1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 590 EVT ValueVT = ValueVTs[Value]; 591 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 592 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 593 for (unsigned i = 0; i != NumRegs; ++i) 594 Regs.push_back(Reg + i); 595 RegVTs.push_back(RegisterVT); 596 Reg += NumRegs; 597 } 598 } 599 600 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 601 /// this value and returns the result as a ValueVT value. This uses 602 /// Chain/Flag as the input and updates them for the output Chain/Flag. 603 /// If the Flag pointer is NULL, no flag is used. 604 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 605 FunctionLoweringInfo &FuncInfo, 606 SDLoc dl, 607 SDValue &Chain, SDValue *Flag, 608 const Value *V) const { 609 // A Value with type {} or [0 x %t] needs no registers. 610 if (ValueVTs.empty()) 611 return SDValue(); 612 613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 614 615 // Assemble the legal parts into the final values. 616 SmallVector<SDValue, 4> Values(ValueVTs.size()); 617 SmallVector<SDValue, 8> Parts; 618 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 // Copy the legal parts from the registers. 620 EVT ValueVT = ValueVTs[Value]; 621 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 622 MVT RegisterVT = RegVTs[Value]; 623 624 Parts.resize(NumRegs); 625 for (unsigned i = 0; i != NumRegs; ++i) { 626 SDValue P; 627 if (!Flag) { 628 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 629 } else { 630 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 631 *Flag = P.getValue(2); 632 } 633 634 Chain = P.getValue(1); 635 Parts[i] = P; 636 637 // If the source register was virtual and if we know something about it, 638 // add an assert node. 639 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 640 !RegisterVT.isInteger() || RegisterVT.isVector()) 641 continue; 642 643 const FunctionLoweringInfo::LiveOutInfo *LOI = 644 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 645 if (!LOI) 646 continue; 647 648 unsigned RegSize = RegisterVT.getSizeInBits(); 649 unsigned NumSignBits = LOI->NumSignBits; 650 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 651 652 if (NumZeroBits == RegSize) { 653 // The current value is a zero. 654 // Explicitly express that as it would be easier for 655 // optimizations to kick in. 656 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 657 continue; 658 } 659 660 // FIXME: We capture more information than the dag can represent. For 661 // now, just use the tightest assertzext/assertsext possible. 662 bool isSExt = true; 663 EVT FromVT(MVT::Other); 664 if (NumSignBits == RegSize) 665 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 666 else if (NumZeroBits >= RegSize-1) 667 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 668 else if (NumSignBits > RegSize-8) 669 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 670 else if (NumZeroBits >= RegSize-8) 671 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 672 else if (NumSignBits > RegSize-16) 673 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 674 else if (NumZeroBits >= RegSize-16) 675 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 676 else if (NumSignBits > RegSize-32) 677 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 678 else if (NumZeroBits >= RegSize-32) 679 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 680 else 681 continue; 682 683 // Add an assertion node. 684 assert(FromVT != MVT::Other); 685 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 686 RegisterVT, P, DAG.getValueType(FromVT)); 687 } 688 689 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 690 NumRegs, RegisterVT, ValueVT, V); 691 Part += NumRegs; 692 Parts.clear(); 693 } 694 695 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 696 } 697 698 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 699 /// specified value into the registers specified by this object. This uses 700 /// Chain/Flag as the input and updates them for the output Chain/Flag. 701 /// If the Flag pointer is NULL, no flag is used. 702 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 703 SDValue &Chain, SDValue *Flag, const Value *V, 704 ISD::NodeType PreferredExtendType) const { 705 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 706 ISD::NodeType ExtendKind = PreferredExtendType; 707 708 // Get the list of the values's legal parts. 709 unsigned NumRegs = Regs.size(); 710 SmallVector<SDValue, 8> Parts(NumRegs); 711 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 712 EVT ValueVT = ValueVTs[Value]; 713 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 714 MVT RegisterVT = RegVTs[Value]; 715 716 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 717 ExtendKind = ISD::ZERO_EXTEND; 718 719 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 720 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 721 Part += NumParts; 722 } 723 724 // Copy the parts into the registers. 725 SmallVector<SDValue, 8> Chains(NumRegs); 726 for (unsigned i = 0; i != NumRegs; ++i) { 727 SDValue Part; 728 if (!Flag) { 729 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 730 } else { 731 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 732 *Flag = Part.getValue(1); 733 } 734 735 Chains[i] = Part.getValue(0); 736 } 737 738 if (NumRegs == 1 || Flag) 739 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 740 // flagged to it. That is the CopyToReg nodes and the user are considered 741 // a single scheduling unit. If we create a TokenFactor and return it as 742 // chain, then the TokenFactor is both a predecessor (operand) of the 743 // user as well as a successor (the TF operands are flagged to the user). 744 // c1, f1 = CopyToReg 745 // c2, f2 = CopyToReg 746 // c3 = TokenFactor c1, c2 747 // ... 748 // = op c3, ..., f2 749 Chain = Chains[NumRegs-1]; 750 else 751 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 752 } 753 754 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 755 /// operand list. This adds the code marker and includes the number of 756 /// values added into it. 757 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 758 unsigned MatchingIdx, SDLoc dl, 759 SelectionDAG &DAG, 760 std::vector<SDValue> &Ops) const { 761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 762 763 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 764 if (HasMatching) 765 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 766 else if (!Regs.empty() && 767 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 768 // Put the register class of the virtual registers in the flag word. That 769 // way, later passes can recompute register class constraints for inline 770 // assembly as well as normal instructions. 771 // Don't do this for tied operands that can use the regclass information 772 // from the def. 773 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 774 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 775 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 776 } 777 778 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 779 Ops.push_back(Res); 780 781 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 782 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 783 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 784 MVT RegisterVT = RegVTs[Value]; 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 787 unsigned TheReg = Regs[Reg++]; 788 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 789 790 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 791 // If we clobbered the stack pointer, MFI should know about it. 792 assert(DAG.getMachineFunction().getFrameInfo()-> 793 hasOpaqueSPAdjustment()); 794 } 795 } 796 } 797 } 798 799 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 800 const TargetLibraryInfo *li) { 801 AA = &aa; 802 GFI = gfi; 803 LibInfo = li; 804 DL = &DAG.getDataLayout(); 805 Context = DAG.getContext(); 806 LPadToCallSiteMap.clear(); 807 } 808 809 /// clear - Clear out the current SelectionDAG and the associated 810 /// state and prepare this SelectionDAGBuilder object to be used 811 /// for a new block. This doesn't clear out information about 812 /// additional blocks that are needed to complete switch lowering 813 /// or PHI node updating; that information is cleared out as it is 814 /// consumed. 815 void SelectionDAGBuilder::clear() { 816 NodeMap.clear(); 817 UnusedArgNodeMap.clear(); 818 PendingLoads.clear(); 819 PendingExports.clear(); 820 CurInst = nullptr; 821 HasTailCall = false; 822 SDNodeOrder = LowestSDNodeOrder; 823 StatepointLowering.clear(); 824 } 825 826 /// clearDanglingDebugInfo - Clear the dangling debug information 827 /// map. This function is separated from the clear so that debug 828 /// information that is dangling in a basic block can be properly 829 /// resolved in a different basic block. This allows the 830 /// SelectionDAG to resolve dangling debug information attached 831 /// to PHI nodes. 832 void SelectionDAGBuilder::clearDanglingDebugInfo() { 833 DanglingDebugInfoMap.clear(); 834 } 835 836 /// getRoot - Return the current virtual root of the Selection DAG, 837 /// flushing any PendingLoad items. This must be done before emitting 838 /// a store or any other node that may need to be ordered after any 839 /// prior load instructions. 840 /// 841 SDValue SelectionDAGBuilder::getRoot() { 842 if (PendingLoads.empty()) 843 return DAG.getRoot(); 844 845 if (PendingLoads.size() == 1) { 846 SDValue Root = PendingLoads[0]; 847 DAG.setRoot(Root); 848 PendingLoads.clear(); 849 return Root; 850 } 851 852 // Otherwise, we have to make a token factor node. 853 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 854 PendingLoads); 855 PendingLoads.clear(); 856 DAG.setRoot(Root); 857 return Root; 858 } 859 860 /// getControlRoot - Similar to getRoot, but instead of flushing all the 861 /// PendingLoad items, flush all the PendingExports items. It is necessary 862 /// to do this before emitting a terminator instruction. 863 /// 864 SDValue SelectionDAGBuilder::getControlRoot() { 865 SDValue Root = DAG.getRoot(); 866 867 if (PendingExports.empty()) 868 return Root; 869 870 // Turn all of the CopyToReg chains into one factored node. 871 if (Root.getOpcode() != ISD::EntryToken) { 872 unsigned i = 0, e = PendingExports.size(); 873 for (; i != e; ++i) { 874 assert(PendingExports[i].getNode()->getNumOperands() > 1); 875 if (PendingExports[i].getNode()->getOperand(0) == Root) 876 break; // Don't add the root if we already indirectly depend on it. 877 } 878 879 if (i == e) 880 PendingExports.push_back(Root); 881 } 882 883 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 884 PendingExports); 885 PendingExports.clear(); 886 DAG.setRoot(Root); 887 return Root; 888 } 889 890 void SelectionDAGBuilder::visit(const Instruction &I) { 891 // Set up outgoing PHI node register values before emitting the terminator. 892 if (isa<TerminatorInst>(&I)) 893 HandlePHINodesInSuccessorBlocks(I.getParent()); 894 895 ++SDNodeOrder; 896 897 CurInst = &I; 898 899 visit(I.getOpcode(), I); 900 901 if (!isa<TerminatorInst>(&I) && !HasTailCall) 902 CopyToExportRegsIfNeeded(&I); 903 904 CurInst = nullptr; 905 } 906 907 void SelectionDAGBuilder::visitPHI(const PHINode &) { 908 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 909 } 910 911 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 912 // Note: this doesn't use InstVisitor, because it has to work with 913 // ConstantExpr's in addition to instructions. 914 switch (Opcode) { 915 default: llvm_unreachable("Unknown instruction type encountered!"); 916 // Build the switch statement using the Instruction.def file. 917 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 918 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 919 #include "llvm/IR/Instruction.def" 920 } 921 } 922 923 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 924 // generate the debug data structures now that we've seen its definition. 925 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 926 SDValue Val) { 927 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 928 if (DDI.getDI()) { 929 const DbgValueInst *DI = DDI.getDI(); 930 DebugLoc dl = DDI.getdl(); 931 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 932 DILocalVariable *Variable = DI->getVariable(); 933 DIExpression *Expr = DI->getExpression(); 934 assert(Variable->isValidLocationForIntrinsic(dl) && 935 "Expected inlined-at fields to agree"); 936 uint64_t Offset = DI->getOffset(); 937 // A dbg.value for an alloca is always indirect. 938 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 939 SDDbgValue *SDV; 940 if (Val.getNode()) { 941 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 942 Val)) { 943 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 944 IsIndirect, Offset, dl, DbgSDNodeOrder); 945 DAG.AddDbgValue(SDV, Val.getNode(), false); 946 } 947 } else 948 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 949 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 950 } 951 } 952 953 /// getCopyFromRegs - If there was virtual register allocated for the value V 954 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 955 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 956 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 957 SDValue Result; 958 959 if (It != FuncInfo.ValueMap.end()) { 960 unsigned InReg = It->second; 961 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 962 DAG.getDataLayout(), InReg, Ty); 963 SDValue Chain = DAG.getEntryNode(); 964 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 965 resolveDanglingDebugInfo(V, Result); 966 } 967 968 return Result; 969 } 970 971 /// getValue - Return an SDValue for the given Value. 972 SDValue SelectionDAGBuilder::getValue(const Value *V) { 973 // If we already have an SDValue for this value, use it. It's important 974 // to do this first, so that we don't create a CopyFromReg if we already 975 // have a regular SDValue. 976 SDValue &N = NodeMap[V]; 977 if (N.getNode()) return N; 978 979 // If there's a virtual register allocated and initialized for this 980 // value, use it. 981 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 982 if (copyFromReg.getNode()) { 983 return copyFromReg; 984 } 985 986 // Otherwise create a new SDValue and remember it. 987 SDValue Val = getValueImpl(V); 988 NodeMap[V] = Val; 989 resolveDanglingDebugInfo(V, Val); 990 return Val; 991 } 992 993 // Return true if SDValue exists for the given Value 994 bool SelectionDAGBuilder::findValue(const Value *V) const { 995 return (NodeMap.find(V) != NodeMap.end()) || 996 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) { 1005 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1006 // Remove the debug location from the node as the node is about to be used 1007 // in a location which may differ from the original debug location. This 1008 // is relevant to Constant and ConstantFP nodes because they can appear 1009 // as constant expressions inside PHI nodes. 1010 N->setDebugLoc(DebugLoc()); 1011 } 1012 return N; 1013 } 1014 1015 // Otherwise create a new SDValue and remember it. 1016 SDValue Val = getValueImpl(V); 1017 NodeMap[V] = Val; 1018 resolveDanglingDebugInfo(V, Val); 1019 return Val; 1020 } 1021 1022 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1023 /// Create an SDValue for the given value. 1024 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1026 1027 if (const Constant *C = dyn_cast<Constant>(V)) { 1028 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1029 1030 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1031 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1032 1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1034 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1035 1036 if (isa<ConstantPointerNull>(C)) { 1037 unsigned AS = V->getType()->getPointerAddressSpace(); 1038 return DAG.getConstant(0, getCurSDLoc(), 1039 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1040 } 1041 1042 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1043 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1044 1045 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1046 return DAG.getUNDEF(VT); 1047 1048 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1049 visit(CE->getOpcode(), *CE); 1050 SDValue N1 = NodeMap[V]; 1051 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1052 return N1; 1053 } 1054 1055 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1056 SmallVector<SDValue, 4> Constants; 1057 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1058 OI != OE; ++OI) { 1059 SDNode *Val = getValue(*OI).getNode(); 1060 // If the operand is an empty aggregate, there are no values. 1061 if (!Val) continue; 1062 // Add each leaf value from the operand to the Constants list 1063 // to form a flattened list of all the values. 1064 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1065 Constants.push_back(SDValue(Val, i)); 1066 } 1067 1068 return DAG.getMergeValues(Constants, getCurSDLoc()); 1069 } 1070 1071 if (const ConstantDataSequential *CDS = 1072 dyn_cast<ConstantDataSequential>(C)) { 1073 SmallVector<SDValue, 4> Ops; 1074 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1075 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1076 // Add each leaf value from the operand to the Constants list 1077 // to form a flattened list of all the values. 1078 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1079 Ops.push_back(SDValue(Val, i)); 1080 } 1081 1082 if (isa<ArrayType>(CDS->getType())) 1083 return DAG.getMergeValues(Ops, getCurSDLoc()); 1084 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1085 VT, Ops); 1086 } 1087 1088 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1089 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1090 "Unknown struct or array constant!"); 1091 1092 SmallVector<EVT, 4> ValueVTs; 1093 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1094 unsigned NumElts = ValueVTs.size(); 1095 if (NumElts == 0) 1096 return SDValue(); // empty struct 1097 SmallVector<SDValue, 4> Constants(NumElts); 1098 for (unsigned i = 0; i != NumElts; ++i) { 1099 EVT EltVT = ValueVTs[i]; 1100 if (isa<UndefValue>(C)) 1101 Constants[i] = DAG.getUNDEF(EltVT); 1102 else if (EltVT.isFloatingPoint()) 1103 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1104 else 1105 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1106 } 1107 1108 return DAG.getMergeValues(Constants, getCurSDLoc()); 1109 } 1110 1111 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1112 return DAG.getBlockAddress(BA, VT); 1113 1114 VectorType *VecTy = cast<VectorType>(V->getType()); 1115 unsigned NumElements = VecTy->getNumElements(); 1116 1117 // Now that we know the number and type of the elements, get that number of 1118 // elements into the Ops array based on what kind of constant it is. 1119 SmallVector<SDValue, 16> Ops; 1120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1121 for (unsigned i = 0; i != NumElements; ++i) 1122 Ops.push_back(getValue(CV->getOperand(i))); 1123 } else { 1124 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1125 EVT EltVT = 1126 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1127 1128 SDValue Op; 1129 if (EltVT.isFloatingPoint()) 1130 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1131 else 1132 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1133 Ops.assign(NumElements, Op); 1134 } 1135 1136 // Create a BUILD_VECTOR node. 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1138 } 1139 1140 // If this is a static alloca, generate it as the frameindex instead of 1141 // computation. 1142 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1143 DenseMap<const AllocaInst*, int>::iterator SI = 1144 FuncInfo.StaticAllocaMap.find(AI); 1145 if (SI != FuncInfo.StaticAllocaMap.end()) 1146 return DAG.getFrameIndex(SI->second, 1147 TLI.getPointerTy(DAG.getDataLayout())); 1148 } 1149 1150 // If this is an instruction which fast-isel has deferred, select it now. 1151 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1152 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1153 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1154 Inst->getType()); 1155 SDValue Chain = DAG.getEntryNode(); 1156 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1157 } 1158 1159 llvm_unreachable("Can't get register for value!"); 1160 } 1161 1162 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1163 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1164 auto &DL = DAG.getDataLayout(); 1165 SDValue Chain = getControlRoot(); 1166 SmallVector<ISD::OutputArg, 8> Outs; 1167 SmallVector<SDValue, 8> OutVals; 1168 1169 if (!FuncInfo.CanLowerReturn) { 1170 unsigned DemoteReg = FuncInfo.DemoteRegister; 1171 const Function *F = I.getParent()->getParent(); 1172 1173 // Emit a store of the return value through the virtual register. 1174 // Leave Outs empty so that LowerReturn won't try to load return 1175 // registers the usual way. 1176 SmallVector<EVT, 1> PtrValueVTs; 1177 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1178 PtrValueVTs); 1179 1180 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1181 SDValue RetOp = getValue(I.getOperand(0)); 1182 1183 SmallVector<EVT, 4> ValueVTs; 1184 SmallVector<uint64_t, 4> Offsets; 1185 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1186 unsigned NumValues = ValueVTs.size(); 1187 1188 SmallVector<SDValue, 4> Chains(NumValues); 1189 for (unsigned i = 0; i != NumValues; ++i) { 1190 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1191 RetPtr.getValueType(), RetPtr, 1192 DAG.getIntPtrConstant(Offsets[i], 1193 getCurSDLoc())); 1194 Chains[i] = 1195 DAG.getStore(Chain, getCurSDLoc(), 1196 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1197 // FIXME: better loc info would be nice. 1198 Add, MachinePointerInfo(), false, false, 0); 1199 } 1200 1201 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1202 MVT::Other, Chains); 1203 } else if (I.getNumOperands() != 0) { 1204 SmallVector<EVT, 4> ValueVTs; 1205 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1206 unsigned NumValues = ValueVTs.size(); 1207 if (NumValues) { 1208 SDValue RetOp = getValue(I.getOperand(0)); 1209 1210 const Function *F = I.getParent()->getParent(); 1211 1212 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1213 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1214 Attribute::SExt)) 1215 ExtendKind = ISD::SIGN_EXTEND; 1216 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1217 Attribute::ZExt)) 1218 ExtendKind = ISD::ZERO_EXTEND; 1219 1220 LLVMContext &Context = F->getContext(); 1221 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1222 Attribute::InReg); 1223 1224 for (unsigned j = 0; j != NumValues; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1228 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1229 1230 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1231 MVT PartVT = TLI.getRegisterType(Context, VT); 1232 SmallVector<SDValue, 4> Parts(NumParts); 1233 getCopyToParts(DAG, getCurSDLoc(), 1234 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1235 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1236 1237 // 'inreg' on function refers to return value 1238 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1239 if (RetInReg) 1240 Flags.setInReg(); 1241 1242 // Propagate extension type if any 1243 if (ExtendKind == ISD::SIGN_EXTEND) 1244 Flags.setSExt(); 1245 else if (ExtendKind == ISD::ZERO_EXTEND) 1246 Flags.setZExt(); 1247 1248 for (unsigned i = 0; i < NumParts; ++i) { 1249 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1250 VT, /*isfixed=*/true, 0, 0)); 1251 OutVals.push_back(Parts[i]); 1252 } 1253 } 1254 } 1255 } 1256 1257 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1258 CallingConv::ID CallConv = 1259 DAG.getMachineFunction().getFunction()->getCallingConv(); 1260 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1261 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1262 1263 // Verify that the target's LowerReturn behaved as expected. 1264 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1265 "LowerReturn didn't return a valid chain!"); 1266 1267 // Update the DAG with the new chain value resulting from return lowering. 1268 DAG.setRoot(Chain); 1269 } 1270 1271 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1272 /// created for it, emit nodes to copy the value into the virtual 1273 /// registers. 1274 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1275 // Skip empty types 1276 if (V->getType()->isEmptyTy()) 1277 return; 1278 1279 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1280 if (VMI != FuncInfo.ValueMap.end()) { 1281 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1282 CopyValueToVirtualRegister(V, VMI->second); 1283 } 1284 } 1285 1286 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1287 /// the current basic block, add it to ValueMap now so that we'll get a 1288 /// CopyTo/FromReg. 1289 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1290 // No need to export constants. 1291 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1292 1293 // Already exported? 1294 if (FuncInfo.isExportedInst(V)) return; 1295 1296 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1297 CopyValueToVirtualRegister(V, Reg); 1298 } 1299 1300 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1301 const BasicBlock *FromBB) { 1302 // The operands of the setcc have to be in this block. We don't know 1303 // how to export them from some other block. 1304 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1305 // Can export from current BB. 1306 if (VI->getParent() == FromBB) 1307 return true; 1308 1309 // Is already exported, noop. 1310 return FuncInfo.isExportedInst(V); 1311 } 1312 1313 // If this is an argument, we can export it if the BB is the entry block or 1314 // if it is already exported. 1315 if (isa<Argument>(V)) { 1316 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1317 return true; 1318 1319 // Otherwise, can only export this if it is already exported. 1320 return FuncInfo.isExportedInst(V); 1321 } 1322 1323 // Otherwise, constants can always be exported. 1324 return true; 1325 } 1326 1327 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1328 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1329 const MachineBasicBlock *Dst) const { 1330 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1331 if (!BPI) 1332 return 0; 1333 const BasicBlock *SrcBB = Src->getBasicBlock(); 1334 const BasicBlock *DstBB = Dst->getBasicBlock(); 1335 return BPI->getEdgeWeight(SrcBB, DstBB); 1336 } 1337 1338 void SelectionDAGBuilder:: 1339 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1340 uint32_t Weight /* = 0 */) { 1341 if (!Weight) 1342 Weight = getEdgeWeight(Src, Dst); 1343 Src->addSuccessor(Dst, Weight); 1344 } 1345 1346 1347 static bool InBlock(const Value *V, const BasicBlock *BB) { 1348 if (const Instruction *I = dyn_cast<Instruction>(V)) 1349 return I->getParent() == BB; 1350 return true; 1351 } 1352 1353 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1354 /// This function emits a branch and is used at the leaves of an OR or an 1355 /// AND operator tree. 1356 /// 1357 void 1358 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1359 MachineBasicBlock *TBB, 1360 MachineBasicBlock *FBB, 1361 MachineBasicBlock *CurBB, 1362 MachineBasicBlock *SwitchBB, 1363 uint32_t TWeight, 1364 uint32_t FWeight) { 1365 const BasicBlock *BB = CurBB->getBasicBlock(); 1366 1367 // If the leaf of the tree is a comparison, merge the condition into 1368 // the caseblock. 1369 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1370 // The operands of the cmp have to be in this block. We don't know 1371 // how to export them from some other block. If this is the first block 1372 // of the sequence, no exporting is needed. 1373 if (CurBB == SwitchBB || 1374 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1375 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1376 ISD::CondCode Condition; 1377 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1378 Condition = getICmpCondCode(IC->getPredicate()); 1379 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1380 Condition = getFCmpCondCode(FC->getPredicate()); 1381 if (TM.Options.NoNaNsFPMath) 1382 Condition = getFCmpCodeWithoutNaN(Condition); 1383 } else { 1384 (void)Condition; // silence warning. 1385 llvm_unreachable("Unknown compare instruction"); 1386 } 1387 1388 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1389 TBB, FBB, CurBB, TWeight, FWeight); 1390 SwitchCases.push_back(CB); 1391 return; 1392 } 1393 } 1394 1395 // Create a CaseBlock record representing this branch. 1396 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1397 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1398 SwitchCases.push_back(CB); 1399 } 1400 1401 /// Scale down both weights to fit into uint32_t. 1402 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1403 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1404 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1405 NewTrue = NewTrue / Scale; 1406 NewFalse = NewFalse / Scale; 1407 } 1408 1409 /// FindMergedConditions - If Cond is an expression like 1410 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1411 MachineBasicBlock *TBB, 1412 MachineBasicBlock *FBB, 1413 MachineBasicBlock *CurBB, 1414 MachineBasicBlock *SwitchBB, 1415 unsigned Opc, uint32_t TWeight, 1416 uint32_t FWeight) { 1417 // If this node is not part of the or/and tree, emit it as a branch. 1418 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1419 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1420 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1421 BOp->getParent() != CurBB->getBasicBlock() || 1422 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1423 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1424 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1425 TWeight, FWeight); 1426 return; 1427 } 1428 1429 // Create TmpBB after CurBB. 1430 MachineFunction::iterator BBI = CurBB; 1431 MachineFunction &MF = DAG.getMachineFunction(); 1432 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1433 CurBB->getParent()->insert(++BBI, TmpBB); 1434 1435 if (Opc == Instruction::Or) { 1436 // Codegen X | Y as: 1437 // BB1: 1438 // jmp_if_X TBB 1439 // jmp TmpBB 1440 // TmpBB: 1441 // jmp_if_Y TBB 1442 // jmp FBB 1443 // 1444 1445 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1446 // The requirement is that 1447 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1448 // = TrueProb for original BB. 1449 // Assuming the original weights are A and B, one choice is to set BB1's 1450 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1451 // assumes that 1452 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1453 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1454 // TmpBB, but the math is more complicated. 1455 1456 uint64_t NewTrueWeight = TWeight; 1457 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1458 ScaleWeights(NewTrueWeight, NewFalseWeight); 1459 // Emit the LHS condition. 1460 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1461 NewTrueWeight, NewFalseWeight); 1462 1463 NewTrueWeight = TWeight; 1464 NewFalseWeight = 2 * (uint64_t)FWeight; 1465 ScaleWeights(NewTrueWeight, NewFalseWeight); 1466 // Emit the RHS condition into TmpBB. 1467 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1468 NewTrueWeight, NewFalseWeight); 1469 } else { 1470 assert(Opc == Instruction::And && "Unknown merge op!"); 1471 // Codegen X & Y as: 1472 // BB1: 1473 // jmp_if_X TmpBB 1474 // jmp FBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 // This requires creation of TmpBB after CurBB. 1480 1481 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1482 // The requirement is that 1483 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1484 // = FalseProb for original BB. 1485 // Assuming the original weights are A and B, one choice is to set BB1's 1486 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1487 // assumes that 1488 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1489 1490 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1491 uint64_t NewFalseWeight = FWeight; 1492 ScaleWeights(NewTrueWeight, NewFalseWeight); 1493 // Emit the LHS condition. 1494 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1495 NewTrueWeight, NewFalseWeight); 1496 1497 NewTrueWeight = 2 * (uint64_t)TWeight; 1498 NewFalseWeight = FWeight; 1499 ScaleWeights(NewTrueWeight, NewFalseWeight); 1500 // Emit the RHS condition into TmpBB. 1501 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1502 NewTrueWeight, NewFalseWeight); 1503 } 1504 } 1505 1506 /// If the set of cases should be emitted as a series of branches, return true. 1507 /// If we should emit this as a bunch of and/or'd together conditions, return 1508 /// false. 1509 bool 1510 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1511 if (Cases.size() != 2) return true; 1512 1513 // If this is two comparisons of the same values or'd or and'd together, they 1514 // will get folded into a single comparison, so don't emit two blocks. 1515 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1516 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1517 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1518 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1519 return false; 1520 } 1521 1522 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1523 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1524 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1525 Cases[0].CC == Cases[1].CC && 1526 isa<Constant>(Cases[0].CmpRHS) && 1527 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1528 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1529 return false; 1530 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1531 return false; 1532 } 1533 1534 return true; 1535 } 1536 1537 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1538 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1539 1540 // Update machine-CFG edges. 1541 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1542 1543 if (I.isUnconditional()) { 1544 // Update machine-CFG edges. 1545 BrMBB->addSuccessor(Succ0MBB); 1546 1547 // If this is not a fall-through branch or optimizations are switched off, 1548 // emit the branch. 1549 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1550 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1551 MVT::Other, getControlRoot(), 1552 DAG.getBasicBlock(Succ0MBB))); 1553 1554 return; 1555 } 1556 1557 // If this condition is one of the special cases we handle, do special stuff 1558 // now. 1559 const Value *CondVal = I.getCondition(); 1560 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1561 1562 // If this is a series of conditions that are or'd or and'd together, emit 1563 // this as a sequence of branches instead of setcc's with and/or operations. 1564 // As long as jumps are not expensive, this should improve performance. 