1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 999 if (HasMatching) 1000 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind_Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 VectorType *VecTy = cast<VectorType>(V->getType()); 1742 1743 // Now that we know the number and type of the elements, get that number of 1744 // elements into the Ops array based on what kind of constant it is. 1745 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1746 SmallVector<SDValue, 16> Ops; 1747 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1748 for (unsigned i = 0; i != NumElements; ++i) 1749 Ops.push_back(getValue(CV->getOperand(i))); 1750 1751 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1752 } 1753 1754 if (isa<ConstantAggregateZero>(C)) { 1755 EVT EltVT = 1756 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1757 1758 SDValue Op; 1759 if (EltVT.isFloatingPoint()) 1760 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1761 else 1762 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1763 1764 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1765 } 1766 1767 llvm_unreachable("Unknown vector constant"); 1768 } 1769 1770 // If this is a static alloca, generate it as the frameindex instead of 1771 // computation. 1772 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1773 DenseMap<const AllocaInst*, int>::iterator SI = 1774 FuncInfo.StaticAllocaMap.find(AI); 1775 if (SI != FuncInfo.StaticAllocaMap.end()) 1776 return DAG.getFrameIndex( 1777 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1778 } 1779 1780 // If this is an instruction which fast-isel has deferred, select it now. 1781 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1782 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1783 1784 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1785 Inst->getType(), std::nullopt); 1786 SDValue Chain = DAG.getEntryNode(); 1787 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1788 } 1789 1790 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1791 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1792 1793 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1794 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1795 1796 llvm_unreachable("Can't get register for value!"); 1797 } 1798 1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1800 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1801 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1802 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1803 bool IsSEH = isAsynchronousEHPersonality(Pers); 1804 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1805 if (!IsSEH) 1806 CatchPadMBB->setIsEHScopeEntry(); 1807 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1808 if (IsMSVCCXX || IsCoreCLR) 1809 CatchPadMBB->setIsEHFuncletEntry(); 1810 } 1811 1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1813 // Update machine-CFG edge. 1814 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1815 FuncInfo.MBB->addSuccessor(TargetMBB); 1816 TargetMBB->setIsEHCatchretTarget(true); 1817 DAG.getMachineFunction().setHasEHCatchret(true); 1818 1819 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1820 bool IsSEH = isAsynchronousEHPersonality(Pers); 1821 if (IsSEH) { 1822 // If this is not a fall-through branch or optimizations are switched off, 1823 // emit the branch. 1824 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1825 TM.getOptLevel() == CodeGenOpt::None) 1826 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1827 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1828 return; 1829 } 1830 1831 // Figure out the funclet membership for the catchret's successor. 1832 // This will be used by the FuncletLayout pass to determine how to order the 1833 // BB's. 1834 // A 'catchret' returns to the outer scope's color. 1835 Value *ParentPad = I.getCatchSwitchParentPad(); 1836 const BasicBlock *SuccessorColor; 1837 if (isa<ConstantTokenNone>(ParentPad)) 1838 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1839 else 1840 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1841 assert(SuccessorColor && "No parent funclet for catchret!"); 1842 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1843 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1844 1845 // Create the terminator node. 1846 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1847 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1848 DAG.getBasicBlock(SuccessorColorMBB)); 1849 DAG.setRoot(Ret); 1850 } 1851 1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1853 // Don't emit any special code for the cleanuppad instruction. It just marks 1854 // the start of an EH scope/funclet. 1855 FuncInfo.MBB->setIsEHScopeEntry(); 1856 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1857 if (Pers != EHPersonality::Wasm_CXX) { 1858 FuncInfo.MBB->setIsEHFuncletEntry(); 1859 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1860 } 1861 } 1862 1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1864 // not match, it is OK to add only the first unwind destination catchpad to the 1865 // successors, because there will be at least one invoke instruction within the 1866 // catch scope that points to the next unwind destination, if one exists, so 1867 // CFGSort cannot mess up with BB sorting order. 1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1869 // call within them, and catchpads only consisting of 'catch (...)' have a 1870 // '__cxa_end_catch' call within them, both of which generate invokes in case 1871 // the next unwind destination exists, i.e., the next unwind destination is not 1872 // the caller.) 1873 // 1874 // Having at most one EH pad successor is also simpler and helps later 1875 // transformations. 1876 // 1877 // For example, 1878 // current: 1879 // invoke void @foo to ... unwind label %catch.dispatch 1880 // catch.dispatch: 1881 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1882 // catch.start: 1883 // ... 1884 // ... in this BB or some other child BB dominated by this BB there will be an 1885 // invoke that points to 'next' BB as an unwind destination 1886 // 1887 // next: ; We don't need to add this to 'current' BB's successor 1888 // ... 1889 static void findWasmUnwindDestinations( 1890 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1891 BranchProbability Prob, 1892 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1893 &UnwindDests) { 1894 while (EHPadBB) { 1895 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1896 if (isa<CleanupPadInst>(Pad)) { 1897 // Stop on cleanup pads. 1898 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1899 UnwindDests.back().first->setIsEHScopeEntry(); 1900 break; 1901 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1902 // Add the catchpad handlers to the possible destinations. We don't 1903 // continue to the unwind destination of the catchswitch for wasm. 1904 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1905 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1906 UnwindDests.back().first->setIsEHScopeEntry(); 1907 } 1908 break; 1909 } else { 1910 continue; 1911 } 1912 } 1913 } 1914 1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1916 /// many places it could ultimately go. In the IR, we have a single unwind 1917 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1918 /// This function skips over imaginary basic blocks that hold catchswitch 1919 /// instructions, and finds all the "real" machine 1920 /// basic block destinations. As those destinations may not be successors of 1921 /// EHPadBB, here we also calculate the edge probability to those destinations. 1922 /// The passed-in Prob is the edge probability to EHPadBB. 1923 static void findUnwindDestinations( 1924 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1925 BranchProbability Prob, 1926 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1927 &UnwindDests) { 1928 EHPersonality Personality = 1929 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1930 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1931 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1932 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1933 bool IsSEH = isAsynchronousEHPersonality(Personality); 1934 1935 if (IsWasmCXX) { 1936 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1937 assert(UnwindDests.size() <= 1 && 1938 "There should be at most one unwind destination for wasm"); 1939 return; 1940 } 1941 1942 while (EHPadBB) { 1943 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1944 BasicBlock *NewEHPadBB = nullptr; 1945 if (isa<LandingPadInst>(Pad)) { 1946 // Stop on landingpads. They are not funclets. 1947 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1948 break; 1949 } else if (isa<CleanupPadInst>(Pad)) { 1950 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1951 // personalities. 1952 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1953 UnwindDests.back().first->setIsEHScopeEntry(); 1954 UnwindDests.back().first->setIsEHFuncletEntry(); 1955 break; 1956 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1957 // Add the catchpad handlers to the possible destinations. 1958 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1959 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1960 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1961 if (IsMSVCCXX || IsCoreCLR) 1962 UnwindDests.back().first->setIsEHFuncletEntry(); 1963 if (!IsSEH) 1964 UnwindDests.back().first->setIsEHScopeEntry(); 1965 } 1966 NewEHPadBB = CatchSwitch->getUnwindDest(); 1967 } else { 1968 continue; 1969 } 1970 1971 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1972 if (BPI && NewEHPadBB) 1973 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1974 EHPadBB = NewEHPadBB; 1975 } 1976 } 1977 1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1979 // Update successor info. 1980 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1981 auto UnwindDest = I.getUnwindDest(); 1982 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1983 BranchProbability UnwindDestProb = 1984 (BPI && UnwindDest) 1985 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1986 : BranchProbability::getZero(); 1987 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1988 for (auto &UnwindDest : UnwindDests) { 1989 UnwindDest.first->setIsEHPad(); 1990 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1991 } 1992 FuncInfo.MBB->normalizeSuccProbs(); 1993 1994 // Create the terminator node. 1995 SDValue Ret = 1996 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1997 DAG.setRoot(Ret); 1998 } 1999 2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2001 report_fatal_error("visitCatchSwitch not yet implemented!"); 2002 } 2003 2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2006 auto &DL = DAG.getDataLayout(); 2007 SDValue Chain = getControlRoot(); 2008 SmallVector<ISD::OutputArg, 8> Outs; 2009 SmallVector<SDValue, 8> OutVals; 2010 2011 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2012 // lower 2013 // 2014 // %val = call <ty> @llvm.experimental.deoptimize() 2015 // ret <ty> %val 2016 // 2017 // differently. 2018 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2019 LowerDeoptimizingReturn(); 2020 return; 2021 } 2022 2023 if (!FuncInfo.CanLowerReturn) { 2024 unsigned DemoteReg = FuncInfo.DemoteRegister; 2025 const Function *F = I.getParent()->getParent(); 2026 2027 // Emit a store of the return value through the virtual register. 2028 // Leave Outs empty so that LowerReturn won't try to load return 2029 // registers the usual way. 2030 SmallVector<EVT, 1> PtrValueVTs; 2031 ComputeValueVTs(TLI, DL, 2032 PointerType::get(F->getContext(), 2033 DAG.getDataLayout().getAllocaAddrSpace()), 2034 PtrValueVTs); 2035 2036 SDValue RetPtr = 2037 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2038 SDValue RetOp = getValue(I.getOperand(0)); 2039 2040 SmallVector<EVT, 4> ValueVTs, MemVTs; 2041 SmallVector<uint64_t, 4> Offsets; 2042 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2043 &Offsets, 0); 2044 unsigned NumValues = ValueVTs.size(); 2045 2046 SmallVector<SDValue, 4> Chains(NumValues); 2047 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2048 for (unsigned i = 0; i != NumValues; ++i) { 2049 // An aggregate return value cannot wrap around the address space, so 2050 // offsets to its parts don't wrap either. 2051 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2052 TypeSize::Fixed(Offsets[i])); 2053 2054 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2055 if (MemVTs[i] != ValueVTs[i]) 2056 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2057 Chains[i] = DAG.getStore( 2058 Chain, getCurSDLoc(), Val, 2059 // FIXME: better loc info would be nice. 2060 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2061 commonAlignment(BaseAlign, Offsets[i])); 2062 } 2063 2064 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2065 MVT::Other, Chains); 2066 } else if (I.getNumOperands() != 0) { 2067 SmallVector<EVT, 4> ValueVTs; 2068 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2069 unsigned NumValues = ValueVTs.size(); 2070 if (NumValues) { 2071 SDValue RetOp = getValue(I.getOperand(0)); 2072 2073 const Function *F = I.getParent()->getParent(); 2074 2075 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2076 I.getOperand(0)->getType(), F->getCallingConv(), 2077 /*IsVarArg*/ false, DL); 2078 2079 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2080 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2081 ExtendKind = ISD::SIGN_EXTEND; 2082 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2083 ExtendKind = ISD::ZERO_EXTEND; 2084 2085 LLVMContext &Context = F->getContext(); 2086 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2087 2088 for (unsigned j = 0; j != NumValues; ++j) { 2089 EVT VT = ValueVTs[j]; 2090 2091 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2092 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2093 2094 CallingConv::ID CC = F->getCallingConv(); 2095 2096 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2097 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2098 SmallVector<SDValue, 4> Parts(NumParts); 2099 getCopyToParts(DAG, getCurSDLoc(), 2100 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2101 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2102 2103 // 'inreg' on function refers to return value 2104 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2105 if (RetInReg) 2106 Flags.setInReg(); 2107 2108 if (I.getOperand(0)->getType()->isPointerTy()) { 2109 Flags.setPointer(); 2110 Flags.setPointerAddrSpace( 2111 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2112 } 2113 2114 if (NeedsRegBlock) { 2115 Flags.setInConsecutiveRegs(); 2116 if (j == NumValues - 1) 2117 Flags.setInConsecutiveRegsLast(); 2118 } 2119 2120 // Propagate extension type if any 2121 if (ExtendKind == ISD::SIGN_EXTEND) 2122 Flags.setSExt(); 2123 else if (ExtendKind == ISD::ZERO_EXTEND) 2124 Flags.setZExt(); 2125 2126 for (unsigned i = 0; i < NumParts; ++i) { 2127 Outs.push_back(ISD::OutputArg(Flags, 2128 Parts[i].getValueType().getSimpleVT(), 2129 VT, /*isfixed=*/true, 0, 0)); 2130 OutVals.push_back(Parts[i]); 2131 } 2132 } 2133 } 2134 } 2135 2136 // Push in swifterror virtual register as the last element of Outs. This makes 2137 // sure swifterror virtual register will be returned in the swifterror 2138 // physical register. 2139 const Function *F = I.getParent()->getParent(); 2140 if (TLI.supportSwiftError() && 2141 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2142 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2143 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2144 Flags.setSwiftError(); 2145 Outs.push_back(ISD::OutputArg( 2146 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2147 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2148 // Create SDNode for the swifterror virtual register. 2149 OutVals.push_back( 2150 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2151 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2152 EVT(TLI.getPointerTy(DL)))); 2153 } 2154 2155 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2156 CallingConv::ID CallConv = 2157 DAG.getMachineFunction().getFunction().getCallingConv(); 2158 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2159 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2160 2161 // Verify that the target's LowerReturn behaved as expected. 2162 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2163 "LowerReturn didn't return a valid chain!"); 2164 2165 // Update the DAG with the new chain value resulting from return lowering. 2166 DAG.setRoot(Chain); 2167 } 2168 2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2170 /// created for it, emit nodes to copy the value into the virtual 2171 /// registers. 2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2173 // Skip empty types 2174 if (V->getType()->isEmptyTy()) 2175 return; 2176 2177 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2178 if (VMI != FuncInfo.ValueMap.end()) { 2179 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2180 "Unused value assigned virtual registers!"); 2181 CopyValueToVirtualRegister(V, VMI->second); 2182 } 2183 } 2184 2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2186 /// the current basic block, add it to ValueMap now so that we'll get a 2187 /// CopyTo/FromReg. 2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2189 // No need to export constants. 2190 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2191 2192 // Already exported? 2193 if (FuncInfo.isExportedInst(V)) return; 2194 2195 Register Reg = FuncInfo.InitializeRegForValue(V); 2196 CopyValueToVirtualRegister(V, Reg); 2197 } 2198 2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2200 const BasicBlock *FromBB) { 2201 // The operands of the setcc have to be in this block. We don't know 2202 // how to export them from some other block. 2203 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2204 // Can export from current BB. 2205 if (VI->getParent() == FromBB) 2206 return true; 2207 2208 // Is already exported, noop. 2209 return FuncInfo.isExportedInst(V); 2210 } 2211 2212 // If this is an argument, we can export it if the BB is the entry block or 2213 // if it is already exported. 2214 if (isa<Argument>(V)) { 2215 if (FromBB->isEntryBlock()) 2216 return true; 2217 2218 // Otherwise, can only export this if it is already exported. 2219 return FuncInfo.isExportedInst(V); 2220 } 2221 2222 // Otherwise, constants can always be exported. 2223 return true; 2224 } 2225 2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2227 BranchProbability 2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2229 const MachineBasicBlock *Dst) const { 2230 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2231 const BasicBlock *SrcBB = Src->getBasicBlock(); 2232 const BasicBlock *DstBB = Dst->getBasicBlock(); 2233 if (!BPI) { 2234 // If BPI is not available, set the default probability as 1 / N, where N is 2235 // the number of successors. 2236 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2237 return BranchProbability(1, SuccSize); 2238 } 2239 return BPI->getEdgeProbability(SrcBB, DstBB); 2240 } 2241 2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2243 MachineBasicBlock *Dst, 2244 BranchProbability Prob) { 2245 if (!FuncInfo.BPI) 2246 Src->addSuccessorWithoutProb(Dst); 2247 else { 2248 if (Prob.isUnknown()) 2249 Prob = getEdgeProbability(Src, Dst); 2250 Src->addSuccessor(Dst, Prob); 2251 } 2252 } 2253 2254 static bool InBlock(const Value *V, const BasicBlock *BB) { 2255 if (const Instruction *I = dyn_cast<Instruction>(V)) 2256 return I->getParent() == BB; 2257 return true; 2258 } 2259 2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2261 /// This function emits a branch and is used at the leaves of an OR or an 2262 /// AND operator tree. 2263 void 2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2265 MachineBasicBlock *TBB, 2266 MachineBasicBlock *FBB, 2267 MachineBasicBlock *CurBB, 2268 MachineBasicBlock *SwitchBB, 2269 BranchProbability TProb, 2270 BranchProbability FProb, 2271 bool InvertCond) { 2272 const BasicBlock *BB = CurBB->getBasicBlock(); 2273 2274 // If the leaf of the tree is a comparison, merge the condition into 2275 // the caseblock. 2276 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2277 // The operands of the cmp have to be in this block. We don't know 2278 // how to export them from some other block. If this is the first block 2279 // of the sequence, no exporting is needed. 2280 if (CurBB == SwitchBB || 2281 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2282 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2283 ISD::CondCode Condition; 2284 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2285 ICmpInst::Predicate Pred = 2286 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2287 Condition = getICmpCondCode(Pred); 2288 } else { 2289 const FCmpInst *FC = cast<FCmpInst>(Cond); 2290 FCmpInst::Predicate Pred = 2291 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2292 Condition = getFCmpCondCode(Pred); 2293 if (TM.Options.NoNaNsFPMath) 2294 Condition = getFCmpCodeWithoutNaN(Condition); 2295 } 2296 2297 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2298 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2299 SL->SwitchCases.push_back(CB); 2300 return; 2301 } 2302 } 2303 2304 // Create a CaseBlock record representing this branch. 2305 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2306 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2307 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2308 SL->SwitchCases.push_back(CB); 2309 } 2310 2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2312 MachineBasicBlock *TBB, 2313 MachineBasicBlock *FBB, 2314 MachineBasicBlock *CurBB, 2315 MachineBasicBlock *SwitchBB, 2316 Instruction::BinaryOps Opc, 2317 BranchProbability TProb, 2318 BranchProbability FProb, 2319 bool InvertCond) { 2320 // Skip over not part of the tree and remember to invert op and operands at 2321 // next level. 2322 Value *NotCond; 2323 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2324 InBlock(NotCond, CurBB->getBasicBlock())) { 2325 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2326 !InvertCond); 2327 return; 2328 } 2329 2330 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2331 const Value *BOpOp0, *BOpOp1; 2332 // Compute the effective opcode for Cond, taking into account whether it needs 2333 // to be inverted, e.g. 2334 // and (not (or A, B)), C 2335 // gets lowered as 2336 // and (and (not A, not B), C) 2337 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2338 if (BOp) { 2339 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2340 ? Instruction::And 2341 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2342 ? Instruction::Or 2343 : (Instruction::BinaryOps)0); 2344 if (InvertCond) { 2345 if (BOpc == Instruction::And) 2346 BOpc = Instruction::Or; 2347 else if (BOpc == Instruction::Or) 2348 BOpc = Instruction::And; 2349 } 2350 } 2351 2352 // If this node is not part of the or/and tree, emit it as a branch. 2353 // Note that all nodes in the tree should have same opcode. 2354 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2355 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2356 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2357 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2358 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2359 TProb, FProb, InvertCond); 2360 return; 2361 } 2362 2363 // Create TmpBB after CurBB. 2364 MachineFunction::iterator BBI(CurBB); 2365 MachineFunction &MF = DAG.getMachineFunction(); 2366 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2367 CurBB->getParent()->insert(++BBI, TmpBB); 2368 2369 if (Opc == Instruction::Or) { 2370 // Codegen X | Y as: 2371 // BB1: 2372 // jmp_if_X TBB 2373 // jmp TmpBB 2374 // TmpBB: 2375 // jmp_if_Y TBB 2376 // jmp FBB 2377 // 2378 2379 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2380 // The requirement is that 2381 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2382 // = TrueProb for original BB. 2383 // Assuming the original probabilities are A and B, one choice is to set 2384 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2385 // A/(1+B) and 2B/(1+B). This choice assumes that 2386 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2387 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2388 // TmpBB, but the math is more complicated. 2389 2390 auto NewTrueProb = TProb / 2; 2391 auto NewFalseProb = TProb / 2 + FProb; 2392 // Emit the LHS condition. 2393 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2394 NewFalseProb, InvertCond); 2395 2396 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2397 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2398 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2399 // Emit the RHS condition into TmpBB. 2400 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2401 Probs[1], InvertCond); 2402 } else { 2403 assert(Opc == Instruction::And && "Unknown merge op!"); 2404 // Codegen X & Y as: 2405 // BB1: 2406 // jmp_if_X TmpBB 2407 // jmp FBB 2408 // TmpBB: 2409 // jmp_if_Y TBB 2410 // jmp FBB 2411 // 2412 // This requires creation of TmpBB after CurBB. 2413 2414 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2415 // The requirement is that 2416 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2417 // = FalseProb for original BB. 2418 // Assuming the original probabilities are A and B, one choice is to set 2419 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2420 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2421 // TrueProb for BB1 * FalseProb for TmpBB. 2422 2423 auto NewTrueProb = TProb + FProb / 2; 2424 auto NewFalseProb = FProb / 2; 2425 // Emit the LHS condition. 2426 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2427 NewFalseProb, InvertCond); 2428 2429 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2430 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2431 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2432 // Emit the RHS condition into TmpBB. 2433 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2434 Probs[1], InvertCond); 2435 } 2436 } 2437 2438 /// If the set of cases should be emitted as a series of branches, return true. 2439 /// If we should emit this as a bunch of and/or'd together conditions, return 2440 /// false. 2441 bool 2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2443 if (Cases.size() != 2) return true; 2444 2445 // If this is two comparisons of the same values or'd or and'd together, they 2446 // will get folded into a single comparison, so don't emit two blocks. 2447 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2448 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2449 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2450 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2451 return false; 2452 } 2453 2454 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2455 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2456 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2457 Cases[0].CC == Cases[1].CC && 2458 isa<Constant>(Cases[0].CmpRHS) && 2459 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2460 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2461 return false; 2462 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2463 return false; 2464 } 2465 2466 return true; 2467 } 2468 2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2470 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2471 2472 // Update machine-CFG edges. 2473 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2474 2475 if (I.isUnconditional()) { 2476 // Update machine-CFG edges. 2477 BrMBB->addSuccessor(Succ0MBB); 2478 2479 // If this is not a fall-through branch or optimizations are switched off, 2480 // emit the branch. 2481 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) { 2482 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2483 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2484 setValue(&I, Br); 2485 DAG.setRoot(Br); 2486 } 2487 2488 return; 2489 } 2490 2491 // If this condition is one of the special cases we handle, do special stuff 2492 // now. 2493 const Value *CondVal = I.getCondition(); 2494 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2495 2496 // If this is a series of conditions that are or'd or and'd together, emit 2497 // this as a sequence of branches instead of setcc's with and/or operations. 2498 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2499 // unpredictable branches, and vector extracts because those jumps are likely 2500 // expensive for any target), this should improve performance. 2501 // For example, instead of something like: 2502 // cmp A, B 2503 // C = seteq 2504 // cmp D, E 2505 // F = setle 2506 // or C, F 2507 // jnz foo 2508 // Emit: 2509 // cmp A, B 2510 // je foo 2511 // cmp D, E 2512 // jle foo 2513 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2514 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2515 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2516 Value *Vec; 2517 const Value *BOp0, *BOp1; 2518 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2519 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2520 Opcode = Instruction::And; 2521 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2522 Opcode = Instruction::Or; 2523 2524 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2525 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2526 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2527 getEdgeProbability(BrMBB, Succ0MBB), 2528 getEdgeProbability(BrMBB, Succ1MBB), 2529 /*InvertCond=*/false); 2530 // If the compares in later blocks need to use values not currently 2531 // exported from this block, export them now. This block should always 2532 // be the first entry. 2533 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2534 2535 // Allow some cases to be rejected. 2536 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2537 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2538 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2539 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2540 } 2541 2542 // Emit the branch for this block. 2543 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2544 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2545 return; 2546 } 2547 2548 // Okay, we decided not to do this, remove any inserted MBB's and clear 2549 // SwitchCases. 2550 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2551 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2552 2553 SL->SwitchCases.clear(); 2554 } 2555 } 2556 2557 // Create a CaseBlock record representing this branch. 2558 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2559 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2560 2561 // Use visitSwitchCase to actually insert the fast branch sequence for this 2562 // cond branch. 2563 visitSwitchCase(CB, BrMBB); 2564 } 2565 2566 /// visitSwitchCase - Emits the necessary code to represent a single node in 2567 /// the binary search tree resulting from lowering a switch instruction. 2568 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2569 MachineBasicBlock *SwitchBB) { 2570 SDValue Cond; 2571 SDValue CondLHS = getValue(CB.CmpLHS); 2572 SDLoc dl = CB.DL; 2573 2574 if (CB.CC == ISD::SETTRUE) { 2575 // Branch or fall through to TrueBB. 2576 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2577 SwitchBB->normalizeSuccProbs(); 2578 if (CB.TrueBB != NextBlock(SwitchBB)) { 2579 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2580 DAG.getBasicBlock(CB.TrueBB))); 2581 } 2582 return; 2583 } 2584 2585 auto &TLI = DAG.getTargetLoweringInfo(); 2586 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2587 2588 // Build the setcc now. 2589 if (!CB.CmpMHS) { 2590 // Fold "(X == true)" to X and "(X == false)" to !X to 2591 // handle common cases produced by branch lowering. 2592 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2593 CB.CC == ISD::SETEQ) 2594 Cond = CondLHS; 2595 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2596 CB.CC == ISD::SETEQ) { 2597 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2598 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2599 } else { 2600 SDValue CondRHS = getValue(CB.CmpRHS); 2601 2602 // If a pointer's DAG type is larger than its memory type then the DAG 2603 // values are zero-extended. This breaks signed comparisons so truncate 2604 // back to the underlying type before doing the compare. 2605 if (CondLHS.getValueType() != MemVT) { 2606 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2607 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2608 } 2609 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2610 } 2611 } else { 2612 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2613 2614 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2615 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2616 2617 SDValue CmpOp = getValue(CB.CmpMHS); 2618 EVT VT = CmpOp.getValueType(); 2619 2620 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2621 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2622 ISD::SETLE); 2623 } else { 2624 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2625 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2626 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2627 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2628 } 2629 } 2630 2631 // Update successor info 2632 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2633 // TrueBB and FalseBB are always different unless the incoming IR is 2634 // degenerate. This only happens when running llc on weird IR. 2635 if (CB.TrueBB != CB.FalseBB) 2636 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2637 SwitchBB->normalizeSuccProbs(); 2638 2639 // If the lhs block is the next block, invert the condition so that we can 2640 // fall through to the lhs instead of the rhs block. 2641 if (CB.TrueBB == NextBlock(SwitchBB)) { 2642 std::swap(CB.TrueBB, CB.FalseBB); 2643 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2644 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2645 } 2646 2647 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2648 MVT::Other, getControlRoot(), Cond, 2649 DAG.getBasicBlock(CB.TrueBB)); 2650 2651 setValue(CurInst, BrCond); 2652 2653 // Insert the false branch. Do this even if it's a fall through branch, 2654 // this makes it easier to do DAG optimizations which require inverting 2655 // the branch condition. 2656 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2657 DAG.getBasicBlock(CB.FalseBB)); 2658 2659 DAG.setRoot(BrCond); 2660 } 2661 2662 /// visitJumpTable - Emit JumpTable node in the current MBB 2663 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2664 // Emit the code for the jump table 2665 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2666 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2667 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2668 JT.Reg, PTy); 2669 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2670 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2671 MVT::Other, Index.getValue(1), 2672 Table, Index); 2673 DAG.setRoot(BrJumpTable); 2674 } 2675 2676 /// visitJumpTableHeader - This function emits necessary code to produce index 2677 /// in the JumpTable from switch case. 2678 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2679 JumpTableHeader &JTH, 2680 MachineBasicBlock *SwitchBB) { 2681 SDLoc dl = getCurSDLoc(); 2682 2683 // Subtract the lowest switch case value from the value being switched on. 2684 SDValue SwitchOp = getValue(JTH.SValue); 2685 EVT VT = SwitchOp.getValueType(); 2686 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2687 DAG.getConstant(JTH.First, dl, VT)); 2688 2689 // The SDNode we just created, which holds the value being switched on minus 2690 // the smallest case value, needs to be copied to a virtual register so it 2691 // can be used as an index into the jump table in a subsequent basic block. 2692 // This value may be smaller or larger than the target's pointer type, and 2693 // therefore require extension or truncating. 2694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2695 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2696 2697 unsigned JumpTableReg = 2698 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2699 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2700 JumpTableReg, SwitchOp); 2701 JT.Reg = JumpTableReg; 2702 2703 if (!JTH.FallthroughUnreachable) { 2704 // Emit the range check for the jump table, and branch to the default block 2705 // for the switch statement if the value being switched on exceeds the 2706 // largest case in the switch. 2707 SDValue CMP = DAG.getSetCC( 2708 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2709 Sub.getValueType()), 2710 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2711 2712 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2713 MVT::Other, CopyTo, CMP, 2714 DAG.getBasicBlock(JT.Default)); 2715 2716 // Avoid emitting unnecessary branches to the next block. 2717 if (JT.MBB != NextBlock(SwitchBB)) 2718 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2719 DAG.getBasicBlock(JT.MBB)); 2720 2721 DAG.setRoot(BrCond); 2722 } else { 2723 // Avoid emitting unnecessary branches to the next block. 2724 if (JT.MBB != NextBlock(SwitchBB)) 2725 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2726 DAG.getBasicBlock(JT.MBB))); 2727 else 2728 DAG.setRoot(CopyTo); 2729 } 2730 } 2731 2732 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2733 /// variable if there exists one. 2734 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2735 SDValue &Chain) { 2736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2737 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2738 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2739 MachineFunction &MF = DAG.getMachineFunction(); 2740 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2741 MachineSDNode *Node = 2742 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2743 if (Global) { 2744 MachinePointerInfo MPInfo(Global); 2745 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2746 MachineMemOperand::MODereferenceable; 2747 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2748 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2749 DAG.setNodeMemRefs(Node, {MemRef}); 2750 } 2751 if (PtrTy != PtrMemTy) 2752 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2753 return SDValue(Node, 0); 2754 } 2755 2756 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2757 /// tail spliced into a stack protector check success bb. 2758 /// 2759 /// For a high level explanation of how this fits into the stack protector 2760 /// generation see the comment on the declaration of class 2761 /// StackProtectorDescriptor. 2762 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2763 MachineBasicBlock *ParentBB) { 2764 2765 // First create the loads to the guard/stack slot for the comparison. 2766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2767 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2768 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2769 2770 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2771 int FI = MFI.getStackProtectorIndex(); 2772 2773 SDValue Guard; 2774 SDLoc dl = getCurSDLoc(); 2775 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2776 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2777 Align Align = 2778 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2779 2780 // Generate code to load the content of the guard slot. 2781 SDValue GuardVal = DAG.getLoad( 2782 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2783 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2784 MachineMemOperand::MOVolatile); 2785 2786 if (TLI.useStackGuardXorFP()) 2787 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2788 2789 // Retrieve guard check function, nullptr if instrumentation is inlined. 