748 7749 // If we have an explicit sret argument that is an Instruction, (i.e., it 7750 // might point to function-local memory), we can't meaningfully tail-call. 7751 if (Entry.IsSRet && isa<Instruction>(V)) 7752 isTailCall = false; 7753 } 7754 7755 // If call site has a cfguardtarget operand bundle, create and add an 7756 // additional ArgListEntry. 7757 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7758 TargetLowering::ArgListEntry Entry; 7759 Value *V = Bundle->Inputs[0]; 7760 SDValue ArgNode = getValue(V); 7761 Entry.Node = ArgNode; 7762 Entry.Ty = V->getType(); 7763 Entry.IsCFGuardTarget = true; 7764 Args.push_back(Entry); 7765 } 7766 7767 // Check if target-independent constraints permit a tail call here. 7768 // Target-dependent constraints are checked within TLI->LowerCallTo. 7769 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7770 isTailCall = false; 7771 7772 // Disable tail calls if there is an swifterror argument. Targets have not 7773 // been updated to support tail calls. 7774 if (TLI.supportSwiftError() && SwiftErrorVal) 7775 isTailCall = false; 7776 7777 TargetLowering::CallLoweringInfo CLI(DAG); 7778 CLI.setDebugLoc(getCurSDLoc()) 7779 .setChain(getRoot()) 7780 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7781 .setTailCall(isTailCall) 7782 .setConvergent(CB.isConvergent()) 7783 .setIsPreallocated( 7784 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7785 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7786 7787 if (Result.first.getNode()) { 7788 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7789 setValue(&CB, Result.first); 7790 } 7791 7792 // The last element of CLI.InVals has the SDValue for swifterror return. 7793 // Here we copy it to a virtual register and update SwiftErrorMap for 7794 // book-keeping. 7795 if (SwiftErrorVal && TLI.supportSwiftError()) { 7796 // Get the last element of InVals. 7797 SDValue Src = CLI.InVals.back(); 7798 Register VReg = 7799 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7800 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7801 DAG.setRoot(CopyNode); 7802 } 7803 } 7804 7805 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7806 SelectionDAGBuilder &Builder) { 7807 // Check to see if this load can be trivially constant folded, e.g. if the 7808 // input is from a string literal. 7809 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7810 // Cast pointer to the type we really want to load. 7811 Type *LoadTy = 7812 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7813 if (LoadVT.isVector()) 7814 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7815 7816 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7817 PointerType::getUnqual(LoadTy)); 7818 7819 if (const Constant *LoadCst = 7820 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7821 LoadTy, Builder.DAG.getDataLayout())) 7822 return Builder.getValue(LoadCst); 7823 } 7824 7825 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7826 // still constant memory, the input chain can be the entry node. 7827 SDValue Root; 7828 bool ConstantMemory = false; 7829 7830 // Do not serialize (non-volatile) loads of constant memory with anything. 7831 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7832 Root = Builder.DAG.getEntryNode(); 7833 ConstantMemory = true; 7834 } else { 7835 // Do not serialize non-volatile loads against each other. 7836 Root = Builder.DAG.getRoot(); 7837 } 7838 7839 SDValue Ptr = Builder.getValue(PtrVal); 7840 SDValue LoadVal = 7841 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7842 MachinePointerInfo(PtrVal), Align(1)); 7843 7844 if (!ConstantMemory) 7845 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7846 return LoadVal; 7847 } 7848 7849 /// Record the value for an instruction that produces an integer result, 7850 /// converting the type where necessary. 7851 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7852 SDValue Value, 7853 bool IsSigned) { 7854 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7855 I.getType(), true); 7856 if (IsSigned) 7857 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7858 else 7859 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7860 setValue(&I, Value); 7861 } 7862 7863 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7864 /// true and lower it. Otherwise return false, and it will be lowered like a 7865 /// normal call. 7866 /// The caller already checked that \p I calls the appropriate LibFunc with a 7867 /// correct prototype. 7868 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7869 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7870 const Value *Size = I.getArgOperand(2); 7871 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7872 if (CSize && CSize->getZExtValue() == 0) { 7873 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7874 I.getType(), true); 7875 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7876 return true; 7877 } 7878 7879 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7880 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7881 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7882 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7883 if (Res.first.getNode()) { 7884 processIntegerCallValue(I, Res.first, true); 7885 PendingLoads.push_back(Res.second); 7886 return true; 7887 } 7888 7889 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7890 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7891 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7892 return false; 7893 7894 // If the target has a fast compare for the given size, it will return a 7895 // preferred load type for that size. Require that the load VT is legal and 7896 // that the target supports unaligned loads of that type. Otherwise, return 7897 // INVALID. 7898 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7900 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7901 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7902 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7903 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7904 // TODO: Check alignment of src and dest ptrs. 7905 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7906 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7907 if (!TLI.isTypeLegal(LVT) || 7908 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7909 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7910 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7911 } 7912 7913 return LVT; 7914 }; 7915 7916 // This turns into unaligned loads. We only do this if the target natively 7917 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7918 // we'll only produce a small number of byte loads. 7919 MVT LoadVT; 7920 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7921 switch (NumBitsToCompare) { 7922 default: 7923 return false; 7924 case 16: 7925 LoadVT = MVT::i16; 7926 break; 7927 case 32: 7928 LoadVT = MVT::i32; 7929 break; 7930 case 64: 7931 case 128: 7932 case 256: 7933 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7934 break; 7935 } 7936 7937 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7938 return false; 7939 7940 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7941 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7942 7943 // Bitcast to a wide integer type if the loads are vectors. 7944 if (LoadVT.isVector()) { 7945 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7946 LoadL = DAG.getBitcast(CmpVT, LoadL); 7947 LoadR = DAG.getBitcast(CmpVT, LoadR); 7948 } 7949 7950 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7951 processIntegerCallValue(I, Cmp, false); 7952 return true; 7953 } 7954 7955 /// See if we can lower a memchr call into an optimized form. If so, return 7956 /// true and lower it. Otherwise return false, and it will be lowered like a 7957 /// normal call. 7958 /// The caller already checked that \p I calls the appropriate LibFunc with a 7959 /// correct prototype. 7960 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7961 const Value *Src = I.getArgOperand(0); 7962 const Value *Char = I.getArgOperand(1); 7963 const Value *Length = I.getArgOperand(2); 7964 7965 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7966 std::pair<SDValue, SDValue> Res = 7967 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7968 getValue(Src), getValue(Char), getValue(Length), 7969 MachinePointerInfo(Src)); 7970 if (Res.first.getNode()) { 7971 setValue(&I, Res.first); 7972 PendingLoads.push_back(Res.second); 7973 return true; 7974 } 7975 7976 return false; 7977 } 7978 7979 /// See if we can lower a mempcpy call into an optimized form. If so, return 7980 /// true and lower it. Otherwise return false, and it will be lowered like a 7981 /// normal call. 7982 /// The caller already checked that \p I calls the appropriate LibFunc with a 7983 /// correct prototype. 7984 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7985 SDValue Dst = getValue(I.getArgOperand(0)); 7986 SDValue Src = getValue(I.getArgOperand(1)); 7987 SDValue Size = getValue(I.getArgOperand(2)); 7988 7989 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7990 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7991 // DAG::getMemcpy needs Alignment to be defined. 7992 Align Alignment = std::min(DstAlign, SrcAlign); 7993 7994 bool isVol = false; 7995 SDLoc sdl = getCurSDLoc(); 7996 7997 // In the mempcpy context we need to pass in a false value for isTailCall 7998 // because the return pointer needs to be adjusted by the size of 7999 // the copied memory. 8000 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8001 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8002 /*isTailCall=*/false, 8003 MachinePointerInfo(I.getArgOperand(0)), 8004 MachinePointerInfo(I.getArgOperand(1)), 8005 I.getAAMetadata()); 8006 assert(MC.getNode() != nullptr && 8007 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8008 DAG.setRoot(MC); 8009 8010 // Check if Size needs to be truncated or extended. 8011 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8012 8013 // Adjust return pointer to point just past the last dst byte. 8014 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8015 Dst, Size); 8016 setValue(&I, DstPlusSize); 8017 return true; 8018 } 8019 8020 /// See if we can lower a strcpy call into an optimized form. If so, return 8021 /// true and lower it, otherwise return false and it will be lowered like a 8022 /// normal call. 8023 /// The caller already checked that \p I calls the appropriate LibFunc with a 8024 /// correct prototype. 8025 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8026 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8027 8028 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8029 std::pair<SDValue, SDValue> Res = 8030 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8031 getValue(Arg0), getValue(Arg1), 8032 MachinePointerInfo(Arg0), 8033 MachinePointerInfo(Arg1), isStpcpy); 8034 if (Res.first.getNode()) { 8035 setValue(&I, Res.first); 8036 DAG.setRoot(Res.second); 8037 return true; 8038 } 8039 8040 return false; 8041 } 8042 8043 /// See if we can lower a strcmp call into an optimized form. If so, return 8044 /// true and lower it, otherwise return false and it will be lowered like a 8045 /// normal call. 8046 /// The caller already checked that \p I calls the appropriate LibFunc with a 8047 /// correct prototype. 8048 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8049 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8050 8051 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8052 std::pair<SDValue, SDValue> Res = 8053 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8054 getValue(Arg0), getValue(Arg1), 8055 MachinePointerInfo(Arg0), 8056 MachinePointerInfo(Arg1)); 8057 if (Res.first.getNode()) { 8058 processIntegerCallValue(I, Res.first, true); 8059 PendingLoads.push_back(Res.second); 8060 return true; 8061 } 8062 8063 return false; 8064 } 8065 8066 /// See if we can lower a strlen call into an optimized form. If so, return 8067 /// true and lower it, otherwise return false and it will be lowered like a 8068 /// normal call. 8069 /// The caller already checked that \p I calls the appropriate LibFunc with a 8070 /// correct prototype. 8071 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8072 const Value *Arg0 = I.getArgOperand(0); 8073 8074 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8075 std::pair<SDValue, SDValue> Res = 8076 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8077 getValue(Arg0), MachinePointerInfo(Arg0)); 8078 if (Res.first.getNode()) { 8079 processIntegerCallValue(I, Res.first, false); 8080 PendingLoads.push_back(Res.second); 8081 return true; 8082 } 8083 8084 return false; 8085 } 8086 8087 /// See if we can lower a strnlen call into an optimized form. If so, return 8088 /// true and lower it, otherwise return false and it will be lowered like a 8089 /// normal call. 8090 /// The caller already checked that \p I calls the appropriate LibFunc with a 8091 /// correct prototype. 8092 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8093 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8094 8095 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8096 std::pair<SDValue, SDValue> Res = 8097 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8098 getValue(Arg0), getValue(Arg1), 8099 MachinePointerInfo(Arg0)); 8100 if (Res.first.getNode()) { 8101 processIntegerCallValue(I, Res.first, false); 8102 PendingLoads.push_back(Res.second); 8103 return true; 8104 } 8105 8106 return false; 8107 } 8108 8109 /// See if we can lower a unary floating-point operation into an SDNode with 8110 /// the specified Opcode. If so, return true and lower it, otherwise return 8111 /// false and it will be lowered like a normal call. 8112 /// The caller already checked that \p I calls the appropriate LibFunc with a 8113 /// correct prototype. 8114 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8115 unsigned Opcode) { 8116 // We already checked this call's prototype; verify it doesn't modify errno. 8117 if (!I.onlyReadsMemory()) 8118 return false; 8119 8120 SDNodeFlags Flags; 8121 Flags.copyFMF(cast<FPMathOperator>(I)); 8122 8123 SDValue Tmp = getValue(I.getArgOperand(0)); 8124 setValue(&I, 8125 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8126 return true; 8127 } 8128 8129 /// See if we can lower a binary floating-point operation into an SDNode with 8130 /// the specified Opcode. If so, return true and lower it. Otherwise return 8131 /// false, and it will be lowered like a normal call. 8132 /// The caller already checked that \p I calls the appropriate LibFunc with a 8133 /// correct prototype. 8134 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8135 unsigned Opcode) { 8136 // We already checked this call's prototype; verify it doesn't modify errno. 8137 if (!I.onlyReadsMemory()) 8138 return false; 8139 8140 SDNodeFlags Flags; 8141 Flags.copyFMF(cast<FPMathOperator>(I)); 8142 8143 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8144 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8145 EVT VT = Tmp0.getValueType(); 8146 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8147 return true; 8148 } 8149 8150 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8151 // Handle inline assembly differently. 8152 if (I.isInlineAsm()) { 8153 visitInlineAsm(I); 8154 return; 8155 } 8156 8157 if (Function *F = I.getCalledFunction()) { 8158 diagnoseDontCall(I); 8159 8160 if (F->isDeclaration()) { 8161 // Is this an LLVM intrinsic or a target-specific intrinsic? 8162 unsigned IID = F->getIntrinsicID(); 8163 if (!IID) 8164 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8165 IID = II->getIntrinsicID(F); 8166 8167 if (IID) { 8168 visitIntrinsicCall(I, IID); 8169 return; 8170 } 8171 } 8172 8173 // Check for well-known libc/libm calls. If the function is internal, it 8174 // can't be a library call. Don't do the check if marked as nobuiltin for 8175 // some reason or the call site requires strict floating point semantics. 8176 LibFunc Func; 8177 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8178 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8179 LibInfo->hasOptimizedCodeGen(Func)) { 8180 switch (Func) { 8181 default: break; 8182 case LibFunc_bcmp: 8183 if (visitMemCmpBCmpCall(I)) 8184 return; 8185 break; 8186 case LibFunc_copysign: 8187 case LibFunc_copysignf: 8188 case LibFunc_copysignl: 8189 // We already checked this call's prototype; verify it doesn't modify 8190 // errno. 