1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1162 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1163 auto &DL = DAG.getDataLayout(); 1164 SDValue Chain = getControlRoot(); 1165 SmallVector<ISD::OutputArg, 8> Outs; 1166 SmallVector<SDValue, 8> OutVals; 1167 1168 if (!FuncInfo.CanLowerReturn) { 1169 unsigned DemoteReg = FuncInfo.DemoteRegister; 1170 const Function *F = I.getParent()->getParent(); 1171 1172 // Emit a store of the return value through the virtual register. 1173 // Leave Outs empty so that LowerReturn won't try to load return 1174 // registers the usual way. 1175 SmallVector<EVT, 1> PtrValueVTs; 1176 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1177 PtrValueVTs); 1178 1179 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1180 SDValue RetOp = getValue(I.getOperand(0)); 1181 1182 SmallVector<EVT, 4> ValueVTs; 1183 SmallVector<uint64_t, 4> Offsets; 1184 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1185 unsigned NumValues = ValueVTs.size(); 1186 1187 SmallVector<SDValue, 4> Chains(NumValues); 1188 for (unsigned i = 0; i != NumValues; ++i) { 1189 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1190 RetPtr.getValueType(), RetPtr, 1191 DAG.getIntPtrConstant(Offsets[i], 1192 getCurSDLoc())); 1193 Chains[i] = 1194 DAG.getStore(Chain, getCurSDLoc(), 1195 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1196 // FIXME: better loc info would be nice. 1197 Add, MachinePointerInfo(), false, false, 0); 1198 } 1199 1200 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1201 MVT::Other, Chains); 1202 } else if (I.getNumOperands() != 0) { 1203 SmallVector<EVT, 4> ValueVTs; 1204 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1205 unsigned NumValues = ValueVTs.size(); 1206 if (NumValues) { 1207 SDValue RetOp = getValue(I.getOperand(0)); 1208 1209 const Function *F = I.getParent()->getParent(); 1210 1211 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1212 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1213 Attribute::SExt)) 1214 ExtendKind = ISD::SIGN_EXTEND; 1215 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1216 Attribute::ZExt)) 1217 ExtendKind = ISD::ZERO_EXTEND; 1218 1219 LLVMContext &Context = F->getContext(); 1220 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1221 Attribute::InReg); 1222 1223 for (unsigned j = 0; j != NumValues; ++j) { 1224 EVT VT = ValueVTs[j]; 1225 1226 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1227 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1228 1229 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1230 MVT PartVT = TLI.getRegisterType(Context, VT); 1231 SmallVector<SDValue, 4> Parts(NumParts); 1232 getCopyToParts(DAG, getCurSDLoc(), 1233 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1234 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1235 1236 // 'inreg' on function refers to return value 1237 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1238 if (RetInReg) 1239 Flags.setInReg(); 1240 1241 // Propagate extension type if any 1242 if (ExtendKind == ISD::SIGN_EXTEND) 1243 Flags.setSExt(); 1244 else if (ExtendKind == ISD::ZERO_EXTEND) 1245 Flags.setZExt(); 1246 1247 for (unsigned i = 0; i < NumParts; ++i) { 1248 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1249 VT, /*isfixed=*/true, 0, 0)); 1250 OutVals.push_back(Parts[i]); 1251 } 1252 } 1253 } 1254 } 1255 1256 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1257 CallingConv::ID CallConv = 1258 DAG.getMachineFunction().getFunction()->getCallingConv(); 1259 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1260 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1261 1262 // Verify that the target's LowerReturn behaved as expected. 1263 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1264 "LowerReturn didn't return a valid chain!"); 1265 1266 // Update the DAG with the new chain value resulting from return lowering. 1267 DAG.setRoot(Chain); 1268 } 1269 1270 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1271 /// created for it, emit nodes to copy the value into the virtual 1272 /// registers. 1273 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1274 // Skip empty types 1275 if (V->getType()->isEmptyTy()) 1276 return; 1277 1278 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1279 if (VMI != FuncInfo.ValueMap.end()) { 1280 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1281 CopyValueToVirtualRegister(V, VMI->second); 1282 } 1283 } 1284 1285 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1286 /// the current basic block, add it to ValueMap now so that we'll get a 1287 /// CopyTo/FromReg. 1288 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1289 // No need to export constants. 1290 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1291 1292 // Already exported? 1293 if (FuncInfo.isExportedInst(V)) return; 1294 1295 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1296 CopyValueToVirtualRegister(V, Reg); 1297 } 1298 1299 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1300 const BasicBlock *FromBB) { 1301 // The operands of the setcc have to be in this block. We don't know 1302 // how to export them from some other block. 1303 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1304 // Can export from current BB. 1305 if (VI->getParent() == FromBB) 1306 return true; 1307 1308 // Is already exported, noop. 1309 return FuncInfo.isExportedInst(V); 1310 } 1311 1312 // If this is an argument, we can export it if the BB is the entry block or 1313 // if it is already exported. 1314 if (isa<Argument>(V)) { 1315 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1316 return true; 1317 1318 // Otherwise, can only export this if it is already exported. 1319 return FuncInfo.isExportedInst(V); 1320 } 1321 1322 // Otherwise, constants can always be exported. 1323 return true; 1324 } 1325 1326 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1327 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1328 const MachineBasicBlock *Dst) const { 1329 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1330 if (!BPI) 1331 return 0; 1332 const BasicBlock *SrcBB = Src->getBasicBlock(); 1333 const BasicBlock *DstBB = Dst->getBasicBlock(); 1334 return BPI->getEdgeWeight(SrcBB, DstBB); 1335 } 1336 1337 void SelectionDAGBuilder:: 1338 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1339 uint32_t Weight /* = 0 */) { 1340 if (!Weight) 1341 Weight = getEdgeWeight(Src, Dst); 1342 Src->addSuccessor(Dst, Weight); 1343 } 1344 1345 1346 static bool InBlock(const Value *V, const BasicBlock *BB) { 1347 if (const Instruction *I = dyn_cast<Instruction>(V)) 1348 return I->getParent() == BB; 1349 return true; 1350 } 1351 1352 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1353 /// This function emits a branch and is used at the leaves of an OR or an 1354 /// AND operator tree. 1355 /// 1356 void 1357 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1358 MachineBasicBlock *TBB, 1359 MachineBasicBlock *FBB, 1360 MachineBasicBlock *CurBB, 1361 MachineBasicBlock *SwitchBB, 1362 uint32_t TWeight, 1363 uint32_t FWeight) { 1364 const BasicBlock *BB = CurBB->getBasicBlock(); 1365 1366 // If the leaf of the tree is a comparison, merge the condition into 1367 // the caseblock. 1368 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1369 // The operands of the cmp have to be in this block. We don't know 1370 // how to export them from some other block. If this is the first block 1371 // of the sequence, no exporting is needed. 1372 if (CurBB == SwitchBB || 1373 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1374 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1375 ISD::CondCode Condition; 1376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1377 Condition = getICmpCondCode(IC->getPredicate()); 1378 } else { 1379 const FCmpInst *FC = cast<FCmpInst>(Cond); 1380 Condition = getFCmpCondCode(FC->getPredicate()); 1381 if (TM.Options.NoNaNsFPMath) 1382 Condition = getFCmpCodeWithoutNaN(Condition); 1383 } 1384 1385 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1386 TBB, FBB, CurBB, TWeight, FWeight); 1387 SwitchCases.push_back(CB); 1388 return; 1389 } 1390 } 1391 1392 // Create a CaseBlock record representing this branch. 1393 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1394 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1395 SwitchCases.push_back(CB); 1396 } 1397 1398 /// Scale down both weights to fit into uint32_t. 1399 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1400 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1401 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1402 NewTrue = NewTrue / Scale; 1403 NewFalse = NewFalse / Scale; 1404 } 1405 1406 /// FindMergedConditions - If Cond is an expression like 1407 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1408 MachineBasicBlock *TBB, 1409 MachineBasicBlock *FBB, 1410 MachineBasicBlock *CurBB, 1411 MachineBasicBlock *SwitchBB, 1412 Instruction::BinaryOps Opc, 1413 uint32_t TWeight, 1414 uint32_t FWeight) { 1415 // If this node is not part of the or/and tree, emit it as a branch. 1416 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1417 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1418 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1419 BOp->getParent() != CurBB->getBasicBlock() || 1420 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1421 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1422 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1423 TWeight, FWeight); 1424 return; 1425 } 1426 1427 // Create TmpBB after CurBB. 1428 MachineFunction::iterator BBI = CurBB; 1429 MachineFunction &MF = DAG.getMachineFunction(); 1430 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1431 CurBB->getParent()->insert(++BBI, TmpBB); 1432 1433 if (Opc == Instruction::Or) { 1434 // Codegen X | Y as: 1435 // BB1: 1436 // jmp_if_X TBB 1437 // jmp TmpBB 1438 // TmpBB: 1439 // jmp_if_Y TBB 1440 // jmp FBB 1441 // 1442 1443 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1444 // The requirement is that 1445 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1446 // = TrueProb for original BB. 1447 // Assuming the original weights are A and B, one choice is to set BB1's 1448 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1449 // assumes that 1450 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1451 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1452 // TmpBB, but the math is more complicated. 1453 1454 uint64_t NewTrueWeight = TWeight; 1455 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1456 ScaleWeights(NewTrueWeight, NewFalseWeight); 1457 // Emit the LHS condition. 1458 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1459 NewTrueWeight, NewFalseWeight); 1460 1461 NewTrueWeight = TWeight; 1462 NewFalseWeight = 2 * (uint64_t)FWeight; 1463 ScaleWeights(NewTrueWeight, NewFalseWeight); 1464 // Emit the RHS condition into TmpBB. 1465 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1466 NewTrueWeight, NewFalseWeight); 1467 } else { 1468 assert(Opc == Instruction::And && "Unknown merge op!"); 1469 // Codegen X & Y as: 1470 // BB1: 1471 // jmp_if_X TmpBB 1472 // jmp FBB 1473 // TmpBB: 1474 // jmp_if_Y TBB 1475 // jmp FBB 1476 // 1477 // This requires creation of TmpBB after CurBB. 1478 1479 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1480 // The requirement is that 1481 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1482 // = FalseProb for original BB. 1483 // Assuming the original weights are A and B, one choice is to set BB1's 1484 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1485 // assumes that 1486 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1487 1488 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1489 uint64_t NewFalseWeight = FWeight; 1490 ScaleWeights(NewTrueWeight, NewFalseWeight); 1491 // Emit the LHS condition. 1492 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1493 NewTrueWeight, NewFalseWeight); 1494 1495 NewTrueWeight = 2 * (uint64_t)TWeight; 1496 NewFalseWeight = FWeight; 1497 ScaleWeights(NewTrueWeight, NewFalseWeight); 1498 // Emit the RHS condition into TmpBB. 1499 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1500 NewTrueWeight, NewFalseWeight); 1501 } 1502 } 1503 1504 /// If the set of cases should be emitted as a series of branches, return true. 1505 /// If we should emit this as a bunch of and/or'd together conditions, return 1506 /// false. 1507 bool 1508 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1509 if (Cases.size() != 2) return true; 1510 1511 // If this is two comparisons of the same values or'd or and'd together, they 1512 // will get folded into a single comparison, so don't emit two blocks. 1513 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1514 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1515 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1516 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1517 return false; 1518 } 1519 1520 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1521 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1522 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1523 Cases[0].CC == Cases[1].CC && 1524 isa<Constant>(Cases[0].CmpRHS) && 1525 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1526 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1527 return false; 1528 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1529 return false; 1530 } 1531 1532 return true; 1533 } 1534 1535 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1536 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1537 1538 // Update machine-CFG edges. 1539 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1540 1541 if (I.isUnconditional()) { 1542 // Update machine-CFG edges. 1543 BrMBB->addSuccessor(Succ0MBB); 1544 1545 // If this is not a fall-through branch or optimizations are switched off, 1546 // emit the branch. 1547 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1548 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1549 MVT::Other, getControlRoot(), 1550 DAG.getBasicBlock(Succ0MBB))); 1551 1552 return; 1553 } 1554 1555 // If this condition is one of the special cases we handle, do special stuff 1556 // now. 1557 const Value *CondVal = I.getCondition(); 1558 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1559 1560 // If this is a series of conditions that are or'd or and'd together, emit 1561 // this as a sequence of branches instead of setcc's with and/or operations. 1562 // As long as jumps are not expensive, this should improve performance. 1563 // For example, instead of something like: 1564 // cmp A, B 1565 // C = seteq 1566 // cmp D, E 1567 // F = setle 1568 // or C, F 1569 // jnz foo 1570 // Emit: 1571 // cmp A, B 1572 // je foo 1573 // cmp D, E 1574 // jle foo 1575 // 1576 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1577 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1578 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1579 BOp->getOpcode() == Instruction::Or)) { 1580 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1581 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1582 getEdgeWeight(BrMBB, Succ1MBB)); 1583 // If the compares in later blocks need to use values not currently 1584 // exported from this block, export them now. This block should always 1585 // be the first entry. 1586 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1587 1588 // Allow some cases to be rejected. 1589 if (ShouldEmitAsBranches(SwitchCases)) { 1590 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1591 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1592 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1593 } 1594 1595 // Emit the branch for this block. 1596 visitSwitchCase(SwitchCases[0], BrMBB); 1597 SwitchCases.erase(SwitchCases.begin()); 1598 return; 1599 } 1600 1601 // Okay, we decided not to do this, remove any inserted MBB's and clear 1602 // SwitchCases. 1603 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1604 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1605 1606 SwitchCases.clear(); 1607 } 1608 } 1609 1610 // Create a CaseBlock record representing this branch. 1611 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1612 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1613 1614 // Use visitSwitchCase to actually insert the fast branch sequence for this 1615 // cond branch. 1616 visitSwitchCase(CB, BrMBB); 1617 } 1618 1619 /// visitSwitchCase - Emits the necessary code to represent a single node in 1620 /// the binary search tree resulting from lowering a switch instruction. 1621 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1622 MachineBasicBlock *SwitchBB) { 1623 SDValue Cond; 1624 SDValue CondLHS = getValue(CB.CmpLHS); 1625 SDLoc dl = getCurSDLoc(); 1626 1627 // Build the setcc now. 1628 if (!CB.CmpMHS) { 1629 // Fold "(X == true)" to X and "(X == false)" to !X to 1630 // handle common cases produced by branch lowering. 1631 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1632 CB.CC == ISD::SETEQ) 1633 Cond = CondLHS; 1634 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1635 CB.CC == ISD::SETEQ) { 1636 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1637 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1638 } else 1639 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1640 } else { 1641 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1642 1643 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1644 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1645 1646 SDValue CmpOp = getValue(CB.CmpMHS); 1647 EVT VT = CmpOp.getValueType(); 1648 1649 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1650 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1651 ISD::SETLE); 1652 } else { 1653 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1654 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1655 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1656 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1657 } 1658 } 1659 1660 // Update successor info 1661 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1662 // TrueBB and FalseBB are always different unless the incoming IR is 1663 // degenerate. This only happens when running llc on weird IR. 1664 if (CB.TrueBB != CB.FalseBB) 1665 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1666 1667 // If the lhs block is the next block, invert the condition so that we can 1668 // fall through to the lhs instead of the rhs block. 1669 if (CB.TrueBB == NextBlock(SwitchBB)) { 1670 std::swap(CB.TrueBB, CB.FalseBB); 1671 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1672 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1673 } 1674 1675 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1676 MVT::Other, getControlRoot(), Cond, 1677 DAG.getBasicBlock(CB.TrueBB)); 1678 1679 // Insert the false branch. Do this even if it's a fall through branch, 1680 // this makes it easier to do DAG optimizations which require inverting 1681 // the branch condition. 1682 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1683 DAG.getBasicBlock(CB.FalseBB)); 1684 1685 DAG.setRoot(BrCond); 1686 } 1687 1688 /// visitJumpTable - Emit JumpTable node in the current MBB 1689 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1690 // Emit the code for the jump table 1691 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1692 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1693 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1694 JT.Reg, PTy); 1695 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1696 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1697 MVT::Other, Index.getValue(1), 1698 Table, Index); 1699 DAG.setRoot(BrJumpTable); 1700 } 1701 1702 /// visitJumpTableHeader - This function emits necessary code to produce index 1703 /// in the JumpTable from switch case. 1704 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1705 JumpTableHeader &JTH, 1706 MachineBasicBlock *SwitchBB) { 1707 SDLoc dl = getCurSDLoc(); 1708 1709 // Subtract the lowest switch case value from the value being switched on and 1710 // conditional branch to default mbb if the result is greater than the 1711 // difference between smallest and largest cases. 1712 SDValue SwitchOp = getValue(JTH.SValue); 1713 EVT VT = SwitchOp.getValueType(); 1714 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1715 DAG.getConstant(JTH.First, dl, VT)); 1716 1717 // The SDNode we just created, which holds the value being switched on minus 1718 // the smallest case value, needs to be copied to a virtual register so it 1719 // can be used as an index into the jump table in a subsequent basic block. 1720 // This value may be smaller or larger than the target's pointer type, and 1721 // therefore require extension or truncating. 1722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1723 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1724 1725 unsigned JumpTableReg = 1726 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1727 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1728 JumpTableReg, SwitchOp); 1729 JT.Reg = JumpTableReg; 1730 1731 // Emit the range check for the jump table, and branch to the default block 1732 // for the switch statement if the value being switched on exceeds the largest 1733 // case in the switch. 1734 SDValue CMP = DAG.getSetCC( 1735 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1736 Sub.getValueType()), 1737 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1738 1739 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1740 MVT::Other, CopyTo, CMP, 1741 DAG.getBasicBlock(JT.Default)); 1742 1743 // Avoid emitting unnecessary branches to the next block. 1744 if (JT.MBB != NextBlock(SwitchBB)) 1745 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1746 DAG.getBasicBlock(JT.MBB)); 1747 1748 DAG.setRoot(BrCond); 1749 } 1750 1751 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1752 /// tail spliced into a stack protector check success bb. 1753 /// 1754 /// For a high level explanation of how this fits into the stack protector 1755 /// generation see the comment on the declaration of class 1756 /// StackProtectorDescriptor. 1757 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1758 MachineBasicBlock *ParentBB) { 1759 1760 // First create the loads to the guard/stack slot for the comparison. 1761 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1762 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1763 1764 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1765 int FI = MFI->getStackProtectorIndex(); 1766 1767 const Value *IRGuard = SPD.getGuard(); 1768 SDValue GuardPtr = getValue(IRGuard); 1769 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1770 1771 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1772 1773 SDValue Guard; 1774 SDLoc dl = getCurSDLoc(); 1775 1776 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1777 // guard value from the virtual register holding the value. Otherwise, emit a 1778 // volatile load to retrieve the stack guard value. 1779 unsigned GuardReg = SPD.getGuardReg(); 1780 1781 if (GuardReg && TLI.useLoadStackGuardNode()) 1782 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1783 PtrTy); 1784 else 1785 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1786 GuardPtr, MachinePointerInfo(IRGuard, 0), 1787 true, false, false, Align); 1788 1789 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1790 StackSlotPtr, 1791 MachinePointerInfo::getFixedStack(FI), 1792 true, false, false, Align); 1793 1794 // Perform the comparison via a subtract/getsetcc. 1795 EVT VT = Guard.getValueType(); 1796 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1797 1798 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1799 *DAG.getContext(), 1800 Sub.getValueType()), 1801 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1802 1803 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1804 // branch to failure MBB. 1805 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1806 MVT::Other, StackSlot.getOperand(0), 1807 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1808 // Otherwise branch to success MBB. 1809 SDValue Br = DAG.getNode(ISD::BR, dl, 1810 MVT::Other, BrCond, 1811 DAG.getBasicBlock(SPD.getSuccessMBB())); 1812 1813 DAG.setRoot(Br); 1814 } 1815 1816 /// Codegen the failure basic block for a stack protector check. 1817 /// 1818 /// A failure stack protector machine basic block consists simply of a call to 1819 /// __stack_chk_fail(). 1820 /// 1821 /// For a high level explanation of how this fits into the stack protector 1822 /// generation see the comment on the declaration of class 1823 /// StackProtectorDescriptor. 1824 void 1825 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1827 SDValue Chain = 1828 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1829 nullptr, 0, false, getCurSDLoc(), false, false).second; 1830 DAG.setRoot(Chain); 1831 } 1832 1833 /// visitBitTestHeader - This function emits necessary code to produce value 1834 /// suitable for "bit tests" 1835 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1836 MachineBasicBlock *SwitchBB) { 1837 SDLoc dl = getCurSDLoc(); 1838 1839 // Subtract the minimum value 1840 SDValue SwitchOp = getValue(B.SValue); 1841 EVT VT = SwitchOp.getValueType(); 1842 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1843 DAG.getConstant(B.First, dl, VT)); 1844 1845 // Check range 1846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1847 SDValue RangeCmp = DAG.getSetCC( 1848 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1849 Sub.getValueType()), 1850 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1851 1852 // Determine the type of the test operands. 1853 bool UsePtrType = false; 1854 if (!TLI.isTypeLegal(VT)) 1855 UsePtrType = true; 1856 else { 1857 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1858 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1859 // Switch table case range are encoded into series of masks. 1860 // Just use pointer type, it's guaranteed to fit. 1861 UsePtrType = true; 1862 break; 1863 } 1864 } 1865 if (UsePtrType) { 1866 VT = TLI.getPointerTy(DAG.getDataLayout()); 1867 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1868 } 1869 1870 B.RegVT = VT.getSimpleVT(); 1871 B.Reg = FuncInfo.CreateReg(B.RegVT); 1872 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1873 1874 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1875 1876 addSuccessorWithWeight(SwitchBB, B.Default); 1877 addSuccessorWithWeight(SwitchBB, MBB); 1878 1879 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1880 MVT::Other, CopyTo, RangeCmp, 1881 DAG.getBasicBlock(B.Default)); 1882 1883 // Avoid emitting unnecessary branches to the next block. 1884 if (MBB != NextBlock(SwitchBB)) 1885 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1886 DAG.getBasicBlock(MBB)); 1887 1888 DAG.setRoot(BrRange); 1889 } 1890 1891 /// visitBitTestCase - this function produces one "bit test" 1892 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1893 MachineBasicBlock* NextMBB, 1894 uint32_t BranchWeightToNext, 1895 unsigned Reg, 1896 BitTestCase &B, 1897 MachineBasicBlock *SwitchBB) { 1898 SDLoc dl = getCurSDLoc(); 1899 MVT VT = BB.RegVT; 1900 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1901 SDValue Cmp; 1902 unsigned PopCount = countPopulation(B.Mask); 1903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1904 if (PopCount == 1) { 1905 // Testing for a single bit; just compare the shift count with what it 1906 // would need to be to shift a 1 bit in that position. 1907 Cmp = DAG.getSetCC( 1908 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1909 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1910 ISD::SETEQ); 1911 } else if (PopCount == BB.Range) { 1912 // There is only one zero bit in the range, test for it directly. 1913 Cmp = DAG.getSetCC( 1914 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1915 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1916 ISD::SETNE); 1917 } else { 1918 // Make desired shift 1919 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1920 DAG.getConstant(1, dl, VT), ShiftOp); 1921 1922 // Emit bit tests and jumps 1923 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1924 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1925 Cmp = DAG.getSetCC( 1926 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1927 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1928 } 1929 1930 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1931 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1932 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1933 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1934 1935 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1936 MVT::Other, getControlRoot(), 1937 Cmp, DAG.getBasicBlock(B.TargetBB)); 1938 1939 // Avoid emitting unnecessary branches to the next block. 1940 if (NextMBB != NextBlock(SwitchBB)) 1941 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1942 DAG.getBasicBlock(NextMBB)); 1943 1944 DAG.setRoot(BrAnd); 1945 } 1946 1947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1948 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1949 1950 // Retrieve successors. 1951 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1952 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1953 1954 const Value *Callee(I.getCalledValue()); 1955 const Function *Fn = dyn_cast<Function>(Callee); 1956 if (isa<InlineAsm>(Callee)) 1957 visitInlineAsm(&I); 1958 else if (Fn && Fn->isIntrinsic()) { 1959 switch (Fn->getIntrinsicID()) { 1960 default: 1961 llvm_unreachable("Cannot invoke this intrinsic"); 1962 case Intrinsic::donothing: 1963 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1964 break; 1965 case Intrinsic::experimental_patchpoint_void: 1966 case Intrinsic::experimental_patchpoint_i64: 1967 visitPatchpoint(&I, LandingPad); 1968 break; 1969 case Intrinsic::experimental_gc_statepoint: 1970 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1971 break; 1972 } 1973 } else 1974 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1975 1976 // If the value of the invoke is used outside of its defining block, make it 1977 // available as a virtual register. 1978 // We already took care of the exported value for the statepoint instruction 1979 // during call to the LowerStatepoint. 1980 if (!isStatepoint(I)) { 1981 CopyToExportRegsIfNeeded(&I); 1982 } 1983 1984 // Update successor info 1985 addSuccessorWithWeight(InvokeMBB, Return); 1986 addSuccessorWithWeight(InvokeMBB, LandingPad); 1987 1988 // Drop into normal successor. 1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1990 MVT::Other, getControlRoot(), 1991 DAG.getBasicBlock(Return))); 1992 } 1993 1994 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1995 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1996 } 1997 1998 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1999 assert(FuncInfo.MBB->isLandingPad() && 2000 "Call to landingpad not in landing pad!"); 2001 2002 MachineBasicBlock *MBB = FuncInfo.MBB; 2003 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2004 AddLandingPadInfo(LP, MMI, MBB); 2005 2006 // If there aren't registers to copy the values into (e.g., during SjLj 2007 // exceptions), then don't bother to create these DAG nodes. 2008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2009 if (TLI.getExceptionPointerRegister() == 0 && 2010 TLI.getExceptionSelectorRegister() == 0) 2011 return; 2012 2013 SmallVector<EVT, 2> ValueVTs; 2014 SDLoc dl = getCurSDLoc(); 2015 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2016 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2017 2018 // Get the two live-in registers as SDValues. The physregs have already been 2019 // copied into virtual registers. 2020 SDValue Ops[2]; 2021 if (FuncInfo.ExceptionPointerVirtReg) { 2022 Ops[0] = DAG.getZExtOrTrunc( 2023 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2024 FuncInfo.ExceptionPointerVirtReg, 2025 TLI.getPointerTy(DAG.getDataLayout())), 2026 dl, ValueVTs[0]); 2027 } else { 2028 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2029 } 2030 Ops[1] = DAG.getZExtOrTrunc( 2031 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2032 FuncInfo.ExceptionSelectorVirtReg, 2033 TLI.getPointerTy(DAG.getDataLayout())), 2034 dl, ValueVTs[1]); 2035 2036 // Merge into one. 2037 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2038 DAG.getVTList(ValueVTs), Ops); 2039 setValue(&LP, Res); 2040 } 2041 2042 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2043 #ifndef NDEBUG 2044 for (const CaseCluster &CC : Clusters) 2045 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2046 #endif 2047 2048 std::sort(Clusters.begin(), Clusters.end(), 2049 [](const CaseCluster &a, const CaseCluster &b) { 2050 return a.Low->getValue().slt(b.Low->getValue()); 2051 }); 2052 2053 // Merge adjacent clusters with the same destination. 