2790 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2791 // The target provides a guard check function to validate the guard value. 2792 // Generate a call to that function with the content of the guard slot as 2793 // argument. 2794 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2795 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2796 2797 TargetLowering::ArgListTy Args; 2798 TargetLowering::ArgListEntry Entry; 2799 Entry.Node = GuardVal; 2800 Entry.Ty = FnTy->getParamType(0); 2801 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2802 Entry.IsInReg = true; 2803 Args.push_back(Entry); 2804 2805 TargetLowering::CallLoweringInfo CLI(DAG); 2806 CLI.setDebugLoc(getCurSDLoc()) 2807 .setChain(DAG.getEntryNode()) 2808 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2809 getValue(GuardCheckFn), std::move(Args)); 2810 2811 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2812 DAG.setRoot(Result.second); 2813 return; 2814 } 2815 2816 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2817 // Otherwise, emit a volatile load to retrieve the stack guard value. 2818 SDValue Chain = DAG.getEntryNode(); 2819 if (TLI.useLoadStackGuardNode()) { 2820 Guard = getLoadStackGuard(DAG, dl, Chain); 2821 } else { 2822 const Value *IRGuard = TLI.getSDagStackGuard(M); 2823 SDValue GuardPtr = getValue(IRGuard); 2824 2825 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2826 MachinePointerInfo(IRGuard, 0), Align, 2827 MachineMemOperand::MOVolatile); 2828 } 2829 2830 // Perform the comparison via a getsetcc. 2831 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2832 *DAG.getContext(), 2833 Guard.getValueType()), 2834 Guard, GuardVal, ISD::SETNE); 2835 2836 // If the guard/stackslot do not equal, branch to failure MBB. 2837 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2838 MVT::Other, GuardVal.getOperand(0), 2839 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2840 // Otherwise branch to success MBB. 2841 SDValue Br = DAG.getNode(ISD::BR, dl, 2842 MVT::Other, BrCond, 2843 DAG.getBasicBlock(SPD.getSuccessMBB())); 2844 2845 DAG.setRoot(Br); 2846 } 2847 2848 /// Codegen the failure basic block for a stack protector check. 2849 /// 2850 /// A failure stack protector machine basic block consists simply of a call to 2851 /// __stack_chk_fail(). 2852 /// 2853 /// For a high level explanation of how this fits into the stack protector 2854 /// generation see the comment on the declaration of class 2855 /// StackProtectorDescriptor. 2856 void 2857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2859 TargetLowering::MakeLibCallOptions CallOptions; 2860 CallOptions.setDiscardResult(true); 2861 SDValue Chain = 2862 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2863 std::nullopt, CallOptions, getCurSDLoc()) 2864 .second; 2865 // On PS4/PS5, the "return address" must still be within the calling 2866 // function, even if it's at the very end, so emit an explicit TRAP here. 2867 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2868 if (TM.getTargetTriple().isPS()) 2869 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2870 // WebAssembly needs an unreachable instruction after a non-returning call, 2871 // because the function return type can be different from __stack_chk_fail's 2872 // return type (void). 2873 if (TM.getTargetTriple().isWasm()) 2874 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2875 2876 DAG.setRoot(Chain); 2877 } 2878 2879 /// visitBitTestHeader - This function emits necessary code to produce value 2880 /// suitable for "bit tests" 2881 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2882 MachineBasicBlock *SwitchBB) { 2883 SDLoc dl = getCurSDLoc(); 2884 2885 // Subtract the minimum value. 2886 SDValue SwitchOp = getValue(B.SValue); 2887 EVT VT = SwitchOp.getValueType(); 2888 SDValue RangeSub = 2889 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2890 2891 // Determine the type of the test operands. 2892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2893 bool UsePtrType = false; 2894 if (!TLI.isTypeLegal(VT)) { 2895 UsePtrType = true; 2896 } else { 2897 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2898 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2899 // Switch table case range are encoded into series of masks. 2900 // Just use pointer type, it's guaranteed to fit. 2901 UsePtrType = true; 2902 break; 2903 } 2904 } 2905 SDValue Sub = RangeSub; 2906 if (UsePtrType) { 2907 VT = TLI.getPointerTy(DAG.getDataLayout()); 2908 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2909 } 2910 2911 B.RegVT = VT.getSimpleVT(); 2912 B.Reg = FuncInfo.CreateReg(B.RegVT); 2913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2914 2915 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2916 2917 if (!B.FallthroughUnreachable) 2918 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2919 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2920 SwitchBB->normalizeSuccProbs(); 2921 2922 SDValue Root = CopyTo; 2923 if (!B.FallthroughUnreachable) { 2924 // Conditional branch to the default block. 2925 SDValue RangeCmp = DAG.getSetCC(dl, 2926 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2927 RangeSub.getValueType()), 2928 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2929 ISD::SETUGT); 2930 2931 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2932 DAG.getBasicBlock(B.Default)); 2933 } 2934 2935 // Avoid emitting unnecessary branches to the next block. 2936 if (MBB != NextBlock(SwitchBB)) 2937 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2938 2939 DAG.setRoot(Root); 2940 } 2941 2942 /// visitBitTestCase - this function produces one "bit test" 2943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2944 MachineBasicBlock* NextMBB, 2945 BranchProbability BranchProbToNext, 2946 unsigned Reg, 2947 BitTestCase &B, 2948 MachineBasicBlock *SwitchBB) { 2949 SDLoc dl = getCurSDLoc(); 2950 MVT VT = BB.RegVT; 2951 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2952 SDValue Cmp; 2953 unsigned PopCount = llvm::popcount(B.Mask); 2954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2955 if (PopCount == 1) { 2956 // Testing for a single bit; just compare the shift count with what it 2957 // would need to be to shift a 1 bit in that position. 2958 Cmp = DAG.getSetCC( 2959 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2960 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2961 ISD::SETEQ); 2962 } else if (PopCount == BB.Range) { 2963 // There is only one zero bit in the range, test for it directly. 2964 Cmp = DAG.getSetCC( 2965 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2966 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2967 } else { 2968 // Make desired shift 2969 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2970 DAG.getConstant(1, dl, VT), ShiftOp); 2971 2972 // Emit bit tests and jumps 2973 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2974 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2975 Cmp = DAG.getSetCC( 2976 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2977 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2978 } 2979 2980 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2981 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2982 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2983 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2984 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2985 // one as they are relative probabilities (and thus work more like weights), 2986 // and hence we need to normalize them to let the sum of them become one. 2987 SwitchBB->normalizeSuccProbs(); 2988 2989 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2990 MVT::Other, getControlRoot(), 2991 Cmp, DAG.getBasicBlock(B.TargetBB)); 2992 2993 // Avoid emitting unnecessary branches to the next block. 2994 if (NextMBB != NextBlock(SwitchBB)) 2995 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2996 DAG.getBasicBlock(NextMBB)); 2997 2998 DAG.setRoot(BrAnd); 2999 } 3000 3001 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3002 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3003 3004 // Retrieve successors. Look through artificial IR level blocks like 3005 // catchswitch for successors. 3006 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3007 const BasicBlock *EHPadBB = I.getSuccessor(1); 3008 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3009 3010 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3011 // have to do anything here to lower funclet bundles. 3012 assert(!I.hasOperandBundlesOtherThan( 3013 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3014 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3015 LLVMContext::OB_cfguardtarget, 3016 LLVMContext::OB_clang_arc_attachedcall}) && 3017 "Cannot lower invokes with arbitrary operand bundles yet!"); 3018 3019 const Value *Callee(I.getCalledOperand()); 3020 const Function *Fn = dyn_cast<Function>(Callee); 3021 if (isa<InlineAsm>(Callee)) 3022 visitInlineAsm(I, EHPadBB); 3023 else if (Fn && Fn->isIntrinsic()) { 3024 switch (Fn->getIntrinsicID()) { 3025 default: 3026 llvm_unreachable("Cannot invoke this intrinsic"); 3027 case Intrinsic::donothing: 3028 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3029 case Intrinsic::seh_try_begin: 3030 case Intrinsic::seh_scope_begin: 3031 case Intrinsic::seh_try_end: 3032 case Intrinsic::seh_scope_end: 3033 if (EHPadMBB) 3034 // a block referenced by EH table 3035 // so dtor-funclet not removed by opts 3036 EHPadMBB->setMachineBlockAddressTaken(); 3037 break; 3038 case Intrinsic::experimental_patchpoint_void: 3039 case Intrinsic::experimental_patchpoint_i64: 3040 visitPatchpoint(I, EHPadBB); 3041 break; 3042 case Intrinsic::experimental_gc_statepoint: 3043 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3044 break; 3045 case Intrinsic::wasm_rethrow: { 3046 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3047 // special because it can be invoked, so we manually lower it to a DAG 3048 // node here. 3049 SmallVector<SDValue, 8> Ops; 3050 Ops.push_back(getRoot()); // inchain 3051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3052 Ops.push_back( 3053 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3054 TLI.getPointerTy(DAG.getDataLayout()))); 3055 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3056 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3057 break; 3058 } 3059 } 3060 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3061 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3062 // Eventually we will support lowering the @llvm.experimental.deoptimize 3063 // intrinsic, and right now there are no plans to support other intrinsics 3064 // with deopt state. 3065 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3066 } else { 3067 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3068 } 3069 3070 // If the value of the invoke is used outside of its defining block, make it 3071 // available as a virtual register. 3072 // We already took care of the exported value for the statepoint instruction 3073 // during call to the LowerStatepoint. 3074 if (!isa<GCStatepointInst>(I)) { 3075 CopyToExportRegsIfNeeded(&I); 3076 } 3077 3078 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3079 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3080 BranchProbability EHPadBBProb = 3081 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3082 : BranchProbability::getZero(); 3083 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3084 3085 // Update successor info. 3086 addSuccessorWithProb(InvokeMBB, Return); 3087 for (auto &UnwindDest : UnwindDests) { 3088 UnwindDest.first->setIsEHPad(); 3089 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3090 } 3091 InvokeMBB->normalizeSuccProbs(); 3092 3093 // Drop into normal successor. 3094 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3095 DAG.getBasicBlock(Return))); 3096 } 3097 3098 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3099 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3100 3101 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3102 // have to do anything here to lower funclet bundles. 3103 assert(!I.hasOperandBundlesOtherThan( 3104 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3105 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3106 3107 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3108 visitInlineAsm(I); 3109 CopyToExportRegsIfNeeded(&I); 3110 3111 // Retrieve successors. 3112 SmallPtrSet<BasicBlock *, 8> Dests; 3113 Dests.insert(I.getDefaultDest()); 3114 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3115 3116 // Update successor info. 3117 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3118 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3119 BasicBlock *Dest = I.getIndirectDest(i); 3120 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3121 Target->setIsInlineAsmBrIndirectTarget(); 3122 Target->setMachineBlockAddressTaken(); 3123 Target->setLabelMustBeEmitted(); 3124 // Don't add duplicate machine successors. 3125 if (Dests.insert(Dest).second) 3126 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3127 } 3128 CallBrMBB->normalizeSuccProbs(); 3129 3130 // Drop into default successor. 3131 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3132 MVT::Other, getControlRoot(), 3133 DAG.getBasicBlock(Return))); 3134 } 3135 3136 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3137 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3138 } 3139 3140 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3141 assert(FuncInfo.MBB->isEHPad() && 3142 "Call to landingpad not in landing pad!"); 3143 3144 // If there aren't registers to copy the values into (e.g., during SjLj 3145 // exceptions), then don't bother to create these DAG nodes. 3146 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3147 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3148 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3149 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3150 return; 3151 3152 // If landingpad's return type is token type, we don't create DAG nodes 3153 // for its exception pointer and selector value. The extraction of exception 3154 // pointer or selector value from token type landingpads is not currently 3155 // supported. 3156 if (LP.getType()->isTokenTy()) 3157 return; 3158 3159 SmallVector<EVT, 2> ValueVTs; 3160 SDLoc dl = getCurSDLoc(); 3161 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3162 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3163 3164 // Get the two live-in registers as SDValues. The physregs have already been 3165 // copied into virtual registers. 3166 SDValue Ops[2]; 3167 if (FuncInfo.ExceptionPointerVirtReg) { 3168 Ops[0] = DAG.getZExtOrTrunc( 3169 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3170 FuncInfo.ExceptionPointerVirtReg, 3171 TLI.getPointerTy(DAG.getDataLayout())), 3172 dl, ValueVTs[0]); 3173 } else { 3174 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3175 } 3176 Ops[1] = DAG.getZExtOrTrunc( 3177 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3178 FuncInfo.ExceptionSelectorVirtReg, 3179 TLI.getPointerTy(DAG.getDataLayout())), 3180 dl, ValueVTs[1]); 3181 3182 // Merge into one. 3183 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3184 DAG.getVTList(ValueVTs), Ops); 3185 setValue(&LP, Res); 3186 } 3187 3188 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3189 MachineBasicBlock *Last) { 3190 // Update JTCases. 3191 for (JumpTableBlock &JTB : SL->JTCases) 3192 if (JTB.first.HeaderBB == First) 3193 JTB.first.HeaderBB = Last; 3194 3195 // Update BitTestCases. 3196 for (BitTestBlock &BTB : SL->BitTestCases) 3197 if (BTB.Parent == First) 3198 BTB.Parent = Last; 3199 } 3200 3201 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3202 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3203 3204 // Update machine-CFG edges with unique successors. 3205 SmallSet<BasicBlock*, 32> Done; 3206 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3207 BasicBlock *BB = I.getSuccessor(i); 3208 bool Inserted = Done.insert(BB).second; 3209 if (!Inserted) 3210 continue; 3211 3212 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3213 addSuccessorWithProb(IndirectBrMBB, Succ); 3214 } 3215 IndirectBrMBB->normalizeSuccProbs(); 3216 3217 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3218 MVT::Other, getControlRoot(), 3219 getValue(I.getAddress()))); 3220 } 3221 3222 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3223 if (!DAG.getTarget().Options.TrapUnreachable) 3224 return; 3225 3226 // We may be able to ignore unreachable behind a noreturn call. 3227 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3228 const BasicBlock &BB = *I.getParent(); 3229 if (&I != &BB.front()) { 3230 BasicBlock::const_iterator PredI = 3231 std::prev(BasicBlock::const_iterator(&I)); 3232 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3233 if (Call->doesNotReturn()) 3234 return; 3235 } 3236 } 3237 } 3238 3239 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3240 } 3241 3242 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3243 SDNodeFlags Flags; 3244 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3245 Flags.copyFMF(*FPOp); 3246 3247 SDValue Op = getValue(I.getOperand(0)); 3248 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3249 Op, Flags); 3250 setValue(&I, UnNodeValue); 3251 } 3252 3253 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3254 SDNodeFlags Flags; 3255 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3256 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3257 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3258 } 3259 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3260 Flags.setExact(ExactOp->isExact()); 3261 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3262 Flags.copyFMF(*FPOp); 3263 3264 SDValue Op1 = getValue(I.getOperand(0)); 3265 SDValue Op2 = getValue(I.getOperand(1)); 3266 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3267 Op1, Op2, Flags); 3268 setValue(&I, BinNodeValue); 3269 } 3270 3271 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3272 SDValue Op1 = getValue(I.getOperand(0)); 3273 SDValue Op2 = getValue(I.getOperand(1)); 3274 3275 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3276 Op1.getValueType(), DAG.getDataLayout()); 3277 3278 // Coerce the shift amount to the right type if we can. This exposes the 3279 // truncate or zext to optimization early. 3280 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3281 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3282 "Unexpected shift type"); 3283 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3284 } 3285 3286 bool nuw = false; 3287 bool nsw = false; 3288 bool exact = false; 3289 3290 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3291 3292 if (const OverflowingBinaryOperator *OFBinOp = 3293 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3294 nuw = OFBinOp->hasNoUnsignedWrap(); 3295 nsw = OFBinOp->hasNoSignedWrap(); 3296 } 3297 if (const PossiblyExactOperator *ExactOp = 3298 dyn_cast<const PossiblyExactOperator>(&I)) 3299 exact = ExactOp->isExact(); 3300 } 3301 SDNodeFlags Flags; 3302 Flags.setExact(exact); 3303 Flags.setNoSignedWrap(nsw); 3304 Flags.setNoUnsignedWrap(nuw); 3305 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3306 Flags); 3307 setValue(&I, Res); 3308 } 3309 3310 void SelectionDAGBuilder::visitSDiv(const User &I) { 3311 SDValue Op1 = getValue(I.getOperand(0)); 3312 SDValue Op2 = getValue(I.getOperand(1)); 3313 3314 SDNodeFlags Flags; 3315 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3316 cast<PossiblyExactOperator>(&I)->isExact()); 3317 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3318 Op2, Flags)); 3319 } 3320 3321 void SelectionDAGBuilder::visitICmp(const User &I) { 3322 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3323 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3324 predicate = IC->getPredicate(); 3325 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3326 predicate = ICmpInst::Predicate(IC->getPredicate()); 3327 SDValue Op1 = getValue(I.getOperand(0)); 3328 SDValue Op2 = getValue(I.getOperand(1)); 3329 ISD::CondCode Opcode = getICmpCondCode(predicate); 3330 3331 auto &TLI = DAG.getTargetLoweringInfo(); 3332 EVT MemVT = 3333 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3334 3335 // If a pointer's DAG type is larger than its memory type then the DAG values 3336 // are zero-extended. This breaks signed comparisons so truncate back to the 3337 // underlying type before doing the compare. 3338 if (Op1.getValueType() != MemVT) { 3339 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3340 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3341 } 3342 3343 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3344 I.getType()); 3345 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3346 } 3347 3348 void SelectionDAGBuilder::visitFCmp(const User &I) { 3349 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3350 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3351 predicate = FC->getPredicate(); 3352 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3353 predicate = FCmpInst::Predicate(FC->getPredicate()); 3354 SDValue Op1 = getValue(I.getOperand(0)); 3355 SDValue Op2 = getValue(I.getOperand(1)); 3356 3357 ISD::CondCode Condition = getFCmpCondCode(predicate); 3358 auto *FPMO = cast<FPMathOperator>(&I); 3359 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3360 Condition = getFCmpCodeWithoutNaN(Condition); 3361 3362 SDNodeFlags Flags; 3363 Flags.copyFMF(*FPMO); 3364 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3365 3366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3367 I.getType()); 3368 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3369 } 3370 3371 // Check if the condition of the select has one use or two users that are both 3372 // selects with the same condition. 3373 static bool hasOnlySelectUsers(const Value *Cond) { 3374 return llvm::all_of(Cond->users(), [](const Value *V) { 3375 return isa<SelectInst>(V); 3376 }); 3377 } 3378 3379 void SelectionDAGBuilder::visitSelect(const User &I) { 3380 SmallVector<EVT, 4> ValueVTs; 3381 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3382 ValueVTs); 3383 unsigned NumValues = ValueVTs.size(); 3384 if (NumValues == 0) return; 3385 3386 SmallVector<SDValue, 4> Values(NumValues); 3387 SDValue Cond = getValue(I.getOperand(0)); 3388 SDValue LHSVal = getValue(I.getOperand(1)); 3389 SDValue RHSVal = getValue(I.getOperand(2)); 3390 SmallVector<SDValue, 1> BaseOps(1, Cond); 3391 ISD::NodeType OpCode = 3392 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3393 3394 bool IsUnaryAbs = false; 3395 bool Negate = false; 3396 3397 SDNodeFlags Flags; 3398 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3399 Flags.copyFMF(*FPOp); 3400 3401 Flags.setUnpredictable( 3402 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3403 3404 // Min/max matching is only viable if all output VTs are the same. 3405 if (all_equal(ValueVTs)) { 3406 EVT VT = ValueVTs[0]; 3407 LLVMContext &Ctx = *DAG.getContext(); 3408 auto &TLI = DAG.getTargetLoweringInfo(); 3409 3410 // We care about the legality of the operation after it has been type 3411 // legalized. 3412 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3413 VT = TLI.getTypeToTransformTo(Ctx, VT); 3414 3415 // If the vselect is legal, assume we want to leave this as a vector setcc + 3416 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3417 // min/max is legal on the scalar type. 3418 bool UseScalarMinMax = VT.isVector() && 3419 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3420 3421 // ValueTracking's select pattern matching does not account for -0.0, 3422 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3423 // -0.0 is less than +0.0. 3424 Value *LHS, *RHS; 3425 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3426 ISD::NodeType Opc = ISD::DELETED_NODE; 3427 switch (SPR.Flavor) { 3428 case SPF_UMAX: Opc = ISD::UMAX; break; 3429 case SPF_UMIN: Opc = ISD::UMIN; break; 3430 case SPF_SMAX: Opc = ISD::SMAX; break; 3431 case SPF_SMIN: Opc = ISD::SMIN; break; 3432 case SPF_FMINNUM: 3433 switch (SPR.NaNBehavior) { 3434 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3435 case SPNB_RETURNS_NAN: break; 3436 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3437 case SPNB_RETURNS_ANY: 3438 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3439 (UseScalarMinMax && 3440 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3441 Opc = ISD::FMINNUM; 3442 break; 3443 } 3444 break; 3445 case SPF_FMAXNUM: 3446 switch (SPR.NaNBehavior) { 3447 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3448 case SPNB_RETURNS_NAN: break; 3449 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3450 case SPNB_RETURNS_ANY: 3451 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3452 (UseScalarMinMax && 3453 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3454 Opc = ISD::FMAXNUM; 3455 break; 3456 } 3457 break; 3458 case SPF_NABS: 3459 Negate = true; 3460 [[fallthrough]]; 3461 case SPF_ABS: 3462 IsUnaryAbs = true; 3463 Opc = ISD::ABS; 3464 break; 3465 default: break; 3466 } 3467 3468 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3469 (TLI.isOperationLegalOrCustom(Opc, VT) || 3470 (UseScalarMinMax && 3471 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3472 // If the underlying comparison instruction is used by any other 3473 // instruction, the consumed instructions won't be destroyed, so it is 3474 // not profitable to convert to a min/max. 3475 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3476 OpCode = Opc; 3477 LHSVal = getValue(LHS); 3478 RHSVal = getValue(RHS); 3479 BaseOps.clear(); 3480 } 3481 3482 if (IsUnaryAbs) { 3483 OpCode = Opc; 3484 LHSVal = getValue(LHS); 3485 BaseOps.clear(); 3486 } 3487 } 3488 3489 if (IsUnaryAbs) { 3490 for (unsigned i = 0; i != NumValues; ++i) { 3491 SDLoc dl = getCurSDLoc(); 3492 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3493 Values[i] = 3494 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3495 if (Negate) 3496 Values[i] = DAG.getNegative(Values[i], dl, VT); 3497 } 3498 } else { 3499 for (unsigned i = 0; i != NumValues; ++i) { 3500 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3501 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3502 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3503 Values[i] = DAG.getNode( 3504 OpCode, getCurSDLoc(), 3505 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3506 } 3507 } 3508 3509 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3510 DAG.getVTList(ValueVTs), Values)); 3511 } 3512 3513 void SelectionDAGBuilder::visitTrunc(const User &I) { 3514 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3515 SDValue N = getValue(I.getOperand(0)); 3516 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3517 I.getType()); 3518 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3519 } 3520 3521 void SelectionDAGBuilder::visitZExt(const User &I) { 3522 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3523 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3524 SDValue N = getValue(I.getOperand(0)); 3525 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3526 I.getType()); 3527 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3528 } 3529 3530 void SelectionDAGBuilder::visitSExt(const User &I) { 3531 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3532 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3533 SDValue N = getValue(I.getOperand(0)); 3534 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3535 I.getType()); 3536 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3537 } 3538 3539 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3540 // FPTrunc is never a no-op cast, no need to check 3541 SDValue N = getValue(I.getOperand(0)); 3542 SDLoc dl = getCurSDLoc(); 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3545 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3546 DAG.getTargetConstant( 3547 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3548 } 3549 3550 void SelectionDAGBuilder::visitFPExt(const User &I) { 3551 // FPExt is never a no-op cast, no need to check 3552 SDValue N = getValue(I.getOperand(0)); 3553 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3554 I.getType()); 3555 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3556 } 3557 3558 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3559 // FPToUI is never a no-op cast, no need to check 3560 SDValue N = getValue(I.getOperand(0)); 3561 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3562 I.getType()); 3563 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3564 } 3565 3566 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3567 // FPToSI is never a no-op cast, no need to check 3568 SDValue N = getValue(I.getOperand(0)); 3569 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3570 I.getType()); 3571 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3572 } 3573 3574 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3575 // UIToFP is never a no-op cast, no need to check 3576 SDValue N = getValue(I.getOperand(0)); 3577 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3578 I.getType()); 3579 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3580 } 3581 3582 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3583 // SIToFP is never a no-op cast, no need to check 3584 SDValue N = getValue(I.getOperand(0)); 3585 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3586 I.getType()); 3587 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3588 } 3589 3590 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3591 // What to do depends on the size of the integer and the size of the pointer. 3592 // We can either truncate, zero extend, or no-op, accordingly. 3593 SDValue N = getValue(I.getOperand(0)); 3594 auto &TLI = DAG.getTargetLoweringInfo(); 3595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3596 I.getType()); 3597 EVT PtrMemVT = 3598 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3599 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3600 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3601 setValue(&I, N); 3602 } 3603 3604 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3605 // What to do depends on the size of the integer and the size of the pointer. 3606 // We can either truncate, zero extend, or no-op, accordingly. 3607 SDValue N = getValue(I.getOperand(0)); 3608 auto &TLI = DAG.getTargetLoweringInfo(); 3609 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3610 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3611 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3612 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3613 setValue(&I, N); 3614 } 3615 3616 void SelectionDAGBuilder::visitBitCast(const User &I) { 3617 SDValue N = getValue(I.getOperand(0)); 3618 SDLoc dl = getCurSDLoc(); 3619 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3620 I.getType()); 3621 3622 // BitCast assures us that source and destination are the same size so this is 3623 // either a BITCAST or a no-op. 3624 if (DestVT != N.getValueType()) 3625 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3626 DestVT, N)); // convert types. 3627 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3628 // might fold any kind of constant expression to an integer constant and that 3629 // is not what we are looking for. Only recognize a bitcast of a genuine 3630 // constant integer as an opaque constant. 3631 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3632 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3633 /*isOpaque*/true)); 3634 else 3635 setValue(&I, N); // noop cast. 3636 } 3637 3638 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3639 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3640 const Value *SV = I.getOperand(0); 3641 SDValue N = getValue(SV); 3642 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3643 3644 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3645 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3646 3647 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3648 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3649 3650 setValue(&I, N); 3651 } 3652 3653 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3655 SDValue InVec = getValue(I.getOperand(0)); 3656 SDValue InVal = getValue(I.getOperand(1)); 3657 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3658 TLI.getVectorIdxTy(DAG.getDataLayout())); 3659 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3660 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3661 InVec, InVal, InIdx)); 3662 } 3663 3664 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3666 SDValue InVec = getValue(I.getOperand(0)); 3667 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3668 TLI.getVectorIdxTy(DAG.getDataLayout())); 3669 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3670 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3671 InVec, InIdx)); 3672 } 3673 3674 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3675 SDValue Src1 = getValue(I.getOperand(0)); 3676 SDValue Src2 = getValue(I.getOperand(1)); 3677 ArrayRef<int> Mask; 3678 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3679 Mask = SVI->getShuffleMask(); 3680 else 3681 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3682 SDLoc DL = getCurSDLoc(); 3683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3684 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3685 EVT SrcVT = Src1.getValueType(); 3686 3687 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3688 VT.isScalableVector()) { 3689 // Canonical splat form of first element of first input vector. 3690 SDValue FirstElt = 3691 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3692 DAG.getVectorIdxConstant(0, DL)); 3693 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3694 return; 3695 } 3696 3697 // For now, we only handle splats for scalable vectors. 3698 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3699 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3700 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3701 3702 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3703 unsigned MaskNumElts = Mask.size(); 3704 3705 if (SrcNumElts == MaskNumElts) { 3706 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3707 return; 3708 } 3709 3710 // Normalize the shuffle vector since mask and vector length don't match. 3711 if (SrcNumElts < MaskNumElts) { 3712 // Mask is longer than the source vectors. We can use concatenate vector to 3713 // make the mask and vectors lengths match. 3714 3715 if (MaskNumElts % SrcNumElts == 0) { 3716 // Mask length is a multiple of the source vector length. 3717 // Check if the shuffle is some kind of concatenation of the input 3718 // vectors. 3719 unsigned NumConcat = MaskNumElts / SrcNumElts; 3720 bool IsConcat = true; 3721 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3722 for (unsigned i = 0; i != MaskNumElts; ++i) { 3723 int Idx = Mask[i]; 3724 if (Idx < 0) 3725 continue; 3726 // Ensure the indices in each SrcVT sized piece are sequential and that 3727 // the same source is used for the whole piece. 3728 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3729 (ConcatSrcs[i / SrcNumElts] >= 0 && 3730 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3731 IsConcat = false; 3732 break; 3733 } 3734 // Remember which source this index came from. 3735 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3736 } 3737 3738 // The shuffle is concatenating multiple vectors together. Just emit 3739 // a CONCAT_VECTORS operation. 3740 if (IsConcat) { 3741 SmallVector<SDValue, 8> ConcatOps; 3742 for (auto Src : ConcatSrcs) { 3743 if (Src < 0) 3744 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3745 else if (Src == 0) 3746 ConcatOps.push_back(Src1); 3747 else 3748 ConcatOps.push_back(Src2); 3749 } 3750 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3751 return; 3752 } 3753 } 3754 3755 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3756 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3757 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3758 PaddedMaskNumElts); 3759 3760 // Pad both vectors with undefs to make them the same length as the mask. 3761 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3762 3763 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3764 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3765 MOps1[0] = Src1; 3766 MOps2[0] = Src2; 3767 3768 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3769 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3770 3771 // Readjust mask for new input vector length. 3772 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3773 for (unsigned i = 0; i != MaskNumElts; ++i) { 3774 int Idx = Mask[i]; 3775 if (Idx >= (int)SrcNumElts) 3776 Idx -= SrcNumElts - PaddedMaskNumElts; 3777 MappedOps[i] = Idx; 3778 } 3779 3780 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3781 3782 // If the concatenated vector was padded, extract a subvector with the 3783 // correct number of elements. 3784 if (MaskNumElts != PaddedMaskNumElts) 3785 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3786 DAG.getVectorIdxConstant(0, DL)); 3787 3788 setValue(&I, Result); 3789 return; 3790 } 3791 3792 if (SrcNumElts > MaskNumElts) { 3793 // Analyze the access pattern of the vector to see if we can extract 3794 // two subvectors and do the shuffle. 3795 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3796 bool CanExtract = true; 3797 for (int Idx : Mask) { 3798 unsigned Input = 0; 3799 if (Idx < 0) 3800 continue; 3801 3802 if (Idx >= (int)SrcNumElts) { 3803 Input = 1; 3804 Idx -= SrcNumElts; 3805 } 3806 3807 // If all the indices come from the same MaskNumElts sized portion of 3808 // the sources we can use extract. Also make sure the extract wouldn't 3809 // extract past the end of the source. 3810 int NewStartIdx = alignDown(Idx, MaskNumElts); 3811 if (NewStartIdx + MaskNumElts > SrcNumElts || 3812 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3813 CanExtract = false; 3814 // Make sure we always update StartIdx as we use it to track if all 3815 // elements are undef. 3816 StartIdx[Input] = NewStartIdx; 3817 } 3818 3819 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3820 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3821 return; 3822 } 3823 if (CanExtract) { 3824 // Extract appropriate subvector and generate a vector shuffle 3825 for (unsigned Input = 0; Input < 2; ++Input) { 3826 SDValue &Src = Input == 0 ? Src1 : Src2; 3827 if (StartIdx[Input] < 0) 3828 Src = DAG.getUNDEF(VT); 3829 else { 3830 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3831 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3832 } 3833 } 3834 3835 // Calculate new mask. 3836 SmallVector<int, 8> MappedOps(Mask); 3837 for (int &Idx : MappedOps) { 3838 if (Idx >= (int)SrcNumElts) 3839 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3840 else if (Idx >= 0) 3841 Idx -= StartIdx[0]; 3842 } 3843 3844 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3845 return; 3846 } 3847 } 3848 3849 // We can't use either concat vectors or extract subvectors so fall back to 3850 // replacing the shuffle with extract and build vector. 3851 // to insert and build vector. 