8191 if (I.onlyReadsMemory()) { 8192 SDValue LHS = getValue(I.getArgOperand(0)); 8193 SDValue RHS = getValue(I.getArgOperand(1)); 8194 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8195 LHS.getValueType(), LHS, RHS)); 8196 return; 8197 } 8198 break; 8199 case LibFunc_fabs: 8200 case LibFunc_fabsf: 8201 case LibFunc_fabsl: 8202 if (visitUnaryFloatCall(I, ISD::FABS)) 8203 return; 8204 break; 8205 case LibFunc_fmin: 8206 case LibFunc_fminf: 8207 case LibFunc_fminl: 8208 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8209 return; 8210 break; 8211 case LibFunc_fmax: 8212 case LibFunc_fmaxf: 8213 case LibFunc_fmaxl: 8214 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8215 return; 8216 break; 8217 case LibFunc_sin: 8218 case LibFunc_sinf: 8219 case LibFunc_sinl: 8220 if (visitUnaryFloatCall(I, ISD::FSIN)) 8221 return; 8222 break; 8223 case LibFunc_cos: 8224 case LibFunc_cosf: 8225 case LibFunc_cosl: 8226 if (visitUnaryFloatCall(I, ISD::FCOS)) 8227 return; 8228 break; 8229 case LibFunc_sqrt: 8230 case LibFunc_sqrtf: 8231 case LibFunc_sqrtl: 8232 case LibFunc_sqrt_finite: 8233 case LibFunc_sqrtf_finite: 8234 case LibFunc_sqrtl_finite: 8235 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8236 return; 8237 break; 8238 case LibFunc_floor: 8239 case LibFunc_floorf: 8240 case LibFunc_floorl: 8241 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8242 return; 8243 break; 8244 case LibFunc_nearbyint: 8245 case LibFunc_nearbyintf: 8246 case LibFunc_nearbyintl: 8247 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8248 return; 8249 break; 8250 case LibFunc_ceil: 8251 case LibFunc_ceilf: 8252 case LibFunc_ceill: 8253 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8254 return; 8255 break; 8256 case LibFunc_rint: 8257 case LibFunc_rintf: 8258 case LibFunc_rintl: 8259 if (visitUnaryFloatCall(I, ISD::FRINT)) 8260 return; 8261 break; 8262 case LibFunc_round: 8263 case LibFunc_roundf: 8264 case LibFunc_roundl: 8265 if (visitUnaryFloatCall(I, ISD::FROUND)) 8266 return; 8267 break; 8268 case LibFunc_trunc: 8269 case LibFunc_truncf: 8270 case LibFunc_truncl: 8271 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8272 return; 8273 break; 8274 case LibFunc_log2: 8275 case LibFunc_log2f: 8276 case LibFunc_log2l: 8277 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8278 return; 8279 break; 8280 case LibFunc_exp2: 8281 case LibFunc_exp2f: 8282 case LibFunc_exp2l: 8283 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8284 return; 8285 break; 8286 case LibFunc_memcmp: 8287 if (visitMemCmpBCmpCall(I)) 8288 return; 8289 break; 8290 case LibFunc_mempcpy: 8291 if (visitMemPCpyCall(I)) 8292 return; 8293 break; 8294 case LibFunc_memchr: 8295 if (visitMemChrCall(I)) 8296 return; 8297 break; 8298 case LibFunc_strcpy: 8299 if (visitStrCpyCall(I, false)) 8300 return; 8301 break; 8302 case LibFunc_stpcpy: 8303 if (visitStrCpyCall(I, true)) 8304 return; 8305 break; 8306 case LibFunc_strcmp: 8307 if (visitStrCmpCall(I)) 8308 return; 8309 break; 8310 case LibFunc_strlen: 8311 if (visitStrLenCall(I)) 8312 return; 8313 break; 8314 case LibFunc_strnlen: 8315 if (visitStrNLenCall(I)) 8316 return; 8317 break; 8318 } 8319 } 8320 } 8321 8322 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8323 // have to do anything here to lower funclet bundles. 8324 // CFGuardTarget bundles are lowered in LowerCallTo. 8325 assert(!I.hasOperandBundlesOtherThan( 8326 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8327 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8328 LLVMContext::OB_clang_arc_attachedcall}) && 8329 "Cannot lower calls with arbitrary operand bundles!"); 8330 8331 SDValue Callee = getValue(I.getCalledOperand()); 8332 8333 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8334 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8335 else 8336 // Check if we can potentially perform a tail call. More detailed checking 8337 // is be done within LowerCallTo, after more information about the call is 8338 // known. 8339 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8340 } 8341 8342 namespace { 8343 8344 /// AsmOperandInfo - This contains information for each constraint that we are 8345 /// lowering. 8346 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8347 public: 8348 /// CallOperand - If this is the result output operand or a clobber 8349 /// this is null, otherwise it is the incoming operand to the CallInst. 8350 /// This gets modified as the asm is processed. 8351 SDValue CallOperand; 8352 8353 /// AssignedRegs - If this is a register or register class operand, this 8354 /// contains the set of register corresponding to the operand. 8355 RegsForValue AssignedRegs; 8356 8357 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8358 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8359 } 8360 8361 /// Whether or not this operand accesses memory 8362 bool hasMemory(const TargetLowering &TLI) const { 8363 // Indirect operand accesses access memory. 8364 if (isIndirect) 8365 return true; 8366 8367 for (const auto &Code : Codes) 8368 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8369 return true; 8370 8371 return false; 8372 } 8373 8374 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8375 /// corresponds to. If there is no Value* for this operand, it returns 8376 /// MVT::Other. 8377 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8378 const DataLayout &DL, 8379 llvm::Type *ParamElemType) const { 8380 if (!CallOperandVal) return MVT::Other; 8381 8382 if (isa<BasicBlock>(CallOperandVal)) 8383 return TLI.getProgramPointerTy(DL); 8384 8385 llvm::Type *OpTy = CallOperandVal->getType(); 8386 8387 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8388 // If this is an indirect operand, the operand is a pointer to the 8389 // accessed type. 8390 if (isIndirect) { 8391 OpTy = ParamElemType; 8392 assert(OpTy && "Indirect operand must have elementtype attribute"); 8393 } 8394 8395 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8396 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8397 if (STy->getNumElements() == 1) 8398 OpTy = STy->getElementType(0); 8399 8400 // If OpTy is not a single value, it may be a struct/union that we 8401 // can tile with integers. 8402 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8403 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8404 switch (BitSize) { 8405 default: break; 8406 case 1: 8407 case 8: 8408 case 16: 8409 case 32: 8410 case 64: 8411 case 128: 8412 OpTy = IntegerType::get(Context, BitSize); 8413 break; 8414 } 8415 } 8416 8417 return TLI.getAsmOperandValueType(DL, OpTy, true); 8418 } 8419 }; 8420 8421 8422 } // end anonymous namespace 8423 8424 /// Make sure that the output operand \p OpInfo and its corresponding input 8425 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8426 /// out). 8427 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8428 SDISelAsmOperandInfo &MatchingOpInfo, 8429 SelectionDAG &DAG) { 8430 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8431 return; 8432 8433 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8434 const auto &TLI = DAG.getTargetLoweringInfo(); 8435 8436 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8437 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8438 OpInfo.ConstraintVT); 8439 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8440 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8441 MatchingOpInfo.ConstraintVT); 8442 if ((OpInfo.ConstraintVT.isInteger() != 8443 MatchingOpInfo.ConstraintVT.isInteger()) || 8444 (MatchRC.second != InputRC.second)) { 8445 // FIXME: error out in a more elegant fashion 8446 report_fatal_error("Unsupported asm: input constraint" 8447 " with a matching output constraint of" 8448 " incompatible type!"); 8449 } 8450 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8451 } 8452 8453 /// Get a direct memory input to behave well as an indirect operand. 8454 /// This may introduce stores, hence the need for a \p Chain. 8455 /// \return The (possibly updated) chain. 8456 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8457 SDISelAsmOperandInfo &OpInfo, 8458 SelectionDAG &DAG) { 8459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8460 8461 // If we don't have an indirect input, put it in the constpool if we can, 8462 // otherwise spill it to a stack slot. 8463 // TODO: This isn't quite right. We need to handle these according to 8464 // the addressing mode that the constraint wants. Also, this may take 8465 // an additional register for the computation and we don't want that 8466 // either. 8467 8468 // If the operand is a float, integer, or vector constant, spill to a 8469 // constant pool entry to get its address. 8470 const Value *OpVal = OpInfo.CallOperandVal; 8471 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8472 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8473 OpInfo.CallOperand = DAG.getConstantPool( 8474 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8475 return Chain; 8476 } 8477 8478 // Otherwise, create a stack slot and emit a store to it before the asm. 8479 Type *Ty = OpVal->getType(); 8480 auto &DL = DAG.getDataLayout(); 8481 uint64_t TySize = DL.getTypeAllocSize(Ty); 8482 MachineFunction &MF = DAG.getMachineFunction(); 8483 int SSFI = MF.getFrameInfo().CreateStackObject( 8484 TySize, DL.getPrefTypeAlign(Ty), false); 8485 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8486 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8487 MachinePointerInfo::getFixedStack(MF, SSFI), 8488 TLI.getMemValueType(DL, Ty)); 8489 OpInfo.CallOperand = StackSlot; 8490 8491 return Chain; 8492 } 8493 8494 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8495 /// specified operand. We prefer to assign virtual registers, to allow the 8496 /// register allocator to handle the assignment process. However, if the asm 8497 /// uses features that we can't model on machineinstrs, we have SDISel do the 8498 /// allocation. This produces generally horrible, but correct, code. 8499 /// 8500 /// OpInfo describes the operand 8501 /// RefOpInfo describes the matching operand if any, the operand otherwise 8502 static llvm::Optional<unsigned> 8503 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8504 SDISelAsmOperandInfo &OpInfo, 8505 SDISelAsmOperandInfo &RefOpInfo) { 8506 LLVMContext &Context = *DAG.getContext(); 8507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8508 8509 MachineFunction &MF = DAG.getMachineFunction(); 8510 SmallVector<unsigned, 4> Regs; 8511 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8512 8513 // No work to do for memory operations. 8514 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8515 return None; 8516 8517 // If this is a constraint for a single physreg, or a constraint for a 8518 // register class, find it. 8519 unsigned AssignedReg; 8520 const TargetRegisterClass *RC; 8521 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8522 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8523 // RC is unset only on failure. Return immediately. 8524 if (!RC) 8525 return None; 8526 8527 // Get the actual register value type. This is important, because the user 8528 // may have asked for (e.g.) the AX register in i32 type. We need to 8529 // remember that AX is actually i16 to get the right extension. 8530 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8531 8532 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8533 // If this is an FP operand in an integer register (or visa versa), or more 8534 // generally if the operand value disagrees with the register class we plan 8535 // to stick it in, fix the operand type. 8536 // 8537 // If this is an input value, the bitcast to the new type is done now. 8538 // Bitcast for output value is done at the end of visitInlineAsm(). 8539 if ((OpInfo.Type == InlineAsm::isOutput || 8540 OpInfo.Type == InlineAsm::isInput) && 8541 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8542 // Try to convert to the first EVT that the reg class contains. If the 8543 // types are identical size, use a bitcast to convert (e.g. two differing 8544 // vector types). Note: output bitcast is done at the end of 8545 // visitInlineAsm(). 8546 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8547 // Exclude indirect inputs while they are unsupported because the code 8548 // to perform the load is missing and thus OpInfo.CallOperand still 8549 // refers to the input address rather than the pointed-to value. 8550 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8551 OpInfo.CallOperand = 8552 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8553 OpInfo.ConstraintVT = RegVT; 8554 // If the operand is an FP value and we want it in integer registers, 8555 // use the corresponding integer type. This turns an f64 value into 8556 // i64, which can be passed with two i32 values on a 32-bit machine. 8557 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8558 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8559 if (OpInfo.Type == InlineAsm::isInput) 8560 OpInfo.CallOperand = 8561 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8562 OpInfo.ConstraintVT = VT; 8563 } 8564 } 8565 } 8566 8567 // No need to allocate a matching input constraint since the constraint it's 8568 // matching to has already been allocated. 8569 if (OpInfo.isMatchingInputConstraint()) 8570 return None; 8571 8572 EVT ValueVT = OpInfo.ConstraintVT; 8573 if (OpInfo.ConstraintVT == MVT::Other) 8574 ValueVT = RegVT; 8575 8576 // Initialize NumRegs. 8577 unsigned NumRegs = 1; 8578 if (OpInfo.ConstraintVT != MVT::Other) 8579 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8580 8581 // If this is a constraint for a specific physical register, like {r17}, 8582 // assign it now. 8583 8584 // If this associated to a specific register, initialize iterator to correct 8585 // place. If virtual, make sure we have enough registers 8586 8587 // Initialize iterator if necessary 8588 TargetRegisterClass::iterator I = RC->begin(); 8589 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8590 8591 // Do not check for single registers. 8592 if (AssignedReg) { 8593 I = std::find(I, RC->end(), AssignedReg); 8594 if (I == RC->end()) { 8595 // RC does not contain the selected register, which indicates a 8596 // mismatch between the register and the required type/bitwidth. 8597 return {AssignedReg}; 8598 } 8599 } 8600 8601 for (; NumRegs; --NumRegs, ++I) { 8602 assert(I != RC->end() && "Ran out of registers to allocate!"); 8603 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8604 Regs.push_back(R); 8605 } 8606 8607 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8608 return None; 8609 } 8610 8611 static unsigned 8612 findMatchingInlineAsmOperand(unsigned OperandNo, 8613 const std::vector<SDValue> &AsmNodeOperands) { 8614 // Scan until we find the definition we already emitted of this operand. 8615 unsigned CurOp = InlineAsm::Op_FirstOperand; 8616 for (; OperandNo; --OperandNo) { 8617 // Advance to the next operand. 8618 unsigned OpFlag = 8619 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8620 assert((InlineAsm::isRegDefKind(OpFlag) || 8621 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8622 InlineAsm::isMemKind(OpFlag)) && 8623 "Skipped past definitions?"); 8624 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8625 } 8626 return CurOp; 8627 } 8628 8629 namespace { 8630 8631 class ExtraFlags { 8632 unsigned Flags = 0; 8633 8634 public: 8635 explicit ExtraFlags(const CallBase &Call) { 8636 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8637 if (IA->hasSideEffects()) 8638 Flags |= InlineAsm::Extra_HasSideEffects; 8639 if (IA->isAlignStack()) 8640 Flags |= InlineAsm::Extra_IsAlignStack; 8641 if (Call.isConvergent()) 8642 Flags |= InlineAsm::Extra_IsConvergent; 8643 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8644 } 8645 8646 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8647 // Ideally, we would only check against memory constraints. However, the 8648 // meaning of an Other constraint can be target-specific and we can't easily 8649 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8650 // for Other constraints as well. 8651 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8652 OpInfo.ConstraintType == TargetLowering::C_Other) { 8653 if (OpInfo.Type == InlineAsm::isInput) 8654 Flags |= InlineAsm::Extra_MayLoad; 8655 else if (OpInfo.Type == InlineAsm::isOutput) 8656 Flags |= InlineAsm::Extra_MayStore; 8657 else if (OpInfo.Type == InlineAsm::isClobber) 8658 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8659 } 8660 } 8661 8662 unsigned get() const { return Flags; } 8663 }; 8664 8665 } // end anonymous namespace 8666 8667 /// visitInlineAsm - Handle a call to an InlineAsm object. 8668 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8669 const BasicBlock *EHPadBB) { 8670 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8671 8672 /// ConstraintOperands - Information about all of the constraints. 8673 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8674 8675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8676 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8677 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8678 8679 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8680 // AsmDialect, MayLoad, MayStore). 8681 bool HasSideEffect = IA->hasSideEffects(); 8682 ExtraFlags ExtraInfo(Call); 8683 8684 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8685 unsigned ResNo = 0; // ResNo - The result number of the next output. 