1565 // For example, instead of something like: 1566 // cmp A, B 1567 // C = seteq 1568 // cmp D, E 1569 // F = setle 1570 // or C, F 1571 // jnz foo 1572 // Emit: 1573 // cmp A, B 1574 // je foo 1575 // cmp D, E 1576 // jle foo 1577 // 1578 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1579 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1580 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1581 BOp->getOpcode() == Instruction::Or)) { 1582 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1583 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1584 getEdgeWeight(BrMBB, Succ1MBB)); 1585 // If the compares in later blocks need to use values not currently 1586 // exported from this block, export them now. This block should always 1587 // be the first entry. 1588 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1589 1590 // Allow some cases to be rejected. 1591 if (ShouldEmitAsBranches(SwitchCases)) { 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1593 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1594 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1595 } 1596 1597 // Emit the branch for this block. 1598 visitSwitchCase(SwitchCases[0], BrMBB); 1599 SwitchCases.erase(SwitchCases.begin()); 1600 return; 1601 } 1602 1603 // Okay, we decided not to do this, remove any inserted MBB's and clear 1604 // SwitchCases. 1605 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1606 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1607 1608 SwitchCases.clear(); 1609 } 1610 } 1611 1612 // Create a CaseBlock record representing this branch. 1613 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1614 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1615 1616 // Use visitSwitchCase to actually insert the fast branch sequence for this 1617 // cond branch. 1618 visitSwitchCase(CB, BrMBB); 1619 } 1620 1621 /// visitSwitchCase - Emits the necessary code to represent a single node in 1622 /// the binary search tree resulting from lowering a switch instruction. 1623 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1624 MachineBasicBlock *SwitchBB) { 1625 SDValue Cond; 1626 SDValue CondLHS = getValue(CB.CmpLHS); 1627 SDLoc dl = getCurSDLoc(); 1628 1629 // Build the setcc now. 1630 if (!CB.CmpMHS) { 1631 // Fold "(X == true)" to X and "(X == false)" to !X to 1632 // handle common cases produced by branch lowering. 1633 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1634 CB.CC == ISD::SETEQ) 1635 Cond = CondLHS; 1636 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1637 CB.CC == ISD::SETEQ) { 1638 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1639 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1640 } else 1641 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1642 } else { 1643 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1644 1645 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1646 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1647 1648 SDValue CmpOp = getValue(CB.CmpMHS); 1649 EVT VT = CmpOp.getValueType(); 1650 1651 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1652 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1653 ISD::SETLE); 1654 } else { 1655 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1656 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1657 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1658 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1659 } 1660 } 1661 1662 // Update successor info 1663 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1664 // TrueBB and FalseBB are always different unless the incoming IR is 1665 // degenerate. This only happens when running llc on weird IR. 1666 if (CB.TrueBB != CB.FalseBB) 1667 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1668 1669 // If the lhs block is the next block, invert the condition so that we can 1670 // fall through to the lhs instead of the rhs block. 1671 if (CB.TrueBB == NextBlock(SwitchBB)) { 1672 std::swap(CB.TrueBB, CB.FalseBB); 1673 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1674 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1675 } 1676 1677 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1678 MVT::Other, getControlRoot(), Cond, 1679 DAG.getBasicBlock(CB.TrueBB)); 1680 1681 // Insert the false branch. Do this even if it's a fall through branch, 1682 // this makes it easier to do DAG optimizations which require inverting 1683 // the branch condition. 1684 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1685 DAG.getBasicBlock(CB.FalseBB)); 1686 1687 DAG.setRoot(BrCond); 1688 } 1689 1690 /// visitJumpTable - Emit JumpTable node in the current MBB 1691 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1692 // Emit the code for the jump table 1693 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1694 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1695 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1696 JT.Reg, PTy); 1697 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1698 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1699 MVT::Other, Index.getValue(1), 1700 Table, Index); 1701 DAG.setRoot(BrJumpTable); 1702 } 1703 1704 /// visitJumpTableHeader - This function emits necessary code to produce index 1705 /// in the JumpTable from switch case. 1706 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1707 JumpTableHeader &JTH, 1708 MachineBasicBlock *SwitchBB) { 1709 SDLoc dl = getCurSDLoc(); 1710 1711 // Subtract the lowest switch case value from the value being switched on and 1712 // conditional branch to default mbb if the result is greater than the 1713 // difference between smallest and largest cases. 1714 SDValue SwitchOp = getValue(JTH.SValue); 1715 EVT VT = SwitchOp.getValueType(); 1716 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1717 DAG.getConstant(JTH.First, dl, VT)); 1718 1719 // The SDNode we just created, which holds the value being switched on minus 1720 // the smallest case value, needs to be copied to a virtual register so it 1721 // can be used as an index into the jump table in a subsequent basic block. 1722 // This value may be smaller or larger than the target's pointer type, and 1723 // therefore require extension or truncating. 1724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1725 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1726 1727 unsigned JumpTableReg = 1728 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1729 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1730 JumpTableReg, SwitchOp); 1731 JT.Reg = JumpTableReg; 1732 1733 // Emit the range check for the jump table, and branch to the default block 1734 // for the switch statement if the value being switched on exceeds the largest 1735 // case in the switch. 1736 SDValue CMP = DAG.getSetCC( 1737 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1738 Sub.getValueType()), 1739 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1740 1741 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1742 MVT::Other, CopyTo, CMP, 1743 DAG.getBasicBlock(JT.Default)); 1744 1745 // Avoid emitting unnecessary branches to the next block. 1746 if (JT.MBB != NextBlock(SwitchBB)) 1747 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1748 DAG.getBasicBlock(JT.MBB)); 1749 1750 DAG.setRoot(BrCond); 1751 } 1752 1753 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1754 /// tail spliced into a stack protector check success bb. 1755 /// 1756 /// For a high level explanation of how this fits into the stack protector 1757 /// generation see the comment on the declaration of class 1758 /// StackProtectorDescriptor. 1759 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1760 MachineBasicBlock *ParentBB) { 1761 1762 // First create the loads to the guard/stack slot for the comparison. 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1765 1766 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1767 int FI = MFI->getStackProtectorIndex(); 1768 1769 const Value *IRGuard = SPD.getGuard(); 1770 SDValue GuardPtr = getValue(IRGuard); 1771 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1772 1773 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1774 1775 SDValue Guard; 1776 SDLoc dl = getCurSDLoc(); 1777 1778 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1779 // guard value from the virtual register holding the value. Otherwise, emit a 1780 // volatile load to retrieve the stack guard value. 1781 unsigned GuardReg = SPD.getGuardReg(); 1782 1783 if (GuardReg && TLI.useLoadStackGuardNode()) 1784 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1785 PtrTy); 1786 else 1787 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1788 GuardPtr, MachinePointerInfo(IRGuard, 0), 1789 true, false, false, Align); 1790 1791 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1792 StackSlotPtr, 1793 MachinePointerInfo::getFixedStack(FI), 1794 true, false, false, Align); 1795 1796 // Perform the comparison via a subtract/getsetcc. 1797 EVT VT = Guard.getValueType(); 1798 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1799 1800 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1801 *DAG.getContext(), 1802 Sub.getValueType()), 1803 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1804 1805 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1806 // branch to failure MBB. 1807 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1808 MVT::Other, StackSlot.getOperand(0), 1809 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1810 // Otherwise branch to success MBB. 1811 SDValue Br = DAG.getNode(ISD::BR, dl, 1812 MVT::Other, BrCond, 1813 DAG.getBasicBlock(SPD.getSuccessMBB())); 1814 1815 DAG.setRoot(Br); 1816 } 1817 1818 /// Codegen the failure basic block for a stack protector check. 1819 /// 1820 /// A failure stack protector machine basic block consists simply of a call to 1821 /// __stack_chk_fail(). 1822 /// 1823 /// For a high level explanation of how this fits into the stack protector 1824 /// generation see the comment on the declaration of class 1825 /// StackProtectorDescriptor. 1826 void 1827 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1828 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1829 SDValue Chain = 1830 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1831 nullptr, 0, false, getCurSDLoc(), false, false).second; 1832 DAG.setRoot(Chain); 1833 } 1834 1835 /// visitBitTestHeader - This function emits necessary code to produce value 1836 /// suitable for "bit tests" 1837 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1838 MachineBasicBlock *SwitchBB) { 1839 SDLoc dl = getCurSDLoc(); 1840 1841 // Subtract the minimum value 1842 SDValue SwitchOp = getValue(B.SValue); 1843 EVT VT = SwitchOp.getValueType(); 1844 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1845 DAG.getConstant(B.First, dl, VT)); 1846 1847 // Check range 1848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1849 SDValue RangeCmp = DAG.getSetCC( 1850 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1851 Sub.getValueType()), 1852 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1853 1854 // Determine the type of the test operands. 1855 bool UsePtrType = false; 1856 if (!TLI.isTypeLegal(VT)) 1857 UsePtrType = true; 1858 else { 1859 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1860 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1861 // Switch table case range are encoded into series of masks. 1862 // Just use pointer type, it's guaranteed to fit. 1863 UsePtrType = true; 1864 break; 1865 } 1866 } 1867 if (UsePtrType) { 1868 VT = TLI.getPointerTy(DAG.getDataLayout()); 1869 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1870 } 1871 1872 B.RegVT = VT.getSimpleVT(); 1873 B.Reg = FuncInfo.CreateReg(B.RegVT); 1874 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1875 1876 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1877 1878 addSuccessorWithWeight(SwitchBB, B.Default); 1879 addSuccessorWithWeight(SwitchBB, MBB); 1880 1881 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1882 MVT::Other, CopyTo, RangeCmp, 1883 DAG.getBasicBlock(B.Default)); 1884 1885 // Avoid emitting unnecessary branches to the next block. 1886 if (MBB != NextBlock(SwitchBB)) 1887 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1888 DAG.getBasicBlock(MBB)); 1889 1890 DAG.setRoot(BrRange); 1891 } 1892 1893 /// visitBitTestCase - this function produces one "bit test" 1894 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1895 MachineBasicBlock* NextMBB, 1896 uint32_t BranchWeightToNext, 1897 unsigned Reg, 1898 BitTestCase &B, 1899 MachineBasicBlock *SwitchBB) { 1900 SDLoc dl = getCurSDLoc(); 1901 MVT VT = BB.RegVT; 1902 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1903 SDValue Cmp; 1904 unsigned PopCount = countPopulation(B.Mask); 1905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1906 if (PopCount == 1) { 1907 // Testing for a single bit; just compare the shift count with what it 1908 // would need to be to shift a 1 bit in that position. 1909 Cmp = DAG.getSetCC( 1910 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1911 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1912 ISD::SETEQ); 1913 } else if (PopCount == BB.Range) { 1914 // There is only one zero bit in the range, test for it directly. 1915 Cmp = DAG.getSetCC( 1916 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1917 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1918 ISD::SETNE); 1919 } else { 1920 // Make desired shift 1921 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1922 DAG.getConstant(1, dl, VT), ShiftOp); 1923 1924 // Emit bit tests and jumps 1925 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1926 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1927 Cmp = DAG.getSetCC( 1928 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1929 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1930 } 1931 1932 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1933 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1934 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1935 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1936 1937 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1938 MVT::Other, getControlRoot(), 1939 Cmp, DAG.getBasicBlock(B.TargetBB)); 1940 1941 // Avoid emitting unnecessary branches to the next block. 1942 if (NextMBB != NextBlock(SwitchBB)) 1943 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1944 DAG.getBasicBlock(NextMBB)); 1945 1946 DAG.setRoot(BrAnd); 1947 } 1948 1949 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1950 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1951 1952 // Retrieve successors. 1953 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1954 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1955 1956 const Value *Callee(I.getCalledValue()); 1957 const Function *Fn = dyn_cast<Function>(Callee); 1958 if (isa<InlineAsm>(Callee)) 1959 visitInlineAsm(&I); 1960 else if (Fn && Fn->isIntrinsic()) { 1961 switch (Fn->getIntrinsicID()) { 1962 default: 1963 llvm_unreachable("Cannot invoke this intrinsic"); 1964 case Intrinsic::donothing: 1965 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1966 break; 1967 case Intrinsic::experimental_patchpoint_void: 1968 case Intrinsic::experimental_patchpoint_i64: 1969 visitPatchpoint(&I, LandingPad); 1970 break; 1971 case Intrinsic::experimental_gc_statepoint: 1972 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1973 break; 1974 } 1975 } else 1976 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1977 1978 // If the value of the invoke is used outside of its defining block, make it 1979 // available as a virtual register. 1980 // We already took care of the exported value for the statepoint instruction 1981 // during call to the LowerStatepoint. 1982 if (!isStatepoint(I)) { 1983 CopyToExportRegsIfNeeded(&I); 1984 } 1985 1986 // Update successor info 1987 addSuccessorWithWeight(InvokeMBB, Return); 1988 addSuccessorWithWeight(InvokeMBB, LandingPad); 1989 1990 // Drop into normal successor. 1991 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1992 MVT::Other, getControlRoot(), 1993 DAG.getBasicBlock(Return))); 1994 } 1995 1996 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1997 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1998 } 1999 2000 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2001 assert(FuncInfo.MBB->isLandingPad() && 2002 "Call to landingpad not in landing pad!"); 2003 2004 MachineBasicBlock *MBB = FuncInfo.MBB; 2005 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2006 AddLandingPadInfo(LP, MMI, MBB); 2007 2008 // If there aren't registers to copy the values into (e.g., during SjLj 2009 // exceptions), then don't bother to create these DAG nodes. 2010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2011 if (TLI.getExceptionPointerRegister() == 0 && 2012 TLI.getExceptionSelectorRegister() == 0) 2013 return; 2014 2015 SmallVector<EVT, 2> ValueVTs; 2016 SDLoc dl = getCurSDLoc(); 2017 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2018 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2019 2020 // Get the two live-in registers as SDValues. The physregs have already been 2021 // copied into virtual registers. 2022 SDValue Ops[2]; 2023 if (FuncInfo.ExceptionPointerVirtReg) { 2024 Ops[0] = DAG.getZExtOrTrunc( 2025 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2026 FuncInfo.ExceptionPointerVirtReg, 2027 TLI.getPointerTy(DAG.getDataLayout())), 2028 dl, ValueVTs[0]); 2029 } else { 2030 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2031 } 2032 Ops[1] = DAG.getZExtOrTrunc( 2033 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2034 FuncInfo.ExceptionSelectorVirtReg, 2035 TLI.getPointerTy(DAG.getDataLayout())), 2036 dl, ValueVTs[1]); 2037 2038 // Merge into one. 2039 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2040 DAG.getVTList(ValueVTs), Ops); 2041 setValue(&LP, Res); 2042 } 2043 2044 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2045 #ifndef NDEBUG 2046 for (const CaseCluster &CC : Clusters) 2047 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2048 #endif 2049 2050 std::sort(Clusters.begin(), Clusters.end(), 2051 [](const CaseCluster &a, const CaseCluster &b) { 2052 return a.Low->getValue().slt(b.Low->getValue()); 2053 }); 2054 2055 // Merge adjacent clusters with the same destination. 2056 const unsigned N = Clusters.size(); 2057 unsigned DstIndex = 0; 2058 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2059 CaseCluster &CC = Clusters[SrcIndex]; 2060 const ConstantInt *CaseVal = CC.Low; 2061 MachineBasicBlock *Succ = CC.MBB; 2062 2063 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2064 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2065 // If this case has the same successor and is a neighbour, merge it into 2066 // the previous cluster. 2067 Clusters[DstIndex - 1].High = CaseVal; 2068 Clusters[DstIndex - 1].Weight += CC.Weight; 2069 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2070 } else { 2071 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2072 sizeof(Clusters[SrcIndex])); 2073 } 2074 } 2075 Clusters.resize(DstIndex); 2076 } 2077 2078 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2079 MachineBasicBlock *Last) { 2080 // Update JTCases. 2081 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2082 if (JTCases[i].first.HeaderBB == First) 2083 JTCases[i].first.HeaderBB = Last; 2084 2085 // Update BitTestCases. 2086 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2087 if (BitTestCases[i].Parent == First) 2088 BitTestCases[i].Parent = Last; 2089 } 2090 2091 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2092 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2093 2094 // Update machine-CFG edges with unique successors. 2095 SmallSet<BasicBlock*, 32> Done; 2096 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2097 BasicBlock *BB = I.getSuccessor(i); 2098 bool Inserted = Done.insert(BB).second; 2099 if (!Inserted) 2100 continue; 2101 2102 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2103 addSuccessorWithWeight(IndirectBrMBB, Succ); 2104 } 2105 2106 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2107 MVT::Other, getControlRoot(), 2108 getValue(I.getAddress()))); 2109 } 2110 2111 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2112 if (DAG.getTarget().Options.TrapUnreachable) 2113 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2114 } 2115 2116 void SelectionDAGBuilder::visitFSub(const User &I) { 2117 // -0.0 - X --> fneg 2118 Type *Ty = I.getType(); 2119 if (isa<Constant>(I.getOperand(0)) && 2120 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2121 SDValue Op2 = getValue(I.getOperand(1)); 2122 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2123 Op2.getValueType(), Op2)); 2124 return; 2125 } 2126 2127 visitBinary(I, ISD::FSUB); 2128 } 2129 2130 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2131 SDValue Op1 = getValue(I.getOperand(0)); 2132 SDValue Op2 = getValue(I.getOperand(1)); 2133 2134 bool nuw = false; 2135 bool nsw = false; 2136 bool exact = false; 2137 FastMathFlags FMF; 2138 2139 if (const OverflowingBinaryOperator *OFBinOp = 2140 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2141 nuw = OFBinOp->hasNoUnsignedWrap(); 2142 nsw = OFBinOp->hasNoSignedWrap(); 2143 } 2144 if (const PossiblyExactOperator *ExactOp = 2145 dyn_cast<const PossiblyExactOperator>(&I)) 2146 exact = ExactOp->isExact(); 2147 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2148 FMF = FPOp->getFastMathFlags(); 2149 2150 SDNodeFlags Flags; 2151 Flags.setExact(exact); 2152 Flags.setNoSignedWrap(nsw); 2153 Flags.setNoUnsignedWrap(nuw); 2154 if (EnableFMFInDAG) { 2155 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2156 Flags.setNoInfs(FMF.noInfs()); 2157 Flags.setNoNaNs(FMF.noNaNs()); 2158 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2159 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2160 } 2161 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2162 Op1, Op2, &Flags); 2163 setValue(&I, BinNodeValue); 2164 } 2165 2166 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2167 SDValue Op1 = getValue(I.getOperand(0)); 2168 SDValue Op2 = getValue(I.getOperand(1)); 2169 2170 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2171 Op2.getValueType(), DAG.getDataLayout()); 2172 2173 // Coerce the shift amount to the right type if we can. 2174 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2175 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2176 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2177 SDLoc DL = getCurSDLoc(); 2178 2179 // If the operand is smaller than the shift count type, promote it. 2180 if (ShiftSize > Op2Size) 2181 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2182 2183 // If the operand is larger than the shift count type but the shift 2184 // count type has enough bits to represent any shift value, truncate 2185 // it now. This is a common case and it exposes the truncate to 2186 // optimization early. 2187 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2188 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2189 // Otherwise we'll need to temporarily settle for some other convenient 2190 // type. Type legalization will make adjustments once the shiftee is split. 2191 else 2192 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2193 } 2194 2195 bool nuw = false; 2196 bool nsw = false; 2197 bool exact = false; 2198 2199 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2200 2201 if (const OverflowingBinaryOperator *OFBinOp = 2202 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2203 nuw = OFBinOp->hasNoUnsignedWrap(); 2204 nsw = OFBinOp->hasNoSignedWrap(); 2205 } 2206 if (const PossiblyExactOperator *ExactOp = 2207 dyn_cast<const PossiblyExactOperator>(&I)) 2208 exact = ExactOp->isExact(); 2209 } 2210 SDNodeFlags Flags; 2211 Flags.setExact(exact); 2212 Flags.setNoSignedWrap(nsw); 2213 Flags.setNoUnsignedWrap(nuw); 2214 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2215 &Flags); 2216 setValue(&I, Res); 2217 } 2218 2219 void SelectionDAGBuilder::visitSDiv(const User &I) { 2220 SDValue Op1 = getValue(I.getOperand(0)); 2221 SDValue Op2 = getValue(I.getOperand(1)); 2222 2223 SDNodeFlags Flags; 2224 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2225 cast<PossiblyExactOperator>(&I)->isExact()); 2226 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2227 Op2, &Flags)); 2228 } 2229 2230 void SelectionDAGBuilder::visitICmp(const User &I) { 2231 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2232 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2233 predicate = IC->getPredicate(); 2234 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2235 predicate = ICmpInst::Predicate(IC->getPredicate()); 2236 SDValue Op1 = getValue(I.getOperand(0)); 2237 SDValue Op2 = getValue(I.getOperand(1)); 2238 ISD::CondCode Opcode = getICmpCondCode(predicate); 2239 2240 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2241 I.getType()); 2242 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2243 } 2244 2245 void SelectionDAGBuilder::visitFCmp(const User &I) { 2246 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2247 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2248 predicate = FC->getPredicate(); 2249 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2250 predicate = FCmpInst::Predicate(FC->getPredicate()); 2251 SDValue Op1 = getValue(I.getOperand(0)); 2252 SDValue Op2 = getValue(I.getOperand(1)); 2253 ISD::CondCode Condition = getFCmpCondCode(predicate); 2254 if (TM.Options.NoNaNsFPMath) 2255 Condition = getFCmpCodeWithoutNaN(Condition); 2256 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2257 I.getType()); 2258 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2259 } 2260 2261 void SelectionDAGBuilder::visitSelect(const User &I) { 2262 SmallVector<EVT, 4> ValueVTs; 2263 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2264 ValueVTs); 2265 unsigned NumValues = ValueVTs.size(); 2266 if (NumValues == 0) return; 2267 2268 SmallVector<SDValue, 4> Values(NumValues); 2269 SDValue Cond = getValue(I.getOperand(0)); 2270 SDValue LHSVal = getValue(I.getOperand(1)); 2271 SDValue RHSVal = getValue(I.getOperand(2)); 2272 auto BaseOps = {Cond}; 2273 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2274 ISD::VSELECT : ISD::SELECT; 2275 2276 // Min/max matching is only viable if all output VTs are the same. 2277 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2278 Value *LHS, *RHS; 2279 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2280 ISD::NodeType Opc = ISD::DELETED_NODE; 2281 switch (SPF) { 2282 case SPF_UMAX: Opc = ISD::UMAX; break; 2283 case SPF_UMIN: Opc = ISD::UMIN; break; 2284 case SPF_SMAX: Opc = ISD::SMAX; break; 2285 case SPF_SMIN: Opc = ISD::SMIN; break; 2286 default: break; 2287 } 2288 2289 EVT VT = ValueVTs[0]; 2290 LLVMContext &Ctx = *DAG.getContext(); 2291 auto &TLI = DAG.getTargetLoweringInfo(); 2292 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2293 VT = TLI.getTypeToTransformTo(Ctx, VT); 2294 2295 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2296 // If the underlying comparison instruction is used by any other instruction, 2297 // the consumed instructions won't be destroyed, so it is not profitable 2298 // to convert to a min/max. 2299 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2300 OpCode = Opc; 2301 LHSVal = getValue(LHS); 2302 RHSVal = getValue(RHS); 2303 BaseOps = {}; 2304 } 2305 } 2306 2307 for (unsigned i = 0; i != NumValues; ++i) { 2308 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2309 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2310 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2311 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2312 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2313 Ops); 2314 } 2315 2316 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2317 DAG.getVTList(ValueVTs), Values)); 2318 } 2319 2320 void SelectionDAGBuilder::visitTrunc(const User &I) { 2321 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2322 SDValue N = getValue(I.getOperand(0)); 2323 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2324 I.getType()); 2325 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2326 } 2327 2328 void SelectionDAGBuilder::visitZExt(const User &I) { 2329 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2330 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2331 SDValue N = getValue(I.getOperand(0)); 2332 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2333 I.getType()); 2334 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2335 } 2336 2337 void SelectionDAGBuilder::visitSExt(const User &I) { 2338 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2339 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2340 SDValue N = getValue(I.getOperand(0)); 2341 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2342 I.getType()); 2343 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2344 } 2345 2346 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2347 // FPTrunc is never a no-op cast, no need to check 2348 SDValue N = getValue(I.getOperand(0)); 2349 SDLoc dl = getCurSDLoc(); 2350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2351 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2352 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2353 DAG.getTargetConstant( 2354 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2355 } 2356 2357 void SelectionDAGBuilder::visitFPExt(const User &I) { 2358 // FPExt is never a no-op cast, no need to check 2359 SDValue N = getValue(I.getOperand(0)); 2360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2361 I.getType()); 2362 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2363 } 2364 2365 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2366 // FPToUI is never a no-op cast, no need to check 2367 SDValue N = getValue(I.getOperand(0)); 2368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2369 I.getType()); 2370 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2371 } 2372 2373 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2374 // FPToSI is never a no-op cast, no need to check 2375 SDValue N = getValue(I.getOperand(0)); 2376 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2377 I.getType()); 2378 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2379 } 2380 2381 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2382 // UIToFP is never a no-op cast, no need to check 2383 SDValue N = getValue(I.getOperand(0)); 2384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2385 I.getType()); 2386 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2387 } 2388 2389 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2390 // SIToFP is never a no-op cast, no need to check 2391 SDValue N = getValue(I.getOperand(0)); 2392 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2393 I.getType()); 2394 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2395 } 2396 2397 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2398 // What to do depends on the size of the integer and the size of the pointer. 2399 // We can either truncate, zero extend, or no-op, accordingly. 2400 SDValue N = getValue(I.getOperand(0)); 2401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2402 I.getType()); 2403 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2404 } 2405 2406 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2407 // What to do depends on the size of the integer and the size of the pointer. 2408 // We can either truncate, zero extend, or no-op, accordingly. 2409 SDValue N = getValue(I.getOperand(0)); 2410 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2411 I.getType()); 2412 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2413 } 2414 2415 void SelectionDAGBuilder::visitBitCast(const User &I) { 2416 SDValue N = getValue(I.getOperand(0)); 2417 SDLoc dl = getCurSDLoc(); 2418 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2419 I.getType()); 2420 2421 // BitCast assures us that source and destination are the same size so this is 2422 // either a BITCAST or a no-op. 2423 if (DestVT != N.getValueType()) 2424 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2425 DestVT, N)); // convert types. 2426 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2427 // might fold any kind of constant expression to an integer constant and that 2428 // is not what we are looking for. Only regcognize a bitcast of a genuine 2429 // constant integer as an opaque constant. 2430 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2431 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2432 /*isOpaque*/true)); 2433 else 2434 setValue(&I, N); // noop cast. 2435 } 2436 2437 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 const Value *SV = I.getOperand(0); 2440 SDValue N = getValue(SV); 2441 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2442 2443 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2444 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2445 2446 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2447 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2448 2449 setValue(&I, N); 2450 } 2451 2452 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2454 SDValue InVec = getValue(I.getOperand(0)); 2455 SDValue InVal = getValue(I.getOperand(1)); 2456 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2457 TLI.getVectorIdxTy(DAG.getDataLayout())); 2458 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2459 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2460 InVec, InVal, InIdx)); 2461 } 2462 2463 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2464 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2465 SDValue InVec = getValue(I.getOperand(0)); 2466 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2467 TLI.getVectorIdxTy(DAG.getDataLayout())); 2468 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2469 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2470 InVec, InIdx)); 2471 } 2472 2473 // Utility for visitShuffleVector - Return true if every element in Mask, 2474 // beginning from position Pos and ending in Pos+Size, falls within the 2475 // specified sequential range [L, L+Pos). or is undef. 2476 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2477 unsigned Pos, unsigned Size, int Low) { 2478 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2479 if (Mask[i] >= 0 && Mask[i] != Low) 2480 return false; 2481 return true; 2482 } 2483 2484 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2485 SDValue Src1 = getValue(I.getOperand(0)); 2486 SDValue Src2 = getValue(I.getOperand(1)); 2487 2488 SmallVector<int, 8> Mask; 2489 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2490 unsigned MaskNumElts = Mask.size(); 2491 2492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2493 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2494 EVT SrcVT = Src1.getValueType(); 2495 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2496 2497 if (SrcNumElts == MaskNumElts) { 2498 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2499 &Mask[0])); 2500 return; 2501 } 2502 2503 // Normalize the shuffle vector since mask and vector length don't match. 2504 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2505 // Mask is longer than the source vectors and is a multiple of the source 2506 // vectors. We can use concatenate vector to make the mask and vectors 2507 // lengths match. 