3852 EVT EltVT = VT.getVectorElementType(); 3853 SmallVector<SDValue,8> Ops; 3854 for (int Idx : Mask) { 3855 SDValue Res; 3856 3857 if (Idx < 0) { 3858 Res = DAG.getUNDEF(EltVT); 3859 } else { 3860 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3861 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3862 3863 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3864 DAG.getVectorIdxConstant(Idx, DL)); 3865 } 3866 3867 Ops.push_back(Res); 3868 } 3869 3870 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3871 } 3872 3873 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3874 ArrayRef<unsigned> Indices = I.getIndices(); 3875 const Value *Op0 = I.getOperand(0); 3876 const Value *Op1 = I.getOperand(1); 3877 Type *AggTy = I.getType(); 3878 Type *ValTy = Op1->getType(); 3879 bool IntoUndef = isa<UndefValue>(Op0); 3880 bool FromUndef = isa<UndefValue>(Op1); 3881 3882 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3883 3884 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3885 SmallVector<EVT, 4> AggValueVTs; 3886 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3887 SmallVector<EVT, 4> ValValueVTs; 3888 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3889 3890 unsigned NumAggValues = AggValueVTs.size(); 3891 unsigned NumValValues = ValValueVTs.size(); 3892 SmallVector<SDValue, 4> Values(NumAggValues); 3893 3894 // Ignore an insertvalue that produces an empty object 3895 if (!NumAggValues) { 3896 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3897 return; 3898 } 3899 3900 SDValue Agg = getValue(Op0); 3901 unsigned i = 0; 3902 // Copy the beginning value(s) from the original aggregate. 3903 for (; i != LinearIndex; ++i) 3904 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3905 SDValue(Agg.getNode(), Agg.getResNo() + i); 3906 // Copy values from the inserted value(s). 3907 if (NumValValues) { 3908 SDValue Val = getValue(Op1); 3909 for (; i != LinearIndex + NumValValues; ++i) 3910 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3911 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3912 } 3913 // Copy remaining value(s) from the original aggregate. 3914 for (; i != NumAggValues; ++i) 3915 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3916 SDValue(Agg.getNode(), Agg.getResNo() + i); 3917 3918 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3919 DAG.getVTList(AggValueVTs), Values)); 3920 } 3921 3922 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3923 ArrayRef<unsigned> Indices = I.getIndices(); 3924 const Value *Op0 = I.getOperand(0); 3925 Type *AggTy = Op0->getType(); 3926 Type *ValTy = I.getType(); 3927 bool OutOfUndef = isa<UndefValue>(Op0); 3928 3929 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3930 3931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3932 SmallVector<EVT, 4> ValValueVTs; 3933 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3934 3935 unsigned NumValValues = ValValueVTs.size(); 3936 3937 // Ignore a extractvalue that produces an empty object 3938 if (!NumValValues) { 3939 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3940 return; 3941 } 3942 3943 SmallVector<SDValue, 4> Values(NumValValues); 3944 3945 SDValue Agg = getValue(Op0); 3946 // Copy out the selected value(s). 3947 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3948 Values[i - LinearIndex] = 3949 OutOfUndef ? 3950 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3951 SDValue(Agg.getNode(), Agg.getResNo() + i); 3952 3953 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3954 DAG.getVTList(ValValueVTs), Values)); 3955 } 3956 3957 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3958 Value *Op0 = I.getOperand(0); 3959 // Note that the pointer operand may be a vector of pointers. Take the scalar 3960 // element which holds a pointer. 3961 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3962 SDValue N = getValue(Op0); 3963 SDLoc dl = getCurSDLoc(); 3964 auto &TLI = DAG.getTargetLoweringInfo(); 3965 3966 // Normalize Vector GEP - all scalar operands should be converted to the 3967 // splat vector. 3968 bool IsVectorGEP = I.getType()->isVectorTy(); 3969 ElementCount VectorElementCount = 3970 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3971 : ElementCount::getFixed(0); 3972 3973 if (IsVectorGEP && !N.getValueType().isVector()) { 3974 LLVMContext &Context = *DAG.getContext(); 3975 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3976 N = DAG.getSplat(VT, dl, N); 3977 } 3978 3979 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3980 GTI != E; ++GTI) { 3981 const Value *Idx = GTI.getOperand(); 3982 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3983 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3984 if (Field) { 3985 // N = N + Offset 3986 uint64_t Offset = 3987 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3988 3989 // In an inbounds GEP with an offset that is nonnegative even when 3990 // interpreted as signed, assume there is no unsigned overflow. 3991 SDNodeFlags Flags; 3992 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3993 Flags.setNoUnsignedWrap(true); 3994 3995 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3996 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3997 } 3998 } else { 3999 // IdxSize is the width of the arithmetic according to IR semantics. 4000 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4001 // (and fix up the result later). 4002 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4003 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4004 TypeSize ElementSize = 4005 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4006 // We intentionally mask away the high bits here; ElementSize may not 4007 // fit in IdxTy. 4008 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4009 bool ElementScalable = ElementSize.isScalable(); 4010 4011 // If this is a scalar constant or a splat vector of constants, 4012 // handle it quickly. 4013 const auto *C = dyn_cast<Constant>(Idx); 4014 if (C && isa<VectorType>(C->getType())) 4015 C = C->getSplatValue(); 4016 4017 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4018 if (CI && CI->isZero()) 4019 continue; 4020 if (CI && !ElementScalable) { 4021 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4022 LLVMContext &Context = *DAG.getContext(); 4023 SDValue OffsVal; 4024 if (IsVectorGEP) 4025 OffsVal = DAG.getConstant( 4026 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4027 else 4028 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4029 4030 // In an inbounds GEP with an offset that is nonnegative even when 4031 // interpreted as signed, assume there is no unsigned overflow. 4032 SDNodeFlags Flags; 4033 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4034 Flags.setNoUnsignedWrap(true); 4035 4036 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4037 4038 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4039 continue; 4040 } 4041 4042 // N = N + Idx * ElementMul; 4043 SDValue IdxN = getValue(Idx); 4044 4045 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4046 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4047 VectorElementCount); 4048 IdxN = DAG.getSplat(VT, dl, IdxN); 4049 } 4050 4051 // If the index is smaller or larger than intptr_t, truncate or extend 4052 // it. 4053 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4054 4055 if (ElementScalable) { 4056 EVT VScaleTy = N.getValueType().getScalarType(); 4057 SDValue VScale = DAG.getNode( 4058 ISD::VSCALE, dl, VScaleTy, 4059 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4060 if (IsVectorGEP) 4061 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4062 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4063 } else { 4064 // If this is a multiply by a power of two, turn it into a shl 4065 // immediately. This is a very common case. 4066 if (ElementMul != 1) { 4067 if (ElementMul.isPowerOf2()) { 4068 unsigned Amt = ElementMul.logBase2(); 4069 IdxN = DAG.getNode(ISD::SHL, dl, 4070 N.getValueType(), IdxN, 4071 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4072 } else { 4073 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4074 IdxN.getValueType()); 4075 IdxN = DAG.getNode(ISD::MUL, dl, 4076 N.getValueType(), IdxN, Scale); 4077 } 4078 } 4079 } 4080 4081 N = DAG.getNode(ISD::ADD, dl, 4082 N.getValueType(), N, IdxN); 4083 } 4084 } 4085 4086 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4087 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4088 if (IsVectorGEP) { 4089 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4090 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4091 } 4092 4093 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4094 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4095 4096 setValue(&I, N); 4097 } 4098 4099 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4100 // If this is a fixed sized alloca in the entry block of the function, 4101 // allocate it statically on the stack. 4102 if (FuncInfo.StaticAllocaMap.count(&I)) 4103 return; // getValue will auto-populate this. 4104 4105 SDLoc dl = getCurSDLoc(); 4106 Type *Ty = I.getAllocatedType(); 4107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4108 auto &DL = DAG.getDataLayout(); 4109 TypeSize TySize = DL.getTypeAllocSize(Ty); 4110 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4111 4112 SDValue AllocSize = getValue(I.getArraySize()); 4113 4114 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4115 if (AllocSize.getValueType() != IntPtr) 4116 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4117 4118 if (TySize.isScalable()) 4119 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4120 DAG.getVScale(dl, IntPtr, 4121 APInt(IntPtr.getScalarSizeInBits(), 4122 TySize.getKnownMinValue()))); 4123 else 4124 AllocSize = 4125 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4126 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4127 4128 // Handle alignment. If the requested alignment is less than or equal to 4129 // the stack alignment, ignore it. If the size is greater than or equal to 4130 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4131 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4132 if (*Alignment <= StackAlign) 4133 Alignment = std::nullopt; 4134 4135 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4136 // Round the size of the allocation up to the stack alignment size 4137 // by add SA-1 to the size. This doesn't overflow because we're computing 4138 // an address inside an alloca. 4139 SDNodeFlags Flags; 4140 Flags.setNoUnsignedWrap(true); 4141 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4142 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4143 4144 // Mask out the low bits for alignment purposes. 4145 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4146 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4147 4148 SDValue Ops[] = { 4149 getRoot(), AllocSize, 4150 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4151 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4152 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4153 setValue(&I, DSA); 4154 DAG.setRoot(DSA.getValue(1)); 4155 4156 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4157 } 4158 4159 static const MDNode *getRangeMetadata(const Instruction &I) { 4160 // If !noundef is not present, then !range violation results in a poison 4161 // value rather than immediate undefined behavior. In theory, transferring 4162 // these annotations to SDAG is fine, but in practice there are key SDAG 4163 // transforms that are known not to be poison-safe, such as folding logical 4164 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4165 // also present. 4166 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4167 return nullptr; 4168 return I.getMetadata(LLVMContext::MD_range); 4169 } 4170 4171 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4172 if (I.isAtomic()) 4173 return visitAtomicLoad(I); 4174 4175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4176 const Value *SV = I.getOperand(0); 4177 if (TLI.supportSwiftError()) { 4178 // Swifterror values can come from either a function parameter with 4179 // swifterror attribute or an alloca with swifterror attribute. 4180 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4181 if (Arg->hasSwiftErrorAttr()) 4182 return visitLoadFromSwiftError(I); 4183 } 4184 4185 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4186 if (Alloca->isSwiftError()) 4187 return visitLoadFromSwiftError(I); 4188 } 4189 } 4190 4191 SDValue Ptr = getValue(SV); 4192 4193 Type *Ty = I.getType(); 4194 SmallVector<EVT, 4> ValueVTs, MemVTs; 4195 SmallVector<TypeSize, 4> Offsets; 4196 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4197 unsigned NumValues = ValueVTs.size(); 4198 if (NumValues == 0) 4199 return; 4200 4201 Align Alignment = I.getAlign(); 4202 AAMDNodes AAInfo = I.getAAMetadata(); 4203 const MDNode *Ranges = getRangeMetadata(I); 4204 bool isVolatile = I.isVolatile(); 4205 MachineMemOperand::Flags MMOFlags = 4206 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4207 4208 SDValue Root; 4209 bool ConstantMemory = false; 4210 if (isVolatile) 4211 // Serialize volatile loads with other side effects. 4212 Root = getRoot(); 4213 else if (NumValues > MaxParallelChains) 4214 Root = getMemoryRoot(); 4215 else if (AA && 4216 AA->pointsToConstantMemory(MemoryLocation( 4217 SV, 4218 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4219 AAInfo))) { 4220 // Do not serialize (non-volatile) loads of constant memory with anything. 4221 Root = DAG.getEntryNode(); 4222 ConstantMemory = true; 4223 MMOFlags |= MachineMemOperand::MOInvariant; 4224 } else { 4225 // Do not serialize non-volatile loads against each other. 4226 Root = DAG.getRoot(); 4227 } 4228 4229 SDLoc dl = getCurSDLoc(); 4230 4231 if (isVolatile) 4232 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4233 4234 SmallVector<SDValue, 4> Values(NumValues); 4235 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4236 4237 unsigned ChainI = 0; 4238 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4239 // Serializing loads here may result in excessive register pressure, and 4240 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4241 // could recover a bit by hoisting nodes upward in the chain by recognizing 4242 // they are side-effect free or do not alias. The optimizer should really 4243 // avoid this case by converting large object/array copies to llvm.memcpy 4244 // (MaxParallelChains should always remain as failsafe). 4245 if (ChainI == MaxParallelChains) { 4246 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4247 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4248 ArrayRef(Chains.data(), ChainI)); 4249 Root = Chain; 4250 ChainI = 0; 4251 } 4252 4253 // TODO: MachinePointerInfo only supports a fixed length offset. 4254 MachinePointerInfo PtrInfo = 4255 !Offsets[i].isScalable() || Offsets[i].isZero() 4256 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4257 : MachinePointerInfo(); 4258 4259 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4260 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4261 MMOFlags, AAInfo, Ranges); 4262 Chains[ChainI] = L.getValue(1); 4263 4264 if (MemVTs[i] != ValueVTs[i]) 4265 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4266 4267 Values[i] = L; 4268 } 4269 4270 if (!ConstantMemory) { 4271 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4272 ArrayRef(Chains.data(), ChainI)); 4273 if (isVolatile) 4274 DAG.setRoot(Chain); 4275 else 4276 PendingLoads.push_back(Chain); 4277 } 4278 4279 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4280 DAG.getVTList(ValueVTs), Values)); 4281 } 4282 4283 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4284 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4285 "call visitStoreToSwiftError when backend supports swifterror"); 4286 4287 SmallVector<EVT, 4> ValueVTs; 4288 SmallVector<uint64_t, 4> Offsets; 4289 const Value *SrcV = I.getOperand(0); 4290 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4291 SrcV->getType(), ValueVTs, &Offsets, 0); 4292 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4293 "expect a single EVT for swifterror"); 4294 4295 SDValue Src = getValue(SrcV); 4296 // Create a virtual register, then update the virtual register. 4297 Register VReg = 4298 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4299 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4300 // Chain can be getRoot or getControlRoot. 4301 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4302 SDValue(Src.getNode(), Src.getResNo())); 4303 DAG.setRoot(CopyNode); 4304 } 4305 4306 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4307 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4308 "call visitLoadFromSwiftError when backend supports swifterror"); 4309 4310 assert(!I.isVolatile() && 4311 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4312 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4313 "Support volatile, non temporal, invariant for load_from_swift_error"); 4314 4315 const Value *SV = I.getOperand(0); 4316 Type *Ty = I.getType(); 4317 assert( 4318 (!AA || 4319 !AA->pointsToConstantMemory(MemoryLocation( 4320 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4321 I.getAAMetadata()))) && 4322 "load_from_swift_error should not be constant memory"); 4323 4324 SmallVector<EVT, 4> ValueVTs; 4325 SmallVector<uint64_t, 4> Offsets; 4326 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4327 ValueVTs, &Offsets, 0); 4328 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4329 "expect a single EVT for swifterror"); 4330 4331 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4332 SDValue L = DAG.getCopyFromReg( 4333 getRoot(), getCurSDLoc(), 4334 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4335 4336 setValue(&I, L); 4337 } 4338 4339 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4340 if (I.isAtomic()) 4341 return visitAtomicStore(I); 4342 4343 const Value *SrcV = I.getOperand(0); 4344 const Value *PtrV = I.getOperand(1); 4345 4346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4347 if (TLI.supportSwiftError()) { 4348 // Swifterror values can come from either a function parameter with 4349 // swifterror attribute or an alloca with swifterror attribute. 4350 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4351 if (Arg->hasSwiftErrorAttr()) 4352 return visitStoreToSwiftError(I); 4353 } 4354 4355 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4356 if (Alloca->isSwiftError()) 4357 return visitStoreToSwiftError(I); 4358 } 4359 } 4360 4361 SmallVector<EVT, 4> ValueVTs, MemVTs; 4362 SmallVector<TypeSize, 4> Offsets; 4363 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4364 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4365 unsigned NumValues = ValueVTs.size(); 4366 if (NumValues == 0) 4367 return; 4368 4369 // Get the lowered operands. Note that we do this after 4370 // checking if NumResults is zero, because with zero results 4371 // the operands won't have values in the map. 4372 SDValue Src = getValue(SrcV); 4373 SDValue Ptr = getValue(PtrV); 4374 4375 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4376 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4377 SDLoc dl = getCurSDLoc(); 4378 Align Alignment = I.getAlign(); 4379 AAMDNodes AAInfo = I.getAAMetadata(); 4380 4381 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4382 4383 unsigned ChainI = 0; 4384 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4385 // See visitLoad comments. 4386 if (ChainI == MaxParallelChains) { 4387 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4388 ArrayRef(Chains.data(), ChainI)); 4389 Root = Chain; 4390 ChainI = 0; 4391 } 4392 4393 // TODO: MachinePointerInfo only supports a fixed length offset. 4394 MachinePointerInfo PtrInfo = 4395 !Offsets[i].isScalable() || Offsets[i].isZero() 4396 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4397 : MachinePointerInfo(); 4398 4399 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4400 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4401 if (MemVTs[i] != ValueVTs[i]) 4402 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4403 SDValue St = 4404 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4405 Chains[ChainI] = St; 4406 } 4407 4408 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4409 ArrayRef(Chains.data(), ChainI)); 4410 setValue(&I, StoreNode); 4411 DAG.setRoot(StoreNode); 4412 } 4413 4414 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4415 bool IsCompressing) { 4416 SDLoc sdl = getCurSDLoc(); 4417 4418 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4419 MaybeAlign &Alignment) { 4420 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4421 Src0 = I.getArgOperand(0); 4422 Ptr = I.getArgOperand(1); 4423 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4424 Mask = I.getArgOperand(3); 4425 }; 4426 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4427 MaybeAlign &Alignment) { 4428 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4429 Src0 = I.getArgOperand(0); 4430 Ptr = I.getArgOperand(1); 4431 Mask = I.getArgOperand(2); 4432 Alignment = std::nullopt; 4433 }; 4434 4435 Value *PtrOperand, *MaskOperand, *Src0Operand; 4436 MaybeAlign Alignment; 4437 if (IsCompressing) 4438 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4439 else 4440 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4441 4442 SDValue Ptr = getValue(PtrOperand); 4443 SDValue Src0 = getValue(Src0Operand); 4444 SDValue Mask = getValue(MaskOperand); 4445 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4446 4447 EVT VT = Src0.getValueType(); 4448 if (!Alignment) 4449 Alignment = DAG.getEVTAlign(VT); 4450 4451 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4452 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4453 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4454 SDValue StoreNode = 4455 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4456 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4457 DAG.setRoot(StoreNode); 4458 setValue(&I, StoreNode); 4459 } 4460 4461 // Get a uniform base for the Gather/Scatter intrinsic. 4462 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4463 // We try to represent it as a base pointer + vector of indices. 4464 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4465 // The first operand of the GEP may be a single pointer or a vector of pointers 4466 // Example: 4467 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4468 // or 4469 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4470 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4471 // 4472 // When the first GEP operand is a single pointer - it is the uniform base we 4473 // are looking for. If first operand of the GEP is a splat vector - we 4474 // extract the splat value and use it as a uniform base. 4475 // In all other cases the function returns 'false'. 4476 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4477 ISD::MemIndexType &IndexType, SDValue &Scale, 4478 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4479 uint64_t ElemSize) { 4480 SelectionDAG& DAG = SDB->DAG; 4481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4482 const DataLayout &DL = DAG.getDataLayout(); 4483 4484 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4485 4486 // Handle splat constant pointer. 4487 if (auto *C = dyn_cast<Constant>(Ptr)) { 4488 C = C->getSplatValue(); 4489 if (!C) 4490 return false; 4491 4492 Base = SDB->getValue(C); 4493 4494 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4495 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4496 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4497 IndexType = ISD::SIGNED_SCALED; 4498 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4499 return true; 4500 } 4501 4502 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4503 if (!GEP || GEP->getParent() != CurBB) 4504 return false; 4505 4506 if (GEP->getNumOperands() != 2) 4507 return false; 4508 4509 const Value *BasePtr = GEP->getPointerOperand(); 4510 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4511 4512 // Make sure the base is scalar and the index is a vector. 4513 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4514 return false; 4515 4516 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4517 if (ScaleVal.isScalable()) 4518 return false; 4519 4520 // Target may not support the required addressing mode. 4521 if (ScaleVal != 1 && 4522 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4523 return false; 4524 4525 Base = SDB->getValue(BasePtr); 4526 Index = SDB->getValue(IndexVal); 4527 IndexType = ISD::SIGNED_SCALED; 4528 4529 Scale = 4530 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4531 return true; 4532 } 4533 4534 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4535 SDLoc sdl = getCurSDLoc(); 4536 4537 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4538 const Value *Ptr = I.getArgOperand(1); 4539 SDValue Src0 = getValue(I.getArgOperand(0)); 4540 SDValue Mask = getValue(I.getArgOperand(3)); 4541 EVT VT = Src0.getValueType(); 4542 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4543 ->getMaybeAlignValue() 4544 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4546 4547 SDValue Base; 4548 SDValue Index; 4549 ISD::MemIndexType IndexType; 4550 SDValue Scale; 4551 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4552 I.getParent(), VT.getScalarStoreSize()); 4553 4554 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4555 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4556 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4557 // TODO: Make MachineMemOperands aware of scalable 4558 // vectors. 4559 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4560 if (!UniformBase) { 4561 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4562 Index = getValue(Ptr); 4563 IndexType = ISD::SIGNED_SCALED; 4564 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4565 } 4566 4567 EVT IdxVT = Index.getValueType(); 4568 EVT EltTy = IdxVT.getVectorElementType(); 4569 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4570 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4571 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4572 } 4573 4574 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4575 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4576 Ops, MMO, IndexType, false); 4577 DAG.setRoot(Scatter); 4578 setValue(&I, Scatter); 4579 } 4580 4581 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4582 SDLoc sdl = getCurSDLoc(); 4583 4584 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4585 MaybeAlign &Alignment) { 4586 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4587 Ptr = I.getArgOperand(0); 4588 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4589 Mask = I.getArgOperand(2); 4590 Src0 = I.getArgOperand(3); 4591 }; 4592 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4593 MaybeAlign &Alignment) { 4594 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4595 Ptr = I.getArgOperand(0); 4596 Alignment = std::nullopt; 4597 Mask = I.getArgOperand(1); 4598 Src0 = I.getArgOperand(2); 4599 }; 4600 4601 Value *PtrOperand, *MaskOperand, *Src0Operand; 4602 MaybeAlign Alignment; 4603 if (IsExpanding) 4604 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4605 else 4606 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4607 4608 SDValue Ptr = getValue(PtrOperand); 4609 SDValue Src0 = getValue(Src0Operand); 4610 SDValue Mask = getValue(MaskOperand); 4611 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4612 4613 EVT VT = Src0.getValueType(); 4614 if (!Alignment) 4615 Alignment = DAG.getEVTAlign(VT); 4616 4617 AAMDNodes AAInfo = I.getAAMetadata(); 4618 const MDNode *Ranges = getRangeMetadata(I); 4619 4620 // Do not serialize masked loads of constant memory with anything. 4621 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4622 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4623 4624 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4625 4626 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4627 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4628 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4629 4630 SDValue Load = 4631 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4632 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4633 if (AddToChain) 4634 PendingLoads.push_back(Load.getValue(1)); 4635 setValue(&I, Load); 4636 } 4637 4638 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4639 SDLoc sdl = getCurSDLoc(); 4640 4641 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4642 const Value *Ptr = I.getArgOperand(0); 4643 SDValue Src0 = getValue(I.getArgOperand(3)); 4644 SDValue Mask = getValue(I.getArgOperand(2)); 4645 4646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4647 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4648 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4649 ->getMaybeAlignValue() 4650 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4651 4652 const MDNode *Ranges = getRangeMetadata(I); 4653 4654 SDValue Root = DAG.getRoot(); 4655 SDValue Base; 4656 SDValue Index; 4657 ISD::MemIndexType IndexType; 4658 SDValue Scale; 4659 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4660 I.getParent(), VT.getScalarStoreSize()); 4661 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4662 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4663 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4664 // TODO: Make MachineMemOperands aware of scalable 4665 // vectors. 4666 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4667 4668 if (!UniformBase) { 4669 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4670 Index = getValue(Ptr); 4671 IndexType = ISD::SIGNED_SCALED; 4672 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4673 } 4674 4675 EVT IdxVT = Index.getValueType(); 4676 EVT EltTy = IdxVT.getVectorElementType(); 4677 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4678 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4679 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4680 } 4681 4682 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4683 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4684 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4685 4686 PendingLoads.push_back(Gather.getValue(1)); 4687 setValue(&I, Gather); 4688 } 4689 4690 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4691 SDLoc dl = getCurSDLoc(); 4692 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4693 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4694 SyncScope::ID SSID = I.getSyncScopeID(); 4695 4696 SDValue InChain = getRoot(); 4697 4698 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4699 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4700 4701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4702 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4703 4704 MachineFunction &MF = DAG.getMachineFunction(); 4705 MachineMemOperand *MMO = MF.getMachineMemOperand( 4706 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4707 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4708 FailureOrdering); 4709 4710 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4711 dl, MemVT, VTs, InChain, 4712 getValue(I.getPointerOperand()), 4713 getValue(I.getCompareOperand()), 4714 getValue(I.getNewValOperand()), MMO); 4715 4716 SDValue OutChain = L.getValue(2); 4717 4718 setValue(&I, L); 4719 DAG.setRoot(OutChain); 4720 } 4721 4722 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4723 SDLoc dl = getCurSDLoc(); 4724 ISD::NodeType NT; 4725 switch (I.getOperation()) { 4726 default: llvm_unreachable("Unknown atomicrmw operation"); 4727 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4728 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4729 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4730 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4731 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4732 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4733 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4734 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4735 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4736 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4737 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4738 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4739 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4740 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4741 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4742 case AtomicRMWInst::UIncWrap: 4743 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4744 break; 4745 case AtomicRMWInst::UDecWrap: 4746 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4747 break; 4748 } 4749 AtomicOrdering Ordering = I.getOrdering(); 4750 SyncScope::ID SSID = I.getSyncScopeID(); 4751 4752 SDValue InChain = getRoot(); 4753 4754 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4756 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4757 4758 MachineFunction &MF = DAG.getMachineFunction(); 4759 MachineMemOperand *MMO = MF.getMachineMemOperand( 4760 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4761 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4762 4763 SDValue L = 4764 DAG.getAtomic(NT, dl, MemVT, InChain, 4765 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4766 MMO); 4767 4768 SDValue OutChain = L.getValue(1); 4769 4770 setValue(&I, L); 4771 DAG.setRoot(OutChain); 4772 } 4773 4774 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4775 SDLoc dl = getCurSDLoc(); 4776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4777 SDValue Ops[3]; 4778 Ops[0] = getRoot(); 4779 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4780 TLI.getFenceOperandTy(DAG.getDataLayout())); 4781 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4782 TLI.getFenceOperandTy(DAG.getDataLayout())); 4783 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4784 setValue(&I, N); 4785 DAG.setRoot(N); 4786 } 4787 4788 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4789 SDLoc dl = getCurSDLoc(); 4790 AtomicOrdering Order = I.getOrdering(); 4791 SyncScope::ID SSID = I.getSyncScopeID(); 4792 4793 SDValue InChain = getRoot(); 4794 4795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4796 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4797 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4798 4799 if (!TLI.supportsUnalignedAtomics() && 4800 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4801 report_fatal_error("Cannot generate unaligned atomic load"); 4802 4803 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4804 4805 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4806 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4807 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4808 4809 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4810 4811 SDValue Ptr = getValue(I.getPointerOperand()); 4812 4813 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4814 // TODO: Once this is better exercised by tests, it should be merged with 4815 // the normal path for loads to prevent future divergence. 4816 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4817 if (MemVT != VT) 4818 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4819 4820 setValue(&I, L); 4821 SDValue OutChain = L.getValue(1); 4822 if (!I.isUnordered()) 4823 DAG.setRoot(OutChain); 4824 else 4825 PendingLoads.push_back(OutChain); 4826 return; 4827 } 4828 4829 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4830 Ptr, MMO); 4831 4832 SDValue OutChain = L.getValue(1); 4833 if (MemVT != VT) 4834 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4835 4836 setValue(&I, L); 4837 DAG.setRoot(OutChain); 4838 } 4839 4840 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4841 SDLoc dl = getCurSDLoc(); 4842 4843 AtomicOrdering Ordering = I.getOrdering(); 4844 SyncScope::ID SSID = I.getSyncScopeID(); 4845 4846 SDValue InChain = getRoot(); 4847 4848 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4849 EVT MemVT = 4850 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4851 4852 if (!TLI.supportsUnalignedAtomics() && 4853 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4854 report_fatal_error("Cannot generate unaligned atomic store"); 4855 4856 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4857 4858 MachineFunction &MF = DAG.getMachineFunction(); 4859 MachineMemOperand *MMO = MF.getMachineMemOperand( 4860 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4861 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4862 4863 SDValue Val = getValue(I.getValueOperand()); 4864 if (Val.getValueType() != MemVT) 4865 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4866 SDValue Ptr = getValue(I.getPointerOperand()); 4867 4868 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4869 // TODO: Once this is better exercised by tests, it should be merged with 4870 // the normal path for stores to prevent future divergence. 4871 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4872 setValue(&I, S); 4873 DAG.setRoot(S); 4874 return; 4875 } 4876 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4877 Ptr, Val, MMO); 4878 4879 setValue(&I, OutChain); 4880 DAG.setRoot(OutChain); 4881 } 4882 4883 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4884 /// node. 4885 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4886 unsigned Intrinsic) { 4887 // Ignore the callsite's attributes. A specific call site may be marked with 4888 // readnone, but the lowering code will expect the chain based on the 4889 // definition. 4890 const Function *F = I.getCalledFunction(); 4891 bool HasChain = !F->doesNotAccessMemory(); 4892 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4893 4894 // Build the operand list. 4895 SmallVector<SDValue, 8> Ops; 4896 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4897 if (OnlyLoad) { 4898 // We don't need to serialize loads against other loads. 4899 Ops.push_back(DAG.getRoot()); 4900 } else { 4901 Ops.push_back(getRoot()); 4902 } 4903 } 4904 4905 // Info is set by getTgtMemIntrinsic 4906 TargetLowering::IntrinsicInfo Info; 4907 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4908 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4909 DAG.getMachineFunction(), 4910 Intrinsic); 4911 4912 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4913 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4914 Info.opc == ISD::INTRINSIC_W_CHAIN) 4915 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4916 TLI.getPointerTy(DAG.getDataLayout()))); 4917 4918 // Add all operands of the call to the operand list. 4919 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4920 const Value *Arg = I.getArgOperand(i); 4921 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4922 Ops.push_back(getValue(Arg)); 4923 continue; 4924 } 4925 4926 // Use TargetConstant instead of a regular constant for immarg. 4927 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4928 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4929 assert(CI->getBitWidth() <= 64 && 4930 "large intrinsic immediates not handled"); 4931 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4932 } else { 4933 Ops.push_back( 4934 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4935 } 4936 } 4937 4938 SmallVector<EVT, 4> ValueVTs; 4939 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4940 4941 if (HasChain) 4942 ValueVTs.push_back(MVT::Other); 4943 4944 SDVTList VTs = DAG.getVTList(ValueVTs); 4945 4946 // Propagate fast-math-flags from IR to node(s). 4947 SDNodeFlags Flags; 4948 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4949 Flags.copyFMF(*FPMO); 4950 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4951 4952 // Create the node. 4953 SDValue Result; 4954 // In some cases, custom collection of operands from CallInst I may be needed. 