2054 const unsigned N = Clusters.size(); 2055 unsigned DstIndex = 0; 2056 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2057 CaseCluster &CC = Clusters[SrcIndex]; 2058 const ConstantInt *CaseVal = CC.Low; 2059 MachineBasicBlock *Succ = CC.MBB; 2060 2061 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2062 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2063 // If this case has the same successor and is a neighbour, merge it into 2064 // the previous cluster. 2065 Clusters[DstIndex - 1].High = CaseVal; 2066 Clusters[DstIndex - 1].Weight += CC.Weight; 2067 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2068 } else { 2069 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2070 sizeof(Clusters[SrcIndex])); 2071 } 2072 } 2073 Clusters.resize(DstIndex); 2074 } 2075 2076 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2077 MachineBasicBlock *Last) { 2078 // Update JTCases. 2079 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2080 if (JTCases[i].first.HeaderBB == First) 2081 JTCases[i].first.HeaderBB = Last; 2082 2083 // Update BitTestCases. 2084 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2085 if (BitTestCases[i].Parent == First) 2086 BitTestCases[i].Parent = Last; 2087 } 2088 2089 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2090 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2091 2092 // Update machine-CFG edges with unique successors. 2093 SmallSet<BasicBlock*, 32> Done; 2094 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2095 BasicBlock *BB = I.getSuccessor(i); 2096 bool Inserted = Done.insert(BB).second; 2097 if (!Inserted) 2098 continue; 2099 2100 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2101 addSuccessorWithWeight(IndirectBrMBB, Succ); 2102 } 2103 2104 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2105 MVT::Other, getControlRoot(), 2106 getValue(I.getAddress()))); 2107 } 2108 2109 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2110 if (DAG.getTarget().Options.TrapUnreachable) 2111 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2112 } 2113 2114 void SelectionDAGBuilder::visitFSub(const User &I) { 2115 // -0.0 - X --> fneg 2116 Type *Ty = I.getType(); 2117 if (isa<Constant>(I.getOperand(0)) && 2118 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2119 SDValue Op2 = getValue(I.getOperand(1)); 2120 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2121 Op2.getValueType(), Op2)); 2122 return; 2123 } 2124 2125 visitBinary(I, ISD::FSUB); 2126 } 2127 2128 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2129 SDValue Op1 = getValue(I.getOperand(0)); 2130 SDValue Op2 = getValue(I.getOperand(1)); 2131 2132 bool nuw = false; 2133 bool nsw = false; 2134 bool exact = false; 2135 FastMathFlags FMF; 2136 2137 if (const OverflowingBinaryOperator *OFBinOp = 2138 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2139 nuw = OFBinOp->hasNoUnsignedWrap(); 2140 nsw = OFBinOp->hasNoSignedWrap(); 2141 } 2142 if (const PossiblyExactOperator *ExactOp = 2143 dyn_cast<const PossiblyExactOperator>(&I)) 2144 exact = ExactOp->isExact(); 2145 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2146 FMF = FPOp->getFastMathFlags(); 2147 2148 SDNodeFlags Flags; 2149 Flags.setExact(exact); 2150 Flags.setNoSignedWrap(nsw); 2151 Flags.setNoUnsignedWrap(nuw); 2152 if (EnableFMFInDAG) { 2153 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2154 Flags.setNoInfs(FMF.noInfs()); 2155 Flags.setNoNaNs(FMF.noNaNs()); 2156 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2157 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2158 } 2159 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2160 Op1, Op2, &Flags); 2161 setValue(&I, BinNodeValue); 2162 } 2163 2164 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2165 SDValue Op1 = getValue(I.getOperand(0)); 2166 SDValue Op2 = getValue(I.getOperand(1)); 2167 2168 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2169 Op2.getValueType(), DAG.getDataLayout()); 2170 2171 // Coerce the shift amount to the right type if we can. 2172 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2173 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2174 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2175 SDLoc DL = getCurSDLoc(); 2176 2177 // If the operand is smaller than the shift count type, promote it. 2178 if (ShiftSize > Op2Size) 2179 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2180 2181 // If the operand is larger than the shift count type but the shift 2182 // count type has enough bits to represent any shift value, truncate 2183 // it now. This is a common case and it exposes the truncate to 2184 // optimization early. 2185 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2186 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2187 // Otherwise we'll need to temporarily settle for some other convenient 2188 // type. Type legalization will make adjustments once the shiftee is split. 2189 else 2190 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2191 } 2192 2193 bool nuw = false; 2194 bool nsw = false; 2195 bool exact = false; 2196 2197 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2198 2199 if (const OverflowingBinaryOperator *OFBinOp = 2200 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2201 nuw = OFBinOp->hasNoUnsignedWrap(); 2202 nsw = OFBinOp->hasNoSignedWrap(); 2203 } 2204 if (const PossiblyExactOperator *ExactOp = 2205 dyn_cast<const PossiblyExactOperator>(&I)) 2206 exact = ExactOp->isExact(); 2207 } 2208 SDNodeFlags Flags; 2209 Flags.setExact(exact); 2210 Flags.setNoSignedWrap(nsw); 2211 Flags.setNoUnsignedWrap(nuw); 2212 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2213 &Flags); 2214 setValue(&I, Res); 2215 } 2216 2217 void SelectionDAGBuilder::visitSDiv(const User &I) { 2218 SDValue Op1 = getValue(I.getOperand(0)); 2219 SDValue Op2 = getValue(I.getOperand(1)); 2220 2221 SDNodeFlags Flags; 2222 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2223 cast<PossiblyExactOperator>(&I)->isExact()); 2224 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2225 Op2, &Flags)); 2226 } 2227 2228 void SelectionDAGBuilder::visitICmp(const User &I) { 2229 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2230 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2231 predicate = IC->getPredicate(); 2232 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2233 predicate = ICmpInst::Predicate(IC->getPredicate()); 2234 SDValue Op1 = getValue(I.getOperand(0)); 2235 SDValue Op2 = getValue(I.getOperand(1)); 2236 ISD::CondCode Opcode = getICmpCondCode(predicate); 2237 2238 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2239 I.getType()); 2240 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2241 } 2242 2243 void SelectionDAGBuilder::visitFCmp(const User &I) { 2244 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2245 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2246 predicate = FC->getPredicate(); 2247 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2248 predicate = FCmpInst::Predicate(FC->getPredicate()); 2249 SDValue Op1 = getValue(I.getOperand(0)); 2250 SDValue Op2 = getValue(I.getOperand(1)); 2251 ISD::CondCode Condition = getFCmpCondCode(predicate); 2252 if (TM.Options.NoNaNsFPMath) 2253 Condition = getFCmpCodeWithoutNaN(Condition); 2254 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2255 I.getType()); 2256 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2257 } 2258 2259 void SelectionDAGBuilder::visitSelect(const User &I) { 2260 SmallVector<EVT, 4> ValueVTs; 2261 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2262 ValueVTs); 2263 unsigned NumValues = ValueVTs.size(); 2264 if (NumValues == 0) return; 2265 2266 SmallVector<SDValue, 4> Values(NumValues); 2267 SDValue Cond = getValue(I.getOperand(0)); 2268 SDValue LHSVal = getValue(I.getOperand(1)); 2269 SDValue RHSVal = getValue(I.getOperand(2)); 2270 auto BaseOps = {Cond}; 2271 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2272 ISD::VSELECT : ISD::SELECT; 2273 2274 // Min/max matching is only viable if all output VTs are the same. 2275 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2276 Value *LHS, *RHS; 2277 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2278 ISD::NodeType Opc = ISD::DELETED_NODE; 2279 switch (SPF) { 2280 case SPF_UMAX: Opc = ISD::UMAX; break; 2281 case SPF_UMIN: Opc = ISD::UMIN; break; 2282 case SPF_SMAX: Opc = ISD::SMAX; break; 2283 case SPF_SMIN: Opc = ISD::SMIN; break; 2284 default: break; 2285 } 2286 2287 EVT VT = ValueVTs[0]; 2288 LLVMContext &Ctx = *DAG.getContext(); 2289 auto &TLI = DAG.getTargetLoweringInfo(); 2290 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2291 VT = TLI.getTypeToTransformTo(Ctx, VT); 2292 2293 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2294 // If the underlying comparison instruction is used by any other instruction, 2295 // the consumed instructions won't be destroyed, so it is not profitable 2296 // to convert to a min/max. 2297 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2298 OpCode = Opc; 2299 LHSVal = getValue(LHS); 2300 RHSVal = getValue(RHS); 2301 BaseOps = {}; 2302 } 2303 } 2304 2305 for (unsigned i = 0; i != NumValues; ++i) { 2306 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2307 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2308 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2309 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2310 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2311 Ops); 2312 } 2313 2314 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2315 DAG.getVTList(ValueVTs), Values)); 2316 } 2317 2318 void SelectionDAGBuilder::visitTrunc(const User &I) { 2319 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2320 SDValue N = getValue(I.getOperand(0)); 2321 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2322 I.getType()); 2323 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2324 } 2325 2326 void SelectionDAGBuilder::visitZExt(const User &I) { 2327 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2328 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2329 SDValue N = getValue(I.getOperand(0)); 2330 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2331 I.getType()); 2332 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2333 } 2334 2335 void SelectionDAGBuilder::visitSExt(const User &I) { 2336 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2337 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2338 SDValue N = getValue(I.getOperand(0)); 2339 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2340 I.getType()); 2341 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2342 } 2343 2344 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2345 // FPTrunc is never a no-op cast, no need to check 2346 SDValue N = getValue(I.getOperand(0)); 2347 SDLoc dl = getCurSDLoc(); 2348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2349 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2350 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2351 DAG.getTargetConstant( 2352 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2353 } 2354 2355 void SelectionDAGBuilder::visitFPExt(const User &I) { 2356 // FPExt is never a no-op cast, no need to check 2357 SDValue N = getValue(I.getOperand(0)); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2359 I.getType()); 2360 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2361 } 2362 2363 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2364 // FPToUI is never a no-op cast, no need to check 2365 SDValue N = getValue(I.getOperand(0)); 2366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2367 I.getType()); 2368 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2369 } 2370 2371 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2372 // FPToSI is never a no-op cast, no need to check 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2375 I.getType()); 2376 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2377 } 2378 2379 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2380 // UIToFP is never a no-op cast, no need to check 2381 SDValue N = getValue(I.getOperand(0)); 2382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2383 I.getType()); 2384 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2385 } 2386 2387 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2388 // SIToFP is never a no-op cast, no need to check 2389 SDValue N = getValue(I.getOperand(0)); 2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2391 I.getType()); 2392 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2393 } 2394 2395 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2396 // What to do depends on the size of the integer and the size of the pointer. 2397 // We can either truncate, zero extend, or no-op, accordingly. 2398 SDValue N = getValue(I.getOperand(0)); 2399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2400 I.getType()); 2401 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2402 } 2403 2404 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2405 // What to do depends on the size of the integer and the size of the pointer. 2406 // We can either truncate, zero extend, or no-op, accordingly. 2407 SDValue N = getValue(I.getOperand(0)); 2408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2409 I.getType()); 2410 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2411 } 2412 2413 void SelectionDAGBuilder::visitBitCast(const User &I) { 2414 SDValue N = getValue(I.getOperand(0)); 2415 SDLoc dl = getCurSDLoc(); 2416 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2417 I.getType()); 2418 2419 // BitCast assures us that source and destination are the same size so this is 2420 // either a BITCAST or a no-op. 2421 if (DestVT != N.getValueType()) 2422 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2423 DestVT, N)); // convert types. 2424 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2425 // might fold any kind of constant expression to an integer constant and that 2426 // is not what we are looking for. Only regcognize a bitcast of a genuine 2427 // constant integer as an opaque constant. 2428 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2429 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2430 /*isOpaque*/true)); 2431 else 2432 setValue(&I, N); // noop cast. 2433 } 2434 2435 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2437 const Value *SV = I.getOperand(0); 2438 SDValue N = getValue(SV); 2439 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2440 2441 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2442 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2443 2444 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2445 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2446 2447 setValue(&I, N); 2448 } 2449 2450 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2452 SDValue InVec = getValue(I.getOperand(0)); 2453 SDValue InVal = getValue(I.getOperand(1)); 2454 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2455 TLI.getVectorIdxTy(DAG.getDataLayout())); 2456 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2457 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2458 InVec, InVal, InIdx)); 2459 } 2460 2461 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2463 SDValue InVec = getValue(I.getOperand(0)); 2464 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2465 TLI.getVectorIdxTy(DAG.getDataLayout())); 2466 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2467 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2468 InVec, InIdx)); 2469 } 2470 2471 // Utility for visitShuffleVector - Return true if every element in Mask, 2472 // beginning from position Pos and ending in Pos+Size, falls within the 2473 // specified sequential range [L, L+Pos). or is undef. 2474 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2475 unsigned Pos, unsigned Size, int Low) { 2476 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2477 if (Mask[i] >= 0 && Mask[i] != Low) 2478 return false; 2479 return true; 2480 } 2481 2482 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2483 SDValue Src1 = getValue(I.getOperand(0)); 2484 SDValue Src2 = getValue(I.getOperand(1)); 2485 2486 SmallVector<int, 8> Mask; 2487 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2488 unsigned MaskNumElts = Mask.size(); 2489 2490 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2491 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2492 EVT SrcVT = Src1.getValueType(); 2493 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2494 2495 if (SrcNumElts == MaskNumElts) { 2496 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2497 &Mask[0])); 2498 return; 2499 } 2500 2501 // Normalize the shuffle vector since mask and vector length don't match. 2502 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2503 // Mask is longer than the source vectors and is a multiple of the source 2504 // vectors. We can use concatenate vector to make the mask and vectors 2505 // lengths match. 2506 if (SrcNumElts*2 == MaskNumElts) { 2507 // First check for Src1 in low and Src2 in high 2508 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2509 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2510 // The shuffle is concatenating two vectors together. 2511 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2512 VT, Src1, Src2)); 2513 return; 2514 } 2515 // Then check for Src2 in low and Src1 in high 2516 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2517 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2518 // The shuffle is concatenating two vectors together. 2519 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2520 VT, Src2, Src1)); 2521 return; 2522 } 2523 } 2524 2525 // Pad both vectors with undefs to make them the same length as the mask. 2526 unsigned NumConcat = MaskNumElts / SrcNumElts; 2527 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2528 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2529 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2530 2531 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2532 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2533 MOps1[0] = Src1; 2534 MOps2[0] = Src2; 2535 2536 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2537 getCurSDLoc(), VT, MOps1); 2538 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2539 getCurSDLoc(), VT, MOps2); 2540 2541 // Readjust mask for new input vector length. 2542 SmallVector<int, 8> MappedOps; 2543 for (unsigned i = 0; i != MaskNumElts; ++i) { 2544 int Idx = Mask[i]; 2545 if (Idx >= (int)SrcNumElts) 2546 Idx -= SrcNumElts - MaskNumElts; 2547 MappedOps.push_back(Idx); 2548 } 2549 2550 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2551 &MappedOps[0])); 2552 return; 2553 } 2554 2555 if (SrcNumElts > MaskNumElts) { 2556 // Analyze the access pattern of the vector to see if we can extract 2557 // two subvectors and do the shuffle. The analysis is done by calculating 2558 // the range of elements the mask access on both vectors. 2559 int MinRange[2] = { static_cast<int>(SrcNumElts), 2560 static_cast<int>(SrcNumElts)}; 2561 int MaxRange[2] = {-1, -1}; 2562 2563 for (unsigned i = 0; i != MaskNumElts; ++i) { 2564 int Idx = Mask[i]; 2565 unsigned Input = 0; 2566 if (Idx < 0) 2567 continue; 2568 2569 if (Idx >= (int)SrcNumElts) { 2570 Input = 1; 2571 Idx -= SrcNumElts; 2572 } 2573 if (Idx > MaxRange[Input]) 2574 MaxRange[Input] = Idx; 2575 if (Idx < MinRange[Input]) 2576 MinRange[Input] = Idx; 2577 } 2578 2579 // Check if the access is smaller than the vector size and can we find 2580 // a reasonable extract index. 2581 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2582 // Extract. 2583 int StartIdx[2]; // StartIdx to extract from 2584 for (unsigned Input = 0; Input < 2; ++Input) { 2585 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2586 RangeUse[Input] = 0; // Unused 2587 StartIdx[Input] = 0; 2588 continue; 2589 } 2590 2591 // Find a good start index that is a multiple of the mask length. Then 2592 // see if the rest of the elements are in range. 2593 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2594 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2595 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2596 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2597 } 2598 2599 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2600 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2601 return; 2602 } 2603 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2604 // Extract appropriate subvector and generate a vector shuffle 2605 for (unsigned Input = 0; Input < 2; ++Input) { 2606 SDValue &Src = Input == 0 ? Src1 : Src2; 2607 if (RangeUse[Input] == 0) 2608 Src = DAG.getUNDEF(VT); 2609 else { 2610 SDLoc dl = getCurSDLoc(); 2611 Src = DAG.getNode( 2612 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2613 DAG.getConstant(StartIdx[Input], dl, 2614 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2615 } 2616 } 2617 2618 // Calculate new mask. 2619 SmallVector<int, 8> MappedOps; 2620 for (unsigned i = 0; i != MaskNumElts; ++i) { 2621 int Idx = Mask[i]; 2622 if (Idx >= 0) { 2623 if (Idx < (int)SrcNumElts) 2624 Idx -= StartIdx[0]; 2625 else 2626 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2627 } 2628 MappedOps.push_back(Idx); 2629 } 2630 2631 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2632 &MappedOps[0])); 2633 return; 2634 } 2635 } 2636 2637 // We can't use either concat vectors or extract subvectors so fall back to 2638 // replacing the shuffle with extract and build vector. 2639 // to insert and build vector. 2640 EVT EltVT = VT.getVectorElementType(); 2641 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2642 SDLoc dl = getCurSDLoc(); 2643 SmallVector<SDValue,8> Ops; 2644 for (unsigned i = 0; i != MaskNumElts; ++i) { 2645 int Idx = Mask[i]; 2646 SDValue Res; 2647 2648 if (Idx < 0) { 2649 Res = DAG.getUNDEF(EltVT); 2650 } else { 2651 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2652 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2653 2654 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2655 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2656 } 2657 2658 Ops.push_back(Res); 2659 } 2660 2661 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2662 } 2663 2664 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2665 const Value *Op0 = I.getOperand(0); 2666 const Value *Op1 = I.getOperand(1); 2667 Type *AggTy = I.getType(); 2668 Type *ValTy = Op1->getType(); 2669 bool IntoUndef = isa<UndefValue>(Op0); 2670 bool FromUndef = isa<UndefValue>(Op1); 2671 2672 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2673 2674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2675 SmallVector<EVT, 4> AggValueVTs; 2676 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2677 SmallVector<EVT, 4> ValValueVTs; 2678 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2679 2680 unsigned NumAggValues = AggValueVTs.size(); 2681 unsigned NumValValues = ValValueVTs.size(); 2682 SmallVector<SDValue, 4> Values(NumAggValues); 2683 2684 // Ignore an insertvalue that produces an empty object 2685 if (!NumAggValues) { 2686 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2687 return; 2688 } 2689 2690 SDValue Agg = getValue(Op0); 2691 unsigned i = 0; 2692 // Copy the beginning value(s) from the original aggregate. 2693 for (; i != LinearIndex; ++i) 2694 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2695 SDValue(Agg.getNode(), Agg.getResNo() + i); 2696 // Copy values from the inserted value(s). 2697 if (NumValValues) { 2698 SDValue Val = getValue(Op1); 2699 for (; i != LinearIndex + NumValValues; ++i) 2700 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2701 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2702 } 2703 // Copy remaining value(s) from the original aggregate. 2704 for (; i != NumAggValues; ++i) 2705 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2706 SDValue(Agg.getNode(), Agg.getResNo() + i); 2707 2708 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2709 DAG.getVTList(AggValueVTs), Values)); 2710 } 2711 2712 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2713 const Value *Op0 = I.getOperand(0); 2714 Type *AggTy = Op0->getType(); 2715 Type *ValTy = I.getType(); 2716 bool OutOfUndef = isa<UndefValue>(Op0); 2717 2718 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2719 2720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2721 SmallVector<EVT, 4> ValValueVTs; 2722 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2723 2724 unsigned NumValValues = ValValueVTs.size(); 2725 2726 // Ignore a extractvalue that produces an empty object 2727 if (!NumValValues) { 2728 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2729 return; 2730 } 2731 2732 SmallVector<SDValue, 4> Values(NumValValues); 2733 2734 SDValue Agg = getValue(Op0); 2735 // Copy out the selected value(s). 2736 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2737 Values[i - LinearIndex] = 2738 OutOfUndef ? 2739 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2740 SDValue(Agg.getNode(), Agg.getResNo() + i); 2741 2742 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2743 DAG.getVTList(ValValueVTs), Values)); 2744 } 2745 2746 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2747 Value *Op0 = I.getOperand(0); 2748 // Note that the pointer operand may be a vector of pointers. Take the scalar 2749 // element which holds a pointer. 2750 Type *Ty = Op0->getType()->getScalarType(); 2751 unsigned AS = Ty->getPointerAddressSpace(); 2752 SDValue N = getValue(Op0); 2753 SDLoc dl = getCurSDLoc(); 2754 2755 // Normalize Vector GEP - all scalar operands should be converted to the 2756 // splat vector. 2757 unsigned VectorWidth = I.getType()->isVectorTy() ? 2758 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2759 2760 if (VectorWidth && !N.getValueType().isVector()) { 2761 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2762 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2763 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2764 } 2765 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2766 OI != E; ++OI) { 2767 const Value *Idx = *OI; 2768 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2769 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2770 if (Field) { 2771 // N = N + Offset 2772 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2773 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2774 DAG.getConstant(Offset, dl, N.getValueType())); 2775 } 2776 2777 Ty = StTy->getElementType(Field); 2778 } else { 2779 Ty = cast<SequentialType>(Ty)->getElementType(); 2780 MVT PtrTy = 2781 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2782 unsigned PtrSize = PtrTy.getSizeInBits(); 2783 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2784 2785 // If this is a scalar constant or a splat vector of constants, 2786 // handle it quickly. 2787 const auto *CI = dyn_cast<ConstantInt>(Idx); 2788 if (!CI && isa<ConstantDataVector>(Idx) && 2789 cast<ConstantDataVector>(Idx)->getSplatValue()) 2790 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2791 2792 if (CI) { 2793 if (CI->isZero()) 2794 continue; 2795 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2796 SDValue OffsVal = VectorWidth ? 2797 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2798 DAG.getConstant(Offs, dl, PtrTy); 2799 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2800 continue; 2801 } 2802 2803 // N = N + Idx * ElementSize; 2804 SDValue IdxN = getValue(Idx); 2805 2806 if (!IdxN.getValueType().isVector() && VectorWidth) { 2807 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2808 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2809 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2810 } 2811 // If the index is smaller or larger than intptr_t, truncate or extend 2812 // it. 2813 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2814 2815 // If this is a multiply by a power of two, turn it into a shl 2816 // immediately. This is a very common case. 2817 if (ElementSize != 1) { 2818 if (ElementSize.isPowerOf2()) { 2819 unsigned Amt = ElementSize.logBase2(); 2820 IdxN = DAG.getNode(ISD::SHL, dl, 2821 N.getValueType(), IdxN, 2822 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2823 } else { 2824 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2825 IdxN = DAG.getNode(ISD::MUL, dl, 2826 N.getValueType(), IdxN, Scale); 2827 } 2828 } 2829 2830 N = DAG.getNode(ISD::ADD, dl, 2831 N.getValueType(), N, IdxN); 2832 } 2833 } 2834 2835 setValue(&I, N); 2836 } 2837 2838 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2839 // If this is a fixed sized alloca in the entry block of the function, 2840 // allocate it statically on the stack. 2841 if (FuncInfo.StaticAllocaMap.count(&I)) 2842 return; // getValue will auto-populate this. 2843 2844 SDLoc dl = getCurSDLoc(); 2845 Type *Ty = I.getAllocatedType(); 2846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2847 auto &DL = DAG.getDataLayout(); 2848 uint64_t TySize = DL.getTypeAllocSize(Ty); 2849 unsigned Align = 2850 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2851 2852 SDValue AllocSize = getValue(I.getArraySize()); 2853 2854 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2855 if (AllocSize.getValueType() != IntPtr) 2856 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2857 2858 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2859 AllocSize, 2860 DAG.getConstant(TySize, dl, IntPtr)); 2861 2862 // Handle alignment. If the requested alignment is less than or equal to 2863 // the stack alignment, ignore it. If the size is greater than or equal to 2864 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2865 unsigned StackAlign = 2866 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2867 if (Align <= StackAlign) 2868 Align = 0; 2869 2870 // Round the size of the allocation up to the stack alignment size 2871 // by add SA-1 to the size. 2872 AllocSize = DAG.getNode(ISD::ADD, dl, 2873 AllocSize.getValueType(), AllocSize, 2874 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2875 2876 // Mask out the low bits for alignment purposes. 2877 AllocSize = DAG.getNode(ISD::AND, dl, 2878 AllocSize.getValueType(), AllocSize, 2879 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2880 dl)); 2881 2882 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2883 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2884 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2885 setValue(&I, DSA); 2886 DAG.setRoot(DSA.getValue(1)); 2887 2888 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2889 } 2890 2891 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2892 if (I.isAtomic()) 2893 return visitAtomicLoad(I); 2894 2895 const Value *SV = I.getOperand(0); 2896 SDValue Ptr = getValue(SV); 2897 2898 Type *Ty = I.getType(); 2899 2900 bool isVolatile = I.isVolatile(); 2901 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2902 2903 // The IR notion of invariant_load only guarantees that all *non-faulting* 2904 // invariant loads result in the same value. The MI notion of invariant load 2905 // guarantees that the load can be legally moved to any location within its 2906 // containing function. The MI notion of invariant_load is stronger than the 2907 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2908 // with a guarantee that the location being loaded from is dereferenceable 2909 // throughout the function's lifetime. 2910 2911 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2912 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2913 unsigned Alignment = I.getAlignment(); 2914 2915 AAMDNodes AAInfo; 2916 I.getAAMetadata(AAInfo); 2917 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2918 2919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2920 SmallVector<EVT, 4> ValueVTs; 2921 SmallVector<uint64_t, 4> Offsets; 2922 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2923 unsigned NumValues = ValueVTs.size(); 2924 if (NumValues == 0) 2925 return; 2926 2927 SDValue Root; 2928 bool ConstantMemory = false; 2929 if (isVolatile || NumValues > MaxParallelChains) 2930 // Serialize volatile loads with other side effects. 2931 Root = getRoot(); 2932 else if (AA->pointsToConstantMemory( 2933 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2934 // Do not serialize (non-volatile) loads of constant memory with anything. 