8686 for (auto &T : TargetConstraints) { 8687 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8688 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8689 8690 // Compute the value type for each operand. 8691 if (OpInfo.hasArg()) { 8692 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8693 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8694 Type *ParamElemTy = Call.getParamElementType(ArgNo); 8695 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8696 DAG.getDataLayout(), ParamElemTy); 8697 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8698 ArgNo++; 8699 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8700 // The return value of the call is this value. As such, there is no 8701 // corresponding argument. 8702 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8703 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8704 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8705 DAG.getDataLayout(), STy->getElementType(ResNo)); 8706 } else { 8707 assert(ResNo == 0 && "Asm only has one result!"); 8708 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8709 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8710 } 8711 ++ResNo; 8712 } else { 8713 OpInfo.ConstraintVT = MVT::Other; 8714 } 8715 8716 if (!HasSideEffect) 8717 HasSideEffect = OpInfo.hasMemory(TLI); 8718 8719 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8720 // FIXME: Could we compute this on OpInfo rather than T? 8721 8722 // Compute the constraint code and ConstraintType to use. 8723 TLI.ComputeConstraintToUse(T, SDValue()); 8724 8725 if (T.ConstraintType == TargetLowering::C_Immediate && 8726 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8727 // We've delayed emitting a diagnostic like the "n" constraint because 8728 // inlining could cause an integer showing up. 8729 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8730 "' expects an integer constant " 8731 "expression"); 8732 8733 ExtraInfo.update(T); 8734 } 8735 8736 // We won't need to flush pending loads if this asm doesn't touch 8737 // memory and is nonvolatile. 8738 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8739 8740 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8741 if (EmitEHLabels) { 8742 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8743 } 8744 bool IsCallBr = isa<CallBrInst>(Call); 8745 8746 if (IsCallBr || EmitEHLabels) { 8747 // If this is a callbr or invoke we need to flush pending exports since 8748 // inlineasm_br and invoke are terminators. 8749 // We need to do this before nodes are glued to the inlineasm_br node. 8750 Chain = getControlRoot(); 8751 } 8752 8753 MCSymbol *BeginLabel = nullptr; 8754 if (EmitEHLabels) { 8755 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8756 } 8757 8758 // Second pass over the constraints: compute which constraint option to use. 8759 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8760 // If this is an output operand with a matching input operand, look up the 8761 // matching input. If their types mismatch, e.g. one is an integer, the 8762 // other is floating point, or their sizes are different, flag it as an 8763 // error. 8764 if (OpInfo.hasMatchingInput()) { 8765 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8766 patchMatchingInput(OpInfo, Input, DAG); 8767 } 8768 8769 // Compute the constraint code and ConstraintType to use. 8770 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8771 8772 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8773 OpInfo.Type == InlineAsm::isClobber) 8774 continue; 8775 8776 // If this is a memory input, and if the operand is not indirect, do what we 8777 // need to provide an address for the memory input. 8778 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8779 !OpInfo.isIndirect) { 8780 assert((OpInfo.isMultipleAlternative || 8781 (OpInfo.Type == InlineAsm::isInput)) && 8782 "Can only indirectify direct input operands!"); 8783 8784 // Memory operands really want the address of the value. 8785 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8786 8787 // There is no longer a Value* corresponding to this operand. 8788 OpInfo.CallOperandVal = nullptr; 8789 8790 // It is now an indirect operand. 8791 OpInfo.isIndirect = true; 8792 } 8793 8794 } 8795 8796 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8797 std::vector<SDValue> AsmNodeOperands; 8798 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8799 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8800 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8801 8802 // If we have a !srcloc metadata node associated with it, we want to attach 8803 // this to the ultimately generated inline asm machineinstr. To do this, we 8804 // pass in the third operand as this (potentially null) inline asm MDNode. 8805 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8806 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8807 8808 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8809 // bits as operand 3. 8810 AsmNodeOperands.push_back(DAG.getTargetConstant( 8811 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8812 8813 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8814 // this, assign virtual and physical registers for inputs and otput. 8815 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8816 // Assign Registers. 8817 SDISelAsmOperandInfo &RefOpInfo = 8818 OpInfo.isMatchingInputConstraint() 8819 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8820 : OpInfo; 8821 const auto RegError = 8822 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8823 if (RegError.hasValue()) { 8824 const MachineFunction &MF = DAG.getMachineFunction(); 8825 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8826 const char *RegName = TRI.getName(RegError.getValue()); 8827 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8828 "' allocated for constraint '" + 8829 Twine(OpInfo.ConstraintCode) + 8830 "' does not match required type"); 8831 return; 8832 } 8833 8834 auto DetectWriteToReservedRegister = [&]() { 8835 const MachineFunction &MF = DAG.getMachineFunction(); 8836 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8837 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8838 if (Register::isPhysicalRegister(Reg) && 8839 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8840 const char *RegName = TRI.getName(Reg); 8841 emitInlineAsmError(Call, "write to reserved register '" + 8842 Twine(RegName) + "'"); 8843 return true; 8844 } 8845 } 8846 return false; 8847 }; 8848 8849 switch (OpInfo.Type) { 8850 case InlineAsm::isOutput: 8851 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8852 unsigned ConstraintID = 8853 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8854 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8855 "Failed to convert memory constraint code to constraint id."); 8856 8857 // Add information to the INLINEASM node to know about this output. 8858 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8859 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8860 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8861 MVT::i32)); 8862 AsmNodeOperands.push_back(OpInfo.CallOperand); 8863 } else { 8864 // Otherwise, this outputs to a register (directly for C_Register / 8865 // C_RegisterClass, and a target-defined fashion for 8866 // C_Immediate/C_Other). Find a register that we can use. 8867 if (OpInfo.AssignedRegs.Regs.empty()) { 8868 emitInlineAsmError( 8869 Call, "couldn't allocate output register for constraint '" + 8870 Twine(OpInfo.ConstraintCode) + "'"); 8871 return; 8872 } 8873 8874 if (DetectWriteToReservedRegister()) 8875 return; 8876 8877 // Add information to the INLINEASM node to know that this register is 8878 // set. 8879 OpInfo.AssignedRegs.AddInlineAsmOperands( 8880 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8881 : InlineAsm::Kind_RegDef, 8882 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8883 } 8884 break; 8885 8886 case InlineAsm::isInput: { 8887 SDValue InOperandVal = OpInfo.CallOperand; 8888 8889 if (OpInfo.isMatchingInputConstraint()) { 8890 // If this is required to match an output register we have already set, 8891 // just use its register. 8892 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8893 AsmNodeOperands); 8894 unsigned OpFlag = 8895 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8896 if (InlineAsm::isRegDefKind(OpFlag) || 8897 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8898 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8899 if (OpInfo.isIndirect) { 8900 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8901 emitInlineAsmError(Call, "inline asm not supported yet: " 8902 "don't know how to handle tied " 8903 "indirect register inputs"); 8904 return; 8905 } 8906 8907 SmallVector<unsigned, 4> Regs; 8908 MachineFunction &MF = DAG.getMachineFunction(); 8909 MachineRegisterInfo &MRI = MF.getRegInfo(); 8910 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8911 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8912 Register TiedReg = R->getReg(); 8913 MVT RegVT = R->getSimpleValueType(0); 8914 const TargetRegisterClass *RC = 8915 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8916 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8917 : TRI.getMinimalPhysRegClass(TiedReg); 8918 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8919 for (unsigned i = 0; i != NumRegs; ++i) 8920 Regs.push_back(MRI.createVirtualRegister(RC)); 8921 8922 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8923 8924 SDLoc dl = getCurSDLoc(); 8925 // Use the produced MatchedRegs object to 8926 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8927 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8928 true, OpInfo.getMatchedOperand(), dl, 8929 DAG, AsmNodeOperands); 8930 break; 8931 } 8932 8933 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8934 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8935 "Unexpected number of operands"); 8936 // Add information to the INLINEASM node to know about this input. 8937 // See InlineAsm.h isUseOperandTiedToDef. 8938 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8939 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8940 OpInfo.getMatchedOperand()); 8941 AsmNodeOperands.push_back(DAG.getTargetConstant( 8942 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8943 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8944 break; 8945 } 8946 8947 // Treat indirect 'X' constraint as memory. 8948 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8949 OpInfo.isIndirect) 8950 OpInfo.ConstraintType = TargetLowering::C_Memory; 8951 8952 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8953 OpInfo.ConstraintType == TargetLowering::C_Other) { 8954 std::vector<SDValue> Ops; 8955 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8956 Ops, DAG); 8957 if (Ops.empty()) { 8958 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8959 if (isa<ConstantSDNode>(InOperandVal)) { 8960 emitInlineAsmError(Call, "value out of range for constraint '" + 8961 Twine(OpInfo.ConstraintCode) + "'"); 8962 return; 8963 } 8964 8965 emitInlineAsmError(Call, 8966 "invalid operand for inline asm constraint '" + 8967 Twine(OpInfo.ConstraintCode) + "'"); 8968 return; 8969 } 8970 8971 // Add information to the INLINEASM node to know about this input. 8972 unsigned ResOpType = 8973 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8974 AsmNodeOperands.push_back(DAG.getTargetConstant( 8975 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8976 llvm::append_range(AsmNodeOperands, Ops); 8977 break; 8978 } 8979 8980 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8981 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8982 assert(InOperandVal.getValueType() == 8983 TLI.getPointerTy(DAG.getDataLayout()) && 8984 "Memory operands expect pointer values"); 8985 8986 unsigned ConstraintID = 8987 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8988 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8989 "Failed to convert memory constraint code to constraint id."); 8990 8991 // Add information to the INLINEASM node to know about this input. 8992 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8993 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8994 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8995 getCurSDLoc(), 8996 MVT::i32)); 8997 AsmNodeOperands.push_back(InOperandVal); 8998 break; 8999 } 9000 9001 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9002 OpInfo.ConstraintType == TargetLowering::C_Register) && 9003 "Unknown constraint type!"); 9004 9005 // TODO: Support this. 9006 if (OpInfo.isIndirect) { 9007 emitInlineAsmError( 9008 Call, "Don't know how to handle indirect register inputs yet " 9009 "for constraint '" + 9010 Twine(OpInfo.ConstraintCode) + "'"); 9011 return; 9012 } 9013 9014 // Copy the input into the appropriate registers. 9015 if (OpInfo.AssignedRegs.Regs.empty()) { 9016 emitInlineAsmError(Call, 9017 "couldn't allocate input reg for constraint '" + 9018 Twine(OpInfo.ConstraintCode) + "'"); 9019 return; 9020 } 9021 9022 if (DetectWriteToReservedRegister()) 9023 return; 9024 9025 SDLoc dl = getCurSDLoc(); 9026 9027 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9028 &Call); 9029 9030 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9031 dl, DAG, AsmNodeOperands); 9032 break; 9033 } 9034 case InlineAsm::isClobber: 9035 // Add the clobbered value to the operand list, so that the register 9036 // allocator is aware that the physreg got clobbered. 9037 if (!OpInfo.AssignedRegs.Regs.empty()) 9038 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9039 false, 0, getCurSDLoc(), DAG, 9040 AsmNodeOperands); 9041 break; 9042 } 9043 } 9044 9045 // Finish up input operands. Set the input chain and add the flag last. 9046 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9047 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9048 9049 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9050 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9051 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9052 Flag = Chain.getValue(1); 9053 9054 // Do additional work to generate outputs. 9055 9056 SmallVector<EVT, 1> ResultVTs; 9057 SmallVector<SDValue, 1> ResultValues; 9058 SmallVector<SDValue, 8> OutChains; 9059 9060 llvm::Type *CallResultType = Call.getType(); 9061 ArrayRef<Type *> ResultTypes; 9062 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9063 ResultTypes = StructResult->elements(); 9064 else if (!CallResultType->isVoidTy()) 9065 ResultTypes = makeArrayRef(CallResultType); 9066 9067 auto CurResultType = ResultTypes.begin(); 9068 auto handleRegAssign = [&](SDValue V) { 9069 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9070 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9071 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9072 ++CurResultType; 9073 // If the type of the inline asm call site return value is different but has 9074 // same size as the type of the asm output bitcast it. One example of this 9075 // is for vectors with different width / number of elements. This can 9076 // happen for register classes that can contain multiple different value 9077 // types. The preg or vreg allocated may not have the same VT as was 9078 // expected. 9079 // 9080 // This can also happen for a return value that disagrees with the register 9081 // class it is put in, eg. a double in a general-purpose register on a 9082 // 32-bit machine. 9083 if (ResultVT != V.getValueType() && 9084 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9085 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9086 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9087 V.getValueType().isInteger()) { 9088 // If a result value was tied to an input value, the computed result 9089 // may have a wider width than the expected result. Extract the 9090 // relevant portion. 9091 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9092 } 9093 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9094 ResultVTs.push_back(ResultVT); 9095 ResultValues.push_back(V); 9096 }; 9097 9098 // Deal with output operands. 9099 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9100 if (OpInfo.Type == InlineAsm::isOutput) { 9101 SDValue Val; 9102 // Skip trivial output operands. 9103 if (OpInfo.AssignedRegs.Regs.empty()) 9104 continue; 9105 9106 switch (OpInfo.ConstraintType) { 9107 case TargetLowering::C_Register: 9108 case TargetLowering::C_RegisterClass: 9109 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9110 Chain, &Flag, &Call); 9111 break; 9112 case TargetLowering::C_Immediate: 9113 case TargetLowering::C_Other: 9114 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9115 OpInfo, DAG); 9116 break; 9117 case TargetLowering::C_Memory: 9118 break; // Already handled. 9119 case TargetLowering::C_Unknown: 9120 assert(false && "Unexpected unknown constraint"); 9121 } 9122 9123 // Indirect output manifest as stores. Record output chains. 