2508 if (SrcNumElts*2 == MaskNumElts) { 2509 // First check for Src1 in low and Src2 in high 2510 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2511 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2512 // The shuffle is concatenating two vectors together. 2513 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2514 VT, Src1, Src2)); 2515 return; 2516 } 2517 // Then check for Src2 in low and Src1 in high 2518 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2519 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2520 // The shuffle is concatenating two vectors together. 2521 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2522 VT, Src2, Src1)); 2523 return; 2524 } 2525 } 2526 2527 // Pad both vectors with undefs to make them the same length as the mask. 2528 unsigned NumConcat = MaskNumElts / SrcNumElts; 2529 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2530 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2531 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2532 2533 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2534 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2535 MOps1[0] = Src1; 2536 MOps2[0] = Src2; 2537 2538 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2539 getCurSDLoc(), VT, MOps1); 2540 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2541 getCurSDLoc(), VT, MOps2); 2542 2543 // Readjust mask for new input vector length. 2544 SmallVector<int, 8> MappedOps; 2545 for (unsigned i = 0; i != MaskNumElts; ++i) { 2546 int Idx = Mask[i]; 2547 if (Idx >= (int)SrcNumElts) 2548 Idx -= SrcNumElts - MaskNumElts; 2549 MappedOps.push_back(Idx); 2550 } 2551 2552 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2553 &MappedOps[0])); 2554 return; 2555 } 2556 2557 if (SrcNumElts > MaskNumElts) { 2558 // Analyze the access pattern of the vector to see if we can extract 2559 // two subvectors and do the shuffle. The analysis is done by calculating 2560 // the range of elements the mask access on both vectors. 2561 int MinRange[2] = { static_cast<int>(SrcNumElts), 2562 static_cast<int>(SrcNumElts)}; 2563 int MaxRange[2] = {-1, -1}; 2564 2565 for (unsigned i = 0; i != MaskNumElts; ++i) { 2566 int Idx = Mask[i]; 2567 unsigned Input = 0; 2568 if (Idx < 0) 2569 continue; 2570 2571 if (Idx >= (int)SrcNumElts) { 2572 Input = 1; 2573 Idx -= SrcNumElts; 2574 } 2575 if (Idx > MaxRange[Input]) 2576 MaxRange[Input] = Idx; 2577 if (Idx < MinRange[Input]) 2578 MinRange[Input] = Idx; 2579 } 2580 2581 // Check if the access is smaller than the vector size and can we find 2582 // a reasonable extract index. 2583 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2584 // Extract. 2585 int StartIdx[2]; // StartIdx to extract from 2586 for (unsigned Input = 0; Input < 2; ++Input) { 2587 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2588 RangeUse[Input] = 0; // Unused 2589 StartIdx[Input] = 0; 2590 continue; 2591 } 2592 2593 // Find a good start index that is a multiple of the mask length. Then 2594 // see if the rest of the elements are in range. 2595 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2596 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2597 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2598 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2599 } 2600 2601 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2602 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2603 return; 2604 } 2605 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2606 // Extract appropriate subvector and generate a vector shuffle 2607 for (unsigned Input = 0; Input < 2; ++Input) { 2608 SDValue &Src = Input == 0 ? Src1 : Src2; 2609 if (RangeUse[Input] == 0) 2610 Src = DAG.getUNDEF(VT); 2611 else { 2612 SDLoc dl = getCurSDLoc(); 2613 Src = DAG.getNode( 2614 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2615 DAG.getConstant(StartIdx[Input], dl, 2616 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2617 } 2618 } 2619 2620 // Calculate new mask. 2621 SmallVector<int, 8> MappedOps; 2622 for (unsigned i = 0; i != MaskNumElts; ++i) { 2623 int Idx = Mask[i]; 2624 if (Idx >= 0) { 2625 if (Idx < (int)SrcNumElts) 2626 Idx -= StartIdx[0]; 2627 else 2628 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2629 } 2630 MappedOps.push_back(Idx); 2631 } 2632 2633 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2634 &MappedOps[0])); 2635 return; 2636 } 2637 } 2638 2639 // We can't use either concat vectors or extract subvectors so fall back to 2640 // replacing the shuffle with extract and build vector. 2641 // to insert and build vector. 2642 EVT EltVT = VT.getVectorElementType(); 2643 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2644 SDLoc dl = getCurSDLoc(); 2645 SmallVector<SDValue,8> Ops; 2646 for (unsigned i = 0; i != MaskNumElts; ++i) { 2647 int Idx = Mask[i]; 2648 SDValue Res; 2649 2650 if (Idx < 0) { 2651 Res = DAG.getUNDEF(EltVT); 2652 } else { 2653 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2654 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2655 2656 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2657 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2658 } 2659 2660 Ops.push_back(Res); 2661 } 2662 2663 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2664 } 2665 2666 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2667 const Value *Op0 = I.getOperand(0); 2668 const Value *Op1 = I.getOperand(1); 2669 Type *AggTy = I.getType(); 2670 Type *ValTy = Op1->getType(); 2671 bool IntoUndef = isa<UndefValue>(Op0); 2672 bool FromUndef = isa<UndefValue>(Op1); 2673 2674 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2675 2676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2677 SmallVector<EVT, 4> AggValueVTs; 2678 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2679 SmallVector<EVT, 4> ValValueVTs; 2680 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2681 2682 unsigned NumAggValues = AggValueVTs.size(); 2683 unsigned NumValValues = ValValueVTs.size(); 2684 SmallVector<SDValue, 4> Values(NumAggValues); 2685 2686 // Ignore an insertvalue that produces an empty object 2687 if (!NumAggValues) { 2688 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2689 return; 2690 } 2691 2692 SDValue Agg = getValue(Op0); 2693 unsigned i = 0; 2694 // Copy the beginning value(s) from the original aggregate. 2695 for (; i != LinearIndex; ++i) 2696 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2697 SDValue(Agg.getNode(), Agg.getResNo() + i); 2698 // Copy values from the inserted value(s). 2699 if (NumValValues) { 2700 SDValue Val = getValue(Op1); 2701 for (; i != LinearIndex + NumValValues; ++i) 2702 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2703 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2704 } 2705 // Copy remaining value(s) from the original aggregate. 2706 for (; i != NumAggValues; ++i) 2707 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2708 SDValue(Agg.getNode(), Agg.getResNo() + i); 2709 2710 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2711 DAG.getVTList(AggValueVTs), Values)); 2712 } 2713 2714 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2715 const Value *Op0 = I.getOperand(0); 2716 Type *AggTy = Op0->getType(); 2717 Type *ValTy = I.getType(); 2718 bool OutOfUndef = isa<UndefValue>(Op0); 2719 2720 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2721 2722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2723 SmallVector<EVT, 4> ValValueVTs; 2724 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2725 2726 unsigned NumValValues = ValValueVTs.size(); 2727 2728 // Ignore a extractvalue that produces an empty object 2729 if (!NumValValues) { 2730 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2731 return; 2732 } 2733 2734 SmallVector<SDValue, 4> Values(NumValValues); 2735 2736 SDValue Agg = getValue(Op0); 2737 // Copy out the selected value(s). 2738 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2739 Values[i - LinearIndex] = 2740 OutOfUndef ? 2741 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2742 SDValue(Agg.getNode(), Agg.getResNo() + i); 2743 2744 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2745 DAG.getVTList(ValValueVTs), Values)); 2746 } 2747 2748 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2749 Value *Op0 = I.getOperand(0); 2750 // Note that the pointer operand may be a vector of pointers. Take the scalar 2751 // element which holds a pointer. 2752 Type *Ty = Op0->getType()->getScalarType(); 2753 unsigned AS = Ty->getPointerAddressSpace(); 2754 SDValue N = getValue(Op0); 2755 SDLoc dl = getCurSDLoc(); 2756 2757 // Normalize Vector GEP - all scalar operands should be converted to the 2758 // splat vector. 2759 unsigned VectorWidth = I.getType()->isVectorTy() ? 2760 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2761 2762 if (VectorWidth && !N.getValueType().isVector()) { 2763 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2764 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2765 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2766 } 2767 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2768 OI != E; ++OI) { 2769 const Value *Idx = *OI; 2770 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2771 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2772 if (Field) { 2773 // N = N + Offset 2774 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2775 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2776 DAG.getConstant(Offset, dl, N.getValueType())); 2777 } 2778 2779 Ty = StTy->getElementType(Field); 2780 } else { 2781 Ty = cast<SequentialType>(Ty)->getElementType(); 2782 MVT PtrTy = 2783 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2784 unsigned PtrSize = PtrTy.getSizeInBits(); 2785 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2786 2787 // If this is a scalar constant or a splat vector of constants, 2788 // handle it quickly. 2789 const auto *CI = dyn_cast<ConstantInt>(Idx); 2790 if (!CI && isa<ConstantDataVector>(Idx) && 2791 cast<ConstantDataVector>(Idx)->getSplatValue()) 2792 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2793 2794 if (CI) { 2795 if (CI->isZero()) 2796 continue; 2797 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2798 SDValue OffsVal = VectorWidth ? 2799 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2800 DAG.getConstant(Offs, dl, PtrTy); 2801 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2802 continue; 2803 } 2804 2805 // N = N + Idx * ElementSize; 2806 SDValue IdxN = getValue(Idx); 2807 2808 if (!IdxN.getValueType().isVector() && VectorWidth) { 2809 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2810 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2811 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2812 } 2813 // If the index is smaller or larger than intptr_t, truncate or extend 2814 // it. 2815 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2816 2817 // If this is a multiply by a power of two, turn it into a shl 2818 // immediately. This is a very common case. 2819 if (ElementSize != 1) { 2820 if (ElementSize.isPowerOf2()) { 2821 unsigned Amt = ElementSize.logBase2(); 2822 IdxN = DAG.getNode(ISD::SHL, dl, 2823 N.getValueType(), IdxN, 2824 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2825 } else { 2826 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2827 IdxN = DAG.getNode(ISD::MUL, dl, 2828 N.getValueType(), IdxN, Scale); 2829 } 2830 } 2831 2832 N = DAG.getNode(ISD::ADD, dl, 2833 N.getValueType(), N, IdxN); 2834 } 2835 } 2836 2837 setValue(&I, N); 2838 } 2839 2840 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2841 // If this is a fixed sized alloca in the entry block of the function, 2842 // allocate it statically on the stack. 2843 if (FuncInfo.StaticAllocaMap.count(&I)) 2844 return; // getValue will auto-populate this. 2845 2846 SDLoc dl = getCurSDLoc(); 2847 Type *Ty = I.getAllocatedType(); 2848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2849 auto &DL = DAG.getDataLayout(); 2850 uint64_t TySize = DL.getTypeAllocSize(Ty); 2851 unsigned Align = 2852 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2853 2854 SDValue AllocSize = getValue(I.getArraySize()); 2855 2856 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2857 if (AllocSize.getValueType() != IntPtr) 2858 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2859 2860 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2861 AllocSize, 2862 DAG.getConstant(TySize, dl, IntPtr)); 2863 2864 // Handle alignment. If the requested alignment is less than or equal to 2865 // the stack alignment, ignore it. If the size is greater than or equal to 2866 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2867 unsigned StackAlign = 2868 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2869 if (Align <= StackAlign) 2870 Align = 0; 2871 2872 // Round the size of the allocation up to the stack alignment size 2873 // by add SA-1 to the size. 2874 AllocSize = DAG.getNode(ISD::ADD, dl, 2875 AllocSize.getValueType(), AllocSize, 2876 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2877 2878 // Mask out the low bits for alignment purposes. 2879 AllocSize = DAG.getNode(ISD::AND, dl, 2880 AllocSize.getValueType(), AllocSize, 2881 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2882 dl)); 2883 2884 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2885 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2886 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2887 setValue(&I, DSA); 2888 DAG.setRoot(DSA.getValue(1)); 2889 2890 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2891 } 2892 2893 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2894 if (I.isAtomic()) 2895 return visitAtomicLoad(I); 2896 2897 const Value *SV = I.getOperand(0); 2898 SDValue Ptr = getValue(SV); 2899 2900 Type *Ty = I.getType(); 2901 2902 bool isVolatile = I.isVolatile(); 2903 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2904 2905 // The IR notion of invariant_load only guarantees that all *non-faulting* 2906 // invariant loads result in the same value. The MI notion of invariant load 2907 // guarantees that the load can be legally moved to any location within its 2908 // containing function. The MI notion of invariant_load is stronger than the 2909 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2910 // with a guarantee that the location being loaded from is dereferenceable 2911 // throughout the function's lifetime. 2912 2913 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2914 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2915 unsigned Alignment = I.getAlignment(); 2916 2917 AAMDNodes AAInfo; 2918 I.getAAMetadata(AAInfo); 2919 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2920 2921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2922 SmallVector<EVT, 4> ValueVTs; 2923 SmallVector<uint64_t, 4> Offsets; 2924 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2925 unsigned NumValues = ValueVTs.size(); 2926 if (NumValues == 0) 2927 return; 2928 2929 SDValue Root; 2930 bool ConstantMemory = false; 2931 if (isVolatile || NumValues > MaxParallelChains) 2932 // Serialize volatile loads with other side effects. 2933 Root = getRoot(); 2934 else if (AA->pointsToConstantMemory( 2935 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2936 // Do not serialize (non-volatile) loads of constant memory with anything. 2937 Root = DAG.getEntryNode(); 2938 ConstantMemory = true; 2939 } else { 2940 // Do not serialize non-volatile loads against each other. 2941 Root = DAG.getRoot(); 2942 } 2943 2944 SDLoc dl = getCurSDLoc(); 2945 2946 if (isVolatile) 2947 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2948 2949 SmallVector<SDValue, 4> Values(NumValues); 2950 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2951 EVT PtrVT = Ptr.getValueType(); 2952 unsigned ChainI = 0; 2953 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2954 // Serializing loads here may result in excessive register pressure, and 2955 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2956 // could recover a bit by hoisting nodes upward in the chain by recognizing 2957 // they are side-effect free or do not alias. The optimizer should really 2958 // avoid this case by converting large object/array copies to llvm.memcpy 2959 // (MaxParallelChains should always remain as failsafe). 2960 if (ChainI == MaxParallelChains) { 2961 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2962 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2963 makeArrayRef(Chains.data(), ChainI)); 2964 Root = Chain; 2965 ChainI = 0; 2966 } 2967 SDValue A = DAG.getNode(ISD::ADD, dl, 2968 PtrVT, Ptr, 2969 DAG.getConstant(Offsets[i], dl, PtrVT)); 2970 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2971 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2972 isNonTemporal, isInvariant, Alignment, AAInfo, 2973 Ranges); 2974 2975 Values[i] = L; 2976 Chains[ChainI] = L.getValue(1); 2977 } 2978 2979 if (!ConstantMemory) { 2980 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2981 makeArrayRef(Chains.data(), ChainI)); 2982 if (isVolatile) 2983 DAG.setRoot(Chain); 2984 else 2985 PendingLoads.push_back(Chain); 2986 } 2987 2988 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2989 DAG.getVTList(ValueVTs), Values)); 2990 } 2991 2992 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2993 if (I.isAtomic()) 2994 return visitAtomicStore(I); 2995 2996 const Value *SrcV = I.getOperand(0); 2997 const Value *PtrV = I.getOperand(1); 2998 2999 SmallVector<EVT, 4> ValueVTs; 3000 SmallVector<uint64_t, 4> Offsets; 3001 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3002 SrcV->getType(), ValueVTs, &Offsets); 3003 unsigned NumValues = ValueVTs.size(); 3004 if (NumValues == 0) 3005 return; 3006 3007 // Get the lowered operands. Note that we do this after 3008 // checking if NumResults is zero, because with zero results 3009 // the operands won't have values in the map. 3010 SDValue Src = getValue(SrcV); 3011 SDValue Ptr = getValue(PtrV); 3012 3013 SDValue Root = getRoot(); 3014 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3015 EVT PtrVT = Ptr.getValueType(); 3016 bool isVolatile = I.isVolatile(); 3017 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3018 unsigned Alignment = I.getAlignment(); 3019 SDLoc dl = getCurSDLoc(); 3020 3021 AAMDNodes AAInfo; 3022 I.getAAMetadata(AAInfo); 3023 3024 unsigned ChainI = 0; 3025 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3026 // See visitLoad comments. 3027 if (ChainI == MaxParallelChains) { 3028 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3029 makeArrayRef(Chains.data(), ChainI)); 3030 Root = Chain; 3031 ChainI = 0; 3032 } 3033 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3034 DAG.getConstant(Offsets[i], dl, PtrVT)); 3035 SDValue St = DAG.getStore(Root, dl, 3036 SDValue(Src.getNode(), Src.getResNo() + i), 3037 Add, MachinePointerInfo(PtrV, Offsets[i]), 3038 isVolatile, isNonTemporal, Alignment, AAInfo); 3039 Chains[ChainI] = St; 3040 } 3041 3042 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3043 makeArrayRef(Chains.data(), ChainI)); 3044 DAG.setRoot(StoreNode); 3045 } 3046 3047 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3048 SDLoc sdl = getCurSDLoc(); 3049 3050 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3051 Value *PtrOperand = I.getArgOperand(1); 3052 SDValue Ptr = getValue(PtrOperand); 3053 SDValue Src0 = getValue(I.getArgOperand(0)); 3054 SDValue Mask = getValue(I.getArgOperand(3)); 3055 EVT VT = Src0.getValueType(); 3056 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3057 if (!Alignment) 3058 Alignment = DAG.getEVTAlignment(VT); 3059 3060 AAMDNodes AAInfo; 3061 I.getAAMetadata(AAInfo); 3062 3063 MachineMemOperand *MMO = 3064 DAG.getMachineFunction(). 3065 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3066 MachineMemOperand::MOStore, VT.getStoreSize(), 3067 Alignment, AAInfo); 3068 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3069 MMO, false); 3070 DAG.setRoot(StoreNode); 3071 setValue(&I, StoreNode); 3072 } 3073 3074 // Gather/scatter receive a vector of pointers. 3075 // This vector of pointers may be represented as a base pointer + vector of 3076 // indices, it depends on GEP and instruction preceeding GEP 3077 // that calculates indices 3078 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3079 SelectionDAGBuilder* SDB) { 3080 3081 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3082 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3083 if (!Gep || Gep->getNumOperands() > 2) 3084 return false; 3085 ShuffleVectorInst *ShuffleInst = 3086 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3087 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3088 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3089 Instruction::InsertElement) 3090 return false; 3091 3092 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3093 3094 SelectionDAG& DAG = SDB->DAG; 3095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3096 // Check is the Ptr is inside current basic block 3097 // If not, look for the shuffle instruction 3098 if (SDB->findValue(Ptr)) 3099 Base = SDB->getValue(Ptr); 3100 else if (SDB->findValue(ShuffleInst)) { 3101 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3102 SDLoc sdl = ShuffleNode; 3103 Base = DAG.getNode( 3104 ISD::EXTRACT_VECTOR_ELT, sdl, 3105 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3106 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3107 SDB->setValue(Ptr, Base); 3108 } 3109 else 3110 return false; 3111 3112 Value *IndexVal = Gep->getOperand(1); 3113 if (SDB->findValue(IndexVal)) { 3114 Index = SDB->getValue(IndexVal); 3115 3116 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3117 IndexVal = Sext->getOperand(0); 3118 if (SDB->findValue(IndexVal)) 3119 Index = SDB->getValue(IndexVal); 3120 } 3121 return true; 3122 } 3123 return false; 3124 } 3125 3126 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3127 SDLoc sdl = getCurSDLoc(); 3128 3129 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3130 Value *Ptr = I.getArgOperand(1); 3131 SDValue Src0 = getValue(I.getArgOperand(0)); 3132 SDValue Mask = getValue(I.getArgOperand(3)); 3133 EVT VT = Src0.getValueType(); 3134 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3135 if (!Alignment) 3136 Alignment = DAG.getEVTAlignment(VT); 3137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3138 3139 AAMDNodes AAInfo; 3140 I.getAAMetadata(AAInfo); 3141 3142 SDValue Base; 3143 SDValue Index; 3144 Value *BasePtr = Ptr; 3145 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3146 3147 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3148 MachineMemOperand *MMO = DAG.getMachineFunction(). 3149 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3150 MachineMemOperand::MOStore, VT.getStoreSize(), 3151 Alignment, AAInfo); 3152 if (!UniformBase) { 3153 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3154 Index = getValue(Ptr); 3155 } 3156 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3157 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3158 Ops, MMO); 3159 DAG.setRoot(Scatter); 3160 setValue(&I, Scatter); 3161 } 3162 3163 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3164 SDLoc sdl = getCurSDLoc(); 3165 3166 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3167 Value *PtrOperand = I.getArgOperand(0); 3168 SDValue Ptr = getValue(PtrOperand); 3169 SDValue Src0 = getValue(I.getArgOperand(3)); 3170 SDValue Mask = getValue(I.getArgOperand(2)); 3171 3172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3173 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3174 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3175 if (!Alignment) 3176 Alignment = DAG.getEVTAlignment(VT); 3177 3178 AAMDNodes AAInfo; 3179 I.getAAMetadata(AAInfo); 3180 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3181 3182 SDValue InChain = DAG.getRoot(); 3183 if (AA->pointsToConstantMemory(MemoryLocation( 3184 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3185 // Do not serialize (non-volatile) loads of constant memory with anything. 3186 InChain = DAG.getEntryNode(); 3187 } 3188 3189 MachineMemOperand *MMO = 3190 DAG.getMachineFunction(). 3191 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3192 MachineMemOperand::MOLoad, VT.getStoreSize(), 3193 Alignment, AAInfo, Ranges); 3194 3195 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3196 ISD::NON_EXTLOAD); 3197 SDValue OutChain = Load.getValue(1); 3198 DAG.setRoot(OutChain); 3199 setValue(&I, Load); 3200 } 3201 3202 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3203 SDLoc sdl = getCurSDLoc(); 3204 3205 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3206 Value *Ptr = I.getArgOperand(0); 3207 SDValue Src0 = getValue(I.getArgOperand(3)); 3208 SDValue Mask = getValue(I.getArgOperand(2)); 3209 3210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3211 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3212 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3213 if (!Alignment) 3214 Alignment = DAG.getEVTAlignment(VT); 3215 3216 AAMDNodes AAInfo; 3217 I.getAAMetadata(AAInfo); 3218 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3219 3220 SDValue Root = DAG.getRoot(); 3221 SDValue Base; 3222 SDValue Index; 3223 Value *BasePtr = Ptr; 3224 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3225 bool ConstantMemory = false; 3226 if (UniformBase && 3227 AA->pointsToConstantMemory( 3228 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3229 // Do not serialize (non-volatile) loads of constant memory with anything. 3230 Root = DAG.getEntryNode(); 3231 ConstantMemory = true; 3232 } 3233 3234 MachineMemOperand *MMO = 3235 DAG.getMachineFunction(). 3236 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3237 MachineMemOperand::MOLoad, VT.getStoreSize(), 3238 Alignment, AAInfo, Ranges); 3239 3240 if (!UniformBase) { 3241 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3242 Index = getValue(Ptr); 3243 } 3244 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3245 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3246 Ops, MMO); 3247 3248 SDValue OutChain = Gather.getValue(1); 3249 if (!ConstantMemory) 3250 PendingLoads.push_back(OutChain); 3251 setValue(&I, Gather); 3252 } 3253 3254 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3255 SDLoc dl = getCurSDLoc(); 3256 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3257 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3258 SynchronizationScope Scope = I.getSynchScope(); 3259 3260 SDValue InChain = getRoot(); 3261 3262 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3263 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3264 SDValue L = DAG.getAtomicCmpSwap( 3265 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3266 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3267 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3268 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3269 3270 SDValue OutChain = L.getValue(2); 3271 3272 setValue(&I, L); 3273 DAG.setRoot(OutChain); 3274 } 3275 3276 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3277 SDLoc dl = getCurSDLoc(); 3278 ISD::NodeType NT; 3279 switch (I.getOperation()) { 3280 default: llvm_unreachable("Unknown atomicrmw operation"); 3281 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3282 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3283 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3284 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3285 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3286 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3287 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3288 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3289 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3290 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3291 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3292 } 3293 AtomicOrdering Order = I.getOrdering(); 3294 SynchronizationScope Scope = I.getSynchScope(); 3295 3296 SDValue InChain = getRoot(); 3297 3298 SDValue L = 3299 DAG.getAtomic(NT, dl, 3300 getValue(I.getValOperand()).getSimpleValueType(), 3301 InChain, 3302 getValue(I.getPointerOperand()), 3303 getValue(I.getValOperand()), 3304 I.getPointerOperand(), 3305 /* Alignment=*/ 0, Order, Scope); 3306 3307 SDValue OutChain = L.getValue(1); 3308 3309 setValue(&I, L); 3310 DAG.setRoot(OutChain); 3311 } 3312 3313 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3314 SDLoc dl = getCurSDLoc(); 3315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3316 SDValue Ops[3]; 3317 Ops[0] = getRoot(); 3318 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3319 TLI.getPointerTy(DAG.getDataLayout())); 3320 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3321 TLI.getPointerTy(DAG.getDataLayout())); 3322 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3323 } 3324 3325 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3326 SDLoc dl = getCurSDLoc(); 3327 AtomicOrdering Order = I.getOrdering(); 3328 SynchronizationScope Scope = I.getSynchScope(); 3329 3330 SDValue InChain = getRoot(); 3331 3332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3333 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3334 3335 if (I.getAlignment() < VT.getSizeInBits() / 8) 3336 report_fatal_error("Cannot generate unaligned atomic load"); 3337 3338 MachineMemOperand *MMO = 3339 DAG.getMachineFunction(). 3340 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3341 MachineMemOperand::MOVolatile | 3342 MachineMemOperand::MOLoad, 3343 VT.getStoreSize(), 3344 I.getAlignment() ? I.getAlignment() : 3345 DAG.getEVTAlignment(VT)); 3346 3347 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3348 SDValue L = 3349 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3350 getValue(I.getPointerOperand()), MMO, 3351 Order, Scope); 3352 3353 SDValue OutChain = L.getValue(1); 3354 3355 setValue(&I, L); 3356 DAG.setRoot(OutChain); 3357 } 3358 3359 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3360 SDLoc dl = getCurSDLoc(); 3361 3362 AtomicOrdering Order = I.getOrdering(); 3363 SynchronizationScope Scope = I.getSynchScope(); 3364 3365 SDValue InChain = getRoot(); 3366 3367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3368 EVT VT = 3369 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3370 3371 if (I.getAlignment() < VT.getSizeInBits() / 8) 3372 report_fatal_error("Cannot generate unaligned atomic store"); 3373 3374 SDValue OutChain = 3375 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3376 InChain, 3377 getValue(I.getPointerOperand()), 3378 getValue(I.getValueOperand()), 3379 I.getPointerOperand(), I.getAlignment(), 3380 Order, Scope); 3381 3382 DAG.setRoot(OutChain); 3383 } 3384 3385 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3386 /// node. 3387 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3388 unsigned Intrinsic) { 3389 bool HasChain = !I.doesNotAccessMemory(); 3390 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3391 3392 // Build the operand list. 3393 SmallVector<SDValue, 8> Ops; 3394 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3395 if (OnlyLoad) { 3396 // We don't need to serialize loads against other loads. 3397 Ops.push_back(DAG.getRoot()); 3398 } else { 3399 Ops.push_back(getRoot()); 3400 } 3401 } 3402 3403 // Info is set by getTgtMemInstrinsic 3404 TargetLowering::IntrinsicInfo Info; 3405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3406 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3407 3408 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3409 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3410 Info.opc == ISD::INTRINSIC_W_CHAIN) 3411 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3412 TLI.getPointerTy(DAG.getDataLayout()))); 3413 3414 // Add all operands of the call to the operand list. 3415 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3416 SDValue Op = getValue(I.getArgOperand(i)); 3417 Ops.push_back(Op); 3418 } 3419 3420 SmallVector<EVT, 4> ValueVTs; 3421 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3422 3423 if (HasChain) 3424 ValueVTs.push_back(MVT::Other); 3425 3426 SDVTList VTs = DAG.getVTList(ValueVTs); 3427 3428 // Create the node. 3429 SDValue Result; 3430 if (IsTgtIntrinsic) { 3431 // This is target intrinsic that touches memory 3432 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3433 VTs, Ops, Info.memVT, 3434 MachinePointerInfo(Info.ptrVal, Info.offset), 3435 Info.align, Info.vol, 3436 Info.readMem, Info.writeMem, Info.size); 3437 } else if (!HasChain) { 3438 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3439 } else if (!I.getType()->isVoidTy()) { 3440 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3441 } else { 3442 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3443 } 3444 3445 if (HasChain) { 3446 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3447 if (OnlyLoad) 3448 PendingLoads.push_back(Chain); 3449 else 3450 DAG.setRoot(Chain); 3451 } 3452 3453 if (!I.getType()->isVoidTy()) { 3454 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3455 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3456 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3457 } 3458 3459 setValue(&I, Result); 3460 } 3461 } 3462 3463 /// GetSignificand - Get the significand and build it into a floating-point 3464 /// number with exponent of 1: 3465 /// 3466 /// Op = (Op & 0x007fffff) | 0x3f800000; 3467 /// 3468 /// where Op is the hexadecimal representation of floating point value. 3469 static SDValue 3470 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3471 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3472 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3473 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3474 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3475 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3476 } 3477 3478 /// GetExponent - Get the exponent: 3479 /// 3480 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3481 /// 3482 /// where Op is the hexadecimal representation of floating point value. 3483 static SDValue 3484 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3485 SDLoc dl) { 3486 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3487 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3488 SDValue t1 = DAG.getNode( 3489 ISD::SRL, dl, MVT::i32, t0, 3490 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3491 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3492 DAG.getConstant(127, dl, MVT::i32)); 3493 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3494 } 3495 3496 /// getF32Constant - Get 32-bit floating point constant. 