2935 Root = DAG.getEntryNode(); 2936 ConstantMemory = true; 2937 } else { 2938 // Do not serialize non-volatile loads against each other. 2939 Root = DAG.getRoot(); 2940 } 2941 2942 SDLoc dl = getCurSDLoc(); 2943 2944 if (isVolatile) 2945 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2946 2947 SmallVector<SDValue, 4> Values(NumValues); 2948 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2949 EVT PtrVT = Ptr.getValueType(); 2950 unsigned ChainI = 0; 2951 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2952 // Serializing loads here may result in excessive register pressure, and 2953 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2954 // could recover a bit by hoisting nodes upward in the chain by recognizing 2955 // they are side-effect free or do not alias. The optimizer should really 2956 // avoid this case by converting large object/array copies to llvm.memcpy 2957 // (MaxParallelChains should always remain as failsafe). 2958 if (ChainI == MaxParallelChains) { 2959 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2960 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2961 makeArrayRef(Chains.data(), ChainI)); 2962 Root = Chain; 2963 ChainI = 0; 2964 } 2965 SDValue A = DAG.getNode(ISD::ADD, dl, 2966 PtrVT, Ptr, 2967 DAG.getConstant(Offsets[i], dl, PtrVT)); 2968 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2969 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2970 isNonTemporal, isInvariant, Alignment, AAInfo, 2971 Ranges); 2972 2973 Values[i] = L; 2974 Chains[ChainI] = L.getValue(1); 2975 } 2976 2977 if (!ConstantMemory) { 2978 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2979 makeArrayRef(Chains.data(), ChainI)); 2980 if (isVolatile) 2981 DAG.setRoot(Chain); 2982 else 2983 PendingLoads.push_back(Chain); 2984 } 2985 2986 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2987 DAG.getVTList(ValueVTs), Values)); 2988 } 2989 2990 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2991 if (I.isAtomic()) 2992 return visitAtomicStore(I); 2993 2994 const Value *SrcV = I.getOperand(0); 2995 const Value *PtrV = I.getOperand(1); 2996 2997 SmallVector<EVT, 4> ValueVTs; 2998 SmallVector<uint64_t, 4> Offsets; 2999 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3000 SrcV->getType(), ValueVTs, &Offsets); 3001 unsigned NumValues = ValueVTs.size(); 3002 if (NumValues == 0) 3003 return; 3004 3005 // Get the lowered operands. Note that we do this after 3006 // checking if NumResults is zero, because with zero results 3007 // the operands won't have values in the map. 3008 SDValue Src = getValue(SrcV); 3009 SDValue Ptr = getValue(PtrV); 3010 3011 SDValue Root = getRoot(); 3012 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3013 EVT PtrVT = Ptr.getValueType(); 3014 bool isVolatile = I.isVolatile(); 3015 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3016 unsigned Alignment = I.getAlignment(); 3017 SDLoc dl = getCurSDLoc(); 3018 3019 AAMDNodes AAInfo; 3020 I.getAAMetadata(AAInfo); 3021 3022 unsigned ChainI = 0; 3023 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3024 // See visitLoad comments. 3025 if (ChainI == MaxParallelChains) { 3026 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3027 makeArrayRef(Chains.data(), ChainI)); 3028 Root = Chain; 3029 ChainI = 0; 3030 } 3031 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3032 DAG.getConstant(Offsets[i], dl, PtrVT)); 3033 SDValue St = DAG.getStore(Root, dl, 3034 SDValue(Src.getNode(), Src.getResNo() + i), 3035 Add, MachinePointerInfo(PtrV, Offsets[i]), 3036 isVolatile, isNonTemporal, Alignment, AAInfo); 3037 Chains[ChainI] = St; 3038 } 3039 3040 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3041 makeArrayRef(Chains.data(), ChainI)); 3042 DAG.setRoot(StoreNode); 3043 } 3044 3045 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3046 SDLoc sdl = getCurSDLoc(); 3047 3048 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3049 Value *PtrOperand = I.getArgOperand(1); 3050 SDValue Ptr = getValue(PtrOperand); 3051 SDValue Src0 = getValue(I.getArgOperand(0)); 3052 SDValue Mask = getValue(I.getArgOperand(3)); 3053 EVT VT = Src0.getValueType(); 3054 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3055 if (!Alignment) 3056 Alignment = DAG.getEVTAlignment(VT); 3057 3058 AAMDNodes AAInfo; 3059 I.getAAMetadata(AAInfo); 3060 3061 MachineMemOperand *MMO = 3062 DAG.getMachineFunction(). 3063 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3064 MachineMemOperand::MOStore, VT.getStoreSize(), 3065 Alignment, AAInfo); 3066 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3067 MMO, false); 3068 DAG.setRoot(StoreNode); 3069 setValue(&I, StoreNode); 3070 } 3071 3072 // Gather/scatter receive a vector of pointers. 3073 // This vector of pointers may be represented as a base pointer + vector of 3074 // indices, it depends on GEP and instruction preceeding GEP 3075 // that calculates indices 3076 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3077 SelectionDAGBuilder* SDB) { 3078 3079 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3080 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3081 if (!Gep || Gep->getNumOperands() > 2) 3082 return false; 3083 ShuffleVectorInst *ShuffleInst = 3084 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3085 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3086 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3087 Instruction::InsertElement) 3088 return false; 3089 3090 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3091 3092 SelectionDAG& DAG = SDB->DAG; 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 // Check is the Ptr is inside current basic block 3095 // If not, look for the shuffle instruction 3096 if (SDB->findValue(Ptr)) 3097 Base = SDB->getValue(Ptr); 3098 else if (SDB->findValue(ShuffleInst)) { 3099 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3100 SDLoc sdl = ShuffleNode; 3101 Base = DAG.getNode( 3102 ISD::EXTRACT_VECTOR_ELT, sdl, 3103 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3104 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3105 SDB->setValue(Ptr, Base); 3106 } 3107 else 3108 return false; 3109 3110 Value *IndexVal = Gep->getOperand(1); 3111 if (SDB->findValue(IndexVal)) { 3112 Index = SDB->getValue(IndexVal); 3113 3114 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3115 IndexVal = Sext->getOperand(0); 3116 if (SDB->findValue(IndexVal)) 3117 Index = SDB->getValue(IndexVal); 3118 } 3119 return true; 3120 } 3121 return false; 3122 } 3123 3124 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3125 SDLoc sdl = getCurSDLoc(); 3126 3127 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3128 Value *Ptr = I.getArgOperand(1); 3129 SDValue Src0 = getValue(I.getArgOperand(0)); 3130 SDValue Mask = getValue(I.getArgOperand(3)); 3131 EVT VT = Src0.getValueType(); 3132 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3133 if (!Alignment) 3134 Alignment = DAG.getEVTAlignment(VT); 3135 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3136 3137 AAMDNodes AAInfo; 3138 I.getAAMetadata(AAInfo); 3139 3140 SDValue Base; 3141 SDValue Index; 3142 Value *BasePtr = Ptr; 3143 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3144 3145 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3146 MachineMemOperand *MMO = DAG.getMachineFunction(). 3147 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3148 MachineMemOperand::MOStore, VT.getStoreSize(), 3149 Alignment, AAInfo); 3150 if (!UniformBase) { 3151 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3152 Index = getValue(Ptr); 3153 } 3154 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3155 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3156 Ops, MMO); 3157 DAG.setRoot(Scatter); 3158 setValue(&I, Scatter); 3159 } 3160 3161 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3162 SDLoc sdl = getCurSDLoc(); 3163 3164 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3165 Value *PtrOperand = I.getArgOperand(0); 3166 SDValue Ptr = getValue(PtrOperand); 3167 SDValue Src0 = getValue(I.getArgOperand(3)); 3168 SDValue Mask = getValue(I.getArgOperand(2)); 3169 3170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3171 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3172 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3173 if (!Alignment) 3174 Alignment = DAG.getEVTAlignment(VT); 3175 3176 AAMDNodes AAInfo; 3177 I.getAAMetadata(AAInfo); 3178 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3179 3180 SDValue InChain = DAG.getRoot(); 3181 if (AA->pointsToConstantMemory(MemoryLocation( 3182 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3183 // Do not serialize (non-volatile) loads of constant memory with anything. 3184 InChain = DAG.getEntryNode(); 3185 } 3186 3187 MachineMemOperand *MMO = 3188 DAG.getMachineFunction(). 3189 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3190 MachineMemOperand::MOLoad, VT.getStoreSize(), 3191 Alignment, AAInfo, Ranges); 3192 3193 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3194 ISD::NON_EXTLOAD); 3195 SDValue OutChain = Load.getValue(1); 3196 DAG.setRoot(OutChain); 3197 setValue(&I, Load); 3198 } 3199 3200 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3201 SDLoc sdl = getCurSDLoc(); 3202 3203 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3204 Value *Ptr = I.getArgOperand(0); 3205 SDValue Src0 = getValue(I.getArgOperand(3)); 3206 SDValue Mask = getValue(I.getArgOperand(2)); 3207 3208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3209 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3210 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3211 if (!Alignment) 3212 Alignment = DAG.getEVTAlignment(VT); 3213 3214 AAMDNodes AAInfo; 3215 I.getAAMetadata(AAInfo); 3216 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3217 3218 SDValue Root = DAG.getRoot(); 3219 SDValue Base; 3220 SDValue Index; 3221 Value *BasePtr = Ptr; 3222 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3223 bool ConstantMemory = false; 3224 if (UniformBase && 3225 AA->pointsToConstantMemory( 3226 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3227 // Do not serialize (non-volatile) loads of constant memory with anything. 3228 Root = DAG.getEntryNode(); 3229 ConstantMemory = true; 3230 } 3231 3232 MachineMemOperand *MMO = 3233 DAG.getMachineFunction(). 3234 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3235 MachineMemOperand::MOLoad, VT.getStoreSize(), 3236 Alignment, AAInfo, Ranges); 3237 3238 if (!UniformBase) { 3239 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3240 Index = getValue(Ptr); 3241 } 3242 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3243 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3244 Ops, MMO); 3245 3246 SDValue OutChain = Gather.getValue(1); 3247 if (!ConstantMemory) 3248 PendingLoads.push_back(OutChain); 3249 setValue(&I, Gather); 3250 } 3251 3252 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3253 SDLoc dl = getCurSDLoc(); 3254 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3255 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3256 SynchronizationScope Scope = I.getSynchScope(); 3257 3258 SDValue InChain = getRoot(); 3259 3260 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3261 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3262 SDValue L = DAG.getAtomicCmpSwap( 3263 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3264 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3265 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3266 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3267 3268 SDValue OutChain = L.getValue(2); 3269 3270 setValue(&I, L); 3271 DAG.setRoot(OutChain); 3272 } 3273 3274 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3275 SDLoc dl = getCurSDLoc(); 3276 ISD::NodeType NT; 3277 switch (I.getOperation()) { 3278 default: llvm_unreachable("Unknown atomicrmw operation"); 3279 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3280 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3281 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3282 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3283 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3284 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3285 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3286 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3287 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3288 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3289 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3290 } 3291 AtomicOrdering Order = I.getOrdering(); 3292 SynchronizationScope Scope = I.getSynchScope(); 3293 3294 SDValue InChain = getRoot(); 3295 3296 SDValue L = 3297 DAG.getAtomic(NT, dl, 3298 getValue(I.getValOperand()).getSimpleValueType(), 3299 InChain, 3300 getValue(I.getPointerOperand()), 3301 getValue(I.getValOperand()), 3302 I.getPointerOperand(), 3303 /* Alignment=*/ 0, Order, Scope); 3304 3305 SDValue OutChain = L.getValue(1); 3306 3307 setValue(&I, L); 3308 DAG.setRoot(OutChain); 3309 } 3310 3311 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3312 SDLoc dl = getCurSDLoc(); 3313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3314 SDValue Ops[3]; 3315 Ops[0] = getRoot(); 3316 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3317 TLI.getPointerTy(DAG.getDataLayout())); 3318 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3319 TLI.getPointerTy(DAG.getDataLayout())); 3320 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3321 } 3322 3323 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3324 SDLoc dl = getCurSDLoc(); 3325 AtomicOrdering Order = I.getOrdering(); 3326 SynchronizationScope Scope = I.getSynchScope(); 3327 3328 SDValue InChain = getRoot(); 3329 3330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3331 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3332 3333 if (I.getAlignment() < VT.getSizeInBits() / 8) 3334 report_fatal_error("Cannot generate unaligned atomic load"); 3335 3336 MachineMemOperand *MMO = 3337 DAG.getMachineFunction(). 3338 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3339 MachineMemOperand::MOVolatile | 3340 MachineMemOperand::MOLoad, 3341 VT.getStoreSize(), 3342 I.getAlignment() ? I.getAlignment() : 3343 DAG.getEVTAlignment(VT)); 3344 3345 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3346 SDValue L = 3347 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3348 getValue(I.getPointerOperand()), MMO, 3349 Order, Scope); 3350 3351 SDValue OutChain = L.getValue(1); 3352 3353 setValue(&I, L); 3354 DAG.setRoot(OutChain); 3355 } 3356 3357 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3358 SDLoc dl = getCurSDLoc(); 3359 3360 AtomicOrdering Order = I.getOrdering(); 3361 SynchronizationScope Scope = I.getSynchScope(); 3362 3363 SDValue InChain = getRoot(); 3364 3365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3366 EVT VT = 3367 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3368 3369 if (I.getAlignment() < VT.getSizeInBits() / 8) 3370 report_fatal_error("Cannot generate unaligned atomic store"); 3371 3372 SDValue OutChain = 3373 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3374 InChain, 3375 getValue(I.getPointerOperand()), 3376 getValue(I.getValueOperand()), 3377 I.getPointerOperand(), I.getAlignment(), 3378 Order, Scope); 3379 3380 DAG.setRoot(OutChain); 3381 } 3382 3383 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3384 /// node. 3385 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3386 unsigned Intrinsic) { 3387 bool HasChain = !I.doesNotAccessMemory(); 3388 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3389 3390 // Build the operand list. 3391 SmallVector<SDValue, 8> Ops; 3392 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3393 if (OnlyLoad) { 3394 // We don't need to serialize loads against other loads. 3395 Ops.push_back(DAG.getRoot()); 3396 } else { 3397 Ops.push_back(getRoot()); 3398 } 3399 } 3400 3401 // Info is set by getTgtMemInstrinsic 3402 TargetLowering::IntrinsicInfo Info; 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3405 3406 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3407 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3408 Info.opc == ISD::INTRINSIC_W_CHAIN) 3409 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3410 TLI.getPointerTy(DAG.getDataLayout()))); 3411 3412 // Add all operands of the call to the operand list. 3413 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3414 SDValue Op = getValue(I.getArgOperand(i)); 3415 Ops.push_back(Op); 3416 } 3417 3418 SmallVector<EVT, 4> ValueVTs; 3419 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3420 3421 if (HasChain) 3422 ValueVTs.push_back(MVT::Other); 3423 3424 SDVTList VTs = DAG.getVTList(ValueVTs); 3425 3426 // Create the node. 3427 SDValue Result; 3428 if (IsTgtIntrinsic) { 3429 // This is target intrinsic that touches memory 3430 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3431 VTs, Ops, Info.memVT, 3432 MachinePointerInfo(Info.ptrVal, Info.offset), 3433 Info.align, Info.vol, 3434 Info.readMem, Info.writeMem, Info.size); 3435 } else if (!HasChain) { 3436 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3437 } else if (!I.getType()->isVoidTy()) { 3438 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3439 } else { 3440 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3441 } 3442 3443 if (HasChain) { 3444 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3445 if (OnlyLoad) 3446 PendingLoads.push_back(Chain); 3447 else 3448 DAG.setRoot(Chain); 3449 } 3450 3451 if (!I.getType()->isVoidTy()) { 3452 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3453 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3454 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3455 } 3456 3457 setValue(&I, Result); 3458 } 3459 } 3460 3461 /// GetSignificand - Get the significand and build it into a floating-point 3462 /// number with exponent of 1: 3463 /// 3464 /// Op = (Op & 0x007fffff) | 0x3f800000; 3465 /// 3466 /// where Op is the hexadecimal representation of floating point value. 3467 static SDValue 3468 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3469 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3470 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3471 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3472 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3473 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3474 } 3475 3476 /// GetExponent - Get the exponent: 3477 /// 3478 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3479 /// 3480 /// where Op is the hexadecimal representation of floating point value. 3481 static SDValue 3482 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3483 SDLoc dl) { 3484 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3485 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3486 SDValue t1 = DAG.getNode( 3487 ISD::SRL, dl, MVT::i32, t0, 3488 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3489 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3490 DAG.getConstant(127, dl, MVT::i32)); 3491 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3492 } 3493 3494 /// getF32Constant - Get 32-bit floating point constant. 3495 static SDValue 3496 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3497 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3498 MVT::f32); 3499 } 3500 3501 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3502 SelectionDAG &DAG) { 3503 // IntegerPartOfX = ((int32_t)(t0); 3504 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3505 3506 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3507 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3508 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3509 3510 // IntegerPartOfX <<= 23; 3511 IntegerPartOfX = DAG.getNode( 3512 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3513 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3514 DAG.getDataLayout()))); 3515 3516 SDValue TwoToFractionalPartOfX; 3517 if (LimitFloatPrecision <= 6) { 3518 // For floating-point precision of 6: 3519 // 3520 // TwoToFractionalPartOfX = 3521 // 0.997535578f + 3522 // (0.735607626f + 0.252464424f * x) * x; 3523 // 3524 // error 0.0144103317, which is 6 bits 3525 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3526 getF32Constant(DAG, 0x3e814304, dl)); 3527 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3528 getF32Constant(DAG, 0x3f3c50c8, dl)); 3529 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3530 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3531 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3532 } else if (LimitFloatPrecision <= 12) { 3533 // For floating-point precision of 12: 3534 // 3535 // TwoToFractionalPartOfX = 3536 // 0.999892986f + 3537 // (0.696457318f + 3538 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3539 // 3540 // error 0.000107046256, which is 13 to 14 bits 3541 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3542 getF32Constant(DAG, 0x3da235e3, dl)); 3543 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3544 getF32Constant(DAG, 0x3e65b8f3, dl)); 3545 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3546 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3547 getF32Constant(DAG, 0x3f324b07, dl)); 3548 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3549 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3550 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3551 } else { // LimitFloatPrecision <= 18 3552 // For floating-point precision of 18: 3553 // 3554 // TwoToFractionalPartOfX = 3555 // 0.999999982f + 3556 // (0.693148872f + 3557 // (0.240227044f + 3558 // (0.554906021e-1f + 3559 // (0.961591928e-2f + 3560 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3561 // error 2.47208000*10^(-7), which is better than 18 bits 3562 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3563 getF32Constant(DAG, 0x3924b03e, dl)); 3564 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3565 getF32Constant(DAG, 0x3ab24b87, dl)); 3566 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3567 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3568 getF32Constant(DAG, 0x3c1d8c17, dl)); 3569 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3570 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3571 getF32Constant(DAG, 0x3d634a1d, dl)); 3572 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3573 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3574 getF32Constant(DAG, 0x3e75fe14, dl)); 3575 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3576 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3577 getF32Constant(DAG, 0x3f317234, dl)); 3578 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3579 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3580 getF32Constant(DAG, 0x3f800000, dl)); 3581 } 3582 3583 // Add the exponent into the result in integer domain. 3584 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3585 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3586 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3587 } 3588 3589 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3590 /// limited-precision mode. 3591 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3592 const TargetLowering &TLI) { 3593 if (Op.getValueType() == MVT::f32 && 3594 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3595 3596 // Put the exponent in the right bit position for later addition to the 3597 // final result: 3598 // 3599 // #define LOG2OFe 1.4426950f 3600 // t0 = Op * LOG2OFe 3601 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3602 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3603 return getLimitedPrecisionExp2(t0, dl, DAG); 3604 } 3605 3606 // No special expansion. 3607 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3608 } 3609 3610 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3611 /// limited-precision mode. 3612 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3613 const TargetLowering &TLI) { 3614 if (Op.getValueType() == MVT::f32 && 3615 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3616 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3617 3618 // Scale the exponent by log(2) [0.69314718f]. 3619 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3620 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3621 getF32Constant(DAG, 0x3f317218, dl)); 3622 3623 // Get the significand and build it into a floating-point number with 3624 // exponent of 1. 3625 SDValue X = GetSignificand(DAG, Op1, dl); 3626 3627 SDValue LogOfMantissa; 3628 if (LimitFloatPrecision <= 6) { 3629 // For floating-point precision of 6: 3630 // 3631 // LogofMantissa = 3632 // -1.1609546f + 3633 // (1.4034025f - 0.23903021f * x) * x; 3634 // 3635 // error 0.0034276066, which is better than 8 bits 3636 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3637 getF32Constant(DAG, 0xbe74c456, dl)); 3638 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3639 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3640 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3641 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3642 getF32Constant(DAG, 0x3f949a29, dl)); 3643 } else if (LimitFloatPrecision <= 12) { 3644 // For floating-point precision of 12: 3645 // 3646 // LogOfMantissa = 3647 // -1.7417939f + 3648 // (2.8212026f + 3649 // (-1.4699568f + 3650 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3651 // 3652 // error 0.000061011436, which is 14 bits 3653 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3654 getF32Constant(DAG, 0xbd67b6d6, dl)); 3655 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3656 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3658 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3659 getF32Constant(DAG, 0x3fbc278b, dl)); 3660 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3661 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3662 getF32Constant(DAG, 0x40348e95, dl)); 3663 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3664 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3665 getF32Constant(DAG, 0x3fdef31a, dl)); 3666 } else { // LimitFloatPrecision <= 18 3667 // For floating-point precision of 18: 3668 // 3669 // LogOfMantissa = 3670 // -2.1072184f + 3671 // (4.2372794f + 3672 // (-3.7029485f + 3673 // (2.2781945f + 3674 // (-0.87823314f + 3675 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3676 // 3677 // error 0.0000023660568, which is better than 18 bits 3678 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3679 getF32Constant(DAG, 0xbc91e5ac, dl)); 3680 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3681 getF32Constant(DAG, 0x3e4350aa, dl)); 3682 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3683 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3684 getF32Constant(DAG, 0x3f60d3e3, dl)); 3685 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3686 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3687 getF32Constant(DAG, 0x4011cdf0, dl)); 3688 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3689 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3690 getF32Constant(DAG, 0x406cfd1c, dl)); 3691 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3692 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3693 getF32Constant(DAG, 0x408797cb, dl)); 3694 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3695 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3696 getF32Constant(DAG, 0x4006dcab, dl)); 3697 } 3698 3699 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3700 } 3701 3702 // No special expansion. 3703 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3704 } 3705 3706 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3707 /// limited-precision mode. 3708 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3709 const TargetLowering &TLI) { 3710 if (Op.getValueType() == MVT::f32 && 3711 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3712 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3713 3714 // Get the exponent. 3715 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3716 3717 // Get the significand and build it into a floating-point number with 3718 // exponent of 1. 3719 SDValue X = GetSignificand(DAG, Op1, dl); 3720 3721 // Different possible minimax approximations of significand in 3722 // floating-point for various degrees of accuracy over [1,2]. 3723 SDValue Log2ofMantissa; 3724 if (LimitFloatPrecision <= 6) { 3725 // For floating-point precision of 6: 3726 // 3727 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3728 // 3729 // error 0.0049451742, which is more than 7 bits 3730 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3731 getF32Constant(DAG, 0xbeb08fe0, dl)); 3732 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3733 getF32Constant(DAG, 0x40019463, dl)); 3734 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3735 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3736 getF32Constant(DAG, 0x3fd6633d, dl)); 3737 } else if (LimitFloatPrecision <= 12) { 3738 // For floating-point precision of 12: 3739 // 3740 // Log2ofMantissa = 3741 // -2.51285454f + 3742 // (4.07009056f + 3743 // (-2.12067489f + 3744 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3745 // 3746 // error 0.0000876136000, which is better than 13 bits 3747 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3748 getF32Constant(DAG, 0xbda7262e, dl)); 3749 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3750 getF32Constant(DAG, 0x3f25280b, dl)); 3751 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3752 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3753 getF32Constant(DAG, 0x4007b923, dl)); 3754 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3755 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3756 getF32Constant(DAG, 0x40823e2f, dl)); 3757 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3758 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3759 getF32Constant(DAG, 0x4020d29c, dl)); 3760 } else { // LimitFloatPrecision <= 18 3761 // For floating-point precision of 18: 3762 // 3763 // Log2ofMantissa = 3764 // -3.0400495f + 3765 // (6.1129976f + 3766 // (-5.3420409f + 3767 // (3.2865683f + 3768 // (-1.2669343f + 3769 // (0.27515199f - 3770 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3771 // 3772 // error 0.0000018516, which is better than 18 bits 3773 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3774 getF32Constant(DAG, 0xbcd2769e, dl)); 3775 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3776 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3777 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3778 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3779 getF32Constant(DAG, 0x3fa22ae7, dl)); 3780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3781 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3782 getF32Constant(DAG, 0x40525723, dl)); 3783 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3784 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3785 getF32Constant(DAG, 0x40aaf200, dl)); 3786 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3787 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3788 getF32Constant(DAG, 0x40c39dad, dl)); 3789 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3790 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3791 getF32Constant(DAG, 0x4042902c, dl)); 3792 } 3793 3794 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3795 } 3796 3797 // No special expansion. 3798 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3799 } 3800 3801 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3802 /// limited-precision mode. 3803 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3804 const TargetLowering &TLI) { 3805 if (Op.getValueType() == MVT::f32 && 3806 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3807 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3808 3809 // Scale the exponent by log10(2) [0.30102999f]. 3810 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3811 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3812 getF32Constant(DAG, 0x3e9a209a, dl)); 3813 3814 // Get the significand and build it into a floating-point number with 3815 // exponent of 1. 