xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 6b5eceac2e1cb21826aec1d800f8c890a54b4d6b)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Statepoint.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetFrameLowering.h"
65 #include "llvm/Target/TargetInstrInfo.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 #include <algorithm>
71 #include <utility>
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "isel"
75 
76 /// LimitFloatPrecision - Generate low-precision inline sequences for
77 /// some float libcalls (6, 8 or 12 bits).
78 static unsigned LimitFloatPrecision;
79 
80 static cl::opt<unsigned, true>
81 LimitFPPrecision("limit-float-precision",
82                  cl::desc("Generate low-precision inline sequences "
83                           "for some float libcalls"),
84                  cl::location(LimitFloatPrecision),
85                  cl::init(0));
86 // Limit the width of DAG chains. This is important in general to prevent
87 // DAG-based analysis from blowing up. For example, alias analysis and
88 // load clustering may not complete in reasonable time. It is difficult to
89 // recognize and avoid this situation within each individual analysis, and
90 // future analyses are likely to have the same behavior. Limiting DAG width is
91 // the safe approach and will be especially important with global DAGs.
92 //
93 // MaxParallelChains default is arbitrarily high to avoid affecting
94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
95 // sequence over this should have been converted to llvm.memcpy by the
96 // frontend. It is easy to induce this behavior with .ll code such as:
97 // %buffer = alloca [4096 x i8]
98 // %data = load [4096 x i8]* %argPtr
99 // store [4096 x i8] %data, [4096 x i8]* %buffer
100 static const unsigned MaxParallelChains = 64;
101 
102 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
103                                       const SDValue *Parts, unsigned NumParts,
104                                       MVT PartVT, EVT ValueVT, const Value *V);
105 
106 /// getCopyFromParts - Create a value that contains the specified legal parts
107 /// combined into the value they represent.  If the parts combine to a type
108 /// larger than ValueVT then AssertOp can be used to specify whether the extra
109 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
110 /// (ISD::AssertSext).
111 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
112                                 const SDValue *Parts, unsigned NumParts,
113                                 MVT PartVT, EVT ValueVT, const Value *V,
114                                 Optional<ISD::NodeType> AssertOp = None) {
115   if (ValueVT.isVector())
116     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
117                                   PartVT, ValueVT, V);
118 
119   assert(NumParts > 0 && "No parts to assemble!");
120   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
121   SDValue Val = Parts[0];
122 
123   if (NumParts > 1) {
124     // Assemble the value from multiple parts.
125     if (ValueVT.isInteger()) {
126       unsigned PartBits = PartVT.getSizeInBits();
127       unsigned ValueBits = ValueVT.getSizeInBits();
128 
129       // Assemble the power of 2 part.
130       unsigned RoundParts = NumParts & (NumParts - 1) ?
131         1 << Log2_32(NumParts) : NumParts;
132       unsigned RoundBits = PartBits * RoundParts;
133       EVT RoundVT = RoundBits == ValueBits ?
134         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
135       SDValue Lo, Hi;
136 
137       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
138 
139       if (RoundParts > 2) {
140         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
141                               PartVT, HalfVT, V);
142         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
143                               RoundParts / 2, PartVT, HalfVT, V);
144       } else {
145         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
146         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
147       }
148 
149       if (DAG.getDataLayout().isBigEndian())
150         std::swap(Lo, Hi);
151 
152       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
153 
154       if (RoundParts < NumParts) {
155         // Assemble the trailing non-power-of-2 part.
156         unsigned OddParts = NumParts - RoundParts;
157         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
158         Hi = getCopyFromParts(DAG, DL,
159                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
160 
161         // Combine the round and odd parts.
162         Lo = Val;
163         if (DAG.getDataLayout().isBigEndian())
164           std::swap(Lo, Hi);
165         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
166         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
167         Hi =
168             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
169                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
170                                         TLI.getPointerTy(DAG.getDataLayout())));
171         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
172         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
173       }
174     } else if (PartVT.isFloatingPoint()) {
175       // FP split into multiple FP parts (for ppcf128)
176       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
177              "Unexpected split");
178       SDValue Lo, Hi;
179       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
180       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
181       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
182         std::swap(Lo, Hi);
183       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
184     } else {
185       // FP split into integer parts (soft fp)
186       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
187              !PartVT.isVector() && "Unexpected split");
188       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
189       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
190     }
191   }
192 
193   // There is now one part, held in Val.  Correct it to match ValueVT.
194   // PartEVT is the type of the register class that holds the value.
195   // ValueVT is the type of the inline asm operation.
196   EVT PartEVT = Val.getValueType();
197 
198   if (PartEVT == ValueVT)
199     return Val;
200 
201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
202       ValueVT.bitsLT(PartEVT)) {
203     // For an FP value in an integer part, we need to truncate to the right
204     // width first.
205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
207   }
208 
209   // Handle types that have the same size.
210   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212 
213   // Handle types with different sizes.
214   if (PartEVT.isInteger() && ValueVT.isInteger()) {
215     if (ValueVT.bitsLT(PartEVT)) {
216       // For a truncate, see if we have any information to
217       // indicate whether the truncated bits will always be
218       // zero or sign-extension.
219       if (AssertOp.hasValue())
220         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
221                           DAG.getValueType(ValueVT));
222       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
223     }
224     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
225   }
226 
227   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228     // FP_ROUND's are always exact here.
229     if (ValueVT.bitsLT(Val.getValueType()))
230       return DAG.getNode(
231           ISD::FP_ROUND, DL, ValueVT, Val,
232           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
233 
234     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
235   }
236 
237   llvm_unreachable("Unknown mismatch!");
238 }
239 
240 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
241                                               const Twine &ErrMsg) {
242   const Instruction *I = dyn_cast_or_null<Instruction>(V);
243   if (!V)
244     return Ctx.emitError(ErrMsg);
245 
246   const char *AsmError = ", possible invalid constraint for vector type";
247   if (const CallInst *CI = dyn_cast<CallInst>(I))
248     if (isa<InlineAsm>(CI->getCalledValue()))
249       return Ctx.emitError(I, ErrMsg + AsmError);
250 
251   return Ctx.emitError(I, ErrMsg);
252 }
253 
254 /// getCopyFromPartsVector - Create a value that contains the specified legal
255 /// parts combined into the value they represent.  If the parts combine to a
256 /// type larger than ValueVT then AssertOp can be used to specify whether the
257 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
258 /// ValueVT (ISD::AssertSext).
259 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
260                                       const SDValue *Parts, unsigned NumParts,
261                                       MVT PartVT, EVT ValueVT, const Value *V) {
262   assert(ValueVT.isVector() && "Not a vector value");
263   assert(NumParts > 0 && "No parts to assemble!");
264   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
265   SDValue Val = Parts[0];
266 
267   // Handle a multi-element vector.
268   if (NumParts > 1) {
269     EVT IntermediateVT;
270     MVT RegisterVT;
271     unsigned NumIntermediates;
272     unsigned NumRegs =
273     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
274                                NumIntermediates, RegisterVT);
275     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
276     NumParts = NumRegs; // Silence a compiler warning.
277     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
278     assert(RegisterVT.getSizeInBits() ==
279            Parts[0].getSimpleValueType().getSizeInBits() &&
280            "Part type sizes don't match!");
281 
282     // Assemble the parts into intermediate operands.
283     SmallVector<SDValue, 8> Ops(NumIntermediates);
284     if (NumIntermediates == NumParts) {
285       // If the register was not expanded, truncate or copy the value,
286       // as appropriate.
287       for (unsigned i = 0; i != NumParts; ++i)
288         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
289                                   PartVT, IntermediateVT, V);
290     } else if (NumParts > 0) {
291       // If the intermediate type was expanded, build the intermediate
292       // operands from the parts.
293       assert(NumParts % NumIntermediates == 0 &&
294              "Must expand into a divisible number of parts!");
295       unsigned Factor = NumParts / NumIntermediates;
296       for (unsigned i = 0; i != NumIntermediates; ++i)
297         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
298                                   PartVT, IntermediateVT, V);
299     }
300 
301     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
302     // intermediate operands.
303     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
304                                                 : ISD::BUILD_VECTOR,
305                       DL, ValueVT, Ops);
306   }
307 
308   // There is now one part, held in Val.  Correct it to match ValueVT.
309   EVT PartEVT = Val.getValueType();
310 
311   if (PartEVT == ValueVT)
312     return Val;
313 
314   if (PartEVT.isVector()) {
315     // If the element type of the source/dest vectors are the same, but the
316     // parts vector has more elements than the value vector, then we have a
317     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
318     // elements we want.
319     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
320       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
321              "Cannot narrow, it would be a lossy transformation");
322       return DAG.getNode(
323           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
324           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
325     }
326 
327     // Vector/Vector bitcast.
328     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
329       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
330 
331     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
332       "Cannot handle this kind of promotion");
333     // Promoted vector extract
334     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
335 
336   }
337 
338   // Trivial bitcast if the types are the same size and the destination
339   // vector type is legal.
340   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
341       TLI.isTypeLegal(ValueVT))
342     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
343 
344   // Handle cases such as i8 -> <1 x i1>
345   if (ValueVT.getVectorNumElements() != 1) {
346     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
347                                       "non-trivial scalar-to-vector conversion");
348     return DAG.getUNDEF(ValueVT);
349   }
350 
351   EVT ValueSVT = ValueVT.getVectorElementType();
352   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
353     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
354                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
355 
356   return DAG.getBuildVector(ValueVT, DL, Val);
357 }
358 
359 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
360                                  SDValue Val, SDValue *Parts, unsigned NumParts,
361                                  MVT PartVT, const Value *V);
362 
363 /// getCopyToParts - Create a series of nodes that contain the specified value
364 /// split into legal parts.  If the parts contain more bits than Val, then, for
365 /// integers, ExtendKind can be used to specify how to generate the extra bits.
366 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
367                            SDValue *Parts, unsigned NumParts, MVT PartVT,
368                            const Value *V,
369                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
370   EVT ValueVT = Val.getValueType();
371 
372   // Handle the vector case separately.
373   if (ValueVT.isVector())
374     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
375 
376   unsigned PartBits = PartVT.getSizeInBits();
377   unsigned OrigNumParts = NumParts;
378   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
379          "Copying to an illegal type!");
380 
381   if (NumParts == 0)
382     return;
383 
384   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
385   EVT PartEVT = PartVT;
386   if (PartEVT == ValueVT) {
387     assert(NumParts == 1 && "No-op copy with multiple parts!");
388     Parts[0] = Val;
389     return;
390   }
391 
392   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
393     // If the parts cover more bits than the value has, promote the value.
394     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
395       assert(NumParts == 1 && "Do not know what to promote to!");
396       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
397     } else {
398       if (ValueVT.isFloatingPoint()) {
399         // FP values need to be bitcast, then extended if they are being put
400         // into a larger container.
401         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
402         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
403       }
404       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
405              ValueVT.isInteger() &&
406              "Unknown mismatch!");
407       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
408       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
409       if (PartVT == MVT::x86mmx)
410         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
411     }
412   } else if (PartBits == ValueVT.getSizeInBits()) {
413     // Different types of the same size.
414     assert(NumParts == 1 && PartEVT != ValueVT);
415     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
416   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
417     // If the parts cover less bits than value has, truncate the value.
418     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
419            ValueVT.isInteger() &&
420            "Unknown mismatch!");
421     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
422     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
423     if (PartVT == MVT::x86mmx)
424       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
425   }
426 
427   // The value may have changed - recompute ValueVT.
428   ValueVT = Val.getValueType();
429   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
430          "Failed to tile the value with PartVT!");
431 
432   if (NumParts == 1) {
433     if (PartEVT != ValueVT) {
434       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
435                                         "scalar-to-vector conversion failed");
436       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
437     }
438 
439     Parts[0] = Val;
440     return;
441   }
442 
443   // Expand the value into multiple parts.
444   if (NumParts & (NumParts - 1)) {
445     // The number of parts is not a power of 2.  Split off and copy the tail.
446     assert(PartVT.isInteger() && ValueVT.isInteger() &&
447            "Do not know what to expand to!");
448     unsigned RoundParts = 1 << Log2_32(NumParts);
449     unsigned RoundBits = RoundParts * PartBits;
450     unsigned OddParts = NumParts - RoundParts;
451     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
452                                  DAG.getIntPtrConstant(RoundBits, DL));
453     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
454 
455     if (DAG.getDataLayout().isBigEndian())
456       // The odd parts were reversed by getCopyToParts - unreverse them.
457       std::reverse(Parts + RoundParts, Parts + NumParts);
458 
459     NumParts = RoundParts;
460     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
461     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
462   }
463 
464   // The number of parts is a power of 2.  Repeatedly bisect the value using
465   // EXTRACT_ELEMENT.
466   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
467                          EVT::getIntegerVT(*DAG.getContext(),
468                                            ValueVT.getSizeInBits()),
469                          Val);
470 
471   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
472     for (unsigned i = 0; i < NumParts; i += StepSize) {
473       unsigned ThisBits = StepSize * PartBits / 2;
474       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
475       SDValue &Part0 = Parts[i];
476       SDValue &Part1 = Parts[i+StepSize/2];
477 
478       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
479                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
480       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
481                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
482 
483       if (ThisBits == PartBits && ThisVT != PartVT) {
484         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
485         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
486       }
487     }
488   }
489 
490   if (DAG.getDataLayout().isBigEndian())
491     std::reverse(Parts, Parts + OrigNumParts);
492 }
493 
494 
495 /// getCopyToPartsVector - Create a series of nodes that contain the specified
496 /// value split into legal parts.
497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
498                                  SDValue Val, SDValue *Parts, unsigned NumParts,
499                                  MVT PartVT, const Value *V) {
500   EVT ValueVT = Val.getValueType();
501   assert(ValueVT.isVector() && "Not a vector");
502   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
503 
504   if (NumParts == 1) {
505     EVT PartEVT = PartVT;
506     if (PartEVT == ValueVT) {
507       // Nothing to do.
508     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
509       // Bitconvert vector->vector case.
510       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
511     } else if (PartVT.isVector() &&
512                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
513                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
514       EVT ElementVT = PartVT.getVectorElementType();
515       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
516       // undef elements.
517       SmallVector<SDValue, 16> Ops;
518       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
519         Ops.push_back(DAG.getNode(
520             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
521             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
522 
523       for (unsigned i = ValueVT.getVectorNumElements(),
524            e = PartVT.getVectorNumElements(); i != e; ++i)
525         Ops.push_back(DAG.getUNDEF(ElementVT));
526 
527       Val = DAG.getBuildVector(PartVT, DL, Ops);
528 
529       // FIXME: Use CONCAT for 2x -> 4x.
530 
531       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
532       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
533     } else if (PartVT.isVector() &&
534                PartEVT.getVectorElementType().bitsGE(
535                  ValueVT.getVectorElementType()) &&
536                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
537 
538       // Promoted vector extract
539       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
540     } else{
541       // Vector -> scalar conversion.
542       assert(ValueVT.getVectorNumElements() == 1 &&
543              "Only trivial vector-to-scalar conversions should get here!");
544       Val = DAG.getNode(
545           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
546           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
547     }
548 
549     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
550     Parts[0] = Val;
551     return;
552   }
553 
554   // Handle a multi-element vector.
555   EVT IntermediateVT;
556   MVT RegisterVT;
557   unsigned NumIntermediates;
558   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
559                                                 IntermediateVT,
560                                                 NumIntermediates, RegisterVT);
561   unsigned NumElements = ValueVT.getVectorNumElements();
562 
563   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
564   NumParts = NumRegs; // Silence a compiler warning.
565   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
566 
567   // Split the vector into intermediate operands.
568   SmallVector<SDValue, 8> Ops(NumIntermediates);
569   for (unsigned i = 0; i != NumIntermediates; ++i) {
570     if (IntermediateVT.isVector())
571       Ops[i] =
572           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
573                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
574                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
575     else
576       Ops[i] = DAG.getNode(
577           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
578           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
579   }
580 
581   // Split the intermediate operands into legal parts.
582   if (NumParts == NumIntermediates) {
583     // If the register was not expanded, promote or copy the value,
584     // as appropriate.
585     for (unsigned i = 0; i != NumParts; ++i)
586       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
587   } else if (NumParts > 0) {
588     // If the intermediate type was expanded, split each the value into
589     // legal parts.
590     assert(NumIntermediates != 0 && "division by zero");
591     assert(NumParts % NumIntermediates == 0 &&
592            "Must expand into a divisible number of parts!");
593     unsigned Factor = NumParts / NumIntermediates;
594     for (unsigned i = 0; i != NumIntermediates; ++i)
595       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
596   }
597 }
598 
599 RegsForValue::RegsForValue() {}
600 
601 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
602                            EVT valuevt)
603     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
604 
605 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
606                            const DataLayout &DL, unsigned Reg, Type *Ty) {
607   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
608 
609   for (EVT ValueVT : ValueVTs) {
610     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
611     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
612     for (unsigned i = 0; i != NumRegs; ++i)
613       Regs.push_back(Reg + i);
614     RegVTs.push_back(RegisterVT);
615     Reg += NumRegs;
616   }
617 }
618 
619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
620                                       FunctionLoweringInfo &FuncInfo,
621                                       const SDLoc &dl, SDValue &Chain,
622                                       SDValue *Flag, const Value *V) const {
623   // A Value with type {} or [0 x %t] needs no registers.
624   if (ValueVTs.empty())
625     return SDValue();
626 
627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
628 
629   // Assemble the legal parts into the final values.
630   SmallVector<SDValue, 4> Values(ValueVTs.size());
631   SmallVector<SDValue, 8> Parts;
632   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
633     // Copy the legal parts from the registers.
634     EVT ValueVT = ValueVTs[Value];
635     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
636     MVT RegisterVT = RegVTs[Value];
637 
638     Parts.resize(NumRegs);
639     for (unsigned i = 0; i != NumRegs; ++i) {
640       SDValue P;
641       if (!Flag) {
642         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
643       } else {
644         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
645         *Flag = P.getValue(2);
646       }
647 
648       Chain = P.getValue(1);
649       Parts[i] = P;
650 
651       // If the source register was virtual and if we know something about it,
652       // add an assert node.
653       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
654           !RegisterVT.isInteger() || RegisterVT.isVector())
655         continue;
656 
657       const FunctionLoweringInfo::LiveOutInfo *LOI =
658         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
659       if (!LOI)
660         continue;
661 
662       unsigned RegSize = RegisterVT.getSizeInBits();
663       unsigned NumSignBits = LOI->NumSignBits;
664       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
665 
666       if (NumZeroBits == RegSize) {
667         // The current value is a zero.
668         // Explicitly express that as it would be easier for
669         // optimizations to kick in.
670         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
671         continue;
672       }
673 
674       // FIXME: We capture more information than the dag can represent.  For
675       // now, just use the tightest assertzext/assertsext possible.
676       bool isSExt = true;
677       EVT FromVT(MVT::Other);
678       if (NumSignBits == RegSize) {
679         isSExt = true;   // ASSERT SEXT 1
680         FromVT = MVT::i1;
681       } else if (NumZeroBits >= RegSize - 1) {
682         isSExt = false;  // ASSERT ZEXT 1
683         FromVT = MVT::i1;
684       } else if (NumSignBits > RegSize - 8) {
685         isSExt = true;   // ASSERT SEXT 8
686         FromVT = MVT::i8;
687       } else if (NumZeroBits >= RegSize - 8) {
688         isSExt = false;  // ASSERT ZEXT 8
689         FromVT = MVT::i8;
690       } else if (NumSignBits > RegSize - 16) {
691         isSExt = true;   // ASSERT SEXT 16
692         FromVT = MVT::i16;
693       } else if (NumZeroBits >= RegSize - 16) {
694         isSExt = false;  // ASSERT ZEXT 16
695         FromVT = MVT::i16;
696       } else if (NumSignBits > RegSize - 32) {
697         isSExt = true;   // ASSERT SEXT 32
698         FromVT = MVT::i32;
699       } else if (NumZeroBits >= RegSize - 32) {
700         isSExt = false;  // ASSERT ZEXT 32
701         FromVT = MVT::i32;
702       } else {
703         continue;
704       }
705       // Add an assertion node.
706       assert(FromVT != MVT::Other);
707       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
708                              RegisterVT, P, DAG.getValueType(FromVT));
709     }
710 
711     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
712                                      NumRegs, RegisterVT, ValueVT, V);
713     Part += NumRegs;
714     Parts.clear();
715   }
716 
717   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
718 }
719 
720 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
721                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
722                                  const Value *V,
723                                  ISD::NodeType PreferredExtendType) const {
724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
725   ISD::NodeType ExtendKind = PreferredExtendType;
726 
727   // Get the list of the values's legal parts.
728   unsigned NumRegs = Regs.size();
729   SmallVector<SDValue, 8> Parts(NumRegs);
730   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
731     EVT ValueVT = ValueVTs[Value];
732     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
733     MVT RegisterVT = RegVTs[Value];
734 
735     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
736       ExtendKind = ISD::ZERO_EXTEND;
737 
738     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
739                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
740     Part += NumParts;
741   }
742 
743   // Copy the parts into the registers.
744   SmallVector<SDValue, 8> Chains(NumRegs);
745   for (unsigned i = 0; i != NumRegs; ++i) {
746     SDValue Part;
747     if (!Flag) {
748       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
749     } else {
750       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
751       *Flag = Part.getValue(1);
752     }
753 
754     Chains[i] = Part.getValue(0);
755   }
756 
757   if (NumRegs == 1 || Flag)
758     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
759     // flagged to it. That is the CopyToReg nodes and the user are considered
760     // a single scheduling unit. If we create a TokenFactor and return it as
761     // chain, then the TokenFactor is both a predecessor (operand) of the
762     // user as well as a successor (the TF operands are flagged to the user).
763     // c1, f1 = CopyToReg
764     // c2, f2 = CopyToReg
765     // c3     = TokenFactor c1, c2
766     // ...
767     //        = op c3, ..., f2
768     Chain = Chains[NumRegs-1];
769   else
770     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
771 }
772 
773 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
774                                         unsigned MatchingIdx, const SDLoc &dl,
775                                         SelectionDAG &DAG,
776                                         std::vector<SDValue> &Ops) const {
777   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
778 
779   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
780   if (HasMatching)
781     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
782   else if (!Regs.empty() &&
783            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
784     // Put the register class of the virtual registers in the flag word.  That
785     // way, later passes can recompute register class constraints for inline
786     // assembly as well as normal instructions.
787     // Don't do this for tied operands that can use the regclass information
788     // from the def.
789     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
790     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
791     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
792   }
793 
794   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
795   Ops.push_back(Res);
796 
797   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
798   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
799     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
800     MVT RegisterVT = RegVTs[Value];
801     for (unsigned i = 0; i != NumRegs; ++i) {
802       assert(Reg < Regs.size() && "Mismatch in # registers expected");
803       unsigned TheReg = Regs[Reg++];
804       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
805 
806       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
807         // If we clobbered the stack pointer, MFI should know about it.
808         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
809       }
810     }
811   }
812 }
813 
814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
815                                const TargetLibraryInfo *li) {
816   AA = aa;
817   GFI = gfi;
818   LibInfo = li;
819   DL = &DAG.getDataLayout();
820   Context = DAG.getContext();
821   LPadToCallSiteMap.clear();
822 }
823 
824 void SelectionDAGBuilder::clear() {
825   NodeMap.clear();
826   UnusedArgNodeMap.clear();
827   PendingLoads.clear();
828   PendingExports.clear();
829   CurInst = nullptr;
830   HasTailCall = false;
831   SDNodeOrder = LowestSDNodeOrder;
832   StatepointLowering.clear();
833 }
834 
835 void SelectionDAGBuilder::clearDanglingDebugInfo() {
836   DanglingDebugInfoMap.clear();
837 }
838 
839 SDValue SelectionDAGBuilder::getRoot() {
840   if (PendingLoads.empty())
841     return DAG.getRoot();
842 
843   if (PendingLoads.size() == 1) {
844     SDValue Root = PendingLoads[0];
845     DAG.setRoot(Root);
846     PendingLoads.clear();
847     return Root;
848   }
849 
850   // Otherwise, we have to make a token factor node.
851   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
852                              PendingLoads);
853   PendingLoads.clear();
854   DAG.setRoot(Root);
855   return Root;
856 }
857 
858 SDValue SelectionDAGBuilder::getControlRoot() {
859   SDValue Root = DAG.getRoot();
860 
861   if (PendingExports.empty())
862     return Root;
863 
864   // Turn all of the CopyToReg chains into one factored node.
865   if (Root.getOpcode() != ISD::EntryToken) {
866     unsigned i = 0, e = PendingExports.size();
867     for (; i != e; ++i) {
868       assert(PendingExports[i].getNode()->getNumOperands() > 1);
869       if (PendingExports[i].getNode()->getOperand(0) == Root)
870         break;  // Don't add the root if we already indirectly depend on it.
871     }
872 
873     if (i == e)
874       PendingExports.push_back(Root);
875   }
876 
877   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
878                      PendingExports);
879   PendingExports.clear();
880   DAG.setRoot(Root);
881   return Root;
882 }
883 
884 void SelectionDAGBuilder::visit(const Instruction &I) {
885   // Set up outgoing PHI node register values before emitting the terminator.
886   if (isa<TerminatorInst>(&I)) {
887     HandlePHINodesInSuccessorBlocks(I.getParent());
888   }
889 
890   // Increase the SDNodeOrder if dealing with a non-debug instruction.
891   if (!isa<DbgInfoIntrinsic>(I))
892     ++SDNodeOrder;
893 
894   CurInst = &I;
895 
896   visit(I.getOpcode(), I);
897 
898   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
899       !isStatepoint(&I)) // statepoints handle their exports internally
900     CopyToExportRegsIfNeeded(&I);
901 
902   CurInst = nullptr;
903 }
904 
905 void SelectionDAGBuilder::visitPHI(const PHINode &) {
906   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
907 }
908 
909 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
910   // Note: this doesn't use InstVisitor, because it has to work with
911   // ConstantExpr's in addition to instructions.
912   switch (Opcode) {
913   default: llvm_unreachable("Unknown instruction type encountered!");
914     // Build the switch statement using the Instruction.def file.
915 #define HANDLE_INST(NUM, OPCODE, CLASS) \
916     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
917 #include "llvm/IR/Instruction.def"
918   }
919 }
920 
921 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
922 // generate the debug data structures now that we've seen its definition.
923 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
924                                                    SDValue Val) {
925   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
926   if (DDI.getDI()) {
927     const DbgValueInst *DI = DDI.getDI();
928     DebugLoc dl = DDI.getdl();
929     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
930     DILocalVariable *Variable = DI->getVariable();
931     DIExpression *Expr = DI->getExpression();
932     assert(Variable->isValidLocationForIntrinsic(dl) &&
933            "Expected inlined-at fields to agree");
934     uint64_t Offset = DI->getOffset();
935     SDDbgValue *SDV;
936     if (Val.getNode()) {
937       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
938                                     Val)) {
939         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
940         DAG.AddDbgValue(SDV, Val.getNode(), false);
941       }
942     } else
943       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
944     DanglingDebugInfoMap[V] = DanglingDebugInfo();
945   }
946 }
947 
948 /// getCopyFromRegs - If there was virtual register allocated for the value V
949 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
950 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
951   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
952   SDValue Result;
953 
954   if (It != FuncInfo.ValueMap.end()) {
955     unsigned InReg = It->second;
956     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
957                      DAG.getDataLayout(), InReg, Ty);
958     SDValue Chain = DAG.getEntryNode();
959     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
960     resolveDanglingDebugInfo(V, Result);
961   }
962 
963   return Result;
964 }
965 
966 /// getValue - Return an SDValue for the given Value.
967 SDValue SelectionDAGBuilder::getValue(const Value *V) {
968   // If we already have an SDValue for this value, use it. It's important
969   // to do this first, so that we don't create a CopyFromReg if we already
970   // have a regular SDValue.
971   SDValue &N = NodeMap[V];
972   if (N.getNode()) return N;
973 
974   // If there's a virtual register allocated and initialized for this
975   // value, use it.
976   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
977     return copyFromReg;
978 
979   // Otherwise create a new SDValue and remember it.
980   SDValue Val = getValueImpl(V);
981   NodeMap[V] = Val;
982   resolveDanglingDebugInfo(V, Val);
983   return Val;
984 }
985 
986 // Return true if SDValue exists for the given Value
987 bool SelectionDAGBuilder::findValue(const Value *V) const {
988   return (NodeMap.find(V) != NodeMap.end()) ||
989     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
990 }
991 
992 /// getNonRegisterValue - Return an SDValue for the given Value, but
993 /// don't look in FuncInfo.ValueMap for a virtual register.
994 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
995   // If we already have an SDValue for this value, use it.
996   SDValue &N = NodeMap[V];
997   if (N.getNode()) {
998     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
999       // Remove the debug location from the node as the node is about to be used
1000       // in a location which may differ from the original debug location.  This
1001       // is relevant to Constant and ConstantFP nodes because they can appear
1002       // as constant expressions inside PHI nodes.
1003       N->setDebugLoc(DebugLoc());
1004     }
1005     return N;
1006   }
1007 
1008   // Otherwise create a new SDValue and remember it.
1009   SDValue Val = getValueImpl(V);
1010   NodeMap[V] = Val;
1011   resolveDanglingDebugInfo(V, Val);
1012   return Val;
1013 }
1014 
1015 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1016 /// Create an SDValue for the given value.
1017 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1019 
1020   if (const Constant *C = dyn_cast<Constant>(V)) {
1021     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1022 
1023     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1024       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1025 
1026     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1027       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1028 
1029     if (isa<ConstantPointerNull>(C)) {
1030       unsigned AS = V->getType()->getPointerAddressSpace();
1031       return DAG.getConstant(0, getCurSDLoc(),
1032                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1033     }
1034 
1035     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1036       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1037 
1038     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1039       return DAG.getUNDEF(VT);
1040 
1041     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1042       visit(CE->getOpcode(), *CE);
1043       SDValue N1 = NodeMap[V];
1044       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1045       return N1;
1046     }
1047 
1048     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1049       SmallVector<SDValue, 4> Constants;
1050       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1051            OI != OE; ++OI) {
1052         SDNode *Val = getValue(*OI).getNode();
1053         // If the operand is an empty aggregate, there are no values.
1054         if (!Val) continue;
1055         // Add each leaf value from the operand to the Constants list
1056         // to form a flattened list of all the values.
1057         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1058           Constants.push_back(SDValue(Val, i));
1059       }
1060 
1061       return DAG.getMergeValues(Constants, getCurSDLoc());
1062     }
1063 
1064     if (const ConstantDataSequential *CDS =
1065           dyn_cast<ConstantDataSequential>(C)) {
1066       SmallVector<SDValue, 4> Ops;
1067       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1068         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1069         // Add each leaf value from the operand to the Constants list
1070         // to form a flattened list of all the values.
1071         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1072           Ops.push_back(SDValue(Val, i));
1073       }
1074 
1075       if (isa<ArrayType>(CDS->getType()))
1076         return DAG.getMergeValues(Ops, getCurSDLoc());
1077       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1078     }
1079 
1080     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1081       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1082              "Unknown struct or array constant!");
1083 
1084       SmallVector<EVT, 4> ValueVTs;
1085       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1086       unsigned NumElts = ValueVTs.size();
1087       if (NumElts == 0)
1088         return SDValue(); // empty struct
1089       SmallVector<SDValue, 4> Constants(NumElts);
1090       for (unsigned i = 0; i != NumElts; ++i) {
1091         EVT EltVT = ValueVTs[i];
1092         if (isa<UndefValue>(C))
1093           Constants[i] = DAG.getUNDEF(EltVT);
1094         else if (EltVT.isFloatingPoint())
1095           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1096         else
1097           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1098       }
1099 
1100       return DAG.getMergeValues(Constants, getCurSDLoc());
1101     }
1102 
1103     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1104       return DAG.getBlockAddress(BA, VT);
1105 
1106     VectorType *VecTy = cast<VectorType>(V->getType());
1107     unsigned NumElements = VecTy->getNumElements();
1108 
1109     // Now that we know the number and type of the elements, get that number of
1110     // elements into the Ops array based on what kind of constant it is.
1111     SmallVector<SDValue, 16> Ops;
1112     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1113       for (unsigned i = 0; i != NumElements; ++i)
1114         Ops.push_back(getValue(CV->getOperand(i)));
1115     } else {
1116       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1117       EVT EltVT =
1118           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1119 
1120       SDValue Op;
1121       if (EltVT.isFloatingPoint())
1122         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1123       else
1124         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1125       Ops.assign(NumElements, Op);
1126     }
1127 
1128     // Create a BUILD_VECTOR node.
1129     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1130   }
1131 
1132   // If this is a static alloca, generate it as the frameindex instead of
1133   // computation.
1134   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1135     DenseMap<const AllocaInst*, int>::iterator SI =
1136       FuncInfo.StaticAllocaMap.find(AI);
1137     if (SI != FuncInfo.StaticAllocaMap.end())
1138       return DAG.getFrameIndex(SI->second,
1139                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1140   }
1141 
1142   // If this is an instruction which fast-isel has deferred, select it now.
1143   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1144     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1145     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1146                      Inst->getType());
1147     SDValue Chain = DAG.getEntryNode();
1148     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1149   }
1150 
1151   llvm_unreachable("Can't get register for value!");
1152 }
1153 
1154 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1155   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1156   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1157   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1158   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1159   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1160   if (IsMSVCCXX || IsCoreCLR)
1161     CatchPadMBB->setIsEHFuncletEntry();
1162 
1163   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1164 }
1165 
1166 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1167   // Update machine-CFG edge.
1168   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1169   FuncInfo.MBB->addSuccessor(TargetMBB);
1170 
1171   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1172   bool IsSEH = isAsynchronousEHPersonality(Pers);
1173   if (IsSEH) {
1174     // If this is not a fall-through branch or optimizations are switched off,
1175     // emit the branch.
1176     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1177         TM.getOptLevel() == CodeGenOpt::None)
1178       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1179                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1180     return;
1181   }
1182 
1183   // Figure out the funclet membership for the catchret's successor.
1184   // This will be used by the FuncletLayout pass to determine how to order the
1185   // BB's.
1186   // A 'catchret' returns to the outer scope's color.
1187   Value *ParentPad = I.getCatchSwitchParentPad();
1188   const BasicBlock *SuccessorColor;
1189   if (isa<ConstantTokenNone>(ParentPad))
1190     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1191   else
1192     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1193   assert(SuccessorColor && "No parent funclet for catchret!");
1194   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1195   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1196 
1197   // Create the terminator node.
1198   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1199                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1200                             DAG.getBasicBlock(SuccessorColorMBB));
1201   DAG.setRoot(Ret);
1202 }
1203 
1204 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1205   // Don't emit any special code for the cleanuppad instruction. It just marks
1206   // the start of a funclet.
1207   FuncInfo.MBB->setIsEHFuncletEntry();
1208   FuncInfo.MBB->setIsCleanupFuncletEntry();
1209 }
1210 
1211 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1212 /// many places it could ultimately go. In the IR, we have a single unwind
1213 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1214 /// This function skips over imaginary basic blocks that hold catchswitch
1215 /// instructions, and finds all the "real" machine
1216 /// basic block destinations. As those destinations may not be successors of
1217 /// EHPadBB, here we also calculate the edge probability to those destinations.
1218 /// The passed-in Prob is the edge probability to EHPadBB.
1219 static void findUnwindDestinations(
1220     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1221     BranchProbability Prob,
1222     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1223         &UnwindDests) {
1224   EHPersonality Personality =
1225     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1226   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1227   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1228 
1229   while (EHPadBB) {
1230     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1231     BasicBlock *NewEHPadBB = nullptr;
1232     if (isa<LandingPadInst>(Pad)) {
1233       // Stop on landingpads. They are not funclets.
1234       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1235       break;
1236     } else if (isa<CleanupPadInst>(Pad)) {
1237       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1238       // personalities.
1239       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1240       UnwindDests.back().first->setIsEHFuncletEntry();
1241       break;
1242     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1243       // Add the catchpad handlers to the possible destinations.
1244       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1245         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1246         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1247         if (IsMSVCCXX || IsCoreCLR)
1248           UnwindDests.back().first->setIsEHFuncletEntry();
1249       }
1250       NewEHPadBB = CatchSwitch->getUnwindDest();
1251     } else {
1252       continue;
1253     }
1254 
1255     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1256     if (BPI && NewEHPadBB)
1257       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1258     EHPadBB = NewEHPadBB;
1259   }
1260 }
1261 
1262 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1263   // Update successor info.
1264   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1265   auto UnwindDest = I.getUnwindDest();
1266   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1267   BranchProbability UnwindDestProb =
1268       (BPI && UnwindDest)
1269           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1270           : BranchProbability::getZero();
1271   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1272   for (auto &UnwindDest : UnwindDests) {
1273     UnwindDest.first->setIsEHPad();
1274     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1275   }
1276   FuncInfo.MBB->normalizeSuccProbs();
1277 
1278   // Create the terminator node.
1279   SDValue Ret =
1280       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1281   DAG.setRoot(Ret);
1282 }
1283 
1284 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1285   report_fatal_error("visitCatchSwitch not yet implemented!");
1286 }
1287 
1288 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1289   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1290   auto &DL = DAG.getDataLayout();
1291   SDValue Chain = getControlRoot();
1292   SmallVector<ISD::OutputArg, 8> Outs;
1293   SmallVector<SDValue, 8> OutVals;
1294 
1295   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1296   // lower
1297   //
1298   //   %val = call <ty> @llvm.experimental.deoptimize()
1299   //   ret <ty> %val
1300   //
1301   // differently.