4955 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4956 if (IsTgtIntrinsic) { 4957 // This is target intrinsic that touches memory 4958 // 4959 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4960 // didn't yield anything useful. 4961 MachinePointerInfo MPI; 4962 if (Info.ptrVal) 4963 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4964 else if (Info.fallbackAddressSpace) 4965 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4966 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4967 Info.memVT, MPI, Info.align, Info.flags, 4968 Info.size, I.getAAMetadata()); 4969 } else if (!HasChain) { 4970 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4971 } else if (!I.getType()->isVoidTy()) { 4972 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4973 } else { 4974 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4975 } 4976 4977 if (HasChain) { 4978 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4979 if (OnlyLoad) 4980 PendingLoads.push_back(Chain); 4981 else 4982 DAG.setRoot(Chain); 4983 } 4984 4985 if (!I.getType()->isVoidTy()) { 4986 if (!isa<VectorType>(I.getType())) 4987 Result = lowerRangeToAssertZExt(DAG, I, Result); 4988 4989 MaybeAlign Alignment = I.getRetAlign(); 4990 4991 // Insert `assertalign` node if there's an alignment. 4992 if (InsertAssertAlign && Alignment) { 4993 Result = 4994 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4995 } 4996 4997 setValue(&I, Result); 4998 } 4999 } 5000 5001 /// GetSignificand - Get the significand and build it into a floating-point 5002 /// number with exponent of 1: 5003 /// 5004 /// Op = (Op & 0x007fffff) | 0x3f800000; 5005 /// 5006 /// where Op is the hexadecimal representation of floating point value. 5007 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5008 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5009 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5010 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5011 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5012 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5013 } 5014 5015 /// GetExponent - Get the exponent: 5016 /// 5017 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5018 /// 5019 /// where Op is the hexadecimal representation of floating point value. 5020 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5021 const TargetLowering &TLI, const SDLoc &dl) { 5022 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5023 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5024 SDValue t1 = DAG.getNode( 5025 ISD::SRL, dl, MVT::i32, t0, 5026 DAG.getConstant(23, dl, 5027 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5028 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5029 DAG.getConstant(127, dl, MVT::i32)); 5030 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5031 } 5032 5033 /// getF32Constant - Get 32-bit floating point constant. 5034 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5035 const SDLoc &dl) { 5036 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5037 MVT::f32); 5038 } 5039 5040 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5041 SelectionDAG &DAG) { 5042 // TODO: What fast-math-flags should be set on the floating-point nodes? 5043 5044 // IntegerPartOfX = ((int32_t)(t0); 5045 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5046 5047 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5048 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5049 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5050 5051 // IntegerPartOfX <<= 23; 5052 IntegerPartOfX = 5053 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5054 DAG.getConstant(23, dl, 5055 DAG.getTargetLoweringInfo().getShiftAmountTy( 5056 MVT::i32, DAG.getDataLayout()))); 5057 5058 SDValue TwoToFractionalPartOfX; 5059 if (LimitFloatPrecision <= 6) { 5060 // For floating-point precision of 6: 5061 // 5062 // TwoToFractionalPartOfX = 5063 // 0.997535578f + 5064 // (0.735607626f + 0.252464424f * x) * x; 5065 // 5066 // error 0.0144103317, which is 6 bits 5067 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5068 getF32Constant(DAG, 0x3e814304, dl)); 5069 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5070 getF32Constant(DAG, 0x3f3c50c8, dl)); 5071 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5072 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5073 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5074 } else if (LimitFloatPrecision <= 12) { 5075 // For floating-point precision of 12: 5076 // 5077 // TwoToFractionalPartOfX = 5078 // 0.999892986f + 5079 // (0.696457318f + 5080 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5081 // 5082 // error 0.000107046256, which is 13 to 14 bits 5083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5084 getF32Constant(DAG, 0x3da235e3, dl)); 5085 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5086 getF32Constant(DAG, 0x3e65b8f3, dl)); 5087 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5088 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5089 getF32Constant(DAG, 0x3f324b07, dl)); 5090 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5091 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5092 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5093 } else { // LimitFloatPrecision <= 18 5094 // For floating-point precision of 18: 5095 // 5096 // TwoToFractionalPartOfX = 5097 // 0.999999982f + 5098 // (0.693148872f + 5099 // (0.240227044f + 5100 // (0.554906021e-1f + 5101 // (0.961591928e-2f + 5102 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5103 // error 2.47208000*10^(-7), which is better than 18 bits 5104 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5105 getF32Constant(DAG, 0x3924b03e, dl)); 5106 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5107 getF32Constant(DAG, 0x3ab24b87, dl)); 5108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5109 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5110 getF32Constant(DAG, 0x3c1d8c17, dl)); 5111 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5112 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5113 getF32Constant(DAG, 0x3d634a1d, dl)); 5114 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5115 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5116 getF32Constant(DAG, 0x3e75fe14, dl)); 5117 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5118 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5119 getF32Constant(DAG, 0x3f317234, dl)); 5120 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5121 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5122 getF32Constant(DAG, 0x3f800000, dl)); 5123 } 5124 5125 // Add the exponent into the result in integer domain. 5126 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5127 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5128 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5129 } 5130 5131 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5132 /// limited-precision mode. 5133 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5134 const TargetLowering &TLI, SDNodeFlags Flags) { 5135 if (Op.getValueType() == MVT::f32 && 5136 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5137 5138 // Put the exponent in the right bit position for later addition to the 5139 // final result: 5140 // 5141 // t0 = Op * log2(e) 5142 5143 // TODO: What fast-math-flags should be set here? 5144 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5145 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5146 return getLimitedPrecisionExp2(t0, dl, DAG); 5147 } 5148 5149 // No special expansion. 5150 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5151 } 5152 5153 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5154 /// limited-precision mode. 5155 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5156 const TargetLowering &TLI, SDNodeFlags Flags) { 5157 // TODO: What fast-math-flags should be set on the floating-point nodes? 5158 5159 if (Op.getValueType() == MVT::f32 && 5160 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5161 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5162 5163 // Scale the exponent by log(2). 5164 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5165 SDValue LogOfExponent = 5166 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5167 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5168 5169 // Get the significand and build it into a floating-point number with 5170 // exponent of 1. 5171 SDValue X = GetSignificand(DAG, Op1, dl); 5172 5173 SDValue LogOfMantissa; 5174 if (LimitFloatPrecision <= 6) { 5175 // For floating-point precision of 6: 5176 // 5177 // LogofMantissa = 5178 // -1.1609546f + 5179 // (1.4034025f - 0.23903021f * x) * x; 5180 // 5181 // error 0.0034276066, which is better than 8 bits 5182 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5183 getF32Constant(DAG, 0xbe74c456, dl)); 5184 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5185 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5186 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5187 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5188 getF32Constant(DAG, 0x3f949a29, dl)); 5189 } else if (LimitFloatPrecision <= 12) { 5190 // For floating-point precision of 12: 5191 // 5192 // LogOfMantissa = 5193 // -1.7417939f + 5194 // (2.8212026f + 5195 // (-1.4699568f + 5196 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5197 // 5198 // error 0.000061011436, which is 14 bits 5199 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5200 getF32Constant(DAG, 0xbd67b6d6, dl)); 5201 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5202 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5203 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5204 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5205 getF32Constant(DAG, 0x3fbc278b, dl)); 5206 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5207 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5208 getF32Constant(DAG, 0x40348e95, dl)); 5209 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5210 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5211 getF32Constant(DAG, 0x3fdef31a, dl)); 5212 } else { // LimitFloatPrecision <= 18 5213 // For floating-point precision of 18: 5214 // 5215 // LogOfMantissa = 5216 // -2.1072184f + 5217 // (4.2372794f + 5218 // (-3.7029485f + 5219 // (2.2781945f + 5220 // (-0.87823314f + 5221 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5222 // 5223 // error 0.0000023660568, which is better than 18 bits 5224 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5225 getF32Constant(DAG, 0xbc91e5ac, dl)); 5226 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5227 getF32Constant(DAG, 0x3e4350aa, dl)); 5228 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5229 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5230 getF32Constant(DAG, 0x3f60d3e3, dl)); 5231 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5232 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5233 getF32Constant(DAG, 0x4011cdf0, dl)); 5234 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5235 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5236 getF32Constant(DAG, 0x406cfd1c, dl)); 5237 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5238 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5239 getF32Constant(DAG, 0x408797cb, dl)); 5240 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5241 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5242 getF32Constant(DAG, 0x4006dcab, dl)); 5243 } 5244 5245 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5246 } 5247 5248 // No special expansion. 5249 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5250 } 5251 5252 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5253 /// limited-precision mode. 5254 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5255 const TargetLowering &TLI, SDNodeFlags Flags) { 5256 // TODO: What fast-math-flags should be set on the floating-point nodes? 5257 5258 if (Op.getValueType() == MVT::f32 && 5259 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5260 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5261 5262 // Get the exponent. 5263 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5264 5265 // Get the significand and build it into a floating-point number with 5266 // exponent of 1. 5267 SDValue X = GetSignificand(DAG, Op1, dl); 5268 5269 // Different possible minimax approximations of significand in 5270 // floating-point for various degrees of accuracy over [1,2]. 5271 SDValue Log2ofMantissa; 5272 if (LimitFloatPrecision <= 6) { 5273 // For floating-point precision of 6: 5274 // 5275 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5276 // 5277 // error 0.0049451742, which is more than 7 bits 5278 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5279 getF32Constant(DAG, 0xbeb08fe0, dl)); 5280 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5281 getF32Constant(DAG, 0x40019463, dl)); 5282 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5283 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5284 getF32Constant(DAG, 0x3fd6633d, dl)); 5285 } else if (LimitFloatPrecision <= 12) { 5286 // For floating-point precision of 12: 5287 // 5288 // Log2ofMantissa = 5289 // -2.51285454f + 5290 // (4.07009056f + 5291 // (-2.12067489f + 5292 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5293 // 5294 // error 0.0000876136000, which is better than 13 bits 5295 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5296 getF32Constant(DAG, 0xbda7262e, dl)); 5297 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5298 getF32Constant(DAG, 0x3f25280b, dl)); 5299 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5300 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5301 getF32Constant(DAG, 0x4007b923, dl)); 5302 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5303 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5304 getF32Constant(DAG, 0x40823e2f, dl)); 5305 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5306 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5307 getF32Constant(DAG, 0x4020d29c, dl)); 5308 } else { // LimitFloatPrecision <= 18 5309 // For floating-point precision of 18: 5310 // 5311 // Log2ofMantissa = 5312 // -3.0400495f + 5313 // (6.1129976f + 5314 // (-5.3420409f + 5315 // (3.2865683f + 5316 // (-1.2669343f + 5317 // (0.27515199f - 5318 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5319 // 5320 // error 0.0000018516, which is better than 18 bits 5321 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5322 getF32Constant(DAG, 0xbcd2769e, dl)); 5323 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5324 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5325 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5326 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5327 getF32Constant(DAG, 0x3fa22ae7, dl)); 5328 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5329 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5330 getF32Constant(DAG, 0x40525723, dl)); 5331 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5332 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5333 getF32Constant(DAG, 0x40aaf200, dl)); 5334 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5335 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5336 getF32Constant(DAG, 0x40c39dad, dl)); 5337 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5338 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5339 getF32Constant(DAG, 0x4042902c, dl)); 5340 } 5341 5342 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5343 } 5344 5345 // No special expansion. 5346 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5347 } 5348 5349 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5350 /// limited-precision mode. 5351 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5352 const TargetLowering &TLI, SDNodeFlags Flags) { 5353 // TODO: What fast-math-flags should be set on the floating-point nodes? 5354 5355 if (Op.getValueType() == MVT::f32 && 5356 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5357 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5358 5359 // Scale the exponent by log10(2) [0.30102999f]. 5360 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5361 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5362 getF32Constant(DAG, 0x3e9a209a, dl)); 5363 5364 // Get the significand and build it into a floating-point number with 5365 // exponent of 1. 5366 SDValue X = GetSignificand(DAG, Op1, dl); 5367 5368 SDValue Log10ofMantissa; 5369 if (LimitFloatPrecision <= 6) { 5370 // For floating-point precision of 6: 5371 // 5372 // Log10ofMantissa = 5373 // -0.50419619f + 5374 // (0.60948995f - 0.10380950f * x) * x; 5375 // 5376 // error 0.0014886165, which is 6 bits 5377 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5378 getF32Constant(DAG, 0xbdd49a13, dl)); 5379 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5380 getF32Constant(DAG, 0x3f1c0789, dl)); 5381 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5382 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5383 getF32Constant(DAG, 0x3f011300, dl)); 5384 } else if (LimitFloatPrecision <= 12) { 5385 // For floating-point precision of 12: 5386 // 5387 // Log10ofMantissa = 5388 // -0.64831180f + 5389 // (0.91751397f + 5390 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5391 // 5392 // error 0.00019228036, which is better than 12 bits 5393 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5394 getF32Constant(DAG, 0x3d431f31, dl)); 5395 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5396 getF32Constant(DAG, 0x3ea21fb2, dl)); 5397 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5398 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5399 getF32Constant(DAG, 0x3f6ae232, dl)); 5400 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5401 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5402 getF32Constant(DAG, 0x3f25f7c3, dl)); 5403 } else { // LimitFloatPrecision <= 18 5404 // For floating-point precision of 18: 5405 // 5406 // Log10ofMantissa = 5407 // -0.84299375f + 5408 // (1.5327582f + 5409 // (-1.0688956f + 5410 // (0.49102474f + 5411 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5412 // 5413 // error 0.0000037995730, which is better than 18 bits 5414 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5415 getF32Constant(DAG, 0x3c5d51ce, dl)); 5416 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5417 getF32Constant(DAG, 0x3e00685a, dl)); 5418 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5419 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5420 getF32Constant(DAG, 0x3efb6798, dl)); 5421 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5422 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5423 getF32Constant(DAG, 0x3f88d192, dl)); 5424 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5425 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5426 getF32Constant(DAG, 0x3fc4316c, dl)); 5427 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5428 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5429 getF32Constant(DAG, 0x3f57ce70, dl)); 5430 } 5431 5432 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5433 } 5434 5435 // No special expansion. 5436 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5437 } 5438 5439 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5440 /// limited-precision mode. 5441 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5442 const TargetLowering &TLI, SDNodeFlags Flags) { 5443 if (Op.getValueType() == MVT::f32 && 5444 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5445 return getLimitedPrecisionExp2(Op, dl, DAG); 5446 5447 // No special expansion. 5448 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5449 } 5450 5451 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5452 /// limited-precision mode with x == 10.0f. 5453 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5454 SelectionDAG &DAG, const TargetLowering &TLI, 5455 SDNodeFlags Flags) { 5456 bool IsExp10 = false; 5457 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5458 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5459 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5460 APFloat Ten(10.0f); 5461 IsExp10 = LHSC->isExactlyValue(Ten); 5462 } 5463 } 5464 5465 // TODO: What fast-math-flags should be set on the FMUL node? 5466 if (IsExp10) { 5467 // Put the exponent in the right bit position for later addition to the 5468 // final result: 5469 // 5470 // #define LOG2OF10 3.3219281f 5471 // t0 = Op * LOG2OF10; 5472 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5473 getF32Constant(DAG, 0x40549a78, dl)); 5474 return getLimitedPrecisionExp2(t0, dl, DAG); 5475 } 5476 5477 // No special expansion. 5478 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5479 } 5480 5481 /// ExpandPowI - Expand a llvm.powi intrinsic. 5482 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5483 SelectionDAG &DAG) { 5484 // If RHS is a constant, we can expand this out to a multiplication tree if 5485 // it's beneficial on the target, otherwise we end up lowering to a call to 5486 // __powidf2 (for example). 5487 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5488 unsigned Val = RHSC->getSExtValue(); 5489 5490 // powi(x, 0) -> 1.0 5491 if (Val == 0) 5492 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5493 5494 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5495 Val, DAG.shouldOptForSize())) { 5496 // Get the exponent as a positive value. 5497 if ((int)Val < 0) 5498 Val = -Val; 5499 // We use the simple binary decomposition method to generate the multiply 5500 // sequence. There are more optimal ways to do this (for example, 5501 // powi(x,15) generates one more multiply than it should), but this has 5502 // the benefit of being both really simple and much better than a libcall. 5503 SDValue Res; // Logically starts equal to 1.0 5504 SDValue CurSquare = LHS; 5505 // TODO: Intrinsics should have fast-math-flags that propagate to these 5506 // nodes. 5507 while (Val) { 5508 if (Val & 1) { 5509 if (Res.getNode()) 5510 Res = 5511 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5512 else 5513 Res = CurSquare; // 1.0*CurSquare. 5514 } 5515 5516 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5517 CurSquare, CurSquare); 5518 Val >>= 1; 5519 } 5520 5521 // If the original was negative, invert the result, producing 1/(x*x*x). 5522 if (RHSC->getSExtValue() < 0) 5523 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5524 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5525 return Res; 5526 } 5527 } 5528 5529 // Otherwise, expand to a libcall. 5530 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5531 } 5532 5533 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5534 SDValue LHS, SDValue RHS, SDValue Scale, 5535 SelectionDAG &DAG, const TargetLowering &TLI) { 5536 EVT VT = LHS.getValueType(); 5537 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5538 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5539 LLVMContext &Ctx = *DAG.getContext(); 5540 5541 // If the type is legal but the operation isn't, this node might survive all 5542 // the way to operation legalization. If we end up there and we do not have 5543 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5544 // node. 5545 5546 // Coax the legalizer into expanding the node during type legalization instead 5547 // by bumping the size by one bit. This will force it to Promote, enabling the 5548 // early expansion and avoiding the need to expand later. 5549 5550 // We don't have to do this if Scale is 0; that can always be expanded, unless 5551 // it's a saturating signed operation. Those can experience true integer 5552 // division overflow, a case which we must avoid. 5553 5554 // FIXME: We wouldn't have to do this (or any of the early 5555 // expansion/promotion) if it was possible to expand a libcall of an 5556 // illegal type during operation legalization. But it's not, so things 5557 // get a bit hacky. 5558 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5559 if ((ScaleInt > 0 || (Saturating && Signed)) && 5560 (TLI.isTypeLegal(VT) || 5561 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5562 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5563 Opcode, VT, ScaleInt); 5564 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5565 EVT PromVT; 5566 if (VT.isScalarInteger()) 5567 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5568 else if (VT.isVector()) { 5569 PromVT = VT.getVectorElementType(); 5570 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5571 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5572 } else 5573 llvm_unreachable("Wrong VT for DIVFIX?"); 5574 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5575 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5576 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5577 // For saturating operations, we need to shift up the LHS to get the 5578 // proper saturation width, and then shift down again afterwards. 5579 if (Saturating) 5580 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5581 DAG.getConstant(1, DL, ShiftTy)); 5582 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5583 if (Saturating) 5584 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5585 DAG.getConstant(1, DL, ShiftTy)); 5586 return DAG.getZExtOrTrunc(Res, DL, VT); 5587 } 5588 } 5589 5590 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5591 } 5592 5593 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5594 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5595 static void 5596 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5597 const SDValue &N) { 5598 switch (N.getOpcode()) { 5599 case ISD::CopyFromReg: { 5600 SDValue Op = N.getOperand(1); 5601 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5602 Op.getValueType().getSizeInBits()); 5603 return; 5604 } 5605 case ISD::BITCAST: 5606 case ISD::AssertZext: 5607 case ISD::AssertSext: 5608 case ISD::TRUNCATE: 5609 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5610 return; 5611 case ISD::BUILD_PAIR: 5612 case ISD::BUILD_VECTOR: 5613 case ISD::CONCAT_VECTORS: 5614 for (SDValue Op : N->op_values()) 5615 getUnderlyingArgRegs(Regs, Op); 5616 return; 5617 default: 5618 return; 5619 } 5620 } 5621 5622 /// If the DbgValueInst is a dbg_value of a function argument, create the 5623 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5624 /// instruction selection, they will be inserted to the entry BB. 5625 /// We don't currently support this for variadic dbg_values, as they shouldn't 5626 /// appear for function arguments or in the prologue. 5627 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5628 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5629 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5630 const Argument *Arg = dyn_cast<Argument>(V); 5631 if (!Arg) 5632 return false; 5633 5634 MachineFunction &MF = DAG.getMachineFunction(); 5635 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5636 5637 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5638 // we've been asked to pursue. 5639 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5640 bool Indirect) { 5641 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5642 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5643 // pointing at the VReg, which will be patched up later. 5644 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5645 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5646 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5647 /* isKill */ false, /* isDead */ false, 5648 /* isUndef */ false, /* isEarlyClobber */ false, 5649 /* SubReg */ 0, /* isDebug */ true)}); 5650 5651 auto *NewDIExpr = FragExpr; 5652 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5653 // the DIExpression. 5654 if (Indirect) 5655 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5656 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5657 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5658 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5659 } else { 5660 // Create a completely standard DBG_VALUE. 5661 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5662 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5663 } 5664 }; 5665 5666 if (Kind == FuncArgumentDbgValueKind::Value) { 5667 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5668 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5669 // the entry block. 5670 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5671 if (!IsInEntryBlock) 5672 return false; 5673 5674 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5675 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5676 // variable that also is a param. 5677 // 5678 // Although, if we are at the top of the entry block already, we can still 5679 // emit using ArgDbgValue. This might catch some situations when the 5680 // dbg.value refers to an argument that isn't used in the entry block, so 5681 // any CopyToReg node would be optimized out and the only way to express 5682 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5683 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5684 // we should only emit as ArgDbgValue if the Variable is an argument to the 5685 // current function, and the dbg.value intrinsic is found in the entry 5686 // block. 5687 bool VariableIsFunctionInputArg = Variable->isParameter() && 5688 !DL->getInlinedAt(); 5689 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5690 if (!IsInPrologue && !VariableIsFunctionInputArg) 5691 return false; 5692 5693 // Here we assume that a function argument on IR level only can be used to 5694 // describe one input parameter on source level. If we for example have 5695 // source code like this 5696 // 5697 // struct A { long x, y; }; 5698 // void foo(struct A a, long b) { 5699 // ... 5700 // b = a.x; 5701 // ... 5702 // } 5703 // 5704 // and IR like this 5705 // 5706 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5707 // entry: 5708 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5709 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5710 // call void @llvm.dbg.value(metadata i32 %b, "b", 5711 // ... 5712 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5713 // ... 5714 // 5715 // then the last dbg.value is describing a parameter "b" using a value that 5716 // is an argument. But since we already has used %a1 to describe a parameter 5717 // we should not handle that last dbg.value here (that would result in an 5718 // incorrect hoisting of the DBG_VALUE to the function entry). 5719 // Notice that we allow one dbg.value per IR level argument, to accommodate 5720 // for the situation with fragments above. 5721 if (VariableIsFunctionInputArg) { 5722 unsigned ArgNo = Arg->getArgNo(); 5723 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5724 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5725 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5726 return false; 5727 FuncInfo.DescribedArgs.set(ArgNo); 5728 } 5729 } 5730 5731 bool IsIndirect = false; 5732 std::optional<MachineOperand> Op; 5733 // Some arguments' frame index is recorded during argument lowering. 5734 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5735 if (FI != std::numeric_limits<int>::max()) 5736 Op = MachineOperand::CreateFI(FI); 5737 5738 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5739 if (!Op && N.getNode()) { 5740 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5741 Register Reg; 5742 if (ArgRegsAndSizes.size() == 1) 5743 Reg = ArgRegsAndSizes.front().first; 5744 5745 if (Reg && Reg.isVirtual()) { 5746 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5747 Register PR = RegInfo.getLiveInPhysReg(Reg); 5748 if (PR) 5749 Reg = PR; 5750 } 5751 if (Reg) { 5752 Op = MachineOperand::CreateReg(Reg, false); 5753 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5754 } 5755 } 5756 5757 if (!Op && N.getNode()) { 5758 // Check if frame index is available. 5759 SDValue LCandidate = peekThroughBitcasts(N); 5760 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5761 if (FrameIndexSDNode *FINode = 5762 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5763 Op = MachineOperand::CreateFI(FINode->getIndex()); 5764 } 5765 5766 if (!Op) { 5767 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5768 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5769 SplitRegs) { 5770 unsigned Offset = 0; 5771 for (const auto &RegAndSize : SplitRegs) { 5772 // If the expression is already a fragment, the current register 5773 // offset+size might extend beyond the fragment. In this case, only 5774 // the register bits that are inside the fragment are relevant. 5775 int RegFragmentSizeInBits = RegAndSize.second; 5776 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5777 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5778 // The register is entirely outside the expression fragment, 5779 // so is irrelevant for debug info. 5780 if (Offset >= ExprFragmentSizeInBits) 5781 break; 5782 // The register is partially outside the expression fragment, only 5783 // the low bits within the fragment are relevant for debug info. 5784 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5785 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5786 } 5787 } 5788 5789 auto FragmentExpr = DIExpression::createFragmentExpression( 5790 Expr, Offset, RegFragmentSizeInBits); 5791 Offset += RegAndSize.second; 5792 // If a valid fragment expression cannot be created, the variable's 5793 // correct value cannot be determined and so it is set as Undef. 5794 if (!FragmentExpr) { 5795 SDDbgValue *SDV = DAG.getConstantDbgValue( 5796 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5797 DAG.AddDbgValue(SDV, false); 5798 continue; 5799 } 5800 MachineInstr *NewMI = 5801 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5802 Kind != FuncArgumentDbgValueKind::Value); 5803 FuncInfo.ArgDbgValues.push_back(NewMI); 5804 } 5805 }; 5806 5807 // Check if ValueMap has reg number. 5808 DenseMap<const Value *, Register>::const_iterator 5809 VMI = FuncInfo.ValueMap.find(V); 5810 if (VMI != FuncInfo.ValueMap.end()) { 5811 const auto &TLI = DAG.getTargetLoweringInfo(); 5812 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5813 V->getType(), std::nullopt); 5814 if (RFV.occupiesMultipleRegs()) { 5815 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5816 return true; 5817 } 5818 5819 Op = MachineOperand::CreateReg(VMI->second, false); 5820 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5821 } else if (ArgRegsAndSizes.size() > 1) { 5822 // This was split due to the calling convention, and no virtual register 5823 // mapping exists for the value. 5824 splitMultiRegDbgValue(ArgRegsAndSizes); 5825 return true; 5826 } 5827 } 5828 5829 if (!Op) 5830 return false; 5831 5832 // If the expression refers to the entry value of an Argument, use the 5833 // corresponding livein physical register. As per the Verifier, this is only 5834 // allowed for swiftasync Arguments. 5835 if (Op->isReg() && Expr->isEntryValue()) { 5836 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5837 auto OpReg = Op->getReg(); 5838 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5839 if (OpReg == VirtReg || OpReg == PhysReg) { 5840 SDDbgValue *SDV = DAG.getVRegDbgValue( 5841 Variable, Expr, PhysReg, 5842 Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL, 5843 SDNodeOrder); 5844 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5845 return true; 5846 } 5847 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5848 "couldn't find a physical register\n"); 5849 return true; 5850 } 5851 5852 assert(Variable->isValidLocationForIntrinsic(DL) && 5853 "Expected inlined-at fields to agree"); 5854 MachineInstr *NewMI = nullptr; 5855 5856 if (Op->isReg()) 5857 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5858 else 5859 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5860 Variable, Expr); 5861 5862 // Otherwise, use ArgDbgValues. 5863 FuncInfo.ArgDbgValues.push_back(NewMI); 5864 return true; 5865 } 5866 5867 /// Return the appropriate SDDbgValue based on N. 5868 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5869 DILocalVariable *Variable, 5870 DIExpression *Expr, 5871 const DebugLoc &dl, 5872 unsigned DbgSDNodeOrder) { 5873 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5874 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5875 // stack slot locations. 5876 // 5877 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5878 // debug values here after optimization: 5879 // 5880 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5881 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5882 // 5883 // Both describe the direct values of their associated variables. 5884 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5885 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5886 } 5887 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5888 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5889 } 5890 5891 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5892 switch (Intrinsic) { 5893 case Intrinsic::smul_fix: 5894 return ISD::SMULFIX; 5895 case Intrinsic::umul_fix: 5896 return ISD::UMULFIX; 5897 case Intrinsic::smul_fix_sat: 5898 return ISD::SMULFIXSAT; 5899 case Intrinsic::umul_fix_sat: 5900 return ISD::UMULFIXSAT; 5901 case Intrinsic::sdiv_fix: 5902 return ISD::SDIVFIX; 5903 case Intrinsic::udiv_fix: 5904 return ISD::UDIVFIX; 5905 case Intrinsic::sdiv_fix_sat: 5906 return ISD::SDIVFIXSAT; 5907 case Intrinsic::udiv_fix_sat: 5908 return ISD::UDIVFIXSAT; 5909 default: 5910 llvm_unreachable("Unhandled fixed point intrinsic"); 5911 } 5912 } 5913 5914 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5915 const char *FunctionName) { 5916 assert(FunctionName && "FunctionName must not be nullptr"); 5917 SDValue Callee = DAG.getExternalSymbol( 5918 FunctionName, 5919 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5920 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5921 } 5922 5923 /// Given a @llvm.call.preallocated.setup, return the corresponding 5924 /// preallocated call. 5925 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5926 assert(cast<CallBase>(PreallocatedSetup) 5927 ->getCalledFunction() 5928 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5929 "expected call_preallocated_setup Value"); 5930 for (const auto *U : PreallocatedSetup->users()) { 5931 auto *UseCall = cast<CallBase>(U); 5932 const Function *Fn = UseCall->getCalledFunction(); 5933 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5934 return UseCall; 5935 } 5936 } 5937 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5938 } 5939 5940 /// Lower the call to the specified intrinsic function. 