3816 SDValue X = GetSignificand(DAG, Op1, dl); 3817 3818 SDValue Log10ofMantissa; 3819 if (LimitFloatPrecision <= 6) { 3820 // For floating-point precision of 6: 3821 // 3822 // Log10ofMantissa = 3823 // -0.50419619f + 3824 // (0.60948995f - 0.10380950f * x) * x; 3825 // 3826 // error 0.0014886165, which is 6 bits 3827 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3828 getF32Constant(DAG, 0xbdd49a13, dl)); 3829 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3830 getF32Constant(DAG, 0x3f1c0789, dl)); 3831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3832 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3833 getF32Constant(DAG, 0x3f011300, dl)); 3834 } else if (LimitFloatPrecision <= 12) { 3835 // For floating-point precision of 12: 3836 // 3837 // Log10ofMantissa = 3838 // -0.64831180f + 3839 // (0.91751397f + 3840 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3841 // 3842 // error 0.00019228036, which is better than 12 bits 3843 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3844 getF32Constant(DAG, 0x3d431f31, dl)); 3845 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3846 getF32Constant(DAG, 0x3ea21fb2, dl)); 3847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3848 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3849 getF32Constant(DAG, 0x3f6ae232, dl)); 3850 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3851 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3852 getF32Constant(DAG, 0x3f25f7c3, dl)); 3853 } else { // LimitFloatPrecision <= 18 3854 // For floating-point precision of 18: 3855 // 3856 // Log10ofMantissa = 3857 // -0.84299375f + 3858 // (1.5327582f + 3859 // (-1.0688956f + 3860 // (0.49102474f + 3861 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3862 // 3863 // error 0.0000037995730, which is better than 18 bits 3864 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3865 getF32Constant(DAG, 0x3c5d51ce, dl)); 3866 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3867 getF32Constant(DAG, 0x3e00685a, dl)); 3868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3869 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3870 getF32Constant(DAG, 0x3efb6798, dl)); 3871 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3872 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3873 getF32Constant(DAG, 0x3f88d192, dl)); 3874 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3875 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3876 getF32Constant(DAG, 0x3fc4316c, dl)); 3877 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3878 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3879 getF32Constant(DAG, 0x3f57ce70, dl)); 3880 } 3881 3882 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3883 } 3884 3885 // No special expansion. 3886 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3887 } 3888 3889 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3890 /// limited-precision mode. 3891 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3892 const TargetLowering &TLI) { 3893 if (Op.getValueType() == MVT::f32 && 3894 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3895 return getLimitedPrecisionExp2(Op, dl, DAG); 3896 3897 // No special expansion. 3898 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3899 } 3900 3901 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3902 /// limited-precision mode with x == 10.0f. 3903 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3904 SelectionDAG &DAG, const TargetLowering &TLI) { 3905 bool IsExp10 = false; 3906 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3907 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3908 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3909 APFloat Ten(10.0f); 3910 IsExp10 = LHSC->isExactlyValue(Ten); 3911 } 3912 } 3913 3914 if (IsExp10) { 3915 // Put the exponent in the right bit position for later addition to the 3916 // final result: 3917 // 3918 // #define LOG2OF10 3.3219281f 3919 // t0 = Op * LOG2OF10; 3920 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3921 getF32Constant(DAG, 0x40549a78, dl)); 3922 return getLimitedPrecisionExp2(t0, dl, DAG); 3923 } 3924 3925 // No special expansion. 3926 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3927 } 3928 3929 3930 /// ExpandPowI - Expand a llvm.powi intrinsic. 3931 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3932 SelectionDAG &DAG) { 3933 // If RHS is a constant, we can expand this out to a multiplication tree, 3934 // otherwise we end up lowering to a call to __powidf2 (for example). When 3935 // optimizing for size, we only want to do this if the expansion would produce 3936 // a small number of multiplies, otherwise we do the full expansion. 3937 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3938 // Get the exponent as a positive value. 3939 unsigned Val = RHSC->getSExtValue(); 3940 if ((int)Val < 0) Val = -Val; 3941 3942 // powi(x, 0) -> 1.0 3943 if (Val == 0) 3944 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3945 3946 const Function *F = DAG.getMachineFunction().getFunction(); 3947 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3948 // If optimizing for size, don't insert too many multiplies. This 3949 // inserts up to 5 multiplies. 3950 countPopulation(Val) + Log2_32(Val) < 7) { 3951 // We use the simple binary decomposition method to generate the multiply 3952 // sequence. There are more optimal ways to do this (for example, 3953 // powi(x,15) generates one more multiply than it should), but this has 3954 // the benefit of being both really simple and much better than a libcall. 3955 SDValue Res; // Logically starts equal to 1.0 3956 SDValue CurSquare = LHS; 3957 while (Val) { 3958 if (Val & 1) { 3959 if (Res.getNode()) 3960 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3961 else 3962 Res = CurSquare; // 1.0*CurSquare. 3963 } 3964 3965 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3966 CurSquare, CurSquare); 3967 Val >>= 1; 3968 } 3969 3970 // If the original was negative, invert the result, producing 1/(x*x*x). 3971 if (RHSC->getSExtValue() < 0) 3972 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3973 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3974 return Res; 3975 } 3976 } 3977 3978 // Otherwise, expand to a libcall. 3979 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3980 } 3981 3982 // getTruncatedArgReg - Find underlying register used for an truncated 3983 // argument. 3984 static unsigned getTruncatedArgReg(const SDValue &N) { 3985 if (N.getOpcode() != ISD::TRUNCATE) 3986 return 0; 3987 3988 const SDValue &Ext = N.getOperand(0); 3989 if (Ext.getOpcode() == ISD::AssertZext || 3990 Ext.getOpcode() == ISD::AssertSext) { 3991 const SDValue &CFR = Ext.getOperand(0); 3992 if (CFR.getOpcode() == ISD::CopyFromReg) 3993 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3994 if (CFR.getOpcode() == ISD::TRUNCATE) 3995 return getTruncatedArgReg(CFR); 3996 } 3997 return 0; 3998 } 3999 4000 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4001 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4002 /// At the end of instruction selection, they will be inserted to the entry BB. 4003 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4004 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4005 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4006 const Argument *Arg = dyn_cast<Argument>(V); 4007 if (!Arg) 4008 return false; 4009 4010 MachineFunction &MF = DAG.getMachineFunction(); 4011 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4012 4013 // Ignore inlined function arguments here. 4014 // 4015 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4016 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4017 return false; 4018 4019 Optional<MachineOperand> Op; 4020 // Some arguments' frame index is recorded during argument lowering. 4021 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4022 Op = MachineOperand::CreateFI(FI); 4023 4024 if (!Op && N.getNode()) { 4025 unsigned Reg; 4026 if (N.getOpcode() == ISD::CopyFromReg) 4027 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4028 else 4029 Reg = getTruncatedArgReg(N); 4030 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4031 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4032 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4033 if (PR) 4034 Reg = PR; 4035 } 4036 if (Reg) 4037 Op = MachineOperand::CreateReg(Reg, false); 4038 } 4039 4040 if (!Op) { 4041 // Check if ValueMap has reg number. 4042 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4043 if (VMI != FuncInfo.ValueMap.end()) 4044 Op = MachineOperand::CreateReg(VMI->second, false); 4045 } 4046 4047 if (!Op && N.getNode()) 4048 // Check if frame index is available. 4049 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4050 if (FrameIndexSDNode *FINode = 4051 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4052 Op = MachineOperand::CreateFI(FINode->getIndex()); 4053 4054 if (!Op) 4055 return false; 4056 4057 assert(Variable->isValidLocationForIntrinsic(DL) && 4058 "Expected inlined-at fields to agree"); 4059 if (Op->isReg()) 4060 FuncInfo.ArgDbgValues.push_back( 4061 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4062 Op->getReg(), Offset, Variable, Expr)); 4063 else 4064 FuncInfo.ArgDbgValues.push_back( 4065 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4066 .addOperand(*Op) 4067 .addImm(Offset) 4068 .addMetadata(Variable) 4069 .addMetadata(Expr)); 4070 4071 return true; 4072 } 4073 4074 // VisualStudio defines setjmp as _setjmp 4075 #if defined(_MSC_VER) && defined(setjmp) && \ 4076 !defined(setjmp_undefined_for_msvc) 4077 # pragma push_macro("setjmp") 4078 # undef setjmp 4079 # define setjmp_undefined_for_msvc 4080 #endif 4081 4082 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4083 /// we want to emit this as a call to a named external function, return the name 4084 /// otherwise lower it and return null. 4085 const char * 4086 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4088 SDLoc sdl = getCurSDLoc(); 4089 DebugLoc dl = getCurDebugLoc(); 4090 SDValue Res; 4091 4092 switch (Intrinsic) { 4093 default: 4094 // By default, turn this into a target intrinsic node. 4095 visitTargetIntrinsic(I, Intrinsic); 4096 return nullptr; 4097 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4098 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4099 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4100 case Intrinsic::returnaddress: 4101 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4102 TLI.getPointerTy(DAG.getDataLayout()), 4103 getValue(I.getArgOperand(0)))); 4104 return nullptr; 4105 case Intrinsic::frameaddress: 4106 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4107 TLI.getPointerTy(DAG.getDataLayout()), 4108 getValue(I.getArgOperand(0)))); 4109 return nullptr; 4110 case Intrinsic::read_register: { 4111 Value *Reg = I.getArgOperand(0); 4112 SDValue Chain = getRoot(); 4113 SDValue RegName = 4114 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4115 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4116 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4117 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4118 setValue(&I, Res); 4119 DAG.setRoot(Res.getValue(1)); 4120 return nullptr; 4121 } 4122 case Intrinsic::write_register: { 4123 Value *Reg = I.getArgOperand(0); 4124 Value *RegValue = I.getArgOperand(1); 4125 SDValue Chain = getRoot(); 4126 SDValue RegName = 4127 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4128 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4129 RegName, getValue(RegValue))); 4130 return nullptr; 4131 } 4132 case Intrinsic::setjmp: 4133 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4134 case Intrinsic::longjmp: 4135 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4136 case Intrinsic::memcpy: { 4137 // FIXME: this definition of "user defined address space" is x86-specific 4138 // Assert for address < 256 since we support only user defined address 4139 // spaces. 4140 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4141 < 256 && 4142 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4143 < 256 && 4144 "Unknown address space"); 4145 SDValue Op1 = getValue(I.getArgOperand(0)); 4146 SDValue Op2 = getValue(I.getArgOperand(1)); 4147 SDValue Op3 = getValue(I.getArgOperand(2)); 4148 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4149 if (!Align) 4150 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4151 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4152 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4153 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4154 false, isTC, 4155 MachinePointerInfo(I.getArgOperand(0)), 4156 MachinePointerInfo(I.getArgOperand(1))); 4157 updateDAGForMaybeTailCall(MC); 4158 return nullptr; 4159 } 4160 case Intrinsic::memset: { 4161 // FIXME: this definition of "user defined address space" is x86-specific 4162 // Assert for address < 256 since we support only user defined address 4163 // spaces. 4164 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4165 < 256 && 4166 "Unknown address space"); 4167 SDValue Op1 = getValue(I.getArgOperand(0)); 4168 SDValue Op2 = getValue(I.getArgOperand(1)); 4169 SDValue Op3 = getValue(I.getArgOperand(2)); 4170 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4171 if (!Align) 4172 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4173 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4174 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4175 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4176 isTC, MachinePointerInfo(I.getArgOperand(0))); 4177 updateDAGForMaybeTailCall(MS); 4178 return nullptr; 4179 } 4180 case Intrinsic::memmove: { 4181 // FIXME: this definition of "user defined address space" is x86-specific 4182 // Assert for address < 256 since we support only user defined address 4183 // spaces. 4184 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4185 < 256 && 4186 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4187 < 256 && 4188 "Unknown address space"); 4189 SDValue Op1 = getValue(I.getArgOperand(0)); 4190 SDValue Op2 = getValue(I.getArgOperand(1)); 4191 SDValue Op3 = getValue(I.getArgOperand(2)); 4192 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4193 if (!Align) 4194 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4195 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4196 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4197 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4198 isTC, MachinePointerInfo(I.getArgOperand(0)), 4199 MachinePointerInfo(I.getArgOperand(1))); 4200 updateDAGForMaybeTailCall(MM); 4201 return nullptr; 4202 } 4203 case Intrinsic::dbg_declare: { 4204 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4205 DILocalVariable *Variable = DI.getVariable(); 4206 DIExpression *Expression = DI.getExpression(); 4207 const Value *Address = DI.getAddress(); 4208 assert(Variable && "Missing variable"); 4209 if (!Address) { 4210 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4211 return nullptr; 4212 } 4213 4214 // Check if address has undef value. 4215 if (isa<UndefValue>(Address) || 4216 (Address->use_empty() && !isa<Argument>(Address))) { 4217 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4218 return nullptr; 4219 } 4220 4221 SDValue &N = NodeMap[Address]; 4222 if (!N.getNode() && isa<Argument>(Address)) 4223 // Check unused arguments map. 4224 N = UnusedArgNodeMap[Address]; 4225 SDDbgValue *SDV; 4226 if (N.getNode()) { 4227 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4228 Address = BCI->getOperand(0); 4229 // Parameters are handled specially. 4230 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4231 isa<Argument>(Address); 4232 4233 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4234 4235 if (isParameter && !AI) { 4236 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4237 if (FINode) 4238 // Byval parameter. We have a frame index at this point. 4239 SDV = DAG.getFrameIndexDbgValue( 4240 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4241 else { 4242 // Address is an argument, so try to emit its dbg value using 4243 // virtual register info from the FuncInfo.ValueMap. 4244 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4245 N); 4246 return nullptr; 4247 } 4248 } else if (AI) 4249 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4250 true, 0, dl, SDNodeOrder); 4251 else { 4252 // Can't do anything with other non-AI cases yet. 4253 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4254 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4255 DEBUG(Address->dump()); 4256 return nullptr; 4257 } 4258 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4259 } else { 4260 // If Address is an argument then try to emit its dbg value using 4261 // virtual register info from the FuncInfo.ValueMap. 4262 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4263 N)) { 4264 // If variable is pinned by a alloca in dominating bb then 4265 // use StaticAllocaMap. 4266 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4267 if (AI->getParent() != DI.getParent()) { 4268 DenseMap<const AllocaInst*, int>::iterator SI = 4269 FuncInfo.StaticAllocaMap.find(AI); 4270 if (SI != FuncInfo.StaticAllocaMap.end()) { 4271 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4272 0, dl, SDNodeOrder); 4273 DAG.AddDbgValue(SDV, nullptr, false); 4274 return nullptr; 4275 } 4276 } 4277 } 4278 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4279 } 4280 } 4281 return nullptr; 4282 } 4283 case Intrinsic::dbg_value: { 4284 const DbgValueInst &DI = cast<DbgValueInst>(I); 4285 assert(DI.getVariable() && "Missing variable"); 4286 4287 DILocalVariable *Variable = DI.getVariable(); 4288 DIExpression *Expression = DI.getExpression(); 4289 uint64_t Offset = DI.getOffset(); 4290 const Value *V = DI.getValue(); 4291 if (!V) 4292 return nullptr; 4293 4294 SDDbgValue *SDV; 4295 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4296 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4297 SDNodeOrder); 4298 DAG.AddDbgValue(SDV, nullptr, false); 4299 } else { 4300 // Do not use getValue() in here; we don't want to generate code at 4301 // this point if it hasn't been done yet. 4302 SDValue N = NodeMap[V]; 4303 if (!N.getNode() && isa<Argument>(V)) 4304 // Check unused arguments map. 4305 N = UnusedArgNodeMap[V]; 4306 if (N.getNode()) { 4307 // A dbg.value for an alloca is always indirect. 4308 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4309 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4310 IsIndirect, N)) { 4311 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4312 IsIndirect, Offset, dl, SDNodeOrder); 4313 DAG.AddDbgValue(SDV, N.getNode(), false); 4314 } 4315 } else if (!V->use_empty() ) { 4316 // Do not call getValue(V) yet, as we don't want to generate code. 4317 // Remember it for later. 4318 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4319 DanglingDebugInfoMap[V] = DDI; 4320 } else { 4321 // We may expand this to cover more cases. One case where we have no 4322 // data available is an unreferenced parameter. 4323 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4324 } 4325 } 4326 4327 // Build a debug info table entry. 4328 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4329 V = BCI->getOperand(0); 4330 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4331 // Don't handle byval struct arguments or VLAs, for example. 4332 if (!AI) { 4333 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4334 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4335 return nullptr; 4336 } 4337 DenseMap<const AllocaInst*, int>::iterator SI = 4338 FuncInfo.StaticAllocaMap.find(AI); 4339 if (SI == FuncInfo.StaticAllocaMap.end()) 4340 return nullptr; // VLAs. 4341 return nullptr; 4342 } 4343 4344 case Intrinsic::eh_typeid_for: { 4345 // Find the type id for the given typeinfo. 4346 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4347 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4348 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4349 setValue(&I, Res); 4350 return nullptr; 4351 } 4352 4353 case Intrinsic::eh_return_i32: 4354 case Intrinsic::eh_return_i64: 4355 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4356 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4357 MVT::Other, 4358 getControlRoot(), 4359 getValue(I.getArgOperand(0)), 4360 getValue(I.getArgOperand(1)))); 4361 return nullptr; 4362 case Intrinsic::eh_unwind_init: 4363 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4364 return nullptr; 4365 case Intrinsic::eh_dwarf_cfa: { 4366 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4367 TLI.getPointerTy(DAG.getDataLayout())); 4368 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4369 CfaArg.getValueType(), 4370 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4371 CfaArg.getValueType()), 4372 CfaArg); 4373 SDValue FA = DAG.getNode( 4374 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4375 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4376 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4377 FA, Offset)); 4378 return nullptr; 4379 } 4380 case Intrinsic::eh_sjlj_callsite: { 4381 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4382 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4383 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4384 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4385 4386 MMI.setCurrentCallSite(CI->getZExtValue()); 4387 return nullptr; 4388 } 4389 case Intrinsic::eh_sjlj_functioncontext: { 4390 // Get and store the index of the function context. 4391 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4392 AllocaInst *FnCtx = 4393 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4394 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4395 MFI->setFunctionContextIndex(FI); 4396 return nullptr; 4397 } 4398 case Intrinsic::eh_sjlj_setjmp: { 4399 SDValue Ops[2]; 4400 Ops[0] = getRoot(); 4401 Ops[1] = getValue(I.getArgOperand(0)); 4402 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4403 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4404 setValue(&I, Op.getValue(0)); 4405 DAG.setRoot(Op.getValue(1)); 4406 return nullptr; 4407 } 4408 case Intrinsic::eh_sjlj_longjmp: { 4409 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4410 getRoot(), getValue(I.getArgOperand(0)))); 4411 return nullptr; 4412 } 4413 4414 case Intrinsic::masked_gather: 4415 visitMaskedGather(I); 4416 return nullptr; 4417 case Intrinsic::masked_load: 4418 visitMaskedLoad(I); 4419 return nullptr; 4420 case Intrinsic::masked_scatter: 4421 visitMaskedScatter(I); 4422 return nullptr; 4423 case Intrinsic::masked_store: 4424 visitMaskedStore(I); 4425 return nullptr; 4426 case Intrinsic::x86_mmx_pslli_w: 4427 case Intrinsic::x86_mmx_pslli_d: 4428 case Intrinsic::x86_mmx_pslli_q: 4429 case Intrinsic::x86_mmx_psrli_w: 4430 case Intrinsic::x86_mmx_psrli_d: 4431 case Intrinsic::x86_mmx_psrli_q: 4432 case Intrinsic::x86_mmx_psrai_w: 4433 case Intrinsic::x86_mmx_psrai_d: { 4434 SDValue ShAmt = getValue(I.getArgOperand(1)); 4435 if (isa<ConstantSDNode>(ShAmt)) { 4436 visitTargetIntrinsic(I, Intrinsic); 4437 return nullptr; 4438 } 4439 unsigned NewIntrinsic = 0; 4440 EVT ShAmtVT = MVT::v2i32; 4441 switch (Intrinsic) { 4442 case Intrinsic::x86_mmx_pslli_w: 4443 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4444 break; 4445 case Intrinsic::x86_mmx_pslli_d: 4446 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4447 break; 4448 case Intrinsic::x86_mmx_pslli_q: 4449 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4450 break; 4451 case Intrinsic::x86_mmx_psrli_w: 4452 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4453 break; 4454 case Intrinsic::x86_mmx_psrli_d: 4455 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4456 break; 4457 case Intrinsic::x86_mmx_psrli_q: 4458 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4459 break; 4460 case Intrinsic::x86_mmx_psrai_w: 4461 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4462 break; 4463 case Intrinsic::x86_mmx_psrai_d: 4464 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4465 break; 4466 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4467 } 4468 4469 // The vector shift intrinsics with scalars uses 32b shift amounts but 4470 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4471 // to be zero. 4472 // We must do this early because v2i32 is not a legal type. 4473 SDValue ShOps[2]; 4474 ShOps[0] = ShAmt; 4475 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4476 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4477 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4478 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4479 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4480 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4481 getValue(I.getArgOperand(0)), ShAmt); 4482 setValue(&I, Res); 4483 return nullptr; 4484 } 4485 case Intrinsic::convertff: 4486 case Intrinsic::convertfsi: 4487 case Intrinsic::convertfui: 4488 case Intrinsic::convertsif: 4489 case Intrinsic::convertuif: 4490 case Intrinsic::convertss: 4491 case Intrinsic::convertsu: 4492 case Intrinsic::convertus: 4493 case Intrinsic::convertuu: { 4494 ISD::CvtCode Code = ISD::CVT_INVALID; 4495 switch (Intrinsic) { 4496 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4497 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4498 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4499 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4500 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4501 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4502 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4503 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4504 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4505 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4506 } 4507 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4508 const Value *Op1 = I.getArgOperand(0); 4509 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4510 DAG.getValueType(DestVT), 4511 DAG.getValueType(getValue(Op1).getValueType()), 4512 getValue(I.getArgOperand(1)), 4513 getValue(I.getArgOperand(2)), 4514 Code); 4515 setValue(&I, Res); 4516 return nullptr; 4517 } 4518 case Intrinsic::powi: 4519 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4520 getValue(I.getArgOperand(1)), DAG)); 4521 return nullptr; 4522 case Intrinsic::log: 4523 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4524 return nullptr; 4525 case Intrinsic::log2: 4526 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4527 return nullptr; 4528 case Intrinsic::log10: 4529 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4530 return nullptr; 4531 case Intrinsic::exp: 4532 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4533 return nullptr; 4534 case Intrinsic::exp2: 4535 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4536 return nullptr; 4537 case Intrinsic::pow: 4538 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4539 getValue(I.getArgOperand(1)), DAG, TLI)); 4540 return nullptr; 4541 case Intrinsic::sqrt: 4542 case Intrinsic::fabs: 4543 case Intrinsic::sin: 4544 case Intrinsic::cos: 4545 case Intrinsic::floor: 4546 case Intrinsic::ceil: 4547 case Intrinsic::trunc: 4548 case Intrinsic::rint: 4549 case Intrinsic::nearbyint: 4550 case Intrinsic::round: { 4551 unsigned Opcode; 4552 switch (Intrinsic) { 4553 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4554 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4555 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4556 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4557 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4558 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4559 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4560 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4561 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4562 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4563 case Intrinsic::round: Opcode = ISD::FROUND; break; 4564 } 4565 4566 setValue(&I, DAG.getNode(Opcode, sdl, 4567 getValue(I.getArgOperand(0)).getValueType(), 4568 getValue(I.getArgOperand(0)))); 4569 return nullptr; 4570 } 4571 case Intrinsic::minnum: 4572 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4573 getValue(I.getArgOperand(0)).getValueType(), 4574 getValue(I.getArgOperand(0)), 4575 getValue(I.getArgOperand(1)))); 4576 return nullptr; 4577 case Intrinsic::maxnum: 4578 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4579 getValue(I.getArgOperand(0)).getValueType(), 4580 getValue(I.getArgOperand(0)), 4581 getValue(I.getArgOperand(1)))); 4582 return nullptr; 4583 case Intrinsic::copysign: 4584 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4585 getValue(I.getArgOperand(0)).getValueType(), 4586 getValue(I.getArgOperand(0)), 4587 getValue(I.getArgOperand(1)))); 4588 return nullptr; 4589 case Intrinsic::fma: 4590 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4591 getValue(I.getArgOperand(0)).getValueType(), 4592 getValue(I.getArgOperand(0)), 4593 getValue(I.getArgOperand(1)), 4594 getValue(I.getArgOperand(2)))); 4595 return nullptr; 4596 case Intrinsic::fmuladd: { 4597 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4598 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4599 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4600 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4601 getValue(I.getArgOperand(0)).getValueType(), 4602 getValue(I.getArgOperand(0)), 4603 getValue(I.getArgOperand(1)), 4604 getValue(I.getArgOperand(2)))); 4605 } else { 4606 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4607 getValue(I.getArgOperand(0)).getValueType(), 4608 getValue(I.getArgOperand(0)), 4609 getValue(I.getArgOperand(1))); 4610 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4611 getValue(I.getArgOperand(0)).getValueType(), 4612 Mul, 4613 getValue(I.getArgOperand(2))); 4614 setValue(&I, Add); 4615 } 4616 return nullptr; 4617 } 4618 case Intrinsic::convert_to_fp16: 4619 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4620 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4621 getValue(I.getArgOperand(0)), 4622 DAG.getTargetConstant(0, sdl, 4623 MVT::i32)))); 4624 return nullptr; 4625 case Intrinsic::convert_from_fp16: 4626 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4627 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4628 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4629 getValue(I.getArgOperand(0))))); 4630 return nullptr; 4631 case Intrinsic::pcmarker: { 4632 SDValue Tmp = getValue(I.getArgOperand(0)); 4633 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4634 return nullptr; 4635 } 4636 case Intrinsic::readcyclecounter: { 4637 SDValue Op = getRoot(); 4638 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4639 DAG.getVTList(MVT::i64, MVT::Other), Op); 4640 setValue(&I, Res); 4641 DAG.setRoot(Res.getValue(1)); 4642 return nullptr; 4643 } 4644 case Intrinsic::bswap: 4645 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4646 getValue(I.getArgOperand(0)).getValueType(), 4647 getValue(I.getArgOperand(0)))); 4648 return nullptr; 4649 case Intrinsic::cttz: { 4650 SDValue Arg = getValue(I.getArgOperand(0)); 4651 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4652 EVT Ty = Arg.getValueType(); 4653 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4654 sdl, Ty, Arg)); 4655 return nullptr; 4656 } 4657 case Intrinsic::ctlz: { 4658 SDValue Arg = getValue(I.getArgOperand(0)); 4659 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4660 EVT Ty = Arg.getValueType(); 4661 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4662 sdl, Ty, Arg)); 4663 return nullptr; 4664 } 4665 case Intrinsic::ctpop: { 4666 SDValue Arg = getValue(I.getArgOperand(0)); 4667 EVT Ty = Arg.getValueType(); 4668 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4669 return nullptr; 4670 } 4671 case Intrinsic::stacksave: { 4672 SDValue Op = getRoot(); 4673 Res = DAG.getNode( 4674 ISD::STACKSAVE, sdl, 4675 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4676 setValue(&I, Res); 4677 DAG.setRoot(Res.getValue(1)); 4678 return nullptr; 4679 } 4680 case Intrinsic::stackrestore: { 4681 Res = getValue(I.getArgOperand(0)); 4682 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4683 return nullptr; 4684 } 4685 case Intrinsic::stackprotector: { 4686 // Emit code into the DAG to store the stack guard onto the stack. 4687 MachineFunction &MF = DAG.getMachineFunction(); 4688 MachineFrameInfo *MFI = MF.getFrameInfo(); 4689 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4690 SDValue Src, Chain = getRoot(); 4691 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4692 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4693 4694 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4695 // global variable __stack_chk_guard. 