1302   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1303     LowerDeoptimizingReturn();
1304     return;
1305   }
1306 
1307   if (!FuncInfo.CanLowerReturn) {
1308     unsigned DemoteReg = FuncInfo.DemoteRegister;
1309     const Function *F = I.getParent()->getParent();
1310 
1311     // Emit a store of the return value through the virtual register.
1312     // Leave Outs empty so that LowerReturn won't try to load return
1313     // registers the usual way.
1314     SmallVector<EVT, 1> PtrValueVTs;
1315     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1316                     PtrValueVTs);
1317 
1318     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1319                                         DemoteReg, PtrValueVTs[0]);
1320     SDValue RetOp = getValue(I.getOperand(0));
1321 
1322     SmallVector<EVT, 4> ValueVTs;
1323     SmallVector<uint64_t, 4> Offsets;
1324     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1325     unsigned NumValues = ValueVTs.size();
1326 
1327     // An aggregate return value cannot wrap around the address space, so
1328     // offsets to its parts don't wrap either.
1329     SDNodeFlags Flags;
1330     Flags.setNoUnsignedWrap(true);
1331 
1332     SmallVector<SDValue, 4> Chains(NumValues);
1333     for (unsigned i = 0; i != NumValues; ++i) {
1334       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1335                                 RetPtr.getValueType(), RetPtr,
1336                                 DAG.getIntPtrConstant(Offsets[i],
1337                                                       getCurSDLoc()),
1338                                 Flags);
1339       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1340                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1341                                // FIXME: better loc info would be nice.
1342                                Add, MachinePointerInfo());
1343     }
1344 
1345     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1346                         MVT::Other, Chains);
1347   } else if (I.getNumOperands() != 0) {
1348     SmallVector<EVT, 4> ValueVTs;
1349     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1350     unsigned NumValues = ValueVTs.size();
1351     if (NumValues) {
1352       SDValue RetOp = getValue(I.getOperand(0));
1353 
1354       const Function *F = I.getParent()->getParent();
1355 
1356       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1357       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1358                                           Attribute::SExt))
1359         ExtendKind = ISD::SIGN_EXTEND;
1360       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1361                                                Attribute::ZExt))
1362         ExtendKind = ISD::ZERO_EXTEND;
1363 
1364       LLVMContext &Context = F->getContext();
1365       bool RetInReg = F->getAttributes().hasAttribute(
1366           AttributeList::ReturnIndex, Attribute::InReg);
1367 
1368       for (unsigned j = 0; j != NumValues; ++j) {
1369         EVT VT = ValueVTs[j];
1370 
1371         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1372           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1373 
1374         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1375         MVT PartVT = TLI.getRegisterType(Context, VT);
1376         SmallVector<SDValue, 4> Parts(NumParts);
1377         getCopyToParts(DAG, getCurSDLoc(),
1378                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1379                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1380 
1381         // 'inreg' on function refers to return value
1382         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1383         if (RetInReg)
1384           Flags.setInReg();
1385 
1386         // Propagate extension type if any
1387         if (ExtendKind == ISD::SIGN_EXTEND)
1388           Flags.setSExt();
1389         else if (ExtendKind == ISD::ZERO_EXTEND)
1390           Flags.setZExt();
1391 
1392         for (unsigned i = 0; i < NumParts; ++i) {
1393           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1394                                         VT, /*isfixed=*/true, 0, 0));
1395           OutVals.push_back(Parts[i]);
1396         }
1397       }
1398     }
1399   }
1400 
1401   // Push in swifterror virtual register as the last element of Outs. This makes
1402   // sure swifterror virtual register will be returned in the swifterror
1403   // physical register.
1404   const Function *F = I.getParent()->getParent();
1405   if (TLI.supportSwiftError() &&
1406       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1407     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1408     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1409     Flags.setSwiftError();
1410     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1411                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1412                                   true /*isfixed*/, 1 /*origidx*/,
1413                                   0 /*partOffs*/));
1414     // Create SDNode for the swifterror virtual register.
1415     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1416                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1417                                       EVT(TLI.getPointerTy(DL))));
1418   }
1419 
1420   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1421   CallingConv::ID CallConv =
1422     DAG.getMachineFunction().getFunction()->getCallingConv();
1423   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1424       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1425 
1426   // Verify that the target's LowerReturn behaved as expected.
1427   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1428          "LowerReturn didn't return a valid chain!");
1429 
1430   // Update the DAG with the new chain value resulting from return lowering.
1431   DAG.setRoot(Chain);
1432 }
1433 
1434 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1435 /// created for it, emit nodes to copy the value into the virtual
1436 /// registers.
1437 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1438   // Skip empty types
1439   if (V->getType()->isEmptyTy())
1440     return;
1441 
1442   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1443   if (VMI != FuncInfo.ValueMap.end()) {
1444     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1445     CopyValueToVirtualRegister(V, VMI->second);
1446   }
1447 }
1448 
1449 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1450 /// the current basic block, add it to ValueMap now so that we'll get a
1451 /// CopyTo/FromReg.
1452 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1453   // No need to export constants.
1454   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1455 
1456   // Already exported?
1457   if (FuncInfo.isExportedInst(V)) return;
1458 
1459   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1460   CopyValueToVirtualRegister(V, Reg);
1461 }
1462 
1463 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1464                                                      const BasicBlock *FromBB) {
1465   // The operands of the setcc have to be in this block.  We don't know
1466   // how to export them from some other block.
1467   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1468     // Can export from current BB.
1469     if (VI->getParent() == FromBB)
1470       return true;
1471 
1472     // Is already exported, noop.
1473     return FuncInfo.isExportedInst(V);
1474   }
1475 
1476   // If this is an argument, we can export it if the BB is the entry block or
1477   // if it is already exported.
1478   if (isa<Argument>(V)) {
1479     if (FromBB == &FromBB->getParent()->getEntryBlock())
1480       return true;
1481 
1482     // Otherwise, can only export this if it is already exported.
1483     return FuncInfo.isExportedInst(V);
1484   }
1485 
1486   // Otherwise, constants can always be exported.
1487   return true;
1488 }
1489 
1490 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1491 BranchProbability
1492 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1493                                         const MachineBasicBlock *Dst) const {
1494   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1495   const BasicBlock *SrcBB = Src->getBasicBlock();
1496   const BasicBlock *DstBB = Dst->getBasicBlock();
1497   if (!BPI) {
1498     // If BPI is not available, set the default probability as 1 / N, where N is
1499     // the number of successors.
1500     auto SuccSize = std::max<uint32_t>(
1501         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1502     return BranchProbability(1, SuccSize);
1503   }
1504   return BPI->getEdgeProbability(SrcBB, DstBB);
1505 }
1506 
1507 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1508                                                MachineBasicBlock *Dst,
1509                                                BranchProbability Prob) {
1510   if (!FuncInfo.BPI)
1511     Src->addSuccessorWithoutProb(Dst);
1512   else {
1513     if (Prob.isUnknown())
1514       Prob = getEdgeProbability(Src, Dst);
1515     Src->addSuccessor(Dst, Prob);
1516   }
1517 }
1518 
1519 static bool InBlock(const Value *V, const BasicBlock *BB) {
1520   if (const Instruction *I = dyn_cast<Instruction>(V))
1521     return I->getParent() == BB;
1522   return true;
1523 }
1524 
1525 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1526 /// This function emits a branch and is used at the leaves of an OR or an
1527 /// AND operator tree.
1528 ///
1529 void
1530 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1531                                                   MachineBasicBlock *TBB,
1532                                                   MachineBasicBlock *FBB,
1533                                                   MachineBasicBlock *CurBB,
1534                                                   MachineBasicBlock *SwitchBB,
1535                                                   BranchProbability TProb,
1536                                                   BranchProbability FProb,
1537                                                   bool InvertCond) {
1538   const BasicBlock *BB = CurBB->getBasicBlock();
1539 
1540   // If the leaf of the tree is a comparison, merge the condition into
1541   // the caseblock.
1542   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1543     // The operands of the cmp have to be in this block.  We don't know
1544     // how to export them from some other block.  If this is the first block
1545     // of the sequence, no exporting is needed.
1546     if (CurBB == SwitchBB ||
1547         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1548          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1549       ISD::CondCode Condition;
1550       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1551         ICmpInst::Predicate Pred =
1552             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1553         Condition = getICmpCondCode(Pred);
1554       } else {
1555         const FCmpInst *FC = cast<FCmpInst>(Cond);
1556         FCmpInst::Predicate Pred =
1557             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1558         Condition = getFCmpCondCode(Pred);
1559         if (TM.Options.NoNaNsFPMath)
1560           Condition = getFCmpCodeWithoutNaN(Condition);
1561       }
1562 
1563       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1564                    TBB, FBB, CurBB, TProb, FProb);
1565       SwitchCases.push_back(CB);
1566       return;
1567     }
1568   }
1569 
1570   // Create a CaseBlock record representing this branch.
1571   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1572   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1573                nullptr, TBB, FBB, CurBB, TProb, FProb);
1574   SwitchCases.push_back(CB);
1575 }
1576 
1577 /// FindMergedConditions - If Cond is an expression like
1578 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1579                                                MachineBasicBlock *TBB,
1580                                                MachineBasicBlock *FBB,
1581                                                MachineBasicBlock *CurBB,
1582                                                MachineBasicBlock *SwitchBB,
1583                                                Instruction::BinaryOps Opc,
1584                                                BranchProbability TProb,
1585                                                BranchProbability FProb,
1586                                                bool InvertCond) {
1587   // Skip over not part of the tree and remember to invert op and operands at
1588   // next level.
1589   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1590     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1591     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1592       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1593                            !InvertCond);
1594       return;
1595     }
1596   }
1597 
1598   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1599   // Compute the effective opcode for Cond, taking into account whether it needs
1600   // to be inverted, e.g.
1601   //   and (not (or A, B)), C
1602   // gets lowered as
1603   //   and (and (not A, not B), C)
1604   unsigned BOpc = 0;
1605   if (BOp) {
1606     BOpc = BOp->getOpcode();
1607     if (InvertCond) {
1608       if (BOpc == Instruction::And)
1609         BOpc = Instruction::Or;
1610       else if (BOpc == Instruction::Or)
1611         BOpc = Instruction::And;
1612     }
1613   }
1614 
1615   // If this node is not part of the or/and tree, emit it as a branch.
1616   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1617       BOpc != Opc || !BOp->hasOneUse() ||
1618       BOp->getParent() != CurBB->getBasicBlock() ||
1619       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1620       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1621     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1622                                  TProb, FProb, InvertCond);
1623     return;
1624   }
1625 
1626   //  Create TmpBB after CurBB.
1627   MachineFunction::iterator BBI(CurBB);
1628   MachineFunction &MF = DAG.getMachineFunction();
1629   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1630   CurBB->getParent()->insert(++BBI, TmpBB);
1631 
1632   if (Opc == Instruction::Or) {
1633     // Codegen X | Y as:
1634     // BB1:
1635     //   jmp_if_X TBB
1636     //   jmp TmpBB
1637     // TmpBB:
1638     //   jmp_if_Y TBB
1639     //   jmp FBB
1640     //
1641 
1642     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1643     // The requirement is that
1644     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1645     //     = TrueProb for original BB.
1646     // Assuming the original probabilities are A and B, one choice is to set
1647     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1648     // A/(1+B) and 2B/(1+B). This choice assumes that
1649     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1650     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1651     // TmpBB, but the math is more complicated.
1652 
1653     auto NewTrueProb = TProb / 2;
1654     auto NewFalseProb = TProb / 2 + FProb;
1655     // Emit the LHS condition.
1656     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1657                          NewTrueProb, NewFalseProb, InvertCond);
1658 
1659     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1660     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1661     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1662     // Emit the RHS condition into TmpBB.
1663     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1664                          Probs[0], Probs[1], InvertCond);
1665   } else {
1666     assert(Opc == Instruction::And && "Unknown merge op!");
1667     // Codegen X & Y as:
1668     // BB1:
1669     //   jmp_if_X TmpBB
1670     //   jmp FBB
1671     // TmpBB:
1672     //   jmp_if_Y TBB
1673     //   jmp FBB
1674     //
1675     //  This requires creation of TmpBB after CurBB.
1676 
1677     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1678     // The requirement is that
1679     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1680     //     = FalseProb for original BB.
1681     // Assuming the original probabilities are A and B, one choice is to set
1682     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1683     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1684     // TrueProb for BB1 * FalseProb for TmpBB.
1685 
1686     auto NewTrueProb = TProb + FProb / 2;
1687     auto NewFalseProb = FProb / 2;
1688     // Emit the LHS condition.
1689     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1690                          NewTrueProb, NewFalseProb, InvertCond);
1691 
1692     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1693     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1694     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1695     // Emit the RHS condition into TmpBB.
1696     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1697                          Probs[0], Probs[1], InvertCond);
1698   }
1699 }
1700 
1701 /// If the set of cases should be emitted as a series of branches, return true.
1702 /// If we should emit this as a bunch of and/or'd together conditions, return
1703 /// false.
1704 bool
1705 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1706   if (Cases.size() != 2) return true;
1707 
1708   // If this is two comparisons of the same values or'd or and'd together, they
1709   // will get folded into a single comparison, so don't emit two blocks.
1710   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1711        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1712       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1713        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1714     return false;
1715   }
1716 
1717   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1718   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1719   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1720       Cases[0].CC == Cases[1].CC &&
1721       isa<Constant>(Cases[0].CmpRHS) &&
1722       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1723     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1724       return false;
1725     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1726       return false;
1727   }
1728 
1729   return true;
1730 }
1731 
1732 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1733   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1734 
1735   // Update machine-CFG edges.
1736   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1737 
1738   if (I.isUnconditional()) {
1739     // Update machine-CFG edges.
1740     BrMBB->addSuccessor(Succ0MBB);
1741 
1742     // If this is not a fall-through branch or optimizations are switched off,
1743     // emit the branch.
1744     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1745       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1746                               MVT::Other, getControlRoot(),
1747                               DAG.getBasicBlock(Succ0MBB)));
1748 
1749     return;
1750   }
1751 
1752   // If this condition is one of the special cases we handle, do special stuff
1753   // now.
1754   const Value *CondVal = I.getCondition();
1755   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1756 
1757   // If this is a series of conditions that are or'd or and'd together, emit
1758   // this as a sequence of branches instead of setcc's with and/or operations.
1759   // As long as jumps are not expensive, this should improve performance.
1760   // For example, instead of something like:
1761   //     cmp A, B
1762   //     C = seteq
1763   //     cmp D, E
1764   //     F = setle
1765   //     or C, F
1766   //     jnz foo
1767   // Emit:
1768   //     cmp A, B
1769   //     je foo
1770   //     cmp D, E
1771   //     jle foo
1772   //
1773   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1774     Instruction::BinaryOps Opcode = BOp->getOpcode();
1775     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1776         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1777         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1778       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1779                            Opcode,
1780                            getEdgeProbability(BrMBB, Succ0MBB),
1781                            getEdgeProbability(BrMBB, Succ1MBB),
1782                            /*InvertCond=*/false);
1783       // If the compares in later blocks need to use values not currently
1784       // exported from this block, export them now.  This block should always
1785       // be the first entry.
1786       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1787 
1788       // Allow some cases to be rejected.
1789       if (ShouldEmitAsBranches(SwitchCases)) {
1790         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1791           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1792           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1793         }
1794 
1795         // Emit the branch for this block.
1796         visitSwitchCase(SwitchCases[0], BrMBB);
1797         SwitchCases.erase(SwitchCases.begin());
1798         return;
1799       }
1800 
1801       // Okay, we decided not to do this, remove any inserted MBB's and clear
1802       // SwitchCases.
1803       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1804         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1805 
1806       SwitchCases.clear();
1807     }
1808   }
1809 
1810   // Create a CaseBlock record representing this branch.
1811   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1812                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1813 
1814   // Use visitSwitchCase to actually insert the fast branch sequence for this
1815   // cond branch.
1816   visitSwitchCase(CB, BrMBB);
1817 }
1818 
1819 /// visitSwitchCase - Emits the necessary code to represent a single node in
1820 /// the binary search tree resulting from lowering a switch instruction.
1821 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1822                                           MachineBasicBlock *SwitchBB) {
1823   SDValue Cond;
1824   SDValue CondLHS = getValue(CB.CmpLHS);
1825   SDLoc dl = getCurSDLoc();
1826 
1827   // Build the setcc now.
1828   if (!CB.CmpMHS) {
1829     // Fold "(X == true)" to X and "(X == false)" to !X to
1830     // handle common cases produced by branch lowering.
1831     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1832         CB.CC == ISD::SETEQ)
1833       Cond = CondLHS;
1834     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1835              CB.CC == ISD::SETEQ) {
1836       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1837       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1838     } else
1839       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1840   } else {
1841     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1842 
1843     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1844     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1845 
1846     SDValue CmpOp = getValue(CB.CmpMHS);
1847     EVT VT = CmpOp.getValueType();
1848 
1849     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1850       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1851                           ISD::SETLE);
1852     } else {
1853       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1854                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1855       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1856                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1857     }
1858   }
1859 
1860   // Update successor info
1861   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1862   // TrueBB and FalseBB are always different unless the incoming IR is
1863   // degenerate. This only happens when running llc on weird IR.
1864   if (CB.TrueBB != CB.FalseBB)
1865     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1866   SwitchBB->normalizeSuccProbs();
1867 
1868   // If the lhs block is the next block, invert the condition so that we can
1869   // fall through to the lhs instead of the rhs block.
1870   if (CB.TrueBB == NextBlock(SwitchBB)) {
1871     std::swap(CB.TrueBB, CB.FalseBB);
1872     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1873     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1874   }
1875 
1876   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1877                                MVT::Other, getControlRoot(), Cond,
1878                                DAG.getBasicBlock(CB.TrueBB));
1879 
1880   // Insert the false branch. Do this even if it's a fall through branch,
1881   // this makes it easier to do DAG optimizations which require inverting
1882   // the branch condition.
1883   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1884                        DAG.getBasicBlock(CB.FalseBB));
1885 
1886   DAG.setRoot(BrCond);
1887 }
1888 
1889 /// visitJumpTable - Emit JumpTable node in the current MBB
1890 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1891   // Emit the code for the jump table
1892   assert(JT.Reg != -1U && "Should lower JT Header first!");
1893   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1894   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1895                                      JT.Reg, PTy);
1896   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1897   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1898                                     MVT::Other, Index.getValue(1),
1899                                     Table, Index);
1900   DAG.setRoot(BrJumpTable);
1901 }
1902 
1903 /// visitJumpTableHeader - This function emits necessary code to produce index
1904 /// in the JumpTable from switch case.
1905 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1906                                                JumpTableHeader &JTH,
1907                                                MachineBasicBlock *SwitchBB) {
1908   SDLoc dl = getCurSDLoc();
1909 
1910   // Subtract the lowest switch case value from the value being switched on and
1911   // conditional branch to default mbb if the result is greater than the
1912   // difference between smallest and largest cases.
1913   SDValue SwitchOp = getValue(JTH.SValue);
1914   EVT VT = SwitchOp.getValueType();
1915   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1916                             DAG.getConstant(JTH.First, dl, VT));
1917 
1918   // The SDNode we just created, which holds the value being switched on minus
1919   // the smallest case value, needs to be copied to a virtual register so it
1920   // can be used as an index into the jump table in a subsequent basic block.
1921   // This value may be smaller or larger than the target's pointer type, and
1922   // therefore require extension or truncating.
1923   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1924   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1925 
1926   unsigned JumpTableReg =
1927       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1928   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1929                                     JumpTableReg, SwitchOp);
1930   JT.Reg = JumpTableReg;
1931 
1932   // Emit the range check for the jump table, and branch to the default block
1933   // for the switch statement if the value being switched on exceeds the largest
1934   // case in the switch.
1935   SDValue CMP = DAG.getSetCC(
1936       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1937                                  Sub.getValueType()),
1938       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1939 
1940   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1941                                MVT::Other, CopyTo, CMP,
1942                                DAG.getBasicBlock(JT.Default));
1943 
1944   // Avoid emitting unnecessary branches to the next block.
1945   if (JT.MBB != NextBlock(SwitchBB))
1946     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1947                          DAG.getBasicBlock(JT.MBB));
1948 
1949   DAG.setRoot(BrCond);
1950 }
1951 
1952 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
1953 /// variable if there exists one.
1954 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
1955                                  SDValue &Chain) {
1956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1957   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1958   MachineFunction &MF = DAG.getMachineFunction();
1959   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
1960   MachineSDNode *Node =
1961       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
1962   if (Global) {
1963     MachinePointerInfo MPInfo(Global);
1964     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
1965     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1966                  MachineMemOperand::MODereferenceable;
1967     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
1968                                        DAG.getEVTAlignment(PtrTy));
1969     Node->setMemRefs(MemRefs, MemRefs + 1);
1970   }
1971   return SDValue(Node, 0);
1972 }
1973 
1974 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1975 /// tail spliced into a stack protector check success bb.
1976 ///
1977 /// For a high level explanation of how this fits into the stack protector
1978 /// generation see the comment on the declaration of class
1979 /// StackProtectorDescriptor.
1980 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1981                                                   MachineBasicBlock *ParentBB) {
1982 
1983   // First create the loads to the guard/stack slot for the comparison.
1984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1985   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1986 
1987   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
1988   int FI = MFI.getStackProtectorIndex();
1989 
1990   SDValue Guard;
1991   SDLoc dl = getCurSDLoc();
1992   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1993   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
1994   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
1995 
1996   // Generate code to load the content of the guard slot.
1997   SDValue StackSlot = DAG.getLoad(
1998       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1999       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2000       MachineMemOperand::MOVolatile);
2001 
2002   // Retrieve guard check function, nullptr if instrumentation is inlined.
2003   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2004     // The target provides a guard check function to validate the guard value.
2005     // Generate a call to that function with the content of the guard slot as
2006     // argument.
2007     auto *Fn = cast<Function>(GuardCheck);
2008     FunctionType *FnTy = Fn->getFunctionType();
2009     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2010 
2011     TargetLowering::ArgListTy Args;
2012     TargetLowering::ArgListEntry Entry;
2013     Entry.Node = StackSlot;
2014     Entry.Ty = FnTy->getParamType(0);
2015     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2016       Entry.IsInReg = true;
2017     Args.push_back(Entry);
2018 
2019     TargetLowering::CallLoweringInfo CLI(DAG);
2020     CLI.setDebugLoc(getCurSDLoc())
2021       .setChain(DAG.getEntryNode())
2022       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2023                  getValue(GuardCheck), std::move(Args));
2024 
2025     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2026     DAG.setRoot(Result.second);
2027     return;
2028   }
2029 
2030   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2031   // Otherwise, emit a volatile load to retrieve the stack guard value.
2032   SDValue Chain = DAG.getEntryNode();
2033   if (TLI.useLoadStackGuardNode()) {
2034     Guard = getLoadStackGuard(DAG, dl, Chain);
2035   } else {
2036     const Value *IRGuard = TLI.getSDagStackGuard(M);
2037     SDValue GuardPtr = getValue(IRGuard);
2038 
2039     Guard =
2040         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2041                     Align, MachineMemOperand::MOVolatile);
2042   }
2043 
2044   // Perform the comparison via a subtract/getsetcc.
2045   EVT VT = Guard.getValueType();
2046   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2047 
2048   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2049                                                         *DAG.getContext(),
2050                                                         Sub.getValueType()),
2051                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2052 
2053   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2054   // branch to failure MBB.
2055   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2056                                MVT::Other, StackSlot.getOperand(0),
2057                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2058   // Otherwise branch to success MBB.
2059   SDValue Br = DAG.getNode(ISD::BR, dl,
2060                            MVT::Other, BrCond,
2061                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2062 
2063   DAG.setRoot(Br);
2064 }
2065 
2066 /// Codegen the failure basic block for a stack protector check.
2067 ///
2068 /// A failure stack protector machine basic block consists simply of a call to
2069 /// __stack_chk_fail().
2070 ///
2071 /// For a high level explanation of how this fits into the stack protector
2072 /// generation see the comment on the declaration of class
2073 /// StackProtectorDescriptor.
2074 void
2075 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2077   SDValue Chain =
2078       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2079                       None, false, getCurSDLoc(), false, false).second;
2080   DAG.setRoot(Chain);
2081 }
2082 
2083 /// visitBitTestHeader - This function emits necessary code to produce value
2084 /// suitable for "bit tests"
2085 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2086                                              MachineBasicBlock *SwitchBB) {
2087   SDLoc dl = getCurSDLoc();
2088 
2089   // Subtract the minimum value
2090   SDValue SwitchOp = getValue(B.SValue);
2091   EVT VT = SwitchOp.getValueType();
2092   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2093                             DAG.getConstant(B.First, dl, VT));
2094 
2095   // Check range
2096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2097   SDValue RangeCmp = DAG.getSetCC(
2098       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2099                                  Sub.getValueType()),
2100       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2101 
2102   // Determine the type of the test operands.
2103   bool UsePtrType = false;
2104   if (!TLI.isTypeLegal(VT))
2105     UsePtrType = true;
2106   else {
2107     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2108       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2109         // Switch table case range are encoded into series of masks.
2110         // Just use pointer type, it's guaranteed to fit.
2111         UsePtrType = true;
2112         break;
2113       }
2114   }
2115   if (UsePtrType) {
2116     VT = TLI.getPointerTy(DAG.getDataLayout());
2117     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2118   }
2119 
2120   B.RegVT = VT.getSimpleVT();
2121   B.Reg = FuncInfo.CreateReg(B.RegVT);
2122   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2123 
2124   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2125 
2126   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2127   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2128   SwitchBB->normalizeSuccProbs();
2129 
2130   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2131                                 MVT::Other, CopyTo, RangeCmp,
2132                                 DAG.getBasicBlock(B.Default));
2133 
2134   // Avoid emitting unnecessary branches to the next block.
2135   if (MBB != NextBlock(SwitchBB))
2136     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2137                           DAG.getBasicBlock(MBB));
2138 
2139   DAG.setRoot(BrRange);
2140 }
2141 
2142 /// visitBitTestCase - this function produces one "bit test"
2143 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2144                                            MachineBasicBlock* NextMBB,
2145                                            BranchProbability BranchProbToNext,
2146                                            unsigned Reg,
2147                                            BitTestCase &B,
2148                                            MachineBasicBlock *SwitchBB) {
2149   SDLoc dl = getCurSDLoc();
2150   MVT VT = BB.RegVT;
2151   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2152   SDValue Cmp;
2153   unsigned PopCount = countPopulation(B.Mask);
2154   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2155   if (PopCount == 1) {
2156     // Testing for a single bit; just compare the shift count with what it
2157     // would need to be to shift a 1 bit in that position.
2158     Cmp = DAG.getSetCC(
2159         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2160         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2161         ISD::SETEQ);
2162   } else if (PopCount == BB.Range) {
2163     // There is only one zero bit in the range, test for it directly.
2164     Cmp = DAG.getSetCC(
2165         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2166         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2167         ISD::SETNE);
2168   } else {
2169     // Make desired shift
2170     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2171                                     DAG.getConstant(1, dl, VT), ShiftOp);
2172 
2173     // Emit bit tests and jumps
2174     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2175                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2176     Cmp = DAG.getSetCC(
2177         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2178         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2179   }
2180 
2181   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2182   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2183   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2184   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2185   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2186   // one as they are relative probabilities (and thus work more like weights),
2187   // and hence we need to normalize them to let the sum of them become one.
2188   SwitchBB->normalizeSuccProbs();
2189 
2190   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2191                               MVT::Other, getControlRoot(),
2192                               Cmp, DAG.getBasicBlock(B.TargetBB));
2193 
2194   // Avoid emitting unnecessary branches to the next block.
2195   if (NextMBB != NextBlock(SwitchBB))
2196     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2197                         DAG.getBasicBlock(NextMBB));
2198 
2199   DAG.setRoot(BrAnd);
2200 }
2201 
2202 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2203   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2204 
2205   // Retrieve successors. Look through artificial IR level blocks like
2206   // catchswitch for successors.
2207   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2208   const BasicBlock *EHPadBB = I.getSuccessor(1);
2209 
2210   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2211   // have to do anything here to lower funclet bundles.
2212   assert(!I.hasOperandBundlesOtherThan(
2213              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2214          "Cannot lower invokes with arbitrary operand bundles yet!");
2215 
2216   const Value *Callee(I.getCalledValue());
2217   const Function *Fn = dyn_cast<Function>(Callee);
2218   if (isa<InlineAsm>(Callee))
2219     visitInlineAsm(&I);
2220   else if (Fn && Fn->isIntrinsic()) {
2221     switch (Fn->getIntrinsicID()) {
2222     default:
2223       llvm_unreachable("Cannot invoke this intrinsic");
2224     case Intrinsic::donothing:
2225       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2226       break;
2227     case Intrinsic::experimental_patchpoint_void:
2228     case Intrinsic::experimental_patchpoint_i64:
2229       visitPatchpoint(&I, EHPadBB);
2230       break;
2231     case Intrinsic::experimental_gc_statepoint:
2232       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2233       break;
2234     }
2235   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2236     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2237     // Eventually we will support lowering the @llvm.experimental.deoptimize
2238     // intrinsic, and right now there are no plans to support other intrinsics
2239     // with deopt state.
2240     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2241   } else {
2242     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2243   }
2244 
2245   // If the value of the invoke is used outside of its defining block, make it
2246   // available as a virtual register.
2247   // We already took care of the exported value for the statepoint instruction
2248   // during call to the LowerStatepoint.
2249   if (!isStatepoint(I)) {
2250     CopyToExportRegsIfNeeded(&I);
2251   }
2252 
2253   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2254   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2255   BranchProbability EHPadBBProb =
2256       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2257           : BranchProbability::getZero();
2258   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2259 
2260   // Update successor info.
2261   addSuccessorWithProb(InvokeMBB, Return);
2262   for (auto &UnwindDest : UnwindDests) {
2263     UnwindDest.first->setIsEHPad();
2264     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2265   }
2266   InvokeMBB->normalizeSuccProbs();
2267 
2268   // Drop into normal successor.
2269   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2270                           MVT::Other, getControlRoot(),
2271                           DAG.getBasicBlock(Return)));
2272 }
2273 
2274 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2275   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2276 }
2277 
2278 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2279   assert(FuncInfo.MBB->isEHPad() &&
2280          "Call to landingpad not in landing pad!");
2281 
2282   MachineBasicBlock *MBB = FuncInfo.MBB;
2283   addLandingPadInfo(LP, *MBB);
2284 
2285   // If there aren't registers to copy the values into (e.g., during SjLj
2286   // exceptions), then don't bother to create these DAG nodes.
2287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2288   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2289   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2290       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2291     return;
2292 
2293   // If landingpad's return type is token type, we don't create DAG nodes
2294   // for its exception pointer and selector value. The extraction of exception
2295   // pointer or selector value from token type landingpads is not currently
2296   // supported.
2297   if (LP.getType()->isTokenTy())
2298     return;
2299 
2300   SmallVector<EVT, 2> ValueVTs;
2301   SDLoc dl = getCurSDLoc();
2302   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2303   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2304 
2305   // Get the two live-in registers as SDValues. The physregs have already been
2306   // copied into virtual registers.
2307   SDValue Ops[2];
2308   if (FuncInfo.ExceptionPointerVirtReg) {
2309     Ops[0] = DAG.getZExtOrTrunc(
2310         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2311                            FuncInfo.ExceptionPointerVirtReg,
2312                            TLI.getPointerTy(DAG.getDataLayout())),
2313         dl, ValueVTs[0]);
2314   } else {
2315     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2316   }
2317   Ops[1] = DAG.getZExtOrTrunc(
2318       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2319                          FuncInfo.ExceptionSelectorVirtReg,
2320                          TLI.getPointerTy(DAG.getDataLayout())),
2321       dl, ValueVTs[1]);
2322 
2323   // Merge into one.
2324   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2325                             DAG.getVTList(ValueVTs), Ops);
2326   setValue(&LP, Res);
2327 }
2328 
2329 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2330 #ifndef NDEBUG
2331   for (const CaseCluster &CC : Clusters)
2332     assert(CC.Low == CC.High && "Input clusters must be single-case");
2333 #endif
2334 
2335   std::sort(Clusters.begin(), Clusters.end(),
2336             [](const CaseCluster &a, const CaseCluster &b) {
2337     return a.Low->getValue().slt(b.Low->getValue());
2338   });
2339 
2340   // Merge adjacent clusters with the same destination.
2341   const unsigned N = Clusters.size();
2342   unsigned DstIndex = 0;
2343   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2344     CaseCluster &CC = Clusters[SrcIndex];
2345     const ConstantInt *CaseVal = CC.Low;
2346     MachineBasicBlock *Succ = CC.MBB;
2347 
2348     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2349         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2350       // If this case has the same successor and is a neighbour, merge it into
2351       // the previous cluster.
2352       Clusters[DstIndex - 1].High = CaseVal;
2353       Clusters[DstIndex - 1].Prob += CC.Prob;
2354     } else {
2355       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2356                    sizeof(Clusters[SrcIndex]));
2357     }
2358   }
2359   Clusters.resize(DstIndex);
2360 }
2361 
2362 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2363                                            MachineBasicBlock *Last) {
2364   // Update JTCases.
2365   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2366     if (JTCases[i].first.HeaderBB == First)
2367       JTCases[i].first.HeaderBB = Last;
2368 
2369   // Update BitTestCases.
2370   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2371     if (BitTestCases[i].Parent == First)
2372       BitTestCases[i].Parent = Last;
2373 }
2374 
2375 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2376   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2377 
2378   // Update machine-CFG edges with unique successors.
2379   SmallSet<BasicBlock*, 32> Done;
2380   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2381     BasicBlock *BB = I.getSuccessor(i);
2382     bool Inserted = Done.insert(BB).second;
2383     if (!Inserted)
2384         continue;
2385 
2386     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2387     addSuccessorWithProb(IndirectBrMBB, Succ);
2388   }
2389   IndirectBrMBB->normalizeSuccProbs();
2390 
2391   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2392                           MVT::Other, getControlRoot(),
2393                           getValue(I.getAddress())));
2394 }
2395 
2396 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2397   errs() << "WARNING: trap\n";
2398   if (DAG.getTarget().Options.TrapUnreachable) {
2399     DAG.setRoot(
2400         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2401 
2402   }
2403 }
2404 
2405 void SelectionDAGBuilder::visitFSub(const User &I) {
2406   // -0.0 - X --> fneg
2407   Type *Ty = I.getType();
2408   if (isa<Constant>(I.getOperand(0)) &&
2409       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2410     SDValue Op2 = getValue(I.getOperand(1));
2411     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2412                              Op2.getValueType(), Op2));
2413     return;
2414   }
2415 
2416   visitBinary(I, ISD::FSUB);
2417 }
2418 
2419 /// Checks if the given instruction performs a vector reduction, in which case
2420 /// we have the freedom to alter the elements in the result as long as the
2421 /// reduction of them stays unchanged.
2422 static bool isVectorReductionOp(const User *I) {
2423   const Instruction *Inst = dyn_cast<Instruction>(I);
2424   if (!Inst || !Inst->getType()->isVectorTy())
2425     return false;
2426 
2427   auto OpCode = Inst->getOpcode();
2428   switch (OpCode) {
2429   case Instruction::Add:
2430   case Instruction::Mul:
2431   case Instruction::And:
2432   case Instruction::Or:
2433   case Instruction::Xor:
2434     break;
2435   case Instruction::FAdd:
2436   case Instruction::FMul:
2437     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2438       if (FPOp->getFastMathFlags().unsafeAlgebra())
2439         break;
2440     LLVM_FALLTHROUGH;
2441   default:
2442     return false;
2443   }
2444 
2445   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2446   unsigned ElemNumToReduce = ElemNum;
2447 
2448   // Do DFS search on the def-use chain from the given instruction. We only
2449   // allow four kinds of operations during the search until we reach the
2450   // instruction that extracts the first element from the vector:
2451   //
2452   //   1. The reduction operation of the same opcode as the given instruction.
2453   //
2454   //   2. PHI node.
2455   //
2456   //   3. ShuffleVector instruction together with a reduction operation that
2457   //      does a partial reduction.
2458   //
2459   //   4. ExtractElement that extracts the first element from the vector, and we
2460   //      stop searching the def-use chain here.
2461   //
2462   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2463   // from 1-3 to the stack to continue the DFS. The given instruction is not
2464   // a reduction operation if we meet any other instructions other than those
2465   // listed above.
2466 
2467   SmallVector<const User *, 16> UsersToVisit{Inst};
2468   SmallPtrSet<const User *, 16> Visited;
2469   bool ReduxExtracted = false;
2470 
2471   while (!UsersToVisit.empty()) {
2472     auto User = UsersToVisit.back();
2473     UsersToVisit.pop_back();
2474     if (!Visited.insert(User).second)
2475       continue;
2476 
2477     for (const auto &U : User->users()) {
2478       auto Inst = dyn_cast<Instruction>(U);
2479       if (!Inst)
2480         return false;
2481 
2482       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2483         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2484           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2485             return false;
2486         UsersToVisit.push_back(U);
2487       } else if (const ShuffleVectorInst *ShufInst =
2488                      dyn_cast<ShuffleVectorInst>(U)) {
2489         // Detect the following pattern: A ShuffleVector instruction together
2490         // with a reduction that do partial reduction on the first and second
2491         // ElemNumToReduce / 2 elements, and store the result in
2492         // ElemNumToReduce / 2 elements in another vector.