9124 if (OpInfo.isIndirect) { 9125 const Value *Ptr = OpInfo.CallOperandVal; 9126 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9127 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9128 MachinePointerInfo(Ptr)); 9129 OutChains.push_back(Store); 9130 } else { 9131 // generate CopyFromRegs to associated registers. 9132 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9133 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9134 for (const SDValue &V : Val->op_values()) 9135 handleRegAssign(V); 9136 } else 9137 handleRegAssign(Val); 9138 } 9139 } 9140 } 9141 9142 // Set results. 9143 if (!ResultValues.empty()) { 9144 assert(CurResultType == ResultTypes.end() && 9145 "Mismatch in number of ResultTypes"); 9146 assert(ResultValues.size() == ResultTypes.size() && 9147 "Mismatch in number of output operands in asm result"); 9148 9149 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9150 DAG.getVTList(ResultVTs), ResultValues); 9151 setValue(&Call, V); 9152 } 9153 9154 // Collect store chains. 9155 if (!OutChains.empty()) 9156 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9157 9158 if (EmitEHLabels) { 9159 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9160 } 9161 9162 // Only Update Root if inline assembly has a memory effect. 9163 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9164 EmitEHLabels) 9165 DAG.setRoot(Chain); 9166 } 9167 9168 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9169 const Twine &Message) { 9170 LLVMContext &Ctx = *DAG.getContext(); 9171 Ctx.emitError(&Call, Message); 9172 9173 // Make sure we leave the DAG in a valid state 9174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9175 SmallVector<EVT, 1> ValueVTs; 9176 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9177 9178 if (ValueVTs.empty()) 9179 return; 9180 9181 SmallVector<SDValue, 1> Ops; 9182 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9183 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9184 9185 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9186 } 9187 9188 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9189 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9190 MVT::Other, getRoot(), 9191 getValue(I.getArgOperand(0)), 9192 DAG.getSrcValue(I.getArgOperand(0)))); 9193 } 9194 9195 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9197 const DataLayout &DL = DAG.getDataLayout(); 9198 SDValue V = DAG.getVAArg( 9199 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9200 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9201 DL.getABITypeAlign(I.getType()).value()); 9202 DAG.setRoot(V.getValue(1)); 9203 9204 if (I.getType()->isPointerTy()) 9205 V = DAG.getPtrExtOrTrunc( 9206 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9207 setValue(&I, V); 9208 } 9209 9210 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9211 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9212 MVT::Other, getRoot(), 9213 getValue(I.getArgOperand(0)), 9214 DAG.getSrcValue(I.getArgOperand(0)))); 9215 } 9216 9217 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9218 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9219 MVT::Other, getRoot(), 9220 getValue(I.getArgOperand(0)), 9221 getValue(I.getArgOperand(1)), 9222 DAG.getSrcValue(I.getArgOperand(0)), 9223 DAG.getSrcValue(I.getArgOperand(1)))); 9224 } 9225 9226 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9227 const Instruction &I, 9228 SDValue Op) { 9229 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9230 if (!Range) 9231 return Op; 9232 9233 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9234 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9235 return Op; 9236 9237 APInt Lo = CR.getUnsignedMin(); 9238 if (!Lo.isMinValue()) 9239 return Op; 9240 9241 APInt Hi = CR.getUnsignedMax(); 9242 unsigned Bits = std::max(Hi.getActiveBits(), 9243 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9244 9245 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9246 9247 SDLoc SL = getCurSDLoc(); 9248 9249 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9250 DAG.getValueType(SmallVT)); 9251 unsigned NumVals = Op.getNode()->getNumValues(); 9252 if (NumVals == 1) 9253 return ZExt; 9254 9255 SmallVector<SDValue, 4> Ops; 9256 9257 Ops.push_back(ZExt); 9258 for (unsigned I = 1; I != NumVals; ++I) 9259 Ops.push_back(Op.getValue(I)); 9260 9261 return DAG.getMergeValues(Ops, SL); 9262 } 9263 9264 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9265 /// the call being lowered. 9266 /// 9267 /// This is a helper for lowering intrinsics that follow a target calling 9268 /// convention or require stack pointer adjustment. Only a subset of the 9269 /// intrinsic's operands need to participate in the calling convention. 9270 void SelectionDAGBuilder::populateCallLoweringInfo( 9271 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9272 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9273 bool IsPatchPoint) { 9274 TargetLowering::ArgListTy Args; 9275 Args.reserve(NumArgs); 9276 9277 // Populate the argument list. 9278 // Attributes for args start at offset 1, after the return attribute. 9279 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9280 ArgI != ArgE; ++ArgI) { 9281 const Value *V = Call->getOperand(ArgI); 9282 9283 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9284 9285 TargetLowering::ArgListEntry Entry; 9286 Entry.Node = getValue(V); 9287 Entry.Ty = V->getType(); 9288 Entry.setAttributes(Call, ArgI); 9289 Args.push_back(Entry); 9290 } 9291 9292 CLI.setDebugLoc(getCurSDLoc()) 9293 .setChain(getRoot()) 9294 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9295 .setDiscardResult(Call->use_empty()) 9296 .setIsPatchPoint(IsPatchPoint) 9297 .setIsPreallocated( 9298 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9299 } 9300 9301 /// Add a stack map intrinsic call's live variable operands to a stackmap 9302 /// or patchpoint target node's operand list. 9303 /// 9304 /// Constants are converted to TargetConstants purely as an optimization to 9305 /// avoid constant materialization and register allocation. 9306 /// 9307 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9308 /// generate addess computation nodes, and so FinalizeISel can convert the 9309 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9310 /// address materialization and register allocation, but may also be required 9311 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9312 /// alloca in the entry block, then the runtime may assume that the alloca's 9313 /// StackMap location can be read immediately after compilation and that the 9314 /// location is valid at any point during execution (this is similar to the 9315 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9316 /// only available in a register, then the runtime would need to trap when 9317 /// execution reaches the StackMap in order to read the alloca's location. 9318 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9319 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9320 SelectionDAGBuilder &Builder) { 9321 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9322 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9323 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9324 Ops.push_back( 9325 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9326 Ops.push_back( 9327 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9328 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9329 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9330 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9331 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9332 } else 9333 Ops.push_back(OpVal); 9334 } 9335 } 9336 9337 /// Lower llvm.experimental.stackmap directly to its target opcode. 9338 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9339 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9340 // [live variables...]) 9341 9342 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9343 9344 SDValue Chain, InFlag, Callee, NullPtr; 9345 SmallVector<SDValue, 32> Ops; 9346 9347 SDLoc DL = getCurSDLoc(); 9348 Callee = getValue(CI.getCalledOperand()); 9349 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9350 9351 // The stackmap intrinsic only records the live variables (the arguments 9352 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9353 // intrinsic, this won't be lowered to a function call. This means we don't 9354 // have to worry about calling conventions and target specific lowering code. 9355 // Instead we perform the call lowering right here. 9356 // 9357 // chain, flag = CALLSEQ_START(chain, 0, 0) 9358 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9359 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9360 // 9361 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9362 InFlag = Chain.getValue(1); 9363 9364 // Add the <id> and <numBytes> constants. 9365 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9366 Ops.push_back(DAG.getTargetConstant( 9367 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9368 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9369 Ops.push_back(DAG.getTargetConstant( 9370 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9371 MVT::i32)); 9372 9373 // Push live variables for the stack map. 9374 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9375 9376 // We are not pushing any register mask info here on the operands list, 9377 // because the stackmap doesn't clobber anything. 9378 9379 // Push the chain and the glue flag. 9380 Ops.push_back(Chain); 9381 Ops.push_back(InFlag); 9382 9383 // Create the STACKMAP node. 9384 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9385 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9386 Chain = SDValue(SM, 0); 9387 InFlag = Chain.getValue(1); 9388 9389 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9390 9391 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9392 9393 // Set the root to the target-lowered call chain. 9394 DAG.setRoot(Chain); 9395 9396 // Inform the Frame Information that we have a stackmap in this function. 9397 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9398 } 9399 9400 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9401 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9402 const BasicBlock *EHPadBB) { 9403 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9404 // i32 <numBytes>, 9405 // i8* <target>, 9406 // i32 <numArgs>, 9407 // [Args...], 9408 // [live variables...]) 9409 9410 CallingConv::ID CC = CB.getCallingConv(); 9411 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9412 bool HasDef = !CB.getType()->isVoidTy(); 9413 SDLoc dl = getCurSDLoc(); 9414 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9415 9416 // Handle immediate and symbolic callees. 9417 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9418 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9419 /*isTarget=*/true); 9420 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9421 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9422 SDLoc(SymbolicCallee), 9423 SymbolicCallee->getValueType(0)); 9424 9425 // Get the real number of arguments participating in the call <numArgs> 9426 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9427 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9428 9429 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9430 // Intrinsics include all meta-operands up to but not including CC. 9431 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9432 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9433 "Not enough arguments provided to the patchpoint intrinsic"); 9434 9435 // For AnyRegCC the arguments are lowered later on manually. 9436 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9437 Type *ReturnTy = 9438 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9439 9440 TargetLowering::CallLoweringInfo CLI(DAG); 9441 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9442 ReturnTy, true); 9443 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9444 9445 SDNode *CallEnd = Result.second.getNode(); 9446 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9447 CallEnd = CallEnd->getOperand(0).getNode(); 9448 9449 /// Get a call instruction from the call sequence chain. 9450 /// Tail calls are not allowed. 9451 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9452 "Expected a callseq node."); 9453 SDNode *Call = CallEnd->getOperand(0).getNode(); 9454 bool HasGlue = Call->getGluedNode(); 9455 9456 // Replace the target specific call node with the patchable intrinsic. 9457 SmallVector<SDValue, 8> Ops; 9458 9459 // Add the <id> and <numBytes> constants. 9460 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9461 Ops.push_back(DAG.getTargetConstant( 9462 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9463 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9464 Ops.push_back(DAG.getTargetConstant( 9465 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9466 MVT::i32)); 9467 9468 // Add the callee. 9469 Ops.push_back(Callee); 9470 9471 // Adjust <numArgs> to account for any arguments that have been passed on the 9472 // stack instead. 9473 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9474 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9475 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9476 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9477 9478 // Add the calling convention 9479 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9480 9481 // Add the arguments we omitted previously. The register allocator should 9482 // place these in any free register. 9483 if (IsAnyRegCC) 9484 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9485 Ops.push_back(getValue(CB.getArgOperand(i))); 9486 9487 // Push the arguments from the call instruction up to the register mask. 9488 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9489 Ops.append(Call->op_begin() + 2, e); 9490 9491 // Push live variables for the stack map. 9492 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9493 9494 // Push the register mask info. 9495 if (HasGlue) 9496 Ops.push_back(*(Call->op_end()-2)); 9497 else 9498 Ops.push_back(*(Call->op_end()-1)); 9499 9500 // Push the chain (this is originally the first operand of the call, but 9501 // becomes now the last or second to last operand). 9502 Ops.push_back(*(Call->op_begin())); 9503 9504 // Push the glue flag (last operand). 9505 if (HasGlue) 9506 Ops.push_back(*(Call->op_end()-1)); 9507 9508 SDVTList NodeTys; 9509 if (IsAnyRegCC && HasDef) { 9510 // Create the return types based on the intrinsic definition 9511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9512 SmallVector<EVT, 3> ValueVTs; 9513 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9514 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9515 9516 // There is always a chain and a glue type at the end 9517 ValueVTs.push_back(MVT::Other); 9518 ValueVTs.push_back(MVT::Glue); 9519 NodeTys = DAG.getVTList(ValueVTs); 9520 } else 9521 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9522 9523 // Replace the target specific call node with a PATCHPOINT node. 9524 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9525 dl, NodeTys, Ops); 9526 9527 // Update the NodeMap. 9528 if (HasDef) { 9529 if (IsAnyRegCC) 9530 setValue(&CB, SDValue(MN, 0)); 9531 else 9532 setValue(&CB, Result.first); 9533 } 9534 9535 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9536 // call sequence. Furthermore the location of the chain and glue can change 9537 // when the AnyReg calling convention is used and the intrinsic returns a 9538 // value. 9539 if (IsAnyRegCC && HasDef) { 9540 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9541 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9542 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9543 } else 9544 DAG.ReplaceAllUsesWith(Call, MN); 9545 DAG.DeleteNode(Call); 9546 9547 // Inform the Frame Information that we have a patchpoint in this function. 