4696 if (!GV) 4697 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4698 if (BC->getOpcode() == Instruction::BitCast) 4699 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4700 4701 if (GV && TLI.useLoadStackGuardNode()) { 4702 // Emit a LOAD_STACK_GUARD node. 4703 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4704 sdl, PtrTy, Chain); 4705 MachinePointerInfo MPInfo(GV); 4706 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4707 unsigned Flags = MachineMemOperand::MOLoad | 4708 MachineMemOperand::MOInvariant; 4709 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4710 PtrTy.getSizeInBits() / 8, 4711 DAG.getEVTAlignment(PtrTy)); 4712 Node->setMemRefs(MemRefs, MemRefs + 1); 4713 4714 // Copy the guard value to a virtual register so that it can be 4715 // retrieved in the epilogue. 4716 Src = SDValue(Node, 0); 4717 const TargetRegisterClass *RC = 4718 TLI.getRegClassFor(Src.getSimpleValueType()); 4719 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4720 4721 SPDescriptor.setGuardReg(Reg); 4722 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4723 } else { 4724 Src = getValue(I.getArgOperand(0)); // The guard's value. 4725 } 4726 4727 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4728 4729 int FI = FuncInfo.StaticAllocaMap[Slot]; 4730 MFI->setStackProtectorIndex(FI); 4731 4732 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4733 4734 // Store the stack protector onto the stack. 4735 Res = DAG.getStore(Chain, sdl, Src, FIN, 4736 MachinePointerInfo::getFixedStack(FI), 4737 true, false, 0); 4738 setValue(&I, Res); 4739 DAG.setRoot(Res); 4740 return nullptr; 4741 } 4742 case Intrinsic::objectsize: { 4743 // If we don't know by now, we're never going to know. 4744 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4745 4746 assert(CI && "Non-constant type in __builtin_object_size?"); 4747 4748 SDValue Arg = getValue(I.getCalledValue()); 4749 EVT Ty = Arg.getValueType(); 4750 4751 if (CI->isZero()) 4752 Res = DAG.getConstant(-1ULL, sdl, Ty); 4753 else 4754 Res = DAG.getConstant(0, sdl, Ty); 4755 4756 setValue(&I, Res); 4757 return nullptr; 4758 } 4759 case Intrinsic::annotation: 4760 case Intrinsic::ptr_annotation: 4761 // Drop the intrinsic, but forward the value 4762 setValue(&I, getValue(I.getOperand(0))); 4763 return nullptr; 4764 case Intrinsic::assume: 4765 case Intrinsic::var_annotation: 4766 // Discard annotate attributes and assumptions 4767 return nullptr; 4768 4769 case Intrinsic::init_trampoline: { 4770 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4771 4772 SDValue Ops[6]; 4773 Ops[0] = getRoot(); 4774 Ops[1] = getValue(I.getArgOperand(0)); 4775 Ops[2] = getValue(I.getArgOperand(1)); 4776 Ops[3] = getValue(I.getArgOperand(2)); 4777 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4778 Ops[5] = DAG.getSrcValue(F); 4779 4780 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4781 4782 DAG.setRoot(Res); 4783 return nullptr; 4784 } 4785 case Intrinsic::adjust_trampoline: { 4786 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4787 TLI.getPointerTy(DAG.getDataLayout()), 4788 getValue(I.getArgOperand(0)))); 4789 return nullptr; 4790 } 4791 case Intrinsic::gcroot: 4792 if (GFI) { 4793 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4794 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4795 4796 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4797 GFI->addStackRoot(FI->getIndex(), TypeMap); 4798 } 4799 return nullptr; 4800 case Intrinsic::gcread: 4801 case Intrinsic::gcwrite: 4802 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4803 case Intrinsic::flt_rounds: 4804 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4805 return nullptr; 4806 4807 case Intrinsic::expect: { 4808 // Just replace __builtin_expect(exp, c) with EXP. 4809 setValue(&I, getValue(I.getArgOperand(0))); 4810 return nullptr; 4811 } 4812 4813 case Intrinsic::debugtrap: 4814 case Intrinsic::trap: { 4815 StringRef TrapFuncName = 4816 I.getAttributes() 4817 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4818 .getValueAsString(); 4819 if (TrapFuncName.empty()) { 4820 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4821 ISD::TRAP : ISD::DEBUGTRAP; 4822 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4823 return nullptr; 4824 } 4825 TargetLowering::ArgListTy Args; 4826 4827 TargetLowering::CallLoweringInfo CLI(DAG); 4828 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4829 CallingConv::C, I.getType(), 4830 DAG.getExternalSymbol(TrapFuncName.data(), 4831 TLI.getPointerTy(DAG.getDataLayout())), 4832 std::move(Args), 0); 4833 4834 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4835 DAG.setRoot(Result.second); 4836 return nullptr; 4837 } 4838 4839 case Intrinsic::uadd_with_overflow: 4840 case Intrinsic::sadd_with_overflow: 4841 case Intrinsic::usub_with_overflow: 4842 case Intrinsic::ssub_with_overflow: 4843 case Intrinsic::umul_with_overflow: 4844 case Intrinsic::smul_with_overflow: { 4845 ISD::NodeType Op; 4846 switch (Intrinsic) { 4847 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4848 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4849 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4850 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4851 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4852 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4853 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4854 } 4855 SDValue Op1 = getValue(I.getArgOperand(0)); 4856 SDValue Op2 = getValue(I.getArgOperand(1)); 4857 4858 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4859 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4860 return nullptr; 4861 } 4862 case Intrinsic::prefetch: { 4863 SDValue Ops[5]; 4864 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4865 Ops[0] = getRoot(); 4866 Ops[1] = getValue(I.getArgOperand(0)); 4867 Ops[2] = getValue(I.getArgOperand(1)); 4868 Ops[3] = getValue(I.getArgOperand(2)); 4869 Ops[4] = getValue(I.getArgOperand(3)); 4870 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4871 DAG.getVTList(MVT::Other), Ops, 4872 EVT::getIntegerVT(*Context, 8), 4873 MachinePointerInfo(I.getArgOperand(0)), 4874 0, /* align */ 4875 false, /* volatile */ 4876 rw==0, /* read */ 4877 rw==1)); /* write */ 4878 return nullptr; 4879 } 4880 case Intrinsic::lifetime_start: 4881 case Intrinsic::lifetime_end: { 4882 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4883 // Stack coloring is not enabled in O0, discard region information. 4884 if (TM.getOptLevel() == CodeGenOpt::None) 4885 return nullptr; 4886 4887 SmallVector<Value *, 4> Allocas; 4888 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4889 4890 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4891 E = Allocas.end(); Object != E; ++Object) { 4892 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4893 4894 // Could not find an Alloca. 4895 if (!LifetimeObject) 4896 continue; 4897 4898 // First check that the Alloca is static, otherwise it won't have a 4899 // valid frame index. 4900 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4901 if (SI == FuncInfo.StaticAllocaMap.end()) 4902 return nullptr; 4903 4904 int FI = SI->second; 4905 4906 SDValue Ops[2]; 4907 Ops[0] = getRoot(); 4908 Ops[1] = 4909 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4910 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4911 4912 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4913 DAG.setRoot(Res); 4914 } 4915 return nullptr; 4916 } 4917 case Intrinsic::invariant_start: 4918 // Discard region information. 4919 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4920 return nullptr; 4921 case Intrinsic::invariant_end: 4922 // Discard region information. 4923 return nullptr; 4924 case Intrinsic::stackprotectorcheck: { 4925 // Do not actually emit anything for this basic block. Instead we initialize 4926 // the stack protector descriptor and export the guard variable so we can 4927 // access it in FinishBasicBlock. 4928 const BasicBlock *BB = I.getParent(); 4929 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4930 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4931 4932 // Flush our exports since we are going to process a terminator. 4933 (void)getControlRoot(); 4934 return nullptr; 4935 } 4936 case Intrinsic::clear_cache: 4937 return TLI.getClearCacheBuiltinName(); 4938 case Intrinsic::eh_actions: 4939 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4940 return nullptr; 4941 case Intrinsic::donothing: 4942 // ignore 4943 return nullptr; 4944 case Intrinsic::experimental_stackmap: { 4945 visitStackmap(I); 4946 return nullptr; 4947 } 4948 case Intrinsic::experimental_patchpoint_void: 4949 case Intrinsic::experimental_patchpoint_i64: { 4950 visitPatchpoint(&I); 4951 return nullptr; 4952 } 4953 case Intrinsic::experimental_gc_statepoint: { 4954 visitStatepoint(I); 4955 return nullptr; 4956 } 4957 case Intrinsic::experimental_gc_result_int: 4958 case Intrinsic::experimental_gc_result_float: 4959 case Intrinsic::experimental_gc_result_ptr: 4960 case Intrinsic::experimental_gc_result: { 4961 visitGCResult(I); 4962 return nullptr; 4963 } 4964 case Intrinsic::experimental_gc_relocate: { 4965 visitGCRelocate(I); 4966 return nullptr; 4967 } 4968 case Intrinsic::instrprof_increment: 4969 llvm_unreachable("instrprof failed to lower an increment"); 4970 4971 case Intrinsic::localescape: { 4972 MachineFunction &MF = DAG.getMachineFunction(); 4973 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4974 4975 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 4976 // is the same on all targets. 4977 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4978 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4979 if (isa<ConstantPointerNull>(Arg)) 4980 continue; // Skip null pointers. They represent a hole in index space. 4981 AllocaInst *Slot = cast<AllocaInst>(Arg); 4982 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4983 "can only escape static allocas"); 4984 int FI = FuncInfo.StaticAllocaMap[Slot]; 4985 MCSymbol *FrameAllocSym = 4986 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4987 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4989 TII->get(TargetOpcode::LOCAL_ESCAPE)) 4990 .addSym(FrameAllocSym) 4991 .addFrameIndex(FI); 4992 } 4993 4994 return nullptr; 4995 } 4996 4997 case Intrinsic::localrecover: { 4998 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 4999 MachineFunction &MF = DAG.getMachineFunction(); 5000 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5001 5002 // Get the symbol that defines the frame offset. 5003 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5004 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5005 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5006 MCSymbol *FrameAllocSym = 5007 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5008 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5009 5010 // Create a MCSymbol for the label to avoid any target lowering 5011 // that would make this PC relative. 5012 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5013 SDValue OffsetVal = 5014 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5015 5016 // Add the offset to the FP. 5017 Value *FP = I.getArgOperand(1); 5018 SDValue FPVal = getValue(FP); 5019 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5020 setValue(&I, Add); 5021 5022 return nullptr; 5023 } 5024 case Intrinsic::eh_begincatch: 5025 case Intrinsic::eh_endcatch: 5026 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5027 case Intrinsic::eh_exceptioncode: { 5028 unsigned Reg = TLI.getExceptionPointerRegister(); 5029 assert(Reg && "cannot get exception code on this platform"); 5030 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5031 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5032 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5033 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5034 SDValue N = 5035 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5036 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5037 setValue(&I, N); 5038 return nullptr; 5039 } 5040 } 5041 } 5042 5043 std::pair<SDValue, SDValue> 5044 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5045 MachineBasicBlock *LandingPad) { 5046 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5047 MCSymbol *BeginLabel = nullptr; 5048 5049 if (LandingPad) { 5050 // Insert a label before the invoke call to mark the try range. This can be 5051 // used to detect deletion of the invoke via the MachineModuleInfo. 5052 BeginLabel = MMI.getContext().createTempSymbol(); 5053 5054 // For SjLj, keep track of which landing pads go with which invokes 5055 // so as to maintain the ordering of pads in the LSDA. 5056 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5057 if (CallSiteIndex) { 5058 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5059 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5060 5061 // Now that the call site is handled, stop tracking it. 5062 MMI.setCurrentCallSite(0); 5063 } 5064 5065 // Both PendingLoads and PendingExports must be flushed here; 5066 // this call might not return. 5067 (void)getRoot(); 5068 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5069 5070 CLI.setChain(getRoot()); 5071 } 5072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5073 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5074 5075 assert((CLI.IsTailCall || Result.second.getNode()) && 5076 "Non-null chain expected with non-tail call!"); 5077 assert((Result.second.getNode() || !Result.first.getNode()) && 5078 "Null value expected with tail call!"); 5079 5080 if (!Result.second.getNode()) { 5081 // As a special case, a null chain means that a tail call has been emitted 5082 // and the DAG root is already updated. 5083 HasTailCall = true; 5084 5085 // Since there's no actual continuation from this block, nothing can be 5086 // relying on us setting vregs for them. 5087 PendingExports.clear(); 5088 } else { 5089 DAG.setRoot(Result.second); 5090 } 5091 5092 if (LandingPad) { 5093 // Insert a label at the end of the invoke call to mark the try range. This 5094 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5095 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5096 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5097 5098 // Inform MachineModuleInfo of range. 5099 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5100 } 5101 5102 return Result; 5103 } 5104 5105 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5106 bool isTailCall, 5107 MachineBasicBlock *LandingPad) { 5108 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5109 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5110 Type *RetTy = FTy->getReturnType(); 5111 5112 TargetLowering::ArgListTy Args; 5113 TargetLowering::ArgListEntry Entry; 5114 Args.reserve(CS.arg_size()); 5115 5116 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5117 i != e; ++i) { 5118 const Value *V = *i; 5119 5120 // Skip empty types 5121 if (V->getType()->isEmptyTy()) 5122 continue; 5123 5124 SDValue ArgNode = getValue(V); 5125 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5126 5127 // Skip the first return-type Attribute to get to params. 5128 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5129 Args.push_back(Entry); 5130 5131 // If we have an explicit sret argument that is an Instruction, (i.e., it 5132 // might point to function-local memory), we can't meaningfully tail-call. 5133 if (Entry.isSRet && isa<Instruction>(V)) 5134 isTailCall = false; 5135 } 5136 5137 // Check if target-independent constraints permit a tail call here. 5138 // Target-dependent constraints are checked within TLI->LowerCallTo. 5139 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5140 isTailCall = false; 5141 5142 TargetLowering::CallLoweringInfo CLI(DAG); 5143 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5144 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5145 .setTailCall(isTailCall); 5146 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5147 5148 if (Result.first.getNode()) 5149 setValue(CS.getInstruction(), Result.first); 5150 } 5151 5152 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5153 /// value is equal or not-equal to zero. 5154 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5155 for (const User *U : V->users()) { 5156 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5157 if (IC->isEquality()) 5158 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5159 if (C->isNullValue()) 5160 continue; 5161 // Unknown instruction. 5162 return false; 5163 } 5164 return true; 5165 } 5166 5167 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5168 Type *LoadTy, 5169 SelectionDAGBuilder &Builder) { 5170 5171 // Check to see if this load can be trivially constant folded, e.g. if the 5172 // input is from a string literal. 5173 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5174 // Cast pointer to the type we really want to load. 5175 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5176 PointerType::getUnqual(LoadTy)); 5177 5178 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5179 const_cast<Constant *>(LoadInput), *Builder.DL)) 5180 return Builder.getValue(LoadCst); 5181 } 5182 5183 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5184 // still constant memory, the input chain can be the entry node. 5185 SDValue Root; 5186 bool ConstantMemory = false; 5187 5188 // Do not serialize (non-volatile) loads of constant memory with anything. 5189 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5190 Root = Builder.DAG.getEntryNode(); 5191 ConstantMemory = true; 5192 } else { 5193 // Do not serialize non-volatile loads against each other. 5194 Root = Builder.DAG.getRoot(); 5195 } 5196 5197 SDValue Ptr = Builder.getValue(PtrVal); 5198 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5199 Ptr, MachinePointerInfo(PtrVal), 5200 false /*volatile*/, 5201 false /*nontemporal*/, 5202 false /*isinvariant*/, 1 /* align=1 */); 5203 5204 if (!ConstantMemory) 5205 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5206 return LoadVal; 5207 } 5208 5209 /// processIntegerCallValue - Record the value for an instruction that 5210 /// produces an integer result, converting the type where necessary. 5211 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5212 SDValue Value, 5213 bool IsSigned) { 5214 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5215 I.getType(), true); 5216 if (IsSigned) 5217 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5218 else 5219 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5220 setValue(&I, Value); 5221 } 5222 5223 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5224 /// If so, return true and lower it, otherwise return false and it will be 5225 /// lowered like a normal call. 5226 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5227 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5228 if (I.getNumArgOperands() != 3) 5229 return false; 5230 5231 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5232 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5233 !I.getArgOperand(2)->getType()->isIntegerTy() || 5234 !I.getType()->isIntegerTy()) 5235 return false; 5236 5237 const Value *Size = I.getArgOperand(2); 5238 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5239 if (CSize && CSize->getZExtValue() == 0) { 5240 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5241 I.getType(), true); 5242 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5243 return true; 5244 } 5245 5246 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5247 std::pair<SDValue, SDValue> Res = 5248 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5249 getValue(LHS), getValue(RHS), getValue(Size), 5250 MachinePointerInfo(LHS), 5251 MachinePointerInfo(RHS)); 5252 if (Res.first.getNode()) { 5253 processIntegerCallValue(I, Res.first, true); 5254 PendingLoads.push_back(Res.second); 5255 return true; 5256 } 5257 5258 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5259 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5260 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5261 bool ActuallyDoIt = true; 5262 MVT LoadVT; 5263 Type *LoadTy; 5264 switch (CSize->getZExtValue()) { 5265 default: 5266 LoadVT = MVT::Other; 5267 LoadTy = nullptr; 5268 ActuallyDoIt = false; 5269 break; 5270 case 2: 5271 LoadVT = MVT::i16; 5272 LoadTy = Type::getInt16Ty(CSize->getContext()); 5273 break; 5274 case 4: 5275 LoadVT = MVT::i32; 5276 LoadTy = Type::getInt32Ty(CSize->getContext()); 5277 break; 5278 case 8: 5279 LoadVT = MVT::i64; 5280 LoadTy = Type::getInt64Ty(CSize->getContext()); 5281 break; 5282 /* 5283 case 16: 5284 LoadVT = MVT::v4i32; 5285 LoadTy = Type::getInt32Ty(CSize->getContext()); 5286 LoadTy = VectorType::get(LoadTy, 4); 5287 break; 5288 */ 5289 } 5290 5291 // This turns into unaligned loads. We only do this if the target natively 5292 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5293 // we'll only produce a small number of byte loads. 5294 5295 // Require that we can find a legal MVT, and only do this if the target 5296 // supports unaligned loads of that type. Expanding into byte loads would 5297 // bloat the code. 5298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5299 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5300 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5301 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5302 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5303 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5304 // TODO: Check alignment of src and dest ptrs. 5305 if (!TLI.isTypeLegal(LoadVT) || 5306 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5307 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5308 ActuallyDoIt = false; 5309 } 5310 5311 if (ActuallyDoIt) { 5312 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5313 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5314 5315 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5316 ISD::SETNE); 5317 processIntegerCallValue(I, Res, false); 5318 return true; 5319 } 5320 } 5321 5322 5323 return false; 5324 } 5325 5326 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5327 /// form. If so, return true and lower it, otherwise return false and it 5328 /// will be lowered like a normal call. 5329 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5330 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5331 if (I.getNumArgOperands() != 3) 5332 return false; 5333 5334 const Value *Src = I.getArgOperand(0); 5335 const Value *Char = I.getArgOperand(1); 5336 const Value *Length = I.getArgOperand(2); 5337 if (!Src->getType()->isPointerTy() || 5338 !Char->getType()->isIntegerTy() || 5339 !Length->getType()->isIntegerTy() || 5340 !I.getType()->isPointerTy()) 5341 return false; 5342 5343 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5344 std::pair<SDValue, SDValue> Res = 5345 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5346 getValue(Src), getValue(Char), getValue(Length), 5347 MachinePointerInfo(Src)); 5348 if (Res.first.getNode()) { 5349 setValue(&I, Res.first); 5350 PendingLoads.push_back(Res.second); 5351 return true; 5352 } 5353 5354 return false; 5355 } 5356 5357 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5358 /// optimized form. If so, return true and lower it, otherwise return false 5359 /// and it will be lowered like a normal call. 5360 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5361 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5362 if (I.getNumArgOperands() != 2) 5363 return false; 5364 5365 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5366 if (!Arg0->getType()->isPointerTy() || 5367 !Arg1->getType()->isPointerTy() || 5368 !I.getType()->isPointerTy()) 5369 return false; 5370 5371 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5372 std::pair<SDValue, SDValue> Res = 5373 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5374 getValue(Arg0), getValue(Arg1), 5375 MachinePointerInfo(Arg0), 5376 MachinePointerInfo(Arg1), isStpcpy); 5377 if (Res.first.getNode()) { 5378 setValue(&I, Res.first); 5379 DAG.setRoot(Res.second); 5380 return true; 5381 } 5382 5383 return false; 5384 } 5385 5386 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5387 /// If so, return true and lower it, otherwise return false and it will be 5388 /// lowered like a normal call. 5389 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5390 // Verify that the prototype makes sense. int strcmp(void*,void*) 5391 if (I.getNumArgOperands() != 2) 5392 return false; 5393 5394 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5395 if (!Arg0->getType()->isPointerTy() || 5396 !Arg1->getType()->isPointerTy() || 5397 !I.getType()->isIntegerTy()) 5398 return false; 5399 5400 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5401 std::pair<SDValue, SDValue> Res = 5402 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5403 getValue(Arg0), getValue(Arg1), 5404 MachinePointerInfo(Arg0), 5405 MachinePointerInfo(Arg1)); 5406 if (Res.first.getNode()) { 5407 processIntegerCallValue(I, Res.first, true); 5408 PendingLoads.push_back(Res.second); 5409 return true; 5410 } 5411 5412 return false; 5413 } 5414 5415 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5416 /// form. If so, return true and lower it, otherwise return false and it 5417 /// will be lowered like a normal call. 5418 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5419 // Verify that the prototype makes sense. size_t strlen(char *) 5420 if (I.getNumArgOperands() != 1) 5421 return false; 5422 5423 const Value *Arg0 = I.getArgOperand(0); 5424 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5425 return false; 5426 5427 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5428 std::pair<SDValue, SDValue> Res = 5429 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5430 getValue(Arg0), MachinePointerInfo(Arg0)); 5431 if (Res.first.getNode()) { 5432 processIntegerCallValue(I, Res.first, false); 5433 PendingLoads.push_back(Res.second); 5434 return true; 5435 } 5436 5437 return false; 5438 } 5439 5440 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5441 /// form. If so, return true and lower it, otherwise return false and it 5442 /// will be lowered like a normal call. 5443 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5444 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5445 if (I.getNumArgOperands() != 2) 5446 return false; 5447 5448 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5449 if (!Arg0->getType()->isPointerTy() || 5450 !Arg1->getType()->isIntegerTy() || 5451 !I.getType()->isIntegerTy()) 5452 return false; 5453 5454 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5455 std::pair<SDValue, SDValue> Res = 5456 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5457 getValue(Arg0), getValue(Arg1), 5458 MachinePointerInfo(Arg0)); 5459 if (Res.first.getNode()) { 5460 processIntegerCallValue(I, Res.first, false); 5461 PendingLoads.push_back(Res.second); 5462 return true; 5463 } 5464 5465 return false; 5466 } 5467 5468 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5469 /// operation (as expected), translate it to an SDNode with the specified opcode 5470 /// and return true. 5471 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5472 unsigned Opcode) { 5473 // Sanity check that it really is a unary floating-point call. 5474 if (I.getNumArgOperands() != 1 || 5475 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5476 I.getType() != I.getArgOperand(0)->getType() || 5477 !I.onlyReadsMemory()) 5478 return false; 5479 5480 SDValue Tmp = getValue(I.getArgOperand(0)); 5481 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5482 return true; 5483 } 5484 5485 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5486 /// operation (as expected), translate it to an SDNode with the specified opcode 5487 /// and return true. 5488 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5489 unsigned Opcode) { 5490 // Sanity check that it really is a binary floating-point call. 5491 if (I.getNumArgOperands() != 2 || 5492 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5493 I.getType() != I.getArgOperand(0)->getType() || 5494 I.getType() != I.getArgOperand(1)->getType() || 5495 !I.onlyReadsMemory()) 5496 return false; 5497 5498 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5499 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5500 EVT VT = Tmp0.getValueType(); 5501 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5502 return true; 5503 } 5504 5505 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5506 // Handle inline assembly differently. 5507 if (isa<InlineAsm>(I.getCalledValue())) { 5508 visitInlineAsm(&I); 5509 return; 5510 } 5511 5512 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5513 ComputeUsesVAFloatArgument(I, &MMI); 5514 5515 const char *RenameFn = nullptr; 5516 if (Function *F = I.getCalledFunction()) { 5517 if (F->isDeclaration()) { 5518 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5519 if (unsigned IID = II->getIntrinsicID(F)) { 5520 RenameFn = visitIntrinsicCall(I, IID); 5521 if (!RenameFn) 5522 return; 5523 } 5524 } 5525 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5526 RenameFn = visitIntrinsicCall(I, IID); 5527 if (!RenameFn) 5528 return; 5529 } 5530 } 5531 5532 // Check for well-known libc/libm calls. If the function is internal, it 5533 // can't be a library call. 5534 LibFunc::Func Func; 5535 if (!F->hasLocalLinkage() && F->hasName() && 5536 LibInfo->getLibFunc(F->getName(), Func) && 5537 LibInfo->hasOptimizedCodeGen(Func)) { 5538 switch (Func) { 5539 default: break; 5540 case LibFunc::copysign: 5541 case LibFunc::copysignf: 5542 case LibFunc::copysignl: 5543 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5544 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5545 I.getType() == I.getArgOperand(0)->getType() && 5546 I.getType() == I.getArgOperand(1)->getType() && 5547 I.onlyReadsMemory()) { 5548 SDValue LHS = getValue(I.getArgOperand(0)); 5549 SDValue RHS = getValue(I.getArgOperand(1)); 5550 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5551 LHS.getValueType(), LHS, RHS)); 5552 return; 5553 } 5554 break; 5555 case LibFunc::fabs: 5556 case LibFunc::fabsf: 5557 case LibFunc::fabsl: 5558 if (visitUnaryFloatCall(I, ISD::FABS)) 5559 return; 5560 break; 5561 case LibFunc::fmin: 5562 case LibFunc::fminf: 5563 case LibFunc::fminl: 5564 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5565 return; 5566 break; 5567 case LibFunc::fmax: 5568 case LibFunc::fmaxf: 5569 case LibFunc::fmaxl: 5570 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5571 return; 5572 break; 5573 case LibFunc::sin: 5574 case LibFunc::sinf: 5575 case LibFunc::sinl: 5576 if (visitUnaryFloatCall(I, ISD::FSIN)) 5577 return; 5578 break; 5579 case LibFunc::cos: 5580 case LibFunc::cosf: 5581 case LibFunc::cosl: 5582 if (visitUnaryFloatCall(I, ISD::FCOS)) 5583 return; 5584 break; 5585 case LibFunc::sqrt: 5586 case LibFunc::sqrtf: 5587 case LibFunc::sqrtl: 5588 case LibFunc::sqrt_finite: 5589 case LibFunc::sqrtf_finite: 5590 case LibFunc::sqrtl_finite: 5591 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5592 return; 5593 break; 5594 case LibFunc::floor: 5595 case LibFunc::floorf: 5596 case LibFunc::floorl: 5597 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5598 return; 5599 break; 5600 case LibFunc::nearbyint: 5601 case LibFunc::nearbyintf: 5602 case LibFunc::nearbyintl: 5603 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5604 return; 5605 break; 5606 case LibFunc::ceil: 5607 case LibFunc::ceilf: 5608 case LibFunc::ceill: 5609 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5610 return; 5611 break; 5612 case LibFunc::rint: 5613 case LibFunc::rintf: 5614 case LibFunc::rintl: 5615 if (visitUnaryFloatCall(I, ISD::FRINT)) 5616 return; 5617 break; 5618 case LibFunc::round: 5619 case LibFunc::roundf: 5620 case LibFunc::roundl: 5621 if (visitUnaryFloatCall(I, ISD::FROUND)) 5622 return; 5623 break; 5624 case LibFunc::trunc: 5625 case LibFunc::truncf: 5626 case LibFunc::truncl: 5627 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5628 return; 5629 break; 5630 case LibFunc::log2: 5631 case LibFunc::log2f: 5632 case LibFunc::log2l: 5633 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5634 return; 5635 break; 5636 case LibFunc::exp2: 5637 case LibFunc::exp2f: 5638 case LibFunc::exp2l: 5639 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5640 return; 5641 break; 5642 case LibFunc::memcmp: 5643 if (visitMemCmpCall(I)) 5644 return; 5645 break; 5646 case LibFunc::memchr: 5647 if (visitMemChrCall(I)) 5648 return; 5649 break; 5650 case LibFunc::strcpy: 5651 if (visitStrCpyCall(I, false)) 5652 return; 5653 break; 5654 case LibFunc::stpcpy: 5655 if (visitStrCpyCall(I, true)) 5656 return; 5657 break; 5658 case LibFunc::strcmp: 5659 if (visitStrCmpCall(I)) 5660 return; 5661 break; 5662 case LibFunc::strlen: 5663 if (visitStrLenCall(I)) 5664 return; 5665 break; 5666 case LibFunc::strnlen: 5667 if (visitStrNLenCall(I)) 5668 return; 5669 break; 5670 } 5671 } 5672 } 5673 5674 SDValue Callee; 5675 if (!RenameFn) 5676 Callee = getValue(I.getCalledValue()); 5677 else 5678 Callee = DAG.getExternalSymbol( 5679 RenameFn, 5680 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5681 5682 // Check if we can potentially perform a tail call. More detailed checking is 5683 // be done within LowerCallTo, after more information about the call is known. 