2493 
2494         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2495         if (ResultElements < ElemNum)
2496           return false;
2497 
2498         if (ElemNumToReduce == 1)
2499           return false;
2500         if (!isa<UndefValue>(U->getOperand(1)))
2501           return false;
2502         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2503           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2504             return false;
2505         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2506           if (ShufInst->getMaskValue(i) != -1)
2507             return false;
2508 
2509         // There is only one user of this ShuffleVector instruction, which
2510         // must be a reduction operation.
2511         if (!U->hasOneUse())
2512           return false;
2513 
2514         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2515         if (!U2 || U2->getOpcode() != OpCode)
2516           return false;
2517 
2518         // Check operands of the reduction operation.
2519         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2520             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2521           UsersToVisit.push_back(U2);
2522           ElemNumToReduce /= 2;
2523         } else
2524           return false;
2525       } else if (isa<ExtractElementInst>(U)) {
2526         // At this moment we should have reduced all elements in the vector.
2527         if (ElemNumToReduce != 1)
2528           return false;
2529 
2530         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2531         if (!Val || Val->getZExtValue() != 0)
2532           return false;
2533 
2534         ReduxExtracted = true;
2535       } else
2536         return false;
2537     }
2538   }
2539   return ReduxExtracted;
2540 }
2541 
2542 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2543   SDValue Op1 = getValue(I.getOperand(0));
2544   SDValue Op2 = getValue(I.getOperand(1));
2545 
2546   bool nuw = false;
2547   bool nsw = false;
2548   bool exact = false;
2549   bool vec_redux = false;
2550   FastMathFlags FMF;
2551 
2552   if (const OverflowingBinaryOperator *OFBinOp =
2553           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2554     nuw = OFBinOp->hasNoUnsignedWrap();
2555     nsw = OFBinOp->hasNoSignedWrap();
2556   }
2557   if (const PossiblyExactOperator *ExactOp =
2558           dyn_cast<const PossiblyExactOperator>(&I))
2559     exact = ExactOp->isExact();
2560   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2561     FMF = FPOp->getFastMathFlags();
2562 
2563   if (isVectorReductionOp(&I)) {
2564     vec_redux = true;
2565     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2566   }
2567 
2568   SDNodeFlags Flags;
2569   Flags.setExact(exact);
2570   Flags.setNoSignedWrap(nsw);
2571   Flags.setNoUnsignedWrap(nuw);
2572   Flags.setVectorReduction(vec_redux);
2573   Flags.setAllowReciprocal(FMF.allowReciprocal());
2574   Flags.setAllowContract(FMF.allowContract());
2575   Flags.setNoInfs(FMF.noInfs());
2576   Flags.setNoNaNs(FMF.noNaNs());
2577   Flags.setNoSignedZeros(FMF.noSignedZeros());
2578   Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2579 
2580   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2581                                      Op1, Op2, Flags);
2582   setValue(&I, BinNodeValue);
2583 }
2584 
2585 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2586   SDValue Op1 = getValue(I.getOperand(0));
2587   SDValue Op2 = getValue(I.getOperand(1));
2588 
2589   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2590       Op2.getValueType(), DAG.getDataLayout());
2591 
2592   // Coerce the shift amount to the right type if we can.
2593   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2594     unsigned ShiftSize = ShiftTy.getSizeInBits();
2595     unsigned Op2Size = Op2.getValueSizeInBits();
2596     SDLoc DL = getCurSDLoc();
2597 
2598     // If the operand is smaller than the shift count type, promote it.
2599     if (ShiftSize > Op2Size)
2600       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2601 
2602     // If the operand is larger than the shift count type but the shift
2603     // count type has enough bits to represent any shift value, truncate
2604     // it now. This is a common case and it exposes the truncate to
2605     // optimization early.
2606     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2607       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2608     // Otherwise we'll need to temporarily settle for some other convenient
2609     // type.  Type legalization will make adjustments once the shiftee is split.
2610     else
2611       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2612   }
2613 
2614   bool nuw = false;
2615   bool nsw = false;
2616   bool exact = false;
2617 
2618   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2619 
2620     if (const OverflowingBinaryOperator *OFBinOp =
2621             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2622       nuw = OFBinOp->hasNoUnsignedWrap();
2623       nsw = OFBinOp->hasNoSignedWrap();
2624     }
2625     if (const PossiblyExactOperator *ExactOp =
2626             dyn_cast<const PossiblyExactOperator>(&I))
2627       exact = ExactOp->isExact();
2628   }
2629   SDNodeFlags Flags;
2630   Flags.setExact(exact);
2631   Flags.setNoSignedWrap(nsw);
2632   Flags.setNoUnsignedWrap(nuw);
2633   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2634                             Flags);
2635   setValue(&I, Res);
2636 }
2637 
2638 void SelectionDAGBuilder::visitSDiv(const User &I) {
2639   SDValue Op1 = getValue(I.getOperand(0));
2640   SDValue Op2 = getValue(I.getOperand(1));
2641 
2642   SDNodeFlags Flags;
2643   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2644                  cast<PossiblyExactOperator>(&I)->isExact());
2645   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2646                            Op2, Flags));
2647 }
2648 
2649 void SelectionDAGBuilder::visitICmp(const User &I) {
2650   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2651   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2652     predicate = IC->getPredicate();
2653   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2654     predicate = ICmpInst::Predicate(IC->getPredicate());
2655   SDValue Op1 = getValue(I.getOperand(0));
2656   SDValue Op2 = getValue(I.getOperand(1));
2657   ISD::CondCode Opcode = getICmpCondCode(predicate);
2658 
2659   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2660                                                         I.getType());
2661   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2662 }
2663 
2664 void SelectionDAGBuilder::visitFCmp(const User &I) {
2665   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2666   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2667     predicate = FC->getPredicate();
2668   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2669     predicate = FCmpInst::Predicate(FC->getPredicate());
2670   SDValue Op1 = getValue(I.getOperand(0));
2671   SDValue Op2 = getValue(I.getOperand(1));
2672   ISD::CondCode Condition = getFCmpCondCode(predicate);
2673 
2674   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2675   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2676   // further optimization, but currently FMF is only applicable to binary nodes.
2677   if (TM.Options.NoNaNsFPMath)
2678     Condition = getFCmpCodeWithoutNaN(Condition);
2679   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2680                                                         I.getType());
2681   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2682 }
2683 
2684 // Check if the condition of the select has one use or two users that are both
2685 // selects with the same condition.
2686 static bool hasOnlySelectUsers(const Value *Cond) {
2687   return all_of(Cond->users(), [](const Value *V) {
2688     return isa<SelectInst>(V);
2689   });
2690 }
2691 
2692 void SelectionDAGBuilder::visitSelect(const User &I) {
2693   SmallVector<EVT, 4> ValueVTs;
2694   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2695                   ValueVTs);
2696   unsigned NumValues = ValueVTs.size();
2697   if (NumValues == 0) return;
2698 
2699   SmallVector<SDValue, 4> Values(NumValues);
2700   SDValue Cond     = getValue(I.getOperand(0));
2701   SDValue LHSVal   = getValue(I.getOperand(1));
2702   SDValue RHSVal   = getValue(I.getOperand(2));
2703   auto BaseOps = {Cond};
2704   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2705     ISD::VSELECT : ISD::SELECT;
2706 
2707   // Min/max matching is only viable if all output VTs are the same.
2708   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2709     EVT VT = ValueVTs[0];
2710     LLVMContext &Ctx = *DAG.getContext();
2711     auto &TLI = DAG.getTargetLoweringInfo();
2712 
2713     // We care about the legality of the operation after it has been type
2714     // legalized.
2715     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2716            VT != TLI.getTypeToTransformTo(Ctx, VT))
2717       VT = TLI.getTypeToTransformTo(Ctx, VT);
2718 
2719     // If the vselect is legal, assume we want to leave this as a vector setcc +
2720     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2721     // min/max is legal on the scalar type.
2722     bool UseScalarMinMax = VT.isVector() &&
2723       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2724 
2725     Value *LHS, *RHS;
2726     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2727     ISD::NodeType Opc = ISD::DELETED_NODE;
2728     switch (SPR.Flavor) {
2729     case SPF_UMAX:    Opc = ISD::UMAX; break;
2730     case SPF_UMIN:    Opc = ISD::UMIN; break;
2731     case SPF_SMAX:    Opc = ISD::SMAX; break;
2732     case SPF_SMIN:    Opc = ISD::SMIN; break;
2733     case SPF_FMINNUM:
2734       switch (SPR.NaNBehavior) {
2735       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2736       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2737       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2738       case SPNB_RETURNS_ANY: {
2739         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2740           Opc = ISD::FMINNUM;
2741         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2742           Opc = ISD::FMINNAN;
2743         else if (UseScalarMinMax)
2744           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2745             ISD::FMINNUM : ISD::FMINNAN;
2746         break;
2747       }
2748       }
2749       break;
2750     case SPF_FMAXNUM:
2751       switch (SPR.NaNBehavior) {
2752       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2753       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2754       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2755       case SPNB_RETURNS_ANY:
2756 
2757         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2758           Opc = ISD::FMAXNUM;
2759         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2760           Opc = ISD::FMAXNAN;
2761         else if (UseScalarMinMax)
2762           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2763             ISD::FMAXNUM : ISD::FMAXNAN;
2764         break;
2765       }
2766       break;
2767     default: break;
2768     }
2769 
2770     if (Opc != ISD::DELETED_NODE &&
2771         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2772          (UseScalarMinMax &&
2773           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2774         // If the underlying comparison instruction is used by any other
2775         // instruction, the consumed instructions won't be destroyed, so it is
2776         // not profitable to convert to a min/max.
2777         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2778       OpCode = Opc;
2779       LHSVal = getValue(LHS);
2780       RHSVal = getValue(RHS);
2781       BaseOps = {};
2782     }
2783   }
2784 
2785   for (unsigned i = 0; i != NumValues; ++i) {
2786     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2787     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2788     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2789     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2790                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2791                             Ops);
2792   }
2793 
2794   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2795                            DAG.getVTList(ValueVTs), Values));
2796 }
2797 
2798 void SelectionDAGBuilder::visitTrunc(const User &I) {
2799   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2800   SDValue N = getValue(I.getOperand(0));
2801   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2802                                                         I.getType());
2803   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2804 }
2805 
2806 void SelectionDAGBuilder::visitZExt(const User &I) {
2807   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2808   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2809   SDValue N = getValue(I.getOperand(0));
2810   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2811                                                         I.getType());
2812   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2813 }
2814 
2815 void SelectionDAGBuilder::visitSExt(const User &I) {
2816   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2817   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2818   SDValue N = getValue(I.getOperand(0));
2819   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2820                                                         I.getType());
2821   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2822 }
2823 
2824 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2825   // FPTrunc is never a no-op cast, no need to check
2826   SDValue N = getValue(I.getOperand(0));
2827   SDLoc dl = getCurSDLoc();
2828   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2829   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2830   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2831                            DAG.getTargetConstant(
2832                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2833 }
2834 
2835 void SelectionDAGBuilder::visitFPExt(const User &I) {
2836   // FPExt is never a no-op cast, no need to check
2837   SDValue N = getValue(I.getOperand(0));
2838   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2839                                                         I.getType());
2840   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2841 }
2842 
2843 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2844   // FPToUI is never a no-op cast, no need to check
2845   SDValue N = getValue(I.getOperand(0));
2846   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2847                                                         I.getType());
2848   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2849 }
2850 
2851 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2852   // FPToSI is never a no-op cast, no need to check
2853   SDValue N = getValue(I.getOperand(0));
2854   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2855                                                         I.getType());
2856   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2857 }
2858 
2859 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2860   // UIToFP is never a no-op cast, no need to check
2861   SDValue N = getValue(I.getOperand(0));
2862   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2863                                                         I.getType());
2864   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2865 }
2866 
2867 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2868   // SIToFP is never a no-op cast, no need to check
2869   SDValue N = getValue(I.getOperand(0));
2870   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2871                                                         I.getType());
2872   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2873 }
2874 
2875 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2876   // What to do depends on the size of the integer and the size of the pointer.
2877   // We can either truncate, zero extend, or no-op, accordingly.
2878   SDValue N = getValue(I.getOperand(0));
2879   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2880                                                         I.getType());
2881   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2882 }
2883 
2884 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2885   // What to do depends on the size of the integer and the size of the pointer.
2886   // We can either truncate, zero extend, or no-op, accordingly.
2887   SDValue N = getValue(I.getOperand(0));
2888   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2889                                                         I.getType());
2890   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2891 }
2892 
2893 void SelectionDAGBuilder::visitBitCast(const User &I) {
2894   SDValue N = getValue(I.getOperand(0));
2895   SDLoc dl = getCurSDLoc();
2896   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2897                                                         I.getType());
2898 
2899   // BitCast assures us that source and destination are the same size so this is
2900   // either a BITCAST or a no-op.
2901   if (DestVT != N.getValueType())
2902     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2903                              DestVT, N)); // convert types.
2904   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2905   // might fold any kind of constant expression to an integer constant and that
2906   // is not what we are looking for. Only recognize a bitcast of a genuine
2907   // constant integer as an opaque constant.
2908   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2909     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2910                                  /*isOpaque*/true));
2911   else
2912     setValue(&I, N);            // noop cast.
2913 }
2914 
2915 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2916   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2917   const Value *SV = I.getOperand(0);
2918   SDValue N = getValue(SV);
2919   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2920 
2921   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2922   unsigned DestAS = I.getType()->getPointerAddressSpace();
2923 
2924   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2925     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2926 
2927   setValue(&I, N);
2928 }
2929 
2930 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2932   SDValue InVec = getValue(I.getOperand(0));
2933   SDValue InVal = getValue(I.getOperand(1));
2934   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2935                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2936   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2937                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2938                            InVec, InVal, InIdx));
2939 }
2940 
2941 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2942   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2943   SDValue InVec = getValue(I.getOperand(0));
2944   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2945                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2946   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2947                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2948                            InVec, InIdx));
2949 }
2950 
2951 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2952   SDValue Src1 = getValue(I.getOperand(0));
2953   SDValue Src2 = getValue(I.getOperand(1));
2954   SDLoc DL = getCurSDLoc();
2955 
2956   SmallVector<int, 8> Mask;
2957   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2958   unsigned MaskNumElts = Mask.size();
2959 
2960   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2961   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2962   EVT SrcVT = Src1.getValueType();
2963   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2964 
2965   if (SrcNumElts == MaskNumElts) {
2966     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
2967     return;
2968   }
2969 
2970   // Normalize the shuffle vector since mask and vector length don't match.
2971   if (SrcNumElts < MaskNumElts) {
2972     // Mask is longer than the source vectors. We can use concatenate vector to
2973     // make the mask and vectors lengths match.
2974 
2975     if (MaskNumElts % SrcNumElts == 0) {
2976       // Mask length is a multiple of the source vector length.
2977       // Check if the shuffle is some kind of concatenation of the input
2978       // vectors.
2979       unsigned NumConcat = MaskNumElts / SrcNumElts;
2980       bool IsConcat = true;
2981       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
2982       for (unsigned i = 0; i != MaskNumElts; ++i) {
2983         int Idx = Mask[i];
2984         if (Idx < 0)
2985           continue;
2986         // Ensure the indices in each SrcVT sized piece are sequential and that
2987         // the same source is used for the whole piece.
2988         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
2989             (ConcatSrcs[i / SrcNumElts] >= 0 &&
2990              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
2991           IsConcat = false;
2992           break;
2993         }
2994         // Remember which source this index came from.
2995         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
2996       }
2997 
2998       // The shuffle is concatenating multiple vectors together. Just emit
2999       // a CONCAT_VECTORS operation.
3000       if (IsConcat) {
3001         SmallVector<SDValue, 8> ConcatOps;
3002         for (auto Src : ConcatSrcs) {
3003           if (Src < 0)
3004             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3005           else if (Src == 0)
3006             ConcatOps.push_back(Src1);
3007           else
3008             ConcatOps.push_back(Src2);
3009         }
3010         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3011         return;
3012       }
3013     }
3014 
3015     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3016     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3017     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3018                                     PaddedMaskNumElts);
3019 
3020     // Pad both vectors with undefs to make them the same length as the mask.
3021     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3022 
3023     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3024     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3025     MOps1[0] = Src1;
3026     MOps2[0] = Src2;
3027 
3028     Src1 = Src1.isUndef()
3029                ? DAG.getUNDEF(PaddedVT)
3030                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3031     Src2 = Src2.isUndef()
3032                ? DAG.getUNDEF(PaddedVT)
3033                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3034 
3035     // Readjust mask for new input vector length.
3036     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3037     for (unsigned i = 0; i != MaskNumElts; ++i) {
3038       int Idx = Mask[i];
3039       if (Idx >= (int)SrcNumElts)
3040         Idx -= SrcNumElts - PaddedMaskNumElts;
3041       MappedOps[i] = Idx;
3042     }
3043 
3044     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3045 
3046     // If the concatenated vector was padded, extract a subvector with the
3047     // correct number of elements.
3048     if (MaskNumElts != PaddedMaskNumElts)
3049       Result = DAG.getNode(
3050           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3051           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3052 
3053     setValue(&I, Result);
3054     return;
3055   }
3056 
3057   if (SrcNumElts > MaskNumElts) {
3058     // Analyze the access pattern of the vector to see if we can extract
3059     // two subvectors and do the shuffle.
3060     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3061     bool CanExtract = true;
3062     for (int Idx : Mask) {
3063       unsigned Input = 0;
3064       if (Idx < 0)
3065         continue;
3066 
3067       if (Idx >= (int)SrcNumElts) {
3068         Input = 1;
3069         Idx -= SrcNumElts;
3070       }
3071 
3072       // If all the indices come from the same MaskNumElts sized portion of
3073       // the sources we can use extract. Also make sure the extract wouldn't
3074       // extract past the end of the source.
3075       int NewStartIdx = alignDown(Idx, MaskNumElts);
3076       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3077           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3078         CanExtract = false;
3079       // Make sure we always update StartIdx as we use it to track if all
3080       // elements are undef.
3081       StartIdx[Input] = NewStartIdx;
3082     }
3083 
3084     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3085       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3086       return;
3087     }
3088     if (CanExtract) {
3089       // Extract appropriate subvector and generate a vector shuffle
3090       for (unsigned Input = 0; Input < 2; ++Input) {
3091         SDValue &Src = Input == 0 ? Src1 : Src2;
3092         if (StartIdx[Input] < 0)
3093           Src = DAG.getUNDEF(VT);
3094         else {
3095           Src = DAG.getNode(
3096               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3097               DAG.getConstant(StartIdx[Input], DL,
3098                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3099         }
3100       }
3101 
3102       // Calculate new mask.
3103       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3104       for (int &Idx : MappedOps) {
3105         if (Idx >= (int)SrcNumElts)
3106           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3107         else if (Idx >= 0)
3108           Idx -= StartIdx[0];
3109       }
3110 
3111       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3112       return;
3113     }
3114   }
3115 
3116   // We can't use either concat vectors or extract subvectors so fall back to
3117   // replacing the shuffle with extract and build vector.
3118   // to insert and build vector.
3119   EVT EltVT = VT.getVectorElementType();
3120   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3121   SmallVector<SDValue,8> Ops;
3122   for (int Idx : Mask) {
3123     SDValue Res;
3124 
3125     if (Idx < 0) {
3126       Res = DAG.getUNDEF(EltVT);
3127     } else {
3128       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3129       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3130 
3131       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3132                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3133     }
3134 
3135     Ops.push_back(Res);
3136   }
3137 
3138   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3139 }
3140 
3141 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3142   const Value *Op0 = I.getOperand(0);
3143   const Value *Op1 = I.getOperand(1);
3144   Type *AggTy = I.getType();
3145   Type *ValTy = Op1->getType();
3146   bool IntoUndef = isa<UndefValue>(Op0);
3147   bool FromUndef = isa<UndefValue>(Op1);
3148 
3149   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3150 
3151   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3152   SmallVector<EVT, 4> AggValueVTs;
3153   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3154   SmallVector<EVT, 4> ValValueVTs;
3155   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3156 
3157   unsigned NumAggValues = AggValueVTs.size();
3158   unsigned NumValValues = ValValueVTs.size();
3159   SmallVector<SDValue, 4> Values(NumAggValues);
3160 
3161   // Ignore an insertvalue that produces an empty object
3162   if (!NumAggValues) {
3163     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3164     return;
3165   }
3166 
3167   SDValue Agg = getValue(Op0);
3168   unsigned i = 0;
3169   // Copy the beginning value(s) from the original aggregate.
3170   for (; i != LinearIndex; ++i)
3171     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3172                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3173   // Copy values from the inserted value(s).
3174   if (NumValValues) {
3175     SDValue Val = getValue(Op1);
3176     for (; i != LinearIndex + NumValValues; ++i)
3177       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3178                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3179   }
3180   // Copy remaining value(s) from the original aggregate.
3181   for (; i != NumAggValues; ++i)
3182     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3183                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3184 
3185   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3186                            DAG.getVTList(AggValueVTs), Values));
3187 }
3188 
3189 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3190   const Value *Op0 = I.getOperand(0);
3191   Type *AggTy = Op0->getType();
3192   Type *ValTy = I.getType();
3193   bool OutOfUndef = isa<UndefValue>(Op0);
3194 
3195   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3196 
3197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3198   SmallVector<EVT, 4> ValValueVTs;
3199   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3200 
3201   unsigned NumValValues = ValValueVTs.size();
3202 
3203   // Ignore a extractvalue that produces an empty object
3204   if (!NumValValues) {
3205     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3206     return;
3207   }
3208 
3209   SmallVector<SDValue, 4> Values(NumValValues);
3210 
3211   SDValue Agg = getValue(Op0);
3212   // Copy out the selected value(s).
3213   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3214     Values[i - LinearIndex] =
3215       OutOfUndef ?
3216         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3217         SDValue(Agg.getNode(), Agg.getResNo() + i);
3218 
3219   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3220                            DAG.getVTList(ValValueVTs), Values));
3221 }
3222 
3223 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3224   Value *Op0 = I.getOperand(0);
3225   // Note that the pointer operand may be a vector of pointers. Take the scalar
3226   // element which holds a pointer.
3227   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3228   SDValue N = getValue(Op0);
3229   SDLoc dl = getCurSDLoc();
3230 
3231   // Normalize Vector GEP - all scalar operands should be converted to the
3232   // splat vector.
3233   unsigned VectorWidth = I.getType()->isVectorTy() ?
3234     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3235 
3236   if (VectorWidth && !N.getValueType().isVector()) {
3237     LLVMContext &Context = *DAG.getContext();
3238     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3239     N = DAG.getSplatBuildVector(VT, dl, N);
3240   }
3241 
3242   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3243        GTI != E; ++GTI) {
3244     const Value *Idx = GTI.getOperand();
3245     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3246       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3247       if (Field) {
3248         // N = N + Offset
3249         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3250 
3251         // In an inbounds GEP with an offset that is nonnegative even when
3252         // interpreted as signed, assume there is no unsigned overflow.
3253         SDNodeFlags Flags;
3254         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3255           Flags.setNoUnsignedWrap(true);
3256 
3257         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3258                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3259       }
3260     } else {
3261       MVT PtrTy =
3262           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3263       unsigned PtrSize = PtrTy.getSizeInBits();
3264       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3265 
3266       // If this is a scalar constant or a splat vector of constants,
3267       // handle it quickly.
3268       const auto *CI = dyn_cast<ConstantInt>(Idx);
3269       if (!CI && isa<ConstantDataVector>(Idx) &&
3270           cast<ConstantDataVector>(Idx)->getSplatValue())
3271         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3272 
3273       if (CI) {
3274         if (CI->isZero())
3275           continue;
3276         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3277         LLVMContext &Context = *DAG.getContext();
3278         SDValue OffsVal = VectorWidth ?
3279           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3280           DAG.getConstant(Offs, dl, PtrTy);
3281 
3282         // In an inbouds GEP with an offset that is nonnegative even when
3283         // interpreted as signed, assume there is no unsigned overflow.
3284         SDNodeFlags Flags;
3285         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3286           Flags.setNoUnsignedWrap(true);
3287 
3288         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3289         continue;
3290       }
3291 
3292       // N = N + Idx * ElementSize;
3293       SDValue IdxN = getValue(Idx);
3294 
3295       if (!IdxN.getValueType().isVector() && VectorWidth) {
3296         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3297         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3298       }
3299 
3300       // If the index is smaller or larger than intptr_t, truncate or extend
3301       // it.
3302       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3303 
3304       // If this is a multiply by a power of two, turn it into a shl
3305       // immediately.  This is a very common case.
3306       if (ElementSize != 1) {
3307         if (ElementSize.isPowerOf2()) {
3308           unsigned Amt = ElementSize.logBase2();
3309           IdxN = DAG.getNode(ISD::SHL, dl,
3310                              N.getValueType(), IdxN,
3311                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3312         } else {
3313           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3314           IdxN = DAG.getNode(ISD::MUL, dl,
3315                              N.getValueType(), IdxN, Scale);
3316         }
3317       }
3318 
3319       N = DAG.getNode(ISD::ADD, dl,
3320                       N.getValueType(), N, IdxN);
3321     }
3322   }
3323 
3324   setValue(&I, N);
3325 }
3326 
3327 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3328   // If this is a fixed sized alloca in the entry block of the function,
3329   // allocate it statically on the stack.
3330   if (FuncInfo.StaticAllocaMap.count(&I))
3331     return;   // getValue will auto-populate this.
3332 
3333   SDLoc dl = getCurSDLoc();
3334   Type *Ty = I.getAllocatedType();
3335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3336   auto &DL = DAG.getDataLayout();
3337   uint64_t TySize = DL.getTypeAllocSize(Ty);
3338   unsigned Align =
3339       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3340 
3341   SDValue AllocSize = getValue(I.getArraySize());
3342 
3343   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3344   if (AllocSize.getValueType() != IntPtr)
3345     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3346 
3347   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3348                           AllocSize,
3349                           DAG.getConstant(TySize, dl, IntPtr));
3350 
3351   // Handle alignment.  If the requested alignment is less than or equal to
3352   // the stack alignment, ignore it.  If the size is greater than or equal to
3353   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3354   unsigned StackAlign =
3355       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3356   if (Align <= StackAlign)
3357     Align = 0;
3358 
3359   // Round the size of the allocation up to the stack alignment size
3360   // by add SA-1 to the size. This doesn't overflow because we're computing
3361   // an address inside an alloca.
3362   SDNodeFlags Flags;
3363   Flags.setNoUnsignedWrap(true);
3364   AllocSize = DAG.getNode(ISD::ADD, dl,
3365                           AllocSize.getValueType(), AllocSize,
3366                           DAG.getIntPtrConstant(StackAlign - 1, dl), Flags);
3367 
3368   // Mask out the low bits for alignment purposes.
3369   AllocSize = DAG.getNode(ISD::AND, dl,
3370                           AllocSize.getValueType(), AllocSize,
3371                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3372                                                 dl));
3373 
3374   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3375   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3376   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3377   setValue(&I, DSA);
3378   DAG.setRoot(DSA.getValue(1));
3379 
3380   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3381 }
3382 
3383 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3384   if (I.isAtomic())
3385     return visitAtomicLoad(I);
3386 
3387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3388   const Value *SV = I.getOperand(0);
3389   if (TLI.supportSwiftError()) {
3390     // Swifterror values can come from either a function parameter with
3391     // swifterror attribute or an alloca with swifterror attribute.
3392     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3393       if (Arg->hasSwiftErrorAttr())
3394         return visitLoadFromSwiftError(I);
3395     }
3396 
3397     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3398       if (Alloca->isSwiftError())
3399         return visitLoadFromSwiftError(I);
3400     }
3401   }
3402 
3403   SDValue Ptr = getValue(SV);
3404 
3405   Type *Ty = I.getType();
3406 
3407   bool isVolatile = I.isVolatile();
3408   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3409   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3410   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3411   unsigned Alignment = I.getAlignment();
3412 
3413   AAMDNodes AAInfo;
3414   I.getAAMetadata(AAInfo);
3415   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3416 
3417   SmallVector<EVT, 4> ValueVTs;
3418   SmallVector<uint64_t, 4> Offsets;
3419   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3420   unsigned NumValues = ValueVTs.size();
3421   if (NumValues == 0)
3422     return;
3423 
3424   SDValue Root;
3425   bool ConstantMemory = false;
3426   if (isVolatile || NumValues > MaxParallelChains)
3427     // Serialize volatile loads with other side effects.
3428     Root = getRoot();
3429   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3430                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3431     // Do not serialize (non-volatile) loads of constant memory with anything.
3432     Root = DAG.getEntryNode();
3433     ConstantMemory = true;
3434   } else {
3435     // Do not serialize non-volatile loads against each other.
3436     Root = DAG.getRoot();
3437   }
3438 
3439   SDLoc dl = getCurSDLoc();
3440 
3441   if (isVolatile)
3442     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3443 
3444   // An aggregate load cannot wrap around the address space, so offsets to its
3445   // parts don't wrap either.
3446   SDNodeFlags Flags;
3447   Flags.setNoUnsignedWrap(true);
3448 
3449   SmallVector<SDValue, 4> Values(NumValues);
3450   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3451   EVT PtrVT = Ptr.getValueType();
3452   unsigned ChainI = 0;
3453   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3454     // Serializing loads here may result in excessive register pressure, and
3455     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3456     // could recover a bit by hoisting nodes upward in the chain by recognizing
3457     // they are side-effect free or do not alias. The optimizer should really
3458     // avoid this case by converting large object/array copies to llvm.memcpy
3459     // (MaxParallelChains should always remain as failsafe).
3460     if (ChainI == MaxParallelChains) {
3461       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3462       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3463                                   makeArrayRef(Chains.data(), ChainI));
3464       Root = Chain;
3465       ChainI = 0;
3466     }
3467     SDValue A = DAG.getNode(ISD::ADD, dl,
3468                             PtrVT, Ptr,
3469                             DAG.getConstant(Offsets[i], dl, PtrVT),
3470                             Flags);
3471     auto MMOFlags = MachineMemOperand::MONone;
3472     if (isVolatile)
3473       MMOFlags |= MachineMemOperand::MOVolatile;
3474     if (isNonTemporal)
3475       MMOFlags |= MachineMemOperand::MONonTemporal;
3476     if (isInvariant)
3477       MMOFlags |= MachineMemOperand::MOInvariant;
3478     if (isDereferenceable)
3479       MMOFlags |= MachineMemOperand::MODereferenceable;
3480 
3481     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3482                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3483                             MMOFlags, AAInfo, Ranges);
3484 
3485     Values[i] = L;
3486     Chains[ChainI] = L.getValue(1);
3487   }
3488 
3489   if (!ConstantMemory) {
3490     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3491                                 makeArrayRef(Chains.data(), ChainI));
3492     if (isVolatile)
3493       DAG.setRoot(Chain);
3494     else
3495       PendingLoads.push_back(Chain);
3496   }
3497 
3498   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3499                            DAG.getVTList(ValueVTs), Values));
3500 }
3501 
3502 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3503   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3504   assert(TLI.supportSwiftError() &&
3505          "call visitStoreToSwiftError when backend supports swifterror");
3506 
3507   SmallVector<EVT, 4> ValueVTs;
3508   SmallVector<uint64_t, 4> Offsets;
3509   const Value *SrcV = I.getOperand(0);
3510   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3511                   SrcV->getType(), ValueVTs, &Offsets);
3512   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3513          "expect a single EVT for swifterror");
3514 
3515   SDValue Src = getValue(SrcV);
3516   // Create a virtual register, then update the virtual register.
3517   auto &DL = DAG.getDataLayout();
3518   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3519   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3520   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3521   // Chain can be getRoot or getControlRoot.
3522   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3523                                       SDValue(Src.getNode(), Src.getResNo()));
3524   DAG.setRoot(CopyNode);
3525   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3526 }
3527 
3528 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3529   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3530          "call visitLoadFromSwiftError when backend supports swifterror");
3531 
3532   assert(!I.isVolatile() &&
3533          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3534          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3535          "Support volatile, non temporal, invariant for load_from_swift_error");
3536 
3537   const Value *SV = I.getOperand(0);
3538   Type *Ty = I.getType();
3539   AAMDNodes AAInfo;
3540   I.getAAMetadata(AAInfo);
3541   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3542              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3543          "load_from_swift_error should not be constant memory");
3544 
3545   SmallVector<EVT, 4> ValueVTs;
3546   SmallVector<uint64_t, 4> Offsets;
3547   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3548                   ValueVTs, &Offsets);
3549   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3550          "expect a single EVT for swifterror");
3551 
3552   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3553   SDValue L = DAG.getCopyFromReg(
3554       getRoot(), getCurSDLoc(),
3555       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3556 
3557   setValue(&I, L);
3558 }
3559 
3560 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3561   if (I.isAtomic())
3562     return visitAtomicStore(I);
3563 
3564   const Value *SrcV = I.getOperand(0);
3565   const Value *PtrV = I.getOperand(1);
3566 
3567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3568   if (TLI.supportSwiftError()) {
3569     // Swifterror values can come from either a function parameter with
3570     // swifterror attribute or an alloca with swifterror attribute.
3571     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3572       if (Arg->hasSwiftErrorAttr())
3573         return visitStoreToSwiftError(I);
3574     }
3575 
3576     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3577       if (Alloca->isSwiftError())
3578         return visitStoreToSwiftError(I);
3579     }
3580   }
3581 
3582   SmallVector<EVT, 4> ValueVTs;
3583   SmallVector<uint64_t, 4> Offsets;
3584   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3585                   SrcV->getType(), ValueVTs, &Offsets);
3586   unsigned NumValues = ValueVTs.size();
3587   if (NumValues == 0)
3588     return;
3589 
3590   // Get the lowered operands. Note that we do this after
3591   // checking if NumResults is zero, because with zero results
3592   // the operands won't have values in the map.
3593   SDValue Src = getValue(SrcV);
3594   SDValue Ptr = getValue(PtrV);
3595 
3596   SDValue Root = getRoot();
3597   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3598   SDLoc dl = getCurSDLoc();
3599   EVT PtrVT = Ptr.getValueType();
3600   unsigned Alignment = I.getAlignment();
3601   AAMDNodes AAInfo;
3602   I.getAAMetadata(AAInfo);
3603 
3604   auto MMOFlags = MachineMemOperand::MONone;
3605   if (I.isVolatile())
3606     MMOFlags |= MachineMemOperand::MOVolatile;
3607   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3608     MMOFlags |= MachineMemOperand::MONonTemporal;
3609 
3610   // An aggregate load cannot wrap around the address space, so offsets to its
3611   // parts don't wrap either.
3612   SDNodeFlags Flags;
3613   Flags.setNoUnsignedWrap(true);
3614 
3615   unsigned ChainI = 0;
3616   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3617     // See visitLoad comments.
3618     if (ChainI == MaxParallelChains) {
3619       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3620                                   makeArrayRef(Chains.data(), ChainI));
3621       Root = Chain;
3622       ChainI = 0;
3623     }
3624     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3625                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3626     SDValue St = DAG.getStore(
3627         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3628         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3629     Chains[ChainI] = St;
3630   }
3631 
3632   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3633                                   makeArrayRef(Chains.data(), ChainI));
3634   DAG.setRoot(StoreNode);
3635 }
3636 
3637 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3638                                            bool IsCompressing) {
3639   SDLoc sdl = getCurSDLoc();
3640 
3641   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3642                            unsigned& Alignment) {
3643     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3644     Src0 = I.getArgOperand(0);
3645     Ptr = I.getArgOperand(1);
3646     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3647     Mask = I.getArgOperand(3);
3648   };
3649   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3650                            unsigned& Alignment) {
3651     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3652     Src0 = I.getArgOperand(0);
3653     Ptr = I.getArgOperand(1);
3654     Mask = I.getArgOperand(2);
3655     Alignment = 0;
3656   };
3657 
3658   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3659   unsigned Alignment;
3660   if (IsCompressing)
3661     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3662   else
3663     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3664 
3665   SDValue Ptr = getValue(PtrOperand);
3666   SDValue Src0 = getValue(Src0Operand);
3667   SDValue Mask = getValue(MaskOperand);
3668 
3669   EVT VT = Src0.getValueType();
3670   if (!Alignment)
3671     Alignment = DAG.getEVTAlignment(VT);
3672 
3673   AAMDNodes AAInfo;
3674   I.getAAMetadata(AAInfo);
3675 
3676   MachineMemOperand *MMO =
3677     DAG.getMachineFunction().
3678     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3679                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3680                           Alignment, AAInfo);
3681   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3682                                          MMO, false /* Truncating */,
3683                                          IsCompressing);
3684   DAG.setRoot(StoreNode);
3685   setValue(&I, StoreNode);
3686 }
3687 
3688 // Get a uniform base for the Gather/Scatter intrinsic.
3689 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3690 // We try to represent it as a base pointer + vector of indices.
3691 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3692 // The first operand of the GEP may be a single pointer or a vector of pointers
3693 // Example:
3694 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3695 //  or
3696 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3697 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3698 //
3699 // When the first GEP operand is a single pointer - it is the uniform base we
3700 // are looking for. If first operand of the GEP is a splat vector - we
3701 // extract the spalt value and use it as a uniform base.
3702 // In all other cases the function returns 'false'.