5941 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5942 unsigned Intrinsic) { 5943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5944 SDLoc sdl = getCurSDLoc(); 5945 DebugLoc dl = getCurDebugLoc(); 5946 SDValue Res; 5947 5948 SDNodeFlags Flags; 5949 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5950 Flags.copyFMF(*FPOp); 5951 5952 switch (Intrinsic) { 5953 default: 5954 // By default, turn this into a target intrinsic node. 5955 visitTargetIntrinsic(I, Intrinsic); 5956 return; 5957 case Intrinsic::vscale: { 5958 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5959 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5960 return; 5961 } 5962 case Intrinsic::vastart: visitVAStart(I); return; 5963 case Intrinsic::vaend: visitVAEnd(I); return; 5964 case Intrinsic::vacopy: visitVACopy(I); return; 5965 case Intrinsic::returnaddress: 5966 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5967 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5968 getValue(I.getArgOperand(0)))); 5969 return; 5970 case Intrinsic::addressofreturnaddress: 5971 setValue(&I, 5972 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5973 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5974 return; 5975 case Intrinsic::sponentry: 5976 setValue(&I, 5977 DAG.getNode(ISD::SPONENTRY, sdl, 5978 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5979 return; 5980 case Intrinsic::frameaddress: 5981 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5982 TLI.getFrameIndexTy(DAG.getDataLayout()), 5983 getValue(I.getArgOperand(0)))); 5984 return; 5985 case Intrinsic::read_volatile_register: 5986 case Intrinsic::read_register: { 5987 Value *Reg = I.getArgOperand(0); 5988 SDValue Chain = getRoot(); 5989 SDValue RegName = 5990 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5991 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5992 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5993 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5994 setValue(&I, Res); 5995 DAG.setRoot(Res.getValue(1)); 5996 return; 5997 } 5998 case Intrinsic::write_register: { 5999 Value *Reg = I.getArgOperand(0); 6000 Value *RegValue = I.getArgOperand(1); 6001 SDValue Chain = getRoot(); 6002 SDValue RegName = 6003 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6004 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6005 RegName, getValue(RegValue))); 6006 return; 6007 } 6008 case Intrinsic::memcpy: { 6009 const auto &MCI = cast<MemCpyInst>(I); 6010 SDValue Op1 = getValue(I.getArgOperand(0)); 6011 SDValue Op2 = getValue(I.getArgOperand(1)); 6012 SDValue Op3 = getValue(I.getArgOperand(2)); 6013 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6014 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6015 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6016 Align Alignment = std::min(DstAlign, SrcAlign); 6017 bool isVol = MCI.isVolatile(); 6018 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6019 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6020 // node. 6021 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6022 SDValue MC = DAG.getMemcpy( 6023 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6024 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6025 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6026 updateDAGForMaybeTailCall(MC); 6027 return; 6028 } 6029 case Intrinsic::memcpy_inline: { 6030 const auto &MCI = cast<MemCpyInlineInst>(I); 6031 SDValue Dst = getValue(I.getArgOperand(0)); 6032 SDValue Src = getValue(I.getArgOperand(1)); 6033 SDValue Size = getValue(I.getArgOperand(2)); 6034 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6035 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6036 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6037 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6038 Align Alignment = std::min(DstAlign, SrcAlign); 6039 bool isVol = MCI.isVolatile(); 6040 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6041 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6042 // node. 6043 SDValue MC = DAG.getMemcpy( 6044 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6045 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6046 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6047 updateDAGForMaybeTailCall(MC); 6048 return; 6049 } 6050 case Intrinsic::memset: { 6051 const auto &MSI = cast<MemSetInst>(I); 6052 SDValue Op1 = getValue(I.getArgOperand(0)); 6053 SDValue Op2 = getValue(I.getArgOperand(1)); 6054 SDValue Op3 = getValue(I.getArgOperand(2)); 6055 // @llvm.memset defines 0 and 1 to both mean no alignment. 6056 Align Alignment = MSI.getDestAlign().valueOrOne(); 6057 bool isVol = MSI.isVolatile(); 6058 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6059 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6060 SDValue MS = DAG.getMemset( 6061 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6062 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6063 updateDAGForMaybeTailCall(MS); 6064 return; 6065 } 6066 case Intrinsic::memset_inline: { 6067 const auto &MSII = cast<MemSetInlineInst>(I); 6068 SDValue Dst = getValue(I.getArgOperand(0)); 6069 SDValue Value = getValue(I.getArgOperand(1)); 6070 SDValue Size = getValue(I.getArgOperand(2)); 6071 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6072 // @llvm.memset defines 0 and 1 to both mean no alignment. 6073 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6074 bool isVol = MSII.isVolatile(); 6075 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6076 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6077 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6078 /* AlwaysInline */ true, isTC, 6079 MachinePointerInfo(I.getArgOperand(0)), 6080 I.getAAMetadata()); 6081 updateDAGForMaybeTailCall(MC); 6082 return; 6083 } 6084 case Intrinsic::memmove: { 6085 const auto &MMI = cast<MemMoveInst>(I); 6086 SDValue Op1 = getValue(I.getArgOperand(0)); 6087 SDValue Op2 = getValue(I.getArgOperand(1)); 6088 SDValue Op3 = getValue(I.getArgOperand(2)); 6089 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6090 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6091 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6092 Align Alignment = std::min(DstAlign, SrcAlign); 6093 bool isVol = MMI.isVolatile(); 6094 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6095 // FIXME: Support passing different dest/src alignments to the memmove DAG 6096 // node. 6097 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6098 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6099 isTC, MachinePointerInfo(I.getArgOperand(0)), 6100 MachinePointerInfo(I.getArgOperand(1)), 6101 I.getAAMetadata(), AA); 6102 updateDAGForMaybeTailCall(MM); 6103 return; 6104 } 6105 case Intrinsic::memcpy_element_unordered_atomic: { 6106 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6107 SDValue Dst = getValue(MI.getRawDest()); 6108 SDValue Src = getValue(MI.getRawSource()); 6109 SDValue Length = getValue(MI.getLength()); 6110 6111 Type *LengthTy = MI.getLength()->getType(); 6112 unsigned ElemSz = MI.getElementSizeInBytes(); 6113 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6114 SDValue MC = 6115 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6116 isTC, MachinePointerInfo(MI.getRawDest()), 6117 MachinePointerInfo(MI.getRawSource())); 6118 updateDAGForMaybeTailCall(MC); 6119 return; 6120 } 6121 case Intrinsic::memmove_element_unordered_atomic: { 6122 auto &MI = cast<AtomicMemMoveInst>(I); 6123 SDValue Dst = getValue(MI.getRawDest()); 6124 SDValue Src = getValue(MI.getRawSource()); 6125 SDValue Length = getValue(MI.getLength()); 6126 6127 Type *LengthTy = MI.getLength()->getType(); 6128 unsigned ElemSz = MI.getElementSizeInBytes(); 6129 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6130 SDValue MC = 6131 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6132 isTC, MachinePointerInfo(MI.getRawDest()), 6133 MachinePointerInfo(MI.getRawSource())); 6134 updateDAGForMaybeTailCall(MC); 6135 return; 6136 } 6137 case Intrinsic::memset_element_unordered_atomic: { 6138 auto &MI = cast<AtomicMemSetInst>(I); 6139 SDValue Dst = getValue(MI.getRawDest()); 6140 SDValue Val = getValue(MI.getValue()); 6141 SDValue Length = getValue(MI.getLength()); 6142 6143 Type *LengthTy = MI.getLength()->getType(); 6144 unsigned ElemSz = MI.getElementSizeInBytes(); 6145 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6146 SDValue MC = 6147 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6148 isTC, MachinePointerInfo(MI.getRawDest())); 6149 updateDAGForMaybeTailCall(MC); 6150 return; 6151 } 6152 case Intrinsic::call_preallocated_setup: { 6153 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6154 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6155 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6156 getRoot(), SrcValue); 6157 setValue(&I, Res); 6158 DAG.setRoot(Res); 6159 return; 6160 } 6161 case Intrinsic::call_preallocated_arg: { 6162 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6163 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6164 SDValue Ops[3]; 6165 Ops[0] = getRoot(); 6166 Ops[1] = SrcValue; 6167 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6168 MVT::i32); // arg index 6169 SDValue Res = DAG.getNode( 6170 ISD::PREALLOCATED_ARG, sdl, 6171 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6172 setValue(&I, Res); 6173 DAG.setRoot(Res.getValue(1)); 6174 return; 6175 } 6176 case Intrinsic::dbg_declare: { 6177 const auto &DI = cast<DbgDeclareInst>(I); 6178 // Debug intrinsics are handled separately in assignment tracking mode. 6179 // Some intrinsics are handled right after Argument lowering. 6180 if (AssignmentTrackingEnabled || 6181 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6182 return; 6183 // Assume dbg.declare can not currently use DIArgList, i.e. 6184 // it is non-variadic. 6185 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6186 DILocalVariable *Variable = DI.getVariable(); 6187 DIExpression *Expression = DI.getExpression(); 6188 dropDanglingDebugInfo(Variable, Expression); 6189 assert(Variable && "Missing variable"); 6190 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6191 << "\n"); 6192 // Check if address has undef value. 6193 const Value *Address = DI.getVariableLocationOp(0); 6194 if (!Address || isa<UndefValue>(Address) || 6195 (Address->use_empty() && !isa<Argument>(Address))) { 6196 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6197 << " (bad/undef/unused-arg address)\n"); 6198 return; 6199 } 6200 6201 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6202 6203 SDValue &N = NodeMap[Address]; 6204 if (!N.getNode() && isa<Argument>(Address)) 6205 // Check unused arguments map. 6206 N = UnusedArgNodeMap[Address]; 6207 SDDbgValue *SDV; 6208 if (N.getNode()) { 6209 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6210 Address = BCI->getOperand(0); 6211 // Parameters are handled specially. 6212 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6213 if (isParameter && FINode) { 6214 // Byval parameter. We have a frame index at this point. 6215 SDV = 6216 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6217 /*IsIndirect*/ true, dl, SDNodeOrder); 6218 } else if (isa<Argument>(Address)) { 6219 // Address is an argument, so try to emit its dbg value using 6220 // virtual register info from the FuncInfo.ValueMap. 6221 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6222 FuncArgumentDbgValueKind::Declare, N); 6223 return; 6224 } else { 6225 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6226 true, dl, SDNodeOrder); 6227 } 6228 DAG.AddDbgValue(SDV, isParameter); 6229 } else { 6230 // If Address is an argument then try to emit its dbg value using 6231 // virtual register info from the FuncInfo.ValueMap. 6232 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6233 FuncArgumentDbgValueKind::Declare, N)) { 6234 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6235 << " (could not emit func-arg dbg_value)\n"); 6236 } 6237 } 6238 return; 6239 } 6240 case Intrinsic::dbg_label: { 6241 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6242 DILabel *Label = DI.getLabel(); 6243 assert(Label && "Missing label"); 6244 6245 SDDbgLabel *SDV; 6246 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6247 DAG.AddDbgLabel(SDV); 6248 return; 6249 } 6250 case Intrinsic::dbg_assign: { 6251 // Debug intrinsics are handled seperately in assignment tracking mode. 6252 if (AssignmentTrackingEnabled) 6253 return; 6254 // If assignment tracking hasn't been enabled then fall through and treat 6255 // the dbg.assign as a dbg.value. 6256 [[fallthrough]]; 6257 } 6258 case Intrinsic::dbg_value: { 6259 // Debug intrinsics are handled seperately in assignment tracking mode. 6260 if (AssignmentTrackingEnabled) 6261 return; 6262 const DbgValueInst &DI = cast<DbgValueInst>(I); 6263 assert(DI.getVariable() && "Missing variable"); 6264 6265 DILocalVariable *Variable = DI.getVariable(); 6266 DIExpression *Expression = DI.getExpression(); 6267 dropDanglingDebugInfo(Variable, Expression); 6268 6269 if (DI.isKillLocation()) { 6270 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6271 return; 6272 } 6273 6274 SmallVector<Value *, 4> Values(DI.getValues()); 6275 if (Values.empty()) 6276 return; 6277 6278 bool IsVariadic = DI.hasArgList(); 6279 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6280 SDNodeOrder, IsVariadic)) 6281 addDanglingDebugInfo(&DI, SDNodeOrder); 6282 return; 6283 } 6284 6285 case Intrinsic::eh_typeid_for: { 6286 // Find the type id for the given typeinfo. 6287 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6288 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6289 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6290 setValue(&I, Res); 6291 return; 6292 } 6293 6294 case Intrinsic::eh_return_i32: 6295 case Intrinsic::eh_return_i64: 6296 DAG.getMachineFunction().setCallsEHReturn(true); 6297 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6298 MVT::Other, 6299 getControlRoot(), 6300 getValue(I.getArgOperand(0)), 6301 getValue(I.getArgOperand(1)))); 6302 return; 6303 case Intrinsic::eh_unwind_init: 6304 DAG.getMachineFunction().setCallsUnwindInit(true); 6305 return; 6306 case Intrinsic::eh_dwarf_cfa: 6307 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6308 TLI.getPointerTy(DAG.getDataLayout()), 6309 getValue(I.getArgOperand(0)))); 6310 return; 6311 case Intrinsic::eh_sjlj_callsite: { 6312 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6313 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6314 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6315 6316 MMI.setCurrentCallSite(CI->getZExtValue()); 6317 return; 6318 } 6319 case Intrinsic::eh_sjlj_functioncontext: { 6320 // Get and store the index of the function context. 6321 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6322 AllocaInst *FnCtx = 6323 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6324 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6325 MFI.setFunctionContextIndex(FI); 6326 return; 6327 } 6328 case Intrinsic::eh_sjlj_setjmp: { 6329 SDValue Ops[2]; 6330 Ops[0] = getRoot(); 6331 Ops[1] = getValue(I.getArgOperand(0)); 6332 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6333 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6334 setValue(&I, Op.getValue(0)); 6335 DAG.setRoot(Op.getValue(1)); 6336 return; 6337 } 6338 case Intrinsic::eh_sjlj_longjmp: 6339 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6340 getRoot(), getValue(I.getArgOperand(0)))); 6341 return; 6342 case Intrinsic::eh_sjlj_setup_dispatch: 6343 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6344 getRoot())); 6345 return; 6346 case Intrinsic::masked_gather: 6347 visitMaskedGather(I); 6348 return; 6349 case Intrinsic::masked_load: 6350 visitMaskedLoad(I); 6351 return; 6352 case Intrinsic::masked_scatter: 6353 visitMaskedScatter(I); 6354 return; 6355 case Intrinsic::masked_store: 6356 visitMaskedStore(I); 6357 return; 6358 case Intrinsic::masked_expandload: 6359 visitMaskedLoad(I, true /* IsExpanding */); 6360 return; 6361 case Intrinsic::masked_compressstore: 6362 visitMaskedStore(I, true /* IsCompressing */); 6363 return; 6364 case Intrinsic::powi: 6365 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6366 getValue(I.getArgOperand(1)), DAG)); 6367 return; 6368 case Intrinsic::log: 6369 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6370 return; 6371 case Intrinsic::log2: 6372 setValue(&I, 6373 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6374 return; 6375 case Intrinsic::log10: 6376 setValue(&I, 6377 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6378 return; 6379 case Intrinsic::exp: 6380 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6381 return; 6382 case Intrinsic::exp2: 6383 setValue(&I, 6384 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6385 return; 6386 case Intrinsic::pow: 6387 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6388 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6389 return; 6390 case Intrinsic::sqrt: 6391 case Intrinsic::fabs: 6392 case Intrinsic::sin: 6393 case Intrinsic::cos: 6394 case Intrinsic::floor: 6395 case Intrinsic::ceil: 6396 case Intrinsic::trunc: 6397 case Intrinsic::rint: 6398 case Intrinsic::nearbyint: 6399 case Intrinsic::round: 6400 case Intrinsic::roundeven: 6401 case Intrinsic::canonicalize: { 6402 unsigned Opcode; 6403 switch (Intrinsic) { 6404 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6405 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6406 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6407 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6408 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6409 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6410 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6411 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6412 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6413 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6414 case Intrinsic::round: Opcode = ISD::FROUND; break; 6415 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6416 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6417 } 6418 6419 setValue(&I, DAG.getNode(Opcode, sdl, 6420 getValue(I.getArgOperand(0)).getValueType(), 6421 getValue(I.getArgOperand(0)), Flags)); 6422 return; 6423 } 6424 case Intrinsic::lround: 6425 case Intrinsic::llround: 6426 case Intrinsic::lrint: 6427 case Intrinsic::llrint: { 6428 unsigned Opcode; 6429 switch (Intrinsic) { 6430 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6431 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6432 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6433 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6434 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6435 } 6436 6437 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6438 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6439 getValue(I.getArgOperand(0)))); 6440 return; 6441 } 6442 case Intrinsic::minnum: 6443 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6444 getValue(I.getArgOperand(0)).getValueType(), 6445 getValue(I.getArgOperand(0)), 6446 getValue(I.getArgOperand(1)), Flags)); 6447 return; 6448 case Intrinsic::maxnum: 6449 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6450 getValue(I.getArgOperand(0)).getValueType(), 6451 getValue(I.getArgOperand(0)), 6452 getValue(I.getArgOperand(1)), Flags)); 6453 return; 6454 case Intrinsic::minimum: 6455 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6456 getValue(I.getArgOperand(0)).getValueType(), 6457 getValue(I.getArgOperand(0)), 6458 getValue(I.getArgOperand(1)), Flags)); 6459 return; 6460 case Intrinsic::maximum: 6461 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6462 getValue(I.getArgOperand(0)).getValueType(), 6463 getValue(I.getArgOperand(0)), 6464 getValue(I.getArgOperand(1)), Flags)); 6465 return; 6466 case Intrinsic::copysign: 6467 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6468 getValue(I.getArgOperand(0)).getValueType(), 6469 getValue(I.getArgOperand(0)), 6470 getValue(I.getArgOperand(1)), Flags)); 6471 return; 6472 case Intrinsic::ldexp: 6473 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6474 getValue(I.getArgOperand(0)).getValueType(), 6475 getValue(I.getArgOperand(0)), 6476 getValue(I.getArgOperand(1)), Flags)); 6477 return; 6478 case Intrinsic::frexp: { 6479 SmallVector<EVT, 2> ValueVTs; 6480 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6481 SDVTList VTs = DAG.getVTList(ValueVTs); 6482 setValue(&I, 6483 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6484 return; 6485 } 6486 case Intrinsic::arithmetic_fence: { 6487 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6488 getValue(I.getArgOperand(0)).getValueType(), 6489 getValue(I.getArgOperand(0)), Flags)); 6490 return; 6491 } 6492 case Intrinsic::fma: 6493 setValue(&I, DAG.getNode( 6494 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6495 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6496 getValue(I.getArgOperand(2)), Flags)); 6497 return; 6498 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6499 case Intrinsic::INTRINSIC: 6500 #include "llvm/IR/ConstrainedOps.def" 6501 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6502 return; 6503 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6504 #include "llvm/IR/VPIntrinsics.def" 6505 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6506 return; 6507 case Intrinsic::fptrunc_round: { 6508 // Get the last argument, the metadata and convert it to an integer in the 6509 // call 6510 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6511 std::optional<RoundingMode> RoundMode = 6512 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6513 6514 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6515 6516 // Propagate fast-math-flags from IR to node(s). 6517 SDNodeFlags Flags; 6518 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6519 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6520 6521 SDValue Result; 6522 Result = DAG.getNode( 6523 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6524 DAG.getTargetConstant((int)*RoundMode, sdl, 6525 TLI.getPointerTy(DAG.getDataLayout()))); 6526 setValue(&I, Result); 6527 6528 return; 6529 } 6530 case Intrinsic::fmuladd: { 6531 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6532 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6533 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6534 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6535 getValue(I.getArgOperand(0)).getValueType(), 6536 getValue(I.getArgOperand(0)), 6537 getValue(I.getArgOperand(1)), 6538 getValue(I.getArgOperand(2)), Flags)); 6539 } else { 6540 // TODO: Intrinsic calls should have fast-math-flags. 6541 SDValue Mul = DAG.getNode( 6542 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6543 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6544 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6545 getValue(I.getArgOperand(0)).getValueType(), 6546 Mul, getValue(I.getArgOperand(2)), Flags); 6547 setValue(&I, Add); 6548 } 6549 return; 6550 } 6551 case Intrinsic::convert_to_fp16: 6552 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6553 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6554 getValue(I.getArgOperand(0)), 6555 DAG.getTargetConstant(0, sdl, 6556 MVT::i32)))); 6557 return; 6558 case Intrinsic::convert_from_fp16: 6559 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6560 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6561 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6562 getValue(I.getArgOperand(0))))); 6563 return; 6564 case Intrinsic::fptosi_sat: { 6565 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6566 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6567 getValue(I.getArgOperand(0)), 6568 DAG.getValueType(VT.getScalarType()))); 6569 return; 6570 } 6571 case Intrinsic::fptoui_sat: { 6572 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6573 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6574 getValue(I.getArgOperand(0)), 6575 DAG.getValueType(VT.getScalarType()))); 6576 return; 6577 } 6578 case Intrinsic::set_rounding: 6579 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6580 {getRoot(), getValue(I.getArgOperand(0))}); 6581 setValue(&I, Res); 6582 DAG.setRoot(Res.getValue(0)); 6583 return; 6584 case Intrinsic::is_fpclass: { 6585 const DataLayout DLayout = DAG.getDataLayout(); 6586 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6587 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6588 FPClassTest Test = static_cast<FPClassTest>( 6589 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6590 MachineFunction &MF = DAG.getMachineFunction(); 6591 const Function &F = MF.getFunction(); 6592 SDValue Op = getValue(I.getArgOperand(0)); 6593 SDNodeFlags Flags; 6594 Flags.setNoFPExcept( 6595 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6596 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6597 // expansion can use illegal types. Making expansion early allows 6598 // legalizing these types prior to selection. 6599 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6600 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6601 setValue(&I, Result); 6602 return; 6603 } 6604 6605 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6606 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6607 setValue(&I, V); 6608 return; 6609 } 6610 case Intrinsic::get_fpenv: { 6611 const DataLayout DLayout = DAG.getDataLayout(); 6612 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6613 Align TempAlign = DAG.getEVTAlign(EnvVT); 6614 SDValue Chain = getRoot(); 6615 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6616 // and temporary storage in stack. 6617 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6618 Res = DAG.getNode( 6619 ISD::GET_FPENV, sdl, 6620 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6621 MVT::Other), 6622 Chain); 6623 } else { 6624 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6625 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6626 auto MPI = 6627 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6628 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6629 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6630 TempAlign); 6631 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6632 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6633 } 6634 setValue(&I, Res); 6635 DAG.setRoot(Res.getValue(1)); 6636 return; 6637 } 6638 case Intrinsic::set_fpenv: { 6639 const DataLayout DLayout = DAG.getDataLayout(); 6640 SDValue Env = getValue(I.getArgOperand(0)); 6641 EVT EnvVT = Env.getValueType(); 6642 Align TempAlign = DAG.getEVTAlign(EnvVT); 6643 SDValue Chain = getRoot(); 6644 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6645 // environment from memory. 6646 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6647 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6648 } else { 6649 // Allocate space in stack, copy environment bits into it and use this 6650 // memory in SET_FPENV_MEM. 6651 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6652 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6653 auto MPI = 6654 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6655 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6656 MachineMemOperand::MOStore); 6657 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6658 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6659 TempAlign); 6660 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6661 } 6662 DAG.setRoot(Chain); 6663 return; 6664 } 6665 case Intrinsic::reset_fpenv: 6666 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6667 return; 6668 case Intrinsic::get_fpmode: 6669 Res = DAG.getNode( 6670 ISD::GET_FPMODE, sdl, 6671 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6672 MVT::Other), 6673 DAG.getRoot()); 6674 setValue(&I, Res); 6675 DAG.setRoot(Res.getValue(1)); 6676 return; 6677 case Intrinsic::set_fpmode: 6678 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6679 getValue(I.getArgOperand(0))); 6680 DAG.setRoot(Res); 6681 return; 6682 case Intrinsic::reset_fpmode: { 6683 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6684 DAG.setRoot(Res); 6685 return; 6686 } 6687 case Intrinsic::pcmarker: { 6688 SDValue Tmp = getValue(I.getArgOperand(0)); 6689 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6690 return; 6691 } 6692 case Intrinsic::readcyclecounter: { 6693 SDValue Op = getRoot(); 6694 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6695 DAG.getVTList(MVT::i64, MVT::Other), Op); 6696 setValue(&I, Res); 6697 DAG.setRoot(Res.getValue(1)); 6698 return; 6699 } 6700 case Intrinsic::bitreverse: 6701 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6702 getValue(I.getArgOperand(0)).getValueType(), 6703 getValue(I.getArgOperand(0)))); 6704 return; 6705 case Intrinsic::bswap: 6706 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6707 getValue(I.getArgOperand(0)).getValueType(), 6708 getValue(I.getArgOperand(0)))); 6709 return; 6710 case Intrinsic::cttz: { 6711 SDValue Arg = getValue(I.getArgOperand(0)); 6712 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6713 EVT Ty = Arg.getValueType(); 6714 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6715 sdl, Ty, Arg)); 6716 return; 6717 } 6718 case Intrinsic::ctlz: { 6719 SDValue Arg = getValue(I.getArgOperand(0)); 6720 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6721 EVT Ty = Arg.getValueType(); 6722 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6723 sdl, Ty, Arg)); 6724 return; 6725 } 6726 case Intrinsic::ctpop: { 6727 SDValue Arg = getValue(I.getArgOperand(0)); 6728 EVT Ty = Arg.getValueType(); 6729 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6730 return; 6731 } 6732 case Intrinsic::fshl: 6733 case Intrinsic::fshr: { 6734 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6735 SDValue X = getValue(I.getArgOperand(0)); 6736 SDValue Y = getValue(I.getArgOperand(1)); 6737 SDValue Z = getValue(I.getArgOperand(2)); 6738 EVT VT = X.getValueType(); 6739 6740 if (X == Y) { 6741 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6742 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6743 } else { 6744 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6745 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6746 } 6747 return; 6748 } 6749 case Intrinsic::sadd_sat: { 6750 SDValue Op1 = getValue(I.getArgOperand(0)); 6751 SDValue Op2 = getValue(I.getArgOperand(1)); 6752 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6753 return; 6754 } 6755 case Intrinsic::uadd_sat: { 6756 SDValue Op1 = getValue(I.getArgOperand(0)); 6757 SDValue Op2 = getValue(I.getArgOperand(1)); 6758 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6759 return; 6760 } 6761 case Intrinsic::ssub_sat: { 6762 SDValue Op1 = getValue(I.getArgOperand(0)); 6763 SDValue Op2 = getValue(I.getArgOperand(1)); 6764 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6765 return; 6766 } 6767 case Intrinsic::usub_sat: { 6768 SDValue Op1 = getValue(I.getArgOperand(0)); 6769 SDValue Op2 = getValue(I.getArgOperand(1)); 6770 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6771 return; 6772 } 6773 case Intrinsic::sshl_sat: { 6774 SDValue Op1 = getValue(I.getArgOperand(0)); 6775 SDValue Op2 = getValue(I.getArgOperand(1)); 6776 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6777 return; 6778 } 6779 case Intrinsic::ushl_sat: { 6780 SDValue Op1 = getValue(I.getArgOperand(0)); 6781 SDValue Op2 = getValue(I.getArgOperand(1)); 6782 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6783 return; 6784 } 6785 case Intrinsic::smul_fix: 6786 case Intrinsic::umul_fix: 6787 case Intrinsic::smul_fix_sat: 6788 case Intrinsic::umul_fix_sat: { 6789 SDValue Op1 = getValue(I.getArgOperand(0)); 6790 SDValue Op2 = getValue(I.getArgOperand(1)); 6791 SDValue Op3 = getValue(I.getArgOperand(2)); 6792 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6793 Op1.getValueType(), Op1, Op2, Op3)); 6794 return; 6795 } 6796 case Intrinsic::sdiv_fix: 6797 case Intrinsic::udiv_fix: 6798 case Intrinsic::sdiv_fix_sat: 6799 case Intrinsic::udiv_fix_sat: { 6800 SDValue Op1 = getValue(I.getArgOperand(0)); 6801 SDValue Op2 = getValue(I.getArgOperand(1)); 6802 SDValue Op3 = getValue(I.getArgOperand(2)); 6803 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6804 Op1, Op2, Op3, DAG, TLI)); 6805 return; 6806 } 6807 case Intrinsic::smax: { 6808 SDValue Op1 = getValue(I.getArgOperand(0)); 6809 SDValue Op2 = getValue(I.getArgOperand(1)); 6810 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6811 return; 6812 } 6813 case Intrinsic::smin: { 6814 SDValue Op1 = getValue(I.getArgOperand(0)); 6815 SDValue Op2 = getValue(I.getArgOperand(1)); 6816 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6817 return; 6818 } 6819 case Intrinsic::umax: { 6820 SDValue Op1 = getValue(I.getArgOperand(0)); 6821 SDValue Op2 = getValue(I.getArgOperand(1)); 6822 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6823 return; 6824 } 6825 case Intrinsic::umin: { 6826 SDValue Op1 = getValue(I.getArgOperand(0)); 6827 SDValue Op2 = getValue(I.getArgOperand(1)); 6828 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6829 return; 6830 } 6831 case Intrinsic::abs: { 6832 // TODO: Preserve "int min is poison" arg in SDAG? 6833 SDValue Op1 = getValue(I.getArgOperand(0)); 6834 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6835 return; 6836 } 6837 case Intrinsic::stacksave: { 6838 SDValue Op = getRoot(); 6839 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6840 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6841 setValue(&I, Res); 6842 DAG.setRoot(Res.getValue(1)); 6843 return; 6844 } 6845 case Intrinsic::stackrestore: 6846 Res = getValue(I.getArgOperand(0)); 6847 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6848 return; 6849 case Intrinsic::get_dynamic_area_offset: { 6850 SDValue Op = getRoot(); 6851 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6852 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6853 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6854 // target. 6855 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6856 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6857 " intrinsic!"); 6858 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6859 Op); 6860 DAG.setRoot(Op); 6861 setValue(&I, Res); 6862 return; 6863 } 6864 case Intrinsic::stackguard: { 6865 MachineFunction &MF = DAG.getMachineFunction(); 6866 const Module &M = *MF.getFunction().getParent(); 6867 SDValue Chain = getRoot(); 6868 if (TLI.useLoadStackGuardNode()) { 6869 Res = getLoadStackGuard(DAG, sdl, Chain); 6870 } else { 6871 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6872 const Value *Global = TLI.getSDagStackGuard(M); 6873 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6874 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6875 MachinePointerInfo(Global, 0), Align, 6876 MachineMemOperand::MOVolatile); 6877 } 6878 if (TLI.useStackGuardXorFP()) 6879 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6880 DAG.setRoot(Chain); 6881 setValue(&I, Res); 6882 return; 6883 } 6884 case Intrinsic::stackprotector: { 6885 // Emit code into the DAG to store the stack guard onto the stack. 6886 MachineFunction &MF = DAG.getMachineFunction(); 6887 MachineFrameInfo &MFI = MF.getFrameInfo(); 6888 SDValue Src, Chain = getRoot(); 6889 6890 if (TLI.useLoadStackGuardNode()) 6891 Src = getLoadStackGuard(DAG, sdl, Chain); 6892 else 6893 Src = getValue(I.getArgOperand(0)); // The guard's value. 6894 6895 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6896 6897 int FI = FuncInfo.StaticAllocaMap[Slot]; 6898 MFI.setStackProtectorIndex(FI); 6899 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6900 6901 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6902 6903 // Store the stack protector onto the stack. 6904 Res = DAG.getStore( 6905 Chain, sdl, Src, FIN, 6906 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6907 MaybeAlign(), MachineMemOperand::MOVolatile); 6908 setValue(&I, Res); 6909 DAG.setRoot(Res); 6910 return; 6911 } 6912 case Intrinsic::objectsize: 6913 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6914 6915 case Intrinsic::is_constant: 6916 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6917 6918 case Intrinsic::annotation: 6919 case Intrinsic::ptr_annotation: 6920 case Intrinsic::launder_invariant_group: 6921 case Intrinsic::strip_invariant_group: 6922 // Drop the intrinsic, but forward the value 6923 setValue(&I, getValue(I.getOperand(0))); 6924 return; 6925 6926 case Intrinsic::assume: 6927 case Intrinsic::experimental_noalias_scope_decl: 6928 case Intrinsic::var_annotation: 6929 case Intrinsic::sideeffect: 6930 // Discard annotate attributes, noalias scope declarations, assumptions, and 6931 // artificial side-effects. 6932 return; 6933 6934 case Intrinsic::codeview_annotation: { 6935 // Emit a label associated with this metadata. 6936 MachineFunction &MF = DAG.getMachineFunction(); 6937 MCSymbol *Label = 6938 MF.getMMI().getContext().createTempSymbol("annotation", true); 6939 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6940 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6941 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6942 DAG.setRoot(Res); 6943 return; 6944 } 6945 6946 case Intrinsic::init_trampoline: { 6947 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6948 6949 SDValue Ops[6]; 6950 Ops[0] = getRoot(); 6951 Ops[1] = getValue(I.getArgOperand(0)); 6952 Ops[2] = getValue(I.getArgOperand(1)); 6953 Ops[3] = getValue(I.getArgOperand(2)); 6954 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6955 Ops[5] = DAG.getSrcValue(F); 6956 6957 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6958 6959 DAG.setRoot(Res); 6960 return; 6961 } 6962 case Intrinsic::adjust_trampoline: 6963 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6964 TLI.getPointerTy(DAG.getDataLayout()), 6965 getValue(I.getArgOperand(0)))); 6966 return; 6967 case Intrinsic::gcroot: { 6968 assert(DAG.getMachineFunction().getFunction().hasGC() && 6969 "only valid in functions with gc specified, enforced by Verifier"); 6970 assert(GFI && "implied by previous"); 6971 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6972 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6973 6974 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6975 GFI->addStackRoot(FI->getIndex(), TypeMap); 6976 return; 6977 } 6978 case Intrinsic::gcread: 6979 case Intrinsic::gcwrite: 6980 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6981 case Intrinsic::get_rounding: 6982 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 6983 setValue(&I, Res); 6984 DAG.setRoot(Res.getValue(1)); 6985 return; 6986 6987 case Intrinsic::expect: 6988 // Just replace __builtin_expect(exp, c) with EXP. 6989 setValue(&I, getValue(I.getArgOperand(0))); 6990 return; 6991 6992 case Intrinsic::ubsantrap: 6993 case Intrinsic::debugtrap: 6994 case Intrinsic::trap: { 6995 StringRef TrapFuncName = 6996 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6997 if (TrapFuncName.empty()) { 6998 switch (Intrinsic) { 6999 case Intrinsic::trap: 7000 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7001 break; 7002 case Intrinsic::debugtrap: 7003 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7004 break; 7005 case Intrinsic::ubsantrap: 7006 DAG.setRoot(DAG.getNode( 7007 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7008 DAG.getTargetConstant( 7009 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7010 MVT::i32))); 7011 break; 7012 default: llvm_unreachable("unknown trap intrinsic"); 7013 } 7014 return; 7015 } 7016 TargetLowering::ArgListTy Args; 7017 if (Intrinsic == Intrinsic::ubsantrap) { 7018 Args.push_back(TargetLoweringBase::ArgListEntry()); 7019 Args[0].Val = I.getArgOperand(0); 7020 Args[0].Node = getValue(Args[0].Val); 7021 Args[0].Ty = Args[0].Val->getType(); 7022 } 7023 7024 TargetLowering::CallLoweringInfo CLI(DAG); 7025 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7026 CallingConv::C, I.getType(), 7027 DAG.getExternalSymbol(TrapFuncName.data(), 7028 TLI.getPointerTy(DAG.getDataLayout())), 7029 std::move(Args)); 7030 7031 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7032 DAG.setRoot(Result.second); 7033 return; 7034 } 7035 7036 case Intrinsic::uadd_with_overflow: 7037 case Intrinsic::sadd_with_overflow: 7038 case Intrinsic::usub_with_overflow: 7039 case Intrinsic::ssub_with_overflow: 7040 case Intrinsic::umul_with_overflow: 7041 case Intrinsic::smul_with_overflow: { 7042 ISD::NodeType Op; 7043 switch (Intrinsic) { 7044 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7045 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7046 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7047 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7048 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7049 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7050 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7051 } 7052 SDValue Op1 = getValue(I.getArgOperand(0)); 7053 SDValue Op2 = getValue(I.getArgOperand(1)); 7054 7055 EVT ResultVT = Op1.getValueType(); 7056 EVT OverflowVT = MVT::i1; 7057 if (ResultVT.isVector()) 7058 OverflowVT = EVT::getVectorVT( 7059 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7060 7061 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7062 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7063 return; 7064 } 7065 case Intrinsic::prefetch: { 7066 SDValue Ops[5]; 7067 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7068 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7069 Ops[0] = DAG.getRoot(); 7070 Ops[1] = getValue(I.getArgOperand(0)); 7071 Ops[2] = getValue(I.getArgOperand(1)); 7072 Ops[3] = getValue(I.getArgOperand(2)); 7073 Ops[4] = getValue(I.getArgOperand(3)); 7074 SDValue Result = DAG.getMemIntrinsicNode( 7075 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7076 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7077 /* align */ std::nullopt, Flags); 7078 7079 // Chain the prefetch in parallell with any pending loads, to stay out of 7080 // the way of later optimizations. 