3497 static SDValue 3498 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3499 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3500 MVT::f32); 3501 } 3502 3503 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3504 SelectionDAG &DAG) { 3505 // IntegerPartOfX = ((int32_t)(t0); 3506 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3507 3508 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3509 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3510 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3511 3512 // IntegerPartOfX <<= 23; 3513 IntegerPartOfX = DAG.getNode( 3514 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3515 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3516 DAG.getDataLayout()))); 3517 3518 SDValue TwoToFractionalPartOfX; 3519 if (LimitFloatPrecision <= 6) { 3520 // For floating-point precision of 6: 3521 // 3522 // TwoToFractionalPartOfX = 3523 // 0.997535578f + 3524 // (0.735607626f + 0.252464424f * x) * x; 3525 // 3526 // error 0.0144103317, which is 6 bits 3527 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3528 getF32Constant(DAG, 0x3e814304, dl)); 3529 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3530 getF32Constant(DAG, 0x3f3c50c8, dl)); 3531 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3532 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3533 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3534 } else if (LimitFloatPrecision <= 12) { 3535 // For floating-point precision of 12: 3536 // 3537 // TwoToFractionalPartOfX = 3538 // 0.999892986f + 3539 // (0.696457318f + 3540 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3541 // 3542 // error 0.000107046256, which is 13 to 14 bits 3543 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3544 getF32Constant(DAG, 0x3da235e3, dl)); 3545 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3546 getF32Constant(DAG, 0x3e65b8f3, dl)); 3547 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3548 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3549 getF32Constant(DAG, 0x3f324b07, dl)); 3550 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3551 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3552 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3553 } else { // LimitFloatPrecision <= 18 3554 // For floating-point precision of 18: 3555 // 3556 // TwoToFractionalPartOfX = 3557 // 0.999999982f + 3558 // (0.693148872f + 3559 // (0.240227044f + 3560 // (0.554906021e-1f + 3561 // (0.961591928e-2f + 3562 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3563 // error 2.47208000*10^(-7), which is better than 18 bits 3564 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3565 getF32Constant(DAG, 0x3924b03e, dl)); 3566 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3567 getF32Constant(DAG, 0x3ab24b87, dl)); 3568 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3569 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3570 getF32Constant(DAG, 0x3c1d8c17, dl)); 3571 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3572 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3573 getF32Constant(DAG, 0x3d634a1d, dl)); 3574 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3575 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3576 getF32Constant(DAG, 0x3e75fe14, dl)); 3577 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3578 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3579 getF32Constant(DAG, 0x3f317234, dl)); 3580 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3581 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3582 getF32Constant(DAG, 0x3f800000, dl)); 3583 } 3584 3585 // Add the exponent into the result in integer domain. 3586 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3587 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3588 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3589 } 3590 3591 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3592 /// limited-precision mode. 3593 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3594 const TargetLowering &TLI) { 3595 if (Op.getValueType() == MVT::f32 && 3596 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3597 3598 // Put the exponent in the right bit position for later addition to the 3599 // final result: 3600 // 3601 // #define LOG2OFe 1.4426950f 3602 // t0 = Op * LOG2OFe 3603 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3604 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3605 return getLimitedPrecisionExp2(t0, dl, DAG); 3606 } 3607 3608 // No special expansion. 3609 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3610 } 3611 3612 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3613 /// limited-precision mode. 3614 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3615 const TargetLowering &TLI) { 3616 if (Op.getValueType() == MVT::f32 && 3617 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3618 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3619 3620 // Scale the exponent by log(2) [0.69314718f]. 3621 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3622 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3623 getF32Constant(DAG, 0x3f317218, dl)); 3624 3625 // Get the significand and build it into a floating-point number with 3626 // exponent of 1. 3627 SDValue X = GetSignificand(DAG, Op1, dl); 3628 3629 SDValue LogOfMantissa; 3630 if (LimitFloatPrecision <= 6) { 3631 // For floating-point precision of 6: 3632 // 3633 // LogofMantissa = 3634 // -1.1609546f + 3635 // (1.4034025f - 0.23903021f * x) * x; 3636 // 3637 // error 0.0034276066, which is better than 8 bits 3638 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3639 getF32Constant(DAG, 0xbe74c456, dl)); 3640 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3641 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3642 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3643 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3644 getF32Constant(DAG, 0x3f949a29, dl)); 3645 } else if (LimitFloatPrecision <= 12) { 3646 // For floating-point precision of 12: 3647 // 3648 // LogOfMantissa = 3649 // -1.7417939f + 3650 // (2.8212026f + 3651 // (-1.4699568f + 3652 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3653 // 3654 // error 0.000061011436, which is 14 bits 3655 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3656 getF32Constant(DAG, 0xbd67b6d6, dl)); 3657 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3658 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3659 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3660 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3661 getF32Constant(DAG, 0x3fbc278b, dl)); 3662 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3663 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3664 getF32Constant(DAG, 0x40348e95, dl)); 3665 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3666 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3667 getF32Constant(DAG, 0x3fdef31a, dl)); 3668 } else { // LimitFloatPrecision <= 18 3669 // For floating-point precision of 18: 3670 // 3671 // LogOfMantissa = 3672 // -2.1072184f + 3673 // (4.2372794f + 3674 // (-3.7029485f + 3675 // (2.2781945f + 3676 // (-0.87823314f + 3677 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3678 // 3679 // error 0.0000023660568, which is better than 18 bits 3680 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3681 getF32Constant(DAG, 0xbc91e5ac, dl)); 3682 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3683 getF32Constant(DAG, 0x3e4350aa, dl)); 3684 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3685 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3686 getF32Constant(DAG, 0x3f60d3e3, dl)); 3687 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3688 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3689 getF32Constant(DAG, 0x4011cdf0, dl)); 3690 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3691 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3692 getF32Constant(DAG, 0x406cfd1c, dl)); 3693 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3694 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3695 getF32Constant(DAG, 0x408797cb, dl)); 3696 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3697 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3698 getF32Constant(DAG, 0x4006dcab, dl)); 3699 } 3700 3701 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3702 } 3703 3704 // No special expansion. 3705 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3706 } 3707 3708 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3709 /// limited-precision mode. 3710 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3711 const TargetLowering &TLI) { 3712 if (Op.getValueType() == MVT::f32 && 3713 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3714 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3715 3716 // Get the exponent. 3717 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3718 3719 // Get the significand and build it into a floating-point number with 3720 // exponent of 1. 3721 SDValue X = GetSignificand(DAG, Op1, dl); 3722 3723 // Different possible minimax approximations of significand in 3724 // floating-point for various degrees of accuracy over [1,2]. 3725 SDValue Log2ofMantissa; 3726 if (LimitFloatPrecision <= 6) { 3727 // For floating-point precision of 6: 3728 // 3729 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3730 // 3731 // error 0.0049451742, which is more than 7 bits 3732 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3733 getF32Constant(DAG, 0xbeb08fe0, dl)); 3734 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3735 getF32Constant(DAG, 0x40019463, dl)); 3736 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3737 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3738 getF32Constant(DAG, 0x3fd6633d, dl)); 3739 } else if (LimitFloatPrecision <= 12) { 3740 // For floating-point precision of 12: 3741 // 3742 // Log2ofMantissa = 3743 // -2.51285454f + 3744 // (4.07009056f + 3745 // (-2.12067489f + 3746 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3747 // 3748 // error 0.0000876136000, which is better than 13 bits 3749 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3750 getF32Constant(DAG, 0xbda7262e, dl)); 3751 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3752 getF32Constant(DAG, 0x3f25280b, dl)); 3753 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3754 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3755 getF32Constant(DAG, 0x4007b923, dl)); 3756 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3757 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3758 getF32Constant(DAG, 0x40823e2f, dl)); 3759 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3760 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3761 getF32Constant(DAG, 0x4020d29c, dl)); 3762 } else { // LimitFloatPrecision <= 18 3763 // For floating-point precision of 18: 3764 // 3765 // Log2ofMantissa = 3766 // -3.0400495f + 3767 // (6.1129976f + 3768 // (-5.3420409f + 3769 // (3.2865683f + 3770 // (-1.2669343f + 3771 // (0.27515199f - 3772 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3773 // 3774 // error 0.0000018516, which is better than 18 bits 3775 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3776 getF32Constant(DAG, 0xbcd2769e, dl)); 3777 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3778 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3779 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3780 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3781 getF32Constant(DAG, 0x3fa22ae7, dl)); 3782 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3783 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3784 getF32Constant(DAG, 0x40525723, dl)); 3785 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3786 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3787 getF32Constant(DAG, 0x40aaf200, dl)); 3788 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3789 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3790 getF32Constant(DAG, 0x40c39dad, dl)); 3791 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3792 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3793 getF32Constant(DAG, 0x4042902c, dl)); 3794 } 3795 3796 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3797 } 3798 3799 // No special expansion. 3800 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3801 } 3802 3803 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3804 /// limited-precision mode. 3805 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3806 const TargetLowering &TLI) { 3807 if (Op.getValueType() == MVT::f32 && 3808 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3809 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3810 3811 // Scale the exponent by log10(2) [0.30102999f]. 3812 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3813 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3814 getF32Constant(DAG, 0x3e9a209a, dl)); 3815 3816 // Get the significand and build it into a floating-point number with 3817 // exponent of 1. 3818 SDValue X = GetSignificand(DAG, Op1, dl); 3819 3820 SDValue Log10ofMantissa; 3821 if (LimitFloatPrecision <= 6) { 3822 // For floating-point precision of 6: 3823 // 3824 // Log10ofMantissa = 3825 // -0.50419619f + 3826 // (0.60948995f - 0.10380950f * x) * x; 3827 // 3828 // error 0.0014886165, which is 6 bits 3829 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3830 getF32Constant(DAG, 0xbdd49a13, dl)); 3831 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3832 getF32Constant(DAG, 0x3f1c0789, dl)); 3833 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3834 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3835 getF32Constant(DAG, 0x3f011300, dl)); 3836 } else if (LimitFloatPrecision <= 12) { 3837 // For floating-point precision of 12: 3838 // 3839 // Log10ofMantissa = 3840 // -0.64831180f + 3841 // (0.91751397f + 3842 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3843 // 3844 // error 0.00019228036, which is better than 12 bits 3845 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3846 getF32Constant(DAG, 0x3d431f31, dl)); 3847 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3848 getF32Constant(DAG, 0x3ea21fb2, dl)); 3849 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3850 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3851 getF32Constant(DAG, 0x3f6ae232, dl)); 3852 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3853 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3854 getF32Constant(DAG, 0x3f25f7c3, dl)); 3855 } else { // LimitFloatPrecision <= 18 3856 // For floating-point precision of 18: 3857 // 3858 // Log10ofMantissa = 3859 // -0.84299375f + 3860 // (1.5327582f + 3861 // (-1.0688956f + 3862 // (0.49102474f + 3863 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3864 // 3865 // error 0.0000037995730, which is better than 18 bits 3866 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3867 getF32Constant(DAG, 0x3c5d51ce, dl)); 3868 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3869 getF32Constant(DAG, 0x3e00685a, dl)); 3870 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3871 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3872 getF32Constant(DAG, 0x3efb6798, dl)); 3873 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3874 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3875 getF32Constant(DAG, 0x3f88d192, dl)); 3876 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3877 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3878 getF32Constant(DAG, 0x3fc4316c, dl)); 3879 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3880 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3881 getF32Constant(DAG, 0x3f57ce70, dl)); 3882 } 3883 3884 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3885 } 3886 3887 // No special expansion. 3888 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3889 } 3890 3891 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3892 /// limited-precision mode. 3893 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3894 const TargetLowering &TLI) { 3895 if (Op.getValueType() == MVT::f32 && 3896 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3897 return getLimitedPrecisionExp2(Op, dl, DAG); 3898 3899 // No special expansion. 3900 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3901 } 3902 3903 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3904 /// limited-precision mode with x == 10.0f. 3905 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3906 SelectionDAG &DAG, const TargetLowering &TLI) { 3907 bool IsExp10 = false; 3908 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3909 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3910 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3911 APFloat Ten(10.0f); 3912 IsExp10 = LHSC->isExactlyValue(Ten); 3913 } 3914 } 3915 3916 if (IsExp10) { 3917 // Put the exponent in the right bit position for later addition to the 3918 // final result: 3919 // 3920 // #define LOG2OF10 3.3219281f 3921 // t0 = Op * LOG2OF10; 3922 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3923 getF32Constant(DAG, 0x40549a78, dl)); 3924 return getLimitedPrecisionExp2(t0, dl, DAG); 3925 } 3926 3927 // No special expansion. 3928 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3929 } 3930 3931 3932 /// ExpandPowI - Expand a llvm.powi intrinsic. 3933 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3934 SelectionDAG &DAG) { 3935 // If RHS is a constant, we can expand this out to a multiplication tree, 3936 // otherwise we end up lowering to a call to __powidf2 (for example). When 3937 // optimizing for size, we only want to do this if the expansion would produce 3938 // a small number of multiplies, otherwise we do the full expansion. 3939 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3940 // Get the exponent as a positive value. 3941 unsigned Val = RHSC->getSExtValue(); 3942 if ((int)Val < 0) Val = -Val; 3943 3944 // powi(x, 0) -> 1.0 3945 if (Val == 0) 3946 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3947 3948 const Function *F = DAG.getMachineFunction().getFunction(); 3949 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3950 // If optimizing for size, don't insert too many multiplies. This 3951 // inserts up to 5 multiplies. 3952 countPopulation(Val) + Log2_32(Val) < 7) { 3953 // We use the simple binary decomposition method to generate the multiply 3954 // sequence. There are more optimal ways to do this (for example, 3955 // powi(x,15) generates one more multiply than it should), but this has 3956 // the benefit of being both really simple and much better than a libcall. 3957 SDValue Res; // Logically starts equal to 1.0 3958 SDValue CurSquare = LHS; 3959 while (Val) { 3960 if (Val & 1) { 3961 if (Res.getNode()) 3962 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3963 else 3964 Res = CurSquare; // 1.0*CurSquare. 3965 } 3966 3967 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3968 CurSquare, CurSquare); 3969 Val >>= 1; 3970 } 3971 3972 // If the original was negative, invert the result, producing 1/(x*x*x). 3973 if (RHSC->getSExtValue() < 0) 3974 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3975 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3976 return Res; 3977 } 3978 } 3979 3980 // Otherwise, expand to a libcall. 3981 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3982 } 3983 3984 // getTruncatedArgReg - Find underlying register used for an truncated 3985 // argument. 3986 static unsigned getTruncatedArgReg(const SDValue &N) { 3987 if (N.getOpcode() != ISD::TRUNCATE) 3988 return 0; 3989 3990 const SDValue &Ext = N.getOperand(0); 3991 if (Ext.getOpcode() == ISD::AssertZext || 3992 Ext.getOpcode() == ISD::AssertSext) { 3993 const SDValue &CFR = Ext.getOperand(0); 3994 if (CFR.getOpcode() == ISD::CopyFromReg) 3995 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3996 if (CFR.getOpcode() == ISD::TRUNCATE) 3997 return getTruncatedArgReg(CFR); 3998 } 3999 return 0; 4000 } 4001 4002 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4003 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4004 /// At the end of instruction selection, they will be inserted to the entry BB. 4005 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4006 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4007 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4008 const Argument *Arg = dyn_cast<Argument>(V); 4009 if (!Arg) 4010 return false; 4011 4012 MachineFunction &MF = DAG.getMachineFunction(); 4013 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4014 4015 // Ignore inlined function arguments here. 4016 // 4017 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4018 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4019 return false; 4020 4021 Optional<MachineOperand> Op; 4022 // Some arguments' frame index is recorded during argument lowering. 4023 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4024 Op = MachineOperand::CreateFI(FI); 4025 4026 if (!Op && N.getNode()) { 4027 unsigned Reg; 4028 if (N.getOpcode() == ISD::CopyFromReg) 4029 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4030 else 4031 Reg = getTruncatedArgReg(N); 4032 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4033 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4034 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4035 if (PR) 4036 Reg = PR; 4037 } 4038 if (Reg) 4039 Op = MachineOperand::CreateReg(Reg, false); 4040 } 4041 4042 if (!Op) { 4043 // Check if ValueMap has reg number. 4044 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4045 if (VMI != FuncInfo.ValueMap.end()) 4046 Op = MachineOperand::CreateReg(VMI->second, false); 4047 } 4048 4049 if (!Op && N.getNode()) 4050 // Check if frame index is available. 4051 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4052 if (FrameIndexSDNode *FINode = 4053 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4054 Op = MachineOperand::CreateFI(FINode->getIndex()); 4055 4056 if (!Op) 4057 return false; 4058 4059 assert(Variable->isValidLocationForIntrinsic(DL) && 4060 "Expected inlined-at fields to agree"); 4061 if (Op->isReg()) 4062 FuncInfo.ArgDbgValues.push_back( 4063 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4064 Op->getReg(), Offset, Variable, Expr)); 4065 else 4066 FuncInfo.ArgDbgValues.push_back( 4067 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4068 .addOperand(*Op) 4069 .addImm(Offset) 4070 .addMetadata(Variable) 4071 .addMetadata(Expr)); 4072 4073 return true; 4074 } 4075 4076 // VisualStudio defines setjmp as _setjmp 4077 #if defined(_MSC_VER) && defined(setjmp) && \ 4078 !defined(setjmp_undefined_for_msvc) 4079 # pragma push_macro("setjmp") 4080 # undef setjmp 4081 # define setjmp_undefined_for_msvc 4082 #endif 4083 4084 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4085 /// we want to emit this as a call to a named external function, return the name 4086 /// otherwise lower it and return null. 4087 const char * 4088 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4090 SDLoc sdl = getCurSDLoc(); 4091 DebugLoc dl = getCurDebugLoc(); 4092 SDValue Res; 4093 4094 switch (Intrinsic) { 4095 default: 4096 // By default, turn this into a target intrinsic node. 4097 visitTargetIntrinsic(I, Intrinsic); 4098 return nullptr; 4099 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4100 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4101 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4102 case Intrinsic::returnaddress: 4103 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4104 TLI.getPointerTy(DAG.getDataLayout()), 4105 getValue(I.getArgOperand(0)))); 4106 return nullptr; 4107 case Intrinsic::frameaddress: 4108 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4109 TLI.getPointerTy(DAG.getDataLayout()), 4110 getValue(I.getArgOperand(0)))); 4111 return nullptr; 4112 case Intrinsic::read_register: { 4113 Value *Reg = I.getArgOperand(0); 4114 SDValue Chain = getRoot(); 4115 SDValue RegName = 4116 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4117 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4118 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4119 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4120 setValue(&I, Res); 4121 DAG.setRoot(Res.getValue(1)); 4122 return nullptr; 4123 } 4124 case Intrinsic::write_register: { 4125 Value *Reg = I.getArgOperand(0); 4126 Value *RegValue = I.getArgOperand(1); 4127 SDValue Chain = getRoot(); 4128 SDValue RegName = 4129 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4130 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4131 RegName, getValue(RegValue))); 4132 return nullptr; 4133 } 4134 case Intrinsic::setjmp: 4135 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4136 case Intrinsic::longjmp: 4137 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4138 case Intrinsic::memcpy: { 4139 // FIXME: this definition of "user defined address space" is x86-specific 4140 // Assert for address < 256 since we support only user defined address 4141 // spaces. 4142 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4143 < 256 && 4144 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4145 < 256 && 4146 "Unknown address space"); 4147 SDValue Op1 = getValue(I.getArgOperand(0)); 4148 SDValue Op2 = getValue(I.getArgOperand(1)); 4149 SDValue Op3 = getValue(I.getArgOperand(2)); 4150 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4151 if (!Align) 4152 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4153 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4154 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4155 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4156 false, isTC, 4157 MachinePointerInfo(I.getArgOperand(0)), 4158 MachinePointerInfo(I.getArgOperand(1))); 4159 updateDAGForMaybeTailCall(MC); 4160 return nullptr; 4161 } 4162 case Intrinsic::memset: { 4163 // FIXME: this definition of "user defined address space" is x86-specific 4164 // Assert for address < 256 since we support only user defined address 4165 // spaces. 4166 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4167 < 256 && 4168 "Unknown address space"); 4169 SDValue Op1 = getValue(I.getArgOperand(0)); 4170 SDValue Op2 = getValue(I.getArgOperand(1)); 4171 SDValue Op3 = getValue(I.getArgOperand(2)); 4172 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4173 if (!Align) 4174 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4175 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4176 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4177 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4178 isTC, MachinePointerInfo(I.getArgOperand(0))); 4179 updateDAGForMaybeTailCall(MS); 4180 return nullptr; 4181 } 4182 case Intrinsic::memmove: { 4183 // FIXME: this definition of "user defined address space" is x86-specific 4184 // Assert for address < 256 since we support only user defined address 4185 // spaces. 4186 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4187 < 256 && 4188 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4189 < 256 && 4190 "Unknown address space"); 4191 SDValue Op1 = getValue(I.getArgOperand(0)); 4192 SDValue Op2 = getValue(I.getArgOperand(1)); 4193 SDValue Op3 = getValue(I.getArgOperand(2)); 4194 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4195 if (!Align) 4196 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4197 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4198 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4199 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4200 isTC, MachinePointerInfo(I.getArgOperand(0)), 4201 MachinePointerInfo(I.getArgOperand(1))); 4202 updateDAGForMaybeTailCall(MM); 4203 return nullptr; 4204 } 4205 case Intrinsic::dbg_declare: { 4206 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4207 DILocalVariable *Variable = DI.getVariable(); 4208 DIExpression *Expression = DI.getExpression(); 4209 const Value *Address = DI.getAddress(); 4210 assert(Variable && "Missing variable"); 4211 if (!Address) { 4212 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4213 return nullptr; 4214 } 4215 4216 // Check if address has undef value. 4217 if (isa<UndefValue>(Address) || 4218 (Address->use_empty() && !isa<Argument>(Address))) { 4219 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4220 return nullptr; 4221 } 4222 4223 SDValue &N = NodeMap[Address]; 4224 if (!N.getNode() && isa<Argument>(Address)) 4225 // Check unused arguments map. 4226 N = UnusedArgNodeMap[Address]; 4227 SDDbgValue *SDV; 4228 if (N.getNode()) { 4229 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4230 Address = BCI->getOperand(0); 4231 // Parameters are handled specially. 4232 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4233 isa<Argument>(Address); 4234 4235 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4236 4237 if (isParameter && !AI) { 4238 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4239 if (FINode) 4240 // Byval parameter. We have a frame index at this point. 4241 SDV = DAG.getFrameIndexDbgValue( 4242 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4243 else { 4244 // Address is an argument, so try to emit its dbg value using 4245 // virtual register info from the FuncInfo.ValueMap. 4246 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4247 N); 4248 return nullptr; 4249 } 4250 } else if (AI) 4251 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4252 true, 0, dl, SDNodeOrder); 4253 else { 4254 // Can't do anything with other non-AI cases yet. 4255 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4256 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4257 DEBUG(Address->dump()); 4258 return nullptr; 4259 } 4260 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4261 } else { 4262 // If Address is an argument then try to emit its dbg value using 4263 // virtual register info from the FuncInfo.ValueMap. 4264 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4265 N)) { 4266 // If variable is pinned by a alloca in dominating bb then 4267 // use StaticAllocaMap. 4268 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4269 if (AI->getParent() != DI.getParent()) { 4270 DenseMap<const AllocaInst*, int>::iterator SI = 4271 FuncInfo.StaticAllocaMap.find(AI); 4272 if (SI != FuncInfo.StaticAllocaMap.end()) { 4273 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4274 0, dl, SDNodeOrder); 4275 DAG.AddDbgValue(SDV, nullptr, false); 4276 return nullptr; 4277 } 4278 } 4279 } 4280 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4281 } 4282 } 4283 return nullptr; 4284 } 4285 case Intrinsic::dbg_value: { 4286 const DbgValueInst &DI = cast<DbgValueInst>(I); 4287 assert(DI.getVariable() && "Missing variable"); 4288 4289 DILocalVariable *Variable = DI.getVariable(); 4290 DIExpression *Expression = DI.getExpression(); 4291 uint64_t Offset = DI.getOffset(); 4292 const Value *V = DI.getValue(); 4293 if (!V) 4294 return nullptr; 4295 4296 SDDbgValue *SDV; 4297 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4298 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4299 SDNodeOrder); 4300 DAG.AddDbgValue(SDV, nullptr, false); 4301 } else { 4302 // Do not use getValue() in here; we don't want to generate code at 4303 // this point if it hasn't been done yet. 4304 SDValue N = NodeMap[V]; 4305 if (!N.getNode() && isa<Argument>(V)) 4306 // Check unused arguments map. 4307 N = UnusedArgNodeMap[V]; 4308 if (N.getNode()) { 4309 // A dbg.value for an alloca is always indirect. 4310 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4311 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4312 IsIndirect, N)) { 4313 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4314 IsIndirect, Offset, dl, SDNodeOrder); 4315 DAG.AddDbgValue(SDV, N.getNode(), false); 4316 } 4317 } else if (!V->use_empty() ) { 4318 // Do not call getValue(V) yet, as we don't want to generate code. 4319 // Remember it for later. 4320 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4321 DanglingDebugInfoMap[V] = DDI; 4322 } else { 4323 // We may expand this to cover more cases. One case where we have no 4324 // data available is an unreferenced parameter. 4325 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4326 } 4327 } 4328 4329 // Build a debug info table entry. 4330 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4331 V = BCI->getOperand(0); 4332 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4333 // Don't handle byval struct arguments or VLAs, for example. 4334 if (!AI) { 4335 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4336 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4337 return nullptr; 4338 } 4339 DenseMap<const AllocaInst*, int>::iterator SI = 4340 FuncInfo.StaticAllocaMap.find(AI); 4341 if (SI == FuncInfo.StaticAllocaMap.end()) 4342 return nullptr; // VLAs. 4343 return nullptr; 4344 } 4345 4346 case Intrinsic::eh_typeid_for: { 4347 // Find the type id for the given typeinfo. 4348 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4349 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4350 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4351 setValue(&I, Res); 4352 return nullptr; 4353 } 4354 4355 case Intrinsic::eh_return_i32: 4356 case Intrinsic::eh_return_i64: 4357 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4358 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4359 MVT::Other, 4360 getControlRoot(), 4361 getValue(I.getArgOperand(0)), 4362 getValue(I.getArgOperand(1)))); 4363 return nullptr; 4364 case Intrinsic::eh_unwind_init: 4365 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4366 return nullptr; 4367 case Intrinsic::eh_dwarf_cfa: { 4368 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4369 TLI.getPointerTy(DAG.getDataLayout())); 4370 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4371 CfaArg.getValueType(), 4372 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4373 CfaArg.getValueType()), 4374 CfaArg); 4375 SDValue FA = DAG.getNode( 4376 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4377 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4378 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4379 FA, Offset)); 4380 return nullptr; 4381 } 4382 case Intrinsic::eh_sjlj_callsite: { 4383 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4384 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4385 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4386 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4387 4388 MMI.setCurrentCallSite(CI->getZExtValue()); 4389 return nullptr; 4390 } 4391 case Intrinsic::eh_sjlj_functioncontext: { 4392 // Get and store the index of the function context. 