3703 //
3704 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3705                            SelectionDAGBuilder* SDB) {
3706 
3707   SelectionDAG& DAG = SDB->DAG;
3708   LLVMContext &Context = *DAG.getContext();
3709 
3710   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3711   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3712   if (!GEP || GEP->getNumOperands() > 2)
3713     return false;
3714 
3715   const Value *GEPPtr = GEP->getPointerOperand();
3716   if (!GEPPtr->getType()->isVectorTy())
3717     Ptr = GEPPtr;
3718   else if (!(Ptr = getSplatValue(GEPPtr)))
3719     return false;
3720 
3721   Value *IndexVal = GEP->getOperand(1);
3722 
3723   // The operands of the GEP may be defined in another basic block.
3724   // In this case we'll not find nodes for the operands.
3725   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3726     return false;
3727 
3728   Base = SDB->getValue(Ptr);
3729   Index = SDB->getValue(IndexVal);
3730 
3731   // Suppress sign extension.
3732   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3733     if (SDB->findValue(Sext->getOperand(0))) {
3734       IndexVal = Sext->getOperand(0);
3735       Index = SDB->getValue(IndexVal);
3736     }
3737   }
3738   if (!Index.getValueType().isVector()) {
3739     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3740     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3741     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3742   }
3743   return true;
3744 }
3745 
3746 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3747   SDLoc sdl = getCurSDLoc();
3748 
3749   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3750   const Value *Ptr = I.getArgOperand(1);
3751   SDValue Src0 = getValue(I.getArgOperand(0));
3752   SDValue Mask = getValue(I.getArgOperand(3));
3753   EVT VT = Src0.getValueType();
3754   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3755   if (!Alignment)
3756     Alignment = DAG.getEVTAlignment(VT);
3757   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3758 
3759   AAMDNodes AAInfo;
3760   I.getAAMetadata(AAInfo);
3761 
3762   SDValue Base;
3763   SDValue Index;
3764   const Value *BasePtr = Ptr;
3765   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3766 
3767   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3768   MachineMemOperand *MMO = DAG.getMachineFunction().
3769     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3770                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3771                          Alignment, AAInfo);
3772   if (!UniformBase) {
3773     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3774     Index = getValue(Ptr);
3775   }
3776   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3777   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3778                                          Ops, MMO);
3779   DAG.setRoot(Scatter);
3780   setValue(&I, Scatter);
3781 }
3782 
3783 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3784   SDLoc sdl = getCurSDLoc();
3785 
3786   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3787                            unsigned& Alignment) {
3788     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3789     Ptr = I.getArgOperand(0);
3790     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3791     Mask = I.getArgOperand(2);
3792     Src0 = I.getArgOperand(3);
3793   };
3794   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3795                            unsigned& Alignment) {
3796     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3797     Ptr = I.getArgOperand(0);
3798     Alignment = 0;
3799     Mask = I.getArgOperand(1);
3800     Src0 = I.getArgOperand(2);
3801   };
3802 
3803   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3804   unsigned Alignment;
3805   if (IsExpanding)
3806     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3807   else
3808     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3809 
3810   SDValue Ptr = getValue(PtrOperand);
3811   SDValue Src0 = getValue(Src0Operand);
3812   SDValue Mask = getValue(MaskOperand);
3813 
3814   EVT VT = Src0.getValueType();
3815   if (!Alignment)
3816     Alignment = DAG.getEVTAlignment(VT);
3817 
3818   AAMDNodes AAInfo;
3819   I.getAAMetadata(AAInfo);
3820   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3821 
3822   // Do not serialize masked loads of constant memory with anything.
3823   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
3824       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3825   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3826 
3827   MachineMemOperand *MMO =
3828     DAG.getMachineFunction().
3829     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3830                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3831                           Alignment, AAInfo, Ranges);
3832 
3833   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3834                                    ISD::NON_EXTLOAD, IsExpanding);
3835   if (AddToChain) {
3836     SDValue OutChain = Load.getValue(1);
3837     DAG.setRoot(OutChain);
3838   }
3839   setValue(&I, Load);
3840 }
3841 
3842 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3843   SDLoc sdl = getCurSDLoc();
3844 
3845   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3846   const Value *Ptr = I.getArgOperand(0);
3847   SDValue Src0 = getValue(I.getArgOperand(3));
3848   SDValue Mask = getValue(I.getArgOperand(2));
3849 
3850   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3851   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3852   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3853   if (!Alignment)
3854     Alignment = DAG.getEVTAlignment(VT);
3855 
3856   AAMDNodes AAInfo;
3857   I.getAAMetadata(AAInfo);
3858   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3859 
3860   SDValue Root = DAG.getRoot();
3861   SDValue Base;
3862   SDValue Index;
3863   const Value *BasePtr = Ptr;
3864   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3865   bool ConstantMemory = false;
3866   if (UniformBase &&
3867       AA && AA->pointsToConstantMemory(MemoryLocation(
3868           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3869           AAInfo))) {
3870     // Do not serialize (non-volatile) loads of constant memory with anything.
3871     Root = DAG.getEntryNode();
3872     ConstantMemory = true;
3873   }
3874 
3875   MachineMemOperand *MMO =
3876     DAG.getMachineFunction().
3877     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3878                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3879                          Alignment, AAInfo, Ranges);
3880 
3881   if (!UniformBase) {
3882     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3883     Index = getValue(Ptr);
3884   }
3885   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3886   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3887                                        Ops, MMO);
3888 
3889   SDValue OutChain = Gather.getValue(1);
3890   if (!ConstantMemory)
3891     PendingLoads.push_back(OutChain);
3892   setValue(&I, Gather);
3893 }
3894 
3895 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3896   SDLoc dl = getCurSDLoc();
3897   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3898   AtomicOrdering FailureOrder = I.getFailureOrdering();
3899   SynchronizationScope Scope = I.getSynchScope();
3900 
3901   SDValue InChain = getRoot();
3902 
3903   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3904   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3905   SDValue L = DAG.getAtomicCmpSwap(
3906       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3907       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3908       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3909       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3910 
3911   SDValue OutChain = L.getValue(2);
3912 
3913   setValue(&I, L);
3914   DAG.setRoot(OutChain);
3915 }
3916 
3917 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3918   SDLoc dl = getCurSDLoc();
3919   ISD::NodeType NT;
3920   switch (I.getOperation()) {
3921   default: llvm_unreachable("Unknown atomicrmw operation");
3922   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3923   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3924   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3925   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3926   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3927   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3928   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3929   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3930   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3931   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3932   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3933   }
3934   AtomicOrdering Order = I.getOrdering();
3935   SynchronizationScope Scope = I.getSynchScope();
3936 
3937   SDValue InChain = getRoot();
3938 
3939   SDValue L =
3940     DAG.getAtomic(NT, dl,
3941                   getValue(I.getValOperand()).getSimpleValueType(),
3942                   InChain,
3943                   getValue(I.getPointerOperand()),
3944                   getValue(I.getValOperand()),
3945                   I.getPointerOperand(),
3946                   /* Alignment=*/ 0, Order, Scope);
3947 
3948   SDValue OutChain = L.getValue(1);
3949 
3950   setValue(&I, L);
3951   DAG.setRoot(OutChain);
3952 }
3953 
3954 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3955   SDLoc dl = getCurSDLoc();
3956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3957   SDValue Ops[3];
3958   Ops[0] = getRoot();
3959   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3960                            TLI.getFenceOperandTy(DAG.getDataLayout()));
3961   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3962                            TLI.getFenceOperandTy(DAG.getDataLayout()));
3963   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3964 }
3965 
3966 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3967   SDLoc dl = getCurSDLoc();
3968   AtomicOrdering Order = I.getOrdering();
3969   SynchronizationScope Scope = I.getSynchScope();
3970 
3971   SDValue InChain = getRoot();
3972 
3973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3974   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3975 
3976   if (I.getAlignment() < VT.getSizeInBits() / 8)
3977     report_fatal_error("Cannot generate unaligned atomic load");
3978 
3979   MachineMemOperand *MMO =
3980       DAG.getMachineFunction().
3981       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3982                            MachineMemOperand::MOVolatile |
3983                            MachineMemOperand::MOLoad,
3984                            VT.getStoreSize(),
3985                            I.getAlignment() ? I.getAlignment() :
3986                                               DAG.getEVTAlignment(VT),
3987                            AAMDNodes(), nullptr, Scope, Order);
3988 
3989   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3990   SDValue L =
3991       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3992                     getValue(I.getPointerOperand()), MMO);
3993 
3994   SDValue OutChain = L.getValue(1);
3995 
3996   setValue(&I, L);
3997   DAG.setRoot(OutChain);
3998 }
3999 
4000 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4001   SDLoc dl = getCurSDLoc();
4002 
4003   AtomicOrdering Order = I.getOrdering();
4004   SynchronizationScope Scope = I.getSynchScope();
4005 
4006   SDValue InChain = getRoot();
4007 
4008   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4009   EVT VT =
4010       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4011 
4012   if (I.getAlignment() < VT.getSizeInBits() / 8)
4013     report_fatal_error("Cannot generate unaligned atomic store");
4014 
4015   SDValue OutChain =
4016     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4017                   InChain,
4018                   getValue(I.getPointerOperand()),
4019                   getValue(I.getValueOperand()),
4020                   I.getPointerOperand(), I.getAlignment(),
4021                   Order, Scope);
4022 
4023   DAG.setRoot(OutChain);
4024 }
4025 
4026 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4027 /// node.
4028 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4029                                                unsigned Intrinsic) {
4030   // Ignore the callsite's attributes. A specific call site may be marked with
4031   // readnone, but the lowering code will expect the chain based on the
4032   // definition.
4033   const Function *F = I.getCalledFunction();
4034   bool HasChain = !F->doesNotAccessMemory();
4035   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4036 
4037   // Build the operand list.
4038   SmallVector<SDValue, 8> Ops;
4039   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4040     if (OnlyLoad) {
4041       // We don't need to serialize loads against other loads.
4042       Ops.push_back(DAG.getRoot());
4043     } else {
4044       Ops.push_back(getRoot());
4045     }
4046   }
4047 
4048   // Info is set by getTgtMemInstrinsic
4049   TargetLowering::IntrinsicInfo Info;
4050   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4051   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4052 
4053   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4054   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4055       Info.opc == ISD::INTRINSIC_W_CHAIN)
4056     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4057                                         TLI.getPointerTy(DAG.getDataLayout())));
4058 
4059   // Add all operands of the call to the operand list.
4060   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4061     SDValue Op = getValue(I.getArgOperand(i));
4062     Ops.push_back(Op);
4063   }
4064 
4065   SmallVector<EVT, 4> ValueVTs;
4066   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4067 
4068   if (HasChain)
4069     ValueVTs.push_back(MVT::Other);
4070 
4071   SDVTList VTs = DAG.getVTList(ValueVTs);
4072 
4073   // Create the node.
4074   SDValue Result;
4075   if (IsTgtIntrinsic) {
4076     // This is target intrinsic that touches memory
4077     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4078                                      VTs, Ops, Info.memVT,
4079                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4080                                      Info.align, Info.vol,
4081                                      Info.readMem, Info.writeMem, Info.size);
4082   } else if (!HasChain) {
4083     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4084   } else if (!I.getType()->isVoidTy()) {
4085     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4086   } else {
4087     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4088   }
4089 
4090   if (HasChain) {
4091     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4092     if (OnlyLoad)
4093       PendingLoads.push_back(Chain);
4094     else
4095       DAG.setRoot(Chain);
4096   }
4097 
4098   if (!I.getType()->isVoidTy()) {
4099     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4100       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4101       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4102     } else
4103       Result = lowerRangeToAssertZExt(DAG, I, Result);
4104 
4105     setValue(&I, Result);
4106   }
4107 }
4108 
4109 /// GetSignificand - Get the significand and build it into a floating-point
4110 /// number with exponent of 1:
4111 ///
4112 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4113 ///
4114 /// where Op is the hexadecimal representation of floating point value.
4115 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4116   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4117                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4118   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4119                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4120   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4121 }
4122 
4123 /// GetExponent - Get the exponent:
4124 ///
4125 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4126 ///
4127 /// where Op is the hexadecimal representation of floating point value.
4128 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4129                            const TargetLowering &TLI, const SDLoc &dl) {
4130   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4131                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4132   SDValue t1 = DAG.getNode(
4133       ISD::SRL, dl, MVT::i32, t0,
4134       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4135   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4136                            DAG.getConstant(127, dl, MVT::i32));
4137   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4138 }
4139 
4140 /// getF32Constant - Get 32-bit floating point constant.
4141 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4142                               const SDLoc &dl) {
4143   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4144                            MVT::f32);
4145 }
4146 
4147 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4148                                        SelectionDAG &DAG) {
4149   // TODO: What fast-math-flags should be set on the floating-point nodes?
4150 
4151   //   IntegerPartOfX = ((int32_t)(t0);
4152   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4153 
4154   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4155   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4156   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4157 
4158   //   IntegerPartOfX <<= 23;
4159   IntegerPartOfX = DAG.getNode(
4160       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4161       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4162                                   DAG.getDataLayout())));
4163 
4164   SDValue TwoToFractionalPartOfX;
4165   if (LimitFloatPrecision <= 6) {
4166     // For floating-point precision of 6:
4167     //
4168     //   TwoToFractionalPartOfX =
4169     //     0.997535578f +
4170     //       (0.735607626f + 0.252464424f * x) * x;
4171     //
4172     // error 0.0144103317, which is 6 bits
4173     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4174                              getF32Constant(DAG, 0x3e814304, dl));
4175     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4176                              getF32Constant(DAG, 0x3f3c50c8, dl));
4177     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4178     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4179                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4180   } else if (LimitFloatPrecision <= 12) {
4181     // For floating-point precision of 12:
4182     //
4183     //   TwoToFractionalPartOfX =
4184     //     0.999892986f +
4185     //       (0.696457318f +
4186     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4187     //
4188     // error 0.000107046256, which is 13 to 14 bits
4189     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4190                              getF32Constant(DAG, 0x3da235e3, dl));
4191     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4192                              getF32Constant(DAG, 0x3e65b8f3, dl));
4193     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4194     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4195                              getF32Constant(DAG, 0x3f324b07, dl));
4196     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4197     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4198                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4199   } else { // LimitFloatPrecision <= 18
4200     // For floating-point precision of 18:
4201     //
4202     //   TwoToFractionalPartOfX =
4203     //     0.999999982f +
4204     //       (0.693148872f +
4205     //         (0.240227044f +
4206     //           (0.554906021e-1f +
4207     //             (0.961591928e-2f +
4208     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4209     // error 2.47208000*10^(-7), which is better than 18 bits
4210     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4211                              getF32Constant(DAG, 0x3924b03e, dl));
4212     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4213                              getF32Constant(DAG, 0x3ab24b87, dl));
4214     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4215     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4216                              getF32Constant(DAG, 0x3c1d8c17, dl));
4217     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4218     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4219                              getF32Constant(DAG, 0x3d634a1d, dl));
4220     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4221     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4222                              getF32Constant(DAG, 0x3e75fe14, dl));
4223     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4224     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4225                               getF32Constant(DAG, 0x3f317234, dl));
4226     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4227     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4228                                          getF32Constant(DAG, 0x3f800000, dl));
4229   }
4230 
4231   // Add the exponent into the result in integer domain.
4232   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4233   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4234                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4235 }
4236 
4237 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4238 /// limited-precision mode.
4239 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4240                          const TargetLowering &TLI) {
4241   if (Op.getValueType() == MVT::f32 &&
4242       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4243 
4244     // Put the exponent in the right bit position for later addition to the
4245     // final result:
4246     //
4247     //   #define LOG2OFe 1.4426950f
4248     //   t0 = Op * LOG2OFe
4249 
4250     // TODO: What fast-math-flags should be set here?
4251     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4252                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4253     return getLimitedPrecisionExp2(t0, dl, DAG);
4254   }
4255 
4256   // No special expansion.
4257   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4258 }
4259 
4260 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4261 /// limited-precision mode.
4262 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4263                          const TargetLowering &TLI) {
4264 
4265   // TODO: What fast-math-flags should be set on the floating-point nodes?
4266 
4267   if (Op.getValueType() == MVT::f32 &&
4268       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4269     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4270 
4271     // Scale the exponent by log(2) [0.69314718f].
4272     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4273     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4274                                         getF32Constant(DAG, 0x3f317218, dl));
4275 
4276     // Get the significand and build it into a floating-point number with
4277     // exponent of 1.
4278     SDValue X = GetSignificand(DAG, Op1, dl);
4279 
4280     SDValue LogOfMantissa;
4281     if (LimitFloatPrecision <= 6) {
4282       // For floating-point precision of 6:
4283       //
4284       //   LogofMantissa =
4285       //     -1.1609546f +
4286       //       (1.4034025f - 0.23903021f * x) * x;
4287       //
4288       // error 0.0034276066, which is better than 8 bits
4289       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4290                                getF32Constant(DAG, 0xbe74c456, dl));
4291       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4292                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4293       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4294       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4295                                   getF32Constant(DAG, 0x3f949a29, dl));
4296     } else if (LimitFloatPrecision <= 12) {
4297       // For floating-point precision of 12:
4298       //
4299       //   LogOfMantissa =
4300       //     -1.7417939f +
4301       //       (2.8212026f +
4302       //         (-1.4699568f +
4303       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4304       //
4305       // error 0.000061011436, which is 14 bits
4306       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4307                                getF32Constant(DAG, 0xbd67b6d6, dl));
4308       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4309                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4310       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4311       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4312                                getF32Constant(DAG, 0x3fbc278b, dl));
4313       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4314       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4315                                getF32Constant(DAG, 0x40348e95, dl));
4316       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4317       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4318                                   getF32Constant(DAG, 0x3fdef31a, dl));
4319     } else { // LimitFloatPrecision <= 18
4320       // For floating-point precision of 18:
4321       //
4322       //   LogOfMantissa =
4323       //     -2.1072184f +
4324       //       (4.2372794f +
4325       //         (-3.7029485f +
4326       //           (2.2781945f +
4327       //             (-0.87823314f +
4328       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4329       //
4330       // error 0.0000023660568, which is better than 18 bits
4331       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4332                                getF32Constant(DAG, 0xbc91e5ac, dl));
4333       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4334                                getF32Constant(DAG, 0x3e4350aa, dl));
4335       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4336       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4337                                getF32Constant(DAG, 0x3f60d3e3, dl));
4338       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4339       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4340                                getF32Constant(DAG, 0x4011cdf0, dl));
4341       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4342       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4343                                getF32Constant(DAG, 0x406cfd1c, dl));
4344       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4345       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4346                                getF32Constant(DAG, 0x408797cb, dl));
4347       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4348       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4349                                   getF32Constant(DAG, 0x4006dcab, dl));
4350     }
4351 
4352     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4353   }
4354 
4355   // No special expansion.
4356   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4357 }
4358 
4359 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4360 /// limited-precision mode.
4361 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4362                           const TargetLowering &TLI) {
4363 
4364   // TODO: What fast-math-flags should be set on the floating-point nodes?
4365 
4366   if (Op.getValueType() == MVT::f32 &&
4367       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4368     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4369 
4370     // Get the exponent.
4371     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4372 
4373     // Get the significand and build it into a floating-point number with
4374     // exponent of 1.
4375     SDValue X = GetSignificand(DAG, Op1, dl);
4376 
4377     // Different possible minimax approximations of significand in
4378     // floating-point for various degrees of accuracy over [1,2].
4379     SDValue Log2ofMantissa;
4380     if (LimitFloatPrecision <= 6) {
4381       // For floating-point precision of 6:
4382       //
4383       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4384       //
4385       // error 0.0049451742, which is more than 7 bits
4386       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4387                                getF32Constant(DAG, 0xbeb08fe0, dl));
4388       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4389                                getF32Constant(DAG, 0x40019463, dl));
4390       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4391       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4392                                    getF32Constant(DAG, 0x3fd6633d, dl));
4393     } else if (LimitFloatPrecision <= 12) {
4394       // For floating-point precision of 12:
4395       //
4396       //   Log2ofMantissa =
4397       //     -2.51285454f +
4398       //       (4.07009056f +
4399       //         (-2.12067489f +
4400       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4401       //
4402       // error 0.0000876136000, which is better than 13 bits
4403       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4404                                getF32Constant(DAG, 0xbda7262e, dl));
4405       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4406                                getF32Constant(DAG, 0x3f25280b, dl));
4407       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4408       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4409                                getF32Constant(DAG, 0x4007b923, dl));
4410       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4411       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4412                                getF32Constant(DAG, 0x40823e2f, dl));
4413       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4414       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4415                                    getF32Constant(DAG, 0x4020d29c, dl));
4416     } else { // LimitFloatPrecision <= 18
4417       // For floating-point precision of 18:
4418       //
4419       //   Log2ofMantissa =
4420       //     -3.0400495f +
4421       //       (6.1129976f +
4422       //         (-5.3420409f +
4423       //           (3.2865683f +
4424       //             (-1.2669343f +
4425       //               (0.27515199f -
4426       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4427       //
4428       // error 0.0000018516, which is better than 18 bits
4429       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4430                                getF32Constant(DAG, 0xbcd2769e, dl));
4431       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4432                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4433       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4434       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4435                                getF32Constant(DAG, 0x3fa22ae7, dl));
4436       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4437       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4438                                getF32Constant(DAG, 0x40525723, dl));
4439       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4440       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4441                                getF32Constant(DAG, 0x40aaf200, dl));
4442       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4443       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4444                                getF32Constant(DAG, 0x40c39dad, dl));
4445       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4446       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4447                                    getF32Constant(DAG, 0x4042902c, dl));
4448     }
4449 
4450     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4451   }
4452 
4453   // No special expansion.
4454   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4455 }
4456 
4457 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4458 /// limited-precision mode.
4459 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4460                            const TargetLowering &TLI) {
4461 
4462   // TODO: What fast-math-flags should be set on the floating-point nodes?
4463 
4464   if (Op.getValueType() == MVT::f32 &&
4465       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4466     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4467 
4468     // Scale the exponent by log10(2) [0.30102999f].
4469     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4470     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4471                                         getF32Constant(DAG, 0x3e9a209a, dl));
4472 
4473     // Get the significand and build it into a floating-point number with
4474     // exponent of 1.
4475     SDValue X = GetSignificand(DAG, Op1, dl);
4476 
4477     SDValue Log10ofMantissa;
4478     if (LimitFloatPrecision <= 6) {
4479       // For floating-point precision of 6:
4480       //
4481       //   Log10ofMantissa =
4482       //     -0.50419619f +
4483       //       (0.60948995f - 0.10380950f * x) * x;
4484       //
4485       // error 0.0014886165, which is 6 bits
4486       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4487                                getF32Constant(DAG, 0xbdd49a13, dl));
4488       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4489                                getF32Constant(DAG, 0x3f1c0789, dl));
4490       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4491       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4492                                     getF32Constant(DAG, 0x3f011300, dl));
4493     } else if (LimitFloatPrecision <= 12) {
4494       // For floating-point precision of 12:
4495       //
4496       //   Log10ofMantissa =
4497       //     -0.64831180f +
4498       //       (0.91751397f +
4499       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4500       //
4501       // error 0.00019228036, which is better than 12 bits
4502       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4503                                getF32Constant(DAG, 0x3d431f31, dl));
4504       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4505                                getF32Constant(DAG, 0x3ea21fb2, dl));
4506       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4507       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4508                                getF32Constant(DAG, 0x3f6ae232, dl));
4509       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4510       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4511                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4512     } else { // LimitFloatPrecision <= 18
4513       // For floating-point precision of 18:
4514       //
4515       //   Log10ofMantissa =
4516       //     -0.84299375f +
4517       //       (1.5327582f +
4518       //         (-1.0688956f +
4519       //           (0.49102474f +
4520       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4521       //
4522       // error 0.0000037995730, which is better than 18 bits
4523       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4524                                getF32Constant(DAG, 0x3c5d51ce, dl));
4525       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4526                                getF32Constant(DAG, 0x3e00685a, dl));
4527       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4528       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4529                                getF32Constant(DAG, 0x3efb6798, dl));
4530       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4531       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4532                                getF32Constant(DAG, 0x3f88d192, dl));
4533       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4534       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4535                                getF32Constant(DAG, 0x3fc4316c, dl));
4536       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4537       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4538                                     getF32Constant(DAG, 0x3f57ce70, dl));
4539     }
4540 
4541     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4542   }
4543 
4544   // No special expansion.
4545   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4546 }
4547 
4548 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4549 /// limited-precision mode.
4550 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4551                           const TargetLowering &TLI) {
4552   if (Op.getValueType() == MVT::f32 &&
4553       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4554     return getLimitedPrecisionExp2(Op, dl, DAG);
4555 
4556   // No special expansion.
4557   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4558 }
4559 
4560 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4561 /// limited-precision mode with x == 10.0f.
4562 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4563                          SelectionDAG &DAG, const TargetLowering &TLI) {
4564   bool IsExp10 = false;
4565   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4566       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4567     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4568       APFloat Ten(10.0f);
4569       IsExp10 = LHSC->isExactlyValue(Ten);
4570     }
4571   }
4572 
4573   // TODO: What fast-math-flags should be set on the FMUL node?
4574   if (IsExp10) {
4575     // Put the exponent in the right bit position for later addition to the
4576     // final result:
4577     //
4578     //   #define LOG2OF10 3.3219281f
4579     //   t0 = Op * LOG2OF10;
4580     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4581                              getF32Constant(DAG, 0x40549a78, dl));
4582     return getLimitedPrecisionExp2(t0, dl, DAG);
4583   }
4584 
4585   // No special expansion.
4586   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4587 }
4588 
4589 
4590 /// ExpandPowI - Expand a llvm.powi intrinsic.
4591 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4592                           SelectionDAG &DAG) {
4593   // If RHS is a constant, we can expand this out to a multiplication tree,
4594   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4595   // optimizing for size, we only want to do this if the expansion would produce
4596   // a small number of multiplies, otherwise we do the full expansion.
4597   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4598     // Get the exponent as a positive value.
4599     unsigned Val = RHSC->getSExtValue();
4600     if ((int)Val < 0) Val = -Val;
4601 
4602     // powi(x, 0) -> 1.0
4603     if (Val == 0)
4604       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4605 
4606     const Function *F = DAG.getMachineFunction().getFunction();
4607     if (!F->optForSize() ||
4608         // If optimizing for size, don't insert too many multiplies.
4609         // This inserts up to 5 multiplies.
4610         countPopulation(Val) + Log2_32(Val) < 7) {
4611       // We use the simple binary decomposition method to generate the multiply
4612       // sequence.  There are more optimal ways to do this (for example,
4613       // powi(x,15) generates one more multiply than it should), but this has
4614       // the benefit of being both really simple and much better than a libcall.
4615       SDValue Res;  // Logically starts equal to 1.0
4616       SDValue CurSquare = LHS;
4617       // TODO: Intrinsics should have fast-math-flags that propagate to these
4618       // nodes.
4619       while (Val) {
4620         if (Val & 1) {
4621           if (Res.getNode())
4622             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4623           else
4624             Res = CurSquare;  // 1.0*CurSquare.
4625         }
4626 
4627         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4628                                 CurSquare, CurSquare);
4629         Val >>= 1;
4630       }
4631 
4632       // If the original was negative, invert the result, producing 1/(x*x*x).
4633       if (RHSC->getSExtValue() < 0)
4634         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4635                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4636       return Res;
4637     }
4638   }
4639 
4640   // Otherwise, expand to a libcall.
4641   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4642 }
4643 
4644 // getUnderlyingArgReg - Find underlying register used for a truncated or
4645 // bitcasted argument.
4646 static unsigned getUnderlyingArgReg(const SDValue &N) {
4647   switch (N.getOpcode()) {
4648   case ISD::CopyFromReg:
4649     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4650   case ISD::BITCAST:
4651   case ISD::AssertZext:
4652   case ISD::AssertSext:
4653   case ISD::TRUNCATE:
4654     return getUnderlyingArgReg(N.getOperand(0));
4655   default:
4656     return 0;
4657   }
4658 }
4659 
4660 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4661 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4662 /// At the end of instruction selection, they will be inserted to the entry BB.
4663 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4664     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4665     DILocation *DL, int64_t Offset, bool IsDbgDeclare, const SDValue &N) {
4666   const Argument *Arg = dyn_cast<Argument>(V);
4667   if (!Arg)
4668     return false;
4669 
4670   MachineFunction &MF = DAG.getMachineFunction();
4671   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4672 
4673   // Ignore inlined function arguments here.
4674   //
4675   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4676   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4677     return false;
4678 
4679   bool IsIndirect = false;
4680   Optional<MachineOperand> Op;
4681   // Some arguments' frame index is recorded during argument lowering.
4682   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4683   if (FI != INT_MAX)
4684     Op = MachineOperand::CreateFI(FI);
4685 
4686   if (!Op && N.getNode()) {
4687     unsigned Reg = getUnderlyingArgReg(N);
4688     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4689       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4690       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4691       if (PR)
4692         Reg = PR;
4693     }
4694     if (Reg) {
4695       Op = MachineOperand::CreateReg(Reg, false);
4696       IsIndirect = IsDbgDeclare;
4697     }
4698   }
4699 
4700   if (!Op) {
4701     // Check if ValueMap has reg number.
4702     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4703     if (VMI != FuncInfo.ValueMap.end()) {
4704       Op = MachineOperand::CreateReg(VMI->second, false);
4705       IsIndirect = IsDbgDeclare;
4706     }
4707   }
4708 
4709   if (!Op && N.getNode())
4710     // Check if frame index is available.
4711     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4712       if (FrameIndexSDNode *FINode =
4713           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4714         Op = MachineOperand::CreateFI(FINode->getIndex());
4715 
4716   if (!Op)
4717     return false;
4718 
4719   assert(Variable->isValidLocationForIntrinsic(DL) &&
4720          "Expected inlined-at fields to agree");
4721   if (Op->isReg())
4722     FuncInfo.ArgDbgValues.push_back(
4723         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4724                 Op->getReg(), Offset, Variable, Expr));
4725   else
4726     FuncInfo.ArgDbgValues.push_back(
4727         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4728             .add(*Op)
4729             .addImm(Offset)
4730             .addMetadata(Variable)
4731             .addMetadata(Expr));
4732 
4733   return true;
4734 }
4735 
4736 /// Return the appropriate SDDbgValue based on N.
4737 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4738                                              DILocalVariable *Variable,
4739                                              DIExpression *Expr, int64_t Offset,
4740                                              const DebugLoc &dl,
4741                                              unsigned DbgSDNodeOrder) {
4742   SDDbgValue *SDV;
4743   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4744   if (FISDN && Expr->startsWithDeref()) {
4745     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4746     // stack slot locations as such instead of as indirectly addressed
4747     // locations.
4748     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4749                                         Expr->elements_end());
4750     DIExpression *DerefedDIExpr =
4751         DIExpression::get(*DAG.getContext(), TrailingElements);
4752     int FI = FISDN->getIndex();
4753     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4754                                     DbgSDNodeOrder);
4755   } else {
4756     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4757                           Offset, dl, DbgSDNodeOrder);
4758   }
4759   return SDV;
4760 }
4761 
4762 // VisualStudio defines setjmp as _setjmp
4763 #if defined(_MSC_VER) && defined(setjmp) && \
4764                          !defined(setjmp_undefined_for_msvc)
4765 #  pragma push_macro("setjmp")
4766 #  undef setjmp
4767 #  define setjmp_undefined_for_msvc
4768 #endif
4769 
4770 /// Lower the call to the specified intrinsic function. If we want to emit this
4771 /// as a call to a named external function, return the name. Otherwise, lower it
4772 /// and return null.
4773 const char *
4774 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4776   SDLoc sdl = getCurSDLoc();
4777   DebugLoc dl = getCurDebugLoc();
4778   SDValue Res;
4779 
4780   switch (Intrinsic) {
4781   default:
4782     // By default, turn this into a target intrinsic node.
4783     visitTargetIntrinsic(I, Intrinsic);
4784     return nullptr;
4785   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4786   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4787   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4788   case Intrinsic::returnaddress:
4789     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4790                              TLI.getPointerTy(DAG.getDataLayout()),
4791                              getValue(I.getArgOperand(0))));
4792     return nullptr;
4793   case Intrinsic::addressofreturnaddress:
4794     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4795                              TLI.getPointerTy(DAG.getDataLayout())));
4796     return nullptr;
4797   case Intrinsic::frameaddress:
4798     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4799                              TLI.getPointerTy(DAG.getDataLayout()),
4800                              getValue(I.getArgOperand(0))));
4801     return nullptr;
4802   case Intrinsic::read_register: {
4803     Value *Reg = I.getArgOperand(0);
4804     SDValue Chain = getRoot();
4805     SDValue RegName =
4806         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4807     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4808     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4809       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4810     setValue(&I, Res);
4811     DAG.setRoot(Res.getValue(1));
4812     return nullptr;
4813   }
4814   case Intrinsic::write_register: {
4815     Value *Reg = I.getArgOperand(0);
4816     Value *RegValue = I.getArgOperand(1);
4817     SDValue Chain = getRoot();
4818     SDValue RegName =
4819         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4820     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4821                             RegName, getValue(RegValue)));
4822     return nullptr;
4823   }
4824   case Intrinsic::setjmp:
4825     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4826   case Intrinsic::longjmp:
4827     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4828   case Intrinsic::memcpy: {
4829     SDValue Op1 = getValue(I.getArgOperand(0));
4830     SDValue Op2 = getValue(I.getArgOperand(1));
4831     SDValue Op3 = getValue(I.getArgOperand(2));
4832     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4833     if (!Align)
4834       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4835     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4836     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4837     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4838                                false, isTC,
4839                                MachinePointerInfo(I.getArgOperand(0)),
4840                                MachinePointerInfo(I.getArgOperand(1)));
4841     updateDAGForMaybeTailCall(MC);
4842     return nullptr;
4843   }
4844   case Intrinsic::memset: {
4845     SDValue Op1 = getValue(I.getArgOperand(0));
4846     SDValue Op2 = getValue(I.getArgOperand(1));
4847     SDValue Op3 = getValue(I.getArgOperand(2));
4848     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4849     if (!Align)
4850       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4851     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4852     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4853     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4854                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4855     updateDAGForMaybeTailCall(MS);
4856     return nullptr;
4857   }
4858   case Intrinsic::memmove: {
4859     SDValue Op1 = getValue(I.getArgOperand(0));
4860     SDValue Op2 = getValue(I.getArgOperand(1));
4861     SDValue Op3 = getValue(I.getArgOperand(2));
4862     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4863     if (!Align)
4864       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4865     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4866     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4867     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4868                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4869                                 MachinePointerInfo(I.getArgOperand(1)));
4870     updateDAGForMaybeTailCall(MM);
4871     return nullptr;
4872   }
4873   case Intrinsic::memcpy_element_atomic: {
4874     SDValue Dst = getValue(I.getArgOperand(0));
4875     SDValue Src = getValue(I.getArgOperand(1));
4876     SDValue NumElements = getValue(I.getArgOperand(2));
4877     SDValue ElementSize = getValue(I.getArgOperand(3));
4878 
4879     // Emit a library call.
4880     TargetLowering::ArgListTy Args;
4881     TargetLowering::ArgListEntry Entry;
4882     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
4883     Entry.Node = Dst;
4884     Args.push_back(Entry);
4885 
4886     Entry.Node = Src;
4887     Args.push_back(Entry);
4888 
4889     Entry.Ty = I.getArgOperand(2)->getType();
4890     Entry.Node = NumElements;
4891     Args.push_back(Entry);
4892 
4893     Entry.Ty = Type::getInt32Ty(*DAG.getContext());
4894     Entry.Node = ElementSize;
4895     Args.push_back(Entry);
4896 
4897     uint64_t ElementSizeConstant =
4898         cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4899     RTLIB::Libcall LibraryCall =
4900         RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant);
4901     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
4902       report_fatal_error("Unsupported element size");
4903 
4904     TargetLowering::CallLoweringInfo CLI(DAG);
4905     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
4906         TLI.getLibcallCallingConv(LibraryCall),
4907         Type::getVoidTy(*DAG.getContext()),
4908         DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall),
4909                               TLI.getPointerTy(DAG.getDataLayout())),
4910         std::move(Args));
4911 
4912     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4913     DAG.setRoot(CallResult.second);
4914     return nullptr;
4915   }
4916   case Intrinsic::dbg_declare: {
4917     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4918     DILocalVariable *Variable = DI.getVariable();
4919     DIExpression *Expression = DI.getExpression();
4920     const Value *Address = DI.getAddress();
4921     assert(Variable && "Missing variable");
4922     if (!Address) {
4923       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4924       return nullptr;
4925     }
4926 
4927     // Check if address has undef value.
4928     if (isa<UndefValue>(Address) ||
4929         (Address->use_empty() && !isa<Argument>(Address))) {
4930       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4931       return nullptr;
4932     }
4933 
4934     // Byval arguments with frame indices were already handled after argument
4935     // lowering and before isel.
4936     const auto *Arg =
4937         dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
4938     if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
4939       return nullptr;
4940 
4941     SDValue &N = NodeMap[Address];
4942     if (!N.getNode() && isa<Argument>(Address))
4943       // Check unused arguments map.
4944       N = UnusedArgNodeMap[Address];
4945     SDDbgValue *SDV;
4946     if (N.getNode()) {
4947       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4948         Address = BCI->getOperand(0);
4949       // Parameters are handled specially.
4950       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4951       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4952       if (isParameter && FINode) {
4953         // Byval parameter. We have a frame index at this point.
4954         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4955                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4956       } else if (isa<Argument>(Address)) {
4957         // Address is an argument, so try to emit its dbg value using
4958         // virtual register info from the FuncInfo.ValueMap.