7081 PendingLoads.push_back(Result); 7082 Result = getRoot(); 7083 DAG.setRoot(Result); 7084 return; 7085 } 7086 case Intrinsic::lifetime_start: 7087 case Intrinsic::lifetime_end: { 7088 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7089 // Stack coloring is not enabled in O0, discard region information. 7090 if (TM.getOptLevel() == CodeGenOpt::None) 7091 return; 7092 7093 const int64_t ObjectSize = 7094 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7095 Value *const ObjectPtr = I.getArgOperand(1); 7096 SmallVector<const Value *, 4> Allocas; 7097 getUnderlyingObjects(ObjectPtr, Allocas); 7098 7099 for (const Value *Alloca : Allocas) { 7100 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7101 7102 // Could not find an Alloca. 7103 if (!LifetimeObject) 7104 continue; 7105 7106 // First check that the Alloca is static, otherwise it won't have a 7107 // valid frame index. 7108 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7109 if (SI == FuncInfo.StaticAllocaMap.end()) 7110 return; 7111 7112 const int FrameIndex = SI->second; 7113 int64_t Offset; 7114 if (GetPointerBaseWithConstantOffset( 7115 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7116 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7117 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7118 Offset); 7119 DAG.setRoot(Res); 7120 } 7121 return; 7122 } 7123 case Intrinsic::pseudoprobe: { 7124 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7125 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7126 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7127 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7128 DAG.setRoot(Res); 7129 return; 7130 } 7131 case Intrinsic::invariant_start: 7132 // Discard region information. 7133 setValue(&I, 7134 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7135 return; 7136 case Intrinsic::invariant_end: 7137 // Discard region information. 7138 return; 7139 case Intrinsic::clear_cache: 7140 /// FunctionName may be null. 7141 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7142 lowerCallToExternalSymbol(I, FunctionName); 7143 return; 7144 case Intrinsic::donothing: 7145 case Intrinsic::seh_try_begin: 7146 case Intrinsic::seh_scope_begin: 7147 case Intrinsic::seh_try_end: 7148 case Intrinsic::seh_scope_end: 7149 // ignore 7150 return; 7151 case Intrinsic::experimental_stackmap: 7152 visitStackmap(I); 7153 return; 7154 case Intrinsic::experimental_patchpoint_void: 7155 case Intrinsic::experimental_patchpoint_i64: 7156 visitPatchpoint(I); 7157 return; 7158 case Intrinsic::experimental_gc_statepoint: 7159 LowerStatepoint(cast<GCStatepointInst>(I)); 7160 return; 7161 case Intrinsic::experimental_gc_result: 7162 visitGCResult(cast<GCResultInst>(I)); 7163 return; 7164 case Intrinsic::experimental_gc_relocate: 7165 visitGCRelocate(cast<GCRelocateInst>(I)); 7166 return; 7167 case Intrinsic::instrprof_cover: 7168 llvm_unreachable("instrprof failed to lower a cover"); 7169 case Intrinsic::instrprof_increment: 7170 llvm_unreachable("instrprof failed to lower an increment"); 7171 case Intrinsic::instrprof_timestamp: 7172 llvm_unreachable("instrprof failed to lower a timestamp"); 7173 case Intrinsic::instrprof_value_profile: 7174 llvm_unreachable("instrprof failed to lower a value profiling call"); 7175 case Intrinsic::localescape: { 7176 MachineFunction &MF = DAG.getMachineFunction(); 7177 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7178 7179 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7180 // is the same on all targets. 7181 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7182 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7183 if (isa<ConstantPointerNull>(Arg)) 7184 continue; // Skip null pointers. They represent a hole in index space. 7185 AllocaInst *Slot = cast<AllocaInst>(Arg); 7186 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7187 "can only escape static allocas"); 7188 int FI = FuncInfo.StaticAllocaMap[Slot]; 7189 MCSymbol *FrameAllocSym = 7190 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7191 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7192 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7193 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7194 .addSym(FrameAllocSym) 7195 .addFrameIndex(FI); 7196 } 7197 7198 return; 7199 } 7200 7201 case Intrinsic::localrecover: { 7202 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7203 MachineFunction &MF = DAG.getMachineFunction(); 7204 7205 // Get the symbol that defines the frame offset. 7206 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7207 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7208 unsigned IdxVal = 7209 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7210 MCSymbol *FrameAllocSym = 7211 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7212 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7213 7214 Value *FP = I.getArgOperand(1); 7215 SDValue FPVal = getValue(FP); 7216 EVT PtrVT = FPVal.getValueType(); 7217 7218 // Create a MCSymbol for the label to avoid any target lowering 7219 // that would make this PC relative. 7220 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7221 SDValue OffsetVal = 7222 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7223 7224 // Add the offset to the FP. 7225 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7226 setValue(&I, Add); 7227 7228 return; 7229 } 7230 7231 case Intrinsic::eh_exceptionpointer: 7232 case Intrinsic::eh_exceptioncode: { 7233 // Get the exception pointer vreg, copy from it, and resize it to fit. 7234 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7235 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7236 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7237 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7238 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7239 if (Intrinsic == Intrinsic::eh_exceptioncode) 7240 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7241 setValue(&I, N); 7242 return; 7243 } 7244 case Intrinsic::xray_customevent: { 7245 // Here we want to make sure that the intrinsic behaves as if it has a 7246 // specific calling convention. 7247 const auto &Triple = DAG.getTarget().getTargetTriple(); 7248 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7249 return; 7250 7251 SmallVector<SDValue, 8> Ops; 7252 7253 // We want to say that we always want the arguments in registers. 7254 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7255 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7256 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7257 SDValue Chain = getRoot(); 7258 Ops.push_back(LogEntryVal); 7259 Ops.push_back(StrSizeVal); 7260 Ops.push_back(Chain); 7261 7262 // We need to enforce the calling convention for the callsite, so that 7263 // argument ordering is enforced correctly, and that register allocation can 7264 // see that some registers may be assumed clobbered and have to preserve 7265 // them across calls to the intrinsic. 7266 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7267 sdl, NodeTys, Ops); 7268 SDValue patchableNode = SDValue(MN, 0); 7269 DAG.setRoot(patchableNode); 7270 setValue(&I, patchableNode); 7271 return; 7272 } 7273 case Intrinsic::xray_typedevent: { 7274 // Here we want to make sure that the intrinsic behaves as if it has a 7275 // specific calling convention. 7276 const auto &Triple = DAG.getTarget().getTargetTriple(); 7277 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7278 return; 7279 7280 SmallVector<SDValue, 8> Ops; 7281 7282 // We want to say that we always want the arguments in registers. 7283 // It's unclear to me how manipulating the selection DAG here forces callers 7284 // to provide arguments in registers instead of on the stack. 7285 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7286 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7287 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7288 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7289 SDValue Chain = getRoot(); 7290 Ops.push_back(LogTypeId); 7291 Ops.push_back(LogEntryVal); 7292 Ops.push_back(StrSizeVal); 7293 Ops.push_back(Chain); 7294 7295 // We need to enforce the calling convention for the callsite, so that 7296 // argument ordering is enforced correctly, and that register allocation can 7297 // see that some registers may be assumed clobbered and have to preserve 7298 // them across calls to the intrinsic. 7299 MachineSDNode *MN = DAG.getMachineNode( 7300 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7301 SDValue patchableNode = SDValue(MN, 0); 7302 DAG.setRoot(patchableNode); 7303 setValue(&I, patchableNode); 7304 return; 7305 } 7306 case Intrinsic::experimental_deoptimize: 7307 LowerDeoptimizeCall(&I); 7308 return; 7309 case Intrinsic::experimental_stepvector: 7310 visitStepVector(I); 7311 return; 7312 case Intrinsic::vector_reduce_fadd: 7313 case Intrinsic::vector_reduce_fmul: 7314 case Intrinsic::vector_reduce_add: 7315 case Intrinsic::vector_reduce_mul: 7316 case Intrinsic::vector_reduce_and: 7317 case Intrinsic::vector_reduce_or: 7318 case Intrinsic::vector_reduce_xor: 7319 case Intrinsic::vector_reduce_smax: 7320 case Intrinsic::vector_reduce_smin: 7321 case Intrinsic::vector_reduce_umax: 7322 case Intrinsic::vector_reduce_umin: 7323 case Intrinsic::vector_reduce_fmax: 7324 case Intrinsic::vector_reduce_fmin: 7325 case Intrinsic::vector_reduce_fmaximum: 7326 case Intrinsic::vector_reduce_fminimum: 7327 visitVectorReduce(I, Intrinsic); 7328 return; 7329 7330 case Intrinsic::icall_branch_funnel: { 7331 SmallVector<SDValue, 16> Ops; 7332 Ops.push_back(getValue(I.getArgOperand(0))); 7333 7334 int64_t Offset; 7335 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7336 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7337 if (!Base) 7338 report_fatal_error( 7339 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7340 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7341 7342 struct BranchFunnelTarget { 7343 int64_t Offset; 7344 SDValue Target; 7345 }; 7346 SmallVector<BranchFunnelTarget, 8> Targets; 7347 7348 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7349 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7350 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7351 if (ElemBase != Base) 7352 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7353 "to the same GlobalValue"); 7354 7355 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7356 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7357 if (!GA) 7358 report_fatal_error( 7359 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7360 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7361 GA->getGlobal(), sdl, Val.getValueType(), 7362 GA->getOffset())}); 7363 } 7364 llvm::sort(Targets, 7365 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7366 return T1.Offset < T2.Offset; 7367 }); 7368 7369 for (auto &T : Targets) { 7370 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7371 Ops.push_back(T.Target); 7372 } 7373 7374 Ops.push_back(DAG.getRoot()); // Chain 7375 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7376 MVT::Other, Ops), 7377 0); 7378 DAG.setRoot(N); 7379 setValue(&I, N); 7380 HasTailCall = true; 7381 return; 7382 } 7383 7384 case Intrinsic::wasm_landingpad_index: 7385 // Information this intrinsic contained has been transferred to 7386 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7387 // delete it now. 7388 return; 7389 7390 case Intrinsic::aarch64_settag: 7391 case Intrinsic::aarch64_settag_zero: { 7392 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7393 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7394 SDValue Val = TSI.EmitTargetCodeForSetTag( 7395 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7396 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7397 ZeroMemory); 7398 DAG.setRoot(Val); 7399 setValue(&I, Val); 7400 return; 7401 } 7402 case Intrinsic::ptrmask: { 7403 SDValue Ptr = getValue(I.getOperand(0)); 7404 SDValue Const = getValue(I.getOperand(1)); 7405 7406 EVT PtrVT = Ptr.getValueType(); 7407 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7408 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7409 return; 7410 } 7411 case Intrinsic::threadlocal_address: { 7412 setValue(&I, getValue(I.getOperand(0))); 7413 return; 7414 } 7415 case Intrinsic::get_active_lane_mask: { 7416 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7417 SDValue Index = getValue(I.getOperand(0)); 7418 EVT ElementVT = Index.getValueType(); 7419 7420 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7421 visitTargetIntrinsic(I, Intrinsic); 7422 return; 7423 } 7424 7425 SDValue TripCount = getValue(I.getOperand(1)); 7426 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7427 CCVT.getVectorElementCount()); 7428 7429 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7430 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7431 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7432 SDValue VectorInduction = DAG.getNode( 7433 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7434 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7435 VectorTripCount, ISD::CondCode::SETULT); 7436 setValue(&I, SetCC); 7437 return; 7438 } 7439 case Intrinsic::experimental_get_vector_length: { 7440 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7441 "Expected positive VF"); 7442 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7443 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7444 7445 SDValue Count = getValue(I.getOperand(0)); 7446 EVT CountVT = Count.getValueType(); 7447 7448 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7449 visitTargetIntrinsic(I, Intrinsic); 7450 return; 7451 } 7452 7453 // Expand to a umin between the trip count and the maximum elements the type 7454 // can hold. 7455 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7456 7457 // Extend the trip count to at least the result VT. 7458 if (CountVT.bitsLT(VT)) { 7459 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7460 CountVT = VT; 7461 } 7462 7463 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7464 ElementCount::get(VF, IsScalable)); 7465 7466 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7467 // Clip to the result type if needed. 7468 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7469 7470 setValue(&I, Trunc); 7471 return; 7472 } 7473 case Intrinsic::vector_insert: { 7474 SDValue Vec = getValue(I.getOperand(0)); 7475 SDValue SubVec = getValue(I.getOperand(1)); 7476 SDValue Index = getValue(I.getOperand(2)); 7477 7478 // The intrinsic's index type is i64, but the SDNode requires an index type 7479 // suitable for the target. Convert the index as required. 7480 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7481 if (Index.getValueType() != VectorIdxTy) 7482 Index = DAG.getVectorIdxConstant( 7483 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7484 7485 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7486 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7487 Index)); 7488 return; 7489 } 7490 case Intrinsic::vector_extract: { 7491 SDValue Vec = getValue(I.getOperand(0)); 7492 SDValue Index = getValue(I.getOperand(1)); 7493 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7494 7495 // The intrinsic's index type is i64, but the SDNode requires an index type 7496 // suitable for the target. Convert the index as required. 7497 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7498 if (Index.getValueType() != VectorIdxTy) 7499 Index = DAG.getVectorIdxConstant( 7500 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7501 7502 setValue(&I, 7503 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7504 return; 7505 } 7506 case Intrinsic::experimental_vector_reverse: 7507 visitVectorReverse(I); 7508 return; 7509 case Intrinsic::experimental_vector_splice: 7510 visitVectorSplice(I); 7511 return; 7512 case Intrinsic::callbr_landingpad: 7513 visitCallBrLandingPad(I); 7514 return; 7515 case Intrinsic::experimental_vector_interleave2: 7516 visitVectorInterleave(I); 7517 return; 7518 case Intrinsic::experimental_vector_deinterleave2: 7519 visitVectorDeinterleave(I); 7520 return; 7521 } 7522 } 7523 7524 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7525 const ConstrainedFPIntrinsic &FPI) { 7526 SDLoc sdl = getCurSDLoc(); 7527 7528 // We do not need to serialize constrained FP intrinsics against 7529 // each other or against (nonvolatile) loads, so they can be 7530 // chained like loads. 7531 SDValue Chain = DAG.getRoot(); 7532 SmallVector<SDValue, 4> Opers; 7533 Opers.push_back(Chain); 7534 if (FPI.isUnaryOp()) { 7535 Opers.push_back(getValue(FPI.getArgOperand(0))); 7536 } else if (FPI.isTernaryOp()) { 7537 Opers.push_back(getValue(FPI.getArgOperand(0))); 7538 Opers.push_back(getValue(FPI.getArgOperand(1))); 7539 Opers.push_back(getValue(FPI.getArgOperand(2))); 7540 } else { 7541 Opers.push_back(getValue(FPI.getArgOperand(0))); 7542 Opers.push_back(getValue(FPI.getArgOperand(1))); 7543 } 7544 7545 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7546 assert(Result.getNode()->getNumValues() == 2); 7547 7548 // Push node to the appropriate list so that future instructions can be 7549 // chained up correctly. 7550 SDValue OutChain = Result.getValue(1); 7551 switch (EB) { 7552 case fp::ExceptionBehavior::ebIgnore: 7553 // The only reason why ebIgnore nodes still need to be chained is that 7554 // they might depend on the current rounding mode, and therefore must 7555 // not be moved across instruction that may change that mode. 7556 [[fallthrough]]; 7557 case fp::ExceptionBehavior::ebMayTrap: 7558 // These must not be moved across calls or instructions that may change 7559 // floating-point exception masks. 7560 PendingConstrainedFP.push_back(OutChain); 7561 break; 7562 case fp::ExceptionBehavior::ebStrict: 7563 // These must not be moved across calls or instructions that may change 7564 // floating-point exception masks or read floating-point exception flags. 7565 // In addition, they cannot be optimized out even if unused. 7566 PendingConstrainedFPStrict.push_back(OutChain); 7567 break; 7568 } 7569 }; 7570 7571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7572 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7573 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7574 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7575 7576 SDNodeFlags Flags; 7577 if (EB == fp::ExceptionBehavior::ebIgnore) 7578 Flags.setNoFPExcept(true); 7579 7580 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7581 Flags.copyFMF(*FPOp); 7582 7583 unsigned Opcode; 7584 switch (FPI.getIntrinsicID()) { 7585 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7586 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7587 case Intrinsic::INTRINSIC: \ 7588 Opcode = ISD::STRICT_##DAGN; \ 7589 break; 7590 #include "llvm/IR/ConstrainedOps.def" 7591 case Intrinsic::experimental_constrained_fmuladd: { 7592 Opcode = ISD::STRICT_FMA; 7593 // Break fmuladd into fmul and fadd. 7594 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7595 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7596 Opers.pop_back(); 7597 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7598 pushOutChain(Mul, EB); 7599 Opcode = ISD::STRICT_FADD; 7600 Opers.clear(); 7601 Opers.push_back(Mul.getValue(1)); 7602 Opers.push_back(Mul.getValue(0)); 7603 Opers.push_back(getValue(FPI.getArgOperand(2))); 7604 } 7605 break; 7606 } 7607 } 7608 7609 // A few strict DAG nodes carry additional operands that are not 7610 // set up by the default code above. 7611 switch (Opcode) { 7612 default: break; 7613 case ISD::STRICT_FP_ROUND: 7614 Opers.push_back( 7615 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7616 break; 7617 case ISD::STRICT_FSETCC: 7618 case ISD::STRICT_FSETCCS: { 7619 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7620 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7621 if (TM.Options.NoNaNsFPMath) 7622 Condition = getFCmpCodeWithoutNaN(Condition); 7623 Opers.push_back(DAG.getCondCode(Condition)); 7624 break; 7625 } 7626 } 7627 7628 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7629 pushOutChain(Result, EB); 7630 7631 SDValue FPResult = Result.getValue(0); 7632 setValue(&FPI, FPResult); 7633 } 7634 7635 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7636 std::optional<unsigned> ResOPC; 7637 switch (VPIntrin.getIntrinsicID()) { 7638 case Intrinsic::vp_ctlz: { 7639 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7640 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7641 break; 7642 } 7643 case Intrinsic::vp_cttz: { 7644 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7645 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7646 break; 7647 } 7648 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7649 case Intrinsic::VPID: \ 7650 ResOPC = ISD::VPSD; \ 7651 break; 7652 #include "llvm/IR/VPIntrinsics.def" 7653 } 7654 7655 if (!ResOPC) 7656 llvm_unreachable( 7657 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7658 7659 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7660 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7661 if (VPIntrin.getFastMathFlags().allowReassoc()) 7662 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7663 : ISD::VP_REDUCE_FMUL; 7664 } 7665 7666 return *ResOPC; 7667 } 7668 7669 void SelectionDAGBuilder::visitVPLoad( 7670 const VPIntrinsic &VPIntrin, EVT VT, 7671 const SmallVectorImpl<SDValue> &OpValues) { 7672 SDLoc DL = getCurSDLoc(); 7673 Value *PtrOperand = VPIntrin.getArgOperand(0); 7674 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7675 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7676 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7677 SDValue LD; 7678 // Do not serialize variable-length loads of constant memory with 7679 // anything. 7680 if (!Alignment) 7681 Alignment = DAG.getEVTAlign(VT); 7682 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7683 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7684 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7685 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7686 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7687 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7688 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7689 MMO, false /*IsExpanding */); 7690 if (AddToChain) 7691 PendingLoads.push_back(LD.getValue(1)); 7692 setValue(&VPIntrin, LD); 7693 } 7694 7695 void SelectionDAGBuilder::visitVPGather( 7696 const VPIntrinsic &VPIntrin, EVT VT, 7697 const SmallVectorImpl<SDValue> &OpValues) { 7698 SDLoc DL = getCurSDLoc(); 7699 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7700 Value *PtrOperand = VPIntrin.getArgOperand(0); 7701 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7702 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7703 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7704 SDValue LD; 7705 if (!Alignment) 7706 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7707 unsigned AS = 7708 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7709 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7710 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7711 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7712 SDValue Base, Index, Scale; 7713 ISD::MemIndexType IndexType; 7714 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7715 this, VPIntrin.getParent(), 7716 VT.getScalarStoreSize()); 7717 if (!UniformBase) { 7718 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7719 Index = getValue(PtrOperand); 7720 IndexType = ISD::SIGNED_SCALED; 7721 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7722 } 7723 EVT IdxVT = Index.getValueType(); 7724 EVT EltTy = IdxVT.getVectorElementType(); 7725 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7726 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7727 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7728 } 7729 LD = DAG.getGatherVP( 7730 DAG.getVTList(VT, MVT::Other), VT, DL, 7731 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7732 IndexType); 7733 PendingLoads.push_back(LD.getValue(1)); 7734 setValue(&VPIntrin, LD); 7735 } 7736 7737 void SelectionDAGBuilder::visitVPStore( 7738 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7739 SDLoc DL = getCurSDLoc(); 7740 Value *PtrOperand = VPIntrin.getArgOperand(1); 7741 EVT VT = OpValues[0].getValueType(); 7742 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7743 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7744 SDValue ST; 7745 if (!Alignment) 7746 Alignment = DAG.getEVTAlign(VT); 7747 SDValue Ptr = OpValues[1]; 7748 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7749 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7750 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7751 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7752 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7753 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7754 /* IsTruncating */ false, /*IsCompressing*/ false); 7755 DAG.setRoot(ST); 7756 setValue(&VPIntrin, ST); 7757 } 7758 7759 void SelectionDAGBuilder::visitVPScatter( 7760 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7761 SDLoc DL = getCurSDLoc(); 7762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7763 Value *PtrOperand = VPIntrin.getArgOperand(1); 7764 EVT VT = OpValues[0].getValueType(); 7765 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7766 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7767 SDValue ST; 7768 if (!Alignment) 7769 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7770 unsigned AS = 7771 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7772 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7773 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7774 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7775 SDValue Base, Index, Scale; 7776 ISD::MemIndexType IndexType; 7777 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7778 this, VPIntrin.getParent(), 7779 VT.getScalarStoreSize()); 7780 if (!UniformBase) { 7781 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7782 Index = getValue(PtrOperand); 7783 IndexType = ISD::SIGNED_SCALED; 7784 Scale = 7785 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7786 } 7787 EVT IdxVT = Index.getValueType(); 7788 EVT EltTy = IdxVT.getVectorElementType(); 7789 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7790 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7791 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7792 } 7793 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7794 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7795 OpValues[2], OpValues[3]}, 7796 MMO, IndexType); 7797 DAG.setRoot(ST); 7798 setValue(&VPIntrin, ST); 7799 } 7800 7801 void SelectionDAGBuilder::visitVPStridedLoad( 7802 const VPIntrinsic &VPIntrin, EVT VT, 7803 const SmallVectorImpl<SDValue> &OpValues) { 7804 SDLoc DL = getCurSDLoc(); 7805 Value *PtrOperand = VPIntrin.getArgOperand(0); 7806 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7807 if (!Alignment) 7808 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7809 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7810 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7811 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7812 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7813 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7814 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7815 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7816 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7817 7818 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7819 OpValues[2], OpValues[3], MMO, 7820 false /*IsExpanding*/); 7821 7822 if (AddToChain) 7823 PendingLoads.push_back(LD.getValue(1)); 7824 setValue(&VPIntrin, LD); 7825 } 7826 7827 void SelectionDAGBuilder::visitVPStridedStore( 7828 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7829 SDLoc DL = getCurSDLoc(); 7830 Value *PtrOperand = VPIntrin.getArgOperand(1); 7831 EVT VT = OpValues[0].getValueType(); 7832 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7833 if (!Alignment) 7834 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7835 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7836 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7837 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7838 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7839 7840 SDValue ST = DAG.getStridedStoreVP( 7841 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7842 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7843 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7844 /*IsCompressing*/ false); 7845 7846 DAG.setRoot(ST); 7847 setValue(&VPIntrin, ST); 7848 } 7849 7850 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7852 SDLoc DL = getCurSDLoc(); 7853 7854 ISD::CondCode Condition; 7855 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7856 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7857 if (IsFP) { 7858 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7859 // flags, but calls that don't return floating-point types can't be 7860 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7861 Condition = getFCmpCondCode(CondCode); 7862 if (TM.Options.NoNaNsFPMath) 7863 Condition = getFCmpCodeWithoutNaN(Condition); 7864 } else { 7865 Condition = getICmpCondCode(CondCode); 7866 } 7867 7868 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7869 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7870 // #2 is the condition code 7871 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7872 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7873 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7874 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7875 "Unexpected target EVL type"); 7876 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7877 7878 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7879 VPIntrin.getType()); 7880 setValue(&VPIntrin, 7881 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7882 } 7883 7884 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7885 const VPIntrinsic &VPIntrin) { 7886 SDLoc DL = getCurSDLoc(); 7887 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7888 7889 auto IID = VPIntrin.getIntrinsicID(); 7890 7891 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7892 return visitVPCmp(*CmpI); 7893 7894 SmallVector<EVT, 4> ValueVTs; 7895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7896 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7897 SDVTList VTs = DAG.getVTList(ValueVTs); 7898 7899 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7900 7901 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7902 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7903 "Unexpected target EVL type"); 7904 7905 // Request operands. 7906 SmallVector<SDValue, 7> OpValues; 7907 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7908 auto Op = getValue(VPIntrin.getArgOperand(I)); 7909 if (I == EVLParamPos) 7910 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7911 OpValues.push_back(Op); 7912 } 7913 7914 switch (Opcode) { 7915 default: { 7916 SDNodeFlags SDFlags; 7917 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7918 SDFlags.copyFMF(*FPMO); 7919 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7920 setValue(&VPIntrin, Result); 7921 break; 7922 } 7923 case ISD::VP_LOAD: 7924 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7925 break; 7926 case ISD::VP_GATHER: 7927 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7928 break; 7929 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7930 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7931 break; 7932 case ISD::VP_STORE: 7933 visitVPStore(VPIntrin, OpValues); 7934 break; 7935 case ISD::VP_SCATTER: 7936 visitVPScatter(VPIntrin, OpValues); 7937 break; 7938 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7939 visitVPStridedStore(VPIntrin, OpValues); 7940 break; 7941 case ISD::VP_FMULADD: { 7942 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7943 SDNodeFlags SDFlags; 7944 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7945 SDFlags.copyFMF(*FPMO); 7946 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7947 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7948 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7949 } else { 7950 SDValue Mul = DAG.getNode( 7951 ISD::VP_FMUL, DL, VTs, 7952 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7953 SDValue Add = 7954 DAG.getNode(ISD::VP_FADD, DL, VTs, 7955 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7956 setValue(&VPIntrin, Add); 7957 } 7958 break; 7959 } 7960 case ISD::VP_INTTOPTR: { 7961 SDValue N = OpValues[0]; 7962 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7963 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 7964 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7965 OpValues[2]); 7966 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7967 OpValues[2]); 7968 setValue(&VPIntrin, N); 7969 break; 7970 } 7971 case ISD::VP_PTRTOINT: { 7972 SDValue N = OpValues[0]; 7973 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7974 VPIntrin.getType()); 7975 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 7976 VPIntrin.getOperand(0)->getType()); 7977 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 7978 OpValues[2]); 7979 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 7980 OpValues[2]); 7981 setValue(&VPIntrin, N); 7982 break; 7983 } 7984 case ISD::VP_ABS: 7985 case ISD::VP_CTLZ: 7986 case ISD::VP_CTLZ_ZERO_UNDEF: 7987 case ISD::VP_CTTZ: 7988 case ISD::VP_CTTZ_ZERO_UNDEF: { 7989 SDValue Result = 7990 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 7991 setValue(&VPIntrin, Result); 7992 break; 7993 } 7994 } 7995 } 7996 7997 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7998 const BasicBlock *EHPadBB, 7999 MCSymbol *&BeginLabel) { 8000 MachineFunction &MF = DAG.getMachineFunction(); 8001 MachineModuleInfo &MMI = MF.getMMI(); 8002 8003 // Insert a label before the invoke call to mark the try range. This can be 8004 // used to detect deletion of the invoke via the MachineModuleInfo. 8005 BeginLabel = MMI.getContext().createTempSymbol(); 8006 8007 // For SjLj, keep track of which landing pads go with which invokes 8008 // so as to maintain the ordering of pads in the LSDA. 8009 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8010 if (CallSiteIndex) { 8011 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8012 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8013 8014 // Now that the call site is handled, stop tracking it. 8015 MMI.setCurrentCallSite(0); 8016 } 8017 8018 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8019 } 8020 8021 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8022 const BasicBlock *EHPadBB, 8023 MCSymbol *BeginLabel) { 8024 assert(BeginLabel && "BeginLabel should've been set"); 8025 8026 MachineFunction &MF = DAG.getMachineFunction(); 8027 MachineModuleInfo &MMI = MF.getMMI(); 8028 8029 // Insert a label at the end of the invoke call to mark the try range. This 8030 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8031 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8032 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8033 8034 // Inform MachineModuleInfo of range. 8035 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8036 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8037 // actually use outlined funclets and their LSDA info style. 8038 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8039 assert(II && "II should've been set"); 8040 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8041 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8042 } else if (!isScopedEHPersonality(Pers)) { 8043 assert(EHPadBB); 8044 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8045 } 8046 8047 return Chain; 8048 } 8049 8050 std::pair<SDValue, SDValue> 8051 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8052 const BasicBlock *EHPadBB) { 8053 MCSymbol *BeginLabel = nullptr; 8054 8055 if (EHPadBB) { 8056 // Both PendingLoads and PendingExports must be flushed here; 8057 // this call might not return. 8058 (void)getRoot(); 8059 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8060 CLI.setChain(getRoot()); 8061 } 8062 8063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8064 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8065 8066 assert((CLI.IsTailCall || Result.second.getNode()) && 8067 "Non-null chain expected with non-tail call!"); 8068 assert((Result.second.getNode() || !Result.first.getNode()) && 8069 "Null value expected with tail call!"); 8070 8071 if (!Result.second.getNode()) { 8072 // As a special case, a null chain means that a tail call has been emitted 8073 // and the DAG root is already updated. 8074 HasTailCall = true; 8075 8076 // Since there's no actual continuation from this block, nothing can be 8077 // relying on us setting vregs for them. 8078 PendingExports.clear(); 8079 } else { 8080 DAG.setRoot(Result.second); 8081 } 8082 8083 if (EHPadBB) { 8084 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8085 BeginLabel)); 8086 } 8087 8088 return Result; 8089 } 8090 8091 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8092 bool isTailCall, 8093 bool isMustTailCall, 8094 const BasicBlock *EHPadBB) { 8095 auto &DL = DAG.getDataLayout(); 8096 FunctionType *FTy = CB.getFunctionType(); 8097 Type *RetTy = CB.getType(); 8098 8099 TargetLowering::ArgListTy Args; 8100 Args.reserve(CB.arg_size()); 8101 8102 const Value *SwiftErrorVal = nullptr; 8103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8104 8105 if (isTailCall) { 8106 // Avoid emitting tail calls in functions with the disable-tail-calls 8107 // attribute. 