4393 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4394 AllocaInst *FnCtx = 4395 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4396 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4397 MFI->setFunctionContextIndex(FI); 4398 return nullptr; 4399 } 4400 case Intrinsic::eh_sjlj_setjmp: { 4401 SDValue Ops[2]; 4402 Ops[0] = getRoot(); 4403 Ops[1] = getValue(I.getArgOperand(0)); 4404 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4405 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4406 setValue(&I, Op.getValue(0)); 4407 DAG.setRoot(Op.getValue(1)); 4408 return nullptr; 4409 } 4410 case Intrinsic::eh_sjlj_longjmp: { 4411 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4412 getRoot(), getValue(I.getArgOperand(0)))); 4413 return nullptr; 4414 } 4415 4416 case Intrinsic::masked_gather: 4417 visitMaskedGather(I); 4418 return nullptr; 4419 case Intrinsic::masked_load: 4420 visitMaskedLoad(I); 4421 return nullptr; 4422 case Intrinsic::masked_scatter: 4423 visitMaskedScatter(I); 4424 return nullptr; 4425 case Intrinsic::masked_store: 4426 visitMaskedStore(I); 4427 return nullptr; 4428 case Intrinsic::x86_mmx_pslli_w: 4429 case Intrinsic::x86_mmx_pslli_d: 4430 case Intrinsic::x86_mmx_pslli_q: 4431 case Intrinsic::x86_mmx_psrli_w: 4432 case Intrinsic::x86_mmx_psrli_d: 4433 case Intrinsic::x86_mmx_psrli_q: 4434 case Intrinsic::x86_mmx_psrai_w: 4435 case Intrinsic::x86_mmx_psrai_d: { 4436 SDValue ShAmt = getValue(I.getArgOperand(1)); 4437 if (isa<ConstantSDNode>(ShAmt)) { 4438 visitTargetIntrinsic(I, Intrinsic); 4439 return nullptr; 4440 } 4441 unsigned NewIntrinsic = 0; 4442 EVT ShAmtVT = MVT::v2i32; 4443 switch (Intrinsic) { 4444 case Intrinsic::x86_mmx_pslli_w: 4445 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4446 break; 4447 case Intrinsic::x86_mmx_pslli_d: 4448 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4449 break; 4450 case Intrinsic::x86_mmx_pslli_q: 4451 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4452 break; 4453 case Intrinsic::x86_mmx_psrli_w: 4454 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4455 break; 4456 case Intrinsic::x86_mmx_psrli_d: 4457 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4458 break; 4459 case Intrinsic::x86_mmx_psrli_q: 4460 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4461 break; 4462 case Intrinsic::x86_mmx_psrai_w: 4463 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4464 break; 4465 case Intrinsic::x86_mmx_psrai_d: 4466 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4467 break; 4468 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4469 } 4470 4471 // The vector shift intrinsics with scalars uses 32b shift amounts but 4472 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4473 // to be zero. 4474 // We must do this early because v2i32 is not a legal type. 4475 SDValue ShOps[2]; 4476 ShOps[0] = ShAmt; 4477 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4478 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4479 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4480 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4481 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4482 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4483 getValue(I.getArgOperand(0)), ShAmt); 4484 setValue(&I, Res); 4485 return nullptr; 4486 } 4487 case Intrinsic::convertff: 4488 case Intrinsic::convertfsi: 4489 case Intrinsic::convertfui: 4490 case Intrinsic::convertsif: 4491 case Intrinsic::convertuif: 4492 case Intrinsic::convertss: 4493 case Intrinsic::convertsu: 4494 case Intrinsic::convertus: 4495 case Intrinsic::convertuu: { 4496 ISD::CvtCode Code = ISD::CVT_INVALID; 4497 switch (Intrinsic) { 4498 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4499 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4500 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4501 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4502 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4503 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4504 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4505 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4506 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4507 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4508 } 4509 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4510 const Value *Op1 = I.getArgOperand(0); 4511 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4512 DAG.getValueType(DestVT), 4513 DAG.getValueType(getValue(Op1).getValueType()), 4514 getValue(I.getArgOperand(1)), 4515 getValue(I.getArgOperand(2)), 4516 Code); 4517 setValue(&I, Res); 4518 return nullptr; 4519 } 4520 case Intrinsic::powi: 4521 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4522 getValue(I.getArgOperand(1)), DAG)); 4523 return nullptr; 4524 case Intrinsic::log: 4525 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4526 return nullptr; 4527 case Intrinsic::log2: 4528 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4529 return nullptr; 4530 case Intrinsic::log10: 4531 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4532 return nullptr; 4533 case Intrinsic::exp: 4534 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4535 return nullptr; 4536 case Intrinsic::exp2: 4537 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4538 return nullptr; 4539 case Intrinsic::pow: 4540 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4541 getValue(I.getArgOperand(1)), DAG, TLI)); 4542 return nullptr; 4543 case Intrinsic::sqrt: 4544 case Intrinsic::fabs: 4545 case Intrinsic::sin: 4546 case Intrinsic::cos: 4547 case Intrinsic::floor: 4548 case Intrinsic::ceil: 4549 case Intrinsic::trunc: 4550 case Intrinsic::rint: 4551 case Intrinsic::nearbyint: 4552 case Intrinsic::round: { 4553 unsigned Opcode; 4554 switch (Intrinsic) { 4555 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4556 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4557 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4558 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4559 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4560 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4561 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4562 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4563 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4564 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4565 case Intrinsic::round: Opcode = ISD::FROUND; break; 4566 } 4567 4568 setValue(&I, DAG.getNode(Opcode, sdl, 4569 getValue(I.getArgOperand(0)).getValueType(), 4570 getValue(I.getArgOperand(0)))); 4571 return nullptr; 4572 } 4573 case Intrinsic::minnum: 4574 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4575 getValue(I.getArgOperand(0)).getValueType(), 4576 getValue(I.getArgOperand(0)), 4577 getValue(I.getArgOperand(1)))); 4578 return nullptr; 4579 case Intrinsic::maxnum: 4580 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4581 getValue(I.getArgOperand(0)).getValueType(), 4582 getValue(I.getArgOperand(0)), 4583 getValue(I.getArgOperand(1)))); 4584 return nullptr; 4585 case Intrinsic::copysign: 4586 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4587 getValue(I.getArgOperand(0)).getValueType(), 4588 getValue(I.getArgOperand(0)), 4589 getValue(I.getArgOperand(1)))); 4590 return nullptr; 4591 case Intrinsic::fma: 4592 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4593 getValue(I.getArgOperand(0)).getValueType(), 4594 getValue(I.getArgOperand(0)), 4595 getValue(I.getArgOperand(1)), 4596 getValue(I.getArgOperand(2)))); 4597 return nullptr; 4598 case Intrinsic::fmuladd: { 4599 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4600 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4601 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4602 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4603 getValue(I.getArgOperand(0)).getValueType(), 4604 getValue(I.getArgOperand(0)), 4605 getValue(I.getArgOperand(1)), 4606 getValue(I.getArgOperand(2)))); 4607 } else { 4608 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4609 getValue(I.getArgOperand(0)).getValueType(), 4610 getValue(I.getArgOperand(0)), 4611 getValue(I.getArgOperand(1))); 4612 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4613 getValue(I.getArgOperand(0)).getValueType(), 4614 Mul, 4615 getValue(I.getArgOperand(2))); 4616 setValue(&I, Add); 4617 } 4618 return nullptr; 4619 } 4620 case Intrinsic::convert_to_fp16: 4621 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4622 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4623 getValue(I.getArgOperand(0)), 4624 DAG.getTargetConstant(0, sdl, 4625 MVT::i32)))); 4626 return nullptr; 4627 case Intrinsic::convert_from_fp16: 4628 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4629 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4630 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4631 getValue(I.getArgOperand(0))))); 4632 return nullptr; 4633 case Intrinsic::pcmarker: { 4634 SDValue Tmp = getValue(I.getArgOperand(0)); 4635 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4636 return nullptr; 4637 } 4638 case Intrinsic::readcyclecounter: { 4639 SDValue Op = getRoot(); 4640 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4641 DAG.getVTList(MVT::i64, MVT::Other), Op); 4642 setValue(&I, Res); 4643 DAG.setRoot(Res.getValue(1)); 4644 return nullptr; 4645 } 4646 case Intrinsic::bswap: 4647 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4648 getValue(I.getArgOperand(0)).getValueType(), 4649 getValue(I.getArgOperand(0)))); 4650 return nullptr; 4651 case Intrinsic::cttz: { 4652 SDValue Arg = getValue(I.getArgOperand(0)); 4653 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4654 EVT Ty = Arg.getValueType(); 4655 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4656 sdl, Ty, Arg)); 4657 return nullptr; 4658 } 4659 case Intrinsic::ctlz: { 4660 SDValue Arg = getValue(I.getArgOperand(0)); 4661 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4662 EVT Ty = Arg.getValueType(); 4663 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4664 sdl, Ty, Arg)); 4665 return nullptr; 4666 } 4667 case Intrinsic::ctpop: { 4668 SDValue Arg = getValue(I.getArgOperand(0)); 4669 EVT Ty = Arg.getValueType(); 4670 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4671 return nullptr; 4672 } 4673 case Intrinsic::stacksave: { 4674 SDValue Op = getRoot(); 4675 Res = DAG.getNode( 4676 ISD::STACKSAVE, sdl, 4677 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4678 setValue(&I, Res); 4679 DAG.setRoot(Res.getValue(1)); 4680 return nullptr; 4681 } 4682 case Intrinsic::stackrestore: { 4683 Res = getValue(I.getArgOperand(0)); 4684 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4685 return nullptr; 4686 } 4687 case Intrinsic::stackprotector: { 4688 // Emit code into the DAG to store the stack guard onto the stack. 4689 MachineFunction &MF = DAG.getMachineFunction(); 4690 MachineFrameInfo *MFI = MF.getFrameInfo(); 4691 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4692 SDValue Src, Chain = getRoot(); 4693 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4694 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4695 4696 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4697 // global variable __stack_chk_guard. 4698 if (!GV) 4699 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4700 if (BC->getOpcode() == Instruction::BitCast) 4701 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4702 4703 if (GV && TLI.useLoadStackGuardNode()) { 4704 // Emit a LOAD_STACK_GUARD node. 4705 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4706 sdl, PtrTy, Chain); 4707 MachinePointerInfo MPInfo(GV); 4708 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4709 unsigned Flags = MachineMemOperand::MOLoad | 4710 MachineMemOperand::MOInvariant; 4711 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4712 PtrTy.getSizeInBits() / 8, 4713 DAG.getEVTAlignment(PtrTy)); 4714 Node->setMemRefs(MemRefs, MemRefs + 1); 4715 4716 // Copy the guard value to a virtual register so that it can be 4717 // retrieved in the epilogue. 4718 Src = SDValue(Node, 0); 4719 const TargetRegisterClass *RC = 4720 TLI.getRegClassFor(Src.getSimpleValueType()); 4721 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4722 4723 SPDescriptor.setGuardReg(Reg); 4724 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4725 } else { 4726 Src = getValue(I.getArgOperand(0)); // The guard's value. 4727 } 4728 4729 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4730 4731 int FI = FuncInfo.StaticAllocaMap[Slot]; 4732 MFI->setStackProtectorIndex(FI); 4733 4734 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4735 4736 // Store the stack protector onto the stack. 4737 Res = DAG.getStore(Chain, sdl, Src, FIN, 4738 MachinePointerInfo::getFixedStack(FI), 4739 true, false, 0); 4740 setValue(&I, Res); 4741 DAG.setRoot(Res); 4742 return nullptr; 4743 } 4744 case Intrinsic::objectsize: { 4745 // If we don't know by now, we're never going to know. 4746 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4747 4748 assert(CI && "Non-constant type in __builtin_object_size?"); 4749 4750 SDValue Arg = getValue(I.getCalledValue()); 4751 EVT Ty = Arg.getValueType(); 4752 4753 if (CI->isZero()) 4754 Res = DAG.getConstant(-1ULL, sdl, Ty); 4755 else 4756 Res = DAG.getConstant(0, sdl, Ty); 4757 4758 setValue(&I, Res); 4759 return nullptr; 4760 } 4761 case Intrinsic::annotation: 4762 case Intrinsic::ptr_annotation: 4763 // Drop the intrinsic, but forward the value 4764 setValue(&I, getValue(I.getOperand(0))); 4765 return nullptr; 4766 case Intrinsic::assume: 4767 case Intrinsic::var_annotation: 4768 // Discard annotate attributes and assumptions 4769 return nullptr; 4770 4771 case Intrinsic::init_trampoline: { 4772 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4773 4774 SDValue Ops[6]; 4775 Ops[0] = getRoot(); 4776 Ops[1] = getValue(I.getArgOperand(0)); 4777 Ops[2] = getValue(I.getArgOperand(1)); 4778 Ops[3] = getValue(I.getArgOperand(2)); 4779 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4780 Ops[5] = DAG.getSrcValue(F); 4781 4782 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4783 4784 DAG.setRoot(Res); 4785 return nullptr; 4786 } 4787 case Intrinsic::adjust_trampoline: { 4788 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4789 TLI.getPointerTy(DAG.getDataLayout()), 4790 getValue(I.getArgOperand(0)))); 4791 return nullptr; 4792 } 4793 case Intrinsic::gcroot: 4794 if (GFI) { 4795 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4796 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4797 4798 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4799 GFI->addStackRoot(FI->getIndex(), TypeMap); 4800 } 4801 return nullptr; 4802 case Intrinsic::gcread: 4803 case Intrinsic::gcwrite: 4804 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4805 case Intrinsic::flt_rounds: 4806 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4807 return nullptr; 4808 4809 case Intrinsic::expect: { 4810 // Just replace __builtin_expect(exp, c) with EXP. 4811 setValue(&I, getValue(I.getArgOperand(0))); 4812 return nullptr; 4813 } 4814 4815 case Intrinsic::debugtrap: 4816 case Intrinsic::trap: { 4817 StringRef TrapFuncName = 4818 I.getAttributes() 4819 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4820 .getValueAsString(); 4821 if (TrapFuncName.empty()) { 4822 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4823 ISD::TRAP : ISD::DEBUGTRAP; 4824 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4825 return nullptr; 4826 } 4827 TargetLowering::ArgListTy Args; 4828 4829 TargetLowering::CallLoweringInfo CLI(DAG); 4830 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4831 CallingConv::C, I.getType(), 4832 DAG.getExternalSymbol(TrapFuncName.data(), 4833 TLI.getPointerTy(DAG.getDataLayout())), 4834 std::move(Args), 0); 4835 4836 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4837 DAG.setRoot(Result.second); 4838 return nullptr; 4839 } 4840 4841 case Intrinsic::uadd_with_overflow: 4842 case Intrinsic::sadd_with_overflow: 4843 case Intrinsic::usub_with_overflow: 4844 case Intrinsic::ssub_with_overflow: 4845 case Intrinsic::umul_with_overflow: 4846 case Intrinsic::smul_with_overflow: { 4847 ISD::NodeType Op; 4848 switch (Intrinsic) { 4849 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4850 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4851 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4852 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4853 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4854 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4855 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4856 } 4857 SDValue Op1 = getValue(I.getArgOperand(0)); 4858 SDValue Op2 = getValue(I.getArgOperand(1)); 4859 4860 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4861 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4862 return nullptr; 4863 } 4864 case Intrinsic::prefetch: { 4865 SDValue Ops[5]; 4866 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4867 Ops[0] = getRoot(); 4868 Ops[1] = getValue(I.getArgOperand(0)); 4869 Ops[2] = getValue(I.getArgOperand(1)); 4870 Ops[3] = getValue(I.getArgOperand(2)); 4871 Ops[4] = getValue(I.getArgOperand(3)); 4872 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4873 DAG.getVTList(MVT::Other), Ops, 4874 EVT::getIntegerVT(*Context, 8), 4875 MachinePointerInfo(I.getArgOperand(0)), 4876 0, /* align */ 4877 false, /* volatile */ 4878 rw==0, /* read */ 4879 rw==1)); /* write */ 4880 return nullptr; 4881 } 4882 case Intrinsic::lifetime_start: 4883 case Intrinsic::lifetime_end: { 4884 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4885 // Stack coloring is not enabled in O0, discard region information. 4886 if (TM.getOptLevel() == CodeGenOpt::None) 4887 return nullptr; 4888 4889 SmallVector<Value *, 4> Allocas; 4890 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4891 4892 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4893 E = Allocas.end(); Object != E; ++Object) { 4894 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4895 4896 // Could not find an Alloca. 4897 if (!LifetimeObject) 4898 continue; 4899 4900 // First check that the Alloca is static, otherwise it won't have a 4901 // valid frame index. 4902 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4903 if (SI == FuncInfo.StaticAllocaMap.end()) 4904 return nullptr; 4905 4906 int FI = SI->second; 4907 4908 SDValue Ops[2]; 4909 Ops[0] = getRoot(); 4910 Ops[1] = 4911 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4912 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4913 4914 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4915 DAG.setRoot(Res); 4916 } 4917 return nullptr; 4918 } 4919 case Intrinsic::invariant_start: 4920 // Discard region information. 4921 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4922 return nullptr; 4923 case Intrinsic::invariant_end: 4924 // Discard region information. 4925 return nullptr; 4926 case Intrinsic::stackprotectorcheck: { 4927 // Do not actually emit anything for this basic block. Instead we initialize 4928 // the stack protector descriptor and export the guard variable so we can 4929 // access it in FinishBasicBlock. 4930 const BasicBlock *BB = I.getParent(); 4931 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4932 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4933 4934 // Flush our exports since we are going to process a terminator. 4935 (void)getControlRoot(); 4936 return nullptr; 4937 } 4938 case Intrinsic::clear_cache: 4939 return TLI.getClearCacheBuiltinName(); 4940 case Intrinsic::eh_actions: 4941 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4942 return nullptr; 4943 case Intrinsic::donothing: 4944 // ignore 4945 return nullptr; 4946 case Intrinsic::experimental_stackmap: { 4947 visitStackmap(I); 4948 return nullptr; 4949 } 4950 case Intrinsic::experimental_patchpoint_void: 4951 case Intrinsic::experimental_patchpoint_i64: { 4952 visitPatchpoint(&I); 4953 return nullptr; 4954 } 4955 case Intrinsic::experimental_gc_statepoint: { 4956 visitStatepoint(I); 4957 return nullptr; 4958 } 4959 case Intrinsic::experimental_gc_result_int: 4960 case Intrinsic::experimental_gc_result_float: 4961 case Intrinsic::experimental_gc_result_ptr: 4962 case Intrinsic::experimental_gc_result: { 4963 visitGCResult(I); 4964 return nullptr; 4965 } 4966 case Intrinsic::experimental_gc_relocate: { 4967 visitGCRelocate(I); 4968 return nullptr; 4969 } 4970 case Intrinsic::instrprof_increment: 4971 llvm_unreachable("instrprof failed to lower an increment"); 4972 4973 case Intrinsic::localescape: { 4974 MachineFunction &MF = DAG.getMachineFunction(); 4975 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4976 4977 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 4978 // is the same on all targets. 4979 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4980 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4981 if (isa<ConstantPointerNull>(Arg)) 4982 continue; // Skip null pointers. They represent a hole in index space. 4983 AllocaInst *Slot = cast<AllocaInst>(Arg); 4984 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4985 "can only escape static allocas"); 4986 int FI = FuncInfo.StaticAllocaMap[Slot]; 4987 MCSymbol *FrameAllocSym = 4988 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4989 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4991 TII->get(TargetOpcode::LOCAL_ESCAPE)) 4992 .addSym(FrameAllocSym) 4993 .addFrameIndex(FI); 4994 } 4995 4996 return nullptr; 4997 } 4998 4999 case Intrinsic::localrecover: { 5000 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5001 MachineFunction &MF = DAG.getMachineFunction(); 5002 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5003 5004 // Get the symbol that defines the frame offset. 5005 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5006 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5007 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5008 MCSymbol *FrameAllocSym = 5009 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5010 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5011 5012 // Create a MCSymbol for the label to avoid any target lowering 5013 // that would make this PC relative. 5014 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5015 SDValue OffsetVal = 5016 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5017 5018 // Add the offset to the FP. 5019 Value *FP = I.getArgOperand(1); 5020 SDValue FPVal = getValue(FP); 5021 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5022 setValue(&I, Add); 5023 5024 return nullptr; 5025 } 5026 case Intrinsic::eh_begincatch: 5027 case Intrinsic::eh_endcatch: 5028 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5029 case Intrinsic::eh_exceptioncode: { 5030 unsigned Reg = TLI.getExceptionPointerRegister(); 5031 assert(Reg && "cannot get exception code on this platform"); 5032 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5033 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5034 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5035 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5036 SDValue N = 5037 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5038 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5039 setValue(&I, N); 5040 return nullptr; 5041 } 5042 } 5043 } 5044 5045 std::pair<SDValue, SDValue> 5046 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5047 MachineBasicBlock *LandingPad) { 5048 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5049 MCSymbol *BeginLabel = nullptr; 5050 5051 if (LandingPad) { 5052 // Insert a label before the invoke call to mark the try range. This can be 5053 // used to detect deletion of the invoke via the MachineModuleInfo. 5054 BeginLabel = MMI.getContext().createTempSymbol(); 5055 5056 // For SjLj, keep track of which landing pads go with which invokes 5057 // so as to maintain the ordering of pads in the LSDA. 5058 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5059 if (CallSiteIndex) { 5060 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5061 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5062 5063 // Now that the call site is handled, stop tracking it. 5064 MMI.setCurrentCallSite(0); 5065 } 5066 5067 // Both PendingLoads and PendingExports must be flushed here; 5068 // this call might not return. 5069 (void)getRoot(); 5070 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5071 5072 CLI.setChain(getRoot()); 5073 } 5074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5075 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5076 5077 assert((CLI.IsTailCall || Result.second.getNode()) && 5078 "Non-null chain expected with non-tail call!"); 5079 assert((Result.second.getNode() || !Result.first.getNode()) && 5080 "Null value expected with tail call!"); 5081 5082 if (!Result.second.getNode()) { 5083 // As a special case, a null chain means that a tail call has been emitted 5084 // and the DAG root is already updated. 5085 HasTailCall = true; 5086 5087 // Since there's no actual continuation from this block, nothing can be 5088 // relying on us setting vregs for them. 5089 PendingExports.clear(); 5090 } else { 5091 DAG.setRoot(Result.second); 5092 } 5093 5094 if (LandingPad) { 5095 // Insert a label at the end of the invoke call to mark the try range. This 5096 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5097 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5098 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5099 5100 // Inform MachineModuleInfo of range. 5101 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5102 } 5103 5104 return Result; 5105 } 5106 5107 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5108 bool isTailCall, 5109 MachineBasicBlock *LandingPad) { 5110 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5111 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5112 Type *RetTy = FTy->getReturnType(); 5113 5114 TargetLowering::ArgListTy Args; 5115 TargetLowering::ArgListEntry Entry; 5116 Args.reserve(CS.arg_size()); 5117 5118 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5119 i != e; ++i) { 5120 const Value *V = *i; 5121 5122 // Skip empty types 5123 if (V->getType()->isEmptyTy()) 5124 continue; 5125 5126 SDValue ArgNode = getValue(V); 5127 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5128 5129 // Skip the first return-type Attribute to get to params. 5130 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5131 Args.push_back(Entry); 5132 5133 // If we have an explicit sret argument that is an Instruction, (i.e., it 5134 // might point to function-local memory), we can't meaningfully tail-call. 5135 if (Entry.isSRet && isa<Instruction>(V)) 5136 isTailCall = false; 5137 } 5138 5139 // Check if target-independent constraints permit a tail call here. 5140 // Target-dependent constraints are checked within TLI->LowerCallTo. 5141 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5142 isTailCall = false; 5143 5144 TargetLowering::CallLoweringInfo CLI(DAG); 5145 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5146 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5147 .setTailCall(isTailCall); 5148 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5149 5150 if (Result.first.getNode()) 5151 setValue(CS.getInstruction(), Result.first); 5152 } 5153 5154 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5155 /// value is equal or not-equal to zero. 5156 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5157 for (const User *U : V->users()) { 5158 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5159 if (IC->isEquality()) 5160 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5161 if (C->isNullValue()) 5162 continue; 5163 // Unknown instruction. 5164 return false; 5165 } 5166 return true; 5167 } 5168 5169 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5170 Type *LoadTy, 5171 SelectionDAGBuilder &Builder) { 5172 5173 // Check to see if this load can be trivially constant folded, e.g. if the 5174 // input is from a string literal. 5175 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5176 // Cast pointer to the type we really want to load. 5177 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5178 PointerType::getUnqual(LoadTy)); 5179 5180 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5181 const_cast<Constant *>(LoadInput), *Builder.DL)) 5182 return Builder.getValue(LoadCst); 5183 } 5184 5185 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5186 // still constant memory, the input chain can be the entry node. 5187 SDValue Root; 5188 bool ConstantMemory = false; 5189 5190 // Do not serialize (non-volatile) loads of constant memory with anything. 5191 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5192 Root = Builder.DAG.getEntryNode(); 5193 ConstantMemory = true; 5194 } else { 5195 // Do not serialize non-volatile loads against each other. 5196 Root = Builder.DAG.getRoot(); 5197 } 5198 5199 SDValue Ptr = Builder.getValue(PtrVal); 5200 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5201 Ptr, MachinePointerInfo(PtrVal), 5202 false /*volatile*/, 5203 false /*nontemporal*/, 5204 false /*isinvariant*/, 1 /* align=1 */); 5205 5206 if (!ConstantMemory) 5207 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5208 return LoadVal; 5209 } 5210 5211 /// processIntegerCallValue - Record the value for an instruction that 5212 /// produces an integer result, converting the type where necessary. 5213 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5214 SDValue Value, 5215 bool IsSigned) { 5216 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5217 I.getType(), true); 5218 if (IsSigned) 5219 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5220 else 5221 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5222 setValue(&I, Value); 5223 } 5224 5225 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5226 /// If so, return true and lower it, otherwise return false and it will be 5227 /// lowered like a normal call. 5228 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5229 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5230 if (I.getNumArgOperands() != 3) 5231 return false; 5232 5233 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5234 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5235 !I.getArgOperand(2)->getType()->isIntegerTy() || 5236 !I.getType()->isIntegerTy()) 5237 return false; 5238 5239 const Value *Size = I.getArgOperand(2); 5240 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5241 if (CSize && CSize->getZExtValue() == 0) { 5242 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5243 I.getType(), true); 5244 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5245 return true; 5246 } 5247 5248 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5249 std::pair<SDValue, SDValue> Res = 5250 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5251 getValue(LHS), getValue(RHS), getValue(Size), 5252 MachinePointerInfo(LHS), 5253 MachinePointerInfo(RHS)); 5254 if (Res.first.getNode()) { 5255 processIntegerCallValue(I, Res.first, true); 5256 PendingLoads.push_back(Res.second); 5257 return true; 5258 } 5259 5260 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5261 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5262 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5263 bool ActuallyDoIt = true; 5264 MVT LoadVT; 5265 Type *LoadTy; 5266 switch (CSize->getZExtValue()) { 5267 default: 5268 LoadVT = MVT::Other; 5269 LoadTy = nullptr; 5270 ActuallyDoIt = false; 5271 break; 5272 case 2: 5273 LoadVT = MVT::i16; 5274 LoadTy = Type::getInt16Ty(CSize->getContext()); 5275 break; 5276 case 4: 5277 LoadVT = MVT::i32; 5278 LoadTy = Type::getInt32Ty(CSize->getContext()); 5279 break; 5280 case 8: 5281 LoadVT = MVT::i64; 5282 LoadTy = Type::getInt64Ty(CSize->getContext()); 5283 break; 5284 /* 5285 case 16: 5286 LoadVT = MVT::v4i32; 5287 LoadTy = Type::getInt32Ty(CSize->getContext()); 5288 LoadTy = VectorType::get(LoadTy, 4); 5289 break; 5290 */ 5291 } 5292 5293 // This turns into unaligned loads. We only do this if the target natively 5294 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5295 // we'll only produce a small number of byte loads. 5296 5297 // Require that we can find a legal MVT, and only do this if the target 5298 // supports unaligned loads of that type. Expanding into byte loads would 5299 // bloat the code. 5300 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5301 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5302 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5303 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5304 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5305 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5306 // TODO: Check alignment of src and dest ptrs. 5307 if (!TLI.isTypeLegal(LoadVT) || 5308 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5309 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5310 ActuallyDoIt = false; 5311 } 5312 5313 if (ActuallyDoIt) { 5314 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5315 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5316 5317 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5318 ISD::SETNE); 5319 processIntegerCallValue(I, Res, false); 5320 return true; 5321 } 5322 } 5323 5324 5325 return false; 5326 } 5327 5328 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5329 /// form. If so, return true and lower it, otherwise return false and it 5330 /// will be lowered like a normal call. 5331 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5332 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5333 if (I.getNumArgOperands() != 3) 5334 return false; 5335 5336 const Value *Src = I.getArgOperand(0); 5337 const Value *Char = I.getArgOperand(1); 5338 const Value *Length = I.getArgOperand(2); 5339 if (!Src->getType()->isPointerTy() || 5340 !Char->getType()->isIntegerTy() || 5341 !Length->getType()->isIntegerTy() || 5342 !I.getType()->isPointerTy()) 5343 return false; 5344 5345 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5346 std::pair<SDValue, SDValue> Res = 5347 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5348 getValue(Src), getValue(Char), getValue(Length), 5349 MachinePointerInfo(Src)); 5350 if (Res.first.getNode()) { 5351 setValue(&I, Res.first); 5352 PendingLoads.push_back(Res.second); 5353 return true; 5354 } 5355 5356 return false; 5357 } 5358 5359 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5360 /// optimized form. If so, return true and lower it, otherwise return false 5361 /// and it will be lowered like a normal call. 5362 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5363 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5364 if (I.getNumArgOperands() != 2) 5365 return false; 5366 5367 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5368 if (!Arg0->getType()->isPointerTy() || 5369 !Arg1->getType()->isPointerTy() || 5370 !I.getType()->isPointerTy()) 5371 return false; 5372 5373 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5374 std::pair<SDValue, SDValue> Res = 5375 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5376 getValue(Arg0), getValue(Arg1), 5377 MachinePointerInfo(Arg0), 5378 MachinePointerInfo(Arg1), isStpcpy); 5379 if (Res.first.getNode()) { 5380 setValue(&I, Res.first); 5381 DAG.setRoot(Res.second); 5382 return true; 5383 } 5384 5385 return false; 5386 } 5387 5388 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5389 /// If so, return true and lower it, otherwise return false and it will be 5390 /// lowered like a normal call. 5391 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5392 // Verify that the prototype makes sense. int strcmp(void*,void*) 5393 if (I.getNumArgOperands() != 2) 5394 return false; 5395 5396 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5397 if (!Arg0->getType()->isPointerTy() || 5398 !Arg1->getType()->isPointerTy() || 5399 !I.getType()->isIntegerTy()) 5400 return false; 5401 5402 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5403 std::pair<SDValue, SDValue> Res = 5404 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5405 getValue(Arg0), getValue(Arg1), 5406 MachinePointerInfo(Arg0), 5407 MachinePointerInfo(Arg1)); 5408 if (Res.first.getNode()) { 5409 processIntegerCallValue(I, Res.first, true); 5410 PendingLoads.push_back(Res.second); 5411 return true; 5412 } 5413 5414 return false; 5415 } 5416 5417 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5418 /// form. If so, return true and lower it, otherwise return false and it 5419 /// will be lowered like a normal call. 5420 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5421 // Verify that the prototype makes sense. size_t strlen(char *) 5422 if (I.getNumArgOperands() != 1) 5423 return false; 5424 5425 const Value *Arg0 = I.getArgOperand(0); 5426 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5427 return false; 5428 5429 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5430 std::pair<SDValue, SDValue> Res = 5431 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5432 getValue(Arg0), MachinePointerInfo(Arg0)); 5433 if (Res.first.getNode()) { 5434 processIntegerCallValue(I, Res.first, false); 5435 PendingLoads.push_back(Res.second); 5436 return true; 5437 } 5438 5439 return false; 5440 } 5441 5442 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5443 /// form. If so, return true and lower it, otherwise return false and it 5444 /// will be lowered like a normal call. 5445 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5446 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5447 if (I.getNumArgOperands() != 2) 5448 return false; 5449 5450 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5451 if (!Arg0->getType()->isPointerTy() || 5452 !Arg1->getType()->isIntegerTy() || 5453 !I.getType()->isIntegerTy()) 5454 return false; 5455 5456 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5457 std::pair<SDValue, SDValue> Res = 5458 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5459 getValue(Arg0), getValue(Arg1), 5460 MachinePointerInfo(Arg0)); 5461 if (Res.first.getNode()) { 5462 processIntegerCallValue(I, Res.first, false); 5463 PendingLoads.push_back(Res.second); 5464 return true; 5465 } 5466 5467 return false; 5468 } 5469 5470 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5471 /// operation (as expected), translate it to an SDNode with the specified opcode 5472 /// and return true. 5473 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5474 unsigned Opcode) { 5475 // Sanity check that it really is a unary floating-point call. 5476 if (I.getNumArgOperands() != 1 || 5477 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5478 I.getType() != I.getArgOperand(0)->getType() || 5479 !I.onlyReadsMemory()) 5480 return false; 5481 5482 SDValue Tmp = getValue(I.getArgOperand(0)); 5483 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5484 return true; 5485 } 5486 5487 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5488 /// operation (as expected), translate it to an SDNode with the specified opcode 5489 /// and return true. 5490 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5491 unsigned Opcode) { 5492 // Sanity check that it really is a binary floating-point call. 5493 if (I.getNumArgOperands() != 2 || 5494 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5495 I.getType() != I.getArgOperand(0)->getType() || 5496 I.getType() != I.getArgOperand(1)->getType() || 5497 !I.onlyReadsMemory()) 5498 return false; 5499 5500 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5501 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5502 EVT VT = Tmp0.getValueType(); 5503 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5504 return true; 5505 } 5506 5507 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5508 // Handle inline assembly differently. 