4959         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true, N);
4960         return nullptr;
4961       } else {
4962         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4963                               true, 0, dl, SDNodeOrder);
4964       }
4965       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4966     } else {
4967       // If Address is an argument then try to emit its dbg value using
4968       // virtual register info from the FuncInfo.ValueMap.
4969       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, true,
4970                                     N)) {
4971         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4972       }
4973     }
4974     return nullptr;
4975   }
4976   case Intrinsic::dbg_value: {
4977     const DbgValueInst &DI = cast<DbgValueInst>(I);
4978     assert(DI.getVariable() && "Missing variable");
4979 
4980     DILocalVariable *Variable = DI.getVariable();
4981     DIExpression *Expression = DI.getExpression();
4982     uint64_t Offset = DI.getOffset();
4983     const Value *V = DI.getValue();
4984     if (!V)
4985       return nullptr;
4986 
4987     SDDbgValue *SDV;
4988     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4989       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4990                                     SDNodeOrder);
4991       DAG.AddDbgValue(SDV, nullptr, false);
4992       return nullptr;
4993     }
4994 
4995     // Do not use getValue() in here; we don't want to generate code at
4996     // this point if it hasn't been done yet.
4997     SDValue N = NodeMap[V];
4998     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
4999       N = UnusedArgNodeMap[V];
5000     if (N.getNode()) {
5001       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, false,
5002                                    N))
5003         return nullptr;
5004       SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
5005       DAG.AddDbgValue(SDV, N.getNode(), false);
5006       return nullptr;
5007     }
5008 
5009     if (!V->use_empty() ) {
5010       // Do not call getValue(V) yet, as we don't want to generate code.
5011       // Remember it for later.
5012       DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5013       DanglingDebugInfoMap[V] = DDI;
5014       return nullptr;
5015     }
5016 
5017     DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5018     DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5019     return nullptr;
5020   }
5021 
5022   case Intrinsic::eh_typeid_for: {
5023     // Find the type id for the given typeinfo.
5024     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5025     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5026     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5027     setValue(&I, Res);
5028     return nullptr;
5029   }
5030 
5031   case Intrinsic::eh_return_i32:
5032   case Intrinsic::eh_return_i64:
5033     DAG.getMachineFunction().setCallsEHReturn(true);
5034     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5035                             MVT::Other,
5036                             getControlRoot(),
5037                             getValue(I.getArgOperand(0)),
5038                             getValue(I.getArgOperand(1))));
5039     return nullptr;
5040   case Intrinsic::eh_unwind_init:
5041     DAG.getMachineFunction().setCallsUnwindInit(true);
5042     return nullptr;
5043   case Intrinsic::eh_dwarf_cfa: {
5044     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5045                              TLI.getPointerTy(DAG.getDataLayout()),
5046                              getValue(I.getArgOperand(0))));
5047     return nullptr;
5048   }
5049   case Intrinsic::eh_sjlj_callsite: {
5050     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5051     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5052     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5053     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5054 
5055     MMI.setCurrentCallSite(CI->getZExtValue());
5056     return nullptr;
5057   }
5058   case Intrinsic::eh_sjlj_functioncontext: {
5059     // Get and store the index of the function context.
5060     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5061     AllocaInst *FnCtx =
5062       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5063     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5064     MFI.setFunctionContextIndex(FI);
5065     return nullptr;
5066   }
5067   case Intrinsic::eh_sjlj_setjmp: {
5068     SDValue Ops[2];
5069     Ops[0] = getRoot();
5070     Ops[1] = getValue(I.getArgOperand(0));
5071     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5072                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5073     setValue(&I, Op.getValue(0));
5074     DAG.setRoot(Op.getValue(1));
5075     return nullptr;
5076   }
5077   case Intrinsic::eh_sjlj_longjmp: {
5078     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5079                             getRoot(), getValue(I.getArgOperand(0))));
5080     return nullptr;
5081   }
5082   case Intrinsic::eh_sjlj_setup_dispatch: {
5083     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5084                             getRoot()));
5085     return nullptr;
5086   }
5087 
5088   case Intrinsic::masked_gather:
5089     visitMaskedGather(I);
5090     return nullptr;
5091   case Intrinsic::masked_load:
5092     visitMaskedLoad(I);
5093     return nullptr;
5094   case Intrinsic::masked_scatter:
5095     visitMaskedScatter(I);
5096     return nullptr;
5097   case Intrinsic::masked_store:
5098     visitMaskedStore(I);
5099     return nullptr;
5100   case Intrinsic::masked_expandload:
5101     visitMaskedLoad(I, true /* IsExpanding */);
5102     return nullptr;
5103   case Intrinsic::masked_compressstore:
5104     visitMaskedStore(I, true /* IsCompressing */);
5105     return nullptr;
5106   case Intrinsic::x86_mmx_pslli_w:
5107   case Intrinsic::x86_mmx_pslli_d:
5108   case Intrinsic::x86_mmx_pslli_q:
5109   case Intrinsic::x86_mmx_psrli_w:
5110   case Intrinsic::x86_mmx_psrli_d:
5111   case Intrinsic::x86_mmx_psrli_q:
5112   case Intrinsic::x86_mmx_psrai_w:
5113   case Intrinsic::x86_mmx_psrai_d: {
5114     SDValue ShAmt = getValue(I.getArgOperand(1));
5115     if (isa<ConstantSDNode>(ShAmt)) {
5116       visitTargetIntrinsic(I, Intrinsic);
5117       return nullptr;
5118     }
5119     unsigned NewIntrinsic = 0;
5120     EVT ShAmtVT = MVT::v2i32;
5121     switch (Intrinsic) {
5122     case Intrinsic::x86_mmx_pslli_w:
5123       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5124       break;
5125     case Intrinsic::x86_mmx_pslli_d:
5126       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5127       break;
5128     case Intrinsic::x86_mmx_pslli_q:
5129       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5130       break;
5131     case Intrinsic::x86_mmx_psrli_w:
5132       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5133       break;
5134     case Intrinsic::x86_mmx_psrli_d:
5135       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5136       break;
5137     case Intrinsic::x86_mmx_psrli_q:
5138       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5139       break;
5140     case Intrinsic::x86_mmx_psrai_w:
5141       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5142       break;
5143     case Intrinsic::x86_mmx_psrai_d:
5144       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5145       break;
5146     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5147     }
5148 
5149     // The vector shift intrinsics with scalars uses 32b shift amounts but
5150     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5151     // to be zero.
5152     // We must do this early because v2i32 is not a legal type.
5153     SDValue ShOps[2];
5154     ShOps[0] = ShAmt;
5155     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5156     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5157     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5158     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5159     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5160                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5161                        getValue(I.getArgOperand(0)), ShAmt);
5162     setValue(&I, Res);
5163     return nullptr;
5164   }
5165   case Intrinsic::powi:
5166     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5167                             getValue(I.getArgOperand(1)), DAG));
5168     return nullptr;
5169   case Intrinsic::log:
5170     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5171     return nullptr;
5172   case Intrinsic::log2:
5173     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5174     return nullptr;
5175   case Intrinsic::log10:
5176     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5177     return nullptr;
5178   case Intrinsic::exp:
5179     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5180     return nullptr;
5181   case Intrinsic::exp2:
5182     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5183     return nullptr;
5184   case Intrinsic::pow:
5185     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5186                            getValue(I.getArgOperand(1)), DAG, TLI));
5187     return nullptr;
5188   case Intrinsic::sqrt:
5189   case Intrinsic::fabs:
5190   case Intrinsic::sin:
5191   case Intrinsic::cos:
5192   case Intrinsic::floor:
5193   case Intrinsic::ceil:
5194   case Intrinsic::trunc:
5195   case Intrinsic::rint:
5196   case Intrinsic::nearbyint:
5197   case Intrinsic::round:
5198   case Intrinsic::canonicalize: {
5199     unsigned Opcode;
5200     switch (Intrinsic) {
5201     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5202     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5203     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5204     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5205     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5206     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5207     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5208     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5209     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5210     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5211     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5212     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5213     }
5214 
5215     setValue(&I, DAG.getNode(Opcode, sdl,
5216                              getValue(I.getArgOperand(0)).getValueType(),
5217                              getValue(I.getArgOperand(0))));
5218     return nullptr;
5219   }
5220   case Intrinsic::minnum: {
5221     auto VT = getValue(I.getArgOperand(0)).getValueType();
5222     unsigned Opc =
5223         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5224             ? ISD::FMINNAN
5225             : ISD::FMINNUM;
5226     setValue(&I, DAG.getNode(Opc, sdl, VT,
5227                              getValue(I.getArgOperand(0)),
5228                              getValue(I.getArgOperand(1))));
5229     return nullptr;
5230   }
5231   case Intrinsic::maxnum: {
5232     auto VT = getValue(I.getArgOperand(0)).getValueType();
5233     unsigned Opc =
5234         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5235             ? ISD::FMAXNAN
5236             : ISD::FMAXNUM;
5237     setValue(&I, DAG.getNode(Opc, sdl, VT,
5238                              getValue(I.getArgOperand(0)),
5239                              getValue(I.getArgOperand(1))));
5240     return nullptr;
5241   }
5242   case Intrinsic::copysign:
5243     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5244                              getValue(I.getArgOperand(0)).getValueType(),
5245                              getValue(I.getArgOperand(0)),
5246                              getValue(I.getArgOperand(1))));
5247     return nullptr;
5248   case Intrinsic::fma:
5249     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5250                              getValue(I.getArgOperand(0)).getValueType(),
5251                              getValue(I.getArgOperand(0)),
5252                              getValue(I.getArgOperand(1)),
5253                              getValue(I.getArgOperand(2))));
5254     return nullptr;
5255   case Intrinsic::experimental_constrained_fadd:
5256   case Intrinsic::experimental_constrained_fsub:
5257   case Intrinsic::experimental_constrained_fmul:
5258   case Intrinsic::experimental_constrained_fdiv:
5259   case Intrinsic::experimental_constrained_frem:
5260     visitConstrainedFPIntrinsic(I, Intrinsic);
5261     return nullptr;
5262   case Intrinsic::fmuladd: {
5263     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5264     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5265         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5266       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5267                                getValue(I.getArgOperand(0)).getValueType(),
5268                                getValue(I.getArgOperand(0)),
5269                                getValue(I.getArgOperand(1)),
5270                                getValue(I.getArgOperand(2))));
5271     } else {
5272       // TODO: Intrinsic calls should have fast-math-flags.
5273       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5274                                 getValue(I.getArgOperand(0)).getValueType(),
5275                                 getValue(I.getArgOperand(0)),
5276                                 getValue(I.getArgOperand(1)));
5277       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5278                                 getValue(I.getArgOperand(0)).getValueType(),
5279                                 Mul,
5280                                 getValue(I.getArgOperand(2)));
5281       setValue(&I, Add);
5282     }
5283     return nullptr;
5284   }
5285   case Intrinsic::convert_to_fp16:
5286     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5287                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5288                                          getValue(I.getArgOperand(0)),
5289                                          DAG.getTargetConstant(0, sdl,
5290                                                                MVT::i32))));
5291     return nullptr;
5292   case Intrinsic::convert_from_fp16:
5293     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5294                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5295                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5296                                          getValue(I.getArgOperand(0)))));
5297     return nullptr;
5298   case Intrinsic::pcmarker: {
5299     SDValue Tmp = getValue(I.getArgOperand(0));
5300     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5301     return nullptr;
5302   }
5303   case Intrinsic::readcyclecounter: {
5304     SDValue Op = getRoot();
5305     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5306                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5307     setValue(&I, Res);
5308     DAG.setRoot(Res.getValue(1));
5309     return nullptr;
5310   }
5311   case Intrinsic::bitreverse:
5312     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5313                              getValue(I.getArgOperand(0)).getValueType(),
5314                              getValue(I.getArgOperand(0))));
5315     return nullptr;
5316   case Intrinsic::bswap:
5317     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5318                              getValue(I.getArgOperand(0)).getValueType(),
5319                              getValue(I.getArgOperand(0))));
5320     return nullptr;
5321   case Intrinsic::cttz: {
5322     SDValue Arg = getValue(I.getArgOperand(0));
5323     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5324     EVT Ty = Arg.getValueType();
5325     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5326                              sdl, Ty, Arg));
5327     return nullptr;
5328   }
5329   case Intrinsic::ctlz: {
5330     SDValue Arg = getValue(I.getArgOperand(0));
5331     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5332     EVT Ty = Arg.getValueType();
5333     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5334                              sdl, Ty, Arg));
5335     return nullptr;
5336   }
5337   case Intrinsic::ctpop: {
5338     SDValue Arg = getValue(I.getArgOperand(0));
5339     EVT Ty = Arg.getValueType();
5340     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5341     return nullptr;
5342   }
5343   case Intrinsic::stacksave: {
5344     SDValue Op = getRoot();
5345     Res = DAG.getNode(
5346         ISD::STACKSAVE, sdl,
5347         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5348     setValue(&I, Res);
5349     DAG.setRoot(Res.getValue(1));
5350     return nullptr;
5351   }
5352   case Intrinsic::stackrestore: {
5353     Res = getValue(I.getArgOperand(0));
5354     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5355     return nullptr;
5356   }
5357   case Intrinsic::get_dynamic_area_offset: {
5358     SDValue Op = getRoot();
5359     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5360     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5361     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5362     // target.
5363     if (PtrTy != ResTy)
5364       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5365                          " intrinsic!");
5366     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5367                       Op);
5368     DAG.setRoot(Op);
5369     setValue(&I, Res);
5370     return nullptr;
5371   }
5372   case Intrinsic::stackguard: {
5373     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5374     MachineFunction &MF = DAG.getMachineFunction();
5375     const Module &M = *MF.getFunction()->getParent();
5376     SDValue Chain = getRoot();
5377     if (TLI.useLoadStackGuardNode()) {
5378       Res = getLoadStackGuard(DAG, sdl, Chain);
5379     } else {
5380       const Value *Global = TLI.getSDagStackGuard(M);
5381       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5382       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5383                         MachinePointerInfo(Global, 0), Align,
5384                         MachineMemOperand::MOVolatile);
5385     }
5386     DAG.setRoot(Chain);
5387     setValue(&I, Res);
5388     return nullptr;
5389   }
5390   case Intrinsic::stackprotector: {
5391     // Emit code into the DAG to store the stack guard onto the stack.
5392     MachineFunction &MF = DAG.getMachineFunction();
5393     MachineFrameInfo &MFI = MF.getFrameInfo();
5394     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5395     SDValue Src, Chain = getRoot();
5396 
5397     if (TLI.useLoadStackGuardNode())
5398       Src = getLoadStackGuard(DAG, sdl, Chain);
5399     else
5400       Src = getValue(I.getArgOperand(0));   // The guard's value.
5401 
5402     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5403 
5404     int FI = FuncInfo.StaticAllocaMap[Slot];
5405     MFI.setStackProtectorIndex(FI);
5406 
5407     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5408 
5409     // Store the stack protector onto the stack.
5410     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5411                                                  DAG.getMachineFunction(), FI),
5412                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5413     setValue(&I, Res);
5414     DAG.setRoot(Res);
5415     return nullptr;
5416   }
5417   case Intrinsic::objectsize: {
5418     // If we don't know by now, we're never going to know.
5419     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5420 
5421     assert(CI && "Non-constant type in __builtin_object_size?");
5422 
5423     SDValue Arg = getValue(I.getCalledValue());
5424     EVT Ty = Arg.getValueType();
5425 
5426     if (CI->isZero())
5427       Res = DAG.getConstant(-1ULL, sdl, Ty);
5428     else
5429       Res = DAG.getConstant(0, sdl, Ty);
5430 
5431     setValue(&I, Res);
5432     return nullptr;
5433   }
5434   case Intrinsic::annotation:
5435   case Intrinsic::ptr_annotation:
5436   case Intrinsic::invariant_group_barrier:
5437     // Drop the intrinsic, but forward the value
5438     setValue(&I, getValue(I.getOperand(0)));
5439     return nullptr;
5440   case Intrinsic::assume:
5441   case Intrinsic::var_annotation:
5442     // Discard annotate attributes and assumptions
5443     return nullptr;
5444 
5445   case Intrinsic::init_trampoline: {
5446     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5447 
5448     SDValue Ops[6];
5449     Ops[0] = getRoot();
5450     Ops[1] = getValue(I.getArgOperand(0));
5451     Ops[2] = getValue(I.getArgOperand(1));
5452     Ops[3] = getValue(I.getArgOperand(2));
5453     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5454     Ops[5] = DAG.getSrcValue(F);
5455 
5456     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5457 
5458     DAG.setRoot(Res);
5459     return nullptr;
5460   }
5461   case Intrinsic::adjust_trampoline: {
5462     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5463                              TLI.getPointerTy(DAG.getDataLayout()),
5464                              getValue(I.getArgOperand(0))));
5465     return nullptr;
5466   }
5467   case Intrinsic::gcroot: {
5468     MachineFunction &MF = DAG.getMachineFunction();
5469     const Function *F = MF.getFunction();
5470     (void)F;
5471     assert(F->hasGC() &&
5472            "only valid in functions with gc specified, enforced by Verifier");
5473     assert(GFI && "implied by previous");
5474     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5475     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5476 
5477     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5478     GFI->addStackRoot(FI->getIndex(), TypeMap);
5479     return nullptr;
5480   }
5481   case Intrinsic::gcread:
5482   case Intrinsic::gcwrite:
5483     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5484   case Intrinsic::flt_rounds:
5485     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5486     return nullptr;
5487 
5488   case Intrinsic::expect: {
5489     // Just replace __builtin_expect(exp, c) with EXP.
5490     setValue(&I, getValue(I.getArgOperand(0)));
5491     return nullptr;
5492   }
5493 
5494   case Intrinsic::debugtrap:
5495   case Intrinsic::trap: {
5496     StringRef TrapFuncName =
5497         I.getAttributes()
5498             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5499             .getValueAsString();
5500     if (TrapFuncName.empty()) {
5501       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5502         ISD::TRAP : ISD::DEBUGTRAP;
5503       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5504       return nullptr;
5505     }
5506     TargetLowering::ArgListTy Args;
5507 
5508     TargetLowering::CallLoweringInfo CLI(DAG);
5509     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5510         CallingConv::C, I.getType(),
5511         DAG.getExternalSymbol(TrapFuncName.data(),
5512                               TLI.getPointerTy(DAG.getDataLayout())),
5513         std::move(Args));
5514 
5515     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5516     DAG.setRoot(Result.second);
5517     return nullptr;
5518   }
5519 
5520   case Intrinsic::uadd_with_overflow:
5521   case Intrinsic::sadd_with_overflow:
5522   case Intrinsic::usub_with_overflow:
5523   case Intrinsic::ssub_with_overflow:
5524   case Intrinsic::umul_with_overflow:
5525   case Intrinsic::smul_with_overflow: {
5526     ISD::NodeType Op;
5527     switch (Intrinsic) {
5528     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5529     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5530     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5531     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5532     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5533     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5534     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5535     }
5536     SDValue Op1 = getValue(I.getArgOperand(0));
5537     SDValue Op2 = getValue(I.getArgOperand(1));
5538 
5539     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5540     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5541     return nullptr;
5542   }
5543   case Intrinsic::prefetch: {
5544     SDValue Ops[5];
5545     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5546     Ops[0] = getRoot();
5547     Ops[1] = getValue(I.getArgOperand(0));
5548     Ops[2] = getValue(I.getArgOperand(1));
5549     Ops[3] = getValue(I.getArgOperand(2));
5550     Ops[4] = getValue(I.getArgOperand(3));
5551     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5552                                         DAG.getVTList(MVT::Other), Ops,
5553                                         EVT::getIntegerVT(*Context, 8),
5554                                         MachinePointerInfo(I.getArgOperand(0)),
5555                                         0, /* align */
5556                                         false, /* volatile */
5557                                         rw==0, /* read */
5558                                         rw==1)); /* write */
5559     return nullptr;
5560   }
5561   case Intrinsic::lifetime_start:
5562   case Intrinsic::lifetime_end: {
5563     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5564     // Stack coloring is not enabled in O0, discard region information.
5565     if (TM.getOptLevel() == CodeGenOpt::None)
5566       return nullptr;
5567 
5568     SmallVector<Value *, 4> Allocas;
5569     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5570 
5571     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5572            E = Allocas.end(); Object != E; ++Object) {
5573       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5574 
5575       // Could not find an Alloca.
5576       if (!LifetimeObject)
5577         continue;
5578 
5579       // First check that the Alloca is static, otherwise it won't have a
5580       // valid frame index.
5581       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5582       if (SI == FuncInfo.StaticAllocaMap.end())
5583         return nullptr;
5584 
5585       int FI = SI->second;
5586 
5587       SDValue Ops[2];
5588       Ops[0] = getRoot();
5589       Ops[1] =
5590           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
5591       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5592 
5593       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5594       DAG.setRoot(Res);
5595     }
5596     return nullptr;
5597   }
5598   case Intrinsic::invariant_start:
5599     // Discard region information.
5600     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5601     return nullptr;
5602   case Intrinsic::invariant_end:
5603     // Discard region information.
5604     return nullptr;
5605   case Intrinsic::clear_cache:
5606     return TLI.getClearCacheBuiltinName();
5607   case Intrinsic::donothing:
5608     // ignore
5609     return nullptr;
5610   case Intrinsic::experimental_stackmap: {
5611     visitStackmap(I);
5612     return nullptr;
5613   }
5614   case Intrinsic::experimental_patchpoint_void:
5615   case Intrinsic::experimental_patchpoint_i64: {
5616     visitPatchpoint(&I);
5617     return nullptr;
5618   }
5619   case Intrinsic::experimental_gc_statepoint: {
5620     LowerStatepoint(ImmutableStatepoint(&I));
5621     return nullptr;
5622   }
5623   case Intrinsic::experimental_gc_result: {
5624     visitGCResult(cast<GCResultInst>(I));
5625     return nullptr;
5626   }
5627   case Intrinsic::experimental_gc_relocate: {
5628     visitGCRelocate(cast<GCRelocateInst>(I));
5629     return nullptr;
5630   }
5631   case Intrinsic::instrprof_increment:
5632     llvm_unreachable("instrprof failed to lower an increment");
5633   case Intrinsic::instrprof_value_profile:
5634     llvm_unreachable("instrprof failed to lower a value profiling call");
5635   case Intrinsic::localescape: {
5636     MachineFunction &MF = DAG.getMachineFunction();
5637     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5638 
5639     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5640     // is the same on all targets.
5641     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5642       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5643       if (isa<ConstantPointerNull>(Arg))
5644         continue; // Skip null pointers. They represent a hole in index space.
5645       AllocaInst *Slot = cast<AllocaInst>(Arg);
5646       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5647              "can only escape static allocas");
5648       int FI = FuncInfo.StaticAllocaMap[Slot];
5649       MCSymbol *FrameAllocSym =
5650           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5651               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
5652       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5653               TII->get(TargetOpcode::LOCAL_ESCAPE))
5654           .addSym(FrameAllocSym)
5655           .addFrameIndex(FI);
5656     }
5657 
5658     return nullptr;
5659   }
5660 
5661   case Intrinsic::localrecover: {
5662     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5663     MachineFunction &MF = DAG.getMachineFunction();
5664     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5665 
5666     // Get the symbol that defines the frame offset.
5667     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5668     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5669     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5670     MCSymbol *FrameAllocSym =
5671         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5672             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
5673 
5674     // Create a MCSymbol for the label to avoid any target lowering
5675     // that would make this PC relative.
5676     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5677     SDValue OffsetVal =
5678         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5679 
5680     // Add the offset to the FP.
5681     Value *FP = I.getArgOperand(1);
5682     SDValue FPVal = getValue(FP);
5683     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5684     setValue(&I, Add);
5685 
5686     return nullptr;
5687   }
5688 
5689   case Intrinsic::eh_exceptionpointer:
5690   case Intrinsic::eh_exceptioncode: {
5691     // Get the exception pointer vreg, copy from it, and resize it to fit.
5692     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5693     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5694     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5695     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5696     SDValue N =
5697         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5698     if (Intrinsic == Intrinsic::eh_exceptioncode)
5699       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5700     setValue(&I, N);
5701     return nullptr;
5702   }
5703   case Intrinsic::xray_customevent: {
5704     // Here we want to make sure that the intrinsic behaves as if it has a
5705     // specific calling convention, and only for x86_64.
5706     // FIXME: Support other platforms later.
5707     const auto &Triple = DAG.getTarget().getTargetTriple();
5708     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
5709       return nullptr;
5710 
5711     SDLoc DL = getCurSDLoc();
5712     SmallVector<SDValue, 8> Ops;
5713 
5714     // We want to say that we always want the arguments in registers.
5715     SDValue LogEntryVal = getValue(I.getArgOperand(0));
5716     SDValue StrSizeVal = getValue(I.getArgOperand(1));
5717     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5718     SDValue Chain = getRoot();
5719     Ops.push_back(LogEntryVal);
5720     Ops.push_back(StrSizeVal);
5721     Ops.push_back(Chain);
5722 
5723     // We need to enforce the calling convention for the callsite, so that
5724     // argument ordering is enforced correctly, and that register allocation can
5725     // see that some registers may be assumed clobbered and have to preserve
5726     // them across calls to the intrinsic.
5727     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
5728                                            DL, NodeTys, Ops);
5729     SDValue patchableNode = SDValue(MN, 0);
5730     DAG.setRoot(patchableNode);
5731     setValue(&I, patchableNode);
5732     return nullptr;
5733   }
5734   case Intrinsic::experimental_deoptimize:
5735     LowerDeoptimizeCall(&I);
5736     return nullptr;
5737 
5738   case Intrinsic::experimental_vector_reduce_fadd:
5739   case Intrinsic::experimental_vector_reduce_fmul:
5740   case Intrinsic::experimental_vector_reduce_add:
5741   case Intrinsic::experimental_vector_reduce_mul:
5742   case Intrinsic::experimental_vector_reduce_and:
5743   case Intrinsic::experimental_vector_reduce_or:
5744   case Intrinsic::experimental_vector_reduce_xor:
5745   case Intrinsic::experimental_vector_reduce_smax:
5746   case Intrinsic::experimental_vector_reduce_smin:
5747   case Intrinsic::experimental_vector_reduce_umax:
5748   case Intrinsic::experimental_vector_reduce_umin:
5749   case Intrinsic::experimental_vector_reduce_fmax:
5750   case Intrinsic::experimental_vector_reduce_fmin: {
5751     visitVectorReduce(I, Intrinsic);
5752     return nullptr;
5753   }
5754 
5755   }
5756 }
5757 
5758 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I,
5759                                                       unsigned Intrinsic) {
5760   SDLoc sdl = getCurSDLoc();
5761   unsigned Opcode;
5762   switch (Intrinsic) {
5763   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5764   case Intrinsic::experimental_constrained_fadd:
5765     Opcode = ISD::STRICT_FADD;
5766     break;
5767   case Intrinsic::experimental_constrained_fsub:
5768     Opcode = ISD::STRICT_FSUB;
5769     break;
5770   case Intrinsic::experimental_constrained_fmul:
5771     Opcode = ISD::STRICT_FMUL;
5772     break;
5773   case Intrinsic::experimental_constrained_fdiv:
5774     Opcode = ISD::STRICT_FDIV;
5775     break;
5776   case Intrinsic::experimental_constrained_frem:
5777     Opcode = ISD::STRICT_FREM;
5778     break;
5779   }
5780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5781   SDValue Chain = getRoot();
5782   SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)),
5783                      getValue(I.getArgOperand(1)) };
5784   SmallVector<EVT, 4> ValueVTs;
5785   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5786   ValueVTs.push_back(MVT::Other); // Out chain
5787 
5788   SDVTList VTs = DAG.getVTList(ValueVTs);
5789   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops);
5790 
5791   assert(Result.getNode()->getNumValues() == 2);
5792   SDValue OutChain = Result.getValue(1);
5793   DAG.setRoot(OutChain);
5794   SDValue FPResult = Result.getValue(0);
5795   setValue(&I, FPResult);
5796 }
5797 
5798 std::pair<SDValue, SDValue>
5799 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5800                                     const BasicBlock *EHPadBB) {
5801   MachineFunction &MF = DAG.getMachineFunction();
5802   MachineModuleInfo &MMI = MF.getMMI();
5803   MCSymbol *BeginLabel = nullptr;
5804 
5805   if (EHPadBB) {
5806     // Insert a label before the invoke call to mark the try range.  This can be
5807     // used to detect deletion of the invoke via the MachineModuleInfo.
5808     BeginLabel = MMI.getContext().createTempSymbol();
5809 
5810     // For SjLj, keep track of which landing pads go with which invokes
5811     // so as to maintain the ordering of pads in the LSDA.
5812     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5813     if (CallSiteIndex) {
5814       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5815       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5816 
5817       // Now that the call site is handled, stop tracking it.
5818       MMI.setCurrentCallSite(0);
5819     }
5820 
5821     // Both PendingLoads and PendingExports must be flushed here;
5822     // this call might not return.
5823     (void)getRoot();
5824     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5825 
5826     CLI.setChain(getRoot());
5827   }
5828   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5829   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5830 
5831   assert((CLI.IsTailCall || Result.second.getNode()) &&
5832          "Non-null chain expected with non-tail call!");
5833   assert((Result.second.getNode() || !Result.first.getNode()) &&
5834          "Null value expected with tail call!");
5835 
5836   if (!Result.second.getNode()) {
5837     // As a special case, a null chain means that a tail call has been emitted
5838     // and the DAG root is already updated.
5839     HasTailCall = true;
5840 
5841     // Since there's no actual continuation from this block, nothing can be
5842     // relying on us setting vregs for them.
5843     PendingExports.clear();
5844   } else {
5845     DAG.setRoot(Result.second);
5846   }
5847 
5848   if (EHPadBB) {
5849     // Insert a label at the end of the invoke call to mark the try range.  This
5850     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5851     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5852     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5853 
5854     // Inform MachineModuleInfo of range.
5855     if (MF.hasEHFunclets()) {
5856       assert(CLI.CS);
5857       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5858       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5859                                 BeginLabel, EndLabel);
5860     } else {
5861       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5862     }
5863   }
5864 
5865   return Result;
5866 }
5867 
5868 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5869                                       bool isTailCall,
5870                                       const BasicBlock *EHPadBB) {
5871   auto &DL = DAG.getDataLayout();
5872   FunctionType *FTy = CS.getFunctionType();
5873   Type *RetTy = CS.getType();
5874 
5875   TargetLowering::ArgListTy Args;
5876   Args.reserve(CS.arg_size());
5877 
5878   const Value *SwiftErrorVal = nullptr;
5879   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5880 
5881   // We can't tail call inside a function with a swifterror argument. Lowering
5882   // does not support this yet. It would have to move into the swifterror
5883   // register before the call.
5884   auto *Caller = CS.getInstruction()->getParent()->getParent();
5885   if (TLI.supportSwiftError() &&
5886       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
5887     isTailCall = false;
5888 
5889   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5890        i != e; ++i) {
5891     TargetLowering::ArgListEntry Entry;
5892     const Value *V = *i;
5893 
5894     // Skip empty types
5895     if (V->getType()->isEmptyTy())
5896       continue;
5897 
5898     SDValue ArgNode = getValue(V);
5899     Entry.Node = ArgNode; Entry.Ty = V->getType();
5900 
5901     Entry.setAttributes(&CS, i - CS.arg_begin());
5902 
5903     // Use swifterror virtual register as input to the call.
5904     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
5905       SwiftErrorVal = V;
5906       // We find the virtual register for the actual swifterror argument.
5907       // Instead of using the Value, we use the virtual register instead.
5908       Entry.Node =
5909           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5910                           EVT(TLI.getPointerTy(DL)));
5911     }
5912 
5913     Args.push_back(Entry);
5914 
5915     // If we have an explicit sret argument that is an Instruction, (i.e., it
5916     // might point to function-local memory), we can't meaningfully tail-call.
5917     if (Entry.IsSRet && isa<Instruction>(V))
5918       isTailCall = false;
5919   }
5920 
5921   // Check if target-independent constraints permit a tail call here.
5922   // Target-dependent constraints are checked within TLI->LowerCallTo.
5923   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5924     isTailCall = false;
5925 
5926   // Disable tail calls if there is an swifterror argument. Targets have not
5927   // been updated to support tail calls.
5928   if (TLI.supportSwiftError() && SwiftErrorVal)
5929     isTailCall = false;
5930 
5931   TargetLowering::CallLoweringInfo CLI(DAG);
5932   CLI.setDebugLoc(getCurSDLoc())
5933       .setChain(getRoot())
5934       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5935       .setTailCall(isTailCall)
5936       .setConvergent(CS.isConvergent());
5937   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5938 
5939   if (Result.first.getNode()) {
5940     const Instruction *Inst = CS.getInstruction();
5941     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5942     setValue(Inst, Result.first);
5943   }
5944 
5945   // The last element of CLI.InVals has the SDValue for swifterror return.
5946   // Here we copy it to a virtual register and update SwiftErrorMap for
5947   // book-keeping.
5948   if (SwiftErrorVal && TLI.supportSwiftError()) {
5949     // Get the last element of InVals.
5950     SDValue Src = CLI.InVals.back();
5951     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5952     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5953     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5954     // We update the virtual register for the actual swifterror argument.
5955     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5956     DAG.setRoot(CopyNode);
5957   }
5958 }
5959 
5960 /// Return true if it only matters that the value is equal or not-equal to zero.
5961 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5962   for (const User *U : V->users()) {
5963     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5964       if (IC->isEquality())
5965         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5966           if (C->isNullValue())
5967             continue;
5968     // Unknown instruction.
5969     return false;
5970   }
5971   return true;
5972 }
5973 
5974 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5975                              SelectionDAGBuilder &Builder) {
5976 
5977   // Check to see if this load can be trivially constant folded, e.g. if the
5978   // input is from a string literal.
5979   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5980     // Cast pointer to the type we really want to load.
5981     Type *LoadTy =
5982         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
5983     if (LoadVT.isVector())
5984       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
5985 
5986     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5987                                          PointerType::getUnqual(LoadTy));
5988 
5989     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5990             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5991       return Builder.getValue(LoadCst);
5992   }
5993 
5994   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5995   // still constant memory, the input chain can be the entry node.
5996   SDValue Root;
5997   bool ConstantMemory = false;
5998 
5999   // Do not serialize (non-volatile) loads of constant memory with anything.
6000   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6001     Root = Builder.DAG.getEntryNode();
6002     ConstantMemory = true;
6003   } else {
6004     // Do not serialize non-volatile loads against each other.
6005     Root = Builder.DAG.getRoot();
6006   }
6007 
6008   SDValue Ptr = Builder.getValue(PtrVal);
6009   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6010                                         Ptr, MachinePointerInfo(PtrVal),
6011                                         /* Alignment = */ 1);
6012 
6013   if (!ConstantMemory)
6014     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6015   return LoadVal;
6016 }
6017 
6018 /// Record the value for an instruction that produces an integer result,
6019 /// converting the type where necessary.
6020 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6021                                                   SDValue Value,
6022                                                   bool IsSigned) {
6023   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6024                                                     I.getType(), true);
6025   if (IsSigned)
6026     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6027   else
6028     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6029   setValue(&I, Value);
6030 }
6031 
6032 /// See if we can lower a memcmp call into an optimized form. If so, return
6033 /// true and lower it. Otherwise return false, and it will be lowered like a
6034 /// normal call.
6035 /// The caller already checked that \p I calls the appropriate LibFunc with a
6036 /// correct prototype.
6037 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6038   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6039   const Value *Size = I.getArgOperand(2);
6040   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6041   if (CSize && CSize->getZExtValue() == 0) {
6042     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6043                                                           I.getType(), true);
6044     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6045     return true;
6046   }
6047 
6048   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6049   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6050       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6051       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6052   if (Res.first.getNode()) {
6053     processIntegerCallValue(I, Res.first, true);
6054     PendingLoads.push_back(Res.second);
6055     return true;
6056   }
6057 
6058   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6059   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6060   if (!CSize || !IsOnlyUsedInZeroEqualityComparison(&I))
6061     return false;
6062 
6063   // If the target has a fast compare for the given size, it will return a
6064   // preferred load type for that size. Require that the load VT is legal and
6065   // that the target supports unaligned loads of that type. Otherwise, return
6066   // INVALID.
6067   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6068     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6069     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6070     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6071       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6072       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6073       // TODO: Check alignment of src and dest ptrs.
6074       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6075       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6076       if (!TLI.isTypeLegal(LVT) ||
6077           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6078           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6079         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6080     }
6081 
6082     return LVT;
6083   };
6084 
6085   // This turns into unaligned loads. We only do this if the target natively
6086   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6087   // we'll only produce a small number of byte loads.
6088   MVT LoadVT;
6089   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6090   switch (NumBitsToCompare) {
6091   default:
6092     return false;
6093   case 16:
6094     LoadVT = MVT::i16;
6095     break;
6096   case 32:
6097     LoadVT = MVT::i32;
6098     break;
6099   case 64:
6100   case 128:
6101   case 256:
6102     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6103     break;
6104   }
6105 
6106   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6107     return false;
6108 
6109   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6110   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6111 
6112   // Bitcast to a wide integer type if the loads are vectors.
6113   if (LoadVT.isVector()) {
6114     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6115     LoadL = DAG.getBitcast(CmpVT, LoadL);
6116     LoadR = DAG.getBitcast(CmpVT, LoadR);
6117   }
6118 
6119   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6120   processIntegerCallValue(I, Cmp, false);
6121   return true;
6122 }
6123 
6124 /// See if we can lower a memchr call into an optimized form. If so, return
6125 /// true and lower it. Otherwise return false, and it will be lowered like a
6126 /// normal call.