9548 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9549 } 9550 9551 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9552 unsigned Intrinsic) { 9553 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9554 SDValue Op1 = getValue(I.getArgOperand(0)); 9555 SDValue Op2; 9556 if (I.arg_size() > 1) 9557 Op2 = getValue(I.getArgOperand(1)); 9558 SDLoc dl = getCurSDLoc(); 9559 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9560 SDValue Res; 9561 SDNodeFlags SDFlags; 9562 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9563 SDFlags.copyFMF(*FPMO); 9564 9565 switch (Intrinsic) { 9566 case Intrinsic::vector_reduce_fadd: 9567 if (SDFlags.hasAllowReassociation()) 9568 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9569 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9570 SDFlags); 9571 else 9572 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9573 break; 9574 case Intrinsic::vector_reduce_fmul: 9575 if (SDFlags.hasAllowReassociation()) 9576 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9577 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9578 SDFlags); 9579 else 9580 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9581 break; 9582 case Intrinsic::vector_reduce_add: 9583 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9584 break; 9585 case Intrinsic::vector_reduce_mul: 9586 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9587 break; 9588 case Intrinsic::vector_reduce_and: 9589 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9590 break; 9591 case Intrinsic::vector_reduce_or: 9592 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9593 break; 9594 case Intrinsic::vector_reduce_xor: 9595 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9596 break; 9597 case Intrinsic::vector_reduce_smax: 9598 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9599 break; 9600 case Intrinsic::vector_reduce_smin: 9601 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9602 break; 9603 case Intrinsic::vector_reduce_umax: 9604 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9605 break; 9606 case Intrinsic::vector_reduce_umin: 9607 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9608 break; 9609 case Intrinsic::vector_reduce_fmax: 9610 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9611 break; 9612 case Intrinsic::vector_reduce_fmin: 9613 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9614 break; 9615 default: 9616 llvm_unreachable("Unhandled vector reduce intrinsic"); 9617 } 9618 setValue(&I, Res); 9619 } 9620 9621 /// Returns an AttributeList representing the attributes applied to the return 9622 /// value of the given call. 9623 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9624 SmallVector<Attribute::AttrKind, 2> Attrs; 9625 if (CLI.RetSExt) 9626 Attrs.push_back(Attribute::SExt); 9627 if (CLI.RetZExt) 9628 Attrs.push_back(Attribute::ZExt); 9629 if (CLI.IsInReg) 9630 Attrs.push_back(Attribute::InReg); 9631 9632 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9633 Attrs); 9634 } 9635 9636 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9637 /// implementation, which just calls LowerCall. 9638 /// FIXME: When all targets are 9639 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9640 std::pair<SDValue, SDValue> 9641 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9642 // Handle the incoming return values from the call. 9643 CLI.Ins.clear(); 9644 Type *OrigRetTy = CLI.RetTy; 9645 SmallVector<EVT, 4> RetTys; 9646 SmallVector<uint64_t, 4> Offsets; 9647 auto &DL = CLI.DAG.getDataLayout(); 9648 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9649 9650 if (CLI.IsPostTypeLegalization) { 9651 // If we are lowering a libcall after legalization, split the return type. 9652 SmallVector<EVT, 4> OldRetTys; 9653 SmallVector<uint64_t, 4> OldOffsets; 9654 RetTys.swap(OldRetTys); 9655 Offsets.swap(OldOffsets); 9656 9657 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9658 EVT RetVT = OldRetTys[i]; 9659 uint64_t Offset = OldOffsets[i]; 9660 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9661 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9662 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9663 RetTys.append(NumRegs, RegisterVT); 9664 for (unsigned j = 0; j != NumRegs; ++j) 9665 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9666 } 9667 } 9668 9669 SmallVector<ISD::OutputArg, 4> Outs; 9670 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9671 9672 bool CanLowerReturn = 9673 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9674 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9675 9676 SDValue DemoteStackSlot; 9677 int DemoteStackIdx = -100; 9678 if (!CanLowerReturn) { 9679 // FIXME: equivalent assert? 9680 // assert(!CS.hasInAllocaArgument() && 9681 // "sret demotion is incompatible with inalloca"); 9682 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9683 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9684 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9685 DemoteStackIdx = 9686 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9687 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9688 DL.getAllocaAddrSpace()); 9689 9690 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9691 ArgListEntry Entry; 9692 Entry.Node = DemoteStackSlot; 9693 Entry.Ty = StackSlotPtrType; 9694 Entry.IsSExt = false; 9695 Entry.IsZExt = false; 9696 Entry.IsInReg = false; 9697 Entry.IsSRet = true; 9698 Entry.IsNest = false; 9699 Entry.IsByVal = false; 9700 Entry.IsByRef = false; 9701 Entry.IsReturned = false; 9702 Entry.IsSwiftSelf = false; 9703 Entry.IsSwiftAsync = false; 9704 Entry.IsSwiftError = false; 9705 Entry.IsCFGuardTarget = false; 9706 Entry.Alignment = Alignment; 9707 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9708 CLI.NumFixedArgs += 1; 9709 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9710 9711 // sret demotion isn't compatible with tail-calls, since the sret argument 9712 // points into the callers stack frame. 9713 CLI.IsTailCall = false; 9714 } else { 9715 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9716 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9717 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9718 ISD::ArgFlagsTy Flags; 9719 if (NeedsRegBlock) { 9720 Flags.setInConsecutiveRegs(); 9721 if (I == RetTys.size() - 1) 9722 Flags.setInConsecutiveRegsLast(); 9723 } 9724 EVT VT = RetTys[I]; 9725 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9726 CLI.CallConv, VT); 9727 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9728 CLI.CallConv, VT); 9729 for (unsigned i = 0; i != NumRegs; ++i) { 9730 ISD::InputArg MyFlags; 9731 MyFlags.Flags = Flags; 9732 MyFlags.VT = RegisterVT; 9733 MyFlags.ArgVT = VT; 9734 MyFlags.Used = CLI.IsReturnValueUsed; 9735 if (CLI.RetTy->isPointerTy()) { 9736 MyFlags.Flags.setPointer(); 9737 MyFlags.Flags.setPointerAddrSpace( 9738 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9739 } 9740 if (CLI.RetSExt) 9741 MyFlags.Flags.setSExt(); 9742 if (CLI.RetZExt) 9743 MyFlags.Flags.setZExt(); 9744 if (CLI.IsInReg) 9745 MyFlags.Flags.setInReg(); 9746 CLI.Ins.push_back(MyFlags); 9747 } 9748 } 9749 } 9750 9751 // We push in swifterror return as the last element of CLI.Ins. 9752 ArgListTy &Args = CLI.getArgs(); 9753 if (supportSwiftError()) { 9754 for (const ArgListEntry &Arg : Args) { 9755 if (Arg.IsSwiftError) { 9756 ISD::InputArg MyFlags; 9757 MyFlags.VT = getPointerTy(DL); 9758 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9759 MyFlags.Flags.setSwiftError(); 9760 CLI.Ins.push_back(MyFlags); 9761 } 9762 } 9763 } 9764 9765 // Handle all of the outgoing arguments. 9766 CLI.Outs.clear(); 9767 CLI.OutVals.clear(); 9768 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9769 SmallVector<EVT, 4> ValueVTs; 9770 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9771 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9772 Type *FinalType = Args[i].Ty; 9773 if (Args[i].IsByVal) 9774 FinalType = Args[i].IndirectType; 9775 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9776 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9777 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9778 ++Value) { 9779 EVT VT = ValueVTs[Value]; 9780 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9781 SDValue Op = SDValue(Args[i].Node.getNode(), 9782 Args[i].Node.getResNo() + Value); 9783 ISD::ArgFlagsTy Flags; 9784 9785 // Certain targets (such as MIPS), may have a different ABI alignment 9786 // for a type depending on the context. Give the target a chance to 9787 // specify the alignment it wants. 9788 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9789 Flags.setOrigAlign(OriginalAlignment); 9790 9791 if (Args[i].Ty->isPointerTy()) { 9792 Flags.setPointer(); 9793 Flags.setPointerAddrSpace( 9794 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9795 } 9796 if (Args[i].IsZExt) 9797 Flags.setZExt(); 9798 if (Args[i].IsSExt) 9799 Flags.setSExt(); 9800 if (Args[i].IsInReg) { 9801 // If we are using vectorcall calling convention, a structure that is 9802 // passed InReg - is surely an HVA 9803 if (CLI.CallConv == CallingConv::X86_VectorCall && 9804 isa<StructType>(FinalType)) { 9805 // The first value of a structure is marked 9806 if (0 == Value) 9807 Flags.setHvaStart(); 9808 Flags.setHva(); 9809 } 9810 // Set InReg Flag 9811 Flags.setInReg(); 9812 } 9813 if (Args[i].IsSRet) 9814 Flags.setSRet(); 9815 if (Args[i].IsSwiftSelf) 9816 Flags.setSwiftSelf(); 9817 if (Args[i].IsSwiftAsync) 9818 Flags.setSwiftAsync(); 9819 if (Args[i].IsSwiftError) 9820 Flags.setSwiftError(); 9821 if (Args[i].IsCFGuardTarget) 9822 Flags.setCFGuardTarget(); 9823 if (Args[i].IsByVal) 9824 Flags.setByVal(); 9825 if (Args[i].IsByRef) 9826 Flags.setByRef(); 9827 if (Args[i].IsPreallocated) { 9828 Flags.setPreallocated(); 9829 // Set the byval flag for CCAssignFn callbacks that don't know about 9830 // preallocated. This way we can know how many bytes we should've 9831 // allocated and how many bytes a callee cleanup function will pop. If 9832 // we port preallocated to more targets, we'll have to add custom 9833 // preallocated handling in the various CC lowering callbacks. 9834 Flags.setByVal(); 9835 } 9836 if (Args[i].IsInAlloca) { 9837 Flags.setInAlloca(); 9838 // Set the byval flag for CCAssignFn callbacks that don't know about 9839 // inalloca. This way we can know how many bytes we should've allocated 9840 // and how many bytes a callee cleanup function will pop. If we port 9841 // inalloca to more targets, we'll have to add custom inalloca handling 9842 // in the various CC lowering callbacks. 9843 Flags.setByVal(); 9844 } 9845 Align MemAlign; 9846 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9847 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9848 Flags.setByValSize(FrameSize); 9849 9850 // info is not there but there are cases it cannot get right. 9851 if (auto MA = Args[i].Alignment) 9852 MemAlign = *MA; 9853 else 9854 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9855 } else if (auto MA = Args[i].Alignment) { 9856 MemAlign = *MA; 9857 } else { 9858 MemAlign = OriginalAlignment; 9859 } 9860 Flags.setMemAlign(MemAlign); 9861 if (Args[i].IsNest) 9862 Flags.setNest(); 9863 if (NeedsRegBlock) 9864 Flags.setInConsecutiveRegs(); 9865 9866 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9867 CLI.CallConv, VT); 9868 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9869 CLI.CallConv, VT); 9870 SmallVector<SDValue, 4> Parts(NumParts); 9871 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9872 9873 if (Args[i].IsSExt) 9874 ExtendKind = ISD::SIGN_EXTEND; 9875 else if (Args[i].IsZExt) 9876 ExtendKind = ISD::ZERO_EXTEND; 9877 9878 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9879 // for now. 9880 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9881 CanLowerReturn) { 9882 assert((CLI.RetTy == Args[i].Ty || 9883 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9884 CLI.RetTy->getPointerAddressSpace() == 9885 Args[i].Ty->getPointerAddressSpace())) && 9886 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9887 // Before passing 'returned' to the target lowering code, ensure that 9888 // either the register MVT and the actual EVT are the same size or that 9889 // the return value and argument are extended in the same way; in these 9890 // cases it's safe to pass the argument register value unchanged as the 9891 // return register value (although it's at the target's option whether 9892 // to do so) 9893 // TODO: allow code generation to take advantage of partially preserved 9894 // registers rather than clobbering the entire register when the 9895 // parameter extension method is not compatible with the return 9896 // extension method 9897 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9898 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9899 CLI.RetZExt == Args[i].IsZExt)) 9900 Flags.setReturned(); 9901 } 9902 9903 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9904 CLI.CallConv, ExtendKind); 9905 9906 for (unsigned j = 0; j != NumParts; ++j) { 9907 // if it isn't first piece, alignment must be 1 9908 // For scalable vectors the scalable part is currently handled 9909 // by individual targets, so we just use the known minimum size here. 9910 ISD::OutputArg MyFlags( 9911 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9912 i < CLI.NumFixedArgs, i, 9913 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9914 if (NumParts > 1 && j == 0) 9915 MyFlags.Flags.setSplit(); 9916 else if (j != 0) { 9917 MyFlags.Flags.setOrigAlign(Align(1)); 9918 if (j == NumParts - 1) 9919 MyFlags.Flags.setSplitEnd(); 9920 } 9921 9922 CLI.Outs.push_back(MyFlags); 9923 CLI.OutVals.push_back(Parts[j]); 9924 } 9925 9926 if (NeedsRegBlock && Value == NumValues - 1) 9927 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9928 } 9929 } 9930 9931 SmallVector<SDValue, 4> InVals; 9932 CLI.Chain = LowerCall(CLI, InVals); 9933 9934 // Update CLI.InVals to use outside of this function. 9935 CLI.InVals = InVals; 9936 9937 // Verify that the target's LowerCall behaved as expected. 9938 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9939 "LowerCall didn't return a valid chain!"); 9940 assert((!CLI.IsTailCall || InVals.empty()) && 9941 "LowerCall emitted a return value for a tail call!"); 9942 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9943 "LowerCall didn't emit the correct number of values!"); 9944 9945 // For a tail call, the return value is merely live-out and there aren't 9946 // any nodes in the DAG representing it. Return a special value to 9947 // indicate that a tail call has been emitted and no more Instructions 9948 // should be processed in the current block. 9949 if (CLI.IsTailCall) { 9950 CLI.DAG.setRoot(CLI.Chain); 9951 return std::make_pair(SDValue(), SDValue()); 9952 } 9953 9954 #ifndef NDEBUG 9955 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9956 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9957 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9958 "LowerCall emitted a value with the wrong type!"); 9959 } 9960 #endif 9961 9962 SmallVector<SDValue, 4> ReturnValues; 9963 if (!CanLowerReturn) { 9964 // The instruction result is the result of loading from the 9965 // hidden sret parameter. 9966 SmallVector<EVT, 1> PVTs; 9967 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9968 9969 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9970 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9971 EVT PtrVT = PVTs[0]; 9972 9973 unsigned NumValues = RetTys.size(); 9974 ReturnValues.resize(NumValues); 9975 SmallVector<SDValue, 4> Chains(NumValues); 9976 9977 // An aggregate return value cannot wrap around the address space, so 9978 // offsets to its parts don't wrap either. 9979 SDNodeFlags Flags; 9980 Flags.setNoUnsignedWrap(true); 9981 9982 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9983 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9984 for (unsigned i = 0; i < NumValues; ++i) { 9985 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9986 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9987 PtrVT), Flags); 9988 SDValue L = CLI.DAG.getLoad( 9989 RetTys[i], CLI.DL, CLI.Chain, Add, 9990 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9991 DemoteStackIdx, Offsets[i]), 9992 HiddenSRetAlign); 9993 ReturnValues[i] = L; 9994 Chains[i] = L.getValue(1); 9995 } 9996 9997 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9998 } else { 9999 // Collect the legal value parts into potentially illegal values 10000 // that correspond to the original function's return values. 10001 Optional<ISD::NodeType> AssertOp; 10002 if (CLI.RetSExt) 10003 AssertOp = ISD::AssertSext; 10004 else if (CLI.RetZExt) 10005 AssertOp = ISD::AssertZext; 10006 unsigned CurReg = 0; 10007 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10008 EVT VT = RetTys[I]; 10009 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10010 CLI.CallConv, VT); 10011 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10012 CLI.CallConv, VT); 10013 10014 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10015 NumRegs, RegisterVT, VT, nullptr, 10016 CLI.CallConv, AssertOp)); 10017 CurReg += NumRegs; 10018 } 10019 10020 // For a function returning void, there is no return value. We can't create 10021 // such a node, so we just return a null return value in that case. In 10022 // that case, nothing will actually look at the value. 10023 if (ReturnValues.empty()) 10024 return std::make_pair(SDValue(), CLI.Chain); 10025 } 10026 10027 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10028 CLI.DAG.getVTList(RetTys), ReturnValues); 10029 return std::make_pair(Res, CLI.Chain); 10030 } 10031 10032 /// Places new result values for the node in Results (their number 10033 /// and types must exactly match those of the original return values of 10034 /// the node), or leaves Results empty, which indicates that the node is not 10035 /// to be custom lowered after all. 10036 void TargetLowering::LowerOperationWrapper(SDNode *N, 10037 SmallVectorImpl<SDValue> &Results, 10038 SelectionDAG &DAG) const { 10039 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10040 10041 if (!Res.getNode()) 10042 return; 10043 10044 // If the original node has one result, take the return value from 10045 // LowerOperation as is. It might not be result number 0. 