5509 if (isa<InlineAsm>(I.getCalledValue())) { 5510 visitInlineAsm(&I); 5511 return; 5512 } 5513 5514 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5515 ComputeUsesVAFloatArgument(I, &MMI); 5516 5517 const char *RenameFn = nullptr; 5518 if (Function *F = I.getCalledFunction()) { 5519 if (F->isDeclaration()) { 5520 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5521 if (unsigned IID = II->getIntrinsicID(F)) { 5522 RenameFn = visitIntrinsicCall(I, IID); 5523 if (!RenameFn) 5524 return; 5525 } 5526 } 5527 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5528 RenameFn = visitIntrinsicCall(I, IID); 5529 if (!RenameFn) 5530 return; 5531 } 5532 } 5533 5534 // Check for well-known libc/libm calls. If the function is internal, it 5535 // can't be a library call. 5536 LibFunc::Func Func; 5537 if (!F->hasLocalLinkage() && F->hasName() && 5538 LibInfo->getLibFunc(F->getName(), Func) && 5539 LibInfo->hasOptimizedCodeGen(Func)) { 5540 switch (Func) { 5541 default: break; 5542 case LibFunc::copysign: 5543 case LibFunc::copysignf: 5544 case LibFunc::copysignl: 5545 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5546 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5547 I.getType() == I.getArgOperand(0)->getType() && 5548 I.getType() == I.getArgOperand(1)->getType() && 5549 I.onlyReadsMemory()) { 5550 SDValue LHS = getValue(I.getArgOperand(0)); 5551 SDValue RHS = getValue(I.getArgOperand(1)); 5552 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5553 LHS.getValueType(), LHS, RHS)); 5554 return; 5555 } 5556 break; 5557 case LibFunc::fabs: 5558 case LibFunc::fabsf: 5559 case LibFunc::fabsl: 5560 if (visitUnaryFloatCall(I, ISD::FABS)) 5561 return; 5562 break; 5563 case LibFunc::fmin: 5564 case LibFunc::fminf: 5565 case LibFunc::fminl: 5566 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5567 return; 5568 break; 5569 case LibFunc::fmax: 5570 case LibFunc::fmaxf: 5571 case LibFunc::fmaxl: 5572 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5573 return; 5574 break; 5575 case LibFunc::sin: 5576 case LibFunc::sinf: 5577 case LibFunc::sinl: 5578 if (visitUnaryFloatCall(I, ISD::FSIN)) 5579 return; 5580 break; 5581 case LibFunc::cos: 5582 case LibFunc::cosf: 5583 case LibFunc::cosl: 5584 if (visitUnaryFloatCall(I, ISD::FCOS)) 5585 return; 5586 break; 5587 case LibFunc::sqrt: 5588 case LibFunc::sqrtf: 5589 case LibFunc::sqrtl: 5590 case LibFunc::sqrt_finite: 5591 case LibFunc::sqrtf_finite: 5592 case LibFunc::sqrtl_finite: 5593 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5594 return; 5595 break; 5596 case LibFunc::floor: 5597 case LibFunc::floorf: 5598 case LibFunc::floorl: 5599 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5600 return; 5601 break; 5602 case LibFunc::nearbyint: 5603 case LibFunc::nearbyintf: 5604 case LibFunc::nearbyintl: 5605 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5606 return; 5607 break; 5608 case LibFunc::ceil: 5609 case LibFunc::ceilf: 5610 case LibFunc::ceill: 5611 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5612 return; 5613 break; 5614 case LibFunc::rint: 5615 case LibFunc::rintf: 5616 case LibFunc::rintl: 5617 if (visitUnaryFloatCall(I, ISD::FRINT)) 5618 return; 5619 break; 5620 case LibFunc::round: 5621 case LibFunc::roundf: 5622 case LibFunc::roundl: 5623 if (visitUnaryFloatCall(I, ISD::FROUND)) 5624 return; 5625 break; 5626 case LibFunc::trunc: 5627 case LibFunc::truncf: 5628 case LibFunc::truncl: 5629 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5630 return; 5631 break; 5632 case LibFunc::log2: 5633 case LibFunc::log2f: 5634 case LibFunc::log2l: 5635 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5636 return; 5637 break; 5638 case LibFunc::exp2: 5639 case LibFunc::exp2f: 5640 case LibFunc::exp2l: 5641 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5642 return; 5643 break; 5644 case LibFunc::memcmp: 5645 if (visitMemCmpCall(I)) 5646 return; 5647 break; 5648 case LibFunc::memchr: 5649 if (visitMemChrCall(I)) 5650 return; 5651 break; 5652 case LibFunc::strcpy: 5653 if (visitStrCpyCall(I, false)) 5654 return; 5655 break; 5656 case LibFunc::stpcpy: 5657 if (visitStrCpyCall(I, true)) 5658 return; 5659 break; 5660 case LibFunc::strcmp: 5661 if (visitStrCmpCall(I)) 5662 return; 5663 break; 5664 case LibFunc::strlen: 5665 if (visitStrLenCall(I)) 5666 return; 5667 break; 5668 case LibFunc::strnlen: 5669 if (visitStrNLenCall(I)) 5670 return; 5671 break; 5672 } 5673 } 5674 } 5675 5676 SDValue Callee; 5677 if (!RenameFn) 5678 Callee = getValue(I.getCalledValue()); 5679 else 5680 Callee = DAG.getExternalSymbol( 5681 RenameFn, 5682 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5683 5684 // Check if we can potentially perform a tail call. More detailed checking is 5685 // be done within LowerCallTo, after more information about the call is known. 5686 LowerCallTo(&I, Callee, I.isTailCall()); 5687 } 5688 5689 namespace { 5690 5691 /// AsmOperandInfo - This contains information for each constraint that we are 5692 /// lowering. 5693 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5694 public: 5695 /// CallOperand - If this is the result output operand or a clobber 5696 /// this is null, otherwise it is the incoming operand to the CallInst. 5697 /// This gets modified as the asm is processed. 5698 SDValue CallOperand; 5699 5700 /// AssignedRegs - If this is a register or register class operand, this 5701 /// contains the set of register corresponding to the operand. 5702 RegsForValue AssignedRegs; 5703 5704 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5705 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5706 } 5707 5708 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5709 /// corresponds to. If there is no Value* for this operand, it returns 5710 /// MVT::Other. 5711 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5712 const DataLayout &DL) const { 5713 if (!CallOperandVal) return MVT::Other; 5714 5715 if (isa<BasicBlock>(CallOperandVal)) 5716 return TLI.getPointerTy(DL); 5717 5718 llvm::Type *OpTy = CallOperandVal->getType(); 5719 5720 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5721 // If this is an indirect operand, the operand is a pointer to the 5722 // accessed type. 5723 if (isIndirect) { 5724 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5725 if (!PtrTy) 5726 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5727 OpTy = PtrTy->getElementType(); 5728 } 5729 5730 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5731 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5732 if (STy->getNumElements() == 1) 5733 OpTy = STy->getElementType(0); 5734 5735 // If OpTy is not a single value, it may be a struct/union that we 5736 // can tile with integers. 5737 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5738 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5739 switch (BitSize) { 5740 default: break; 5741 case 1: 5742 case 8: 5743 case 16: 5744 case 32: 5745 case 64: 5746 case 128: 5747 OpTy = IntegerType::get(Context, BitSize); 5748 break; 5749 } 5750 } 5751 5752 return TLI.getValueType(DL, OpTy, true); 5753 } 5754 }; 5755 5756 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5757 5758 } // end anonymous namespace 5759 5760 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5761 /// specified operand. We prefer to assign virtual registers, to allow the 5762 /// register allocator to handle the assignment process. However, if the asm 5763 /// uses features that we can't model on machineinstrs, we have SDISel do the 5764 /// allocation. This produces generally horrible, but correct, code. 5765 /// 5766 /// OpInfo describes the operand. 5767 /// 5768 static void GetRegistersForValue(SelectionDAG &DAG, 5769 const TargetLowering &TLI, 5770 SDLoc DL, 5771 SDISelAsmOperandInfo &OpInfo) { 5772 LLVMContext &Context = *DAG.getContext(); 5773 5774 MachineFunction &MF = DAG.getMachineFunction(); 5775 SmallVector<unsigned, 4> Regs; 5776 5777 // If this is a constraint for a single physreg, or a constraint for a 5778 // register class, find it. 5779 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5780 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5781 OpInfo.ConstraintCode, 5782 OpInfo.ConstraintVT); 5783 5784 unsigned NumRegs = 1; 5785 if (OpInfo.ConstraintVT != MVT::Other) { 5786 // If this is a FP input in an integer register (or visa versa) insert a bit 5787 // cast of the input value. More generally, handle any case where the input 5788 // value disagrees with the register class we plan to stick this in. 5789 if (OpInfo.Type == InlineAsm::isInput && 5790 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5791 // Try to convert to the first EVT that the reg class contains. If the 5792 // types are identical size, use a bitcast to convert (e.g. two differing 5793 // vector types). 5794 MVT RegVT = *PhysReg.second->vt_begin(); 5795 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5796 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5797 RegVT, OpInfo.CallOperand); 5798 OpInfo.ConstraintVT = RegVT; 5799 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5800 // If the input is a FP value and we want it in FP registers, do a 5801 // bitcast to the corresponding integer type. This turns an f64 value 5802 // into i64, which can be passed with two i32 values on a 32-bit 5803 // machine. 5804 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5805 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5806 RegVT, OpInfo.CallOperand); 5807 OpInfo.ConstraintVT = RegVT; 5808 } 5809 } 5810 5811 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5812 } 5813 5814 MVT RegVT; 5815 EVT ValueVT = OpInfo.ConstraintVT; 5816 5817 // If this is a constraint for a specific physical register, like {r17}, 5818 // assign it now. 5819 if (unsigned AssignedReg = PhysReg.first) { 5820 const TargetRegisterClass *RC = PhysReg.second; 5821 if (OpInfo.ConstraintVT == MVT::Other) 5822 ValueVT = *RC->vt_begin(); 5823 5824 // Get the actual register value type. This is important, because the user 5825 // may have asked for (e.g.) the AX register in i32 type. We need to 5826 // remember that AX is actually i16 to get the right extension. 5827 RegVT = *RC->vt_begin(); 5828 5829 // This is a explicit reference to a physical register. 5830 Regs.push_back(AssignedReg); 5831 5832 // If this is an expanded reference, add the rest of the regs to Regs. 5833 if (NumRegs != 1) { 5834 TargetRegisterClass::iterator I = RC->begin(); 5835 for (; *I != AssignedReg; ++I) 5836 assert(I != RC->end() && "Didn't find reg!"); 5837 5838 // Already added the first reg. 5839 --NumRegs; ++I; 5840 for (; NumRegs; --NumRegs, ++I) { 5841 assert(I != RC->end() && "Ran out of registers to allocate!"); 5842 Regs.push_back(*I); 5843 } 5844 } 5845 5846 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5847 return; 5848 } 5849 5850 // Otherwise, if this was a reference to an LLVM register class, create vregs 5851 // for this reference. 5852 if (const TargetRegisterClass *RC = PhysReg.second) { 5853 RegVT = *RC->vt_begin(); 5854 if (OpInfo.ConstraintVT == MVT::Other) 5855 ValueVT = RegVT; 5856 5857 // Create the appropriate number of virtual registers. 5858 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5859 for (; NumRegs; --NumRegs) 5860 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5861 5862 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5863 return; 5864 } 5865 5866 // Otherwise, we couldn't allocate enough registers for this. 5867 } 5868 5869 /// visitInlineAsm - Handle a call to an InlineAsm object. 5870 /// 5871 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5872 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5873 5874 /// ConstraintOperands - Information about all of the constraints. 5875 SDISelAsmOperandInfoVector ConstraintOperands; 5876 5877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5878 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5879 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5880 5881 bool hasMemory = false; 5882 5883 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5884 unsigned ResNo = 0; // ResNo - The result number of the next output. 5885 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5886 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5887 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5888 5889 MVT OpVT = MVT::Other; 5890 5891 // Compute the value type for each operand. 5892 switch (OpInfo.Type) { 5893 case InlineAsm::isOutput: 5894 // Indirect outputs just consume an argument. 5895 if (OpInfo.isIndirect) { 5896 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5897 break; 5898 } 5899 5900 // The return value of the call is this value. As such, there is no 5901 // corresponding argument. 5902 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5903 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5904 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5905 STy->getElementType(ResNo)); 5906 } else { 5907 assert(ResNo == 0 && "Asm only has one result!"); 5908 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5909 } 5910 ++ResNo; 5911 break; 5912 case InlineAsm::isInput: 5913 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5914 break; 5915 case InlineAsm::isClobber: 5916 // Nothing to do. 5917 break; 5918 } 5919 5920 // If this is an input or an indirect output, process the call argument. 5921 // BasicBlocks are labels, currently appearing only in asm's. 5922 if (OpInfo.CallOperandVal) { 5923 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5924 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5925 } else { 5926 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5927 } 5928 5929 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5930 DAG.getDataLayout()).getSimpleVT(); 5931 } 5932 5933 OpInfo.ConstraintVT = OpVT; 5934 5935 // Indirect operand accesses access memory. 5936 if (OpInfo.isIndirect) 5937 hasMemory = true; 5938 else { 5939 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5940 TargetLowering::ConstraintType 5941 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5942 if (CType == TargetLowering::C_Memory) { 5943 hasMemory = true; 5944 break; 5945 } 5946 } 5947 } 5948 } 5949 5950 SDValue Chain, Flag; 5951 5952 // We won't need to flush pending loads if this asm doesn't touch 5953 // memory and is nonvolatile. 5954 if (hasMemory || IA->hasSideEffects()) 5955 Chain = getRoot(); 5956 else 5957 Chain = DAG.getRoot(); 5958 5959 // Second pass over the constraints: compute which constraint option to use 5960 // and assign registers to constraints that want a specific physreg. 5961 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5962 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5963 5964 // If this is an output operand with a matching input operand, look up the 5965 // matching input. If their types mismatch, e.g. one is an integer, the 5966 // other is floating point, or their sizes are different, flag it as an 5967 // error. 5968 if (OpInfo.hasMatchingInput()) { 5969 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5970 5971 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5972 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5973 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5974 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5975 OpInfo.ConstraintVT); 5976 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5977 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5978 Input.ConstraintVT); 5979 if ((OpInfo.ConstraintVT.isInteger() != 5980 Input.ConstraintVT.isInteger()) || 5981 (MatchRC.second != InputRC.second)) { 5982 report_fatal_error("Unsupported asm: input constraint" 5983 " with a matching output constraint of" 5984 " incompatible type!"); 5985 } 5986 Input.ConstraintVT = OpInfo.ConstraintVT; 5987 } 5988 } 5989 5990 // Compute the constraint code and ConstraintType to use. 5991 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5992 5993 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5994 OpInfo.Type == InlineAsm::isClobber) 5995 continue; 5996 5997 // If this is a memory input, and if the operand is not indirect, do what we 5998 // need to to provide an address for the memory input. 5999 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6000 !OpInfo.isIndirect) { 6001 assert((OpInfo.isMultipleAlternative || 6002 (OpInfo.Type == InlineAsm::isInput)) && 6003 "Can only indirectify direct input operands!"); 6004 6005 // Memory operands really want the address of the value. If we don't have 6006 // an indirect input, put it in the constpool if we can, otherwise spill 6007 // it to a stack slot. 6008 // TODO: This isn't quite right. We need to handle these according to 6009 // the addressing mode that the constraint wants. Also, this may take 6010 // an additional register for the computation and we don't want that 6011 // either. 6012 6013 // If the operand is a float, integer, or vector constant, spill to a 6014 // constant pool entry to get its address. 6015 const Value *OpVal = OpInfo.CallOperandVal; 6016 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6017 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6018 OpInfo.CallOperand = DAG.getConstantPool( 6019 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6020 } else { 6021 // Otherwise, create a stack slot and emit a store to it before the 6022 // asm. 6023 Type *Ty = OpVal->getType(); 6024 auto &DL = DAG.getDataLayout(); 6025 uint64_t TySize = DL.getTypeAllocSize(Ty); 6026 unsigned Align = DL.getPrefTypeAlignment(Ty); 6027 MachineFunction &MF = DAG.getMachineFunction(); 6028 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6029 SDValue StackSlot = 6030 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6031 Chain = DAG.getStore(Chain, getCurSDLoc(), 6032 OpInfo.CallOperand, StackSlot, 6033 MachinePointerInfo::getFixedStack(SSFI), 6034 false, false, 0); 6035 OpInfo.CallOperand = StackSlot; 6036 } 6037 6038 // There is no longer a Value* corresponding to this operand. 6039 OpInfo.CallOperandVal = nullptr; 6040 6041 // It is now an indirect operand. 6042 OpInfo.isIndirect = true; 6043 } 6044 6045 // If this constraint is for a specific register, allocate it before 6046 // anything else. 6047 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6048 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6049 } 6050 6051 // Second pass - Loop over all of the operands, assigning virtual or physregs 6052 // to register class operands. 6053 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6054 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6055 6056 // C_Register operands have already been allocated, Other/Memory don't need 6057 // to be. 6058 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6059 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6060 } 6061 6062 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6063 std::vector<SDValue> AsmNodeOperands; 6064 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6065 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6066 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6067 6068 // If we have a !srcloc metadata node associated with it, we want to attach 6069 // this to the ultimately generated inline asm machineinstr. To do this, we 6070 // pass in the third operand as this (potentially null) inline asm MDNode. 6071 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6072 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6073 6074 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6075 // bits as operand 3. 6076 unsigned ExtraInfo = 0; 6077 if (IA->hasSideEffects()) 6078 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6079 if (IA->isAlignStack()) 6080 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6081 // Set the asm dialect. 6082 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6083 6084 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6085 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6086 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6087 6088 // Compute the constraint code and ConstraintType to use. 6089 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6090 6091 // Ideally, we would only check against memory constraints. However, the 6092 // meaning of an other constraint can be target-specific and we can't easily 6093 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6094 // for other constriants as well. 6095 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6096 OpInfo.ConstraintType == TargetLowering::C_Other) { 6097 if (OpInfo.Type == InlineAsm::isInput) 6098 ExtraInfo |= InlineAsm::Extra_MayLoad; 6099 else if (OpInfo.Type == InlineAsm::isOutput) 6100 ExtraInfo |= InlineAsm::Extra_MayStore; 6101 else if (OpInfo.Type == InlineAsm::isClobber) 6102 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6103 } 6104 } 6105 6106 AsmNodeOperands.push_back(DAG.getTargetConstant( 6107 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6108 6109 // Loop over all of the inputs, copying the operand values into the 6110 // appropriate registers and processing the output regs. 6111 RegsForValue RetValRegs; 6112 6113 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6114 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6115 6116 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6117 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6118 6119 switch (OpInfo.Type) { 6120 case InlineAsm::isOutput: { 6121 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6122 OpInfo.ConstraintType != TargetLowering::C_Register) { 6123 // Memory output, or 'other' output (e.g. 'X' constraint). 6124 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6125 6126 unsigned ConstraintID = 6127 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6128 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6129 "Failed to convert memory constraint code to constraint id."); 6130 6131 // Add information to the INLINEASM node to know about this output. 6132 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6133 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6134 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6135 MVT::i32)); 6136 AsmNodeOperands.push_back(OpInfo.CallOperand); 6137 break; 6138 } 6139 6140 // Otherwise, this is a register or register class output. 6141 6142 // Copy the output from the appropriate register. Find a register that 6143 // we can use. 6144 if (OpInfo.AssignedRegs.Regs.empty()) { 6145 LLVMContext &Ctx = *DAG.getContext(); 6146 Ctx.emitError(CS.getInstruction(), 6147 "couldn't allocate output register for constraint '" + 6148 Twine(OpInfo.ConstraintCode) + "'"); 6149 return; 6150 } 6151 6152 // If this is an indirect operand, store through the pointer after the 6153 // asm. 6154 if (OpInfo.isIndirect) { 6155 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6156 OpInfo.CallOperandVal)); 6157 } else { 6158 // This is the result value of the call. 6159 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6160 // Concatenate this output onto the outputs list. 6161 RetValRegs.append(OpInfo.AssignedRegs); 6162 } 6163 6164 // Add information to the INLINEASM node to know that this register is 6165 // set. 6166 OpInfo.AssignedRegs 6167 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6168 ? InlineAsm::Kind_RegDefEarlyClobber 6169 : InlineAsm::Kind_RegDef, 6170 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6171 break; 6172 } 6173 case InlineAsm::isInput: { 6174 SDValue InOperandVal = OpInfo.CallOperand; 6175 6176 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6177 // If this is required to match an output register we have already set, 6178 // just use its register. 6179 unsigned OperandNo = OpInfo.getMatchedOperand(); 6180 6181 // Scan until we find the definition we already emitted of this operand. 6182 // When we find it, create a RegsForValue operand. 6183 unsigned CurOp = InlineAsm::Op_FirstOperand; 6184 for (; OperandNo; --OperandNo) { 6185 // Advance to the next operand. 6186 unsigned OpFlag = 6187 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6188 assert((InlineAsm::isRegDefKind(OpFlag) || 6189 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6190 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6191 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6192 } 6193 6194 unsigned OpFlag = 6195 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6196 if (InlineAsm::isRegDefKind(OpFlag) || 6197 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6198 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6199 if (OpInfo.isIndirect) { 6200 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6201 LLVMContext &Ctx = *DAG.getContext(); 6202 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6203 " don't know how to handle tied " 6204 "indirect register inputs"); 6205 return; 6206 } 6207 6208 RegsForValue MatchedRegs; 6209 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6210 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6211 MatchedRegs.RegVTs.push_back(RegVT); 6212 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6213 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6214 i != e; ++i) { 6215 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6216 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6217 else { 6218 LLVMContext &Ctx = *DAG.getContext(); 6219 Ctx.emitError(CS.getInstruction(), 6220 "inline asm error: This value" 6221 " type register class is not natively supported!"); 6222 return; 6223 } 6224 } 6225 SDLoc dl = getCurSDLoc(); 6226 // Use the produced MatchedRegs object to 6227 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6228 Chain, &Flag, CS.getInstruction()); 6229 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6230 true, OpInfo.getMatchedOperand(), dl, 6231 DAG, AsmNodeOperands); 6232 break; 6233 } 6234 6235 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6236 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6237 "Unexpected number of operands"); 6238 // Add information to the INLINEASM node to know about this input. 6239 // See InlineAsm.h isUseOperandTiedToDef. 6240 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6241 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6242 OpInfo.getMatchedOperand()); 6243 AsmNodeOperands.push_back(DAG.getTargetConstant( 6244 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6245 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6246 break; 6247 } 6248 6249 // Treat indirect 'X' constraint as memory. 6250 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6251 OpInfo.isIndirect) 6252 OpInfo.ConstraintType = TargetLowering::C_Memory; 6253 6254 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6255 std::vector<SDValue> Ops; 6256 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6257 Ops, DAG); 6258 if (Ops.empty()) { 6259 LLVMContext &Ctx = *DAG.getContext(); 6260 Ctx.emitError(CS.getInstruction(), 6261 "invalid operand for inline asm constraint '" + 6262 Twine(OpInfo.ConstraintCode) + "'"); 6263 return; 6264 } 6265 6266 // Add information to the INLINEASM node to know about this input. 6267 unsigned ResOpType = 6268 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6269 AsmNodeOperands.push_back(DAG.getTargetConstant( 6270 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6271 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6272 break; 6273 } 6274 6275 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6276 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6277 assert(InOperandVal.getValueType() == 6278 TLI.getPointerTy(DAG.getDataLayout()) && 6279 "Memory operands expect pointer values"); 6280 6281 unsigned ConstraintID = 6282 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6283 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6284 "Failed to convert memory constraint code to constraint id."); 6285 6286 // Add information to the INLINEASM node to know about this input. 6287 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6288 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6289 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6290 getCurSDLoc(), 6291 MVT::i32)); 6292 AsmNodeOperands.push_back(InOperandVal); 6293 break; 6294 } 6295 6296 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6297 OpInfo.ConstraintType == TargetLowering::C_Register) && 6298 "Unknown constraint type!"); 6299 6300 // TODO: Support this. 6301 if (OpInfo.isIndirect) { 6302 LLVMContext &Ctx = *DAG.getContext(); 6303 Ctx.emitError(CS.getInstruction(), 6304 "Don't know how to handle indirect register inputs yet " 6305 "for constraint '" + 6306 Twine(OpInfo.ConstraintCode) + "'"); 6307 return; 6308 } 6309 6310 // Copy the input into the appropriate registers. 6311 if (OpInfo.AssignedRegs.Regs.empty()) { 6312 LLVMContext &Ctx = *DAG.getContext(); 6313 Ctx.emitError(CS.getInstruction(), 6314 "couldn't allocate input reg for constraint '" + 6315 Twine(OpInfo.ConstraintCode) + "'"); 6316 return; 6317 } 6318 6319 SDLoc dl = getCurSDLoc(); 6320 6321 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6322 Chain, &Flag, CS.getInstruction()); 6323 6324 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6325 dl, DAG, AsmNodeOperands); 6326 break; 6327 } 6328 case InlineAsm::isClobber: { 6329 // Add the clobbered value to the operand list, so that the register 6330 // allocator is aware that the physreg got clobbered. 6331 if (!OpInfo.AssignedRegs.Regs.empty()) 6332 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6333 false, 0, getCurSDLoc(), DAG, 6334 AsmNodeOperands); 6335 break; 6336 } 6337 } 6338 } 6339 6340 // Finish up input operands. Set the input chain and add the flag last. 6341 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6342 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6343 6344 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6345 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6346 Flag = Chain.getValue(1); 6347 6348 // If this asm returns a register value, copy the result from that register 6349 // and set it as the value of the call. 6350 if (!RetValRegs.Regs.empty()) { 6351 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6352 Chain, &Flag, CS.getInstruction()); 6353 6354 // FIXME: Why don't we do this for inline asms with MRVs? 6355 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6356 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6357 6358 // If any of the results of the inline asm is a vector, it may have the 6359 // wrong width/num elts. This can happen for register classes that can 6360 // contain multiple different value types. The preg or vreg allocated may 6361 // not have the same VT as was expected. Convert it to the right type 6362 // with bit_convert. 6363 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6364 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6365 ResultType, Val); 6366 6367 } else if (ResultType != Val.getValueType() && 6368 ResultType.isInteger() && Val.getValueType().isInteger()) { 6369 // If a result value was tied to an input value, the computed result may 6370 // have a wider width than the expected result. Extract the relevant 6371 // portion. 6372 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6373 } 6374 6375 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6376 } 6377 6378 setValue(CS.getInstruction(), Val); 6379 // Don't need to use this as a chain in this case. 6380 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6381 return; 6382 } 6383 6384 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6385 6386 // Process indirect outputs, first output all of the flagged copies out of 6387 // physregs. 