6127 /// The caller already checked that \p I calls the appropriate LibFunc with a
6128 /// correct prototype.
6129 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6130   const Value *Src = I.getArgOperand(0);
6131   const Value *Char = I.getArgOperand(1);
6132   const Value *Length = I.getArgOperand(2);
6133 
6134   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6135   std::pair<SDValue, SDValue> Res =
6136     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6137                                 getValue(Src), getValue(Char), getValue(Length),
6138                                 MachinePointerInfo(Src));
6139   if (Res.first.getNode()) {
6140     setValue(&I, Res.first);
6141     PendingLoads.push_back(Res.second);
6142     return true;
6143   }
6144 
6145   return false;
6146 }
6147 
6148 /// See if we can lower a mempcpy call into an optimized form. If so, return
6149 /// true and lower it. Otherwise return false, and it will be lowered like a
6150 /// normal call.
6151 /// The caller already checked that \p I calls the appropriate LibFunc with a
6152 /// correct prototype.
6153 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6154   SDValue Dst = getValue(I.getArgOperand(0));
6155   SDValue Src = getValue(I.getArgOperand(1));
6156   SDValue Size = getValue(I.getArgOperand(2));
6157 
6158   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6159   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6160   unsigned Align = std::min(DstAlign, SrcAlign);
6161   if (Align == 0) // Alignment of one or both could not be inferred.
6162     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6163 
6164   bool isVol = false;
6165   SDLoc sdl = getCurSDLoc();
6166 
6167   // In the mempcpy context we need to pass in a false value for isTailCall
6168   // because the return pointer needs to be adjusted by the size of
6169   // the copied memory.
6170   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6171                              false, /*isTailCall=*/false,
6172                              MachinePointerInfo(I.getArgOperand(0)),
6173                              MachinePointerInfo(I.getArgOperand(1)));
6174   assert(MC.getNode() != nullptr &&
6175          "** memcpy should not be lowered as TailCall in mempcpy context **");
6176   DAG.setRoot(MC);
6177 
6178   // Check if Size needs to be truncated or extended.
6179   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6180 
6181   // Adjust return pointer to point just past the last dst byte.
6182   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6183                                     Dst, Size);
6184   setValue(&I, DstPlusSize);
6185   return true;
6186 }
6187 
6188 /// See if we can lower a strcpy call into an optimized form.  If so, return
6189 /// true and lower it, otherwise return false and it will be lowered like a
6190 /// normal call.
6191 /// The caller already checked that \p I calls the appropriate LibFunc with a
6192 /// correct prototype.
6193 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6194   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6195 
6196   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6197   std::pair<SDValue, SDValue> Res =
6198     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6199                                 getValue(Arg0), getValue(Arg1),
6200                                 MachinePointerInfo(Arg0),
6201                                 MachinePointerInfo(Arg1), isStpcpy);
6202   if (Res.first.getNode()) {
6203     setValue(&I, Res.first);
6204     DAG.setRoot(Res.second);
6205     return true;
6206   }
6207 
6208   return false;
6209 }
6210 
6211 /// See if we can lower a strcmp call into an optimized form.  If so, return
6212 /// true and lower it, otherwise return false and it will be lowered like a
6213 /// normal call.
6214 /// The caller already checked that \p I calls the appropriate LibFunc with a
6215 /// correct prototype.
6216 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6217   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6218 
6219   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6220   std::pair<SDValue, SDValue> Res =
6221     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6222                                 getValue(Arg0), getValue(Arg1),
6223                                 MachinePointerInfo(Arg0),
6224                                 MachinePointerInfo(Arg1));
6225   if (Res.first.getNode()) {
6226     processIntegerCallValue(I, Res.first, true);
6227     PendingLoads.push_back(Res.second);
6228     return true;
6229   }
6230 
6231   return false;
6232 }
6233 
6234 /// See if we can lower a strlen call into an optimized form.  If so, return
6235 /// true and lower it, otherwise return false and it will be lowered like a
6236 /// normal call.
6237 /// The caller already checked that \p I calls the appropriate LibFunc with a
6238 /// correct prototype.
6239 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6240   const Value *Arg0 = I.getArgOperand(0);
6241 
6242   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6243   std::pair<SDValue, SDValue> Res =
6244     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6245                                 getValue(Arg0), MachinePointerInfo(Arg0));
6246   if (Res.first.getNode()) {
6247     processIntegerCallValue(I, Res.first, false);
6248     PendingLoads.push_back(Res.second);
6249     return true;
6250   }
6251 
6252   return false;
6253 }
6254 
6255 /// See if we can lower a strnlen call into an optimized form.  If so, return
6256 /// true and lower it, otherwise return false and it will be lowered like a
6257 /// normal call.
6258 /// The caller already checked that \p I calls the appropriate LibFunc with a
6259 /// correct prototype.
6260 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6261   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6262 
6263   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6264   std::pair<SDValue, SDValue> Res =
6265     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6266                                  getValue(Arg0), getValue(Arg1),
6267                                  MachinePointerInfo(Arg0));
6268   if (Res.first.getNode()) {
6269     processIntegerCallValue(I, Res.first, false);
6270     PendingLoads.push_back(Res.second);
6271     return true;
6272   }
6273 
6274   return false;
6275 }
6276 
6277 /// See if we can lower a unary floating-point operation into an SDNode with
6278 /// the specified Opcode.  If so, return true and lower it, otherwise return
6279 /// false and it will be lowered like a normal call.
6280 /// The caller already checked that \p I calls the appropriate LibFunc with a
6281 /// correct prototype.
6282 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6283                                               unsigned Opcode) {
6284   // We already checked this call's prototype; verify it doesn't modify errno.
6285   if (!I.onlyReadsMemory())
6286     return false;
6287 
6288   SDValue Tmp = getValue(I.getArgOperand(0));
6289   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6290   return true;
6291 }
6292 
6293 /// See if we can lower a binary floating-point operation into an SDNode with
6294 /// the specified Opcode. If so, return true and lower it. Otherwise return
6295 /// false, and it will be lowered like a normal call.
6296 /// The caller already checked that \p I calls the appropriate LibFunc with a
6297 /// correct prototype.
6298 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6299                                                unsigned Opcode) {
6300   // We already checked this call's prototype; verify it doesn't modify errno.
6301   if (!I.onlyReadsMemory())
6302     return false;
6303 
6304   SDValue Tmp0 = getValue(I.getArgOperand(0));
6305   SDValue Tmp1 = getValue(I.getArgOperand(1));
6306   EVT VT = Tmp0.getValueType();
6307   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6308   return true;
6309 }
6310 
6311 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6312   // Handle inline assembly differently.
6313   if (isa<InlineAsm>(I.getCalledValue())) {
6314     visitInlineAsm(&I);
6315     return;
6316   }
6317 
6318   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6319   computeUsesVAFloatArgument(I, MMI);
6320 
6321   const char *RenameFn = nullptr;
6322   if (Function *F = I.getCalledFunction()) {
6323     if (F->isDeclaration()) {
6324       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6325         if (unsigned IID = II->getIntrinsicID(F)) {
6326           RenameFn = visitIntrinsicCall(I, IID);
6327           if (!RenameFn)
6328             return;
6329         }
6330       }
6331       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6332         RenameFn = visitIntrinsicCall(I, IID);
6333         if (!RenameFn)
6334           return;
6335       }
6336     }
6337 
6338     // Check for well-known libc/libm calls.  If the function is internal, it
6339     // can't be a library call.  Don't do the check if marked as nobuiltin for
6340     // some reason.
6341     LibFunc Func;
6342     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6343         LibInfo->getLibFunc(*F, Func) &&
6344         LibInfo->hasOptimizedCodeGen(Func)) {
6345       switch (Func) {
6346       default: break;
6347       case LibFunc_copysign:
6348       case LibFunc_copysignf:
6349       case LibFunc_copysignl:
6350         // We already checked this call's prototype; verify it doesn't modify
6351         // errno.
6352         if (I.onlyReadsMemory()) {
6353           SDValue LHS = getValue(I.getArgOperand(0));
6354           SDValue RHS = getValue(I.getArgOperand(1));
6355           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6356                                    LHS.getValueType(), LHS, RHS));
6357           return;
6358         }
6359         break;
6360       case LibFunc_fabs:
6361       case LibFunc_fabsf:
6362       case LibFunc_fabsl:
6363         if (visitUnaryFloatCall(I, ISD::FABS))
6364           return;
6365         break;
6366       case LibFunc_fmin:
6367       case LibFunc_fminf:
6368       case LibFunc_fminl:
6369         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6370           return;
6371         break;
6372       case LibFunc_fmax:
6373       case LibFunc_fmaxf:
6374       case LibFunc_fmaxl:
6375         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6376           return;
6377         break;
6378       case LibFunc_sin:
6379       case LibFunc_sinf:
6380       case LibFunc_sinl:
6381         if (visitUnaryFloatCall(I, ISD::FSIN))
6382           return;
6383         break;
6384       case LibFunc_cos:
6385       case LibFunc_cosf:
6386       case LibFunc_cosl:
6387         if (visitUnaryFloatCall(I, ISD::FCOS))
6388           return;
6389         break;
6390       case LibFunc_sqrt:
6391       case LibFunc_sqrtf:
6392       case LibFunc_sqrtl:
6393       case LibFunc_sqrt_finite:
6394       case LibFunc_sqrtf_finite:
6395       case LibFunc_sqrtl_finite:
6396         if (visitUnaryFloatCall(I, ISD::FSQRT))
6397           return;
6398         break;
6399       case LibFunc_floor:
6400       case LibFunc_floorf:
6401       case LibFunc_floorl:
6402         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6403           return;
6404         break;
6405       case LibFunc_nearbyint:
6406       case LibFunc_nearbyintf:
6407       case LibFunc_nearbyintl:
6408         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6409           return;
6410         break;
6411       case LibFunc_ceil:
6412       case LibFunc_ceilf:
6413       case LibFunc_ceill:
6414         if (visitUnaryFloatCall(I, ISD::FCEIL))
6415           return;
6416         break;
6417       case LibFunc_rint:
6418       case LibFunc_rintf:
6419       case LibFunc_rintl:
6420         if (visitUnaryFloatCall(I, ISD::FRINT))
6421           return;
6422         break;
6423       case LibFunc_round:
6424       case LibFunc_roundf:
6425       case LibFunc_roundl:
6426         if (visitUnaryFloatCall(I, ISD::FROUND))
6427           return;
6428         break;
6429       case LibFunc_trunc:
6430       case LibFunc_truncf:
6431       case LibFunc_truncl:
6432         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6433           return;
6434         break;
6435       case LibFunc_log2:
6436       case LibFunc_log2f:
6437       case LibFunc_log2l:
6438         if (visitUnaryFloatCall(I, ISD::FLOG2))
6439           return;
6440         break;
6441       case LibFunc_exp2:
6442       case LibFunc_exp2f:
6443       case LibFunc_exp2l:
6444         if (visitUnaryFloatCall(I, ISD::FEXP2))
6445           return;
6446         break;
6447       case LibFunc_memcmp:
6448         if (visitMemCmpCall(I))
6449           return;
6450         break;
6451       case LibFunc_mempcpy:
6452         if (visitMemPCpyCall(I))
6453           return;
6454         break;
6455       case LibFunc_memchr:
6456         if (visitMemChrCall(I))
6457           return;
6458         break;
6459       case LibFunc_strcpy:
6460         if (visitStrCpyCall(I, false))
6461           return;
6462         break;
6463       case LibFunc_stpcpy:
6464         if (visitStrCpyCall(I, true))
6465           return;
6466         break;
6467       case LibFunc_strcmp:
6468         if (visitStrCmpCall(I))
6469           return;
6470         break;
6471       case LibFunc_strlen:
6472         if (visitStrLenCall(I))
6473           return;
6474         break;
6475       case LibFunc_strnlen:
6476         if (visitStrNLenCall(I))
6477           return;
6478         break;
6479       }
6480     }
6481   }
6482 
6483   SDValue Callee;
6484   if (!RenameFn)
6485     Callee = getValue(I.getCalledValue());
6486   else
6487     Callee = DAG.getExternalSymbol(
6488         RenameFn,
6489         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6490 
6491   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6492   // have to do anything here to lower funclet bundles.
6493   assert(!I.hasOperandBundlesOtherThan(
6494              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6495          "Cannot lower calls with arbitrary operand bundles!");
6496 
6497   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6498     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6499   else
6500     // Check if we can potentially perform a tail call. More detailed checking
6501     // is be done within LowerCallTo, after more information about the call is
6502     // known.
6503     LowerCallTo(&I, Callee, I.isTailCall());
6504 }
6505 
6506 namespace {
6507 
6508 /// AsmOperandInfo - This contains information for each constraint that we are
6509 /// lowering.
6510 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6511 public:
6512   /// CallOperand - If this is the result output operand or a clobber
6513   /// this is null, otherwise it is the incoming operand to the CallInst.
6514   /// This gets modified as the asm is processed.
6515   SDValue CallOperand;
6516 
6517   /// AssignedRegs - If this is a register or register class operand, this
6518   /// contains the set of register corresponding to the operand.
6519   RegsForValue AssignedRegs;
6520 
6521   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6522     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6523   }
6524 
6525   /// Whether or not this operand accesses memory
6526   bool hasMemory(const TargetLowering &TLI) const {
6527     // Indirect operand accesses access memory.
6528     if (isIndirect)
6529       return true;
6530 
6531     for (const auto &Code : Codes)
6532       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6533         return true;
6534 
6535     return false;
6536   }
6537 
6538   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6539   /// corresponds to.  If there is no Value* for this operand, it returns
6540   /// MVT::Other.
6541   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6542                            const DataLayout &DL) const {
6543     if (!CallOperandVal) return MVT::Other;
6544 
6545     if (isa<BasicBlock>(CallOperandVal))
6546       return TLI.getPointerTy(DL);
6547 
6548     llvm::Type *OpTy = CallOperandVal->getType();
6549 
6550     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6551     // If this is an indirect operand, the operand is a pointer to the
6552     // accessed type.
6553     if (isIndirect) {
6554       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6555       if (!PtrTy)
6556         report_fatal_error("Indirect operand for inline asm not a pointer!");
6557       OpTy = PtrTy->getElementType();
6558     }
6559 
6560     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6561     if (StructType *STy = dyn_cast<StructType>(OpTy))
6562       if (STy->getNumElements() == 1)
6563         OpTy = STy->getElementType(0);
6564 
6565     // If OpTy is not a single value, it may be a struct/union that we
6566     // can tile with integers.
6567     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6568       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6569       switch (BitSize) {
6570       default: break;
6571       case 1:
6572       case 8:
6573       case 16:
6574       case 32:
6575       case 64:
6576       case 128:
6577         OpTy = IntegerType::get(Context, BitSize);
6578         break;
6579       }
6580     }
6581 
6582     return TLI.getValueType(DL, OpTy, true);
6583   }
6584 };
6585 
6586 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6587 
6588 } // end anonymous namespace
6589 
6590 /// Make sure that the output operand \p OpInfo and its corresponding input
6591 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6592 /// out).
6593 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6594                                SDISelAsmOperandInfo &MatchingOpInfo,
6595                                SelectionDAG &DAG) {
6596   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6597     return;
6598 
6599   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6600   const auto &TLI = DAG.getTargetLoweringInfo();
6601 
6602   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6603       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6604                                        OpInfo.ConstraintVT);
6605   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6606       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6607                                        MatchingOpInfo.ConstraintVT);
6608   if ((OpInfo.ConstraintVT.isInteger() !=
6609        MatchingOpInfo.ConstraintVT.isInteger()) ||
6610       (MatchRC.second != InputRC.second)) {
6611     // FIXME: error out in a more elegant fashion
6612     report_fatal_error("Unsupported asm: input constraint"
6613                        " with a matching output constraint of"
6614                        " incompatible type!");
6615   }
6616   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6617 }
6618 
6619 /// Get a direct memory input to behave well as an indirect operand.
6620 /// This may introduce stores, hence the need for a \p Chain.
6621 /// \return The (possibly updated) chain.
6622 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6623                                         SDISelAsmOperandInfo &OpInfo,
6624                                         SelectionDAG &DAG) {
6625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6626 
6627   // If we don't have an indirect input, put it in the constpool if we can,
6628   // otherwise spill it to a stack slot.
6629   // TODO: This isn't quite right. We need to handle these according to
6630   // the addressing mode that the constraint wants. Also, this may take
6631   // an additional register for the computation and we don't want that
6632   // either.
6633 
6634   // If the operand is a float, integer, or vector constant, spill to a
6635   // constant pool entry to get its address.
6636   const Value *OpVal = OpInfo.CallOperandVal;
6637   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6638       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6639     OpInfo.CallOperand = DAG.getConstantPool(
6640         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6641     return Chain;
6642   }
6643 
6644   // Otherwise, create a stack slot and emit a store to it before the asm.
6645   Type *Ty = OpVal->getType();
6646   auto &DL = DAG.getDataLayout();
6647   uint64_t TySize = DL.getTypeAllocSize(Ty);
6648   unsigned Align = DL.getPrefTypeAlignment(Ty);
6649   MachineFunction &MF = DAG.getMachineFunction();
6650   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6651   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
6652   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6653                        MachinePointerInfo::getFixedStack(MF, SSFI));
6654   OpInfo.CallOperand = StackSlot;
6655 
6656   return Chain;
6657 }
6658 
6659 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6660 /// specified operand.  We prefer to assign virtual registers, to allow the
6661 /// register allocator to handle the assignment process.  However, if the asm
6662 /// uses features that we can't model on machineinstrs, we have SDISel do the
6663 /// allocation.  This produces generally horrible, but correct, code.
6664 ///
6665 ///   OpInfo describes the operand.
6666 ///
6667 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6668                                  const SDLoc &DL,
6669                                  SDISelAsmOperandInfo &OpInfo) {
6670   LLVMContext &Context = *DAG.getContext();
6671 
6672   MachineFunction &MF = DAG.getMachineFunction();
6673   SmallVector<unsigned, 4> Regs;
6674   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6675 
6676   // If this is a constraint for a single physreg, or a constraint for a
6677   // register class, find it.
6678   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6679       TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode,
6680                                        OpInfo.ConstraintVT);
6681 
6682   unsigned NumRegs = 1;
6683   if (OpInfo.ConstraintVT != MVT::Other) {
6684     // If this is a FP input in an integer register (or visa versa) insert a bit
6685     // cast of the input value.  More generally, handle any case where the input
6686     // value disagrees with the register class we plan to stick this in.
6687     if (OpInfo.Type == InlineAsm::isInput && PhysReg.second &&
6688         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
6689       // Try to convert to the first EVT that the reg class contains.  If the
6690       // types are identical size, use a bitcast to convert (e.g. two differing
6691       // vector types).
6692       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
6693       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6694         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6695                                          RegVT, OpInfo.CallOperand);
6696         OpInfo.ConstraintVT = RegVT;
6697       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6698         // If the input is a FP value and we want it in FP registers, do a
6699         // bitcast to the corresponding integer type.  This turns an f64 value
6700         // into i64, which can be passed with two i32 values on a 32-bit
6701         // machine.
6702         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6703         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6704                                          RegVT, OpInfo.CallOperand);
6705         OpInfo.ConstraintVT = RegVT;
6706       }
6707     }
6708 
6709     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6710   }
6711 
6712   MVT RegVT;
6713   EVT ValueVT = OpInfo.ConstraintVT;
6714 
6715   // If this is a constraint for a specific physical register, like {r17},
6716   // assign it now.
6717   if (unsigned AssignedReg = PhysReg.first) {
6718     const TargetRegisterClass *RC = PhysReg.second;
6719     if (OpInfo.ConstraintVT == MVT::Other)
6720       ValueVT = *TRI.legalclasstypes_begin(*RC);
6721 
6722     // Get the actual register value type.  This is important, because the user
6723     // may have asked for (e.g.) the AX register in i32 type.  We need to
6724     // remember that AX is actually i16 to get the right extension.
6725     RegVT = *TRI.legalclasstypes_begin(*RC);
6726 
6727     // This is a explicit reference to a physical register.
6728     Regs.push_back(AssignedReg);
6729 
6730     // If this is an expanded reference, add the rest of the regs to Regs.
6731     if (NumRegs != 1) {
6732       TargetRegisterClass::iterator I = RC->begin();
6733       for (; *I != AssignedReg; ++I)
6734         assert(I != RC->end() && "Didn't find reg!");
6735 
6736       // Already added the first reg.
6737       --NumRegs; ++I;
6738       for (; NumRegs; --NumRegs, ++I) {
6739         assert(I != RC->end() && "Ran out of registers to allocate!");
6740         Regs.push_back(*I);
6741       }
6742     }
6743 
6744     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6745     return;
6746   }
6747 
6748   // Otherwise, if this was a reference to an LLVM register class, create vregs
6749   // for this reference.
6750   if (const TargetRegisterClass *RC = PhysReg.second) {
6751     RegVT = *TRI.legalclasstypes_begin(*RC);
6752     if (OpInfo.ConstraintVT == MVT::Other)
6753       ValueVT = RegVT;
6754 
6755     // Create the appropriate number of virtual registers.
6756     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6757     for (; NumRegs; --NumRegs)
6758       Regs.push_back(RegInfo.createVirtualRegister(RC));
6759 
6760     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6761     return;
6762   }
6763 
6764   // Otherwise, we couldn't allocate enough registers for this.
6765 }
6766 
6767 static unsigned
6768 findMatchingInlineAsmOperand(unsigned OperandNo,
6769                              const std::vector<SDValue> &AsmNodeOperands) {
6770   // Scan until we find the definition we already emitted of this operand.
6771   unsigned CurOp = InlineAsm::Op_FirstOperand;
6772   for (; OperandNo; --OperandNo) {
6773     // Advance to the next operand.
6774     unsigned OpFlag =
6775         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6776     assert((InlineAsm::isRegDefKind(OpFlag) ||
6777             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6778             InlineAsm::isMemKind(OpFlag)) &&
6779            "Skipped past definitions?");
6780     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6781   }
6782   return CurOp;
6783 }
6784 
6785 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6786 /// \return true if it has succeeded, false otherwise
6787 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6788                               MVT RegVT, SelectionDAG &DAG) {
6789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6790   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6791   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6792     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6793       Regs.push_back(RegInfo.createVirtualRegister(RC));
6794     else
6795       return false;
6796   }
6797   return true;
6798 }
6799 
6800 class ExtraFlags {
6801   unsigned Flags = 0;
6802 
6803 public:
6804   explicit ExtraFlags(ImmutableCallSite CS) {
6805     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6806     if (IA->hasSideEffects())
6807       Flags |= InlineAsm::Extra_HasSideEffects;
6808     if (IA->isAlignStack())
6809       Flags |= InlineAsm::Extra_IsAlignStack;
6810     if (CS.isConvergent())
6811       Flags |= InlineAsm::Extra_IsConvergent;
6812     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6813   }
6814 
6815   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6816     // Ideally, we would only check against memory constraints.  However, the
6817     // meaning of an Other constraint can be target-specific and we can't easily
6818     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6819     // for Other constraints as well.
6820     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6821         OpInfo.ConstraintType == TargetLowering::C_Other) {
6822       if (OpInfo.Type == InlineAsm::isInput)
6823         Flags |= InlineAsm::Extra_MayLoad;
6824       else if (OpInfo.Type == InlineAsm::isOutput)
6825         Flags |= InlineAsm::Extra_MayStore;
6826       else if (OpInfo.Type == InlineAsm::isClobber)
6827         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6828     }
6829   }
6830 
6831   unsigned get() const { return Flags; }
6832 };
6833 
6834 /// visitInlineAsm - Handle a call to an InlineAsm object.
6835 ///
6836 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6837   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6838 
6839   /// ConstraintOperands - Information about all of the constraints.
6840   SDISelAsmOperandInfoVector ConstraintOperands;
6841 
6842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6843   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6844       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6845 
6846   bool hasMemory = false;
6847 
6848   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6849   ExtraFlags ExtraInfo(CS);
6850 
6851   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6852   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6853   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6854     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6855     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6856 
6857     MVT OpVT = MVT::Other;
6858 
6859     // Compute the value type for each operand.
6860     if (OpInfo.Type == InlineAsm::isInput ||
6861         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6862       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6863 
6864       // Process the call argument. BasicBlocks are labels, currently appearing
6865       // only in asm's.
6866       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6867         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6868       } else {
6869         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6870       }
6871 
6872       OpVT =
6873           OpInfo
6874               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6875               .getSimpleVT();
6876     }
6877 
6878     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6879       // The return value of the call is this value.  As such, there is no
6880       // corresponding argument.
6881       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6882       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6883         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6884                                       STy->getElementType(ResNo));
6885       } else {
6886         assert(ResNo == 0 && "Asm only has one result!");
6887         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6888       }
6889       ++ResNo;
6890     }
6891 
6892     OpInfo.ConstraintVT = OpVT;
6893 
6894     if (!hasMemory)
6895       hasMemory = OpInfo.hasMemory(TLI);
6896 
6897     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6898     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6899     auto TargetConstraint = TargetConstraints[i];
6900 
6901     // Compute the constraint code and ConstraintType to use.
6902     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6903 
6904     ExtraInfo.update(TargetConstraint);
6905   }
6906 
6907   SDValue Chain, Flag;
6908 
6909   // We won't need to flush pending loads if this asm doesn't touch
6910   // memory and is nonvolatile.
6911   if (hasMemory || IA->hasSideEffects())
6912     Chain = getRoot();
6913   else
6914     Chain = DAG.getRoot();
6915 
6916   // Second pass over the constraints: compute which constraint option to use
6917   // and assign registers to constraints that want a specific physreg.
6918   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6919     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6920 
6921     // If this is an output operand with a matching input operand, look up the
6922     // matching input. If their types mismatch, e.g. one is an integer, the
6923     // other is floating point, or their sizes are different, flag it as an
6924     // error.
6925     if (OpInfo.hasMatchingInput()) {
6926       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6927       patchMatchingInput(OpInfo, Input, DAG);
6928     }
6929 
6930     // Compute the constraint code and ConstraintType to use.
6931     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6932 
6933     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6934         OpInfo.Type == InlineAsm::isClobber)
6935       continue;
6936 
6937     // If this is a memory input, and if the operand is not indirect, do what we
6938     // need to to provide an address for the memory input.
6939     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6940         !OpInfo.isIndirect) {
6941       assert((OpInfo.isMultipleAlternative ||
6942               (OpInfo.Type == InlineAsm::isInput)) &&
6943              "Can only indirectify direct input operands!");
6944 
6945       // Memory operands really want the address of the value.
6946       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6947 
6948       // There is no longer a Value* corresponding to this operand.
6949       OpInfo.CallOperandVal = nullptr;
6950 
6951       // It is now an indirect operand.
6952       OpInfo.isIndirect = true;
6953     }
6954 
6955     // If this constraint is for a specific register, allocate it before
6956     // anything else.
6957     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6958       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6959   }
6960 
6961   // Third pass - Loop over all of the operands, assigning virtual or physregs
6962   // to register class operands.
6963   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6964     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6965 
6966     // C_Register operands have already been allocated, Other/Memory don't need
6967     // to be.
6968     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6969       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6970   }
6971 
6972   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6973   std::vector<SDValue> AsmNodeOperands;
6974   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6975   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6976       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6977 
6978   // If we have a !srcloc metadata node associated with it, we want to attach
6979   // this to the ultimately generated inline asm machineinstr.  To do this, we
6980   // pass in the third operand as this (potentially null) inline asm MDNode.
6981   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6982   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6983 
6984   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6985   // bits as operand 3.
6986   AsmNodeOperands.push_back(DAG.getTargetConstant(
6987       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6988 
6989   // Loop over all of the inputs, copying the operand values into the
6990   // appropriate registers and processing the output regs.
6991   RegsForValue RetValRegs;
6992 
6993   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6994   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6995 
6996   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6997     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6998 
6999     switch (OpInfo.Type) {
7000     case InlineAsm::isOutput: {
7001       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7002           OpInfo.ConstraintType != TargetLowering::C_Register) {
7003         // Memory output, or 'other' output (e.g. 'X' constraint).
7004         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7005 
7006         unsigned ConstraintID =
7007             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7008         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7009                "Failed to convert memory constraint code to constraint id.");
7010 
7011         // Add information to the INLINEASM node to know about this output.
7012         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7013         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7014         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7015                                                         MVT::i32));
7016         AsmNodeOperands.push_back(OpInfo.CallOperand);
7017         break;
7018       }
7019 
7020       // Otherwise, this is a register or register class output.
7021 
7022       // Copy the output from the appropriate register.  Find a register that
7023       // we can use.
7024       if (OpInfo.AssignedRegs.Regs.empty()) {
7025         emitInlineAsmError(
7026             CS, "couldn't allocate output register for constraint '" +
7027                     Twine(OpInfo.ConstraintCode) + "'");
7028         return;
7029       }
7030 
7031       // If this is an indirect operand, store through the pointer after the
7032       // asm.
7033       if (OpInfo.isIndirect) {
7034         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7035                                                       OpInfo.CallOperandVal));
7036       } else {
7037         // This is the result value of the call.
7038         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7039         // Concatenate this output onto the outputs list.
7040         RetValRegs.append(OpInfo.AssignedRegs);
7041       }
7042 
7043       // Add information to the INLINEASM node to know that this register is
7044       // set.
7045       OpInfo.AssignedRegs
7046           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7047                                     ? InlineAsm::Kind_RegDefEarlyClobber
7048                                     : InlineAsm::Kind_RegDef,
7049                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7050       break;
7051     }
7052     case InlineAsm::isInput: {
7053       SDValue InOperandVal = OpInfo.CallOperand;
7054 
7055       if (OpInfo.isMatchingInputConstraint()) {
7056         // If this is required to match an output register we have already set,
7057         // just use its register.
7058         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7059                                                   AsmNodeOperands);
7060         unsigned OpFlag =
7061           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7062         if (InlineAsm::isRegDefKind(OpFlag) ||
7063             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7064           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7065           if (OpInfo.isIndirect) {
7066             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7067             emitInlineAsmError(CS, "inline asm not supported yet:"
7068                                    " don't know how to handle tied "
7069                                    "indirect register inputs");
7070             return;
7071           }
7072 
7073           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7074           SmallVector<unsigned, 4> Regs;
7075 
7076           if (!createVirtualRegs(Regs,
7077                                  InlineAsm::getNumOperandRegisters(OpFlag),
7078                                  RegVT, DAG)) {
7079             emitInlineAsmError(CS, "inline asm error: This value type register "
7080                                    "class is not natively supported!");
7081             return;
7082           }
7083 
7084           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7085 
7086           SDLoc dl = getCurSDLoc();
7087           // Use the produced MatchedRegs object to
7088           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7089                                     Chain, &Flag, CS.getInstruction());
7090           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7091                                            true, OpInfo.getMatchedOperand(), dl,
7092                                            DAG, AsmNodeOperands);
7093           break;
7094         }
7095 
7096         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7097         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7098                "Unexpected number of operands");
7099         // Add information to the INLINEASM node to know about this input.
7100         // See InlineAsm.h isUseOperandTiedToDef.
7101         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7102         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7103                                                     OpInfo.getMatchedOperand());
7104         AsmNodeOperands.push_back(DAG.getTargetConstant(
7105             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7106         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7107         break;
7108       }
7109 
7110       // Treat indirect 'X' constraint as memory.
7111       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7112           OpInfo.isIndirect)
7113         OpInfo.ConstraintType = TargetLowering::C_Memory;
7114 
7115       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7116         std::vector<SDValue> Ops;
7117         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7118                                           Ops, DAG);
7119         if (Ops.empty()) {
7120           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7121                                      Twine(OpInfo.ConstraintCode) + "'");
7122           return;
7123         }
7124 
7125         // Add information to the INLINEASM node to know about this input.
7126         unsigned ResOpType =
7127           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7128         AsmNodeOperands.push_back(DAG.getTargetConstant(
7129             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7130         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7131         break;
7132       }
7133 
7134       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7135         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7136         assert(InOperandVal.getValueType() ==
7137                    TLI.getPointerTy(DAG.getDataLayout()) &&
7138                "Memory operands expect pointer values");
7139 
7140         unsigned ConstraintID =
7141             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7142         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7143                "Failed to convert memory constraint code to constraint id.");
7144 
7145         // Add information to the INLINEASM node to know about this input.
7146         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7147         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7148         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7149                                                         getCurSDLoc(),
7150                                                         MVT::i32));
7151         AsmNodeOperands.push_back(InOperandVal);
7152         break;
7153       }
7154 
7155       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7156               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7157              "Unknown constraint type!");
7158 
7159       // TODO: Support this.
7160       if (OpInfo.isIndirect) {
7161         emitInlineAsmError(
7162             CS, "Don't know how to handle indirect register inputs yet "
7163                 "for constraint '" +
7164                     Twine(OpInfo.ConstraintCode) + "'");
7165         return;
7166       }
7167 
7168       // Copy the input into the appropriate registers.
7169       if (OpInfo.AssignedRegs.Regs.empty()) {
7170         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7171                                    Twine(OpInfo.ConstraintCode) + "'");
7172         return;
7173       }
7174 
7175       SDLoc dl = getCurSDLoc();
7176 
7177       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7178                                         Chain, &Flag, CS.getInstruction());
7179 
7180       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7181                                                dl, DAG, AsmNodeOperands);
7182       break;
7183     }
7184     case InlineAsm::isClobber: {
7185       // Add the clobbered value to the operand list, so that the register
7186       // allocator is aware that the physreg got clobbered.
7187       if (!OpInfo.AssignedRegs.Regs.empty())
7188         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7189                                                  false, 0, getCurSDLoc(), DAG,
7190                                                  AsmNodeOperands);
7191       break;
7192     }
7193     }
7194   }
7195 
7196   // Finish up input operands.  Set the input chain and add the flag last.
7197   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7198   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7199 
7200   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7201                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7202   Flag = Chain.getValue(1);
7203 
7204   // If this asm returns a register value, copy the result from that register
7205   // and set it as the value of the call.
7206   if (!RetValRegs.Regs.empty()) {
7207     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7208                                              Chain, &Flag, CS.getInstruction());
7209 
7210     // FIXME: Why don't we do this for inline asms with MRVs?
7211     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7212       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7213 
7214       // If any of the results of the inline asm is a vector, it may have the
7215       // wrong width/num elts.  This can happen for register classes that can
7216       // contain multiple different value types.  The preg or vreg allocated may
7217       // not have the same VT as was expected.  Convert it to the right type
7218       // with bit_convert.
7219       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7220         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7221                           ResultType, Val);
7222 
7223       } else if (ResultType != Val.getValueType() &&
7224                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7225         // If a result value was tied to an input value, the computed result may
7226         // have a wider width than the expected result.  Extract the relevant
7227         // portion.
7228         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7229       }
7230 
7231       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7232     }
7233 
7234     setValue(CS.getInstruction(), Val);
7235     // Don't need to use this as a chain in this case.
7236     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7237       return;
7238   }
7239 
7240   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7241 
7242   // Process indirect outputs, first output all of the flagged copies out of
7243   // physregs.
7244   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7245     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7246     const Value *Ptr = IndirectStoresToEmit[i].second;
7247     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7248                                              Chain, &Flag, IA);
7249     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7250   }
7251 
7252   // Emit the non-flagged stores from the physregs.
7253   SmallVector<SDValue, 8> OutChains;
7254   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7255     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7256                                getValue(StoresToEmit[i].second),
7257                                MachinePointerInfo(StoresToEmit[i].second));
7258     OutChains.push_back(Val);
7259   }
7260 
7261   if (!OutChains.empty())
7262     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7263 
7264   DAG.setRoot(Chain);
7265 }
7266 
7267 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7268                                              const Twine &Message) {
7269   LLVMContext &Ctx = *DAG.getContext();
7270   Ctx.emitError(CS.getInstruction(), Message);
7271 
7272   // Make sure we leave the DAG in a valid state
7273   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7274   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7275   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7276 }
7277 
7278 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7279   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7280                           MVT::Other, getRoot(),
7281                           getValue(I.getArgOperand(0)),
7282                           DAG.getSrcValue(I.getArgOperand(0))));
7283 }
7284 
7285 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7286   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7287   const DataLayout &DL = DAG.getDataLayout();
7288   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7289                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7290                            DAG.getSrcValue(I.getOperand(0)),
7291                            DL.getABITypeAlignment(I.getType()));
7292   setValue(&I, V);
7293   DAG.setRoot(V.getValue(1));
7294 }
7295 
7296 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7297   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7298                           MVT::Other, getRoot(),
7299                           getValue(I.getArgOperand(0)),
7300                           DAG.getSrcValue(I.getArgOperand(0))));
7301 }
7302 
7303 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7304   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7305                           MVT::Other, getRoot(),
7306                           getValue(I.getArgOperand(0)),
7307                           getValue(I.getArgOperand(1)),
7308                           DAG.getSrcValue(I.getArgOperand(0)),
7309                           DAG.getSrcValue(I.getArgOperand(1))));
7310 }
7311 
7312 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7313                                                     const Instruction &I,
7314                                                     SDValue Op) {
7315   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7316   if (!Range)
7317     return Op;
7318 
7319   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7320   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7321     return Op;
7322 
7323   APInt Lo = CR.getUnsignedMin();
7324   if (!Lo.isMinValue())
7325     return Op;
7326 
7327   APInt Hi = CR.getUnsignedMax();
7328   unsigned Bits = Hi.getActiveBits();
7329 
7330   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7331 
7332   SDLoc SL = getCurSDLoc();
7333 
7334   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7335                              DAG.getValueType(SmallVT));
7336   unsigned NumVals = Op.getNode()->getNumValues();
7337   if (NumVals == 1)
7338     return ZExt;
7339 
7340   SmallVector<SDValue, 4> Ops;
7341 
7342   Ops.push_back(ZExt);
7343   for (unsigned I = 1; I != NumVals; ++I)
7344     Ops.push_back(Op.getValue(I));
7345 
7346   return DAG.getMergeValues(Ops, SL);
7347 }
7348 
7349 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7350 /// the call being lowered.