8108 auto *Caller = CB.getParent()->getParent(); 8109 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8110 "true" && !isMustTailCall) 8111 isTailCall = false; 8112 8113 // We can't tail call inside a function with a swifterror argument. Lowering 8114 // does not support this yet. It would have to move into the swifterror 8115 // register before the call. 8116 if (TLI.supportSwiftError() && 8117 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8118 isTailCall = false; 8119 } 8120 8121 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8122 TargetLowering::ArgListEntry Entry; 8123 const Value *V = *I; 8124 8125 // Skip empty types 8126 if (V->getType()->isEmptyTy()) 8127 continue; 8128 8129 SDValue ArgNode = getValue(V); 8130 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8131 8132 Entry.setAttributes(&CB, I - CB.arg_begin()); 8133 8134 // Use swifterror virtual register as input to the call. 8135 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8136 SwiftErrorVal = V; 8137 // We find the virtual register for the actual swifterror argument. 8138 // Instead of using the Value, we use the virtual register instead. 8139 Entry.Node = 8140 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8141 EVT(TLI.getPointerTy(DL))); 8142 } 8143 8144 Args.push_back(Entry); 8145 8146 // If we have an explicit sret argument that is an Instruction, (i.e., it 8147 // might point to function-local memory), we can't meaningfully tail-call. 8148 if (Entry.IsSRet && isa<Instruction>(V)) 8149 isTailCall = false; 8150 } 8151 8152 // If call site has a cfguardtarget operand bundle, create and add an 8153 // additional ArgListEntry. 8154 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8155 TargetLowering::ArgListEntry Entry; 8156 Value *V = Bundle->Inputs[0]; 8157 SDValue ArgNode = getValue(V); 8158 Entry.Node = ArgNode; 8159 Entry.Ty = V->getType(); 8160 Entry.IsCFGuardTarget = true; 8161 Args.push_back(Entry); 8162 } 8163 8164 // Check if target-independent constraints permit a tail call here. 8165 // Target-dependent constraints are checked within TLI->LowerCallTo. 8166 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8167 isTailCall = false; 8168 8169 // Disable tail calls if there is an swifterror argument. Targets have not 8170 // been updated to support tail calls. 8171 if (TLI.supportSwiftError() && SwiftErrorVal) 8172 isTailCall = false; 8173 8174 ConstantInt *CFIType = nullptr; 8175 if (CB.isIndirectCall()) { 8176 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8177 if (!TLI.supportKCFIBundles()) 8178 report_fatal_error( 8179 "Target doesn't support calls with kcfi operand bundles."); 8180 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8181 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8182 } 8183 } 8184 8185 TargetLowering::CallLoweringInfo CLI(DAG); 8186 CLI.setDebugLoc(getCurSDLoc()) 8187 .setChain(getRoot()) 8188 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8189 .setTailCall(isTailCall) 8190 .setConvergent(CB.isConvergent()) 8191 .setIsPreallocated( 8192 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8193 .setCFIType(CFIType); 8194 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8195 8196 if (Result.first.getNode()) { 8197 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8198 setValue(&CB, Result.first); 8199 } 8200 8201 // The last element of CLI.InVals has the SDValue for swifterror return. 8202 // Here we copy it to a virtual register and update SwiftErrorMap for 8203 // book-keeping. 8204 if (SwiftErrorVal && TLI.supportSwiftError()) { 8205 // Get the last element of InVals. 8206 SDValue Src = CLI.InVals.back(); 8207 Register VReg = 8208 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8209 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8210 DAG.setRoot(CopyNode); 8211 } 8212 } 8213 8214 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8215 SelectionDAGBuilder &Builder) { 8216 // Check to see if this load can be trivially constant folded, e.g. if the 8217 // input is from a string literal. 8218 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8219 // Cast pointer to the type we really want to load. 8220 Type *LoadTy = 8221 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8222 if (LoadVT.isVector()) 8223 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8224 8225 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8226 PointerType::getUnqual(LoadTy)); 8227 8228 if (const Constant *LoadCst = 8229 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8230 LoadTy, Builder.DAG.getDataLayout())) 8231 return Builder.getValue(LoadCst); 8232 } 8233 8234 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8235 // still constant memory, the input chain can be the entry node. 8236 SDValue Root; 8237 bool ConstantMemory = false; 8238 8239 // Do not serialize (non-volatile) loads of constant memory with anything. 8240 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8241 Root = Builder.DAG.getEntryNode(); 8242 ConstantMemory = true; 8243 } else { 8244 // Do not serialize non-volatile loads against each other. 8245 Root = Builder.DAG.getRoot(); 8246 } 8247 8248 SDValue Ptr = Builder.getValue(PtrVal); 8249 SDValue LoadVal = 8250 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8251 MachinePointerInfo(PtrVal), Align(1)); 8252 8253 if (!ConstantMemory) 8254 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8255 return LoadVal; 8256 } 8257 8258 /// Record the value for an instruction that produces an integer result, 8259 /// converting the type where necessary. 8260 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8261 SDValue Value, 8262 bool IsSigned) { 8263 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8264 I.getType(), true); 8265 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8266 setValue(&I, Value); 8267 } 8268 8269 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8270 /// true and lower it. Otherwise return false, and it will be lowered like a 8271 /// normal call. 8272 /// The caller already checked that \p I calls the appropriate LibFunc with a 8273 /// correct prototype. 8274 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8275 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8276 const Value *Size = I.getArgOperand(2); 8277 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8278 if (CSize && CSize->getZExtValue() == 0) { 8279 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8280 I.getType(), true); 8281 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8282 return true; 8283 } 8284 8285 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8286 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8287 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8288 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8289 if (Res.first.getNode()) { 8290 processIntegerCallValue(I, Res.first, true); 8291 PendingLoads.push_back(Res.second); 8292 return true; 8293 } 8294 8295 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8296 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8297 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8298 return false; 8299 8300 // If the target has a fast compare for the given size, it will return a 8301 // preferred load type for that size. Require that the load VT is legal and 8302 // that the target supports unaligned loads of that type. Otherwise, return 8303 // INVALID. 8304 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8306 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8307 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8308 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8309 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8310 // TODO: Check alignment of src and dest ptrs. 8311 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8312 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8313 if (!TLI.isTypeLegal(LVT) || 8314 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8315 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8316 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8317 } 8318 8319 return LVT; 8320 }; 8321 8322 // This turns into unaligned loads. We only do this if the target natively 8323 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8324 // we'll only produce a small number of byte loads. 8325 MVT LoadVT; 8326 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8327 switch (NumBitsToCompare) { 8328 default: 8329 return false; 8330 case 16: 8331 LoadVT = MVT::i16; 8332 break; 8333 case 32: 8334 LoadVT = MVT::i32; 8335 break; 8336 case 64: 8337 case 128: 8338 case 256: 8339 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8340 break; 8341 } 8342 8343 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8344 return false; 8345 8346 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8347 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8348 8349 // Bitcast to a wide integer type if the loads are vectors. 8350 if (LoadVT.isVector()) { 8351 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8352 LoadL = DAG.getBitcast(CmpVT, LoadL); 8353 LoadR = DAG.getBitcast(CmpVT, LoadR); 8354 } 8355 8356 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8357 processIntegerCallValue(I, Cmp, false); 8358 return true; 8359 } 8360 8361 /// See if we can lower a memchr call into an optimized form. If so, return 8362 /// true and lower it. Otherwise return false, and it will be lowered like a 8363 /// normal call. 8364 /// The caller already checked that \p I calls the appropriate LibFunc with a 8365 /// correct prototype. 8366 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8367 const Value *Src = I.getArgOperand(0); 8368 const Value *Char = I.getArgOperand(1); 8369 const Value *Length = I.getArgOperand(2); 8370 8371 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8372 std::pair<SDValue, SDValue> Res = 8373 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8374 getValue(Src), getValue(Char), getValue(Length), 8375 MachinePointerInfo(Src)); 8376 if (Res.first.getNode()) { 8377 setValue(&I, Res.first); 8378 PendingLoads.push_back(Res.second); 8379 return true; 8380 } 8381 8382 return false; 8383 } 8384 8385 /// See if we can lower a mempcpy call into an optimized form. If so, return 8386 /// true and lower it. Otherwise return false, and it will be lowered like a 8387 /// normal call. 8388 /// The caller already checked that \p I calls the appropriate LibFunc with a 8389 /// correct prototype. 8390 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8391 SDValue Dst = getValue(I.getArgOperand(0)); 8392 SDValue Src = getValue(I.getArgOperand(1)); 8393 SDValue Size = getValue(I.getArgOperand(2)); 8394 8395 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8396 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8397 // DAG::getMemcpy needs Alignment to be defined. 8398 Align Alignment = std::min(DstAlign, SrcAlign); 8399 8400 SDLoc sdl = getCurSDLoc(); 8401 8402 // In the mempcpy context we need to pass in a false value for isTailCall 8403 // because the return pointer needs to be adjusted by the size of 8404 // the copied memory. 8405 SDValue Root = getMemoryRoot(); 8406 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8407 /*isTailCall=*/false, 8408 MachinePointerInfo(I.getArgOperand(0)), 8409 MachinePointerInfo(I.getArgOperand(1)), 8410 I.getAAMetadata()); 8411 assert(MC.getNode() != nullptr && 8412 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8413 DAG.setRoot(MC); 8414 8415 // Check if Size needs to be truncated or extended. 8416 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8417 8418 // Adjust return pointer to point just past the last dst byte. 8419 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8420 Dst, Size); 8421 setValue(&I, DstPlusSize); 8422 return true; 8423 } 8424 8425 /// See if we can lower a strcpy call into an optimized form. If so, return 8426 /// true and lower it, otherwise return false and it will be lowered like a 8427 /// normal call. 8428 /// The caller already checked that \p I calls the appropriate LibFunc with a 8429 /// correct prototype. 8430 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8431 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8432 8433 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8434 std::pair<SDValue, SDValue> Res = 8435 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8436 getValue(Arg0), getValue(Arg1), 8437 MachinePointerInfo(Arg0), 8438 MachinePointerInfo(Arg1), isStpcpy); 8439 if (Res.first.getNode()) { 8440 setValue(&I, Res.first); 8441 DAG.setRoot(Res.second); 8442 return true; 8443 } 8444 8445 return false; 8446 } 8447 8448 /// See if we can lower a strcmp call into an optimized form. If so, return 8449 /// true and lower it, otherwise return false and it will be lowered like a 8450 /// normal call. 8451 /// The caller already checked that \p I calls the appropriate LibFunc with a 8452 /// correct prototype. 8453 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8454 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8455 8456 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8457 std::pair<SDValue, SDValue> Res = 8458 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8459 getValue(Arg0), getValue(Arg1), 8460 MachinePointerInfo(Arg0), 8461 MachinePointerInfo(Arg1)); 8462 if (Res.first.getNode()) { 8463 processIntegerCallValue(I, Res.first, true); 8464 PendingLoads.push_back(Res.second); 8465 return true; 8466 } 8467 8468 return false; 8469 } 8470 8471 /// See if we can lower a strlen call into an optimized form. If so, return 8472 /// true and lower it, otherwise return false and it will be lowered like a 8473 /// normal call. 8474 /// The caller already checked that \p I calls the appropriate LibFunc with a 8475 /// correct prototype. 8476 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8477 const Value *Arg0 = I.getArgOperand(0); 8478 8479 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8480 std::pair<SDValue, SDValue> Res = 8481 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8482 getValue(Arg0), MachinePointerInfo(Arg0)); 8483 if (Res.first.getNode()) { 8484 processIntegerCallValue(I, Res.first, false); 8485 PendingLoads.push_back(Res.second); 8486 return true; 8487 } 8488 8489 return false; 8490 } 8491 8492 /// See if we can lower a strnlen call into an optimized form. If so, return 8493 /// true and lower it, otherwise return false and it will be lowered like a 8494 /// normal call. 8495 /// The caller already checked that \p I calls the appropriate LibFunc with a 8496 /// correct prototype. 8497 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8498 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8499 8500 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8501 std::pair<SDValue, SDValue> Res = 8502 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8503 getValue(Arg0), getValue(Arg1), 8504 MachinePointerInfo(Arg0)); 8505 if (Res.first.getNode()) { 8506 processIntegerCallValue(I, Res.first, false); 8507 PendingLoads.push_back(Res.second); 8508 return true; 8509 } 8510 8511 return false; 8512 } 8513 8514 /// See if we can lower a unary floating-point operation into an SDNode with 8515 /// the specified Opcode. If so, return true and lower it, otherwise return 8516 /// false and it will be lowered like a normal call. 8517 /// The caller already checked that \p I calls the appropriate LibFunc with a 8518 /// correct prototype. 8519 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8520 unsigned Opcode) { 8521 // We already checked this call's prototype; verify it doesn't modify errno. 8522 if (!I.onlyReadsMemory()) 8523 return false; 8524 8525 SDNodeFlags Flags; 8526 Flags.copyFMF(cast<FPMathOperator>(I)); 8527 8528 SDValue Tmp = getValue(I.getArgOperand(0)); 8529 setValue(&I, 8530 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8531 return true; 8532 } 8533 8534 /// See if we can lower a binary floating-point operation into an SDNode with 8535 /// the specified Opcode. If so, return true and lower it. Otherwise return 8536 /// false, and it will be lowered like a normal call. 8537 /// The caller already checked that \p I calls the appropriate LibFunc with a 8538 /// correct prototype. 8539 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8540 unsigned Opcode) { 8541 // We already checked this call's prototype; verify it doesn't modify errno. 8542 if (!I.onlyReadsMemory()) 8543 return false; 8544 8545 SDNodeFlags Flags; 8546 Flags.copyFMF(cast<FPMathOperator>(I)); 8547 8548 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8549 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8550 EVT VT = Tmp0.getValueType(); 8551 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8552 return true; 8553 } 8554 8555 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8556 // Handle inline assembly differently. 8557 if (I.isInlineAsm()) { 8558 visitInlineAsm(I); 8559 return; 8560 } 8561 8562 diagnoseDontCall(I); 8563 8564 if (Function *F = I.getCalledFunction()) { 8565 if (F->isDeclaration()) { 8566 // Is this an LLVM intrinsic or a target-specific intrinsic? 8567 unsigned IID = F->getIntrinsicID(); 8568 if (!IID) 8569 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8570 IID = II->getIntrinsicID(F); 8571 8572 if (IID) { 8573 visitIntrinsicCall(I, IID); 8574 return; 8575 } 8576 } 8577 8578 // Check for well-known libc/libm calls. If the function is internal, it 8579 // can't be a library call. Don't do the check if marked as nobuiltin for 8580 // some reason or the call site requires strict floating point semantics. 8581 LibFunc Func; 8582 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8583 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8584 LibInfo->hasOptimizedCodeGen(Func)) { 8585 switch (Func) { 8586 default: break; 8587 case LibFunc_bcmp: 8588 if (visitMemCmpBCmpCall(I)) 8589 return; 8590 break; 8591 case LibFunc_copysign: 8592 case LibFunc_copysignf: 8593 case LibFunc_copysignl: 8594 // We already checked this call's prototype; verify it doesn't modify 8595 // errno. 8596 if (I.onlyReadsMemory()) { 8597 SDValue LHS = getValue(I.getArgOperand(0)); 8598 SDValue RHS = getValue(I.getArgOperand(1)); 8599 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8600 LHS.getValueType(), LHS, RHS)); 8601 return; 8602 } 8603 break; 8604 case LibFunc_fabs: 8605 case LibFunc_fabsf: 8606 case LibFunc_fabsl: 8607 if (visitUnaryFloatCall(I, ISD::FABS)) 8608 return; 8609 break; 8610 case LibFunc_fmin: 8611 case LibFunc_fminf: 8612 case LibFunc_fminl: 8613 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8614 return; 8615 break; 8616 case LibFunc_fmax: 8617 case LibFunc_fmaxf: 8618 case LibFunc_fmaxl: 8619 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8620 return; 8621 break; 8622 case LibFunc_sin: 8623 case LibFunc_sinf: 8624 case LibFunc_sinl: 8625 if (visitUnaryFloatCall(I, ISD::FSIN)) 8626 return; 8627 break; 8628 case LibFunc_cos: 8629 case LibFunc_cosf: 8630 case LibFunc_cosl: 8631 if (visitUnaryFloatCall(I, ISD::FCOS)) 8632 return; 8633 break; 8634 case LibFunc_sqrt: 8635 case LibFunc_sqrtf: 8636 case LibFunc_sqrtl: 8637 case LibFunc_sqrt_finite: 8638 case LibFunc_sqrtf_finite: 8639 case LibFunc_sqrtl_finite: 8640 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8641 return; 8642 break; 8643 case LibFunc_floor: 8644 case LibFunc_floorf: 8645 case LibFunc_floorl: 8646 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8647 return; 8648 break; 8649 case LibFunc_nearbyint: 8650 case LibFunc_nearbyintf: 8651 case LibFunc_nearbyintl: 8652 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8653 return; 8654 break; 8655 case LibFunc_ceil: 8656 case LibFunc_ceilf: 8657 case LibFunc_ceill: 8658 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8659 return; 8660 break; 8661 case LibFunc_rint: 8662 case LibFunc_rintf: 8663 case LibFunc_rintl: 8664 if (visitUnaryFloatCall(I, ISD::FRINT)) 8665 return; 8666 break; 8667 case LibFunc_round: 8668 case LibFunc_roundf: 8669 case LibFunc_roundl: 8670 if (visitUnaryFloatCall(I, ISD::FROUND)) 8671 return; 8672 break; 8673 case LibFunc_trunc: 8674 case LibFunc_truncf: 8675 case LibFunc_truncl: 8676 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8677 return; 8678 break; 8679 case LibFunc_log2: 8680 case LibFunc_log2f: 8681 case LibFunc_log2l: 8682 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8683 return; 8684 break; 8685 case LibFunc_exp2: 8686 case LibFunc_exp2f: 8687 case LibFunc_exp2l: 8688 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8689 return; 8690 break; 8691 case LibFunc_ldexp: 8692 case LibFunc_ldexpf: 8693 case LibFunc_ldexpl: 8694 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8695 return; 8696 break; 8697 case LibFunc_memcmp: 8698 if (visitMemCmpBCmpCall(I)) 8699 return; 8700 break; 8701 case LibFunc_mempcpy: 8702 if (visitMemPCpyCall(I)) 8703 return; 8704 break; 8705 case LibFunc_memchr: 8706 if (visitMemChrCall(I)) 8707 return; 8708 break; 8709 case LibFunc_strcpy: 8710 if (visitStrCpyCall(I, false)) 8711 return; 8712 break; 8713 case LibFunc_stpcpy: 8714 if (visitStrCpyCall(I, true)) 8715 return; 8716 break; 8717 case LibFunc_strcmp: 8718 if (visitStrCmpCall(I)) 8719 return; 8720 break; 8721 case LibFunc_strlen: 8722 if (visitStrLenCall(I)) 8723 return; 8724 break; 8725 case LibFunc_strnlen: 8726 if (visitStrNLenCall(I)) 8727 return; 8728 break; 8729 } 8730 } 8731 } 8732 8733 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8734 // have to do anything here to lower funclet bundles. 8735 // CFGuardTarget bundles are lowered in LowerCallTo. 8736 assert(!I.hasOperandBundlesOtherThan( 8737 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8738 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8739 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8740 "Cannot lower calls with arbitrary operand bundles!"); 8741 8742 SDValue Callee = getValue(I.getCalledOperand()); 8743 8744 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8745 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8746 else 8747 // Check if we can potentially perform a tail call. More detailed checking 8748 // is be done within LowerCallTo, after more information about the call is 8749 // known. 8750 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8751 } 8752 8753 namespace { 8754 8755 /// AsmOperandInfo - This contains information for each constraint that we are 8756 /// lowering. 8757 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8758 public: 8759 /// CallOperand - If this is the result output operand or a clobber 8760 /// this is null, otherwise it is the incoming operand to the CallInst. 8761 /// This gets modified as the asm is processed. 8762 SDValue CallOperand; 8763 8764 /// AssignedRegs - If this is a register or register class operand, this 8765 /// contains the set of register corresponding to the operand. 8766 RegsForValue AssignedRegs; 8767 8768 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8769 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8770 } 8771 8772 /// Whether or not this operand accesses memory 8773 bool hasMemory(const TargetLowering &TLI) const { 8774 // Indirect operand accesses access memory. 8775 if (isIndirect) 8776 return true; 8777 8778 for (const auto &Code : Codes) 8779 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8780 return true; 8781 8782 return false; 8783 } 8784 }; 8785 8786 8787 } // end anonymous namespace 8788 8789 /// Make sure that the output operand \p OpInfo and its corresponding input 8790 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8791 /// out). 8792 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8793 SDISelAsmOperandInfo &MatchingOpInfo, 8794 SelectionDAG &DAG) { 8795 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8796 return; 8797 8798 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8799 const auto &TLI = DAG.getTargetLoweringInfo(); 8800 8801 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8802 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8803 OpInfo.ConstraintVT); 8804 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8805 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8806 MatchingOpInfo.ConstraintVT); 8807 if ((OpInfo.ConstraintVT.isInteger() != 8808 MatchingOpInfo.ConstraintVT.isInteger()) || 8809 (MatchRC.second != InputRC.second)) { 8810 // FIXME: error out in a more elegant fashion 8811 report_fatal_error("Unsupported asm: input constraint" 8812 " with a matching output constraint of" 8813 " incompatible type!"); 8814 } 8815 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8816 } 8817 8818 /// Get a direct memory input to behave well as an indirect operand. 8819 /// This may introduce stores, hence the need for a \p Chain. 8820 /// \return The (possibly updated) chain. 8821 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8822 SDISelAsmOperandInfo &OpInfo, 8823 SelectionDAG &DAG) { 8824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8825 8826 // If we don't have an indirect input, put it in the constpool if we can, 8827 // otherwise spill it to a stack slot. 8828 // TODO: This isn't quite right. We need to handle these according to 8829 // the addressing mode that the constraint wants. Also, this may take 8830 // an additional register for the computation and we don't want that 8831 // either. 8832 8833 // If the operand is a float, integer, or vector constant, spill to a 8834 // constant pool entry to get its address. 8835 const Value *OpVal = OpInfo.CallOperandVal; 8836 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8837 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8838 OpInfo.CallOperand = DAG.getConstantPool( 8839 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8840 return Chain; 8841 } 8842 8843 // Otherwise, create a stack slot and emit a store to it before the asm. 8844 Type *Ty = OpVal->getType(); 8845 auto &DL = DAG.getDataLayout(); 8846 uint64_t TySize = DL.getTypeAllocSize(Ty); 8847 MachineFunction &MF = DAG.getMachineFunction(); 8848 int SSFI = MF.getFrameInfo().CreateStackObject( 8849 TySize, DL.getPrefTypeAlign(Ty), false); 8850 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8851 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8852 MachinePointerInfo::getFixedStack(MF, SSFI), 8853 TLI.getMemValueType(DL, Ty)); 8854 OpInfo.CallOperand = StackSlot; 8855 8856 return Chain; 8857 } 8858 8859 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8860 /// specified operand. We prefer to assign virtual registers, to allow the 8861 /// register allocator to handle the assignment process. However, if the asm 8862 /// uses features that we can't model on machineinstrs, we have SDISel do the 8863 /// allocation. This produces generally horrible, but correct, code. 8864 /// 8865 /// OpInfo describes the operand 8866 /// RefOpInfo describes the matching operand if any, the operand otherwise 8867 static std::optional<unsigned> 8868 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8869 SDISelAsmOperandInfo &OpInfo, 8870 SDISelAsmOperandInfo &RefOpInfo) { 8871 LLVMContext &Context = *DAG.getContext(); 8872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8873 8874 MachineFunction &MF = DAG.getMachineFunction(); 8875 SmallVector<unsigned, 4> Regs; 8876 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8877 8878 // No work to do for memory/address operands. 8879 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8880 OpInfo.ConstraintType == TargetLowering::C_Address) 8881 return std::nullopt; 8882 8883 // If this is a constraint for a single physreg, or a constraint for a 8884 // register class, find it. 8885 unsigned AssignedReg; 8886 const TargetRegisterClass *RC; 8887 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8888 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8889 // RC is unset only on failure. Return immediately. 8890 if (!RC) 8891 return std::nullopt; 8892 8893 // Get the actual register value type. This is important, because the user 8894 // may have asked for (e.g.) the AX register in i32 type. We need to 8895 // remember that AX is actually i16 to get the right extension. 8896 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8897 8898 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8899 // If this is an FP operand in an integer register (or visa versa), or more 8900 // generally if the operand value disagrees with the register class we plan 8901 // to stick it in, fix the operand type. 8902 // 8903 // If this is an input value, the bitcast to the new type is done now. 8904 // Bitcast for output value is done at the end of visitInlineAsm(). 8905 if ((OpInfo.Type == InlineAsm::isOutput || 8906 OpInfo.Type == InlineAsm::isInput) && 8907 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8908 // Try to convert to the first EVT that the reg class contains. If the 8909 // types are identical size, use a bitcast to convert (e.g. two differing 8910 // vector types). Note: output bitcast is done at the end of 8911 // visitInlineAsm(). 8912 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8913 // Exclude indirect inputs while they are unsupported because the code 8914 // to perform the load is missing and thus OpInfo.CallOperand still 8915 // refers to the input address rather than the pointed-to value. 8916 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8917 OpInfo.CallOperand = 8918 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8919 OpInfo.ConstraintVT = RegVT; 8920 // If the operand is an FP value and we want it in integer registers, 8921 // use the corresponding integer type. This turns an f64 value into 8922 // i64, which can be passed with two i32 values on a 32-bit machine. 8923 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8924 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8925 if (OpInfo.Type == InlineAsm::isInput) 8926 OpInfo.CallOperand = 8927 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8928 OpInfo.ConstraintVT = VT; 8929 } 8930 } 8931 } 8932 8933 // No need to allocate a matching input constraint since the constraint it's 8934 // matching to has already been allocated. 8935 if (OpInfo.isMatchingInputConstraint()) 8936 return std::nullopt; 8937 8938 EVT ValueVT = OpInfo.ConstraintVT; 8939 if (OpInfo.ConstraintVT == MVT::Other) 8940 ValueVT = RegVT; 8941 8942 // Initialize NumRegs. 8943 unsigned NumRegs = 1; 8944 if (OpInfo.ConstraintVT != MVT::Other) 8945 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8946 8947 // If this is a constraint for a specific physical register, like {r17}, 8948 // assign it now. 8949 8950 // If this associated to a specific register, initialize iterator to correct 8951 // place. If virtual, make sure we have enough registers 8952 8953 // Initialize iterator if necessary 8954 TargetRegisterClass::iterator I = RC->begin(); 8955 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8956 8957 // Do not check for single registers. 8958 if (AssignedReg) { 8959 I = std::find(I, RC->end(), AssignedReg); 8960 if (I == RC->end()) { 8961 // RC does not contain the selected register, which indicates a 8962 // mismatch between the register and the required type/bitwidth. 8963 return {AssignedReg}; 8964 } 8965 } 8966 8967 for (; NumRegs; --NumRegs, ++I) { 8968 assert(I != RC->end() && "Ran out of registers to allocate!"); 8969 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8970 Regs.push_back(R); 8971 } 8972 8973 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8974 return std::nullopt; 8975 } 8976 8977 static unsigned 8978 findMatchingInlineAsmOperand(unsigned OperandNo, 8979 const std::vector<SDValue> &AsmNodeOperands) { 8980 // Scan until we find the definition we already emitted of this operand. 8981 unsigned CurOp = InlineAsm::Op_FirstOperand; 8982 for (; OperandNo; --OperandNo) { 8983 // Advance to the next operand. 8984 unsigned OpFlag = 8985 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8986 assert((InlineAsm::isRegDefKind(OpFlag) || 8987 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8988 InlineAsm::isMemKind(OpFlag)) && 8989 "Skipped past definitions?"); 8990 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8991 } 8992 return CurOp; 8993 } 8994 8995 namespace { 8996 8997 class ExtraFlags { 8998 unsigned Flags = 0; 8999 9000 public: 9001 explicit ExtraFlags(const CallBase &Call) { 9002 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9003 if (IA->hasSideEffects()) 9004 Flags |= InlineAsm::Extra_HasSideEffects; 9005 if (IA->isAlignStack()) 9006 Flags |= InlineAsm::Extra_IsAlignStack; 9007 if (Call.isConvergent()) 9008 Flags |= InlineAsm::Extra_IsConvergent; 9009 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9010 } 9011 9012 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9013 // Ideally, we would only check against memory constraints. However, the 9014 // meaning of an Other constraint can be target-specific and we can't easily 9015 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9016 // for Other constraints as well. 9017 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9018 OpInfo.ConstraintType == TargetLowering::C_Other) { 9019 if (OpInfo.Type == InlineAsm::isInput) 9020 Flags |= InlineAsm::Extra_MayLoad; 9021 else if (OpInfo.Type == InlineAsm::isOutput) 9022 Flags |= InlineAsm::Extra_MayStore; 9023 else if (OpInfo.Type == InlineAsm::isClobber) 9024 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9025 } 9026 } 9027 9028 unsigned get() const { return Flags; } 9029 }; 9030 9031 } // end anonymous namespace 9032 9033 static bool isFunction(SDValue Op) { 9034 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9035 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9036 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9037 9038 // In normal "call dllimport func" instruction (non-inlineasm) it force 9039 // indirect access by specifing call opcode. And usually specially print 9040 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9041 // not do in this way now. (In fact, this is similar with "Data Access" 9042 // action). So here we ignore dllimport function. 9043 if (Fn && !Fn->hasDLLImportStorageClass()) 9044 return true; 9045 } 9046 } 9047 return false; 9048 } 9049 9050 /// visitInlineAsm - Handle a call to an InlineAsm object. 9051 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9052 const BasicBlock *EHPadBB) { 9053 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9054 9055 /// ConstraintOperands - Information about all of the constraints. 9056 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9057 9058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9059 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9060 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9061 9062 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9063 // AsmDialect, MayLoad, MayStore). 9064 bool HasSideEffect = IA->hasSideEffects(); 9065 ExtraFlags ExtraInfo(Call); 9066 9067 for (auto &T : TargetConstraints) { 9068 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9069 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9070 9071 if (OpInfo.CallOperandVal) 9072 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9073 9074 if (!HasSideEffect) 9075 HasSideEffect = OpInfo.hasMemory(TLI); 9076 9077 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9078 // FIXME: Could we compute this on OpInfo rather than T? 9079 9080 // Compute the constraint code and ConstraintType to use. 9081 TLI.ComputeConstraintToUse(T, SDValue()); 9082 9083 if (T.ConstraintType == TargetLowering::C_Immediate && 9084 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9085 // We've delayed emitting a diagnostic like the "n" constraint because 9086 // inlining could cause an integer showing up. 9087 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9088 "' expects an integer constant " 9089 "expression"); 9090 9091 ExtraInfo.update(T); 9092 } 9093 9094 // We won't need to flush pending loads if this asm doesn't touch 9095 // memory and is nonvolatile. 9096 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9097 9098 bool EmitEHLabels = isa<InvokeInst>(Call); 9099 if (EmitEHLabels) { 9100 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9101 } 9102 bool IsCallBr = isa<CallBrInst>(Call); 9103 9104 if (IsCallBr || EmitEHLabels) { 9105 // If this is a callbr or invoke we need to flush pending exports since 9106 // inlineasm_br and invoke are terminators. 9107 // We need to do this before nodes are glued to the inlineasm_br node. 9108 Chain = getControlRoot(); 9109 } 9110 9111 MCSymbol *BeginLabel = nullptr; 9112 if (EmitEHLabels) { 9113 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9114 } 9115 9116 int OpNo = -1; 9117 SmallVector<StringRef> AsmStrs; 9118 IA->collectAsmStrs(AsmStrs); 9119 9120 // Second pass over the constraints: compute which constraint option to use. 9121 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9122 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9123 OpNo++; 9124 9125 // If this is an output operand with a matching input operand, look up the 9126 // matching input. If their types mismatch, e.g. one is an integer, the 9127 // other is floating point, or their sizes are different, flag it as an 9128 // error. 9129 if (OpInfo.hasMatchingInput()) { 9130 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9131 patchMatchingInput(OpInfo, Input, DAG); 9132 } 9133 9134 // Compute the constraint code and ConstraintType to use. 9135 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9136 9137 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9138 OpInfo.Type == InlineAsm::isClobber) || 9139 OpInfo.ConstraintType == TargetLowering::C_Address) 9140 continue; 9141 9142 // In Linux PIC model, there are 4 cases about value/label addressing: 9143 // 9144 // 1: Function call or Label jmp inside the module. 9145 // 2: Data access (such as global variable, static variable) inside module. 9146 // 3: Function call or Label jmp outside the module. 9147 // 4: Data access (such as global variable) outside the module. 9148 // 9149 // Due to current llvm inline asm architecture designed to not "recognize" 9150 // the asm code, there are quite troubles for us to treat mem addressing 9151 // differently for same value/adress used in different instuctions. 9152 // For example, in pic model, call a func may in plt way or direclty 9153 // pc-related, but lea/mov a function adress may use got. 9154 // 9155 // Here we try to "recognize" function call for the case 1 and case 3 in 9156 // inline asm. And try to adjust the constraint for them. 9157 // 9158 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9159 // label, so here we don't handle jmp function label now, but we need to 9160 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9161 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9162 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9163 TM.getCodeModel() != CodeModel::Large) { 9164 OpInfo.isIndirect = false; 9165 OpInfo.ConstraintType = TargetLowering::C_Address; 9166 } 9167 9168 // If this is a memory input, and if the operand is not indirect, do what we 9169 // need to provide an address for the memory input. 9170 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9171 !OpInfo.isIndirect) { 9172 assert((OpInfo.isMultipleAlternative || 9173 (OpInfo.Type == InlineAsm::isInput)) && 9174 "Can only indirectify direct input operands!"); 9175 9176 // Memory operands really want the address of the value. 9177 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9178 9179 // There is no longer a Value* corresponding to this operand. 9180 OpInfo.CallOperandVal = nullptr; 9181 9182 // It is now an indirect operand. 9183 OpInfo.isIndirect = true; 9184 } 9185 9186 } 9187 9188 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9189 std::vector<SDValue> AsmNodeOperands; 9190 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9191 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9192 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9193 9194 // If we have a !srcloc metadata node associated with it, we want to attach 9195 // this to the ultimately generated inline asm machineinstr. To do this, we 9196 // pass in the third operand as this (potentially null) inline asm MDNode. 