6388 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6389 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6390 const Value *Ptr = IndirectStoresToEmit[i].second; 6391 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6392 Chain, &Flag, IA); 6393 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6394 } 6395 6396 // Emit the non-flagged stores from the physregs. 6397 SmallVector<SDValue, 8> OutChains; 6398 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6399 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6400 StoresToEmit[i].first, 6401 getValue(StoresToEmit[i].second), 6402 MachinePointerInfo(StoresToEmit[i].second), 6403 false, false, 0); 6404 OutChains.push_back(Val); 6405 } 6406 6407 if (!OutChains.empty()) 6408 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6409 6410 DAG.setRoot(Chain); 6411 } 6412 6413 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6414 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6415 MVT::Other, getRoot(), 6416 getValue(I.getArgOperand(0)), 6417 DAG.getSrcValue(I.getArgOperand(0)))); 6418 } 6419 6420 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6422 const DataLayout &DL = DAG.getDataLayout(); 6423 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6424 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6425 DAG.getSrcValue(I.getOperand(0)), 6426 DL.getABITypeAlignment(I.getType())); 6427 setValue(&I, V); 6428 DAG.setRoot(V.getValue(1)); 6429 } 6430 6431 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6432 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6433 MVT::Other, getRoot(), 6434 getValue(I.getArgOperand(0)), 6435 DAG.getSrcValue(I.getArgOperand(0)))); 6436 } 6437 6438 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6439 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6440 MVT::Other, getRoot(), 6441 getValue(I.getArgOperand(0)), 6442 getValue(I.getArgOperand(1)), 6443 DAG.getSrcValue(I.getArgOperand(0)), 6444 DAG.getSrcValue(I.getArgOperand(1)))); 6445 } 6446 6447 /// \brief Lower an argument list according to the target calling convention. 6448 /// 6449 /// \return A tuple of <return-value, token-chain> 6450 /// 6451 /// This is a helper for lowering intrinsics that follow a target calling 6452 /// convention or require stack pointer adjustment. Only a subset of the 6453 /// intrinsic's operands need to participate in the calling convention. 6454 std::pair<SDValue, SDValue> 6455 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6456 unsigned NumArgs, SDValue Callee, 6457 Type *ReturnTy, 6458 MachineBasicBlock *LandingPad, 6459 bool IsPatchPoint) { 6460 TargetLowering::ArgListTy Args; 6461 Args.reserve(NumArgs); 6462 6463 // Populate the argument list. 6464 // Attributes for args start at offset 1, after the return attribute. 6465 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6466 ArgI != ArgE; ++ArgI) { 6467 const Value *V = CS->getOperand(ArgI); 6468 6469 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6470 6471 TargetLowering::ArgListEntry Entry; 6472 Entry.Node = getValue(V); 6473 Entry.Ty = V->getType(); 6474 Entry.setAttributes(&CS, AttrI); 6475 Args.push_back(Entry); 6476 } 6477 6478 TargetLowering::CallLoweringInfo CLI(DAG); 6479 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6480 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6481 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6482 6483 return lowerInvokable(CLI, LandingPad); 6484 } 6485 6486 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6487 /// or patchpoint target node's operand list. 6488 /// 6489 /// Constants are converted to TargetConstants purely as an optimization to 6490 /// avoid constant materialization and register allocation. 6491 /// 6492 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6493 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6494 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6495 /// address materialization and register allocation, but may also be required 6496 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6497 /// alloca in the entry block, then the runtime may assume that the alloca's 6498 /// StackMap location can be read immediately after compilation and that the 6499 /// location is valid at any point during execution (this is similar to the 6500 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6501 /// only available in a register, then the runtime would need to trap when 6502 /// execution reaches the StackMap in order to read the alloca's location. 6503 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6504 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6505 SelectionDAGBuilder &Builder) { 6506 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6507 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6508 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6509 Ops.push_back( 6510 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6511 Ops.push_back( 6512 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6513 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6514 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6515 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6516 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6517 } else 6518 Ops.push_back(OpVal); 6519 } 6520 } 6521 6522 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6523 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6524 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6525 // [live variables...]) 6526 6527 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6528 6529 SDValue Chain, InFlag, Callee, NullPtr; 6530 SmallVector<SDValue, 32> Ops; 6531 6532 SDLoc DL = getCurSDLoc(); 6533 Callee = getValue(CI.getCalledValue()); 6534 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6535 6536 // The stackmap intrinsic only records the live variables (the arguemnts 6537 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6538 // intrinsic, this won't be lowered to a function call. This means we don't 6539 // have to worry about calling conventions and target specific lowering code. 6540 // Instead we perform the call lowering right here. 6541 // 6542 // chain, flag = CALLSEQ_START(chain, 0) 6543 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6544 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6545 // 6546 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6547 InFlag = Chain.getValue(1); 6548 6549 // Add the <id> and <numBytes> constants. 6550 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6551 Ops.push_back(DAG.getTargetConstant( 6552 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6553 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6554 Ops.push_back(DAG.getTargetConstant( 6555 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6556 MVT::i32)); 6557 6558 // Push live variables for the stack map. 6559 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6560 6561 // We are not pushing any register mask info here on the operands list, 6562 // because the stackmap doesn't clobber anything. 6563 6564 // Push the chain and the glue flag. 6565 Ops.push_back(Chain); 6566 Ops.push_back(InFlag); 6567 6568 // Create the STACKMAP node. 6569 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6570 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6571 Chain = SDValue(SM, 0); 6572 InFlag = Chain.getValue(1); 6573 6574 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6575 6576 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6577 6578 // Set the root to the target-lowered call chain. 6579 DAG.setRoot(Chain); 6580 6581 // Inform the Frame Information that we have a stackmap in this function. 6582 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6583 } 6584 6585 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6586 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6587 MachineBasicBlock *LandingPad) { 6588 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6589 // i32 <numBytes>, 6590 // i8* <target>, 6591 // i32 <numArgs>, 6592 // [Args...], 6593 // [live variables...]) 6594 6595 CallingConv::ID CC = CS.getCallingConv(); 6596 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6597 bool HasDef = !CS->getType()->isVoidTy(); 6598 SDLoc dl = getCurSDLoc(); 6599 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6600 6601 // Handle immediate and symbolic callees. 6602 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6603 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6604 /*isTarget=*/true); 6605 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6606 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6607 SDLoc(SymbolicCallee), 6608 SymbolicCallee->getValueType(0)); 6609 6610 // Get the real number of arguments participating in the call <numArgs> 6611 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6612 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6613 6614 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6615 // Intrinsics include all meta-operands up to but not including CC. 6616 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6617 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6618 "Not enough arguments provided to the patchpoint intrinsic"); 6619 6620 // For AnyRegCC the arguments are lowered later on manually. 6621 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6622 Type *ReturnTy = 6623 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6624 std::pair<SDValue, SDValue> Result = 6625 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6626 LandingPad, true); 6627 6628 SDNode *CallEnd = Result.second.getNode(); 6629 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6630 CallEnd = CallEnd->getOperand(0).getNode(); 6631 6632 /// Get a call instruction from the call sequence chain. 6633 /// Tail calls are not allowed. 6634 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6635 "Expected a callseq node."); 6636 SDNode *Call = CallEnd->getOperand(0).getNode(); 6637 bool HasGlue = Call->getGluedNode(); 6638 6639 // Replace the target specific call node with the patchable intrinsic. 6640 SmallVector<SDValue, 8> Ops; 6641 6642 // Add the <id> and <numBytes> constants. 6643 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6644 Ops.push_back(DAG.getTargetConstant( 6645 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6646 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6647 Ops.push_back(DAG.getTargetConstant( 6648 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6649 MVT::i32)); 6650 6651 // Add the callee. 6652 Ops.push_back(Callee); 6653 6654 // Adjust <numArgs> to account for any arguments that have been passed on the 6655 // stack instead. 6656 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6657 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6658 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6659 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6660 6661 // Add the calling convention 6662 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6663 6664 // Add the arguments we omitted previously. The register allocator should 6665 // place these in any free register. 6666 if (IsAnyRegCC) 6667 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6668 Ops.push_back(getValue(CS.getArgument(i))); 6669 6670 // Push the arguments from the call instruction up to the register mask. 6671 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6672 Ops.append(Call->op_begin() + 2, e); 6673 6674 // Push live variables for the stack map. 6675 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6676 6677 // Push the register mask info. 6678 if (HasGlue) 6679 Ops.push_back(*(Call->op_end()-2)); 6680 else 6681 Ops.push_back(*(Call->op_end()-1)); 6682 6683 // Push the chain (this is originally the first operand of the call, but 6684 // becomes now the last or second to last operand). 6685 Ops.push_back(*(Call->op_begin())); 6686 6687 // Push the glue flag (last operand). 6688 if (HasGlue) 6689 Ops.push_back(*(Call->op_end()-1)); 6690 6691 SDVTList NodeTys; 6692 if (IsAnyRegCC && HasDef) { 6693 // Create the return types based on the intrinsic definition 6694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6695 SmallVector<EVT, 3> ValueVTs; 6696 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6697 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6698 6699 // There is always a chain and a glue type at the end 6700 ValueVTs.push_back(MVT::Other); 6701 ValueVTs.push_back(MVT::Glue); 6702 NodeTys = DAG.getVTList(ValueVTs); 6703 } else 6704 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6705 6706 // Replace the target specific call node with a PATCHPOINT node. 6707 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6708 dl, NodeTys, Ops); 6709 6710 // Update the NodeMap. 6711 if (HasDef) { 6712 if (IsAnyRegCC) 6713 setValue(CS.getInstruction(), SDValue(MN, 0)); 6714 else 6715 setValue(CS.getInstruction(), Result.first); 6716 } 6717 6718 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6719 // call sequence. Furthermore the location of the chain and glue can change 6720 // when the AnyReg calling convention is used and the intrinsic returns a 6721 // value. 6722 if (IsAnyRegCC && HasDef) { 6723 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6724 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6725 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6726 } else 6727 DAG.ReplaceAllUsesWith(Call, MN); 6728 DAG.DeleteNode(Call); 6729 6730 // Inform the Frame Information that we have a patchpoint in this function. 6731 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6732 } 6733 6734 /// Returns an AttributeSet representing the attributes applied to the return 6735 /// value of the given call. 6736 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6737 SmallVector<Attribute::AttrKind, 2> Attrs; 6738 if (CLI.RetSExt) 6739 Attrs.push_back(Attribute::SExt); 6740 if (CLI.RetZExt) 6741 Attrs.push_back(Attribute::ZExt); 6742 if (CLI.IsInReg) 6743 Attrs.push_back(Attribute::InReg); 6744 6745 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6746 Attrs); 6747 } 6748 6749 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6750 /// implementation, which just calls LowerCall. 6751 /// FIXME: When all targets are 6752 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6753 std::pair<SDValue, SDValue> 6754 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6755 // Handle the incoming return values from the call. 6756 CLI.Ins.clear(); 6757 Type *OrigRetTy = CLI.RetTy; 6758 SmallVector<EVT, 4> RetTys; 6759 SmallVector<uint64_t, 4> Offsets; 6760 auto &DL = CLI.DAG.getDataLayout(); 6761 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6762 6763 SmallVector<ISD::OutputArg, 4> Outs; 6764 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6765 6766 bool CanLowerReturn = 6767 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6768 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6769 6770 SDValue DemoteStackSlot; 6771 int DemoteStackIdx = -100; 6772 if (!CanLowerReturn) { 6773 // FIXME: equivalent assert? 6774 // assert(!CS.hasInAllocaArgument() && 6775 // "sret demotion is incompatible with inalloca"); 6776 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6777 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6778 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6779 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6780 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6781 6782 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6783 ArgListEntry Entry; 6784 Entry.Node = DemoteStackSlot; 6785 Entry.Ty = StackSlotPtrType; 6786 Entry.isSExt = false; 6787 Entry.isZExt = false; 6788 Entry.isInReg = false; 6789 Entry.isSRet = true; 6790 Entry.isNest = false; 6791 Entry.isByVal = false; 6792 Entry.isReturned = false; 6793 Entry.Alignment = Align; 6794 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6795 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6796 6797 // sret demotion isn't compatible with tail-calls, since the sret argument 6798 // points into the callers stack frame. 6799 CLI.IsTailCall = false; 6800 } else { 6801 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6802 EVT VT = RetTys[I]; 6803 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6804 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6805 for (unsigned i = 0; i != NumRegs; ++i) { 6806 ISD::InputArg MyFlags; 6807 MyFlags.VT = RegisterVT; 6808 MyFlags.ArgVT = VT; 6809 MyFlags.Used = CLI.IsReturnValueUsed; 6810 if (CLI.RetSExt) 6811 MyFlags.Flags.setSExt(); 6812 if (CLI.RetZExt) 6813 MyFlags.Flags.setZExt(); 6814 if (CLI.IsInReg) 6815 MyFlags.Flags.setInReg(); 6816 CLI.Ins.push_back(MyFlags); 6817 } 6818 } 6819 } 6820 6821 // Handle all of the outgoing arguments. 6822 CLI.Outs.clear(); 6823 CLI.OutVals.clear(); 6824 ArgListTy &Args = CLI.getArgs(); 6825 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6826 SmallVector<EVT, 4> ValueVTs; 6827 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6828 Type *FinalType = Args[i].Ty; 6829 if (Args[i].isByVal) 6830 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6831 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6832 FinalType, CLI.CallConv, CLI.IsVarArg); 6833 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6834 ++Value) { 6835 EVT VT = ValueVTs[Value]; 6836 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6837 SDValue Op = SDValue(Args[i].Node.getNode(), 6838 Args[i].Node.getResNo() + Value); 6839 ISD::ArgFlagsTy Flags; 6840 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6841 6842 if (Args[i].isZExt) 6843 Flags.setZExt(); 6844 if (Args[i].isSExt) 6845 Flags.setSExt(); 6846 if (Args[i].isInReg) 6847 Flags.setInReg(); 6848 if (Args[i].isSRet) 6849 Flags.setSRet(); 6850 if (Args[i].isByVal) 6851 Flags.setByVal(); 6852 if (Args[i].isInAlloca) { 6853 Flags.setInAlloca(); 6854 // Set the byval flag for CCAssignFn callbacks that don't know about 6855 // inalloca. This way we can know how many bytes we should've allocated 6856 // and how many bytes a callee cleanup function will pop. If we port 6857 // inalloca to more targets, we'll have to add custom inalloca handling 6858 // in the various CC lowering callbacks. 6859 Flags.setByVal(); 6860 } 6861 if (Args[i].isByVal || Args[i].isInAlloca) { 6862 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6863 Type *ElementTy = Ty->getElementType(); 6864 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6865 // For ByVal, alignment should come from FE. BE will guess if this 6866 // info is not there but there are cases it cannot get right. 6867 unsigned FrameAlign; 6868 if (Args[i].Alignment) 6869 FrameAlign = Args[i].Alignment; 6870 else 6871 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6872 Flags.setByValAlign(FrameAlign); 6873 } 6874 if (Args[i].isNest) 6875 Flags.setNest(); 6876 if (NeedsRegBlock) 6877 Flags.setInConsecutiveRegs(); 6878 Flags.setOrigAlign(OriginalAlignment); 6879 6880 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6881 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6882 SmallVector<SDValue, 4> Parts(NumParts); 6883 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6884 6885 if (Args[i].isSExt) 6886 ExtendKind = ISD::SIGN_EXTEND; 6887 else if (Args[i].isZExt) 6888 ExtendKind = ISD::ZERO_EXTEND; 6889 6890 // Conservatively only handle 'returned' on non-vectors for now 6891 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6892 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6893 "unexpected use of 'returned'"); 6894 // Before passing 'returned' to the target lowering code, ensure that 6895 // either the register MVT and the actual EVT are the same size or that 6896 // the return value and argument are extended in the same way; in these 6897 // cases it's safe to pass the argument register value unchanged as the 6898 // return register value (although it's at the target's option whether 6899 // to do so) 6900 // TODO: allow code generation to take advantage of partially preserved 6901 // registers rather than clobbering the entire register when the 6902 // parameter extension method is not compatible with the return 6903 // extension method 6904 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6905 (ExtendKind != ISD::ANY_EXTEND && 6906 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6907 Flags.setReturned(); 6908 } 6909 6910 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6911 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6912 6913 for (unsigned j = 0; j != NumParts; ++j) { 6914 // if it isn't first piece, alignment must be 1 6915 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6916 i < CLI.NumFixedArgs, 6917 i, j*Parts[j].getValueType().getStoreSize()); 6918 if (NumParts > 1 && j == 0) 6919 MyFlags.Flags.setSplit(); 6920 else if (j != 0) 6921 MyFlags.Flags.setOrigAlign(1); 6922 6923 CLI.Outs.push_back(MyFlags); 6924 CLI.OutVals.push_back(Parts[j]); 6925 } 6926 6927 if (NeedsRegBlock && Value == NumValues - 1) 6928 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6929 } 6930 } 6931 6932 SmallVector<SDValue, 4> InVals; 6933 CLI.Chain = LowerCall(CLI, InVals); 6934 6935 // Verify that the target's LowerCall behaved as expected. 6936 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6937 "LowerCall didn't return a valid chain!"); 6938 assert((!CLI.IsTailCall || InVals.empty()) && 6939 "LowerCall emitted a return value for a tail call!"); 6940 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6941 "LowerCall didn't emit the correct number of values!"); 6942 6943 // For a tail call, the return value is merely live-out and there aren't 6944 // any nodes in the DAG representing it. Return a special value to 6945 // indicate that a tail call has been emitted and no more Instructions 6946 // should be processed in the current block. 6947 if (CLI.IsTailCall) { 6948 CLI.DAG.setRoot(CLI.Chain); 6949 return std::make_pair(SDValue(), SDValue()); 6950 } 6951 6952 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6953 assert(InVals[i].getNode() && 6954 "LowerCall emitted a null value!"); 6955 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6956 "LowerCall emitted a value with the wrong type!"); 6957 }); 6958 6959 SmallVector<SDValue, 4> ReturnValues; 6960 if (!CanLowerReturn) { 6961 // The instruction result is the result of loading from the 6962 // hidden sret parameter. 6963 SmallVector<EVT, 1> PVTs; 6964 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6965 6966 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 6967 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6968 EVT PtrVT = PVTs[0]; 6969 6970 unsigned NumValues = RetTys.size(); 6971 ReturnValues.resize(NumValues); 6972 SmallVector<SDValue, 4> Chains(NumValues); 6973 6974 for (unsigned i = 0; i < NumValues; ++i) { 6975 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6976 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6977 PtrVT)); 6978 SDValue L = CLI.DAG.getLoad( 6979 RetTys[i], CLI.DL, CLI.Chain, Add, 6980 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6981 false, false, 1); 6982 ReturnValues[i] = L; 6983 Chains[i] = L.getValue(1); 6984 } 6985 6986 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6987 } else { 6988 // Collect the legal value parts into potentially illegal values 6989 // that correspond to the original function's return values. 6990 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6991 if (CLI.RetSExt) 6992 AssertOp = ISD::AssertSext; 6993 else if (CLI.RetZExt) 6994 AssertOp = ISD::AssertZext; 6995 unsigned CurReg = 0; 6996 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6997 EVT VT = RetTys[I]; 6998 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6999 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7000 7001 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7002 NumRegs, RegisterVT, VT, nullptr, 7003 AssertOp)); 7004 CurReg += NumRegs; 7005 } 7006 7007 // For a function returning void, there is no return value. We can't create 7008 // such a node, so we just return a null return value in that case. In 7009 // that case, nothing will actually look at the value. 7010 if (ReturnValues.empty()) 7011 return std::make_pair(SDValue(), CLI.Chain); 7012 } 7013 7014 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7015 CLI.DAG.getVTList(RetTys), ReturnValues); 7016 return std::make_pair(Res, CLI.Chain); 7017 } 7018 7019 void TargetLowering::LowerOperationWrapper(SDNode *N, 7020 SmallVectorImpl<SDValue> &Results, 7021 SelectionDAG &DAG) const { 7022 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7023 if (Res.getNode()) 7024 Results.push_back(Res); 7025 } 7026 7027 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7028 llvm_unreachable("LowerOperation not implemented for this target!"); 7029 } 7030 7031 void 7032 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7033 SDValue Op = getNonRegisterValue(V); 7034 assert((Op.getOpcode() != ISD::CopyFromReg || 7035 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7036 "Copy from a reg to the same reg!"); 7037 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7038 7039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7040 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7041 V->getType()); 7042 SDValue Chain = DAG.getEntryNode(); 7043 7044 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7045 FuncInfo.PreferredExtendType.end()) 7046 ? ISD::ANY_EXTEND 7047 : FuncInfo.PreferredExtendType[V]; 7048 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7049 PendingExports.push_back(Chain); 7050 } 7051 7052 #include "llvm/CodeGen/SelectionDAGISel.h" 7053 7054 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7055 /// entry block, return true. This includes arguments used by switches, since 7056 /// the switch may expand into multiple basic blocks. 7057 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7058 // With FastISel active, we may be splitting blocks, so force creation 7059 // of virtual registers for all non-dead arguments. 7060 if (FastISel) 7061 return A->use_empty(); 7062 7063 const BasicBlock *Entry = A->getParent()->begin(); 7064 for (const User *U : A->users()) 7065 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7066 return false; // Use not in entry block. 7067 7068 return true; 7069 } 7070 7071 void SelectionDAGISel::LowerArguments(const Function &F) { 7072 SelectionDAG &DAG = SDB->DAG; 7073 SDLoc dl = SDB->getCurSDLoc(); 7074 const DataLayout &DL = DAG.getDataLayout(); 7075 SmallVector<ISD::InputArg, 16> Ins; 7076 7077 if (!FuncInfo->CanLowerReturn) { 7078 // Put in an sret pointer parameter before all the other parameters. 7079 SmallVector<EVT, 1> ValueVTs; 7080 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7081 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7082 7083 // NOTE: Assuming that a pointer will never break down to more than one VT 7084 // or one register. 7085 ISD::ArgFlagsTy Flags; 7086 Flags.setSRet(); 7087 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7088 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7089 ISD::InputArg::NoArgIndex, 0); 7090 Ins.push_back(RetArg); 7091 } 7092 7093 // Set up the incoming argument description vector. 7094 unsigned Idx = 1; 7095 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7096 I != E; ++I, ++Idx) { 7097 SmallVector<EVT, 4> ValueVTs; 7098 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7099 bool isArgValueUsed = !I->use_empty(); 7100 unsigned PartBase = 0; 7101 Type *FinalType = I->getType(); 7102 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7103 FinalType = cast<PointerType>(FinalType)->getElementType(); 7104 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7105 FinalType, F.getCallingConv(), F.isVarArg()); 7106 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7107 Value != NumValues; ++Value) { 7108 EVT VT = ValueVTs[Value]; 7109 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7110 ISD::ArgFlagsTy Flags; 7111 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7112 7113 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7114 Flags.setZExt(); 7115 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7116 Flags.setSExt(); 7117 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7118 Flags.setInReg(); 7119 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7120 Flags.setSRet(); 7121 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7122 Flags.setByVal(); 7123 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7124 Flags.setInAlloca(); 7125 // Set the byval flag for CCAssignFn callbacks that don't know about 7126 // inalloca. This way we can know how many bytes we should've allocated 7127 // and how many bytes a callee cleanup function will pop. If we port 7128 // inalloca to more targets, we'll have to add custom inalloca handling 7129 // in the various CC lowering callbacks. 7130 Flags.setByVal(); 7131 } 7132 if (Flags.isByVal() || Flags.isInAlloca()) { 7133 PointerType *Ty = cast<PointerType>(I->getType()); 7134 Type *ElementTy = Ty->getElementType(); 7135 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7136 // For ByVal, alignment should be passed from FE. BE will guess if 7137 // this info is not there but there are cases it cannot get right. 7138 unsigned FrameAlign; 7139 if (F.getParamAlignment(Idx)) 7140 FrameAlign = F.getParamAlignment(Idx); 7141 else 7142 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7143 Flags.setByValAlign(FrameAlign); 7144 } 7145 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7146 Flags.setNest(); 7147 if (NeedsRegBlock) 7148 Flags.setInConsecutiveRegs(); 7149 Flags.setOrigAlign(OriginalAlignment); 7150 7151 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7152 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7153 for (unsigned i = 0; i != NumRegs; ++i) { 7154 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7155 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7156 if (NumRegs > 1 && i == 0) 7157 MyFlags.Flags.setSplit(); 7158 // if it isn't first piece, alignment must be 1 7159 else if (i > 0) 7160 MyFlags.Flags.setOrigAlign(1); 7161 Ins.push_back(MyFlags); 7162 } 7163 if (NeedsRegBlock && Value == NumValues - 1) 7164 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7165 PartBase += VT.getStoreSize(); 7166 } 7167 } 7168 7169 // Call the target to set up the argument values. 7170 SmallVector<SDValue, 8> InVals; 7171 SDValue NewRoot = TLI->LowerFormalArguments( 7172 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7173 7174 // Verify that the target's LowerFormalArguments behaved as expected. 7175 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7176 "LowerFormalArguments didn't return a valid chain!"); 7177 assert(InVals.size() == Ins.size() && 7178 "LowerFormalArguments didn't emit the correct number of values!"); 7179 DEBUG({ 7180 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7181 assert(InVals[i].getNode() && 7182 "LowerFormalArguments emitted a null value!"); 7183 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7184 "LowerFormalArguments emitted a value with the wrong type!"); 7185 } 7186 }); 7187 7188 // Update the DAG with the new chain value resulting from argument lowering. 7189 DAG.setRoot(NewRoot); 7190 7191 // Set up the argument values. 7192 unsigned i = 0; 7193 Idx = 1; 7194 if (!FuncInfo->CanLowerReturn) { 7195 // Create a virtual register for the sret pointer, and put in a copy 7196 // from the sret argument into it. 7197 SmallVector<EVT, 1> ValueVTs; 7198 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7199 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7200 MVT VT = ValueVTs[0].getSimpleVT(); 7201 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7202 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7203 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7204 RegVT, VT, nullptr, AssertOp); 7205 7206 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7207 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7208 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7209 FuncInfo->DemoteRegister = SRetReg; 7210 NewRoot = 7211 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7212 DAG.setRoot(NewRoot); 7213 7214 // i indexes lowered arguments. Bump it past the hidden sret argument. 7215 // Idx indexes LLVM arguments. Don't touch it. 7216 ++i; 7217 } 7218 7219 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7220 ++I, ++Idx) { 7221 SmallVector<SDValue, 4> ArgValues; 7222 SmallVector<EVT, 4> ValueVTs; 7223 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7224 unsigned NumValues = ValueVTs.size(); 7225 7226 // If this argument is unused then remember its value. It is used to generate 7227 // debugging information. 7228 if (I->use_empty() && NumValues) { 7229 SDB->setUnusedArgValue(I, InVals[i]); 7230 7231 // Also remember any frame index for use in FastISel. 7232 if (FrameIndexSDNode *FI = 7233 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7234 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7235 } 7236 7237 for (unsigned Val = 0; Val != NumValues; ++Val) { 7238 EVT VT = ValueVTs[Val]; 7239 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7240 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7241 7242 if (!I->use_empty()) { 7243 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7244 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7245 AssertOp = ISD::AssertSext; 7246 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7247 AssertOp = ISD::AssertZext; 7248 7249 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7250 NumParts, PartVT, VT, 7251 nullptr, AssertOp)); 7252 } 7253 7254 i += NumParts; 7255 } 7256 7257 // We don't need to do anything else for unused arguments. 7258 if (ArgValues.empty()) 7259 continue; 7260 7261 // Note down frame index. 7262 if (FrameIndexSDNode *FI = 7263 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7264 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7265 7266 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7267 SDB->getCurSDLoc()); 7268 7269 SDB->setValue(I, Res); 7270 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7271 if (LoadSDNode *LNode = 7272 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7273 if (FrameIndexSDNode *FI = 7274 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7275 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7276 } 7277 7278 // If this argument is live outside of the entry block, insert a copy from 7279 // wherever we got it to the vreg that other BB's will reference it as. 7280 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7281 // If we can, though, try to skip creating an unnecessary vreg. 7282 // FIXME: This isn't very clean... it would be nice to make this more 7283 // general. It's also subtly incompatible with the hacks FastISel 7284 // uses with vregs. 