10046 if (N->getNumValues() == 1) { 10047 Results.push_back(Res); 10048 return; 10049 } 10050 10051 // If the original node has multiple results, then the return node should 10052 // have the same number of results. 10053 assert((N->getNumValues() == Res->getNumValues()) && 10054 "Lowering returned the wrong number of results!"); 10055 10056 // Places new result values base on N result number. 10057 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10058 Results.push_back(Res.getValue(I)); 10059 } 10060 10061 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10062 llvm_unreachable("LowerOperation not implemented for this target!"); 10063 } 10064 10065 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10066 unsigned Reg, 10067 ISD::NodeType ExtendType) { 10068 SDValue Op = getNonRegisterValue(V); 10069 assert((Op.getOpcode() != ISD::CopyFromReg || 10070 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10071 "Copy from a reg to the same reg!"); 10072 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10073 10074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10075 // If this is an InlineAsm we have to match the registers required, not the 10076 // notional registers required by the type. 10077 10078 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10079 None); // This is not an ABI copy. 10080 SDValue Chain = DAG.getEntryNode(); 10081 10082 if (ExtendType == ISD::ANY_EXTEND) { 10083 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10084 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10085 ExtendType = PreferredExtendIt->second; 10086 } 10087 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10088 PendingExports.push_back(Chain); 10089 } 10090 10091 #include "llvm/CodeGen/SelectionDAGISel.h" 10092 10093 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10094 /// entry block, return true. This includes arguments used by switches, since 10095 /// the switch may expand into multiple basic blocks. 10096 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10097 // With FastISel active, we may be splitting blocks, so force creation 10098 // of virtual registers for all non-dead arguments. 10099 if (FastISel) 10100 return A->use_empty(); 10101 10102 const BasicBlock &Entry = A->getParent()->front(); 10103 for (const User *U : A->users()) 10104 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10105 return false; // Use not in entry block. 10106 10107 return true; 10108 } 10109 10110 using ArgCopyElisionMapTy = 10111 DenseMap<const Argument *, 10112 std::pair<const AllocaInst *, const StoreInst *>>; 10113 10114 /// Scan the entry block of the function in FuncInfo for arguments that look 10115 /// like copies into a local alloca. Record any copied arguments in 10116 /// ArgCopyElisionCandidates. 10117 static void 10118 findArgumentCopyElisionCandidates(const DataLayout &DL, 10119 FunctionLoweringInfo *FuncInfo, 10120 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10121 // Record the state of every static alloca used in the entry block. Argument 10122 // allocas are all used in the entry block, so we need approximately as many 10123 // entries as we have arguments. 10124 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10125 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10126 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10127 StaticAllocas.reserve(NumArgs * 2); 10128 10129 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10130 if (!V) 10131 return nullptr; 10132 V = V->stripPointerCasts(); 10133 const auto *AI = dyn_cast<AllocaInst>(V); 10134 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10135 return nullptr; 10136 auto Iter = StaticAllocas.insert({AI, Unknown}); 10137 return &Iter.first->second; 10138 }; 10139 10140 // Look for stores of arguments to static allocas. Look through bitcasts and 10141 // GEPs to handle type coercions, as long as the alloca is fully initialized 10142 // by the store. Any non-store use of an alloca escapes it and any subsequent 10143 // unanalyzed store might write it. 10144 // FIXME: Handle structs initialized with multiple stores. 10145 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10146 // Look for stores, and handle non-store uses conservatively. 10147 const auto *SI = dyn_cast<StoreInst>(&I); 10148 if (!SI) { 10149 // We will look through cast uses, so ignore them completely. 10150 if (I.isCast()) 10151 continue; 10152 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10153 // to allocas. 10154 if (I.isDebugOrPseudoInst()) 10155 continue; 10156 // This is an unknown instruction. Assume it escapes or writes to all 10157 // static alloca operands. 10158 for (const Use &U : I.operands()) { 10159 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10160 *Info = StaticAllocaInfo::Clobbered; 10161 } 10162 continue; 10163 } 10164 10165 // If the stored value is a static alloca, mark it as escaped. 10166 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10167 *Info = StaticAllocaInfo::Clobbered; 10168 10169 // Check if the destination is a static alloca. 10170 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10171 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10172 if (!Info) 10173 continue; 10174 const AllocaInst *AI = cast<AllocaInst>(Dst); 10175 10176 // Skip allocas that have been initialized or clobbered. 10177 if (*Info != StaticAllocaInfo::Unknown) 10178 continue; 10179 10180 // Check if the stored value is an argument, and that this store fully 10181 // initializes the alloca. 10182 // If the argument type has padding bits we can't directly forward a pointer 10183 // as the upper bits may contain garbage. 10184 // Don't elide copies from the same argument twice. 10185 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10186 const auto *Arg = dyn_cast<Argument>(Val); 10187 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10188 Arg->getType()->isEmptyTy() || 10189 DL.getTypeStoreSize(Arg->getType()) != 10190 DL.getTypeAllocSize(AI->getAllocatedType()) || 10191 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10192 ArgCopyElisionCandidates.count(Arg)) { 10193 *Info = StaticAllocaInfo::Clobbered; 10194 continue; 10195 } 10196 10197 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10198 << '\n'); 10199 10200 // Mark this alloca and store for argument copy elision. 10201 *Info = StaticAllocaInfo::Elidable; 10202 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10203 10204 // Stop scanning if we've seen all arguments. This will happen early in -O0 10205 // builds, which is useful, because -O0 builds have large entry blocks and 10206 // many allocas. 10207 if (ArgCopyElisionCandidates.size() == NumArgs) 10208 break; 10209 } 10210 } 10211 10212 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10213 /// ArgVal is a load from a suitable fixed stack object. 10214 static void tryToElideArgumentCopy( 10215 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10216 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10217 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10218 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10219 SDValue ArgVal, bool &ArgHasUses) { 10220 // Check if this is a load from a fixed stack object. 10221 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10222 if (!LNode) 10223 return; 10224 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10225 if (!FINode) 10226 return; 10227 10228 // Check that the fixed stack object is the right size and alignment. 10229 // Look at the alignment that the user wrote on the alloca instead of looking 10230 // at the stack object. 10231 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10232 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10233 const AllocaInst *AI = ArgCopyIter->second.first; 10234 int FixedIndex = FINode->getIndex(); 10235 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10236 int OldIndex = AllocaIndex; 10237 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10238 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10239 LLVM_DEBUG( 10240 dbgs() << " argument copy elision failed due to bad fixed stack " 10241 "object size\n"); 10242 return; 10243 } 10244 Align RequiredAlignment = AI->getAlign(); 10245 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10246 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10247 "greater than stack argument alignment (" 10248 << DebugStr(RequiredAlignment) << " vs " 10249 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10250 return; 10251 } 10252 10253 // Perform the elision. Delete the old stack object and replace its only use 10254 // in the variable info map. Mark the stack object as mutable. 10255 LLVM_DEBUG({ 10256 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10257 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10258 << '\n'; 10259 }); 10260 MFI.RemoveStackObject(OldIndex); 10261 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10262 AllocaIndex = FixedIndex; 10263 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10264 Chains.push_back(ArgVal.getValue(1)); 10265 10266 // Avoid emitting code for the store implementing the copy. 10267 const StoreInst *SI = ArgCopyIter->second.second; 10268 ElidedArgCopyInstrs.insert(SI); 10269 10270 // Check for uses of the argument again so that we can avoid exporting ArgVal 10271 // if it is't used by anything other than the store. 10272 for (const Value *U : Arg.users()) { 10273 if (U != SI) { 10274 ArgHasUses = true; 10275 break; 10276 } 10277 } 10278 } 10279 10280 void SelectionDAGISel::LowerArguments(const Function &F) { 10281 SelectionDAG &DAG = SDB->DAG; 10282 SDLoc dl = SDB->getCurSDLoc(); 10283 const DataLayout &DL = DAG.getDataLayout(); 10284 SmallVector<ISD::InputArg, 16> Ins; 10285 10286 // In Naked functions we aren't going to save any registers. 10287 if (F.hasFnAttribute(Attribute::Naked)) 10288 return; 10289 10290 if (!FuncInfo->CanLowerReturn) { 10291 // Put in an sret pointer parameter before all the other parameters. 10292 SmallVector<EVT, 1> ValueVTs; 10293 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10294 F.getReturnType()->getPointerTo( 10295 DAG.getDataLayout().getAllocaAddrSpace()), 10296 ValueVTs); 10297 10298 // NOTE: Assuming that a pointer will never break down to more than one VT 10299 // or one register. 10300 ISD::ArgFlagsTy Flags; 10301 Flags.setSRet(); 10302 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10303 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10304 ISD::InputArg::NoArgIndex, 0); 10305 Ins.push_back(RetArg); 10306 } 10307 10308 // Look for stores of arguments to static allocas. Mark such arguments with a 10309 // flag to ask the target to give us the memory location of that argument if 10310 // available. 10311 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10312 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10313 ArgCopyElisionCandidates); 10314 10315 // Set up the incoming argument description vector. 10316 for (const Argument &Arg : F.args()) { 10317 unsigned ArgNo = Arg.getArgNo(); 10318 SmallVector<EVT, 4> ValueVTs; 10319 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10320 bool isArgValueUsed = !Arg.use_empty(); 10321 unsigned PartBase = 0; 10322 Type *FinalType = Arg.getType(); 10323 if (Arg.hasAttribute(Attribute::ByVal)) 10324 FinalType = Arg.getParamByValType(); 10325 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10326 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10327 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10328 Value != NumValues; ++Value) { 10329 EVT VT = ValueVTs[Value]; 10330 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10331 ISD::ArgFlagsTy Flags; 10332 10333 10334 if (Arg.getType()->isPointerTy()) { 10335 Flags.setPointer(); 10336 Flags.setPointerAddrSpace( 10337 cast<PointerType>(Arg.getType())->getAddressSpace()); 10338 } 10339 if (Arg.hasAttribute(Attribute::ZExt)) 10340 Flags.setZExt(); 10341 if (Arg.hasAttribute(Attribute::SExt)) 10342 Flags.setSExt(); 10343 if (Arg.hasAttribute(Attribute::InReg)) { 10344 // If we are using vectorcall calling convention, a structure that is 10345 // passed InReg - is surely an HVA 10346 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10347 isa<StructType>(Arg.getType())) { 10348 // The first value of a structure is marked 10349 if (0 == Value) 10350 Flags.setHvaStart(); 10351 Flags.setHva(); 10352 } 10353 // Set InReg Flag 10354 Flags.setInReg(); 10355 } 10356 if (Arg.hasAttribute(Attribute::StructRet)) 10357 Flags.setSRet(); 10358 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10359 Flags.setSwiftSelf(); 10360 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10361 Flags.setSwiftAsync(); 10362 if (Arg.hasAttribute(Attribute::SwiftError)) 10363 Flags.setSwiftError(); 10364 if (Arg.hasAttribute(Attribute::ByVal)) 10365 Flags.setByVal(); 10366 if (Arg.hasAttribute(Attribute::ByRef)) 10367 Flags.setByRef(); 10368 if (Arg.hasAttribute(Attribute::InAlloca)) { 10369 Flags.setInAlloca(); 10370 // Set the byval flag for CCAssignFn callbacks that don't know about 10371 // inalloca. This way we can know how many bytes we should've allocated 10372 // and how many bytes a callee cleanup function will pop. If we port 10373 // inalloca to more targets, we'll have to add custom inalloca handling 10374 // in the various CC lowering callbacks. 10375 Flags.setByVal(); 10376 } 10377 if (Arg.hasAttribute(Attribute::Preallocated)) { 10378 Flags.setPreallocated(); 10379 // Set the byval flag for CCAssignFn callbacks that don't know about 10380 // preallocated. This way we can know how many bytes we should've 10381 // allocated and how many bytes a callee cleanup function will pop. If 10382 // we port preallocated to more targets, we'll have to add custom 10383 // preallocated handling in the various CC lowering callbacks. 10384 Flags.setByVal(); 10385 } 10386 10387 // Certain targets (such as MIPS), may have a different ABI alignment 10388 // for a type depending on the context. Give the target a chance to 10389 // specify the alignment it wants. 10390 const Align OriginalAlignment( 10391 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10392 Flags.setOrigAlign(OriginalAlignment); 10393 10394 Align MemAlign; 10395 Type *ArgMemTy = nullptr; 10396 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10397 Flags.isByRef()) { 10398 if (!ArgMemTy) 10399 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10400 10401 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10402 10403 // For in-memory arguments, size and alignment should be passed from FE. 10404 // BE will guess if this info is not there but there are cases it cannot 10405 // get right. 10406 if (auto ParamAlign = Arg.getParamStackAlign()) 10407 MemAlign = *ParamAlign; 10408 else if ((ParamAlign = Arg.getParamAlign())) 10409 MemAlign = *ParamAlign; 10410 else 10411 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10412 if (Flags.isByRef()) 10413 Flags.setByRefSize(MemSize); 10414 else 10415 Flags.setByValSize(MemSize); 10416 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10417 MemAlign = *ParamAlign; 10418 } else { 10419 MemAlign = OriginalAlignment; 10420 } 10421 Flags.setMemAlign(MemAlign); 10422 10423 if (Arg.hasAttribute(Attribute::Nest)) 10424 Flags.setNest(); 10425 if (NeedsRegBlock) 10426 Flags.setInConsecutiveRegs(); 10427 if (ArgCopyElisionCandidates.count(&Arg)) 10428 Flags.setCopyElisionCandidate(); 10429 if (Arg.hasAttribute(Attribute::Returned)) 10430 Flags.setReturned(); 10431 10432 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10433 *CurDAG->getContext(), F.getCallingConv(), VT); 10434 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10435 *CurDAG->getContext(), F.getCallingConv(), VT); 10436 for (unsigned i = 0; i != NumRegs; ++i) { 10437 // For scalable vectors, use the minimum size; individual targets 10438 // are responsible for handling scalable vector arguments and 10439 // return values. 10440 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10441 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10442 if (NumRegs > 1 && i == 0) 10443 MyFlags.Flags.setSplit(); 10444 // if it isn't first piece, alignment must be 1 10445 else if (i > 0) { 10446 MyFlags.Flags.setOrigAlign(Align(1)); 10447 if (i == NumRegs - 1) 10448 MyFlags.Flags.setSplitEnd(); 10449 } 10450 Ins.push_back(MyFlags); 10451 } 10452 if (NeedsRegBlock && Value == NumValues - 1) 10453 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10454 PartBase += VT.getStoreSize().getKnownMinSize(); 10455 } 10456 } 10457 10458 // Call the target to set up the argument values. 10459 SmallVector<SDValue, 8> InVals; 10460 SDValue NewRoot = TLI->LowerFormalArguments( 10461 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10462 10463 // Verify that the target's LowerFormalArguments behaved as expected. 