7351 ///
7352 /// This is a helper for lowering intrinsics that follow a target calling
7353 /// convention or require stack pointer adjustment. Only a subset of the
7354 /// intrinsic's operands need to participate in the calling convention.
7355 void SelectionDAGBuilder::populateCallLoweringInfo(
7356     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7357     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7358     bool IsPatchPoint) {
7359   TargetLowering::ArgListTy Args;
7360   Args.reserve(NumArgs);
7361 
7362   // Populate the argument list.
7363   // Attributes for args start at offset 1, after the return attribute.
7364   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7365        ArgI != ArgE; ++ArgI) {
7366     const Value *V = CS->getOperand(ArgI);
7367 
7368     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7369 
7370     TargetLowering::ArgListEntry Entry;
7371     Entry.Node = getValue(V);
7372     Entry.Ty = V->getType();
7373     Entry.setAttributes(&CS, ArgIdx);
7374     Args.push_back(Entry);
7375   }
7376 
7377   CLI.setDebugLoc(getCurSDLoc())
7378       .setChain(getRoot())
7379       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7380       .setDiscardResult(CS->use_empty())
7381       .setIsPatchPoint(IsPatchPoint);
7382 }
7383 
7384 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7385 /// or patchpoint target node's operand list.
7386 ///
7387 /// Constants are converted to TargetConstants purely as an optimization to
7388 /// avoid constant materialization and register allocation.
7389 ///
7390 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7391 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7392 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7393 /// address materialization and register allocation, but may also be required
7394 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7395 /// alloca in the entry block, then the runtime may assume that the alloca's
7396 /// StackMap location can be read immediately after compilation and that the
7397 /// location is valid at any point during execution (this is similar to the
7398 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7399 /// only available in a register, then the runtime would need to trap when
7400 /// execution reaches the StackMap in order to read the alloca's location.
7401 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7402                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7403                                 SelectionDAGBuilder &Builder) {
7404   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7405     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7406     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7407       Ops.push_back(
7408         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7409       Ops.push_back(
7410         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7411     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7412       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7413       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7414           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
7415     } else
7416       Ops.push_back(OpVal);
7417   }
7418 }
7419 
7420 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7421 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7422   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7423   //                                  [live variables...])
7424 
7425   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7426 
7427   SDValue Chain, InFlag, Callee, NullPtr;
7428   SmallVector<SDValue, 32> Ops;
7429 
7430   SDLoc DL = getCurSDLoc();
7431   Callee = getValue(CI.getCalledValue());
7432   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7433 
7434   // The stackmap intrinsic only records the live variables (the arguemnts
7435   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7436   // intrinsic, this won't be lowered to a function call. This means we don't
7437   // have to worry about calling conventions and target specific lowering code.
7438   // Instead we perform the call lowering right here.
7439   //
7440   // chain, flag = CALLSEQ_START(chain, 0, 0)
7441   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7442   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7443   //
7444   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
7445   InFlag = Chain.getValue(1);
7446 
7447   // Add the <id> and <numBytes> constants.
7448   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7449   Ops.push_back(DAG.getTargetConstant(
7450                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7451   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7452   Ops.push_back(DAG.getTargetConstant(
7453                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7454                   MVT::i32));
7455 
7456   // Push live variables for the stack map.
7457   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7458 
7459   // We are not pushing any register mask info here on the operands list,
7460   // because the stackmap doesn't clobber anything.
7461 
7462   // Push the chain and the glue flag.
7463   Ops.push_back(Chain);
7464   Ops.push_back(InFlag);
7465 
7466   // Create the STACKMAP node.
7467   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7468   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7469   Chain = SDValue(SM, 0);
7470   InFlag = Chain.getValue(1);
7471 
7472   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7473 
7474   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7475 
7476   // Set the root to the target-lowered call chain.
7477   DAG.setRoot(Chain);
7478 
7479   // Inform the Frame Information that we have a stackmap in this function.
7480   FuncInfo.MF->getFrameInfo().setHasStackMap();
7481 }
7482 
7483 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7484 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7485                                           const BasicBlock *EHPadBB) {
7486   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7487   //                                                 i32 <numBytes>,
7488   //                                                 i8* <target>,
7489   //                                                 i32 <numArgs>,
7490   //                                                 [Args...],
7491   //                                                 [live variables...])
7492 
7493   CallingConv::ID CC = CS.getCallingConv();
7494   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7495   bool HasDef = !CS->getType()->isVoidTy();
7496   SDLoc dl = getCurSDLoc();
7497   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7498 
7499   // Handle immediate and symbolic callees.
7500   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7501     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7502                                    /*isTarget=*/true);
7503   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7504     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7505                                          SDLoc(SymbolicCallee),
7506                                          SymbolicCallee->getValueType(0));
7507 
7508   // Get the real number of arguments participating in the call <numArgs>
7509   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7510   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7511 
7512   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7513   // Intrinsics include all meta-operands up to but not including CC.
7514   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7515   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7516          "Not enough arguments provided to the patchpoint intrinsic");
7517 
7518   // For AnyRegCC the arguments are lowered later on manually.
7519   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7520   Type *ReturnTy =
7521     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7522 
7523   TargetLowering::CallLoweringInfo CLI(DAG);
7524   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7525                            true);
7526   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7527 
7528   SDNode *CallEnd = Result.second.getNode();
7529   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7530     CallEnd = CallEnd->getOperand(0).getNode();
7531 
7532   /// Get a call instruction from the call sequence chain.
7533   /// Tail calls are not allowed.
7534   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7535          "Expected a callseq node.");
7536   SDNode *Call = CallEnd->getOperand(0).getNode();
7537   bool HasGlue = Call->getGluedNode();
7538 
7539   // Replace the target specific call node with the patchable intrinsic.
7540   SmallVector<SDValue, 8> Ops;
7541 
7542   // Add the <id> and <numBytes> constants.
7543   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7544   Ops.push_back(DAG.getTargetConstant(
7545                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7546   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7547   Ops.push_back(DAG.getTargetConstant(
7548                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7549                   MVT::i32));
7550 
7551   // Add the callee.
7552   Ops.push_back(Callee);
7553 
7554   // Adjust <numArgs> to account for any arguments that have been passed on the
7555   // stack instead.
7556   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7557   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7558   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7559   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7560 
7561   // Add the calling convention
7562   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7563 
7564   // Add the arguments we omitted previously. The register allocator should
7565   // place these in any free register.
7566   if (IsAnyRegCC)
7567     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7568       Ops.push_back(getValue(CS.getArgument(i)));
7569 
7570   // Push the arguments from the call instruction up to the register mask.
7571   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7572   Ops.append(Call->op_begin() + 2, e);
7573 
7574   // Push live variables for the stack map.
7575   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7576 
7577   // Push the register mask info.
7578   if (HasGlue)
7579     Ops.push_back(*(Call->op_end()-2));
7580   else
7581     Ops.push_back(*(Call->op_end()-1));
7582 
7583   // Push the chain (this is originally the first operand of the call, but
7584   // becomes now the last or second to last operand).
7585   Ops.push_back(*(Call->op_begin()));
7586 
7587   // Push the glue flag (last operand).
7588   if (HasGlue)
7589     Ops.push_back(*(Call->op_end()-1));
7590 
7591   SDVTList NodeTys;
7592   if (IsAnyRegCC && HasDef) {
7593     // Create the return types based on the intrinsic definition
7594     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7595     SmallVector<EVT, 3> ValueVTs;
7596     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7597     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7598 
7599     // There is always a chain and a glue type at the end
7600     ValueVTs.push_back(MVT::Other);
7601     ValueVTs.push_back(MVT::Glue);
7602     NodeTys = DAG.getVTList(ValueVTs);
7603   } else
7604     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7605 
7606   // Replace the target specific call node with a PATCHPOINT node.
7607   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7608                                          dl, NodeTys, Ops);
7609 
7610   // Update the NodeMap.
7611   if (HasDef) {
7612     if (IsAnyRegCC)
7613       setValue(CS.getInstruction(), SDValue(MN, 0));
7614     else
7615       setValue(CS.getInstruction(), Result.first);
7616   }
7617 
7618   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7619   // call sequence. Furthermore the location of the chain and glue can change
7620   // when the AnyReg calling convention is used and the intrinsic returns a
7621   // value.
7622   if (IsAnyRegCC && HasDef) {
7623     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7624     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7625     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7626   } else
7627     DAG.ReplaceAllUsesWith(Call, MN);
7628   DAG.DeleteNode(Call);
7629 
7630   // Inform the Frame Information that we have a patchpoint in this function.
7631   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7632 }
7633 
7634 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
7635                                             unsigned Intrinsic) {
7636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7637   SDValue Op1 = getValue(I.getArgOperand(0));
7638   SDValue Op2;
7639   if (I.getNumArgOperands() > 1)
7640     Op2 = getValue(I.getArgOperand(1));
7641   SDLoc dl = getCurSDLoc();
7642   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7643   SDValue Res;
7644   FastMathFlags FMF;
7645   if (isa<FPMathOperator>(I))
7646     FMF = I.getFastMathFlags();
7647   SDNodeFlags SDFlags;
7648   SDFlags.setNoNaNs(FMF.noNaNs());
7649 
7650   switch (Intrinsic) {
7651   case Intrinsic::experimental_vector_reduce_fadd:
7652     if (FMF.unsafeAlgebra())
7653       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
7654     else
7655       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
7656     break;
7657   case Intrinsic::experimental_vector_reduce_fmul:
7658     if (FMF.unsafeAlgebra())
7659       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
7660     else
7661       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
7662     break;
7663   case Intrinsic::experimental_vector_reduce_add:
7664     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
7665     break;
7666   case Intrinsic::experimental_vector_reduce_mul:
7667     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
7668     break;
7669   case Intrinsic::experimental_vector_reduce_and:
7670     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
7671     break;
7672   case Intrinsic::experimental_vector_reduce_or:
7673     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
7674     break;
7675   case Intrinsic::experimental_vector_reduce_xor:
7676     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
7677     break;
7678   case Intrinsic::experimental_vector_reduce_smax:
7679     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
7680     break;
7681   case Intrinsic::experimental_vector_reduce_smin:
7682     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
7683     break;
7684   case Intrinsic::experimental_vector_reduce_umax:
7685     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
7686     break;
7687   case Intrinsic::experimental_vector_reduce_umin:
7688     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
7689     break;
7690   case Intrinsic::experimental_vector_reduce_fmax: {
7691     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
7692     break;
7693   }
7694   case Intrinsic::experimental_vector_reduce_fmin: {
7695     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
7696     break;
7697   }
7698   default:
7699     llvm_unreachable("Unhandled vector reduce intrinsic");
7700   }
7701   setValue(&I, Res);
7702 }
7703 
7704 /// Returns an AttributeList representing the attributes applied to the return
7705 /// value of the given call.
7706 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7707   SmallVector<Attribute::AttrKind, 2> Attrs;
7708   if (CLI.RetSExt)
7709     Attrs.push_back(Attribute::SExt);
7710   if (CLI.RetZExt)
7711     Attrs.push_back(Attribute::ZExt);
7712   if (CLI.IsInReg)
7713     Attrs.push_back(Attribute::InReg);
7714 
7715   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
7716                             Attrs);
7717 }
7718 
7719 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7720 /// implementation, which just calls LowerCall.
7721 /// FIXME: When all targets are
7722 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7723 std::pair<SDValue, SDValue>
7724 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7725   // Handle the incoming return values from the call.
7726   CLI.Ins.clear();
7727   Type *OrigRetTy = CLI.RetTy;
7728   SmallVector<EVT, 4> RetTys;
7729   SmallVector<uint64_t, 4> Offsets;
7730   auto &DL = CLI.DAG.getDataLayout();
7731   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7732 
7733   SmallVector<ISD::OutputArg, 4> Outs;
7734   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7735 
7736   bool CanLowerReturn =
7737       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7738                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7739 
7740   SDValue DemoteStackSlot;
7741   int DemoteStackIdx = -100;
7742   if (!CanLowerReturn) {
7743     // FIXME: equivalent assert?
7744     // assert(!CS.hasInAllocaArgument() &&
7745     //        "sret demotion is incompatible with inalloca");
7746     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7747     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7748     MachineFunction &MF = CLI.DAG.getMachineFunction();
7749     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7750     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7751 
7752     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
7753     ArgListEntry Entry;
7754     Entry.Node = DemoteStackSlot;
7755     Entry.Ty = StackSlotPtrType;
7756     Entry.IsSExt = false;
7757     Entry.IsZExt = false;
7758     Entry.IsInReg = false;
7759     Entry.IsSRet = true;
7760     Entry.IsNest = false;
7761     Entry.IsByVal = false;
7762     Entry.IsReturned = false;
7763     Entry.IsSwiftSelf = false;
7764     Entry.IsSwiftError = false;
7765     Entry.Alignment = Align;
7766     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7767     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7768 
7769     // sret demotion isn't compatible with tail-calls, since the sret argument
7770     // points into the callers stack frame.
7771     CLI.IsTailCall = false;
7772   } else {
7773     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7774       EVT VT = RetTys[I];
7775       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7776       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7777       for (unsigned i = 0; i != NumRegs; ++i) {
7778         ISD::InputArg MyFlags;
7779         MyFlags.VT = RegisterVT;
7780         MyFlags.ArgVT = VT;
7781         MyFlags.Used = CLI.IsReturnValueUsed;
7782         if (CLI.RetSExt)
7783           MyFlags.Flags.setSExt();
7784         if (CLI.RetZExt)
7785           MyFlags.Flags.setZExt();
7786         if (CLI.IsInReg)
7787           MyFlags.Flags.setInReg();
7788         CLI.Ins.push_back(MyFlags);
7789       }
7790     }
7791   }
7792 
7793   // We push in swifterror return as the last element of CLI.Ins.
7794   ArgListTy &Args = CLI.getArgs();
7795   if (supportSwiftError()) {
7796     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7797       if (Args[i].IsSwiftError) {
7798         ISD::InputArg MyFlags;
7799         MyFlags.VT = getPointerTy(DL);
7800         MyFlags.ArgVT = EVT(getPointerTy(DL));
7801         MyFlags.Flags.setSwiftError();
7802         CLI.Ins.push_back(MyFlags);
7803       }
7804     }
7805   }
7806 
7807   // Handle all of the outgoing arguments.
7808   CLI.Outs.clear();
7809   CLI.OutVals.clear();
7810   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7811     SmallVector<EVT, 4> ValueVTs;
7812     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7813     Type *FinalType = Args[i].Ty;
7814     if (Args[i].IsByVal)
7815       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7816     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7817         FinalType, CLI.CallConv, CLI.IsVarArg);
7818     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7819          ++Value) {
7820       EVT VT = ValueVTs[Value];
7821       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7822       SDValue Op = SDValue(Args[i].Node.getNode(),
7823                            Args[i].Node.getResNo() + Value);
7824       ISD::ArgFlagsTy Flags;
7825       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7826 
7827       if (Args[i].IsZExt)
7828         Flags.setZExt();
7829       if (Args[i].IsSExt)
7830         Flags.setSExt();
7831       if (Args[i].IsInReg) {
7832         // If we are using vectorcall calling convention, a structure that is
7833         // passed InReg - is surely an HVA
7834         if (CLI.CallConv == CallingConv::X86_VectorCall &&
7835             isa<StructType>(FinalType)) {
7836           // The first value of a structure is marked
7837           if (0 == Value)
7838             Flags.setHvaStart();
7839           Flags.setHva();
7840         }
7841         // Set InReg Flag
7842         Flags.setInReg();
7843       }
7844       if (Args[i].IsSRet)
7845         Flags.setSRet();
7846       if (Args[i].IsSwiftSelf)
7847         Flags.setSwiftSelf();
7848       if (Args[i].IsSwiftError)
7849         Flags.setSwiftError();
7850       if (Args[i].IsByVal)
7851         Flags.setByVal();
7852       if (Args[i].IsInAlloca) {
7853         Flags.setInAlloca();
7854         // Set the byval flag for CCAssignFn callbacks that don't know about
7855         // inalloca.  This way we can know how many bytes we should've allocated
7856         // and how many bytes a callee cleanup function will pop.  If we port
7857         // inalloca to more targets, we'll have to add custom inalloca handling
7858         // in the various CC lowering callbacks.
7859         Flags.setByVal();
7860       }
7861       if (Args[i].IsByVal || Args[i].IsInAlloca) {
7862         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7863         Type *ElementTy = Ty->getElementType();
7864         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7865         // For ByVal, alignment should come from FE.  BE will guess if this
7866         // info is not there but there are cases it cannot get right.
7867         unsigned FrameAlign;
7868         if (Args[i].Alignment)
7869           FrameAlign = Args[i].Alignment;
7870         else
7871           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7872         Flags.setByValAlign(FrameAlign);
7873       }
7874       if (Args[i].IsNest)
7875         Flags.setNest();
7876       if (NeedsRegBlock)
7877         Flags.setInConsecutiveRegs();
7878       Flags.setOrigAlign(OriginalAlignment);
7879 
7880       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7881       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7882       SmallVector<SDValue, 4> Parts(NumParts);
7883       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7884 
7885       if (Args[i].IsSExt)
7886         ExtendKind = ISD::SIGN_EXTEND;
7887       else if (Args[i].IsZExt)
7888         ExtendKind = ISD::ZERO_EXTEND;
7889 
7890       // Conservatively only handle 'returned' on non-vectors for now
7891       if (Args[i].IsReturned && !Op.getValueType().isVector()) {
7892         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7893                "unexpected use of 'returned'");
7894         // Before passing 'returned' to the target lowering code, ensure that
7895         // either the register MVT and the actual EVT are the same size or that
7896         // the return value and argument are extended in the same way; in these
7897         // cases it's safe to pass the argument register value unchanged as the
7898         // return register value (although it's at the target's option whether
7899         // to do so)
7900         // TODO: allow code generation to take advantage of partially preserved
7901         // registers rather than clobbering the entire register when the
7902         // parameter extension method is not compatible with the return
7903         // extension method
7904         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7905             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
7906              CLI.RetZExt == Args[i].IsZExt))
7907           Flags.setReturned();
7908       }
7909 
7910       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7911                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7912 
7913       for (unsigned j = 0; j != NumParts; ++j) {
7914         // if it isn't first piece, alignment must be 1
7915         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7916                                i < CLI.NumFixedArgs,
7917                                i, j*Parts[j].getValueType().getStoreSize());
7918         if (NumParts > 1 && j == 0)
7919           MyFlags.Flags.setSplit();
7920         else if (j != 0) {
7921           MyFlags.Flags.setOrigAlign(1);
7922           if (j == NumParts - 1)
7923             MyFlags.Flags.setSplitEnd();
7924         }
7925 
7926         CLI.Outs.push_back(MyFlags);
7927         CLI.OutVals.push_back(Parts[j]);
7928       }
7929 
7930       if (NeedsRegBlock && Value == NumValues - 1)
7931         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7932     }
7933   }
7934 
7935   SmallVector<SDValue, 4> InVals;
7936   CLI.Chain = LowerCall(CLI, InVals);
7937 
7938   // Update CLI.InVals to use outside of this function.
7939   CLI.InVals = InVals;
7940 
7941   // Verify that the target's LowerCall behaved as expected.
7942   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7943          "LowerCall didn't return a valid chain!");
7944   assert((!CLI.IsTailCall || InVals.empty()) &&
7945          "LowerCall emitted a return value for a tail call!");
7946   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7947          "LowerCall didn't emit the correct number of values!");
7948 
7949   // For a tail call, the return value is merely live-out and there aren't
7950   // any nodes in the DAG representing it. Return a special value to
7951   // indicate that a tail call has been emitted and no more Instructions
7952   // should be processed in the current block.
7953   if (CLI.IsTailCall) {
7954     CLI.DAG.setRoot(CLI.Chain);
7955     return std::make_pair(SDValue(), SDValue());
7956   }
7957 
7958 #ifndef NDEBUG
7959   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7960     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7961     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7962            "LowerCall emitted a value with the wrong type!");
7963   }
7964 #endif
7965 
7966   SmallVector<SDValue, 4> ReturnValues;
7967   if (!CanLowerReturn) {
7968     // The instruction result is the result of loading from the
7969     // hidden sret parameter.
7970     SmallVector<EVT, 1> PVTs;
7971     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7972 
7973     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7974     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7975     EVT PtrVT = PVTs[0];
7976 
7977     unsigned NumValues = RetTys.size();
7978     ReturnValues.resize(NumValues);
7979     SmallVector<SDValue, 4> Chains(NumValues);
7980 
7981     // An aggregate return value cannot wrap around the address space, so
7982     // offsets to its parts don't wrap either.
7983     SDNodeFlags Flags;
7984     Flags.setNoUnsignedWrap(true);
7985 
7986     for (unsigned i = 0; i < NumValues; ++i) {
7987       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7988                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7989                                                         PtrVT), Flags);
7990       SDValue L = CLI.DAG.getLoad(
7991           RetTys[i], CLI.DL, CLI.Chain, Add,
7992           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7993                                             DemoteStackIdx, Offsets[i]),
7994           /* Alignment = */ 1);
7995       ReturnValues[i] = L;
7996       Chains[i] = L.getValue(1);
7997     }
7998 
7999     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8000   } else {
8001     // Collect the legal value parts into potentially illegal values
8002     // that correspond to the original function's return values.
8003     Optional<ISD::NodeType> AssertOp;
8004     if (CLI.RetSExt)
8005       AssertOp = ISD::AssertSext;
8006     else if (CLI.RetZExt)
8007       AssertOp = ISD::AssertZext;
8008     unsigned CurReg = 0;
8009     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8010       EVT VT = RetTys[I];
8011       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
8012       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
8013 
8014       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8015                                               NumRegs, RegisterVT, VT, nullptr,
8016                                               AssertOp));
8017       CurReg += NumRegs;
8018     }
8019 
8020     // For a function returning void, there is no return value. We can't create
8021     // such a node, so we just return a null return value in that case. In
8022     // that case, nothing will actually look at the value.
8023     if (ReturnValues.empty())
8024       return std::make_pair(SDValue(), CLI.Chain);
8025   }
8026 
8027   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8028                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8029   return std::make_pair(Res, CLI.Chain);
8030 }
8031 
8032 void TargetLowering::LowerOperationWrapper(SDNode *N,
8033                                            SmallVectorImpl<SDValue> &Results,
8034                                            SelectionDAG &DAG) const {
8035   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8036     Results.push_back(Res);
8037 }
8038 
8039 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8040   llvm_unreachable("LowerOperation not implemented for this target!");
8041 }
8042 
8043 void
8044 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8045   SDValue Op = getNonRegisterValue(V);
8046   assert((Op.getOpcode() != ISD::CopyFromReg ||
8047           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8048          "Copy from a reg to the same reg!");
8049   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8050 
8051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8052   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8053                    V->getType());
8054   SDValue Chain = DAG.getEntryNode();
8055 
8056   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8057                               FuncInfo.PreferredExtendType.end())
8058                                  ? ISD::ANY_EXTEND
8059                                  : FuncInfo.PreferredExtendType[V];
8060   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8061   PendingExports.push_back(Chain);
8062 }
8063 
8064 #include "llvm/CodeGen/SelectionDAGISel.h"
8065 
8066 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8067 /// entry block, return true.  This includes arguments used by switches, since
8068 /// the switch may expand into multiple basic blocks.
8069 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8070   // With FastISel active, we may be splitting blocks, so force creation
8071   // of virtual registers for all non-dead arguments.
8072   if (FastISel)
8073     return A->use_empty();
8074 
8075   const BasicBlock &Entry = A->getParent()->front();
8076   for (const User *U : A->users())
8077     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8078       return false;  // Use not in entry block.
8079 
8080   return true;
8081 }
8082 
8083 typedef DenseMap<const Argument *,
8084                  std::pair<const AllocaInst *, const StoreInst *>>
8085     ArgCopyElisionMapTy;
8086 
8087 /// Scan the entry block of the function in FuncInfo for arguments that look
8088 /// like copies into a local alloca. Record any copied arguments in
8089 /// ArgCopyElisionCandidates.
8090 static void
8091 findArgumentCopyElisionCandidates(const DataLayout &DL,
8092                                   FunctionLoweringInfo *FuncInfo,
8093                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8094   // Record the state of every static alloca used in the entry block. Argument
8095   // allocas are all used in the entry block, so we need approximately as many
8096   // entries as we have arguments.
8097   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8098   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8099   unsigned NumArgs = FuncInfo->Fn->arg_size();
8100   StaticAllocas.reserve(NumArgs * 2);
8101 
8102   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8103     if (!V)
8104       return nullptr;
8105     V = V->stripPointerCasts();
8106     const auto *AI = dyn_cast<AllocaInst>(V);
8107     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8108       return nullptr;
8109     auto Iter = StaticAllocas.insert({AI, Unknown});
8110     return &Iter.first->second;
8111   };
8112 
8113   // Look for stores of arguments to static allocas. Look through bitcasts and
8114   // GEPs to handle type coercions, as long as the alloca is fully initialized
8115   // by the store. Any non-store use of an alloca escapes it and any subsequent
8116   // unanalyzed store might write it.
8117   // FIXME: Handle structs initialized with multiple stores.
8118   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8119     // Look for stores, and handle non-store uses conservatively.
8120     const auto *SI = dyn_cast<StoreInst>(&I);
8121     if (!SI) {
8122       // We will look through cast uses, so ignore them completely.
8123       if (I.isCast())
8124         continue;
8125       // Ignore debug info intrinsics, they don't escape or store to allocas.
8126       if (isa<DbgInfoIntrinsic>(I))
8127         continue;
8128       // This is an unknown instruction. Assume it escapes or writes to all
8129       // static alloca operands.
8130       for (const Use &U : I.operands()) {
8131         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8132           *Info = StaticAllocaInfo::Clobbered;
8133       }
8134       continue;
8135     }
8136 
8137     // If the stored value is a static alloca, mark it as escaped.
8138     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8139       *Info = StaticAllocaInfo::Clobbered;
8140 
8141     // Check if the destination is a static alloca.
8142     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8143     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8144     if (!Info)
8145       continue;
8146     const AllocaInst *AI = cast<AllocaInst>(Dst);
8147 
8148     // Skip allocas that have been initialized or clobbered.
8149     if (*Info != StaticAllocaInfo::Unknown)
8150       continue;
8151 
8152     // Check if the stored value is an argument, and that this store fully
8153     // initializes the alloca. Don't elide copies from the same argument twice.
8154     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8155     const auto *Arg = dyn_cast<Argument>(Val);
8156     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8157         Arg->getType()->isEmptyTy() ||
8158         DL.getTypeStoreSize(Arg->getType()) !=
8159             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8160         ArgCopyElisionCandidates.count(Arg)) {
8161       *Info = StaticAllocaInfo::Clobbered;
8162       continue;
8163     }
8164 
8165     DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n');
8166 
8167     // Mark this alloca and store for argument copy elision.
8168     *Info = StaticAllocaInfo::Elidable;
8169     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8170 
8171     // Stop scanning if we've seen all arguments. This will happen early in -O0
8172     // builds, which is useful, because -O0 builds have large entry blocks and
8173     // many allocas.
8174     if (ArgCopyElisionCandidates.size() == NumArgs)
8175       break;
8176   }
8177 }
8178 
8179 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8180 /// ArgVal is a load from a suitable fixed stack object.
8181 static void tryToElideArgumentCopy(
8182     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8183     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8184     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8185     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8186     SDValue ArgVal, bool &ArgHasUses) {
8187   // Check if this is a load from a fixed stack object.
8188   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8189   if (!LNode)
8190     return;
8191   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8192   if (!FINode)
8193     return;
8194 
8195   // Check that the fixed stack object is the right size and alignment.
8196   // Look at the alignment that the user wrote on the alloca instead of looking
8197   // at the stack object.
8198   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8199   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8200   const AllocaInst *AI = ArgCopyIter->second.first;
8201   int FixedIndex = FINode->getIndex();
8202   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8203   int OldIndex = AllocaIndex;
8204   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8205   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8206     DEBUG(dbgs() << "  argument copy elision failed due to bad fixed stack "
8207                     "object size\n");
8208     return;
8209   }
8210   unsigned RequiredAlignment = AI->getAlignment();
8211   if (!RequiredAlignment) {
8212     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8213         AI->getAllocatedType());
8214   }
8215   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8216     DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8217                     "greater than stack argument alignment ("
8218                  << RequiredAlignment << " vs "
8219                  << MFI.getObjectAlignment(FixedIndex) << ")\n");
8220     return;
8221   }
8222 
8223   // Perform the elision. Delete the old stack object and replace its only use
8224   // in the variable info map. Mark the stack object as mutable.
8225   DEBUG({
8226     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8227            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8228            << '\n';
8229   });
8230   MFI.RemoveStackObject(OldIndex);
8231   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8232   AllocaIndex = FixedIndex;
8233   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8234   Chains.push_back(ArgVal.getValue(1));
8235 
8236   // Avoid emitting code for the store implementing the copy.
8237   const StoreInst *SI = ArgCopyIter->second.second;
8238   ElidedArgCopyInstrs.insert(SI);
8239 
8240   // Check for uses of the argument again so that we can avoid exporting ArgVal
8241   // if it is't used by anything other than the store.
8242   for (const Value *U : Arg.users()) {
8243     if (U != SI) {
8244       ArgHasUses = true;
8245       break;
8246     }
8247   }
8248 }
8249 
8250 void SelectionDAGISel::LowerArguments(const Function &F) {
8251   SelectionDAG &DAG = SDB->DAG;
8252   SDLoc dl = SDB->getCurSDLoc();
8253   const DataLayout &DL = DAG.getDataLayout();
8254   SmallVector<ISD::InputArg, 16> Ins;
8255 
8256   if (!FuncInfo->CanLowerReturn) {
8257     // Put in an sret pointer parameter before all the other parameters.
8258     SmallVector<EVT, 1> ValueVTs;
8259     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8260                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8261 
8262     // NOTE: Assuming that a pointer will never break down to more than one VT
8263     // or one register.
8264     ISD::ArgFlagsTy Flags;
8265     Flags.setSRet();
8266     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8267     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8268                          ISD::InputArg::NoArgIndex, 0);
8269     Ins.push_back(RetArg);
8270   }
8271 
8272   // Look for stores of arguments to static allocas. Mark such arguments with a
8273   // flag to ask the target to give us the memory location of that argument if
8274   // available.
8275   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8276   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8277 
8278   // Set up the incoming argument description vector.
8279   for (const Argument &Arg : F.args()) {
8280     unsigned ArgNo = Arg.getArgNo();
8281     SmallVector<EVT, 4> ValueVTs;
8282     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8283     bool isArgValueUsed = !Arg.use_empty();
8284     unsigned PartBase = 0;
8285     Type *FinalType = Arg.getType();
8286     if (Arg.hasAttribute(Attribute::ByVal))
8287       FinalType = cast<PointerType>(FinalType)->getElementType();
8288     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8289         FinalType, F.getCallingConv(), F.isVarArg());
8290     for (unsigned Value = 0, NumValues = ValueVTs.size();
8291          Value != NumValues; ++Value) {
8292       EVT VT = ValueVTs[Value];
8293       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8294       ISD::ArgFlagsTy Flags;
8295       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
8296 
8297       if (Arg.hasAttribute(Attribute::ZExt))
8298         Flags.setZExt();
8299       if (Arg.hasAttribute(Attribute::SExt))
8300         Flags.setSExt();
8301       if (Arg.hasAttribute(Attribute::InReg)) {
8302         // If we are using vectorcall calling convention, a structure that is
8303         // passed InReg - is surely an HVA
8304         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8305             isa<StructType>(Arg.getType())) {
8306           // The first value of a structure is marked
8307           if (0 == Value)
8308             Flags.setHvaStart();
8309           Flags.setHva();
8310         }
8311         // Set InReg Flag
8312         Flags.setInReg();
8313       }
8314       if (Arg.hasAttribute(Attribute::StructRet))
8315         Flags.setSRet();
8316       if (Arg.hasAttribute(Attribute::SwiftSelf))
8317         Flags.setSwiftSelf();
8318       if (Arg.hasAttribute(Attribute::SwiftError))
8319         Flags.setSwiftError();
8320       if (Arg.hasAttribute(Attribute::ByVal))
8321         Flags.setByVal();
8322       if (Arg.hasAttribute(Attribute::InAlloca)) {
8323         Flags.setInAlloca();
8324         // Set the byval flag for CCAssignFn callbacks that don't know about
8325         // inalloca.  This way we can know how many bytes we should've allocated
8326         // and how many bytes a callee cleanup function will pop.  If we port
8327         // inalloca to more targets, we'll have to add custom inalloca handling
8328         // in the various CC lowering callbacks.
8329         Flags.setByVal();
8330       }
8331       if (F.getCallingConv() == CallingConv::X86_INTR) {
8332         // IA Interrupt passes frame (1st parameter) by value in the stack.
8333         if (ArgNo == 0)
8334           Flags.setByVal();
8335       }
8336       if (Flags.isByVal() || Flags.isInAlloca()) {
8337         PointerType *Ty = cast<PointerType>(Arg.getType());
8338         Type *ElementTy = Ty->getElementType();
8339         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8340         // For ByVal, alignment should be passed from FE.  BE will guess if
8341         // this info is not there but there are cases it cannot get right.
8342         unsigned FrameAlign;
8343         if (Arg.getParamAlignment())
8344           FrameAlign = Arg.getParamAlignment();
8345         else
8346           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8347         Flags.setByValAlign(FrameAlign);
8348       }
8349       if (Arg.hasAttribute(Attribute::Nest))
8350         Flags.setNest();
8351       if (NeedsRegBlock)
8352         Flags.setInConsecutiveRegs();
8353       Flags.setOrigAlign(OriginalAlignment);
8354       if (ArgCopyElisionCandidates.count(&Arg))
8355         Flags.setCopyElisionCandidate();
8356 
8357       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8358       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8359       for (unsigned i = 0; i != NumRegs; ++i) {
8360         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8361                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
8362         if (NumRegs > 1 && i == 0)
8363           MyFlags.Flags.setSplit();
8364         // if it isn't first piece, alignment must be 1
8365         else if (i > 0) {
8366           MyFlags.Flags.setOrigAlign(1);
8367           if (i == NumRegs - 1)
8368             MyFlags.Flags.setSplitEnd();
8369         }
8370         Ins.push_back(MyFlags);
8371       }
8372       if (NeedsRegBlock && Value == NumValues - 1)
8373         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8374       PartBase += VT.getStoreSize();
8375     }
8376   }
8377 
8378   // Call the target to set up the argument values.
8379   SmallVector<SDValue, 8> InVals;
8380   SDValue NewRoot = TLI->LowerFormalArguments(
8381       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8382 
8383   // Verify that the target's LowerFormalArguments behaved as expected.
8384   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8385          "LowerFormalArguments didn't return a valid chain!");
8386   assert(InVals.size() == Ins.size() &&
8387          "LowerFormalArguments didn't emit the correct number of values!");
8388   DEBUG({
8389       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8390         assert(InVals[i].getNode() &&
8391                "LowerFormalArguments emitted a null value!");
8392         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8393                "LowerFormalArguments emitted a value with the wrong type!");
8394       }
8395     });
8396 
8397   // Update the DAG with the new chain value resulting from argument lowering.
8398   DAG.setRoot(NewRoot);
8399 
8400   // Set up the argument values.
8401   unsigned i = 0;
8402   if (!FuncInfo->CanLowerReturn) {
8403     // Create a virtual register for the sret pointer, and put in a copy
8404     // from the sret argument into it.
8405     SmallVector<EVT, 1> ValueVTs;
8406     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8407                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8408     MVT VT = ValueVTs[0].getSimpleVT();
8409     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8410     Optional<ISD::NodeType> AssertOp = None;
8411     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8412                                         RegVT, VT, nullptr, AssertOp);
8413 
8414     MachineFunction& MF = SDB->DAG.getMachineFunction();
8415     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8416     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8417     FuncInfo->DemoteRegister = SRetReg;
8418     NewRoot =
8419         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8420     DAG.setRoot(NewRoot);
8421 
8422     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8423     ++i;
8424   }
8425 
8426   SmallVector<SDValue, 4> Chains;
8427   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
8428   for (const Argument &Arg : F.args()) {
8429     SmallVector<SDValue, 4> ArgValues;
8430     SmallVector<EVT, 4> ValueVTs;
8431     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8432     unsigned NumValues = ValueVTs.size();
8433     if (NumValues == 0)
8434       continue;
8435 
8436     bool ArgHasUses = !Arg.use_empty();
8437 
8438     // Elide the copying store if the target loaded this argument from a
8439     // suitable fixed stack object.
8440     if (Ins[i].Flags.isCopyElisionCandidate()) {
8441       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
8442                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
8443                              InVals[i], ArgHasUses);
8444     }
8445 
8446     // If this argument is unused then remember its value. It is used to generate
8447     // debugging information.