7285 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7286 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7287 FuncInfo->ValueMap[I] = Reg; 7288 continue; 7289 } 7290 } 7291 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7292 FuncInfo->InitializeRegForValue(I); 7293 SDB->CopyToExportRegsIfNeeded(I); 7294 } 7295 } 7296 7297 assert(i == InVals.size() && "Argument register count mismatch!"); 7298 7299 // Finally, if the target has anything special to do, allow it to do so. 7300 EmitFunctionEntryCode(); 7301 } 7302 7303 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7304 /// ensure constants are generated when needed. Remember the virtual registers 7305 /// that need to be added to the Machine PHI nodes as input. We cannot just 7306 /// directly add them, because expansion might result in multiple MBB's for one 7307 /// BB. As such, the start of the BB might correspond to a different MBB than 7308 /// the end. 7309 /// 7310 void 7311 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7312 const TerminatorInst *TI = LLVMBB->getTerminator(); 7313 7314 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7315 7316 // Check PHI nodes in successors that expect a value to be available from this 7317 // block. 7318 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7319 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7320 if (!isa<PHINode>(SuccBB->begin())) continue; 7321 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7322 7323 // If this terminator has multiple identical successors (common for 7324 // switches), only handle each succ once. 7325 if (!SuccsHandled.insert(SuccMBB).second) 7326 continue; 7327 7328 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7329 7330 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7331 // nodes and Machine PHI nodes, but the incoming operands have not been 7332 // emitted yet. 7333 for (BasicBlock::const_iterator I = SuccBB->begin(); 7334 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7335 // Ignore dead phi's. 7336 if (PN->use_empty()) continue; 7337 7338 // Skip empty types 7339 if (PN->getType()->isEmptyTy()) 7340 continue; 7341 7342 unsigned Reg; 7343 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7344 7345 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7346 unsigned &RegOut = ConstantsOut[C]; 7347 if (RegOut == 0) { 7348 RegOut = FuncInfo.CreateRegs(C->getType()); 7349 CopyValueToVirtualRegister(C, RegOut); 7350 } 7351 Reg = RegOut; 7352 } else { 7353 DenseMap<const Value *, unsigned>::iterator I = 7354 FuncInfo.ValueMap.find(PHIOp); 7355 if (I != FuncInfo.ValueMap.end()) 7356 Reg = I->second; 7357 else { 7358 assert(isa<AllocaInst>(PHIOp) && 7359 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7360 "Didn't codegen value into a register!??"); 7361 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7362 CopyValueToVirtualRegister(PHIOp, Reg); 7363 } 7364 } 7365 7366 // Remember that this register needs to added to the machine PHI node as 7367 // the input for this MBB. 7368 SmallVector<EVT, 4> ValueVTs; 7369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7370 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7371 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7372 EVT VT = ValueVTs[vti]; 7373 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7374 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7375 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7376 Reg += NumRegisters; 7377 } 7378 } 7379 } 7380 7381 ConstantsOut.clear(); 7382 } 7383 7384 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7385 /// is 0. 7386 MachineBasicBlock * 7387 SelectionDAGBuilder::StackProtectorDescriptor:: 7388 AddSuccessorMBB(const BasicBlock *BB, 7389 MachineBasicBlock *ParentMBB, 7390 bool IsLikely, 7391 MachineBasicBlock *SuccMBB) { 7392 // If SuccBB has not been created yet, create it. 7393 if (!SuccMBB) { 7394 MachineFunction *MF = ParentMBB->getParent(); 7395 MachineFunction::iterator BBI = ParentMBB; 7396 SuccMBB = MF->CreateMachineBasicBlock(BB); 7397 MF->insert(++BBI, SuccMBB); 7398 } 7399 // Add it as a successor of ParentMBB. 7400 ParentMBB->addSuccessor( 7401 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7402 return SuccMBB; 7403 } 7404 7405 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7406 MachineFunction::iterator I = MBB; 7407 if (++I == FuncInfo.MF->end()) 7408 return nullptr; 7409 return I; 7410 } 7411 7412 /// During lowering new call nodes can be created (such as memset, etc.). 7413 /// Those will become new roots of the current DAG, but complications arise 7414 /// when they are tail calls. In such cases, the call lowering will update 7415 /// the root, but the builder still needs to know that a tail call has been 7416 /// lowered in order to avoid generating an additional return. 7417 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7418 // If the node is null, we do have a tail call. 7419 if (MaybeTC.getNode() != nullptr) 7420 DAG.setRoot(MaybeTC); 7421 else 7422 HasTailCall = true; 7423 } 7424 7425 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7426 unsigned *TotalCases, unsigned First, 7427 unsigned Last) { 7428 assert(Last >= First); 7429 assert(TotalCases[Last] >= TotalCases[First]); 7430 7431 APInt LowCase = Clusters[First].Low->getValue(); 7432 APInt HighCase = Clusters[Last].High->getValue(); 7433 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7434 7435 // FIXME: A range of consecutive cases has 100% density, but only requires one 7436 // comparison to lower. We should discriminate against such consecutive ranges 7437 // in jump tables. 7438 7439 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7440 uint64_t Range = Diff + 1; 7441 7442 uint64_t NumCases = 7443 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7444 7445 assert(NumCases < UINT64_MAX / 100); 7446 assert(Range >= NumCases); 7447 7448 return NumCases * 100 >= Range * MinJumpTableDensity; 7449 } 7450 7451 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7452 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7453 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7454 } 7455 7456 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7457 unsigned First, unsigned Last, 7458 const SwitchInst *SI, 7459 MachineBasicBlock *DefaultMBB, 7460 CaseCluster &JTCluster) { 7461 assert(First <= Last); 7462 7463 uint32_t Weight = 0; 7464 unsigned NumCmps = 0; 7465 std::vector<MachineBasicBlock*> Table; 7466 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7467 for (unsigned I = First; I <= Last; ++I) { 7468 assert(Clusters[I].Kind == CC_Range); 7469 Weight += Clusters[I].Weight; 7470 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7471 APInt Low = Clusters[I].Low->getValue(); 7472 APInt High = Clusters[I].High->getValue(); 7473 NumCmps += (Low == High) ? 1 : 2; 7474 if (I != First) { 7475 // Fill the gap between this and the previous cluster. 7476 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7477 assert(PreviousHigh.slt(Low)); 7478 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7479 for (uint64_t J = 0; J < Gap; J++) 7480 Table.push_back(DefaultMBB); 7481 } 7482 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7483 for (uint64_t J = 0; J < ClusterSize; ++J) 7484 Table.push_back(Clusters[I].MBB); 7485 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7486 } 7487 7488 unsigned NumDests = JTWeights.size(); 7489 if (isSuitableForBitTests(NumDests, NumCmps, 7490 Clusters[First].Low->getValue(), 7491 Clusters[Last].High->getValue())) { 7492 // Clusters[First..Last] should be lowered as bit tests instead. 7493 return false; 7494 } 7495 7496 // Create the MBB that will load from and jump through the table. 7497 // Note: We create it here, but it's not inserted into the function yet. 7498 MachineFunction *CurMF = FuncInfo.MF; 7499 MachineBasicBlock *JumpTableMBB = 7500 CurMF->CreateMachineBasicBlock(SI->getParent()); 7501 7502 // Add successors. Note: use table order for determinism. 7503 SmallPtrSet<MachineBasicBlock *, 8> Done; 7504 for (MachineBasicBlock *Succ : Table) { 7505 if (Done.count(Succ)) 7506 continue; 7507 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7508 Done.insert(Succ); 7509 } 7510 7511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7512 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7513 ->createJumpTableIndex(Table); 7514 7515 // Set up the jump table info. 7516 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7517 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7518 Clusters[Last].High->getValue(), SI->getCondition(), 7519 nullptr, false); 7520 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7521 7522 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7523 JTCases.size() - 1, Weight); 7524 return true; 7525 } 7526 7527 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7528 const SwitchInst *SI, 7529 MachineBasicBlock *DefaultMBB) { 7530 #ifndef NDEBUG 7531 // Clusters must be non-empty, sorted, and only contain Range clusters. 7532 assert(!Clusters.empty()); 7533 for (CaseCluster &C : Clusters) 7534 assert(C.Kind == CC_Range); 7535 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7536 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7537 #endif 7538 7539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7540 if (!areJTsAllowed(TLI)) 7541 return; 7542 7543 const int64_t N = Clusters.size(); 7544 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7545 7546 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7547 SmallVector<unsigned, 8> TotalCases(N); 7548 7549 for (unsigned i = 0; i < N; ++i) { 7550 APInt Hi = Clusters[i].High->getValue(); 7551 APInt Lo = Clusters[i].Low->getValue(); 7552 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7553 if (i != 0) 7554 TotalCases[i] += TotalCases[i - 1]; 7555 } 7556 7557 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7558 // Cheap case: the whole range might be suitable for jump table. 7559 CaseCluster JTCluster; 7560 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7561 Clusters[0] = JTCluster; 7562 Clusters.resize(1); 7563 return; 7564 } 7565 } 7566 7567 // The algorithm below is not suitable for -O0. 7568 if (TM.getOptLevel() == CodeGenOpt::None) 7569 return; 7570 7571 // Split Clusters into minimum number of dense partitions. The algorithm uses 7572 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7573 // for the Case Statement'" (1994), but builds the MinPartitions array in 7574 // reverse order to make it easier to reconstruct the partitions in ascending 7575 // order. In the choice between two optimal partitionings, it picks the one 7576 // which yields more jump tables. 7577 7578 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7579 SmallVector<unsigned, 8> MinPartitions(N); 7580 // LastElement[i] is the last element of the partition starting at i. 7581 SmallVector<unsigned, 8> LastElement(N); 7582 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7583 SmallVector<unsigned, 8> NumTables(N); 7584 7585 // Base case: There is only one way to partition Clusters[N-1]. 7586 MinPartitions[N - 1] = 1; 7587 LastElement[N - 1] = N - 1; 7588 assert(MinJumpTableSize > 1); 7589 NumTables[N - 1] = 0; 7590 7591 // Note: loop indexes are signed to avoid underflow. 7592 for (int64_t i = N - 2; i >= 0; i--) { 7593 // Find optimal partitioning of Clusters[i..N-1]. 7594 // Baseline: Put Clusters[i] into a partition on its own. 7595 MinPartitions[i] = MinPartitions[i + 1] + 1; 7596 LastElement[i] = i; 7597 NumTables[i] = NumTables[i + 1]; 7598 7599 // Search for a solution that results in fewer partitions. 7600 for (int64_t j = N - 1; j > i; j--) { 7601 // Try building a partition from Clusters[i..j]. 7602 if (isDense(Clusters, &TotalCases[0], i, j)) { 7603 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7604 bool IsTable = j - i + 1 >= MinJumpTableSize; 7605 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7606 7607 // If this j leads to fewer partitions, or same number of partitions 7608 // with more lookup tables, it is a better partitioning. 7609 if (NumPartitions < MinPartitions[i] || 7610 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7611 MinPartitions[i] = NumPartitions; 7612 LastElement[i] = j; 7613 NumTables[i] = Tables; 7614 } 7615 } 7616 } 7617 } 7618 7619 // Iterate over the partitions, replacing some with jump tables in-place. 7620 unsigned DstIndex = 0; 7621 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7622 Last = LastElement[First]; 7623 assert(Last >= First); 7624 assert(DstIndex <= First); 7625 unsigned NumClusters = Last - First + 1; 7626 7627 CaseCluster JTCluster; 7628 if (NumClusters >= MinJumpTableSize && 7629 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7630 Clusters[DstIndex++] = JTCluster; 7631 } else { 7632 for (unsigned I = First; I <= Last; ++I) 7633 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7634 } 7635 } 7636 Clusters.resize(DstIndex); 7637 } 7638 7639 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7640 // FIXME: Using the pointer type doesn't seem ideal. 7641 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7642 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7643 return Range <= BW; 7644 } 7645 7646 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7647 unsigned NumCmps, 7648 const APInt &Low, 7649 const APInt &High) { 7650 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7651 // range of cases both require only one branch to lower. Just looking at the 7652 // number of clusters and destinations should be enough to decide whether to 7653 // build bit tests. 7654 7655 // To lower a range with bit tests, the range must fit the bitwidth of a 7656 // machine word. 7657 if (!rangeFitsInWord(Low, High)) 7658 return false; 7659 7660 // Decide whether it's profitable to lower this range with bit tests. Each 7661 // destination requires a bit test and branch, and there is an overall range 7662 // check branch. For a small number of clusters, separate comparisons might be 7663 // cheaper, and for many destinations, splitting the range might be better. 7664 return (NumDests == 1 && NumCmps >= 3) || 7665 (NumDests == 2 && NumCmps >= 5) || 7666 (NumDests == 3 && NumCmps >= 6); 7667 } 7668 7669 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7670 unsigned First, unsigned Last, 7671 const SwitchInst *SI, 7672 CaseCluster &BTCluster) { 7673 assert(First <= Last); 7674 if (First == Last) 7675 return false; 7676 7677 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7678 unsigned NumCmps = 0; 7679 for (int64_t I = First; I <= Last; ++I) { 7680 assert(Clusters[I].Kind == CC_Range); 7681 Dests.set(Clusters[I].MBB->getNumber()); 7682 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7683 } 7684 unsigned NumDests = Dests.count(); 7685 7686 APInt Low = Clusters[First].Low->getValue(); 7687 APInt High = Clusters[Last].High->getValue(); 7688 assert(Low.slt(High)); 7689 7690 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7691 return false; 7692 7693 APInt LowBound; 7694 APInt CmpRange; 7695 7696 const int BitWidth = DAG.getTargetLoweringInfo() 7697 .getPointerTy(DAG.getDataLayout()) 7698 .getSizeInBits(); 7699 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7700 7701 if (Low.isNonNegative() && High.slt(BitWidth)) { 7702 // Optimize the case where all the case values fit in a 7703 // word without having to subtract minValue. In this case, 7704 // we can optimize away the subtraction. 7705 LowBound = APInt::getNullValue(Low.getBitWidth()); 7706 CmpRange = High; 7707 } else { 7708 LowBound = Low; 7709 CmpRange = High - Low; 7710 } 7711 7712 CaseBitsVector CBV; 7713 uint32_t TotalWeight = 0; 7714 for (unsigned i = First; i <= Last; ++i) { 7715 // Find the CaseBits for this destination. 7716 unsigned j; 7717 for (j = 0; j < CBV.size(); ++j) 7718 if (CBV[j].BB == Clusters[i].MBB) 7719 break; 7720 if (j == CBV.size()) 7721 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7722 CaseBits *CB = &CBV[j]; 7723 7724 // Update Mask, Bits and ExtraWeight. 7725 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7726 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7727 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7728 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7729 CB->Bits += Hi - Lo + 1; 7730 CB->ExtraWeight += Clusters[i].Weight; 7731 TotalWeight += Clusters[i].Weight; 7732 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7733 } 7734 7735 BitTestInfo BTI; 7736 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7737 // Sort by weight first, number of bits second. 7738 if (a.ExtraWeight != b.ExtraWeight) 7739 return a.ExtraWeight > b.ExtraWeight; 7740 return a.Bits > b.Bits; 7741 }); 7742 7743 for (auto &CB : CBV) { 7744 MachineBasicBlock *BitTestBB = 7745 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7746 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7747 } 7748 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7749 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7750 nullptr, std::move(BTI)); 7751 7752 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7753 BitTestCases.size() - 1, TotalWeight); 7754 return true; 7755 } 7756 7757 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7758 const SwitchInst *SI) { 7759 // Partition Clusters into as few subsets as possible, where each subset has a 7760 // range that fits in a machine word and has <= 3 unique destinations. 7761 7762 #ifndef NDEBUG 7763 // Clusters must be sorted and contain Range or JumpTable clusters. 7764 assert(!Clusters.empty()); 7765 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7766 for (const CaseCluster &C : Clusters) 7767 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7768 for (unsigned i = 1; i < Clusters.size(); ++i) 7769 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7770 #endif 7771 7772 // The algorithm below is not suitable for -O0. 7773 if (TM.getOptLevel() == CodeGenOpt::None) 7774 return; 7775 7776 // If target does not have legal shift left, do not emit bit tests at all. 7777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7778 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7779 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7780 return; 7781 7782 int BitWidth = PTy.getSizeInBits(); 7783 const int64_t N = Clusters.size(); 7784 7785 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7786 SmallVector<unsigned, 8> MinPartitions(N); 7787 // LastElement[i] is the last element of the partition starting at i. 7788 SmallVector<unsigned, 8> LastElement(N); 7789 7790 // FIXME: This might not be the best algorithm for finding bit test clusters. 7791 7792 // Base case: There is only one way to partition Clusters[N-1]. 7793 MinPartitions[N - 1] = 1; 7794 LastElement[N - 1] = N - 1; 7795 7796 // Note: loop indexes are signed to avoid underflow. 7797 for (int64_t i = N - 2; i >= 0; --i) { 7798 // Find optimal partitioning of Clusters[i..N-1]. 7799 // Baseline: Put Clusters[i] into a partition on its own. 7800 MinPartitions[i] = MinPartitions[i + 1] + 1; 7801 LastElement[i] = i; 7802 7803 // Search for a solution that results in fewer partitions. 7804 // Note: the search is limited by BitWidth, reducing time complexity. 7805 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7806 // Try building a partition from Clusters[i..j]. 7807 7808 // Check the range. 7809 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7810 Clusters[j].High->getValue())) 7811 continue; 7812 7813 // Check nbr of destinations and cluster types. 7814 // FIXME: This works, but doesn't seem very efficient. 7815 bool RangesOnly = true; 7816 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7817 for (int64_t k = i; k <= j; k++) { 7818 if (Clusters[k].Kind != CC_Range) { 7819 RangesOnly = false; 7820 break; 7821 } 7822 Dests.set(Clusters[k].MBB->getNumber()); 7823 } 7824 if (!RangesOnly || Dests.count() > 3) 7825 break; 7826 7827 // Check if it's a better partition. 7828 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7829 if (NumPartitions < MinPartitions[i]) { 7830 // Found a better partition. 7831 MinPartitions[i] = NumPartitions; 7832 LastElement[i] = j; 7833 } 7834 } 7835 } 7836 7837 // Iterate over the partitions, replacing with bit-test clusters in-place. 7838 unsigned DstIndex = 0; 7839 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7840 Last = LastElement[First]; 7841 assert(First <= Last); 7842 assert(DstIndex <= First); 7843 7844 CaseCluster BitTestCluster; 7845 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7846 Clusters[DstIndex++] = BitTestCluster; 7847 } else { 7848 size_t NumClusters = Last - First + 1; 7849 std::memmove(&Clusters[DstIndex], &Clusters[First], 7850 sizeof(Clusters[0]) * NumClusters); 7851 DstIndex += NumClusters; 7852 } 7853 } 7854 Clusters.resize(DstIndex); 7855 } 7856 7857 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7858 MachineBasicBlock *SwitchMBB, 7859 MachineBasicBlock *DefaultMBB) { 7860 MachineFunction *CurMF = FuncInfo.MF; 7861 MachineBasicBlock *NextMBB = nullptr; 7862 MachineFunction::iterator BBI = W.MBB; 7863 if (++BBI != FuncInfo.MF->end()) 7864 NextMBB = BBI; 7865 7866 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7867 7868 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7869 7870 if (Size == 2 && W.MBB == SwitchMBB) { 7871 // If any two of the cases has the same destination, and if one value 7872 // is the same as the other, but has one bit unset that the other has set, 7873 // use bit manipulation to do two compares at once. For example: 7874 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7875 // TODO: This could be extended to merge any 2 cases in switches with 3 7876 // cases. 7877 // TODO: Handle cases where W.CaseBB != SwitchBB. 7878 CaseCluster &Small = *W.FirstCluster; 7879 CaseCluster &Big = *W.LastCluster; 7880 7881 if (Small.Low == Small.High && Big.Low == Big.High && 7882 Small.MBB == Big.MBB) { 7883 const APInt &SmallValue = Small.Low->getValue(); 7884 const APInt &BigValue = Big.Low->getValue(); 7885 7886 // Check that there is only one bit different. 7887 APInt CommonBit = BigValue ^ SmallValue; 7888 if (CommonBit.isPowerOf2()) { 7889 SDValue CondLHS = getValue(Cond); 7890 EVT VT = CondLHS.getValueType(); 7891 SDLoc DL = getCurSDLoc(); 7892 7893 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7894 DAG.getConstant(CommonBit, DL, VT)); 7895 SDValue Cond = DAG.getSetCC( 7896 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7897 ISD::SETEQ); 7898 7899 // Update successor info. 7900 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7901 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7902 addSuccessorWithWeight( 7903 SwitchMBB, DefaultMBB, 7904 // The default destination is the first successor in IR. 7905 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7906 : 0); 7907 7908 // Insert the true branch. 7909 SDValue BrCond = 7910 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7911 DAG.getBasicBlock(Small.MBB)); 7912 // Insert the false branch. 7913 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7914 DAG.getBasicBlock(DefaultMBB)); 7915 7916 DAG.setRoot(BrCond); 7917 return; 7918 } 7919 } 7920 } 7921 7922 if (TM.getOptLevel() != CodeGenOpt::None) { 7923 // Order cases by weight so the most likely case will be checked first. 7924 std::sort(W.FirstCluster, W.LastCluster + 1, 7925 [](const CaseCluster &a, const CaseCluster &b) { 7926 return a.Weight > b.Weight; 7927 }); 7928 7929 // Rearrange the case blocks so that the last one falls through if possible 7930 // without without changing the order of weights. 7931 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7932 --I; 7933 if (I->Weight > W.LastCluster->Weight) 7934 break; 7935 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7936 std::swap(*I, *W.LastCluster); 7937 break; 7938 } 7939 } 7940 } 7941 7942 // Compute total weight. 7943 uint32_t UnhandledWeights = 0; 7944 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7945 UnhandledWeights += I->Weight; 7946 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7947 } 7948 7949 MachineBasicBlock *CurMBB = W.MBB; 7950 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7951 MachineBasicBlock *Fallthrough; 7952 if (I == W.LastCluster) { 7953 // For the last cluster, fall through to the default destination. 7954 Fallthrough = DefaultMBB; 7955 } else { 7956 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7957 CurMF->insert(BBI, Fallthrough); 7958 // Put Cond in a virtual register to make it available from the new blocks. 7959 ExportFromCurrentBlock(Cond); 7960 } 7961 7962 switch (I->Kind) { 7963 case CC_JumpTable: { 7964 // FIXME: Optimize away range check based on pivot comparisons. 7965 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7966 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7967 7968 // The jump block hasn't been inserted yet; insert it here. 7969 MachineBasicBlock *JumpMBB = JT->MBB; 7970 CurMF->insert(BBI, JumpMBB); 7971 addSuccessorWithWeight(CurMBB, Fallthrough); 7972 addSuccessorWithWeight(CurMBB, JumpMBB); 7973 7974 // The jump table header will be inserted in our current block, do the 7975 // range check, and fall through to our fallthrough block. 7976 JTH->HeaderBB = CurMBB; 7977 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7978 7979 // If we're in the right place, emit the jump table header right now. 7980 if (CurMBB == SwitchMBB) { 7981 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7982 JTH->Emitted = true; 7983 } 7984 break; 7985 } 7986 case CC_BitTests: { 7987 // FIXME: Optimize away range check based on pivot comparisons. 7988 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7989 7990 // The bit test blocks haven't been inserted yet; insert them here. 7991 for (BitTestCase &BTC : BTB->Cases) 7992 CurMF->insert(BBI, BTC.ThisBB); 7993 7994 // Fill in fields of the BitTestBlock. 7995 BTB->Parent = CurMBB; 7996 BTB->Default = Fallthrough; 7997 7998 // If we're in the right place, emit the bit test header header right now. 7999 if (CurMBB ==SwitchMBB) { 8000 visitBitTestHeader(*BTB, SwitchMBB); 8001 BTB->Emitted = true; 8002 } 8003 break; 8004 } 8005 case CC_Range: { 8006 const Value *RHS, *LHS, *MHS; 8007 ISD::CondCode CC; 8008 if (I->Low == I->High) { 8009 // Check Cond == I->Low. 8010 CC = ISD::SETEQ; 8011 LHS = Cond; 8012 RHS=I->Low; 8013 MHS = nullptr; 8014 } else { 8015 // Check I->Low <= Cond <= I->High. 8016 CC = ISD::SETLE; 8017 LHS = I->Low; 8018 MHS = Cond; 8019 RHS = I->High; 8020 } 8021 8022 // The false weight is the sum of all unhandled cases. 8023 UnhandledWeights -= I->Weight; 8024 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8025 UnhandledWeights); 8026 8027 if (CurMBB == SwitchMBB) 8028 visitSwitchCase(CB, SwitchMBB); 8029 else 8030 SwitchCases.push_back(CB); 8031 8032 break; 8033 } 8034 } 8035 CurMBB = Fallthrough; 8036 } 8037 } 8038 8039 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8040 CaseClusterIt First, 8041 CaseClusterIt Last) { 8042 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8043 if (X.Weight != CC.Weight) 8044 return X.Weight > CC.Weight; 8045 8046 // Ties are broken by comparing the case value. 8047 return X.Low->getValue().slt(CC.Low->getValue()); 8048 }); 8049 } 8050 8051 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8052 const SwitchWorkListItem &W, 8053 Value *Cond, 8054 MachineBasicBlock *SwitchMBB) { 8055 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8056 "Clusters not sorted?"); 8057 8058 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8059 8060 // Balance the tree based on branch weights to create a near-optimal (in terms 8061 // of search time given key frequency) binary search tree. See e.g. Kurt 8062 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8063 CaseClusterIt LastLeft = W.FirstCluster; 8064 CaseClusterIt FirstRight = W.LastCluster; 8065 uint32_t LeftWeight = LastLeft->Weight; 8066 uint32_t RightWeight = FirstRight->Weight; 8067 8068 // Move LastLeft and FirstRight towards each other from opposite directions to 8069 // find a partitioning of the clusters which balances the weight on both 8070 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8071 // taken to ensure 0-weight nodes are distributed evenly. 8072 unsigned I = 0; 8073 while (LastLeft + 1 < FirstRight) { 8074 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8075 LeftWeight += (++LastLeft)->Weight; 8076 else 8077 RightWeight += (--FirstRight)->Weight; 8078 I++; 8079 } 8080 8081 for (;;) { 8082 // Our binary search tree differs from a typical BST in that ours can have up 8083 // to three values in each leaf. The pivot selection above doesn't take that 8084 // into account, which means the tree might require more nodes and be less 8085 // efficient. We compensate for this here. 8086 8087 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8088 unsigned NumRight = W.LastCluster - FirstRight + 1; 8089 8090 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8091 // If one side has less than 3 clusters, and the other has more than 3, 8092 // consider taking a cluster from the other side. 8093 8094 if (NumLeft < NumRight) { 8095 // Consider moving the first cluster on the right to the left side. 8096 CaseCluster &CC = *FirstRight; 8097 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8098 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8099 if (LeftSideRank <= RightSideRank) { 8100 // Moving the cluster to the left does not demote it. 8101 ++LastLeft; 8102 ++FirstRight; 8103 continue; 8104 } 8105 } else { 8106 assert(NumRight < NumLeft); 8107 // Consider moving the last element on the left to the right side. 8108 CaseCluster &CC = *LastLeft; 8109 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8110 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8111 if (RightSideRank <= LeftSideRank) { 8112 // Moving the cluster to the right does not demot it. 8113 --LastLeft; 8114 --FirstRight; 8115 continue; 8116 } 8117 } 8118 } 8119 break; 8120 } 8121 8122 assert(LastLeft + 1 == FirstRight); 8123 assert(LastLeft >= W.FirstCluster); 8124 assert(FirstRight <= W.LastCluster); 8125 8126 // Use the first element on the right as pivot since we will make less-than 8127 // comparisons against it. 8128 CaseClusterIt PivotCluster = FirstRight; 8129 assert(PivotCluster > W.FirstCluster); 8130 assert(PivotCluster <= W.LastCluster); 8131 8132 CaseClusterIt FirstLeft = W.FirstCluster; 8133 CaseClusterIt LastRight = W.LastCluster; 8134 8135 const ConstantInt *Pivot = PivotCluster->Low; 8136 8137 // New blocks will be inserted immediately after the current one. 8138 MachineFunction::iterator BBI = W.MBB; 8139 ++BBI; 8140 8141 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8142 // we can branch to its destination directly if it's squeezed exactly in 8143 // between the known lower bound and Pivot - 1. 8144 MachineBasicBlock *LeftMBB; 8145 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8146 FirstLeft->Low == W.GE && 8147 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8148 LeftMBB = FirstLeft->MBB; 8149 } else { 8150 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8151 FuncInfo.MF->insert(BBI, LeftMBB); 8152 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8153 // Put Cond in a virtual register to make it available from the new blocks. 8154 ExportFromCurrentBlock(Cond); 8155 } 8156 8157 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8158 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8159 // directly if RHS.High equals the current upper bound. 8160 MachineBasicBlock *RightMBB; 8161 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8162 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8163 RightMBB = FirstRight->MBB; 8164 } else { 8165 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8166 FuncInfo.MF->insert(BBI, RightMBB); 8167 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8168 // Put Cond in a virtual register to make it available from the new blocks. 8169 ExportFromCurrentBlock(Cond); 8170 } 8171 8172 // Create the CaseBlock record that will be used to lower the branch. 8173 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8174 LeftWeight, RightWeight); 8175 8176 if (W.MBB == SwitchMBB) 8177 visitSwitchCase(CB, SwitchMBB); 8178 else 8179 SwitchCases.push_back(CB); 8180 } 8181 8182 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8183 // Extract cases from the switch. 8184 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8185 CaseClusterVector Clusters; 8186 Clusters.reserve(SI.getNumCases()); 8187 for (auto I : SI.cases()) { 8188 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8189 const ConstantInt *CaseVal = I.getCaseValue(); 8190 uint32_t Weight = 8191 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8192 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8193 } 8194 8195 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8196 8197 // Cluster adjacent cases with the same destination. We do this at all 8198 // optimization levels because it's cheap to do and will make codegen faster 8199 // if there are many clusters. 8200 sortAndRangeify(Clusters); 8201 8202 if (TM.getOptLevel() != CodeGenOpt::None) { 8203 // Replace an unreachable default with the most popular destination. 8204 // FIXME: Exploit unreachable default more aggressively. 8205 bool UnreachableDefault = 8206 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8207 if (UnreachableDefault && !Clusters.empty()) { 8208 DenseMap<const BasicBlock *, unsigned> Popularity; 8209 unsigned MaxPop = 0; 8210 const BasicBlock *MaxBB = nullptr; 8211 for (auto I : SI.cases()) { 8212 const BasicBlock *BB = I.getCaseSuccessor(); 8213 if (++Popularity[BB] > MaxPop) { 8214 MaxPop = Popularity[BB]; 8215 MaxBB = BB; 8216 } 8217 } 8218 // Set new default. 8219 assert(MaxPop > 0 && MaxBB); 8220 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8221 8222 // Remove cases that were pointing to the destination that is now the 8223 // default. 8224 CaseClusterVector New; 8225 New.reserve(Clusters.size()); 8226 for (CaseCluster &CC : Clusters) { 8227 if (CC.MBB != DefaultMBB) 8228 New.push_back(CC); 8229 } 8230 Clusters = std::move(New); 8231 } 8232 } 8233 8234 // If there is only the default destination, jump there directly. 8235 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8236 if (Clusters.empty()) { 8237 SwitchMBB->addSuccessor(DefaultMBB); 8238 if (DefaultMBB != NextBlock(SwitchMBB)) { 8239 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8240 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8241 } 8242 return; 8243 } 8244 8245 findJumpTables(Clusters, &SI, DefaultMBB); 8246 findBitTestClusters(Clusters, &SI); 8247 8248 DEBUG({ 8249 dbgs() << "Case clusters: "; 8250 for (const CaseCluster &C : Clusters) { 8251 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8252 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8253 8254 C.Low->getValue().print(dbgs(), true); 8255 if (C.Low != C.High) { 8256 dbgs() << '-'; 8257 C.High->getValue().print(dbgs(), true); 8258 } 8259 dbgs() << ' '; 8260 } 8261 dbgs() << '\n'; 8262 }); 8263 8264 assert(!Clusters.empty()); 8265 SwitchWorkList WorkList; 8266 CaseClusterIt First = Clusters.begin(); 8267 CaseClusterIt Last = Clusters.end() - 1; 8268 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8269 8270 while (!WorkList.empty()) { 8271 SwitchWorkListItem W = WorkList.back(); 8272 WorkList.pop_back(); 8273 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8274 8275 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8276 // For optimized builds, lower large range as a balanced binary tree. 8277 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8278 continue; 8279 } 8280 8281 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8282 } 8283 } 8284