10464 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10465 "LowerFormalArguments didn't return a valid chain!"); 10466 assert(InVals.size() == Ins.size() && 10467 "LowerFormalArguments didn't emit the correct number of values!"); 10468 LLVM_DEBUG({ 10469 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10470 assert(InVals[i].getNode() && 10471 "LowerFormalArguments emitted a null value!"); 10472 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10473 "LowerFormalArguments emitted a value with the wrong type!"); 10474 } 10475 }); 10476 10477 // Update the DAG with the new chain value resulting from argument lowering. 10478 DAG.setRoot(NewRoot); 10479 10480 // Set up the argument values. 10481 unsigned i = 0; 10482 if (!FuncInfo->CanLowerReturn) { 10483 // Create a virtual register for the sret pointer, and put in a copy 10484 // from the sret argument into it. 10485 SmallVector<EVT, 1> ValueVTs; 10486 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10487 F.getReturnType()->getPointerTo( 10488 DAG.getDataLayout().getAllocaAddrSpace()), 10489 ValueVTs); 10490 MVT VT = ValueVTs[0].getSimpleVT(); 10491 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10492 Optional<ISD::NodeType> AssertOp = None; 10493 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10494 nullptr, F.getCallingConv(), AssertOp); 10495 10496 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10497 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10498 Register SRetReg = 10499 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10500 FuncInfo->DemoteRegister = SRetReg; 10501 NewRoot = 10502 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10503 DAG.setRoot(NewRoot); 10504 10505 // i indexes lowered arguments. Bump it past the hidden sret argument. 10506 ++i; 10507 } 10508 10509 SmallVector<SDValue, 4> Chains; 10510 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10511 for (const Argument &Arg : F.args()) { 10512 SmallVector<SDValue, 4> ArgValues; 10513 SmallVector<EVT, 4> ValueVTs; 10514 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10515 unsigned NumValues = ValueVTs.size(); 10516 if (NumValues == 0) 10517 continue; 10518 10519 bool ArgHasUses = !Arg.use_empty(); 10520 10521 // Elide the copying store if the target loaded this argument from a 10522 // suitable fixed stack object. 10523 if (Ins[i].Flags.isCopyElisionCandidate()) { 10524 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10525 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10526 InVals[i], ArgHasUses); 10527 } 10528 10529 // If this argument is unused then remember its value. It is used to generate 10530 // debugging information. 10531 bool isSwiftErrorArg = 10532 TLI->supportSwiftError() && 10533 Arg.hasAttribute(Attribute::SwiftError); 10534 if (!ArgHasUses && !isSwiftErrorArg) { 10535 SDB->setUnusedArgValue(&Arg, InVals[i]); 10536 10537 // Also remember any frame index for use in FastISel. 10538 if (FrameIndexSDNode *FI = 10539 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10540 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10541 } 10542 10543 for (unsigned Val = 0; Val != NumValues; ++Val) { 10544 EVT VT = ValueVTs[Val]; 10545 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10546 F.getCallingConv(), VT); 10547 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10548 *CurDAG->getContext(), F.getCallingConv(), VT); 10549 10550 // Even an apparent 'unused' swifterror argument needs to be returned. So 10551 // we do generate a copy for it that can be used on return from the 10552 // function. 10553 if (ArgHasUses || isSwiftErrorArg) { 10554 Optional<ISD::NodeType> AssertOp; 10555 if (Arg.hasAttribute(Attribute::SExt)) 10556 AssertOp = ISD::AssertSext; 10557 else if (Arg.hasAttribute(Attribute::ZExt)) 10558 AssertOp = ISD::AssertZext; 10559 10560 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10561 PartVT, VT, nullptr, 10562 F.getCallingConv(), AssertOp)); 10563 } 10564 10565 i += NumParts; 10566 } 10567 10568 // We don't need to do anything else for unused arguments. 10569 if (ArgValues.empty()) 10570 continue; 10571 10572 // Note down frame index. 10573 if (FrameIndexSDNode *FI = 10574 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10575 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10576 10577 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10578 SDB->getCurSDLoc()); 10579 10580 SDB->setValue(&Arg, Res); 10581 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10582 // We want to associate the argument with the frame index, among 10583 // involved operands, that correspond to the lowest address. The 10584 // getCopyFromParts function, called earlier, is swapping the order of 10585 // the operands to BUILD_PAIR depending on endianness. The result of 10586 // that swapping is that the least significant bits of the argument will 10587 // be in the first operand of the BUILD_PAIR node, and the most 10588 // significant bits will be in the second operand. 10589 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10590 if (LoadSDNode *LNode = 10591 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10592 if (FrameIndexSDNode *FI = 10593 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10594 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10595 } 10596 10597 // Analyses past this point are naive and don't expect an assertion. 10598 if (Res.getOpcode() == ISD::AssertZext) 10599 Res = Res.getOperand(0); 10600 10601 // Update the SwiftErrorVRegDefMap. 10602 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10603 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10604 if (Register::isVirtualRegister(Reg)) 10605 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10606 Reg); 10607 } 10608 10609 // If this argument is live outside of the entry block, insert a copy from 10610 // wherever we got it to the vreg that other BB's will reference it as. 10611 if (Res.getOpcode() == ISD::CopyFromReg) { 10612 // If we can, though, try to skip creating an unnecessary vreg. 10613 // FIXME: This isn't very clean... it would be nice to make this more 10614 // general. 10615 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10616 if (Register::isVirtualRegister(Reg)) { 10617 FuncInfo->ValueMap[&Arg] = Reg; 10618 continue; 10619 } 10620 } 10621 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10622 FuncInfo->InitializeRegForValue(&Arg); 10623 SDB->CopyToExportRegsIfNeeded(&Arg); 10624 } 10625 } 10626 10627 if (!Chains.empty()) { 10628 Chains.push_back(NewRoot); 10629 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10630 } 10631 10632 DAG.setRoot(NewRoot); 10633 10634 assert(i == InVals.size() && "Argument register count mismatch!"); 10635 10636 // If any argument copy elisions occurred and we have debug info, update the 10637 // stale frame indices used in the dbg.declare variable info table. 10638 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10639 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10640 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10641 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10642 if (I != ArgCopyElisionFrameIndexMap.end()) 10643 VI.Slot = I->second; 10644 } 10645 } 10646 10647 // Finally, if the target has anything special to do, allow it to do so. 10648 emitFunctionEntryCode(); 10649 } 10650 10651 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10652 /// ensure constants are generated when needed. Remember the virtual registers 10653 /// that need to be added to the Machine PHI nodes as input. We cannot just 10654 /// directly add them, because expansion might result in multiple MBB's for one 10655 /// BB. As such, the start of the BB might correspond to a different MBB than 10656 /// the end. 10657 void 10658 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10659 const Instruction *TI = LLVMBB->getTerminator(); 10660 10661 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10662 10663 // Check PHI nodes in successors that expect a value to be available from this 10664 // block. 10665 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10666 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10667 if (!isa<PHINode>(SuccBB->begin())) continue; 10668 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10669 10670 // If this terminator has multiple identical successors (common for 10671 // switches), only handle each succ once. 10672 if (!SuccsHandled.insert(SuccMBB).second) 10673 continue; 10674 10675 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10676 10677 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10678 // nodes and Machine PHI nodes, but the incoming operands have not been 10679 // emitted yet. 10680 for (const PHINode &PN : SuccBB->phis()) { 10681 // Ignore dead phi's. 10682 if (PN.use_empty()) 10683 continue; 10684 10685 // Skip empty types 10686 if (PN.getType()->isEmptyTy()) 10687 continue; 10688 10689 unsigned Reg; 10690 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10691 10692 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10693 unsigned &RegOut = ConstantsOut[C]; 10694 if (RegOut == 0) { 10695 RegOut = FuncInfo.CreateRegs(C); 10696 // We need to zero extend ConstantInt phi operands to match 10697 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10698 ISD::NodeType ExtendType = 10699 isa<ConstantInt>(PHIOp) ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND; 10700 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10701 } 10702 Reg = RegOut; 10703 } else { 10704 DenseMap<const Value *, Register>::iterator I = 10705 FuncInfo.ValueMap.find(PHIOp); 10706 if (I != FuncInfo.ValueMap.end()) 10707 Reg = I->second; 10708 else { 10709 assert(isa<AllocaInst>(PHIOp) && 10710 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10711 "Didn't codegen value into a register!??"); 10712 Reg = FuncInfo.CreateRegs(PHIOp); 10713 CopyValueToVirtualRegister(PHIOp, Reg); 10714 } 10715 } 10716 10717 // Remember that this register needs to added to the machine PHI node as 10718 // the input for this MBB. 10719 SmallVector<EVT, 4> ValueVTs; 10720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10721 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10722 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10723 EVT VT = ValueVTs[vti]; 10724 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10725 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10726 FuncInfo.PHINodesToUpdate.push_back( 10727 std::make_pair(&*MBBI++, Reg + i)); 10728 Reg += NumRegisters; 10729 } 10730 } 10731 } 10732 10733 ConstantsOut.clear(); 10734 } 10735 10736 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10737 MachineFunction::iterator I(MBB); 10738 if (++I == FuncInfo.MF->end()) 10739 return nullptr; 10740 return &*I; 10741 } 10742 10743 /// During lowering new call nodes can be created (such as memset, etc.). 10744 /// Those will become new roots of the current DAG, but complications arise 10745 /// when they are tail calls. In such cases, the call lowering will update 10746 /// the root, but the builder still needs to know that a tail call has been 10747 /// lowered in order to avoid generating an additional return. 10748 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10749 // If the node is null, we do have a tail call. 10750 if (MaybeTC.getNode() != nullptr) 10751 DAG.setRoot(MaybeTC); 10752 else 10753 HasTailCall = true; 10754 } 10755 10756 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10757 MachineBasicBlock *SwitchMBB, 10758 MachineBasicBlock *DefaultMBB) { 10759 MachineFunction *CurMF = FuncInfo.MF; 10760 MachineBasicBlock *NextMBB = nullptr; 10761 MachineFunction::iterator BBI(W.MBB); 10762 if (++BBI != FuncInfo.MF->end()) 10763 NextMBB = &*BBI; 10764 10765 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10766 10767 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10768 10769 if (Size == 2 && W.MBB == SwitchMBB) { 10770 // If any two of the cases has the same destination, and if one value 10771 // is the same as the other, but has one bit unset that the other has set, 10772 // use bit manipulation to do two compares at once. For example: 10773 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10774 // TODO: This could be extended to merge any 2 cases in switches with 3 10775 // cases. 10776 // TODO: Handle cases where W.CaseBB != SwitchBB. 10777 CaseCluster &Small = *W.FirstCluster; 10778 CaseCluster &Big = *W.LastCluster; 10779 10780 if (Small.Low == Small.High && Big.Low == Big.High && 10781 Small.MBB == Big.MBB) { 10782 const APInt &SmallValue = Small.Low->getValue(); 10783 const APInt &BigValue = Big.Low->getValue(); 10784 10785 // Check that there is only one bit different. 10786 APInt CommonBit = BigValue ^ SmallValue; 10787 if (CommonBit.isPowerOf2()) { 10788 SDValue CondLHS = getValue(Cond); 10789 EVT VT = CondLHS.getValueType(); 10790 SDLoc DL = getCurSDLoc(); 10791 10792 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10793 DAG.getConstant(CommonBit, DL, VT)); 10794 SDValue Cond = DAG.getSetCC( 10795 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10796 ISD::SETEQ); 10797 10798 // Update successor info. 10799 // Both Small and Big will jump to Small.BB, so we sum up the 10800 // probabilities. 10801 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10802 if (BPI) 10803 addSuccessorWithProb( 10804 SwitchMBB, DefaultMBB, 10805 // The default destination is the first successor in IR. 10806 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10807 else 10808 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10809 10810 // Insert the true branch. 10811 SDValue BrCond = 10812 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10813 DAG.getBasicBlock(Small.MBB)); 10814 // Insert the false branch. 10815 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10816 DAG.getBasicBlock(DefaultMBB)); 10817 10818 DAG.setRoot(BrCond); 10819 return; 10820 } 10821 } 10822 } 10823 10824 if (TM.getOptLevel() != CodeGenOpt::None) { 10825 // Here, we order cases by probability so the most likely case will be 10826 // checked first. However, two clusters can have the same probability in 10827 // which case their relative ordering is non-deterministic. So we use Low 10828 // as a tie-breaker as clusters are guaranteed to never overlap. 10829 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10830 [](const CaseCluster &a, const CaseCluster &b) { 10831 return a.Prob != b.Prob ? 10832 a.Prob > b.Prob : 10833 a.Low->getValue().slt(b.Low->getValue()); 10834 }); 10835 10836 // Rearrange the case blocks so that the last one falls through if possible 10837 // without changing the order of probabilities. 10838 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10839 --I; 10840 if (I->Prob > W.LastCluster->Prob) 10841 break; 10842 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10843 std::swap(*I, *W.LastCluster); 10844 break; 10845 } 10846 } 10847 } 10848 10849 // Compute total probability. 10850 BranchProbability DefaultProb = W.DefaultProb; 10851 BranchProbability UnhandledProbs = DefaultProb; 10852 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10853 UnhandledProbs += I->Prob; 10854 10855 MachineBasicBlock *CurMBB = W.MBB; 10856 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10857 bool FallthroughUnreachable = false; 10858 MachineBasicBlock *Fallthrough; 10859 if (I == W.LastCluster) { 10860 // For the last cluster, fall through to the default destination. 10861 Fallthrough = DefaultMBB; 10862 FallthroughUnreachable = isa<UnreachableInst>( 10863 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10864 } else { 10865 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10866 CurMF->insert(BBI, Fallthrough); 10867 // Put Cond in a virtual register to make it available from the new blocks. 10868 ExportFromCurrentBlock(Cond); 10869 } 10870 UnhandledProbs -= I->Prob; 10871 10872 switch (I->Kind) { 10873 case CC_JumpTable: { 10874 // FIXME: Optimize away range check based on pivot comparisons. 10875 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10876 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10877 10878 // The jump block hasn't been inserted yet; insert it here. 10879 MachineBasicBlock *JumpMBB = JT->MBB; 10880 CurMF->insert(BBI, JumpMBB); 10881 10882 auto JumpProb = I->Prob; 10883 auto FallthroughProb = UnhandledProbs; 10884 10885 // If the default statement is a target of the jump table, we evenly 10886 // distribute the default probability to successors of CurMBB. Also 10887 // update the probability on the edge from JumpMBB to Fallthrough. 10888 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10889 SE = JumpMBB->succ_end(); 10890 SI != SE; ++SI) { 10891 if (*SI == DefaultMBB) { 10892 JumpProb += DefaultProb / 2; 10893 FallthroughProb -= DefaultProb / 2; 10894 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10895 JumpMBB->normalizeSuccProbs(); 10896 break; 10897 } 10898 } 10899 10900 if (FallthroughUnreachable) 10901 JTH->FallthroughUnreachable = true; 10902 10903 if (!JTH->FallthroughUnreachable) 10904 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10905 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10906 CurMBB->normalizeSuccProbs(); 10907 10908 // The jump table header will be inserted in our current block, do the 10909 // range check, and fall through to our fallthrough block. 