5684 LowerCallTo(&I, Callee, I.isTailCall()); 5685 } 5686 5687 namespace { 5688 5689 /// AsmOperandInfo - This contains information for each constraint that we are 5690 /// lowering. 5691 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5692 public: 5693 /// CallOperand - If this is the result output operand or a clobber 5694 /// this is null, otherwise it is the incoming operand to the CallInst. 5695 /// This gets modified as the asm is processed. 5696 SDValue CallOperand; 5697 5698 /// AssignedRegs - If this is a register or register class operand, this 5699 /// contains the set of register corresponding to the operand. 5700 RegsForValue AssignedRegs; 5701 5702 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5703 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5704 } 5705 5706 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5707 /// corresponds to. If there is no Value* for this operand, it returns 5708 /// MVT::Other. 5709 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5710 const DataLayout &DL) const { 5711 if (!CallOperandVal) return MVT::Other; 5712 5713 if (isa<BasicBlock>(CallOperandVal)) 5714 return TLI.getPointerTy(DL); 5715 5716 llvm::Type *OpTy = CallOperandVal->getType(); 5717 5718 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5719 // If this is an indirect operand, the operand is a pointer to the 5720 // accessed type. 5721 if (isIndirect) { 5722 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5723 if (!PtrTy) 5724 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5725 OpTy = PtrTy->getElementType(); 5726 } 5727 5728 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5729 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5730 if (STy->getNumElements() == 1) 5731 OpTy = STy->getElementType(0); 5732 5733 // If OpTy is not a single value, it may be a struct/union that we 5734 // can tile with integers. 5735 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5736 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5737 switch (BitSize) { 5738 default: break; 5739 case 1: 5740 case 8: 5741 case 16: 5742 case 32: 5743 case 64: 5744 case 128: 5745 OpTy = IntegerType::get(Context, BitSize); 5746 break; 5747 } 5748 } 5749 5750 return TLI.getValueType(DL, OpTy, true); 5751 } 5752 }; 5753 5754 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5755 5756 } // end anonymous namespace 5757 5758 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5759 /// specified operand. We prefer to assign virtual registers, to allow the 5760 /// register allocator to handle the assignment process. However, if the asm 5761 /// uses features that we can't model on machineinstrs, we have SDISel do the 5762 /// allocation. This produces generally horrible, but correct, code. 5763 /// 5764 /// OpInfo describes the operand. 5765 /// 5766 static void GetRegistersForValue(SelectionDAG &DAG, 5767 const TargetLowering &TLI, 5768 SDLoc DL, 5769 SDISelAsmOperandInfo &OpInfo) { 5770 LLVMContext &Context = *DAG.getContext(); 5771 5772 MachineFunction &MF = DAG.getMachineFunction(); 5773 SmallVector<unsigned, 4> Regs; 5774 5775 // If this is a constraint for a single physreg, or a constraint for a 5776 // register class, find it. 5777 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5778 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5779 OpInfo.ConstraintCode, 5780 OpInfo.ConstraintVT); 5781 5782 unsigned NumRegs = 1; 5783 if (OpInfo.ConstraintVT != MVT::Other) { 5784 // If this is a FP input in an integer register (or visa versa) insert a bit 5785 // cast of the input value. More generally, handle any case where the input 5786 // value disagrees with the register class we plan to stick this in. 5787 if (OpInfo.Type == InlineAsm::isInput && 5788 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5789 // Try to convert to the first EVT that the reg class contains. If the 5790 // types are identical size, use a bitcast to convert (e.g. two differing 5791 // vector types). 5792 MVT RegVT = *PhysReg.second->vt_begin(); 5793 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5794 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5795 RegVT, OpInfo.CallOperand); 5796 OpInfo.ConstraintVT = RegVT; 5797 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5798 // If the input is a FP value and we want it in FP registers, do a 5799 // bitcast to the corresponding integer type. This turns an f64 value 5800 // into i64, which can be passed with two i32 values on a 32-bit 5801 // machine. 5802 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5803 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5804 RegVT, OpInfo.CallOperand); 5805 OpInfo.ConstraintVT = RegVT; 5806 } 5807 } 5808 5809 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5810 } 5811 5812 MVT RegVT; 5813 EVT ValueVT = OpInfo.ConstraintVT; 5814 5815 // If this is a constraint for a specific physical register, like {r17}, 5816 // assign it now. 5817 if (unsigned AssignedReg = PhysReg.first) { 5818 const TargetRegisterClass *RC = PhysReg.second; 5819 if (OpInfo.ConstraintVT == MVT::Other) 5820 ValueVT = *RC->vt_begin(); 5821 5822 // Get the actual register value type. This is important, because the user 5823 // may have asked for (e.g.) the AX register in i32 type. We need to 5824 // remember that AX is actually i16 to get the right extension. 5825 RegVT = *RC->vt_begin(); 5826 5827 // This is a explicit reference to a physical register. 5828 Regs.push_back(AssignedReg); 5829 5830 // If this is an expanded reference, add the rest of the regs to Regs. 5831 if (NumRegs != 1) { 5832 TargetRegisterClass::iterator I = RC->begin(); 5833 for (; *I != AssignedReg; ++I) 5834 assert(I != RC->end() && "Didn't find reg!"); 5835 5836 // Already added the first reg. 5837 --NumRegs; ++I; 5838 for (; NumRegs; --NumRegs, ++I) { 5839 assert(I != RC->end() && "Ran out of registers to allocate!"); 5840 Regs.push_back(*I); 5841 } 5842 } 5843 5844 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5845 return; 5846 } 5847 5848 // Otherwise, if this was a reference to an LLVM register class, create vregs 5849 // for this reference. 5850 if (const TargetRegisterClass *RC = PhysReg.second) { 5851 RegVT = *RC->vt_begin(); 5852 if (OpInfo.ConstraintVT == MVT::Other) 5853 ValueVT = RegVT; 5854 5855 // Create the appropriate number of virtual registers. 5856 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5857 for (; NumRegs; --NumRegs) 5858 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5859 5860 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5861 return; 5862 } 5863 5864 // Otherwise, we couldn't allocate enough registers for this. 5865 } 5866 5867 /// visitInlineAsm - Handle a call to an InlineAsm object. 5868 /// 5869 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5870 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5871 5872 /// ConstraintOperands - Information about all of the constraints. 5873 SDISelAsmOperandInfoVector ConstraintOperands; 5874 5875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5876 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5877 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5878 5879 bool hasMemory = false; 5880 5881 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5882 unsigned ResNo = 0; // ResNo - The result number of the next output. 5883 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5884 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5885 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5886 5887 MVT OpVT = MVT::Other; 5888 5889 // Compute the value type for each operand. 5890 switch (OpInfo.Type) { 5891 case InlineAsm::isOutput: 5892 // Indirect outputs just consume an argument. 5893 if (OpInfo.isIndirect) { 5894 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5895 break; 5896 } 5897 5898 // The return value of the call is this value. As such, there is no 5899 // corresponding argument. 5900 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5901 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5902 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5903 STy->getElementType(ResNo)); 5904 } else { 5905 assert(ResNo == 0 && "Asm only has one result!"); 5906 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5907 } 5908 ++ResNo; 5909 break; 5910 case InlineAsm::isInput: 5911 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5912 break; 5913 case InlineAsm::isClobber: 5914 // Nothing to do. 5915 break; 5916 } 5917 5918 // If this is an input or an indirect output, process the call argument. 5919 // BasicBlocks are labels, currently appearing only in asm's. 5920 if (OpInfo.CallOperandVal) { 5921 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5922 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5923 } else { 5924 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5925 } 5926 5927 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5928 DAG.getDataLayout()).getSimpleVT(); 5929 } 5930 5931 OpInfo.ConstraintVT = OpVT; 5932 5933 // Indirect operand accesses access memory. 5934 if (OpInfo.isIndirect) 5935 hasMemory = true; 5936 else { 5937 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5938 TargetLowering::ConstraintType 5939 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5940 if (CType == TargetLowering::C_Memory) { 5941 hasMemory = true; 5942 break; 5943 } 5944 } 5945 } 5946 } 5947 5948 SDValue Chain, Flag; 5949 5950 // We won't need to flush pending loads if this asm doesn't touch 5951 // memory and is nonvolatile. 5952 if (hasMemory || IA->hasSideEffects()) 5953 Chain = getRoot(); 5954 else 5955 Chain = DAG.getRoot(); 5956 5957 // Second pass over the constraints: compute which constraint option to use 5958 // and assign registers to constraints that want a specific physreg. 5959 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5960 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5961 5962 // If this is an output operand with a matching input operand, look up the 5963 // matching input. If their types mismatch, e.g. one is an integer, the 5964 // other is floating point, or their sizes are different, flag it as an 5965 // error. 5966 if (OpInfo.hasMatchingInput()) { 5967 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5968 5969 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5970 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5971 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5972 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5973 OpInfo.ConstraintVT); 5974 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5975 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5976 Input.ConstraintVT); 5977 if ((OpInfo.ConstraintVT.isInteger() != 5978 Input.ConstraintVT.isInteger()) || 5979 (MatchRC.second != InputRC.second)) { 5980 report_fatal_error("Unsupported asm: input constraint" 5981 " with a matching output constraint of" 5982 " incompatible type!"); 5983 } 5984 Input.ConstraintVT = OpInfo.ConstraintVT; 5985 } 5986 } 5987 5988 // Compute the constraint code and ConstraintType to use. 5989 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5990 5991 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5992 OpInfo.Type == InlineAsm::isClobber) 5993 continue; 5994 5995 // If this is a memory input, and if the operand is not indirect, do what we 5996 // need to to provide an address for the memory input. 5997 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5998 !OpInfo.isIndirect) { 5999 assert((OpInfo.isMultipleAlternative || 6000 (OpInfo.Type == InlineAsm::isInput)) && 6001 "Can only indirectify direct input operands!"); 6002 6003 // Memory operands really want the address of the value. If we don't have 6004 // an indirect input, put it in the constpool if we can, otherwise spill 6005 // it to a stack slot. 6006 // TODO: This isn't quite right. We need to handle these according to 6007 // the addressing mode that the constraint wants. Also, this may take 6008 // an additional register for the computation and we don't want that 6009 // either. 6010 6011 // If the operand is a float, integer, or vector constant, spill to a 6012 // constant pool entry to get its address. 6013 const Value *OpVal = OpInfo.CallOperandVal; 6014 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6015 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6016 OpInfo.CallOperand = DAG.getConstantPool( 6017 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6018 } else { 6019 // Otherwise, create a stack slot and emit a store to it before the 6020 // asm. 6021 Type *Ty = OpVal->getType(); 6022 auto &DL = DAG.getDataLayout(); 6023 uint64_t TySize = DL.getTypeAllocSize(Ty); 6024 unsigned Align = DL.getPrefTypeAlignment(Ty); 6025 MachineFunction &MF = DAG.getMachineFunction(); 6026 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6027 SDValue StackSlot = 6028 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6029 Chain = DAG.getStore(Chain, getCurSDLoc(), 6030 OpInfo.CallOperand, StackSlot, 6031 MachinePointerInfo::getFixedStack(SSFI), 6032 false, false, 0); 6033 OpInfo.CallOperand = StackSlot; 6034 } 6035 6036 // There is no longer a Value* corresponding to this operand. 6037 OpInfo.CallOperandVal = nullptr; 6038 6039 // It is now an indirect operand. 6040 OpInfo.isIndirect = true; 6041 } 6042 6043 // If this constraint is for a specific register, allocate it before 6044 // anything else. 6045 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6046 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6047 } 6048 6049 // Second pass - Loop over all of the operands, assigning virtual or physregs 6050 // to register class operands. 6051 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6052 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6053 6054 // C_Register operands have already been allocated, Other/Memory don't need 6055 // to be. 6056 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6057 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6058 } 6059 6060 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6061 std::vector<SDValue> AsmNodeOperands; 6062 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6063 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6064 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6065 6066 // If we have a !srcloc metadata node associated with it, we want to attach 6067 // this to the ultimately generated inline asm machineinstr. To do this, we 6068 // pass in the third operand as this (potentially null) inline asm MDNode. 6069 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6070 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6071 6072 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6073 // bits as operand 3. 6074 unsigned ExtraInfo = 0; 6075 if (IA->hasSideEffects()) 6076 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6077 if (IA->isAlignStack()) 6078 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6079 // Set the asm dialect. 6080 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6081 6082 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6083 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6084 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6085 6086 // Compute the constraint code and ConstraintType to use. 6087 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6088 6089 // Ideally, we would only check against memory constraints. However, the 6090 // meaning of an other constraint can be target-specific and we can't easily 6091 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6092 // for other constriants as well. 6093 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6094 OpInfo.ConstraintType == TargetLowering::C_Other) { 6095 if (OpInfo.Type == InlineAsm::isInput) 6096 ExtraInfo |= InlineAsm::Extra_MayLoad; 6097 else if (OpInfo.Type == InlineAsm::isOutput) 6098 ExtraInfo |= InlineAsm::Extra_MayStore; 6099 else if (OpInfo.Type == InlineAsm::isClobber) 6100 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6101 } 6102 } 6103 6104 AsmNodeOperands.push_back(DAG.getTargetConstant( 6105 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6106 6107 // Loop over all of the inputs, copying the operand values into the 6108 // appropriate registers and processing the output regs. 6109 RegsForValue RetValRegs; 6110 6111 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6112 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6113 6114 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6115 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6116 6117 switch (OpInfo.Type) { 6118 case InlineAsm::isOutput: { 6119 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6120 OpInfo.ConstraintType != TargetLowering::C_Register) { 6121 // Memory output, or 'other' output (e.g. 'X' constraint). 6122 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6123 6124 unsigned ConstraintID = 6125 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6126 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6127 "Failed to convert memory constraint code to constraint id."); 6128 6129 // Add information to the INLINEASM node to know about this output. 6130 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6131 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6132 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6133 MVT::i32)); 6134 AsmNodeOperands.push_back(OpInfo.CallOperand); 6135 break; 6136 } 6137 6138 // Otherwise, this is a register or register class output. 6139 6140 // Copy the output from the appropriate register. Find a register that 6141 // we can use. 6142 if (OpInfo.AssignedRegs.Regs.empty()) { 6143 LLVMContext &Ctx = *DAG.getContext(); 6144 Ctx.emitError(CS.getInstruction(), 6145 "couldn't allocate output register for constraint '" + 6146 Twine(OpInfo.ConstraintCode) + "'"); 6147 return; 6148 } 6149 6150 // If this is an indirect operand, store through the pointer after the 6151 // asm. 6152 if (OpInfo.isIndirect) { 6153 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6154 OpInfo.CallOperandVal)); 6155 } else { 6156 // This is the result value of the call. 6157 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6158 // Concatenate this output onto the outputs list. 6159 RetValRegs.append(OpInfo.AssignedRegs); 6160 } 6161 6162 // Add information to the INLINEASM node to know that this register is 6163 // set. 6164 OpInfo.AssignedRegs 6165 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6166 ? InlineAsm::Kind_RegDefEarlyClobber 6167 : InlineAsm::Kind_RegDef, 6168 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6169 break; 6170 } 6171 case InlineAsm::isInput: { 6172 SDValue InOperandVal = OpInfo.CallOperand; 6173 6174 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6175 // If this is required to match an output register we have already set, 6176 // just use its register. 6177 unsigned OperandNo = OpInfo.getMatchedOperand(); 6178 6179 // Scan until we find the definition we already emitted of this operand. 6180 // When we find it, create a RegsForValue operand. 6181 unsigned CurOp = InlineAsm::Op_FirstOperand; 6182 for (; OperandNo; --OperandNo) { 6183 // Advance to the next operand. 6184 unsigned OpFlag = 6185 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6186 assert((InlineAsm::isRegDefKind(OpFlag) || 6187 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6188 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6189 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6190 } 6191 6192 unsigned OpFlag = 6193 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6194 if (InlineAsm::isRegDefKind(OpFlag) || 6195 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6196 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6197 if (OpInfo.isIndirect) { 6198 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6199 LLVMContext &Ctx = *DAG.getContext(); 6200 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6201 " don't know how to handle tied " 6202 "indirect register inputs"); 6203 return; 6204 } 6205 6206 RegsForValue MatchedRegs; 6207 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6208 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6209 MatchedRegs.RegVTs.push_back(RegVT); 6210 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6211 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6212 i != e; ++i) { 6213 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6214 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6215 else { 6216 LLVMContext &Ctx = *DAG.getContext(); 6217 Ctx.emitError(CS.getInstruction(), 6218 "inline asm error: This value" 6219 " type register class is not natively supported!"); 6220 return; 6221 } 6222 } 6223 SDLoc dl = getCurSDLoc(); 6224 // Use the produced MatchedRegs object to 6225 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6226 Chain, &Flag, CS.getInstruction()); 6227 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6228 true, OpInfo.getMatchedOperand(), dl, 6229 DAG, AsmNodeOperands); 6230 break; 6231 } 6232 6233 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6234 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6235 "Unexpected number of operands"); 6236 // Add information to the INLINEASM node to know about this input. 6237 // See InlineAsm.h isUseOperandTiedToDef. 6238 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6239 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6240 OpInfo.getMatchedOperand()); 6241 AsmNodeOperands.push_back(DAG.getTargetConstant( 6242 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6243 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6244 break; 6245 } 6246 6247 // Treat indirect 'X' constraint as memory. 6248 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6249 OpInfo.isIndirect) 6250 OpInfo.ConstraintType = TargetLowering::C_Memory; 6251 6252 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6253 std::vector<SDValue> Ops; 6254 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6255 Ops, DAG); 6256 if (Ops.empty()) { 6257 LLVMContext &Ctx = *DAG.getContext(); 6258 Ctx.emitError(CS.getInstruction(), 6259 "invalid operand for inline asm constraint '" + 6260 Twine(OpInfo.ConstraintCode) + "'"); 6261 return; 6262 } 6263 6264 // Add information to the INLINEASM node to know about this input. 6265 unsigned ResOpType = 6266 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6267 AsmNodeOperands.push_back(DAG.getTargetConstant( 6268 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6269 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6270 break; 6271 } 6272 6273 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6274 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6275 assert(InOperandVal.getValueType() == 6276 TLI.getPointerTy(DAG.getDataLayout()) && 6277 "Memory operands expect pointer values"); 6278 6279 unsigned ConstraintID = 6280 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6281 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6282 "Failed to convert memory constraint code to constraint id."); 6283 6284 // Add information to the INLINEASM node to know about this input. 6285 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6286 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6287 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6288 getCurSDLoc(), 6289 MVT::i32)); 6290 AsmNodeOperands.push_back(InOperandVal); 6291 break; 6292 } 6293 6294 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6295 OpInfo.ConstraintType == TargetLowering::C_Register) && 6296 "Unknown constraint type!"); 6297 6298 // TODO: Support this. 6299 if (OpInfo.isIndirect) { 6300 LLVMContext &Ctx = *DAG.getContext(); 6301 Ctx.emitError(CS.getInstruction(), 6302 "Don't know how to handle indirect register inputs yet " 6303 "for constraint '" + 6304 Twine(OpInfo.ConstraintCode) + "'"); 6305 return; 6306 } 6307 6308 // Copy the input into the appropriate registers. 6309 if (OpInfo.AssignedRegs.Regs.empty()) { 6310 LLVMContext &Ctx = *DAG.getContext(); 6311 Ctx.emitError(CS.getInstruction(), 6312 "couldn't allocate input reg for constraint '" + 6313 Twine(OpInfo.ConstraintCode) + "'"); 6314 return; 6315 } 6316 6317 SDLoc dl = getCurSDLoc(); 6318 6319 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6320 Chain, &Flag, CS.getInstruction()); 6321 6322 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6323 dl, DAG, AsmNodeOperands); 6324 break; 6325 } 6326 case InlineAsm::isClobber: { 6327 // Add the clobbered value to the operand list, so that the register 6328 // allocator is aware that the physreg got clobbered. 6329 if (!OpInfo.AssignedRegs.Regs.empty()) 6330 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6331 false, 0, getCurSDLoc(), DAG, 6332 AsmNodeOperands); 6333 break; 6334 } 6335 } 6336 } 6337 6338 // Finish up input operands. Set the input chain and add the flag last. 6339 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6340 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6341 6342 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6343 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6344 Flag = Chain.getValue(1); 6345 6346 // If this asm returns a register value, copy the result from that register 6347 // and set it as the value of the call. 6348 if (!RetValRegs.Regs.empty()) { 6349 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6350 Chain, &Flag, CS.getInstruction()); 6351 6352 // FIXME: Why don't we do this for inline asms with MRVs? 6353 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6354 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6355 6356 // If any of the results of the inline asm is a vector, it may have the 6357 // wrong width/num elts. This can happen for register classes that can 6358 // contain multiple different value types. The preg or vreg allocated may 6359 // not have the same VT as was expected. Convert it to the right type 6360 // with bit_convert. 6361 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6362 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6363 ResultType, Val); 6364 6365 } else if (ResultType != Val.getValueType() && 6366 ResultType.isInteger() && Val.getValueType().isInteger()) { 6367 // If a result value was tied to an input value, the computed result may 6368 // have a wider width than the expected result. Extract the relevant 6369 // portion. 6370 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6371 } 6372 6373 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6374 } 6375 6376 setValue(CS.getInstruction(), Val); 6377 // Don't need to use this as a chain in this case. 6378 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6379 return; 6380 } 6381 6382 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6383 6384 // Process indirect outputs, first output all of the flagged copies out of 6385 // physregs. 6386 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6387 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6388 const Value *Ptr = IndirectStoresToEmit[i].second; 6389 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6390 Chain, &Flag, IA); 6391 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6392 } 6393 6394 // Emit the non-flagged stores from the physregs. 6395 SmallVector<SDValue, 8> OutChains; 6396 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6397 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6398 StoresToEmit[i].first, 6399 getValue(StoresToEmit[i].second), 6400 MachinePointerInfo(StoresToEmit[i].second), 6401 false, false, 0); 6402 OutChains.push_back(Val); 6403 } 6404 6405 if (!OutChains.empty()) 6406 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6407 6408 DAG.setRoot(Chain); 6409 } 6410 6411 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6412 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6413 MVT::Other, getRoot(), 6414 getValue(I.getArgOperand(0)), 6415 DAG.getSrcValue(I.getArgOperand(0)))); 6416 } 6417 6418 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6419 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6420 const DataLayout &DL = DAG.getDataLayout(); 6421 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6422 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6423 DAG.getSrcValue(I.getOperand(0)), 6424 DL.getABITypeAlignment(I.getType())); 6425 setValue(&I, V); 6426 DAG.setRoot(V.getValue(1)); 6427 } 6428 6429 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6430 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6431 MVT::Other, getRoot(), 6432 getValue(I.getArgOperand(0)), 6433 DAG.getSrcValue(I.getArgOperand(0)))); 6434 } 6435 6436 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6437 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6438 MVT::Other, getRoot(), 6439 getValue(I.getArgOperand(0)), 6440 getValue(I.getArgOperand(1)), 6441 DAG.getSrcValue(I.getArgOperand(0)), 6442 DAG.getSrcValue(I.getArgOperand(1)))); 6443 } 6444 6445 /// \brief Lower an argument list according to the target calling convention. 6446 /// 6447 /// \return A tuple of <return-value, token-chain> 6448 /// 6449 /// This is a helper for lowering intrinsics that follow a target calling 6450 /// convention or require stack pointer adjustment. Only a subset of the 6451 /// intrinsic's operands need to participate in the calling convention. 6452 std::pair<SDValue, SDValue> 6453 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6454 unsigned NumArgs, SDValue Callee, 6455 Type *ReturnTy, 6456 MachineBasicBlock *LandingPad, 6457 bool IsPatchPoint) { 6458 TargetLowering::ArgListTy Args; 6459 Args.reserve(NumArgs); 6460 6461 // Populate the argument list. 6462 // Attributes for args start at offset 1, after the return attribute. 6463 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6464 ArgI != ArgE; ++ArgI) { 6465 const Value *V = CS->getOperand(ArgI); 6466 6467 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6468 6469 TargetLowering::ArgListEntry Entry; 6470 Entry.Node = getValue(V); 6471 Entry.Ty = V->getType(); 6472 Entry.setAttributes(&CS, AttrI); 6473 Args.push_back(Entry); 6474 } 6475 6476 TargetLowering::CallLoweringInfo CLI(DAG); 6477 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6478 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6479 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6480 6481 return lowerInvokable(CLI, LandingPad); 6482 } 6483 6484 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6485 /// or patchpoint target node's operand list. 6486 /// 6487 /// Constants are converted to TargetConstants purely as an optimization to 6488 /// avoid constant materialization and register allocation. 6489 /// 6490 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6491 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6492 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6493 /// address materialization and register allocation, but may also be required 6494 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6495 /// alloca in the entry block, then the runtime may assume that the alloca's 6496 /// StackMap location can be read immediately after compilation and that the 6497 /// location is valid at any point during execution (this is similar to the 6498 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6499 /// only available in a register, then the runtime would need to trap when 6500 /// execution reaches the StackMap in order to read the alloca's location. 6501 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6502 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6503 SelectionDAGBuilder &Builder) { 6504 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6505 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6506 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6507 Ops.push_back( 6508 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6509 Ops.push_back( 6510 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6511 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6512 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6513 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6514 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6515 } else 6516 Ops.push_back(OpVal); 6517 } 6518 } 6519 6520 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6521 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6522 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6523 // [live variables...]) 