8448     bool isSwiftErrorArg =
8449         TLI->supportSwiftError() &&
8450         Arg.hasAttribute(Attribute::SwiftError);
8451     if (!ArgHasUses && !isSwiftErrorArg) {
8452       SDB->setUnusedArgValue(&Arg, InVals[i]);
8453 
8454       // Also remember any frame index for use in FastISel.
8455       if (FrameIndexSDNode *FI =
8456           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8457         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8458     }
8459 
8460     for (unsigned Val = 0; Val != NumValues; ++Val) {
8461       EVT VT = ValueVTs[Val];
8462       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8463       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8464 
8465       // Even an apparant 'unused' swifterror argument needs to be returned. So
8466       // we do generate a copy for it that can be used on return from the
8467       // function.
8468       if (ArgHasUses || isSwiftErrorArg) {
8469         Optional<ISD::NodeType> AssertOp;
8470         if (Arg.hasAttribute(Attribute::SExt))
8471           AssertOp = ISD::AssertSext;
8472         else if (Arg.hasAttribute(Attribute::ZExt))
8473           AssertOp = ISD::AssertZext;
8474 
8475         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
8476                                              PartVT, VT, nullptr, AssertOp));
8477       }
8478 
8479       i += NumParts;
8480     }
8481 
8482     // We don't need to do anything else for unused arguments.
8483     if (ArgValues.empty())
8484       continue;
8485 
8486     // Note down frame index.
8487     if (FrameIndexSDNode *FI =
8488         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8489       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8490 
8491     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8492                                      SDB->getCurSDLoc());
8493 
8494     SDB->setValue(&Arg, Res);
8495     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8496       if (LoadSDNode *LNode =
8497           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8498         if (FrameIndexSDNode *FI =
8499             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8500         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
8501     }
8502 
8503     // Update the SwiftErrorVRegDefMap.
8504     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8505       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8506       if (TargetRegisterInfo::isVirtualRegister(Reg))
8507         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8508                                            FuncInfo->SwiftErrorArg, Reg);
8509     }
8510 
8511     // If this argument is live outside of the entry block, insert a copy from
8512     // wherever we got it to the vreg that other BB's will reference it as.
8513     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8514       // If we can, though, try to skip creating an unnecessary vreg.
8515       // FIXME: This isn't very clean... it would be nice to make this more
8516       // general.  It's also subtly incompatible with the hacks FastISel
8517       // uses with vregs.
8518       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8519       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8520         FuncInfo->ValueMap[&Arg] = Reg;
8521         continue;
8522       }
8523     }
8524     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
8525       FuncInfo->InitializeRegForValue(&Arg);
8526       SDB->CopyToExportRegsIfNeeded(&Arg);
8527     }
8528   }
8529 
8530   if (!Chains.empty()) {
8531     Chains.push_back(NewRoot);
8532     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
8533   }
8534 
8535   DAG.setRoot(NewRoot);
8536 
8537   assert(i == InVals.size() && "Argument register count mismatch!");
8538 
8539   // If any argument copy elisions occurred and we have debug info, update the
8540   // stale frame indices used in the dbg.declare variable info table.
8541   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
8542   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
8543     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
8544       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
8545       if (I != ArgCopyElisionFrameIndexMap.end())
8546         VI.Slot = I->second;
8547     }
8548   }
8549 
8550   // Finally, if the target has anything special to do, allow it to do so.
8551   EmitFunctionEntryCode();
8552 }
8553 
8554 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8555 /// ensure constants are generated when needed.  Remember the virtual registers
8556 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8557 /// directly add them, because expansion might result in multiple MBB's for one
8558 /// BB.  As such, the start of the BB might correspond to a different MBB than
8559 /// the end.
8560 ///
8561 void
8562 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8563   const TerminatorInst *TI = LLVMBB->getTerminator();
8564 
8565   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8566 
8567   // Check PHI nodes in successors that expect a value to be available from this
8568   // block.
8569   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8570     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8571     if (!isa<PHINode>(SuccBB->begin())) continue;
8572     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8573 
8574     // If this terminator has multiple identical successors (common for
8575     // switches), only handle each succ once.
8576     if (!SuccsHandled.insert(SuccMBB).second)
8577       continue;
8578 
8579     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8580 
8581     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8582     // nodes and Machine PHI nodes, but the incoming operands have not been
8583     // emitted yet.
8584     for (BasicBlock::const_iterator I = SuccBB->begin();
8585          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8586       // Ignore dead phi's.
8587       if (PN->use_empty()) continue;
8588 
8589       // Skip empty types
8590       if (PN->getType()->isEmptyTy())
8591         continue;
8592 
8593       unsigned Reg;
8594       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8595 
8596       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8597         unsigned &RegOut = ConstantsOut[C];
8598         if (RegOut == 0) {
8599           RegOut = FuncInfo.CreateRegs(C->getType());
8600           CopyValueToVirtualRegister(C, RegOut);
8601         }
8602         Reg = RegOut;
8603       } else {
8604         DenseMap<const Value *, unsigned>::iterator I =
8605           FuncInfo.ValueMap.find(PHIOp);
8606         if (I != FuncInfo.ValueMap.end())
8607           Reg = I->second;
8608         else {
8609           assert(isa<AllocaInst>(PHIOp) &&
8610                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8611                  "Didn't codegen value into a register!??");
8612           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8613           CopyValueToVirtualRegister(PHIOp, Reg);
8614         }
8615       }
8616 
8617       // Remember that this register needs to added to the machine PHI node as
8618       // the input for this MBB.
8619       SmallVector<EVT, 4> ValueVTs;
8620       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8621       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8622       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8623         EVT VT = ValueVTs[vti];
8624         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8625         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8626           FuncInfo.PHINodesToUpdate.push_back(
8627               std::make_pair(&*MBBI++, Reg + i));
8628         Reg += NumRegisters;
8629       }
8630     }
8631   }
8632 
8633   ConstantsOut.clear();
8634 }
8635 
8636 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8637 /// is 0.
8638 MachineBasicBlock *
8639 SelectionDAGBuilder::StackProtectorDescriptor::
8640 AddSuccessorMBB(const BasicBlock *BB,
8641                 MachineBasicBlock *ParentMBB,
8642                 bool IsLikely,
8643                 MachineBasicBlock *SuccMBB) {
8644   // If SuccBB has not been created yet, create it.
8645   if (!SuccMBB) {
8646     MachineFunction *MF = ParentMBB->getParent();
8647     MachineFunction::iterator BBI(ParentMBB);
8648     SuccMBB = MF->CreateMachineBasicBlock(BB);
8649     MF->insert(++BBI, SuccMBB);
8650   }
8651   // Add it as a successor of ParentMBB.
8652   ParentMBB->addSuccessor(
8653       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8654   return SuccMBB;
8655 }
8656 
8657 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8658   MachineFunction::iterator I(MBB);
8659   if (++I == FuncInfo.MF->end())
8660     return nullptr;
8661   return &*I;
8662 }
8663 
8664 /// During lowering new call nodes can be created (such as memset, etc.).
8665 /// Those will become new roots of the current DAG, but complications arise
8666 /// when they are tail calls. In such cases, the call lowering will update
8667 /// the root, but the builder still needs to know that a tail call has been
8668 /// lowered in order to avoid generating an additional return.
8669 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8670   // If the node is null, we do have a tail call.
8671   if (MaybeTC.getNode() != nullptr)
8672     DAG.setRoot(MaybeTC);
8673   else
8674     HasTailCall = true;
8675 }
8676 
8677 uint64_t
8678 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
8679                                        unsigned First, unsigned Last) const {
8680   assert(Last >= First);
8681   const APInt &LowCase = Clusters[First].Low->getValue();
8682   const APInt &HighCase = Clusters[Last].High->getValue();
8683   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8684 
8685   // FIXME: A range of consecutive cases has 100% density, but only requires one
8686   // comparison to lower. We should discriminate against such consecutive ranges
8687   // in jump tables.
8688 
8689   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
8690 }
8691 
8692 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
8693     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
8694     unsigned Last) const {
8695   assert(Last >= First);
8696   assert(TotalCases[Last] >= TotalCases[First]);
8697   uint64_t NumCases =
8698       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8699   return NumCases;
8700 }
8701 
8702 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8703                                          unsigned First, unsigned Last,
8704                                          const SwitchInst *SI,
8705                                          MachineBasicBlock *DefaultMBB,
8706                                          CaseCluster &JTCluster) {
8707   assert(First <= Last);
8708 
8709   auto Prob = BranchProbability::getZero();
8710   unsigned NumCmps = 0;
8711   std::vector<MachineBasicBlock*> Table;
8712   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8713 
8714   // Initialize probabilities in JTProbs.
8715   for (unsigned I = First; I <= Last; ++I)
8716     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8717 
8718   for (unsigned I = First; I <= Last; ++I) {
8719     assert(Clusters[I].Kind == CC_Range);
8720     Prob += Clusters[I].Prob;
8721     const APInt &Low = Clusters[I].Low->getValue();
8722     const APInt &High = Clusters[I].High->getValue();
8723     NumCmps += (Low == High) ? 1 : 2;
8724     if (I != First) {
8725       // Fill the gap between this and the previous cluster.
8726       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8727       assert(PreviousHigh.slt(Low));
8728       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8729       for (uint64_t J = 0; J < Gap; J++)
8730         Table.push_back(DefaultMBB);
8731     }
8732     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8733     for (uint64_t J = 0; J < ClusterSize; ++J)
8734       Table.push_back(Clusters[I].MBB);
8735     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8736   }
8737 
8738   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8739   unsigned NumDests = JTProbs.size();
8740   if (TLI.isSuitableForBitTests(
8741           NumDests, NumCmps, Clusters[First].Low->getValue(),
8742           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
8743     // Clusters[First..Last] should be lowered as bit tests instead.
8744     return false;
8745   }
8746 
8747   // Create the MBB that will load from and jump through the table.
8748   // Note: We create it here, but it's not inserted into the function yet.
8749   MachineFunction *CurMF = FuncInfo.MF;
8750   MachineBasicBlock *JumpTableMBB =
8751       CurMF->CreateMachineBasicBlock(SI->getParent());
8752 
8753   // Add successors. Note: use table order for determinism.
8754   SmallPtrSet<MachineBasicBlock *, 8> Done;
8755   for (MachineBasicBlock *Succ : Table) {
8756     if (Done.count(Succ))
8757       continue;
8758     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8759     Done.insert(Succ);
8760   }
8761   JumpTableMBB->normalizeSuccProbs();
8762 
8763   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8764                      ->createJumpTableIndex(Table);
8765 
8766   // Set up the jump table info.
8767   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8768   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8769                       Clusters[Last].High->getValue(), SI->getCondition(),
8770                       nullptr, false);
8771   JTCases.emplace_back(std::move(JTH), std::move(JT));
8772 
8773   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8774                                      JTCases.size() - 1, Prob);
8775   return true;
8776 }
8777 
8778 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8779                                          const SwitchInst *SI,
8780                                          MachineBasicBlock *DefaultMBB) {
8781 #ifndef NDEBUG
8782   // Clusters must be non-empty, sorted, and only contain Range clusters.
8783   assert(!Clusters.empty());
8784   for (CaseCluster &C : Clusters)
8785     assert(C.Kind == CC_Range);
8786   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8787     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8788 #endif
8789 
8790   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8791   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
8792     return;
8793 
8794   const int64_t N = Clusters.size();
8795   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8796   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8797 
8798   if (N < 2 || N < MinJumpTableEntries)
8799     return;
8800 
8801   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8802   SmallVector<unsigned, 8> TotalCases(N);
8803   for (unsigned i = 0; i < N; ++i) {
8804     const APInt &Hi = Clusters[i].High->getValue();
8805     const APInt &Lo = Clusters[i].Low->getValue();
8806     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8807     if (i != 0)
8808       TotalCases[i] += TotalCases[i - 1];
8809   }
8810 
8811   // Cheap case: the whole range may be suitable for jump table.
8812   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
8813   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
8814   assert(NumCases < UINT64_MAX / 100);
8815   assert(Range >= NumCases);
8816   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
8817     CaseCluster JTCluster;
8818     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8819       Clusters[0] = JTCluster;
8820       Clusters.resize(1);
8821       return;
8822     }
8823   }
8824 
8825   // The algorithm below is not suitable for -O0.
8826   if (TM.getOptLevel() == CodeGenOpt::None)
8827     return;
8828 
8829   // Split Clusters into minimum number of dense partitions. The algorithm uses
8830   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8831   // for the Case Statement'" (1994), but builds the MinPartitions array in
8832   // reverse order to make it easier to reconstruct the partitions in ascending
8833   // order. In the choice between two optimal partitionings, it picks the one
8834   // which yields more jump tables.
8835 
8836   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8837   SmallVector<unsigned, 8> MinPartitions(N);
8838   // LastElement[i] is the last element of the partition starting at i.
8839   SmallVector<unsigned, 8> LastElement(N);
8840   // PartitionsScore[i] is used to break ties when choosing between two
8841   // partitionings resulting in the same number of partitions.
8842   SmallVector<unsigned, 8> PartitionsScore(N);
8843   // For PartitionsScore, a small number of comparisons is considered as good as
8844   // a jump table and a single comparison is considered better than a jump
8845   // table.
8846   enum PartitionScores : unsigned {
8847     NoTable = 0,
8848     Table = 1,
8849     FewCases = 1,
8850     SingleCase = 2
8851   };
8852 
8853   // Base case: There is only one way to partition Clusters[N-1].
8854   MinPartitions[N - 1] = 1;
8855   LastElement[N - 1] = N - 1;
8856   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8857 
8858   // Note: loop indexes are signed to avoid underflow.
8859   for (int64_t i = N - 2; i >= 0; i--) {
8860     // Find optimal partitioning of Clusters[i..N-1].
8861     // Baseline: Put Clusters[i] into a partition on its own.
8862     MinPartitions[i] = MinPartitions[i + 1] + 1;
8863     LastElement[i] = i;
8864     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
8865 
8866     // Search for a solution that results in fewer partitions.
8867     for (int64_t j = N - 1; j > i; j--) {
8868       // Try building a partition from Clusters[i..j].
8869       uint64_t Range = getJumpTableRange(Clusters, i, j);
8870       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
8871       assert(NumCases < UINT64_MAX / 100);
8872       assert(Range >= NumCases);
8873       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
8874         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8875         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
8876         int64_t NumEntries = j - i + 1;
8877 
8878         if (NumEntries == 1)
8879           Score += PartitionScores::SingleCase;
8880         else if (NumEntries <= SmallNumberOfEntries)
8881           Score += PartitionScores::FewCases;
8882         else if (NumEntries >= MinJumpTableEntries)
8883           Score += PartitionScores::Table;
8884 
8885         // If this leads to fewer partitions, or to the same number of
8886         // partitions with better score, it is a better partitioning.
8887         if (NumPartitions < MinPartitions[i] ||
8888             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
8889           MinPartitions[i] = NumPartitions;
8890           LastElement[i] = j;
8891           PartitionsScore[i] = Score;
8892         }
8893       }
8894     }
8895   }
8896 
8897   // Iterate over the partitions, replacing some with jump tables in-place.
8898   unsigned DstIndex = 0;
8899   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8900     Last = LastElement[First];
8901     assert(Last >= First);
8902     assert(DstIndex <= First);
8903     unsigned NumClusters = Last - First + 1;
8904 
8905     CaseCluster JTCluster;
8906     if (NumClusters >= MinJumpTableEntries &&
8907         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8908       Clusters[DstIndex++] = JTCluster;
8909     } else {
8910       for (unsigned I = First; I <= Last; ++I)
8911         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8912     }
8913   }
8914   Clusters.resize(DstIndex);
8915 }
8916 
8917 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8918                                         unsigned First, unsigned Last,
8919                                         const SwitchInst *SI,
8920                                         CaseCluster &BTCluster) {
8921   assert(First <= Last);
8922   if (First == Last)
8923     return false;
8924 
8925   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8926   unsigned NumCmps = 0;
8927   for (int64_t I = First; I <= Last; ++I) {
8928     assert(Clusters[I].Kind == CC_Range);
8929     Dests.set(Clusters[I].MBB->getNumber());
8930     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8931   }
8932   unsigned NumDests = Dests.count();
8933 
8934   APInt Low = Clusters[First].Low->getValue();
8935   APInt High = Clusters[Last].High->getValue();
8936   assert(Low.slt(High));
8937 
8938   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8939   const DataLayout &DL = DAG.getDataLayout();
8940   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
8941     return false;
8942 
8943   APInt LowBound;
8944   APInt CmpRange;
8945 
8946   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
8947   assert(TLI.rangeFitsInWord(Low, High, DL) &&
8948          "Case range must fit in bit mask!");
8949 
8950   // Check if the clusters cover a contiguous range such that no value in the
8951   // range will jump to the default statement.
8952   bool ContiguousRange = true;
8953   for (int64_t I = First + 1; I <= Last; ++I) {
8954     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8955       ContiguousRange = false;
8956       break;
8957     }
8958   }
8959 
8960   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8961     // Optimize the case where all the case values fit in a word without having
8962     // to subtract minValue. In this case, we can optimize away the subtraction.
8963     LowBound = APInt::getNullValue(Low.getBitWidth());
8964     CmpRange = High;
8965     ContiguousRange = false;
8966   } else {
8967     LowBound = Low;
8968     CmpRange = High - Low;
8969   }
8970 
8971   CaseBitsVector CBV;
8972   auto TotalProb = BranchProbability::getZero();
8973   for (unsigned i = First; i <= Last; ++i) {
8974     // Find the CaseBits for this destination.
8975     unsigned j;
8976     for (j = 0; j < CBV.size(); ++j)
8977       if (CBV[j].BB == Clusters[i].MBB)
8978         break;
8979     if (j == CBV.size())
8980       CBV.push_back(
8981           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8982     CaseBits *CB = &CBV[j];
8983 
8984     // Update Mask, Bits and ExtraProb.
8985     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8986     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8987     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8988     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8989     CB->Bits += Hi - Lo + 1;
8990     CB->ExtraProb += Clusters[i].Prob;
8991     TotalProb += Clusters[i].Prob;
8992   }
8993 
8994   BitTestInfo BTI;
8995   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8996     // Sort by probability first, number of bits second.
8997     if (a.ExtraProb != b.ExtraProb)
8998       return a.ExtraProb > b.ExtraProb;
8999     return a.Bits > b.Bits;
9000   });
9001 
9002   for (auto &CB : CBV) {
9003     MachineBasicBlock *BitTestBB =
9004         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9005     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9006   }
9007   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9008                             SI->getCondition(), -1U, MVT::Other, false,
9009                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9010                             TotalProb);
9011 
9012   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9013                                     BitTestCases.size() - 1, TotalProb);
9014   return true;
9015 }
9016 
9017 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9018                                               const SwitchInst *SI) {
9019 // Partition Clusters into as few subsets as possible, where each subset has a
9020 // range that fits in a machine word and has <= 3 unique destinations.
9021 
9022 #ifndef NDEBUG
9023   // Clusters must be sorted and contain Range or JumpTable clusters.
9024   assert(!Clusters.empty());
9025   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9026   for (const CaseCluster &C : Clusters)
9027     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9028   for (unsigned i = 1; i < Clusters.size(); ++i)
9029     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9030 #endif
9031 
9032   // The algorithm below is not suitable for -O0.
9033   if (TM.getOptLevel() == CodeGenOpt::None)
9034     return;
9035 
9036   // If target does not have legal shift left, do not emit bit tests at all.
9037   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9038   const DataLayout &DL = DAG.getDataLayout();
9039 
9040   EVT PTy = TLI.getPointerTy(DL);
9041   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9042     return;
9043 
9044   int BitWidth = PTy.getSizeInBits();
9045   const int64_t N = Clusters.size();
9046 
9047   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9048   SmallVector<unsigned, 8> MinPartitions(N);
9049   // LastElement[i] is the last element of the partition starting at i.
9050   SmallVector<unsigned, 8> LastElement(N);
9051 
9052   // FIXME: This might not be the best algorithm for finding bit test clusters.
9053 
9054   // Base case: There is only one way to partition Clusters[N-1].
9055   MinPartitions[N - 1] = 1;
9056   LastElement[N - 1] = N - 1;
9057 
9058   // Note: loop indexes are signed to avoid underflow.
9059   for (int64_t i = N - 2; i >= 0; --i) {
9060     // Find optimal partitioning of Clusters[i..N-1].
9061     // Baseline: Put Clusters[i] into a partition on its own.
9062     MinPartitions[i] = MinPartitions[i + 1] + 1;
9063     LastElement[i] = i;
9064 
9065     // Search for a solution that results in fewer partitions.
9066     // Note: the search is limited by BitWidth, reducing time complexity.
9067     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9068       // Try building a partition from Clusters[i..j].
9069 
9070       // Check the range.
9071       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9072                                Clusters[j].High->getValue(), DL))
9073         continue;
9074 
9075       // Check nbr of destinations and cluster types.
9076       // FIXME: This works, but doesn't seem very efficient.
9077       bool RangesOnly = true;
9078       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9079       for (int64_t k = i; k <= j; k++) {
9080         if (Clusters[k].Kind != CC_Range) {
9081           RangesOnly = false;
9082           break;
9083         }
9084         Dests.set(Clusters[k].MBB->getNumber());
9085       }
9086       if (!RangesOnly || Dests.count() > 3)
9087         break;
9088 
9089       // Check if it's a better partition.
9090       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9091       if (NumPartitions < MinPartitions[i]) {
9092         // Found a better partition.
9093         MinPartitions[i] = NumPartitions;
9094         LastElement[i] = j;
9095       }
9096     }
9097   }
9098 
9099   // Iterate over the partitions, replacing with bit-test clusters in-place.
9100   unsigned DstIndex = 0;
9101   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9102     Last = LastElement[First];
9103     assert(First <= Last);
9104     assert(DstIndex <= First);
9105 
9106     CaseCluster BitTestCluster;
9107     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9108       Clusters[DstIndex++] = BitTestCluster;
9109     } else {
9110       size_t NumClusters = Last - First + 1;
9111       std::memmove(&Clusters[DstIndex], &Clusters[First],
9112                    sizeof(Clusters[0]) * NumClusters);
9113       DstIndex += NumClusters;
9114     }
9115   }
9116   Clusters.resize(DstIndex);
9117 }
9118 
9119 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9120                                         MachineBasicBlock *SwitchMBB,
9121                                         MachineBasicBlock *DefaultMBB) {
9122   MachineFunction *CurMF = FuncInfo.MF;
9123   MachineBasicBlock *NextMBB = nullptr;
9124   MachineFunction::iterator BBI(W.MBB);
9125   if (++BBI != FuncInfo.MF->end())
9126     NextMBB = &*BBI;
9127 
9128   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9129 
9130   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9131 
9132   if (Size == 2 && W.MBB == SwitchMBB) {
9133     // If any two of the cases has the same destination, and if one value
9134     // is the same as the other, but has one bit unset that the other has set,
9135     // use bit manipulation to do two compares at once.  For example:
9136     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9137     // TODO: This could be extended to merge any 2 cases in switches with 3
9138     // cases.
9139     // TODO: Handle cases where W.CaseBB != SwitchBB.
9140     CaseCluster &Small = *W.FirstCluster;
9141     CaseCluster &Big = *W.LastCluster;
9142 
9143     if (Small.Low == Small.High && Big.Low == Big.High &&
9144         Small.MBB == Big.MBB) {
9145       const APInt &SmallValue = Small.Low->getValue();
9146       const APInt &BigValue = Big.Low->getValue();
9147 
9148       // Check that there is only one bit different.
9149       APInt CommonBit = BigValue ^ SmallValue;
9150       if (CommonBit.isPowerOf2()) {
9151         SDValue CondLHS = getValue(Cond);
9152         EVT VT = CondLHS.getValueType();
9153         SDLoc DL = getCurSDLoc();
9154 
9155         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9156                                  DAG.getConstant(CommonBit, DL, VT));
9157         SDValue Cond = DAG.getSetCC(
9158             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9159             ISD::SETEQ);
9160 
9161         // Update successor info.
9162         // Both Small and Big will jump to Small.BB, so we sum up the
9163         // probabilities.
9164         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9165         if (BPI)
9166           addSuccessorWithProb(
9167               SwitchMBB, DefaultMBB,
9168               // The default destination is the first successor in IR.
9169               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9170         else
9171           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9172 
9173         // Insert the true branch.
9174         SDValue BrCond =
9175             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9176                         DAG.getBasicBlock(Small.MBB));
9177         // Insert the false branch.
9178         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9179                              DAG.getBasicBlock(DefaultMBB));
9180 
9181         DAG.setRoot(BrCond);
9182         return;
9183       }
9184     }
9185   }
9186 
9187   if (TM.getOptLevel() != CodeGenOpt::None) {
9188     // Order cases by probability so the most likely case will be checked first.
9189     std::sort(W.FirstCluster, W.LastCluster + 1,
9190               [](const CaseCluster &a, const CaseCluster &b) {
9191       return a.Prob > b.Prob;
9192     });
9193 
9194     // Rearrange the case blocks so that the last one falls through if possible
9195     // without without changing the order of probabilities.
9196     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9197       --I;
9198       if (I->Prob > W.LastCluster->Prob)
9199         break;
9200       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9201         std::swap(*I, *W.LastCluster);
9202         break;
9203       }
9204     }
9205   }
9206 
9207   // Compute total probability.
9208   BranchProbability DefaultProb = W.DefaultProb;
9209   BranchProbability UnhandledProbs = DefaultProb;
9210   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9211     UnhandledProbs += I->Prob;
9212 
9213   MachineBasicBlock *CurMBB = W.MBB;
9214   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9215     MachineBasicBlock *Fallthrough;
9216     if (I == W.LastCluster) {
9217       // For the last cluster, fall through to the default destination.
9218       Fallthrough = DefaultMBB;
9219     } else {
9220       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9221       CurMF->insert(BBI, Fallthrough);
9222       // Put Cond in a virtual register to make it available from the new blocks.
9223       ExportFromCurrentBlock(Cond);
9224     }
9225     UnhandledProbs -= I->Prob;
9226 
9227     switch (I->Kind) {
9228       case CC_JumpTable: {
9229         // FIXME: Optimize away range check based on pivot comparisons.
9230         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9231         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9232 
9233         // The jump block hasn't been inserted yet; insert it here.
9234         MachineBasicBlock *JumpMBB = JT->MBB;
9235         CurMF->insert(BBI, JumpMBB);
9236 
9237         auto JumpProb = I->Prob;
9238         auto FallthroughProb = UnhandledProbs;
9239 
9240         // If the default statement is a target of the jump table, we evenly
9241         // distribute the default probability to successors of CurMBB. Also
9242         // update the probability on the edge from JumpMBB to Fallthrough.
9243         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9244                                               SE = JumpMBB->succ_end();
9245              SI != SE; ++SI) {
9246           if (*SI == DefaultMBB) {
9247             JumpProb += DefaultProb / 2;
9248             FallthroughProb -= DefaultProb / 2;
9249             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9250             JumpMBB->normalizeSuccProbs();
9251             break;
9252           }
9253         }
9254 
9255         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9256         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9257         CurMBB->normalizeSuccProbs();
9258 
9259         // The jump table header will be inserted in our current block, do the
9260         // range check, and fall through to our fallthrough block.
9261         JTH->HeaderBB = CurMBB;
9262         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9263 
9264         // If we're in the right place, emit the jump table header right now.
9265         if (CurMBB == SwitchMBB) {
9266           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9267           JTH->Emitted = true;
9268         }
9269         break;
9270       }
9271       case CC_BitTests: {
9272         // FIXME: Optimize away range check based on pivot comparisons.
9273         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9274 
9275         // The bit test blocks haven't been inserted yet; insert them here.
9276         for (BitTestCase &BTC : BTB->Cases)
9277           CurMF->insert(BBI, BTC.ThisBB);
9278 
9279         // Fill in fields of the BitTestBlock.
9280         BTB->Parent = CurMBB;
9281         BTB->Default = Fallthrough;
9282 
9283         BTB->DefaultProb = UnhandledProbs;
9284         // If the cases in bit test don't form a contiguous range, we evenly
9285         // distribute the probability on the edge to Fallthrough to two
9286         // successors of CurMBB.
9287         if (!BTB->ContiguousRange) {
9288           BTB->Prob += DefaultProb / 2;
9289           BTB->DefaultProb -= DefaultProb / 2;
9290         }
9291 
9292         // If we're in the right place, emit the bit test header right now.
9293         if (CurMBB == SwitchMBB) {
9294           visitBitTestHeader(*BTB, SwitchMBB);
9295           BTB->Emitted = true;
9296         }
9297         break;
9298       }
9299       case CC_Range: {
9300         const Value *RHS, *LHS, *MHS;
9301         ISD::CondCode CC;
9302         if (I->Low == I->High) {
9303           // Check Cond == I->Low.
9304           CC = ISD::SETEQ;
9305           LHS = Cond;
9306           RHS=I->Low;
9307           MHS = nullptr;
9308         } else {
9309           // Check I->Low <= Cond <= I->High.
9310           CC = ISD::SETLE;
9311           LHS = I->Low;
9312           MHS = Cond;
9313           RHS = I->High;
9314         }
9315 
9316         // The false probability is the sum of all unhandled cases.
9317         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9318                      UnhandledProbs);
9319 
9320         if (CurMBB == SwitchMBB)
9321           visitSwitchCase(CB, SwitchMBB);
9322         else
9323           SwitchCases.push_back(CB);
9324 
9325         break;
9326       }
9327     }
9328     CurMBB = Fallthrough;
9329   }
9330 }
9331 
9332 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9333                                               CaseClusterIt First,
9334                                               CaseClusterIt Last) {
9335   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9336     if (X.Prob != CC.Prob)
9337       return X.Prob > CC.Prob;
9338 
9339     // Ties are broken by comparing the case value.
9340     return X.Low->getValue().slt(CC.Low->getValue());
9341   });
9342 }
9343 
9344 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9345                                         const SwitchWorkListItem &W,
9346                                         Value *Cond,
9347                                         MachineBasicBlock *SwitchMBB) {
9348   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9349          "Clusters not sorted?");
9350 
9351   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9352 
9353   // Balance the tree based on branch probabilities to create a near-optimal (in
9354   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9355   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9356   CaseClusterIt LastLeft = W.FirstCluster;
9357   CaseClusterIt FirstRight = W.LastCluster;
9358   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9359   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9360 
9361   // Move LastLeft and FirstRight towards each other from opposite directions to
9362   // find a partitioning of the clusters which balances the probability on both
9363   // sides. If LeftProb and RightProb are equal, alternate which side is
9364   // taken to ensure 0-probability nodes are distributed evenly.
9365   unsigned I = 0;
9366   while (LastLeft + 1 < FirstRight) {
9367     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9368       LeftProb += (++LastLeft)->Prob;
9369     else
9370       RightProb += (--FirstRight)->Prob;
9371     I++;
9372   }
9373 
9374   for (;;) {
9375     // Our binary search tree differs from a typical BST in that ours can have up
9376     // to three values in each leaf. The pivot selection above doesn't take that
9377     // into account, which means the tree might require more nodes and be less
9378     // efficient. We compensate for this here.
9379 
9380     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9381     unsigned NumRight = W.LastCluster - FirstRight + 1;
9382 
9383     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9384       // If one side has less than 3 clusters, and the other has more than 3,
9385       // consider taking a cluster from the other side.
9386 
9387       if (NumLeft < NumRight) {
9388         // Consider moving the first cluster on the right to the left side.
9389         CaseCluster &CC = *FirstRight;
9390         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9391         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9392         if (LeftSideRank <= RightSideRank) {
9393           // Moving the cluster to the left does not demote it.
9394           ++LastLeft;
9395           ++FirstRight;
9396           continue;
9397         }
9398       } else {
9399         assert(NumRight < NumLeft);
9400         // Consider moving the last element on the left to the right side.
9401         CaseCluster &CC = *LastLeft;
9402         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9403         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9404         if (RightSideRank <= LeftSideRank) {
9405           // Moving the cluster to the right does not demot it.
9406           --LastLeft;
9407           --FirstRight;
9408           continue;
9409         }
9410       }
9411     }
9412     break;
9413   }
9414 
9415   assert(LastLeft + 1 == FirstRight);
9416   assert(LastLeft >= W.FirstCluster);
9417   assert(FirstRight <= W.LastCluster);
9418 
9419   // Use the first element on the right as pivot since we will make less-than
9420   // comparisons against it.
9421   CaseClusterIt PivotCluster = FirstRight;
9422   assert(PivotCluster > W.FirstCluster);
9423   assert(PivotCluster <= W.LastCluster);
9424 
9425   CaseClusterIt FirstLeft = W.FirstCluster;
9426   CaseClusterIt LastRight = W.LastCluster;
9427 
9428   const ConstantInt *Pivot = PivotCluster->Low;
9429 
9430   // New blocks will be inserted immediately after the current one.
9431   MachineFunction::iterator BBI(W.MBB);
9432   ++BBI;
9433 
9434   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9435   // we can branch to its destination directly if it's squeezed exactly in
9436   // between the known lower bound and Pivot - 1.
9437   MachineBasicBlock *LeftMBB;
9438   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9439       FirstLeft->Low == W.GE &&
9440       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9441     LeftMBB = FirstLeft->MBB;
9442   } else {
9443     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9444     FuncInfo.MF->insert(BBI, LeftMBB);
9445     WorkList.push_back(
9446         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9447     // Put Cond in a virtual register to make it available from the new blocks.
9448     ExportFromCurrentBlock(Cond);
9449   }
9450 
9451   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9452   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9453   // directly if RHS.High equals the current upper bound.
9454   MachineBasicBlock *RightMBB;
9455   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9456       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9457     RightMBB = FirstRight->MBB;
9458   } else {
9459     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9460     FuncInfo.MF->insert(BBI, RightMBB);
9461     WorkList.push_back(
9462         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9463     // Put Cond in a virtual register to make it available from the new blocks.
9464     ExportFromCurrentBlock(Cond);
9465   }
9466 
9467   // Create the CaseBlock record that will be used to lower the branch.
9468   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9469                LeftProb, RightProb);
9470 
9471   if (W.MBB == SwitchMBB)
9472     visitSwitchCase(CB, SwitchMBB);
9473   else
9474     SwitchCases.push_back(CB);
9475 }
9476 
9477 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9478   // Extract cases from the switch.
9479   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9480   CaseClusterVector Clusters;
9481   Clusters.reserve(SI.getNumCases());
9482   for (auto I : SI.cases()) {
9483     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9484     const ConstantInt *CaseVal = I.getCaseValue();
9485     BranchProbability Prob =
9486         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9487             : BranchProbability(1, SI.getNumCases() + 1);
9488     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9489   }
9490 
9491   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9492 
9493   // Cluster adjacent cases with the same destination. We do this at all
9494   // optimization levels because it's cheap to do and will make codegen faster
9495   // if there are many clusters.
9496   sortAndRangeify(Clusters);
9497 
9498   if (TM.getOptLevel() != CodeGenOpt::None) {
9499     // Replace an unreachable default with the most popular destination.
9500     // FIXME: Exploit unreachable default more aggressively.
9501     bool UnreachableDefault =
9502         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9503     if (UnreachableDefault && !Clusters.empty()) {
9504       DenseMap<const BasicBlock *, unsigned> Popularity;
9505       unsigned MaxPop = 0;
9506       const BasicBlock *MaxBB = nullptr;
9507       for (auto I : SI.cases()) {
9508         const BasicBlock *BB = I.getCaseSuccessor();
9509         if (++Popularity[BB] > MaxPop) {
9510           MaxPop = Popularity[BB];
9511           MaxBB = BB;
9512         }
9513       }
9514       // Set new default.
9515       assert(MaxPop > 0 && MaxBB);
9516       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9517 
9518       // Remove cases that were pointing to the destination that is now the
9519       // default.
9520       CaseClusterVector New;
9521       New.reserve(Clusters.size());
9522       for (CaseCluster &CC : Clusters) {
9523         if (CC.MBB != DefaultMBB)
9524           New.push_back(CC);
9525       }
9526       Clusters = std::move(New);
9527     }
9528   }
9529 
9530   // If there is only the default destination, jump there directly.
9531   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9532   if (Clusters.empty()) {
9533     SwitchMBB->addSuccessor(DefaultMBB);
9534     if (DefaultMBB != NextBlock(SwitchMBB)) {
9535       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9536                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9537     }
9538     return;
9539   }
9540 
9541   findJumpTables(Clusters, &SI, DefaultMBB);
9542   findBitTestClusters(Clusters, &SI);
9543 
9544   DEBUG({
9545     dbgs() << "Case clusters: ";
9546     for (const CaseCluster &C : Clusters) {
9547       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9548       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9549 
9550       C.Low->getValue().print(dbgs(), true);
9551       if (C.Low != C.High) {
9552         dbgs() << '-';
9553         C.High->getValue().print(dbgs(), true);
9554       }
9555       dbgs() << ' ';
9556     }
9557     dbgs() << '\n';
9558   });
9559 
9560   assert(!Clusters.empty());
9561   SwitchWorkList WorkList;
9562   CaseClusterIt First = Clusters.begin();
9563   CaseClusterIt Last = Clusters.end() - 1;
9564   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9565   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9566 
9567   while (!WorkList.empty()) {
9568     SwitchWorkListItem W = WorkList.back();
9569     WorkList.pop_back();
9570     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9571 
9572     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9573         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9574       // For optimized builds, lower large range as a balanced binary tree.
9575       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9576       continue;
9577     }
9578 
9579     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9580   }
9581 }
9582