10910 JTH->HeaderBB = CurMBB; 10911 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10912 10913 // If we're in the right place, emit the jump table header right now. 10914 if (CurMBB == SwitchMBB) { 10915 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10916 JTH->Emitted = true; 10917 } 10918 break; 10919 } 10920 case CC_BitTests: { 10921 // FIXME: Optimize away range check based on pivot comparisons. 10922 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10923 10924 // The bit test blocks haven't been inserted yet; insert them here. 10925 for (BitTestCase &BTC : BTB->Cases) 10926 CurMF->insert(BBI, BTC.ThisBB); 10927 10928 // Fill in fields of the BitTestBlock. 10929 BTB->Parent = CurMBB; 10930 BTB->Default = Fallthrough; 10931 10932 BTB->DefaultProb = UnhandledProbs; 10933 // If the cases in bit test don't form a contiguous range, we evenly 10934 // distribute the probability on the edge to Fallthrough to two 10935 // successors of CurMBB. 10936 if (!BTB->ContiguousRange) { 10937 BTB->Prob += DefaultProb / 2; 10938 BTB->DefaultProb -= DefaultProb / 2; 10939 } 10940 10941 if (FallthroughUnreachable) 10942 BTB->FallthroughUnreachable = true; 10943 10944 // If we're in the right place, emit the bit test header right now. 10945 if (CurMBB == SwitchMBB) { 10946 visitBitTestHeader(*BTB, SwitchMBB); 10947 BTB->Emitted = true; 10948 } 10949 break; 10950 } 10951 case CC_Range: { 10952 const Value *RHS, *LHS, *MHS; 10953 ISD::CondCode CC; 10954 if (I->Low == I->High) { 10955 // Check Cond == I->Low. 10956 CC = ISD::SETEQ; 10957 LHS = Cond; 10958 RHS=I->Low; 10959 MHS = nullptr; 10960 } else { 10961 // Check I->Low <= Cond <= I->High. 10962 CC = ISD::SETLE; 10963 LHS = I->Low; 10964 MHS = Cond; 10965 RHS = I->High; 10966 } 10967 10968 // If Fallthrough is unreachable, fold away the comparison. 10969 if (FallthroughUnreachable) 10970 CC = ISD::SETTRUE; 10971 10972 // The false probability is the sum of all unhandled cases. 10973 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10974 getCurSDLoc(), I->Prob, UnhandledProbs); 10975 10976 if (CurMBB == SwitchMBB) 10977 visitSwitchCase(CB, SwitchMBB); 10978 else 10979 SL->SwitchCases.push_back(CB); 10980 10981 break; 10982 } 10983 } 10984 CurMBB = Fallthrough; 10985 } 10986 } 10987 10988 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10989 CaseClusterIt First, 10990 CaseClusterIt Last) { 10991 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10992 if (X.Prob != CC.Prob) 10993 return X.Prob > CC.Prob; 10994 10995 // Ties are broken by comparing the case value. 10996 return X.Low->getValue().slt(CC.Low->getValue()); 10997 }); 10998 } 10999 11000 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11001 const SwitchWorkListItem &W, 11002 Value *Cond, 11003 MachineBasicBlock *SwitchMBB) { 11004 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11005 "Clusters not sorted?"); 11006 11007 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11008 11009 // Balance the tree based on branch probabilities to create a near-optimal (in 11010 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11011 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11012 CaseClusterIt LastLeft = W.FirstCluster; 11013 CaseClusterIt FirstRight = W.LastCluster; 11014 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11015 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11016 11017 // Move LastLeft and FirstRight towards each other from opposite directions to 11018 // find a partitioning of the clusters which balances the probability on both 11019 // sides. If LeftProb and RightProb are equal, alternate which side is 11020 // taken to ensure 0-probability nodes are distributed evenly. 11021 unsigned I = 0; 11022 while (LastLeft + 1 < FirstRight) { 11023 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11024 LeftProb += (++LastLeft)->Prob; 11025 else 11026 RightProb += (--FirstRight)->Prob; 11027 I++; 11028 } 11029 11030 while (true) { 11031 // Our binary search tree differs from a typical BST in that ours can have up 11032 // to three values in each leaf. The pivot selection above doesn't take that 11033 // into account, which means the tree might require more nodes and be less 11034 // efficient. We compensate for this here. 11035 11036 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11037 unsigned NumRight = W.LastCluster - FirstRight + 1; 11038 11039 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11040 // If one side has less than 3 clusters, and the other has more than 3, 11041 // consider taking a cluster from the other side. 11042 11043 if (NumLeft < NumRight) { 11044 // Consider moving the first cluster on the right to the left side. 11045 CaseCluster &CC = *FirstRight; 11046 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11047 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11048 if (LeftSideRank <= RightSideRank) { 11049 // Moving the cluster to the left does not demote it. 11050 ++LastLeft; 11051 ++FirstRight; 11052 continue; 11053 } 11054 } else { 11055 assert(NumRight < NumLeft); 11056 // Consider moving the last element on the left to the right side. 11057 CaseCluster &CC = *LastLeft; 11058 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11059 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11060 if (RightSideRank <= LeftSideRank) { 11061 // Moving the cluster to the right does not demot it. 11062 --LastLeft; 11063 --FirstRight; 11064 continue; 11065 } 11066 } 11067 } 11068 break; 11069 } 11070 11071 assert(LastLeft + 1 == FirstRight); 11072 assert(LastLeft >= W.FirstCluster); 11073 assert(FirstRight <= W.LastCluster); 11074 11075 // Use the first element on the right as pivot since we will make less-than 11076 // comparisons against it. 11077 CaseClusterIt PivotCluster = FirstRight; 11078 assert(PivotCluster > W.FirstCluster); 11079 assert(PivotCluster <= W.LastCluster); 11080 11081 CaseClusterIt FirstLeft = W.FirstCluster; 11082 CaseClusterIt LastRight = W.LastCluster; 11083 11084 const ConstantInt *Pivot = PivotCluster->Low; 11085 11086 // New blocks will be inserted immediately after the current one. 11087 MachineFunction::iterator BBI(W.MBB); 11088 ++BBI; 11089 11090 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11091 // we can branch to its destination directly if it's squeezed exactly in 11092 // between the known lower bound and Pivot - 1. 11093 MachineBasicBlock *LeftMBB; 11094 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11095 FirstLeft->Low == W.GE && 11096 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11097 LeftMBB = FirstLeft->MBB; 11098 } else { 11099 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11100 FuncInfo.MF->insert(BBI, LeftMBB); 11101 WorkList.push_back( 11102 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11103 // Put Cond in a virtual register to make it available from the new blocks. 11104 ExportFromCurrentBlock(Cond); 11105 } 11106 11107 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11108 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11109 // directly if RHS.High equals the current upper bound. 11110 MachineBasicBlock *RightMBB; 11111 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11112 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11113 RightMBB = FirstRight->MBB; 11114 } else { 11115 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11116 FuncInfo.MF->insert(BBI, RightMBB); 11117 WorkList.push_back( 11118 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11119 // Put Cond in a virtual register to make it available from the new blocks. 11120 ExportFromCurrentBlock(Cond); 11121 } 11122 11123 // Create the CaseBlock record that will be used to lower the branch. 11124 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11125 getCurSDLoc(), LeftProb, RightProb); 11126 11127 if (W.MBB == SwitchMBB) 11128 visitSwitchCase(CB, SwitchMBB); 11129 else 11130 SL->SwitchCases.push_back(CB); 11131 } 11132 11133 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11134 // from the swith statement. 11135 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11136 BranchProbability PeeledCaseProb) { 11137 if (PeeledCaseProb == BranchProbability::getOne()) 11138 return BranchProbability::getZero(); 11139 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11140 11141 uint32_t Numerator = CaseProb.getNumerator(); 11142 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11143 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11144 } 11145 11146 // Try to peel the top probability case if it exceeds the threshold. 11147 // Return current MachineBasicBlock for the switch statement if the peeling 11148 // does not occur. 11149 // If the peeling is performed, return the newly created MachineBasicBlock 11150 // for the peeled switch statement. Also update Clusters to remove the peeled 11151 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11152 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11153 const SwitchInst &SI, CaseClusterVector &Clusters, 11154 BranchProbability &PeeledCaseProb) { 11155 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11156 // Don't perform if there is only one cluster or optimizing for size. 11157 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11158 TM.getOptLevel() == CodeGenOpt::None || 11159 SwitchMBB->getParent()->getFunction().hasMinSize()) 11160 return SwitchMBB; 11161 11162 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11163 unsigned PeeledCaseIndex = 0; 11164 bool SwitchPeeled = false; 11165 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11166 CaseCluster &CC = Clusters[Index]; 11167 if (CC.Prob < TopCaseProb) 11168 continue; 11169 TopCaseProb = CC.Prob; 11170 PeeledCaseIndex = Index; 11171 SwitchPeeled = true; 11172 } 11173 if (!SwitchPeeled) 11174 return SwitchMBB; 11175 11176 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11177 << TopCaseProb << "\n"); 11178 11179 // Record the MBB for the peeled switch statement. 11180 MachineFunction::iterator BBI(SwitchMBB); 11181 ++BBI; 11182 MachineBasicBlock *PeeledSwitchMBB = 11183 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11184 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11185 11186 ExportFromCurrentBlock(SI.getCondition()); 11187 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11188 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11189 nullptr, nullptr, TopCaseProb.getCompl()}; 11190 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11191 11192 Clusters.erase(PeeledCaseIt); 11193 for (CaseCluster &CC : Clusters) { 11194 LLVM_DEBUG( 11195 dbgs() << "Scale the probablity for one cluster, before scaling: " 11196 << CC.Prob << "\n"); 11197 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11198 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11199 } 11200 PeeledCaseProb = TopCaseProb; 11201 return PeeledSwitchMBB; 11202 } 11203 11204 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11205 // Extract cases from the switch. 11206 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11207 CaseClusterVector Clusters; 11208 Clusters.reserve(SI.getNumCases()); 11209 for (auto I : SI.cases()) { 11210 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11211 const ConstantInt *CaseVal = I.getCaseValue(); 11212 BranchProbability Prob = 11213 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11214 : BranchProbability(1, SI.getNumCases() + 1); 11215 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11216 } 11217 11218 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11219 11220 // Cluster adjacent cases with the same destination. We do this at all 11221 // optimization levels because it's cheap to do and will make codegen faster 11222 // if there are many clusters. 11223 sortAndRangeify(Clusters); 11224 11225 // The branch probablity of the peeled case. 11226 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11227 MachineBasicBlock *PeeledSwitchMBB = 11228 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11229 11230 // If there is only the default destination, jump there directly. 11231 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11232 if (Clusters.empty()) { 11233 assert(PeeledSwitchMBB == SwitchMBB); 11234 SwitchMBB->addSuccessor(DefaultMBB); 11235 if (DefaultMBB != NextBlock(SwitchMBB)) { 11236 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11237 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11238 } 11239 return; 11240 } 11241 11242 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11243 SL->findBitTestClusters(Clusters, &SI); 11244 11245 LLVM_DEBUG({ 11246 dbgs() << "Case clusters: "; 11247 for (const CaseCluster &C : Clusters) { 11248 if (C.Kind == CC_JumpTable) 11249 dbgs() << "JT:"; 11250 if (C.Kind == CC_BitTests) 11251 dbgs() << "BT:"; 11252 11253 C.Low->getValue().print(dbgs(), true); 11254 if (C.Low != C.High) { 11255 dbgs() << '-'; 11256 C.High->getValue().print(dbgs(), true); 11257 } 11258 dbgs() << ' '; 11259 } 11260 dbgs() << '\n'; 11261 }); 11262 11263 assert(!Clusters.empty()); 11264 SwitchWorkList WorkList; 11265 CaseClusterIt First = Clusters.begin(); 11266 CaseClusterIt Last = Clusters.end() - 1; 11267 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11268 // Scale the branchprobability for DefaultMBB if the peel occurs and 11269 // DefaultMBB is not replaced. 11270 if (PeeledCaseProb != BranchProbability::getZero() && 11271 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11272 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11273 WorkList.push_back( 11274 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11275 11276 while (!WorkList.empty()) { 11277 SwitchWorkListItem W = WorkList.pop_back_val(); 11278 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11279 11280 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11281 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11282 // For optimized builds, lower large range as a balanced binary tree. 11283 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11284 continue; 11285 } 11286 11287 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11288 } 11289 } 11290 11291 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11292 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11293 auto DL = getCurSDLoc(); 11294 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11295 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11296 } 11297 11298 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11300 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11301 11302 SDLoc DL = getCurSDLoc(); 11303 SDValue V = getValue(I.getOperand(0)); 11304 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11305 11306 if (VT.isScalableVector()) { 11307 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11308 return; 11309 } 11310 11311 // Use VECTOR_SHUFFLE for the fixed-length vector 11312 // to maintain existing behavior. 11313 SmallVector<int, 8> Mask; 11314 unsigned NumElts = VT.getVectorMinNumElements(); 11315 for (unsigned i = 0; i != NumElts; ++i) 11316 Mask.push_back(NumElts - 1 - i); 11317 11318 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11319 } 11320 11321 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11322 SmallVector<EVT, 4> ValueVTs; 11323 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11324 ValueVTs); 11325 unsigned NumValues = ValueVTs.size(); 11326 if (NumValues == 0) return; 11327 11328 SmallVector<SDValue, 4> Values(NumValues); 11329 SDValue Op = getValue(I.getOperand(0)); 11330 11331 for (unsigned i = 0; i != NumValues; ++i) 11332 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11333 SDValue(Op.getNode(), Op.getResNo() + i)); 11334 11335 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11336 DAG.getVTList(ValueVTs), Values)); 11337 } 11338 11339 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11341 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11342 11343 SDLoc DL = getCurSDLoc(); 11344 SDValue V1 = getValue(I.getOperand(0)); 11345 SDValue V2 = getValue(I.getOperand(1)); 11346 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11347 11348 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11349 if (VT.isScalableVector()) { 11350 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11351 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11352 DAG.getConstant(Imm, DL, IdxVT))); 11353 return; 11354 } 11355 11356 unsigned NumElts = VT.getVectorNumElements(); 11357 11358 uint64_t Idx = (NumElts + Imm) % NumElts; 11359 11360 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11361 SmallVector<int, 8> Mask; 11362 for (unsigned i = 0; i < NumElts; ++i) 11363 Mask.push_back(Idx + i); 11364 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11365 } 11366