6524 6525 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6526 6527 SDValue Chain, InFlag, Callee, NullPtr; 6528 SmallVector<SDValue, 32> Ops; 6529 6530 SDLoc DL = getCurSDLoc(); 6531 Callee = getValue(CI.getCalledValue()); 6532 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6533 6534 // The stackmap intrinsic only records the live variables (the arguemnts 6535 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6536 // intrinsic, this won't be lowered to a function call. This means we don't 6537 // have to worry about calling conventions and target specific lowering code. 6538 // Instead we perform the call lowering right here. 6539 // 6540 // chain, flag = CALLSEQ_START(chain, 0) 6541 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6542 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6543 // 6544 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6545 InFlag = Chain.getValue(1); 6546 6547 // Add the <id> and <numBytes> constants. 6548 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6549 Ops.push_back(DAG.getTargetConstant( 6550 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6551 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6552 Ops.push_back(DAG.getTargetConstant( 6553 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6554 MVT::i32)); 6555 6556 // Push live variables for the stack map. 6557 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6558 6559 // We are not pushing any register mask info here on the operands list, 6560 // because the stackmap doesn't clobber anything. 6561 6562 // Push the chain and the glue flag. 6563 Ops.push_back(Chain); 6564 Ops.push_back(InFlag); 6565 6566 // Create the STACKMAP node. 6567 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6568 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6569 Chain = SDValue(SM, 0); 6570 InFlag = Chain.getValue(1); 6571 6572 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6573 6574 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6575 6576 // Set the root to the target-lowered call chain. 6577 DAG.setRoot(Chain); 6578 6579 // Inform the Frame Information that we have a stackmap in this function. 6580 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6581 } 6582 6583 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6584 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6585 MachineBasicBlock *LandingPad) { 6586 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6587 // i32 <numBytes>, 6588 // i8* <target>, 6589 // i32 <numArgs>, 6590 // [Args...], 6591 // [live variables...]) 6592 6593 CallingConv::ID CC = CS.getCallingConv(); 6594 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6595 bool HasDef = !CS->getType()->isVoidTy(); 6596 SDLoc dl = getCurSDLoc(); 6597 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6598 6599 // Handle immediate and symbolic callees. 6600 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6601 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6602 /*isTarget=*/true); 6603 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6604 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6605 SDLoc(SymbolicCallee), 6606 SymbolicCallee->getValueType(0)); 6607 6608 // Get the real number of arguments participating in the call <numArgs> 6609 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6610 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6611 6612 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6613 // Intrinsics include all meta-operands up to but not including CC. 6614 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6615 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6616 "Not enough arguments provided to the patchpoint intrinsic"); 6617 6618 // For AnyRegCC the arguments are lowered later on manually. 6619 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6620 Type *ReturnTy = 6621 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6622 std::pair<SDValue, SDValue> Result = 6623 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6624 LandingPad, true); 6625 6626 SDNode *CallEnd = Result.second.getNode(); 6627 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6628 CallEnd = CallEnd->getOperand(0).getNode(); 6629 6630 /// Get a call instruction from the call sequence chain. 6631 /// Tail calls are not allowed. 6632 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6633 "Expected a callseq node."); 6634 SDNode *Call = CallEnd->getOperand(0).getNode(); 6635 bool HasGlue = Call->getGluedNode(); 6636 6637 // Replace the target specific call node with the patchable intrinsic. 6638 SmallVector<SDValue, 8> Ops; 6639 6640 // Add the <id> and <numBytes> constants. 6641 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6642 Ops.push_back(DAG.getTargetConstant( 6643 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6644 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6645 Ops.push_back(DAG.getTargetConstant( 6646 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6647 MVT::i32)); 6648 6649 // Add the callee. 6650 Ops.push_back(Callee); 6651 6652 // Adjust <numArgs> to account for any arguments that have been passed on the 6653 // stack instead. 6654 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6655 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6656 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6657 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6658 6659 // Add the calling convention 6660 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6661 6662 // Add the arguments we omitted previously. The register allocator should 6663 // place these in any free register. 6664 if (IsAnyRegCC) 6665 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6666 Ops.push_back(getValue(CS.getArgument(i))); 6667 6668 // Push the arguments from the call instruction up to the register mask. 6669 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6670 Ops.append(Call->op_begin() + 2, e); 6671 6672 // Push live variables for the stack map. 6673 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6674 6675 // Push the register mask info. 6676 if (HasGlue) 6677 Ops.push_back(*(Call->op_end()-2)); 6678 else 6679 Ops.push_back(*(Call->op_end()-1)); 6680 6681 // Push the chain (this is originally the first operand of the call, but 6682 // becomes now the last or second to last operand). 6683 Ops.push_back(*(Call->op_begin())); 6684 6685 // Push the glue flag (last operand). 6686 if (HasGlue) 6687 Ops.push_back(*(Call->op_end()-1)); 6688 6689 SDVTList NodeTys; 6690 if (IsAnyRegCC && HasDef) { 6691 // Create the return types based on the intrinsic definition 6692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6693 SmallVector<EVT, 3> ValueVTs; 6694 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6695 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6696 6697 // There is always a chain and a glue type at the end 6698 ValueVTs.push_back(MVT::Other); 6699 ValueVTs.push_back(MVT::Glue); 6700 NodeTys = DAG.getVTList(ValueVTs); 6701 } else 6702 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6703 6704 // Replace the target specific call node with a PATCHPOINT node. 6705 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6706 dl, NodeTys, Ops); 6707 6708 // Update the NodeMap. 6709 if (HasDef) { 6710 if (IsAnyRegCC) 6711 setValue(CS.getInstruction(), SDValue(MN, 0)); 6712 else 6713 setValue(CS.getInstruction(), Result.first); 6714 } 6715 6716 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6717 // call sequence. Furthermore the location of the chain and glue can change 6718 // when the AnyReg calling convention is used and the intrinsic returns a 6719 // value. 6720 if (IsAnyRegCC && HasDef) { 6721 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6722 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6723 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6724 } else 6725 DAG.ReplaceAllUsesWith(Call, MN); 6726 DAG.DeleteNode(Call); 6727 6728 // Inform the Frame Information that we have a patchpoint in this function. 6729 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6730 } 6731 6732 /// Returns an AttributeSet representing the attributes applied to the return 6733 /// value of the given call. 6734 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6735 SmallVector<Attribute::AttrKind, 2> Attrs; 6736 if (CLI.RetSExt) 6737 Attrs.push_back(Attribute::SExt); 6738 if (CLI.RetZExt) 6739 Attrs.push_back(Attribute::ZExt); 6740 if (CLI.IsInReg) 6741 Attrs.push_back(Attribute::InReg); 6742 6743 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6744 Attrs); 6745 } 6746 6747 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6748 /// implementation, which just calls LowerCall. 6749 /// FIXME: When all targets are 6750 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6751 std::pair<SDValue, SDValue> 6752 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6753 // Handle the incoming return values from the call. 6754 CLI.Ins.clear(); 6755 Type *OrigRetTy = CLI.RetTy; 6756 SmallVector<EVT, 4> RetTys; 6757 SmallVector<uint64_t, 4> Offsets; 6758 auto &DL = CLI.DAG.getDataLayout(); 6759 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6760 6761 SmallVector<ISD::OutputArg, 4> Outs; 6762 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6763 6764 bool CanLowerReturn = 6765 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6766 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6767 6768 SDValue DemoteStackSlot; 6769 int DemoteStackIdx = -100; 6770 if (!CanLowerReturn) { 6771 // FIXME: equivalent assert? 6772 // assert(!CS.hasInAllocaArgument() && 6773 // "sret demotion is incompatible with inalloca"); 6774 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6775 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6776 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6777 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6778 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6779 6780 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6781 ArgListEntry Entry; 6782 Entry.Node = DemoteStackSlot; 6783 Entry.Ty = StackSlotPtrType; 6784 Entry.isSExt = false; 6785 Entry.isZExt = false; 6786 Entry.isInReg = false; 6787 Entry.isSRet = true; 6788 Entry.isNest = false; 6789 Entry.isByVal = false; 6790 Entry.isReturned = false; 6791 Entry.Alignment = Align; 6792 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6793 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6794 6795 // sret demotion isn't compatible with tail-calls, since the sret argument 6796 // points into the callers stack frame. 6797 CLI.IsTailCall = false; 6798 } else { 6799 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6800 EVT VT = RetTys[I]; 6801 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6802 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6803 for (unsigned i = 0; i != NumRegs; ++i) { 6804 ISD::InputArg MyFlags; 6805 MyFlags.VT = RegisterVT; 6806 MyFlags.ArgVT = VT; 6807 MyFlags.Used = CLI.IsReturnValueUsed; 6808 if (CLI.RetSExt) 6809 MyFlags.Flags.setSExt(); 6810 if (CLI.RetZExt) 6811 MyFlags.Flags.setZExt(); 6812 if (CLI.IsInReg) 6813 MyFlags.Flags.setInReg(); 6814 CLI.Ins.push_back(MyFlags); 6815 } 6816 } 6817 } 6818 6819 // Handle all of the outgoing arguments. 6820 CLI.Outs.clear(); 6821 CLI.OutVals.clear(); 6822 ArgListTy &Args = CLI.getArgs(); 6823 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6824 SmallVector<EVT, 4> ValueVTs; 6825 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6826 Type *FinalType = Args[i].Ty; 6827 if (Args[i].isByVal) 6828 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6829 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6830 FinalType, CLI.CallConv, CLI.IsVarArg); 6831 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6832 ++Value) { 6833 EVT VT = ValueVTs[Value]; 6834 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6835 SDValue Op = SDValue(Args[i].Node.getNode(), 6836 Args[i].Node.getResNo() + Value); 6837 ISD::ArgFlagsTy Flags; 6838 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6839 6840 if (Args[i].isZExt) 6841 Flags.setZExt(); 6842 if (Args[i].isSExt) 6843 Flags.setSExt(); 6844 if (Args[i].isInReg) 6845 Flags.setInReg(); 6846 if (Args[i].isSRet) 6847 Flags.setSRet(); 6848 if (Args[i].isByVal) 6849 Flags.setByVal(); 6850 if (Args[i].isInAlloca) { 6851 Flags.setInAlloca(); 6852 // Set the byval flag for CCAssignFn callbacks that don't know about 6853 // inalloca. This way we can know how many bytes we should've allocated 6854 // and how many bytes a callee cleanup function will pop. If we port 6855 // inalloca to more targets, we'll have to add custom inalloca handling 6856 // in the various CC lowering callbacks. 6857 Flags.setByVal(); 6858 } 6859 if (Args[i].isByVal || Args[i].isInAlloca) { 6860 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6861 Type *ElementTy = Ty->getElementType(); 6862 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6863 // For ByVal, alignment should come from FE. BE will guess if this 6864 // info is not there but there are cases it cannot get right. 6865 unsigned FrameAlign; 6866 if (Args[i].Alignment) 6867 FrameAlign = Args[i].Alignment; 6868 else 6869 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6870 Flags.setByValAlign(FrameAlign); 6871 } 6872 if (Args[i].isNest) 6873 Flags.setNest(); 6874 if (NeedsRegBlock) 6875 Flags.setInConsecutiveRegs(); 6876 Flags.setOrigAlign(OriginalAlignment); 6877 6878 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6879 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6880 SmallVector<SDValue, 4> Parts(NumParts); 6881 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6882 6883 if (Args[i].isSExt) 6884 ExtendKind = ISD::SIGN_EXTEND; 6885 else if (Args[i].isZExt) 6886 ExtendKind = ISD::ZERO_EXTEND; 6887 6888 // Conservatively only handle 'returned' on non-vectors for now 6889 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6890 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6891 "unexpected use of 'returned'"); 6892 // Before passing 'returned' to the target lowering code, ensure that 6893 // either the register MVT and the actual EVT are the same size or that 6894 // the return value and argument are extended in the same way; in these 6895 // cases it's safe to pass the argument register value unchanged as the 6896 // return register value (although it's at the target's option whether 6897 // to do so) 6898 // TODO: allow code generation to take advantage of partially preserved 6899 // registers rather than clobbering the entire register when the 6900 // parameter extension method is not compatible with the return 6901 // extension method 6902 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6903 (ExtendKind != ISD::ANY_EXTEND && 6904 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6905 Flags.setReturned(); 6906 } 6907 6908 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6909 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6910 6911 for (unsigned j = 0; j != NumParts; ++j) { 6912 // if it isn't first piece, alignment must be 1 6913 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6914 i < CLI.NumFixedArgs, 6915 i, j*Parts[j].getValueType().getStoreSize()); 6916 if (NumParts > 1 && j == 0) 6917 MyFlags.Flags.setSplit(); 6918 else if (j != 0) 6919 MyFlags.Flags.setOrigAlign(1); 6920 6921 CLI.Outs.push_back(MyFlags); 6922 CLI.OutVals.push_back(Parts[j]); 6923 } 6924 6925 if (NeedsRegBlock && Value == NumValues - 1) 6926 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6927 } 6928 } 6929 6930 SmallVector<SDValue, 4> InVals; 6931 CLI.Chain = LowerCall(CLI, InVals); 6932 6933 // Verify that the target's LowerCall behaved as expected. 6934 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6935 "LowerCall didn't return a valid chain!"); 6936 assert((!CLI.IsTailCall || InVals.empty()) && 6937 "LowerCall emitted a return value for a tail call!"); 6938 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6939 "LowerCall didn't emit the correct number of values!"); 6940 6941 // For a tail call, the return value is merely live-out and there aren't 6942 // any nodes in the DAG representing it. Return a special value to 6943 // indicate that a tail call has been emitted and no more Instructions 6944 // should be processed in the current block. 6945 if (CLI.IsTailCall) { 6946 CLI.DAG.setRoot(CLI.Chain); 6947 return std::make_pair(SDValue(), SDValue()); 6948 } 6949 6950 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6951 assert(InVals[i].getNode() && 6952 "LowerCall emitted a null value!"); 6953 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6954 "LowerCall emitted a value with the wrong type!"); 6955 }); 6956 6957 SmallVector<SDValue, 4> ReturnValues; 6958 if (!CanLowerReturn) { 6959 // The instruction result is the result of loading from the 6960 // hidden sret parameter. 6961 SmallVector<EVT, 1> PVTs; 6962 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6963 6964 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 6965 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6966 EVT PtrVT = PVTs[0]; 6967 6968 unsigned NumValues = RetTys.size(); 6969 ReturnValues.resize(NumValues); 6970 SmallVector<SDValue, 4> Chains(NumValues); 6971 6972 for (unsigned i = 0; i < NumValues; ++i) { 6973 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6974 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6975 PtrVT)); 6976 SDValue L = CLI.DAG.getLoad( 6977 RetTys[i], CLI.DL, CLI.Chain, Add, 6978 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6979 false, false, 1); 6980 ReturnValues[i] = L; 6981 Chains[i] = L.getValue(1); 6982 } 6983 6984 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6985 } else { 6986 // Collect the legal value parts into potentially illegal values 6987 // that correspond to the original function's return values. 6988 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6989 if (CLI.RetSExt) 6990 AssertOp = ISD::AssertSext; 6991 else if (CLI.RetZExt) 6992 AssertOp = ISD::AssertZext; 6993 unsigned CurReg = 0; 6994 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6995 EVT VT = RetTys[I]; 6996 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6997 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6998 6999 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7000 NumRegs, RegisterVT, VT, nullptr, 7001 AssertOp)); 7002 CurReg += NumRegs; 7003 } 7004 7005 // For a function returning void, there is no return value. We can't create 7006 // such a node, so we just return a null return value in that case. In 7007 // that case, nothing will actually look at the value. 7008 if (ReturnValues.empty()) 7009 return std::make_pair(SDValue(), CLI.Chain); 7010 } 7011 7012 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7013 CLI.DAG.getVTList(RetTys), ReturnValues); 7014 return std::make_pair(Res, CLI.Chain); 7015 } 7016 7017 void TargetLowering::LowerOperationWrapper(SDNode *N, 7018 SmallVectorImpl<SDValue> &Results, 7019 SelectionDAG &DAG) const { 7020 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7021 if (Res.getNode()) 7022 Results.push_back(Res); 7023 } 7024 7025 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7026 llvm_unreachable("LowerOperation not implemented for this target!"); 7027 } 7028 7029 void 7030 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7031 SDValue Op = getNonRegisterValue(V); 7032 assert((Op.getOpcode() != ISD::CopyFromReg || 7033 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7034 "Copy from a reg to the same reg!"); 7035 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7036 7037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7038 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7039 V->getType()); 7040 SDValue Chain = DAG.getEntryNode(); 7041 7042 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7043 FuncInfo.PreferredExtendType.end()) 7044 ? ISD::ANY_EXTEND 7045 : FuncInfo.PreferredExtendType[V]; 7046 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7047 PendingExports.push_back(Chain); 7048 } 7049 7050 #include "llvm/CodeGen/SelectionDAGISel.h" 7051 7052 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7053 /// entry block, return true. This includes arguments used by switches, since 7054 /// the switch may expand into multiple basic blocks. 7055 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7056 // With FastISel active, we may be splitting blocks, so force creation 7057 // of virtual registers for all non-dead arguments. 7058 if (FastISel) 7059 return A->use_empty(); 7060 7061 const BasicBlock *Entry = A->getParent()->begin(); 7062 for (const User *U : A->users()) 7063 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7064 return false; // Use not in entry block. 7065 7066 return true; 7067 } 7068 7069 void SelectionDAGISel::LowerArguments(const Function &F) { 7070 SelectionDAG &DAG = SDB->DAG; 7071 SDLoc dl = SDB->getCurSDLoc(); 7072 const DataLayout &DL = DAG.getDataLayout(); 7073 SmallVector<ISD::InputArg, 16> Ins; 7074 7075 if (!FuncInfo->CanLowerReturn) { 7076 // Put in an sret pointer parameter before all the other parameters. 7077 SmallVector<EVT, 1> ValueVTs; 7078 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7079 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7080 7081 // NOTE: Assuming that a pointer will never break down to more than one VT 7082 // or one register. 7083 ISD::ArgFlagsTy Flags; 7084 Flags.setSRet(); 7085 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7086 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7087 ISD::InputArg::NoArgIndex, 0); 7088 Ins.push_back(RetArg); 7089 } 7090 7091 // Set up the incoming argument description vector. 7092 unsigned Idx = 1; 7093 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7094 I != E; ++I, ++Idx) { 7095 SmallVector<EVT, 4> ValueVTs; 7096 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7097 bool isArgValueUsed = !I->use_empty(); 7098 unsigned PartBase = 0; 7099 Type *FinalType = I->getType(); 7100 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7101 FinalType = cast<PointerType>(FinalType)->getElementType(); 7102 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7103 FinalType, F.getCallingConv(), F.isVarArg()); 7104 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7105 Value != NumValues; ++Value) { 7106 EVT VT = ValueVTs[Value]; 7107 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7108 ISD::ArgFlagsTy Flags; 7109 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7110 7111 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7112 Flags.setZExt(); 7113 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7114 Flags.setSExt(); 7115 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7116 Flags.setInReg(); 7117 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7118 Flags.setSRet(); 7119 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7120 Flags.setByVal(); 7121 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7122 Flags.setInAlloca(); 7123 // Set the byval flag for CCAssignFn callbacks that don't know about 7124 // inalloca. This way we can know how many bytes we should've allocated 7125 // and how many bytes a callee cleanup function will pop. If we port 7126 // inalloca to more targets, we'll have to add custom inalloca handling 7127 // in the various CC lowering callbacks. 7128 Flags.setByVal(); 7129 } 7130 if (Flags.isByVal() || Flags.isInAlloca()) { 7131 PointerType *Ty = cast<PointerType>(I->getType()); 7132 Type *ElementTy = Ty->getElementType(); 7133 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7134 // For ByVal, alignment should be passed from FE. BE will guess if 7135 // this info is not there but there are cases it cannot get right. 7136 unsigned FrameAlign; 7137 if (F.getParamAlignment(Idx)) 7138 FrameAlign = F.getParamAlignment(Idx); 7139 else 7140 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7141 Flags.setByValAlign(FrameAlign); 7142 } 7143 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7144 Flags.setNest(); 7145 if (NeedsRegBlock) 7146 Flags.setInConsecutiveRegs(); 7147 Flags.setOrigAlign(OriginalAlignment); 7148 7149 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7150 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7151 for (unsigned i = 0; i != NumRegs; ++i) { 7152 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7153 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7154 if (NumRegs > 1 && i == 0) 7155 MyFlags.Flags.setSplit(); 7156 // if it isn't first piece, alignment must be 1 7157 else if (i > 0) 7158 MyFlags.Flags.setOrigAlign(1); 7159 Ins.push_back(MyFlags); 7160 } 7161 if (NeedsRegBlock && Value == NumValues - 1) 7162 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7163 PartBase += VT.getStoreSize(); 7164 } 7165 } 7166 7167 // Call the target to set up the argument values. 7168 SmallVector<SDValue, 8> InVals; 7169 SDValue NewRoot = TLI->LowerFormalArguments( 7170 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7171 7172 // Verify that the target's LowerFormalArguments behaved as expected. 7173 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7174 "LowerFormalArguments didn't return a valid chain!"); 7175 assert(InVals.size() == Ins.size() && 7176 "LowerFormalArguments didn't emit the correct number of values!"); 7177 DEBUG({ 7178 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7179 assert(InVals[i].getNode() && 7180 "LowerFormalArguments emitted a null value!"); 7181 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7182 "LowerFormalArguments emitted a value with the wrong type!"); 7183 } 7184 }); 7185 7186 // Update the DAG with the new chain value resulting from argument lowering. 7187 DAG.setRoot(NewRoot); 7188 7189 // Set up the argument values. 7190 unsigned i = 0; 7191 Idx = 1; 7192 if (!FuncInfo->CanLowerReturn) { 7193 // Create a virtual register for the sret pointer, and put in a copy 7194 // from the sret argument into it. 7195 SmallVector<EVT, 1> ValueVTs; 7196 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7197 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7198 MVT VT = ValueVTs[0].getSimpleVT(); 7199 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7200 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7201 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7202 RegVT, VT, nullptr, AssertOp); 7203 7204 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7205 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7206 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7207 FuncInfo->DemoteRegister = SRetReg; 7208 NewRoot = 7209 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7210 DAG.setRoot(NewRoot); 7211 7212 // i indexes lowered arguments. Bump it past the hidden sret argument. 7213 // Idx indexes LLVM arguments. Don't touch it. 7214 ++i; 7215 } 7216 7217 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7218 ++I, ++Idx) { 7219 SmallVector<SDValue, 4> ArgValues; 7220 SmallVector<EVT, 4> ValueVTs; 7221 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7222 unsigned NumValues = ValueVTs.size(); 7223 7224 // If this argument is unused then remember its value. It is used to generate 7225 // debugging information. 7226 if (I->use_empty() && NumValues) { 7227 SDB->setUnusedArgValue(I, InVals[i]); 7228 7229 // Also remember any frame index for use in FastISel. 7230 if (FrameIndexSDNode *FI = 7231 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7232 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7233 } 7234 7235 for (unsigned Val = 0; Val != NumValues; ++Val) { 7236 EVT VT = ValueVTs[Val]; 7237 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7238 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7239 7240 if (!I->use_empty()) { 7241 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7242 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7243 AssertOp = ISD::AssertSext; 7244 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7245 AssertOp = ISD::AssertZext; 7246 7247 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7248 NumParts, PartVT, VT, 7249 nullptr, AssertOp)); 7250 } 7251 7252 i += NumParts; 7253 } 7254 7255 // We don't need to do anything else for unused arguments. 7256 if (ArgValues.empty()) 7257 continue; 7258 7259 // Note down frame index. 7260 if (FrameIndexSDNode *FI = 7261 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7262 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7263 7264 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7265 SDB->getCurSDLoc()); 7266 7267 SDB->setValue(I, Res); 7268 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7269 if (LoadSDNode *LNode = 7270 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7271 if (FrameIndexSDNode *FI = 7272 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7273 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7274 } 7275 7276 // If this argument is live outside of the entry block, insert a copy from 7277 // wherever we got it to the vreg that other BB's will reference it as. 7278 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7279 // If we can, though, try to skip creating an unnecessary vreg. 7280 // FIXME: This isn't very clean... it would be nice to make this more 7281 // general. It's also subtly incompatible with the hacks FastISel 7282 // uses with vregs. 7283 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7284 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7285 FuncInfo->ValueMap[I] = Reg; 7286 continue; 7287 } 7288 } 7289 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7290 FuncInfo->InitializeRegForValue(I); 7291 SDB->CopyToExportRegsIfNeeded(I); 7292 } 7293 } 7294 7295 assert(i == InVals.size() && "Argument register count mismatch!"); 7296 7297 // Finally, if the target has anything special to do, allow it to do so. 7298 EmitFunctionEntryCode(); 7299 } 7300 7301 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7302 /// ensure constants are generated when needed. Remember the virtual registers 7303 /// that need to be added to the Machine PHI nodes as input. We cannot just 7304 /// directly add them, because expansion might result in multiple MBB's for one 7305 /// BB. As such, the start of the BB might correspond to a different MBB than 7306 /// the end. 7307 /// 7308 void 7309 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7310 const TerminatorInst *TI = LLVMBB->getTerminator(); 7311 7312 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7313 7314 // Check PHI nodes in successors that expect a value to be available from this 7315 // block. 7316 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7317 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7318 if (!isa<PHINode>(SuccBB->begin())) continue; 7319 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7320 7321 // If this terminator has multiple identical successors (common for 7322 // switches), only handle each succ once. 7323 if (!SuccsHandled.insert(SuccMBB).second) 7324 continue; 7325 7326 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7327 7328 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7329 // nodes and Machine PHI nodes, but the incoming operands have not been 7330 // emitted yet. 7331 for (BasicBlock::const_iterator I = SuccBB->begin(); 7332 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7333 // Ignore dead phi's. 7334 if (PN->use_empty()) continue; 7335 7336 // Skip empty types 7337 if (PN->getType()->isEmptyTy()) 7338 continue; 7339 7340 unsigned Reg; 7341 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7342 7343 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7344 unsigned &RegOut = ConstantsOut[C]; 7345 if (RegOut == 0) { 7346 RegOut = FuncInfo.CreateRegs(C->getType()); 7347 CopyValueToVirtualRegister(C, RegOut); 7348 } 7349 Reg = RegOut; 7350 } else { 7351 DenseMap<const Value *, unsigned>::iterator I = 7352 FuncInfo.ValueMap.find(PHIOp); 7353 if (I != FuncInfo.ValueMap.end()) 7354 Reg = I->second; 7355 else { 7356 assert(isa<AllocaInst>(PHIOp) && 7357 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7358 "Didn't codegen value into a register!??"); 7359 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7360 CopyValueToVirtualRegister(PHIOp, Reg); 7361 } 7362 } 7363 7364 // Remember that this register needs to added to the machine PHI node as 7365 // the input for this MBB. 7366 SmallVector<EVT, 4> ValueVTs; 7367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7368 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7369 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7370 EVT VT = ValueVTs[vti]; 7371 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7372 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7373 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7374 Reg += NumRegisters; 7375 } 7376 } 7377 } 7378 7379 ConstantsOut.clear(); 7380 } 7381 7382 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7383 /// is 0. 7384 MachineBasicBlock * 7385 SelectionDAGBuilder::StackProtectorDescriptor:: 7386 AddSuccessorMBB(const BasicBlock *BB, 7387 MachineBasicBlock *ParentMBB, 7388 bool IsLikely, 7389 MachineBasicBlock *SuccMBB) { 7390 // If SuccBB has not been created yet, create it. 7391 if (!SuccMBB) { 7392 MachineFunction *MF = ParentMBB->getParent(); 7393 MachineFunction::iterator BBI = ParentMBB; 7394 SuccMBB = MF->CreateMachineBasicBlock(BB); 7395 MF->insert(++BBI, SuccMBB); 7396 } 7397 // Add it as a successor of ParentMBB. 7398 ParentMBB->addSuccessor( 7399 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7400 return SuccMBB; 7401 } 7402 7403 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7404 MachineFunction::iterator I = MBB; 7405 if (++I == FuncInfo.MF->end()) 7406 return nullptr; 7407 return I; 7408 } 7409 7410 /// During lowering new call nodes can be created (such as memset, etc.). 7411 /// Those will become new roots of the current DAG, but complications arise 7412 /// when they are tail calls. In such cases, the call lowering will update 7413 /// the root, but the builder still needs to know that a tail call has been 7414 /// lowered in order to avoid generating an additional return. 7415 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7416 // If the node is null, we do have a tail call. 7417 if (MaybeTC.getNode() != nullptr) 7418 DAG.setRoot(MaybeTC); 7419 else 7420 HasTailCall = true; 7421 } 7422 7423 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7424 unsigned *TotalCases, unsigned First, 7425 unsigned Last) { 7426 assert(Last >= First); 7427 assert(TotalCases[Last] >= TotalCases[First]); 7428 7429 APInt LowCase = Clusters[First].Low->getValue(); 7430 APInt HighCase = Clusters[Last].High->getValue(); 7431 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7432 7433 // FIXME: A range of consecutive cases has 100% density, but only requires one 7434 // comparison to lower. We should discriminate against such consecutive ranges 7435 // in jump tables. 7436 7437 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7438 uint64_t Range = Diff + 1; 7439 7440 uint64_t NumCases = 7441 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7442 7443 assert(NumCases < UINT64_MAX / 100); 7444 assert(Range >= NumCases); 7445 7446 return NumCases * 100 >= Range * MinJumpTableDensity; 7447 } 7448 7449 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7450 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7451 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7452 } 7453 7454 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7455 unsigned First, unsigned Last, 7456 const SwitchInst *SI, 7457 MachineBasicBlock *DefaultMBB, 7458 CaseCluster &JTCluster) { 7459 assert(First <= Last); 7460 7461 uint32_t Weight = 0; 7462 unsigned NumCmps = 0; 7463 std::vector<MachineBasicBlock*> Table; 7464 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7465 for (unsigned I = First; I <= Last; ++I) { 7466 assert(Clusters[I].Kind == CC_Range); 7467 Weight += Clusters[I].Weight; 7468 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7469 APInt Low = Clusters[I].Low->getValue(); 7470 APInt High = Clusters[I].High->getValue(); 7471 NumCmps += (Low == High) ? 1 : 2; 7472 if (I != First) { 7473 // Fill the gap between this and the previous cluster. 7474 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7475 assert(PreviousHigh.slt(Low)); 7476 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7477 for (uint64_t J = 0; J < Gap; J++) 7478 Table.push_back(DefaultMBB); 7479 } 7480 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7481 for (uint64_t J = 0; J < ClusterSize; ++J) 7482 Table.push_back(Clusters[I].MBB); 7483 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7484 } 7485 7486 unsigned NumDests = JTWeights.size(); 7487 if (isSuitableForBitTests(NumDests, NumCmps, 7488 Clusters[First].Low->getValue(), 7489 Clusters[Last].High->getValue())) { 7490 // Clusters[First..Last] should be lowered as bit tests instead. 7491 return false; 7492 } 7493 7494 // Create the MBB that will load from and jump through the table. 7495 // Note: We create it here, but it's not inserted into the function yet. 7496 MachineFunction *CurMF = FuncInfo.MF; 7497 MachineBasicBlock *JumpTableMBB = 7498 CurMF->CreateMachineBasicBlock(SI->getParent()); 7499 7500 // Add successors. Note: use table order for determinism. 7501 SmallPtrSet<MachineBasicBlock *, 8> Done; 7502 for (MachineBasicBlock *Succ : Table) { 7503 if (Done.count(Succ)) 7504 continue; 7505 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7506 Done.insert(Succ); 7507 } 7508 7509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7510 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7511 ->createJumpTableIndex(Table); 7512 7513 // Set up the jump table info. 7514 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7515 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7516 Clusters[Last].High->getValue(), SI->getCondition(), 7517 nullptr, false); 7518 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7519 7520 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7521 JTCases.size() - 1, Weight); 7522 return true; 7523 } 7524 7525 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7526 const SwitchInst *SI, 7527 MachineBasicBlock *DefaultMBB) { 7528 #ifndef NDEBUG 7529 // Clusters must be non-empty, sorted, and only contain Range clusters. 7530 assert(!Clusters.empty()); 7531 for (CaseCluster &C : Clusters) 7532 assert(C.Kind == CC_Range); 7533 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7534 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7535 #endif 7536 7537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7538 if (!areJTsAllowed(TLI)) 7539 return; 7540 7541 const int64_t N = Clusters.size(); 7542 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7543 7544 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7545 SmallVector<unsigned, 8> TotalCases(N); 7546 7547 for (unsigned i = 0; i < N; ++i) { 7548 APInt Hi = Clusters[i].High->getValue(); 7549 APInt Lo = Clusters[i].Low->getValue(); 7550 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7551 if (i != 0) 7552 TotalCases[i] += TotalCases[i - 1]; 7553 } 7554 7555 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7556 // Cheap case: the whole range might be suitable for jump table. 7557 CaseCluster JTCluster; 7558 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7559 Clusters[0] = JTCluster; 7560 Clusters.resize(1); 7561 return; 7562 } 7563 } 7564 7565 // The algorithm below is not suitable for -O0. 7566 if (TM.getOptLevel() == CodeGenOpt::None) 7567 return; 7568 7569 // Split Clusters into minimum number of dense partitions. The algorithm uses 7570 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7571 // for the Case Statement'" (1994), but builds the MinPartitions array in 7572 // reverse order to make it easier to reconstruct the partitions in ascending 7573 // order. In the choice between two optimal partitionings, it picks the one 7574 // which yields more jump tables. 7575 7576 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7577 SmallVector<unsigned, 8> MinPartitions(N); 7578 // LastElement[i] is the last element of the partition starting at i. 7579 SmallVector<unsigned, 8> LastElement(N); 7580 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7581 SmallVector<unsigned, 8> NumTables(N); 7582 7583 // Base case: There is only one way to partition Clusters[N-1]. 7584 MinPartitions[N - 1] = 1; 7585 LastElement[N - 1] = N - 1; 7586 assert(MinJumpTableSize > 1); 7587 NumTables[N - 1] = 0; 7588 7589 // Note: loop indexes are signed to avoid underflow. 7590 for (int64_t i = N - 2; i >= 0; i--) { 7591 // Find optimal partitioning of Clusters[i..N-1]. 7592 // Baseline: Put Clusters[i] into a partition on its own. 7593 MinPartitions[i] = MinPartitions[i + 1] + 1; 7594 LastElement[i] = i; 7595 NumTables[i] = NumTables[i + 1]; 7596 7597 // Search for a solution that results in fewer partitions. 7598 for (int64_t j = N - 1; j > i; j--) { 7599 // Try building a partition from Clusters[i..j]. 7600 if (isDense(Clusters, &TotalCases[0], i, j)) { 7601 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7602 bool IsTable = j - i + 1 >= MinJumpTableSize; 7603 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7604 7605 // If this j leads to fewer partitions, or same number of partitions 7606 // with more lookup tables, it is a better partitioning. 7607 if (NumPartitions < MinPartitions[i] || 7608 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7609 MinPartitions[i] = NumPartitions; 7610 LastElement[i] = j; 7611 NumTables[i] = Tables; 7612 } 7613 } 7614 } 7615 } 7616 7617 // Iterate over the partitions, replacing some with jump tables in-place. 7618 unsigned DstIndex = 0; 7619 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7620 Last = LastElement[First]; 7621 assert(Last >= First); 7622 assert(DstIndex <= First); 7623 unsigned NumClusters = Last - First + 1; 7624 7625 CaseCluster JTCluster; 7626 if (NumClusters >= MinJumpTableSize && 7627 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7628 Clusters[DstIndex++] = JTCluster; 7629 } else { 7630 for (unsigned I = First; I <= Last; ++I) 7631 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7632 } 7633 } 7634 Clusters.resize(DstIndex); 7635 } 7636 7637 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7638 // FIXME: Using the pointer type doesn't seem ideal. 7639 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7640 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7641 return Range <= BW; 7642 } 7643 7644 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7645 unsigned NumCmps, 7646 const APInt &Low, 7647 const APInt &High) { 7648 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7649 // range of cases both require only one branch to lower. Just looking at the 7650 // number of clusters and destinations should be enough to decide whether to 7651 // build bit tests. 7652 7653 // To lower a range with bit tests, the range must fit the bitwidth of a 7654 // machine word. 7655 if (!rangeFitsInWord(Low, High)) 7656 return false; 7657 7658 // Decide whether it's profitable to lower this range with bit tests. Each 7659 // destination requires a bit test and branch, and there is an overall range 7660 // check branch. For a small number of clusters, separate comparisons might be 7661 // cheaper, and for many destinations, splitting the range might be better. 7662 return (NumDests == 1 && NumCmps >= 3) || 7663 (NumDests == 2 && NumCmps >= 5) || 7664 (NumDests == 3 && NumCmps >= 6); 7665 } 7666 7667 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7668 unsigned First, unsigned Last, 7669 const SwitchInst *SI, 7670 CaseCluster &BTCluster) { 7671 assert(First <= Last); 7672 if (First == Last) 7673 return false; 7674 7675 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7676 unsigned NumCmps = 0; 7677 for (int64_t I = First; I <= Last; ++I) { 7678 assert(Clusters[I].Kind == CC_Range); 7679 Dests.set(Clusters[I].MBB->getNumber()); 7680 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7681 } 7682 unsigned NumDests = Dests.count(); 7683 7684 APInt Low = Clusters[First].Low->getValue(); 7685 APInt High = Clusters[Last].High->getValue(); 7686 assert(Low.slt(High)); 7687 7688 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7689 return false; 7690 7691 APInt LowBound; 7692 APInt CmpRange; 7693 7694 const int BitWidth = DAG.getTargetLoweringInfo() 7695 .getPointerTy(DAG.getDataLayout()) 7696 .getSizeInBits(); 7697 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7698 7699 if (Low.isNonNegative() && High.slt(BitWidth)) { 7700 // Optimize the case where all the case values fit in a 7701 // word without having to subtract minValue. In this case, 7702 // we can optimize away the subtraction. 7703 LowBound = APInt::getNullValue(Low.getBitWidth()); 7704 CmpRange = High; 7705 } else { 7706 LowBound = Low; 7707 CmpRange = High - Low; 7708 } 7709 7710 CaseBitsVector CBV; 7711 uint32_t TotalWeight = 0; 7712 for (unsigned i = First; i <= Last; ++i) { 7713 // Find the CaseBits for this destination. 7714 unsigned j; 7715 for (j = 0; j < CBV.size(); ++j) 7716 if (CBV[j].BB == Clusters[i].MBB) 7717 break; 7718 if (j == CBV.size()) 7719 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7720 CaseBits *CB = &CBV[j]; 7721 7722 // Update Mask, Bits and ExtraWeight. 7723 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7724 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7725 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7726 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7727 CB->Bits += Hi - Lo + 1; 7728 CB->ExtraWeight += Clusters[i].Weight; 7729 TotalWeight += Clusters[i].Weight; 7730 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7731 } 7732 7733 BitTestInfo BTI; 7734 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7735 // Sort by weight first, number of bits second. 7736 if (a.ExtraWeight != b.ExtraWeight) 7737 return a.ExtraWeight > b.ExtraWeight; 7738 return a.Bits > b.Bits; 7739 }); 7740 7741 for (auto &CB : CBV) { 7742 MachineBasicBlock *BitTestBB = 7743 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7744 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7745 } 7746 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7747 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7748 nullptr, std::move(BTI)); 7749 7750 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7751 BitTestCases.size() - 1, TotalWeight); 7752 return true; 7753 } 7754 7755 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7756 const SwitchInst *SI) { 7757 // Partition Clusters into as few subsets as possible, where each subset has a 7758 // range that fits in a machine word and has <= 3 unique destinations. 7759 7760 #ifndef NDEBUG 7761 // Clusters must be sorted and contain Range or JumpTable clusters. 7762 assert(!Clusters.empty()); 7763 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7764 for (const CaseCluster &C : Clusters) 7765 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7766 for (unsigned i = 1; i < Clusters.size(); ++i) 7767 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7768 #endif 7769 7770 // The algorithm below is not suitable for -O0. 7771 if (TM.getOptLevel() == CodeGenOpt::None) 7772 return; 7773 7774 // If target does not have legal shift left, do not emit bit tests at all. 7775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7776 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7777 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7778 return; 7779 7780 int BitWidth = PTy.getSizeInBits(); 7781 const int64_t N = Clusters.size(); 7782 7783 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7784 SmallVector<unsigned, 8> MinPartitions(N); 7785 // LastElement[i] is the last element of the partition starting at i. 7786 SmallVector<unsigned, 8> LastElement(N); 7787 7788 // FIXME: This might not be the best algorithm for finding bit test clusters. 7789 7790 // Base case: There is only one way to partition Clusters[N-1]. 7791 MinPartitions[N - 1] = 1; 7792 LastElement[N - 1] = N - 1; 7793 7794 // Note: loop indexes are signed to avoid underflow. 7795 for (int64_t i = N - 2; i >= 0; --i) { 7796 // Find optimal partitioning of Clusters[i..N-1]. 7797 // Baseline: Put Clusters[i] into a partition on its own. 7798 MinPartitions[i] = MinPartitions[i + 1] + 1; 7799 LastElement[i] = i; 7800 7801 // Search for a solution that results in fewer partitions. 7802 // Note: the search is limited by BitWidth, reducing time complexity. 7803 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7804 // Try building a partition from Clusters[i..j]. 7805 7806 // Check the range. 7807 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7808 Clusters[j].High->getValue())) 7809 continue; 7810 7811 // Check nbr of destinations and cluster types. 7812 // FIXME: This works, but doesn't seem very efficient. 7813 bool RangesOnly = true; 7814 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7815 for (int64_t k = i; k <= j; k++) { 7816 if (Clusters[k].Kind != CC_Range) { 7817 RangesOnly = false; 7818 break; 7819 } 7820 Dests.set(Clusters[k].MBB->getNumber()); 7821 } 7822 if (!RangesOnly || Dests.count() > 3) 7823 break; 7824 7825 // Check if it's a better partition. 7826 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7827 if (NumPartitions < MinPartitions[i]) { 7828 // Found a better partition. 7829 MinPartitions[i] = NumPartitions; 7830 LastElement[i] = j; 7831 } 7832 } 7833 } 7834 7835 // Iterate over the partitions, replacing with bit-test clusters in-place. 7836 unsigned DstIndex = 0; 7837 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7838 Last = LastElement[First]; 7839 assert(First <= Last); 7840 assert(DstIndex <= First); 7841 7842 CaseCluster BitTestCluster; 7843 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7844 Clusters[DstIndex++] = BitTestCluster; 7845 } else { 7846 size_t NumClusters = Last - First + 1; 7847 std::memmove(&Clusters[DstIndex], &Clusters[First], 7848 sizeof(Clusters[0]) * NumClusters); 7849 DstIndex += NumClusters; 7850 } 7851 } 7852 Clusters.resize(DstIndex); 7853 } 7854 7855 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7856 MachineBasicBlock *SwitchMBB, 7857 MachineBasicBlock *DefaultMBB) { 7858 MachineFunction *CurMF = FuncInfo.MF; 7859 MachineBasicBlock *NextMBB = nullptr; 7860 MachineFunction::iterator BBI = W.MBB; 7861 if (++BBI != FuncInfo.MF->end()) 7862 NextMBB = BBI; 7863 7864 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7865 7866 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7867 7868 if (Size == 2 && W.MBB == SwitchMBB) { 7869 // If any two of the cases has the same destination, and if one value 7870 // is the same as the other, but has one bit unset that the other has set, 7871 // use bit manipulation to do two compares at once. For example: 7872 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7873 // TODO: This could be extended to merge any 2 cases in switches with 3 7874 // cases. 7875 // TODO: Handle cases where W.CaseBB != SwitchBB. 7876 CaseCluster &Small = *W.FirstCluster; 7877 CaseCluster &Big = *W.LastCluster; 7878 7879 if (Small.Low == Small.High && Big.Low == Big.High && 7880 Small.MBB == Big.MBB) { 7881 const APInt &SmallValue = Small.Low->getValue(); 7882 const APInt &BigValue = Big.Low->getValue(); 7883 7884 // Check that there is only one bit different. 7885 APInt CommonBit = BigValue ^ SmallValue; 7886 if (CommonBit.isPowerOf2()) { 7887 SDValue CondLHS = getValue(Cond); 7888 EVT VT = CondLHS.getValueType(); 7889 SDLoc DL = getCurSDLoc(); 7890 7891 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7892 DAG.getConstant(CommonBit, DL, VT)); 7893 SDValue Cond = DAG.getSetCC( 7894 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7895 ISD::SETEQ); 7896 7897 // Update successor info. 7898 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7899 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7900 addSuccessorWithWeight( 7901 SwitchMBB, DefaultMBB, 7902 // The default destination is the first successor in IR. 7903 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7904 : 0); 7905 7906 // Insert the true branch. 7907 SDValue BrCond = 7908 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7909 DAG.getBasicBlock(Small.MBB)); 7910 // Insert the false branch. 7911 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7912 DAG.getBasicBlock(DefaultMBB)); 7913 7914 DAG.setRoot(BrCond); 7915 return; 7916 } 7917 } 7918 } 7919 7920 if (TM.getOptLevel() != CodeGenOpt::None) { 7921 // Order cases by weight so the most likely case will be checked first. 7922 std::sort(W.FirstCluster, W.LastCluster + 1, 7923 [](const CaseCluster &a, const CaseCluster &b) { 7924 return a.Weight > b.Weight; 7925 }); 7926 7927 // Rearrange the case blocks so that the last one falls through if possible 7928 // without without changing the order of weights. 7929 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7930 --I; 7931 if (I->Weight > W.LastCluster->Weight) 7932 break; 7933 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7934 std::swap(*I, *W.LastCluster); 7935 break; 7936 } 7937 } 7938 } 7939 7940 // Compute total weight. 7941 uint32_t UnhandledWeights = 0; 7942 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7943 UnhandledWeights += I->Weight; 7944 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7945 } 7946 7947 MachineBasicBlock *CurMBB = W.MBB; 7948 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7949 MachineBasicBlock *Fallthrough; 7950 if (I == W.LastCluster) { 7951 // For the last cluster, fall through to the default destination. 7952 Fallthrough = DefaultMBB; 7953 } else { 7954 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7955 CurMF->insert(BBI, Fallthrough); 7956 // Put Cond in a virtual register to make it available from the new blocks. 7957 ExportFromCurrentBlock(Cond); 7958 } 7959 7960 switch (I->Kind) { 7961 case CC_JumpTable: { 7962 // FIXME: Optimize away range check based on pivot comparisons. 7963 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7964 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7965 7966 // The jump block hasn't been inserted yet; insert it here. 7967 MachineBasicBlock *JumpMBB = JT->MBB; 7968 CurMF->insert(BBI, JumpMBB); 7969 addSuccessorWithWeight(CurMBB, Fallthrough); 7970 addSuccessorWithWeight(CurMBB, JumpMBB); 7971 7972 // The jump table header will be inserted in our current block, do the 7973 // range check, and fall through to our fallthrough block. 7974 JTH->HeaderBB = CurMBB; 7975 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7976 7977 // If we're in the right place, emit the jump table header right now. 7978 if (CurMBB == SwitchMBB) { 7979 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7980 JTH->Emitted = true; 7981 } 7982 break; 7983 } 7984 case CC_BitTests: { 7985 // FIXME: Optimize away range check based on pivot comparisons. 7986 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7987 7988 // The bit test blocks haven't been inserted yet; insert them here. 7989 for (BitTestCase &BTC : BTB->Cases) 7990 CurMF->insert(BBI, BTC.ThisBB); 7991 7992 // Fill in fields of the BitTestBlock. 7993 BTB->Parent = CurMBB; 7994 BTB->Default = Fallthrough; 7995 7996 // If we're in the right place, emit the bit test header header right now. 7997 if (CurMBB ==SwitchMBB) { 7998 visitBitTestHeader(*BTB, SwitchMBB); 7999 BTB->Emitted = true; 8000 } 8001 break; 8002 } 8003 case CC_Range: { 8004 const Value *RHS, *LHS, *MHS; 8005 ISD::CondCode CC; 8006 if (I->Low == I->High) { 8007 // Check Cond == I->Low. 8008 CC = ISD::SETEQ; 8009 LHS = Cond; 8010 RHS=I->Low; 8011 MHS = nullptr; 8012 } else { 8013 // Check I->Low <= Cond <= I->High. 8014 CC = ISD::SETLE; 8015 LHS = I->Low; 8016 MHS = Cond; 8017 RHS = I->High; 8018 } 8019 8020 // The false weight is the sum of all unhandled cases. 8021 UnhandledWeights -= I->Weight; 8022 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8023 UnhandledWeights); 8024 8025 if (CurMBB == SwitchMBB) 8026 visitSwitchCase(CB, SwitchMBB); 8027 else 8028 SwitchCases.push_back(CB); 8029 8030 break; 8031 } 8032 } 8033 CurMBB = Fallthrough; 8034 } 8035 } 8036 8037 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8038 CaseClusterIt First, 8039 CaseClusterIt Last) { 8040 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8041 if (X.Weight != CC.Weight) 8042 return X.Weight > CC.Weight; 8043 8044 // Ties are broken by comparing the case value. 8045 return X.Low->getValue().slt(CC.Low->getValue()); 8046 }); 8047 } 8048 8049 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8050 const SwitchWorkListItem &W, 8051 Value *Cond, 8052 MachineBasicBlock *SwitchMBB) { 8053 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8054 "Clusters not sorted?"); 8055 8056 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8057 8058 // Balance the tree based on branch weights to create a near-optimal (in terms 8059 // of search time given key frequency) binary search tree. See e.g. Kurt 8060 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8061 CaseClusterIt LastLeft = W.FirstCluster; 8062 CaseClusterIt FirstRight = W.LastCluster; 8063 uint32_t LeftWeight = LastLeft->Weight; 8064 uint32_t RightWeight = FirstRight->Weight; 8065 8066 // Move LastLeft and FirstRight towards each other from opposite directions to 8067 // find a partitioning of the clusters which balances the weight on both 8068 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8069 // taken to ensure 0-weight nodes are distributed evenly. 8070 unsigned I = 0; 8071 while (LastLeft + 1 < FirstRight) { 8072 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8073 LeftWeight += (++LastLeft)->Weight; 8074 else 8075 RightWeight += (--FirstRight)->Weight; 8076 I++; 8077 } 8078 8079 for (;;) { 8080 // Our binary search tree differs from a typical BST in that ours can have up 8081 // to three values in each leaf. The pivot selection above doesn't take that 8082 // into account, which means the tree might require more nodes and be less 8083 // efficient. We compensate for this here. 8084 8085 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8086 unsigned NumRight = W.LastCluster - FirstRight + 1; 8087 8088 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8089 // If one side has less than 3 clusters, and the other has more than 3, 8090 // consider taking a cluster from the other side. 8091 8092 if (NumLeft < NumRight) { 8093 // Consider moving the first cluster on the right to the left side. 8094 CaseCluster &CC = *FirstRight; 8095 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8096 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8097 if (LeftSideRank <= RightSideRank) { 8098 // Moving the cluster to the left does not demote it. 8099 ++LastLeft; 8100 ++FirstRight; 8101 continue; 8102 } 8103 } else { 8104 assert(NumRight < NumLeft); 8105 // Consider moving the last element on the left to the right side. 8106 CaseCluster &CC = *LastLeft; 8107 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8108 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8109 if (RightSideRank <= LeftSideRank) { 8110 // Moving the cluster to the right does not demot it. 8111 --LastLeft; 8112 --FirstRight; 8113 continue; 8114 } 8115 } 8116 } 8117 break; 8118 } 8119 8120 assert(LastLeft + 1 == FirstRight); 8121 assert(LastLeft >= W.FirstCluster); 8122 assert(FirstRight <= W.LastCluster); 8123 8124 // Use the first element on the right as pivot since we will make less-than 8125 // comparisons against it. 8126 CaseClusterIt PivotCluster = FirstRight; 8127 assert(PivotCluster > W.FirstCluster); 8128 assert(PivotCluster <= W.LastCluster); 8129 8130 CaseClusterIt FirstLeft = W.FirstCluster; 8131 CaseClusterIt LastRight = W.LastCluster; 8132 8133 const ConstantInt *Pivot = PivotCluster->Low; 8134 8135 // New blocks will be inserted immediately after the current one. 8136 MachineFunction::iterator BBI = W.MBB; 8137 ++BBI; 8138 8139 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8140 // we can branch to its destination directly if it's squeezed exactly in 8141 // between the known lower bound and Pivot - 1. 8142 MachineBasicBlock *LeftMBB; 8143 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8144 FirstLeft->Low == W.GE && 8145 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8146 LeftMBB = FirstLeft->MBB; 8147 } else { 8148 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8149 FuncInfo.MF->insert(BBI, LeftMBB); 8150 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8151 // Put Cond in a virtual register to make it available from the new blocks. 8152 ExportFromCurrentBlock(Cond); 8153 } 8154 8155 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8156 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8157 // directly if RHS.High equals the current upper bound. 8158 MachineBasicBlock *RightMBB; 8159 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8160 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8161 RightMBB = FirstRight->MBB; 8162 } else { 8163 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8164 FuncInfo.MF->insert(BBI, RightMBB); 8165 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8166 // Put Cond in a virtual register to make it available from the new blocks. 8167 ExportFromCurrentBlock(Cond); 8168 } 8169 8170 // Create the CaseBlock record that will be used to lower the branch. 8171 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8172 LeftWeight, RightWeight); 8173 8174 if (W.MBB == SwitchMBB) 8175 visitSwitchCase(CB, SwitchMBB); 8176 else 8177 SwitchCases.push_back(CB); 8178 } 8179 8180 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8181 // Extract cases from the switch. 8182 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8183 CaseClusterVector Clusters; 8184 Clusters.reserve(SI.getNumCases()); 8185 for (auto I : SI.cases()) { 8186 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8187 const ConstantInt *CaseVal = I.getCaseValue(); 8188 uint32_t Weight = 8189 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8190 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8191 } 8192 8193 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8194 8195 // Cluster adjacent cases with the same destination. We do this at all 8196 // optimization levels because it's cheap to do and will make codegen faster 8197 // if there are many clusters. 8198 sortAndRangeify(Clusters); 8199 8200 if (TM.getOptLevel() != CodeGenOpt::None) { 8201 // Replace an unreachable default with the most popular destination. 8202 // FIXME: Exploit unreachable default more aggressively. 8203 bool UnreachableDefault = 8204 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8205 if (UnreachableDefault && !Clusters.empty()) { 8206 DenseMap<const BasicBlock *, unsigned> Popularity; 8207 unsigned MaxPop = 0; 8208 const BasicBlock *MaxBB = nullptr; 8209 for (auto I : SI.cases()) { 8210 const BasicBlock *BB = I.getCaseSuccessor(); 8211 if (++Popularity[BB] > MaxPop) { 8212 MaxPop = Popularity[BB]; 8213 MaxBB = BB; 8214 } 8215 } 8216 // Set new default. 8217 assert(MaxPop > 0 && MaxBB); 8218 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8219 8220 // Remove cases that were pointing to the destination that is now the 8221 // default. 8222 CaseClusterVector New; 8223 New.reserve(Clusters.size()); 8224 for (CaseCluster &CC : Clusters) { 8225 if (CC.MBB != DefaultMBB) 8226 New.push_back(CC); 8227 } 8228 Clusters = std::move(New); 8229 } 8230 } 8231 8232 // If there is only the default destination, jump there directly. 8233 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8234 if (Clusters.empty()) { 8235 SwitchMBB->addSuccessor(DefaultMBB); 8236 if (DefaultMBB != NextBlock(SwitchMBB)) { 8237 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8238 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8239 } 8240 return; 8241 } 8242 8243 findJumpTables(Clusters, &SI, DefaultMBB); 8244 findBitTestClusters(Clusters, &SI); 8245 8246 DEBUG({ 8247 dbgs() << "Case clusters: "; 8248 for (const CaseCluster &C : Clusters) { 8249 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8250 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8251 8252 C.Low->getValue().print(dbgs(), true); 8253 if (C.Low != C.High) { 8254 dbgs() << '-'; 8255 C.High->getValue().print(dbgs(), true); 8256 } 8257 dbgs() << ' '; 8258 } 8259 dbgs() << '\n'; 8260 }); 8261 8262 assert(!Clusters.empty()); 8263 SwitchWorkList WorkList; 8264 CaseClusterIt First = Clusters.begin(); 8265 CaseClusterIt Last = Clusters.end() - 1; 8266 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8267 8268 while (!WorkList.empty()) { 8269 SwitchWorkListItem W = WorkList.back(); 8270 WorkList.pop_back(); 8271 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8272 8273 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8274 // For optimized builds, lower large range as a balanced binary tree. 8275 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8276 continue; 8277 } 8278 8279 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8280 } 8281 } 8282