9197 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9198 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9199 9200 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9201 // bits as operand 3. 9202 AsmNodeOperands.push_back(DAG.getTargetConstant( 9203 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9204 9205 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9206 // this, assign virtual and physical registers for inputs and otput. 9207 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9208 // Assign Registers. 9209 SDISelAsmOperandInfo &RefOpInfo = 9210 OpInfo.isMatchingInputConstraint() 9211 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9212 : OpInfo; 9213 const auto RegError = 9214 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9215 if (RegError) { 9216 const MachineFunction &MF = DAG.getMachineFunction(); 9217 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9218 const char *RegName = TRI.getName(*RegError); 9219 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9220 "' allocated for constraint '" + 9221 Twine(OpInfo.ConstraintCode) + 9222 "' does not match required type"); 9223 return; 9224 } 9225 9226 auto DetectWriteToReservedRegister = [&]() { 9227 const MachineFunction &MF = DAG.getMachineFunction(); 9228 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9229 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9230 if (Register::isPhysicalRegister(Reg) && 9231 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9232 const char *RegName = TRI.getName(Reg); 9233 emitInlineAsmError(Call, "write to reserved register '" + 9234 Twine(RegName) + "'"); 9235 return true; 9236 } 9237 } 9238 return false; 9239 }; 9240 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9241 (OpInfo.Type == InlineAsm::isInput && 9242 !OpInfo.isMatchingInputConstraint())) && 9243 "Only address as input operand is allowed."); 9244 9245 switch (OpInfo.Type) { 9246 case InlineAsm::isOutput: 9247 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9248 unsigned ConstraintID = 9249 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9250 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9251 "Failed to convert memory constraint code to constraint id."); 9252 9253 // Add information to the INLINEASM node to know about this output. 9254 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9255 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 9256 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9257 MVT::i32)); 9258 AsmNodeOperands.push_back(OpInfo.CallOperand); 9259 } else { 9260 // Otherwise, this outputs to a register (directly for C_Register / 9261 // C_RegisterClass, and a target-defined fashion for 9262 // C_Immediate/C_Other). Find a register that we can use. 9263 if (OpInfo.AssignedRegs.Regs.empty()) { 9264 emitInlineAsmError( 9265 Call, "couldn't allocate output register for constraint '" + 9266 Twine(OpInfo.ConstraintCode) + "'"); 9267 return; 9268 } 9269 9270 if (DetectWriteToReservedRegister()) 9271 return; 9272 9273 // Add information to the INLINEASM node to know that this register is 9274 // set. 9275 OpInfo.AssignedRegs.AddInlineAsmOperands( 9276 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 9277 : InlineAsm::Kind_RegDef, 9278 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9279 } 9280 break; 9281 9282 case InlineAsm::isInput: 9283 case InlineAsm::isLabel: { 9284 SDValue InOperandVal = OpInfo.CallOperand; 9285 9286 if (OpInfo.isMatchingInputConstraint()) { 9287 // If this is required to match an output register we have already set, 9288 // just use its register. 9289 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9290 AsmNodeOperands); 9291 unsigned OpFlag = 9292 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9293 if (InlineAsm::isRegDefKind(OpFlag) || 9294 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 9295 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 9296 if (OpInfo.isIndirect) { 9297 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9298 emitInlineAsmError(Call, "inline asm not supported yet: " 9299 "don't know how to handle tied " 9300 "indirect register inputs"); 9301 return; 9302 } 9303 9304 SmallVector<unsigned, 4> Regs; 9305 MachineFunction &MF = DAG.getMachineFunction(); 9306 MachineRegisterInfo &MRI = MF.getRegInfo(); 9307 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9308 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9309 Register TiedReg = R->getReg(); 9310 MVT RegVT = R->getSimpleValueType(0); 9311 const TargetRegisterClass *RC = 9312 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9313 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9314 : TRI.getMinimalPhysRegClass(TiedReg); 9315 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 9316 for (unsigned i = 0; i != NumRegs; ++i) 9317 Regs.push_back(MRI.createVirtualRegister(RC)); 9318 9319 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9320 9321 SDLoc dl = getCurSDLoc(); 9322 // Use the produced MatchedRegs object to 9323 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9324 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 9325 true, OpInfo.getMatchedOperand(), dl, 9326 DAG, AsmNodeOperands); 9327 break; 9328 } 9329 9330 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 9331 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 9332 "Unexpected number of operands"); 9333 // Add information to the INLINEASM node to know about this input. 9334 // See InlineAsm.h isUseOperandTiedToDef. 9335 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 9336 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 9337 OpInfo.getMatchedOperand()); 9338 AsmNodeOperands.push_back(DAG.getTargetConstant( 9339 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9340 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9341 break; 9342 } 9343 9344 // Treat indirect 'X' constraint as memory. 9345 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9346 OpInfo.isIndirect) 9347 OpInfo.ConstraintType = TargetLowering::C_Memory; 9348 9349 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9350 OpInfo.ConstraintType == TargetLowering::C_Other) { 9351 std::vector<SDValue> Ops; 9352 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9353 Ops, DAG); 9354 if (Ops.empty()) { 9355 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9356 if (isa<ConstantSDNode>(InOperandVal)) { 9357 emitInlineAsmError(Call, "value out of range for constraint '" + 9358 Twine(OpInfo.ConstraintCode) + "'"); 9359 return; 9360 } 9361 9362 emitInlineAsmError(Call, 9363 "invalid operand for inline asm constraint '" + 9364 Twine(OpInfo.ConstraintCode) + "'"); 9365 return; 9366 } 9367 9368 // Add information to the INLINEASM node to know about this input. 9369 unsigned ResOpType = 9370 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 9371 AsmNodeOperands.push_back(DAG.getTargetConstant( 9372 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9373 llvm::append_range(AsmNodeOperands, Ops); 9374 break; 9375 } 9376 9377 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9378 assert((OpInfo.isIndirect || 9379 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9380 "Operand must be indirect to be a mem!"); 9381 assert(InOperandVal.getValueType() == 9382 TLI.getPointerTy(DAG.getDataLayout()) && 9383 "Memory operands expect pointer values"); 9384 9385 unsigned ConstraintID = 9386 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9387 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9388 "Failed to convert memory constraint code to constraint id."); 9389 9390 // Add information to the INLINEASM node to know about this input. 9391 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9392 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9393 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9394 getCurSDLoc(), 9395 MVT::i32)); 9396 AsmNodeOperands.push_back(InOperandVal); 9397 break; 9398 } 9399 9400 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9401 unsigned ConstraintID = 9402 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9403 assert(ConstraintID != InlineAsm::Constraint_Unknown && 9404 "Failed to convert memory constraint code to constraint id."); 9405 9406 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9407 9408 SDValue AsmOp = InOperandVal; 9409 if (isFunction(InOperandVal)) { 9410 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9411 ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1); 9412 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9413 InOperandVal.getValueType(), 9414 GA->getOffset()); 9415 } 9416 9417 // Add information to the INLINEASM node to know about this input. 9418 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9419 9420 AsmNodeOperands.push_back( 9421 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9422 9423 AsmNodeOperands.push_back(AsmOp); 9424 break; 9425 } 9426 9427 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9428 OpInfo.ConstraintType == TargetLowering::C_Register) && 9429 "Unknown constraint type!"); 9430 9431 // TODO: Support this. 9432 if (OpInfo.isIndirect) { 9433 emitInlineAsmError( 9434 Call, "Don't know how to handle indirect register inputs yet " 9435 "for constraint '" + 9436 Twine(OpInfo.ConstraintCode) + "'"); 9437 return; 9438 } 9439 9440 // Copy the input into the appropriate registers. 9441 if (OpInfo.AssignedRegs.Regs.empty()) { 9442 emitInlineAsmError(Call, 9443 "couldn't allocate input reg for constraint '" + 9444 Twine(OpInfo.ConstraintCode) + "'"); 9445 return; 9446 } 9447 9448 if (DetectWriteToReservedRegister()) 9449 return; 9450 9451 SDLoc dl = getCurSDLoc(); 9452 9453 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9454 &Call); 9455 9456 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9457 dl, DAG, AsmNodeOperands); 9458 break; 9459 } 9460 case InlineAsm::isClobber: 9461 // Add the clobbered value to the operand list, so that the register 9462 // allocator is aware that the physreg got clobbered. 9463 if (!OpInfo.AssignedRegs.Regs.empty()) 9464 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9465 false, 0, getCurSDLoc(), DAG, 9466 AsmNodeOperands); 9467 break; 9468 } 9469 } 9470 9471 // Finish up input operands. Set the input chain and add the flag last. 9472 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9473 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9474 9475 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9476 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9477 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9478 Glue = Chain.getValue(1); 9479 9480 // Do additional work to generate outputs. 9481 9482 SmallVector<EVT, 1> ResultVTs; 9483 SmallVector<SDValue, 1> ResultValues; 9484 SmallVector<SDValue, 8> OutChains; 9485 9486 llvm::Type *CallResultType = Call.getType(); 9487 ArrayRef<Type *> ResultTypes; 9488 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9489 ResultTypes = StructResult->elements(); 9490 else if (!CallResultType->isVoidTy()) 9491 ResultTypes = ArrayRef(CallResultType); 9492 9493 auto CurResultType = ResultTypes.begin(); 9494 auto handleRegAssign = [&](SDValue V) { 9495 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9496 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9497 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9498 ++CurResultType; 9499 // If the type of the inline asm call site return value is different but has 9500 // same size as the type of the asm output bitcast it. One example of this 9501 // is for vectors with different width / number of elements. This can 9502 // happen for register classes that can contain multiple different value 9503 // types. The preg or vreg allocated may not have the same VT as was 9504 // expected. 9505 // 9506 // This can also happen for a return value that disagrees with the register 9507 // class it is put in, eg. a double in a general-purpose register on a 9508 // 32-bit machine. 9509 if (ResultVT != V.getValueType() && 9510 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9511 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9512 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9513 V.getValueType().isInteger()) { 9514 // If a result value was tied to an input value, the computed result 9515 // may have a wider width than the expected result. Extract the 9516 // relevant portion. 9517 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9518 } 9519 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9520 ResultVTs.push_back(ResultVT); 9521 ResultValues.push_back(V); 9522 }; 9523 9524 // Deal with output operands. 9525 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9526 if (OpInfo.Type == InlineAsm::isOutput) { 9527 SDValue Val; 9528 // Skip trivial output operands. 9529 if (OpInfo.AssignedRegs.Regs.empty()) 9530 continue; 9531 9532 switch (OpInfo.ConstraintType) { 9533 case TargetLowering::C_Register: 9534 case TargetLowering::C_RegisterClass: 9535 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9536 Chain, &Glue, &Call); 9537 break; 9538 case TargetLowering::C_Immediate: 9539 case TargetLowering::C_Other: 9540 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9541 OpInfo, DAG); 9542 break; 9543 case TargetLowering::C_Memory: 9544 break; // Already handled. 9545 case TargetLowering::C_Address: 9546 break; // Silence warning. 9547 case TargetLowering::C_Unknown: 9548 assert(false && "Unexpected unknown constraint"); 9549 } 9550 9551 // Indirect output manifest as stores. Record output chains. 9552 if (OpInfo.isIndirect) { 9553 const Value *Ptr = OpInfo.CallOperandVal; 9554 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9555 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9556 MachinePointerInfo(Ptr)); 9557 OutChains.push_back(Store); 9558 } else { 9559 // generate CopyFromRegs to associated registers. 9560 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9561 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9562 for (const SDValue &V : Val->op_values()) 9563 handleRegAssign(V); 9564 } else 9565 handleRegAssign(Val); 9566 } 9567 } 9568 } 9569 9570 // Set results. 9571 if (!ResultValues.empty()) { 9572 assert(CurResultType == ResultTypes.end() && 9573 "Mismatch in number of ResultTypes"); 9574 assert(ResultValues.size() == ResultTypes.size() && 9575 "Mismatch in number of output operands in asm result"); 9576 9577 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9578 DAG.getVTList(ResultVTs), ResultValues); 9579 setValue(&Call, V); 9580 } 9581 9582 // Collect store chains. 9583 if (!OutChains.empty()) 9584 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9585 9586 if (EmitEHLabels) { 9587 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9588 } 9589 9590 // Only Update Root if inline assembly has a memory effect. 9591 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9592 EmitEHLabels) 9593 DAG.setRoot(Chain); 9594 } 9595 9596 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9597 const Twine &Message) { 9598 LLVMContext &Ctx = *DAG.getContext(); 9599 Ctx.emitError(&Call, Message); 9600 9601 // Make sure we leave the DAG in a valid state 9602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9603 SmallVector<EVT, 1> ValueVTs; 9604 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9605 9606 if (ValueVTs.empty()) 9607 return; 9608 9609 SmallVector<SDValue, 1> Ops; 9610 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9611 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9612 9613 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9614 } 9615 9616 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9617 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9618 MVT::Other, getRoot(), 9619 getValue(I.getArgOperand(0)), 9620 DAG.getSrcValue(I.getArgOperand(0)))); 9621 } 9622 9623 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9624 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9625 const DataLayout &DL = DAG.getDataLayout(); 9626 SDValue V = DAG.getVAArg( 9627 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9628 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9629 DL.getABITypeAlign(I.getType()).value()); 9630 DAG.setRoot(V.getValue(1)); 9631 9632 if (I.getType()->isPointerTy()) 9633 V = DAG.getPtrExtOrTrunc( 9634 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9635 setValue(&I, V); 9636 } 9637 9638 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9639 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9640 MVT::Other, getRoot(), 9641 getValue(I.getArgOperand(0)), 9642 DAG.getSrcValue(I.getArgOperand(0)))); 9643 } 9644 9645 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9646 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9647 MVT::Other, getRoot(), 9648 getValue(I.getArgOperand(0)), 9649 getValue(I.getArgOperand(1)), 9650 DAG.getSrcValue(I.getArgOperand(0)), 9651 DAG.getSrcValue(I.getArgOperand(1)))); 9652 } 9653 9654 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9655 const Instruction &I, 9656 SDValue Op) { 9657 const MDNode *Range = getRangeMetadata(I); 9658 if (!Range) 9659 return Op; 9660 9661 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9662 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9663 return Op; 9664 9665 APInt Lo = CR.getUnsignedMin(); 9666 if (!Lo.isMinValue()) 9667 return Op; 9668 9669 APInt Hi = CR.getUnsignedMax(); 9670 unsigned Bits = std::max(Hi.getActiveBits(), 9671 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9672 9673 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9674 9675 SDLoc SL = getCurSDLoc(); 9676 9677 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9678 DAG.getValueType(SmallVT)); 9679 unsigned NumVals = Op.getNode()->getNumValues(); 9680 if (NumVals == 1) 9681 return ZExt; 9682 9683 SmallVector<SDValue, 4> Ops; 9684 9685 Ops.push_back(ZExt); 9686 for (unsigned I = 1; I != NumVals; ++I) 9687 Ops.push_back(Op.getValue(I)); 9688 9689 return DAG.getMergeValues(Ops, SL); 9690 } 9691 9692 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9693 /// the call being lowered. 9694 /// 9695 /// This is a helper for lowering intrinsics that follow a target calling 9696 /// convention or require stack pointer adjustment. Only a subset of the 9697 /// intrinsic's operands need to participate in the calling convention. 9698 void SelectionDAGBuilder::populateCallLoweringInfo( 9699 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9700 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9701 bool IsPatchPoint) { 9702 TargetLowering::ArgListTy Args; 9703 Args.reserve(NumArgs); 9704 9705 // Populate the argument list. 9706 // Attributes for args start at offset 1, after the return attribute. 9707 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9708 ArgI != ArgE; ++ArgI) { 9709 const Value *V = Call->getOperand(ArgI); 9710 9711 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9712 9713 TargetLowering::ArgListEntry Entry; 9714 Entry.Node = getValue(V); 9715 Entry.Ty = V->getType(); 9716 Entry.setAttributes(Call, ArgI); 9717 Args.push_back(Entry); 9718 } 9719 9720 CLI.setDebugLoc(getCurSDLoc()) 9721 .setChain(getRoot()) 9722 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9723 .setDiscardResult(Call->use_empty()) 9724 .setIsPatchPoint(IsPatchPoint) 9725 .setIsPreallocated( 9726 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9727 } 9728 9729 /// Add a stack map intrinsic call's live variable operands to a stackmap 9730 /// or patchpoint target node's operand list. 9731 /// 9732 /// Constants are converted to TargetConstants purely as an optimization to 9733 /// avoid constant materialization and register allocation. 9734 /// 9735 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9736 /// generate addess computation nodes, and so FinalizeISel can convert the 9737 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9738 /// address materialization and register allocation, but may also be required 9739 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9740 /// alloca in the entry block, then the runtime may assume that the alloca's 9741 /// StackMap location can be read immediately after compilation and that the 9742 /// location is valid at any point during execution (this is similar to the 9743 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9744 /// only available in a register, then the runtime would need to trap when 9745 /// execution reaches the StackMap in order to read the alloca's location. 9746 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9747 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9748 SelectionDAGBuilder &Builder) { 9749 SelectionDAG &DAG = Builder.DAG; 9750 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9751 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9752 9753 // Things on the stack are pointer-typed, meaning that they are already 9754 // legal and can be emitted directly to target nodes. 9755 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9756 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9757 } else { 9758 // Otherwise emit a target independent node to be legalised. 9759 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9760 } 9761 } 9762 } 9763 9764 /// Lower llvm.experimental.stackmap. 9765 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9766 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9767 // [live variables...]) 9768 9769 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9770 9771 SDValue Chain, InGlue, Callee; 9772 SmallVector<SDValue, 32> Ops; 9773 9774 SDLoc DL = getCurSDLoc(); 9775 Callee = getValue(CI.getCalledOperand()); 9776 9777 // The stackmap intrinsic only records the live variables (the arguments 9778 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9779 // intrinsic, this won't be lowered to a function call. This means we don't 9780 // have to worry about calling conventions and target specific lowering code. 9781 // Instead we perform the call lowering right here. 9782 // 9783 // chain, flag = CALLSEQ_START(chain, 0, 0) 9784 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9785 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9786 // 9787 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9788 InGlue = Chain.getValue(1); 9789 9790 // Add the STACKMAP operands, starting with DAG house-keeping. 9791 Ops.push_back(Chain); 9792 Ops.push_back(InGlue); 9793 9794 // Add the <id>, <numShadowBytes> operands. 9795 // 9796 // These do not require legalisation, and can be emitted directly to target 9797 // constant nodes. 9798 SDValue ID = getValue(CI.getArgOperand(0)); 9799 assert(ID.getValueType() == MVT::i64); 9800 SDValue IDConst = DAG.getTargetConstant( 9801 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9802 Ops.push_back(IDConst); 9803 9804 SDValue Shad = getValue(CI.getArgOperand(1)); 9805 assert(Shad.getValueType() == MVT::i32); 9806 SDValue ShadConst = DAG.getTargetConstant( 9807 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9808 Ops.push_back(ShadConst); 9809 9810 // Add the live variables. 9811 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9812 9813 // Create the STACKMAP node. 9814 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9815 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9816 InGlue = Chain.getValue(1); 9817 9818 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9819 9820 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9821 9822 // Set the root to the target-lowered call chain. 9823 DAG.setRoot(Chain); 9824 9825 // Inform the Frame Information that we have a stackmap in this function. 9826 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9827 } 9828 9829 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9830 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9831 const BasicBlock *EHPadBB) { 9832 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9833 // i32 <numBytes>, 9834 // i8* <target>, 9835 // i32 <numArgs>, 9836 // [Args...], 9837 // [live variables...]) 9838 9839 CallingConv::ID CC = CB.getCallingConv(); 9840 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9841 bool HasDef = !CB.getType()->isVoidTy(); 9842 SDLoc dl = getCurSDLoc(); 9843 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9844 9845 // Handle immediate and symbolic callees. 9846 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9847 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9848 /*isTarget=*/true); 9849 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9850 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9851 SDLoc(SymbolicCallee), 9852 SymbolicCallee->getValueType(0)); 9853 9854 // Get the real number of arguments participating in the call <numArgs> 9855 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9856 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9857 9858 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9859 // Intrinsics include all meta-operands up to but not including CC. 9860 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9861 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9862 "Not enough arguments provided to the patchpoint intrinsic"); 9863 9864 // For AnyRegCC the arguments are lowered later on manually. 9865 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9866 Type *ReturnTy = 9867 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9868 9869 TargetLowering::CallLoweringInfo CLI(DAG); 9870 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9871 ReturnTy, true); 9872 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9873 9874 SDNode *CallEnd = Result.second.getNode(); 9875 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9876 CallEnd = CallEnd->getOperand(0).getNode(); 9877 9878 /// Get a call instruction from the call sequence chain. 9879 /// Tail calls are not allowed. 9880 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9881 "Expected a callseq node."); 9882 SDNode *Call = CallEnd->getOperand(0).getNode(); 9883 bool HasGlue = Call->getGluedNode(); 9884 9885 // Replace the target specific call node with the patchable intrinsic. 9886 SmallVector<SDValue, 8> Ops; 9887 9888 // Push the chain. 9889 Ops.push_back(*(Call->op_begin())); 9890 9891 // Optionally, push the glue (if any). 9892 if (HasGlue) 9893 Ops.push_back(*(Call->op_end() - 1)); 9894 9895 // Push the register mask info. 9896 if (HasGlue) 9897 Ops.push_back(*(Call->op_end() - 2)); 9898 else 9899 Ops.push_back(*(Call->op_end() - 1)); 9900 9901 // Add the <id> and <numBytes> constants. 9902 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9903 Ops.push_back(DAG.getTargetConstant( 9904 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9905 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9906 Ops.push_back(DAG.getTargetConstant( 9907 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9908 MVT::i32)); 9909 9910 // Add the callee. 9911 Ops.push_back(Callee); 9912 9913 // Adjust <numArgs> to account for any arguments that have been passed on the 9914 // stack instead. 9915 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9916 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9917 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9918 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9919 9920 // Add the calling convention 9921 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9922 9923 // Add the arguments we omitted previously. The register allocator should 9924 // place these in any free register. 9925 if (IsAnyRegCC) 9926 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9927 Ops.push_back(getValue(CB.getArgOperand(i))); 9928 9929 // Push the arguments from the call instruction. 9930 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9931 Ops.append(Call->op_begin() + 2, e); 9932 9933 // Push live variables for the stack map. 9934 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9935 9936 SDVTList NodeTys; 9937 if (IsAnyRegCC && HasDef) { 9938 // Create the return types based on the intrinsic definition 9939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9940 SmallVector<EVT, 3> ValueVTs; 9941 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9942 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9943 9944 // There is always a chain and a glue type at the end 9945 ValueVTs.push_back(MVT::Other); 9946 ValueVTs.push_back(MVT::Glue); 9947 NodeTys = DAG.getVTList(ValueVTs); 9948 } else 9949 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9950 9951 // Replace the target specific call node with a PATCHPOINT node. 9952 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9953 9954 // Update the NodeMap. 9955 if (HasDef) { 9956 if (IsAnyRegCC) 9957 setValue(&CB, SDValue(PPV.getNode(), 0)); 9958 else 9959 setValue(&CB, Result.first); 9960 } 9961 9962 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9963 // call sequence. Furthermore the location of the chain and glue can change 9964 // when the AnyReg calling convention is used and the intrinsic returns a 9965 // value. 9966 if (IsAnyRegCC && HasDef) { 9967 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9968 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9969 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9970 } else 9971 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9972 DAG.DeleteNode(Call); 9973 9974 // Inform the Frame Information that we have a patchpoint in this function. 9975 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9976 } 9977 9978 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9979 unsigned Intrinsic) { 9980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9981 SDValue Op1 = getValue(I.getArgOperand(0)); 9982 SDValue Op2; 9983 if (I.arg_size() > 1) 9984 Op2 = getValue(I.getArgOperand(1)); 9985 SDLoc dl = getCurSDLoc(); 9986 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9987 SDValue Res; 9988 SDNodeFlags SDFlags; 9989 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9990 SDFlags.copyFMF(*FPMO); 9991 9992 switch (Intrinsic) { 9993 case Intrinsic::vector_reduce_fadd: 9994 if (SDFlags.hasAllowReassociation()) 9995 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9996 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9997 SDFlags); 9998 else 9999 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10000 break; 10001 case Intrinsic::vector_reduce_fmul: 10002 if (SDFlags.hasAllowReassociation()) 10003 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10004 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10005 SDFlags); 10006 else 10007 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10008 break; 10009 case Intrinsic::vector_reduce_add: 10010 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10011 break; 10012 case Intrinsic::vector_reduce_mul: 10013 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10014 break; 10015 case Intrinsic::vector_reduce_and: 10016 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10017 break; 10018 case Intrinsic::vector_reduce_or: 10019 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10020 break; 10021 case Intrinsic::vector_reduce_xor: 10022 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10023 break; 10024 case Intrinsic::vector_reduce_smax: 10025 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10026 break; 10027 case Intrinsic::vector_reduce_smin: 10028 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10029 break; 10030 case Intrinsic::vector_reduce_umax: 10031 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10032 break; 10033 case Intrinsic::vector_reduce_umin: 10034 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10035 break; 10036 case Intrinsic::vector_reduce_fmax: 10037 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10038 break; 10039 case Intrinsic::vector_reduce_fmin: 10040 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10041 break; 10042 case Intrinsic::vector_reduce_fmaximum: 10043 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10044 break; 10045 case Intrinsic::vector_reduce_fminimum: 10046 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10047 break; 10048 default: 10049 llvm_unreachable("Unhandled vector reduce intrinsic"); 10050 } 10051 setValue(&I, Res); 10052 } 10053 10054 /// Returns an AttributeList representing the attributes applied to the return 10055 /// value of the given call. 10056 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10057 SmallVector<Attribute::AttrKind, 2> Attrs; 10058 if (CLI.RetSExt) 10059 Attrs.push_back(Attribute::SExt); 10060 if (CLI.RetZExt) 10061 Attrs.push_back(Attribute::ZExt); 10062 if (CLI.IsInReg) 10063 Attrs.push_back(Attribute::InReg); 10064 10065 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10066 Attrs); 10067 } 10068 10069 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10070 /// implementation, which just calls LowerCall. 10071 /// FIXME: When all targets are 10072 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10073 std::pair<SDValue, SDValue> 10074 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10075 // Handle the incoming return values from the call. 10076 CLI.Ins.clear(); 10077 Type *OrigRetTy = CLI.RetTy; 10078 SmallVector<EVT, 4> RetTys; 10079 SmallVector<uint64_t, 4> Offsets; 10080 auto &DL = CLI.DAG.getDataLayout(); 10081 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10082 10083 if (CLI.IsPostTypeLegalization) { 10084 // If we are lowering a libcall after legalization, split the return type. 10085 SmallVector<EVT, 4> OldRetTys; 10086 SmallVector<uint64_t, 4> OldOffsets; 10087 RetTys.swap(OldRetTys); 10088 Offsets.swap(OldOffsets); 10089 10090 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10091 EVT RetVT = OldRetTys[i]; 10092 uint64_t Offset = OldOffsets[i]; 10093 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10094 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10095 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10096 RetTys.append(NumRegs, RegisterVT); 10097 for (unsigned j = 0; j != NumRegs; ++j) 10098 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10099 } 10100 } 10101 10102 SmallVector<ISD::OutputArg, 4> Outs; 10103 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10104 10105 bool CanLowerReturn = 10106 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10107 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10108 10109 SDValue DemoteStackSlot; 10110 int DemoteStackIdx = -100; 10111 if (!CanLowerReturn) { 10112 // FIXME: equivalent assert? 10113 // assert(!CS.hasInAllocaArgument() && 10114 // "sret demotion is incompatible with inalloca"); 10115 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10116 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10117 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10118 DemoteStackIdx = 10119 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10120 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10121 DL.getAllocaAddrSpace()); 10122 10123 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10124 ArgListEntry Entry; 10125 Entry.Node = DemoteStackSlot; 10126 Entry.Ty = StackSlotPtrType; 10127 Entry.IsSExt = false; 10128 Entry.IsZExt = false; 10129 Entry.IsInReg = false; 10130 Entry.IsSRet = true; 10131 Entry.IsNest = false; 10132 Entry.IsByVal = false; 10133 Entry.IsByRef = false; 10134 Entry.IsReturned = false; 10135 Entry.IsSwiftSelf = false; 10136 Entry.IsSwiftAsync = false; 10137 Entry.IsSwiftError = false; 10138 Entry.IsCFGuardTarget = false; 10139 Entry.Alignment = Alignment; 10140 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10141 CLI.NumFixedArgs += 1; 10142 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10143 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10144 10145 // sret demotion isn't compatible with tail-calls, since the sret argument 10146 // points into the callers stack frame. 10147 CLI.IsTailCall = false; 10148 } else { 10149 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10150 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10151 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10152 ISD::ArgFlagsTy Flags; 10153 if (NeedsRegBlock) { 10154 Flags.setInConsecutiveRegs(); 10155 if (I == RetTys.size() - 1) 10156 Flags.setInConsecutiveRegsLast(); 10157 } 10158 EVT VT = RetTys[I]; 10159 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10160 CLI.CallConv, VT); 10161 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10162 CLI.CallConv, VT); 10163 for (unsigned i = 0; i != NumRegs; ++i) { 10164 ISD::InputArg MyFlags; 10165 MyFlags.Flags = Flags; 10166 MyFlags.VT = RegisterVT; 10167 MyFlags.ArgVT = VT; 10168 MyFlags.Used = CLI.IsReturnValueUsed; 10169 if (CLI.RetTy->isPointerTy()) { 10170 MyFlags.Flags.setPointer(); 10171 MyFlags.Flags.setPointerAddrSpace( 10172 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10173 } 10174 if (CLI.RetSExt) 10175 MyFlags.Flags.setSExt(); 10176 if (CLI.RetZExt) 10177 MyFlags.Flags.setZExt(); 10178 if (CLI.IsInReg) 10179 MyFlags.Flags.setInReg(); 10180 CLI.Ins.push_back(MyFlags); 10181 } 10182 } 10183 } 10184 10185 // We push in swifterror return as the last element of CLI.Ins. 10186 ArgListTy &Args = CLI.getArgs(); 10187 if (supportSwiftError()) { 10188 for (const ArgListEntry &Arg : Args) { 10189 if (Arg.IsSwiftError) { 10190 ISD::InputArg MyFlags; 10191 MyFlags.VT = getPointerTy(DL); 10192 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10193 MyFlags.Flags.setSwiftError(); 10194 CLI.Ins.push_back(MyFlags); 10195 } 10196 } 10197 } 10198 10199 // Handle all of the outgoing arguments. 10200 CLI.Outs.clear(); 10201 CLI.OutVals.clear(); 10202 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10203 SmallVector<EVT, 4> ValueVTs; 10204 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10205 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10206 Type *FinalType = Args[i].Ty; 10207 if (Args[i].IsByVal) 10208 FinalType = Args[i].IndirectType; 10209 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10210 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10211 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10212 ++Value) { 10213 EVT VT = ValueVTs[Value]; 10214 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10215 SDValue Op = SDValue(Args[i].Node.getNode(), 10216 Args[i].Node.getResNo() + Value); 10217 ISD::ArgFlagsTy Flags; 10218 10219 // Certain targets (such as MIPS), may have a different ABI alignment 10220 // for a type depending on the context. Give the target a chance to 10221 // specify the alignment it wants. 10222 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10223 Flags.setOrigAlign(OriginalAlignment); 10224 10225 if (Args[i].Ty->isPointerTy()) { 10226 Flags.setPointer(); 10227 Flags.setPointerAddrSpace( 10228 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10229 } 10230 if (Args[i].IsZExt) 10231 Flags.setZExt(); 10232 if (Args[i].IsSExt) 10233 Flags.setSExt(); 10234 if (Args[i].IsInReg) { 10235 // If we are using vectorcall calling convention, a structure that is 10236 // passed InReg - is surely an HVA 10237 if (CLI.CallConv == CallingConv::X86_VectorCall && 10238 isa<StructType>(FinalType)) { 10239 // The first value of a structure is marked 10240 if (0 == Value) 10241 Flags.setHvaStart(); 10242 Flags.setHva(); 10243 } 10244 // Set InReg Flag 10245 Flags.setInReg(); 10246 } 10247 if (Args[i].IsSRet) 10248 Flags.setSRet(); 10249 if (Args[i].IsSwiftSelf) 10250 Flags.setSwiftSelf(); 10251 if (Args[i].IsSwiftAsync) 10252 Flags.setSwiftAsync(); 10253 if (Args[i].IsSwiftError) 10254 Flags.setSwiftError(); 10255 if (Args[i].IsCFGuardTarget) 10256 Flags.setCFGuardTarget(); 10257 if (Args[i].IsByVal) 10258 Flags.setByVal(); 10259 if (Args[i].IsByRef) 10260 Flags.setByRef(); 10261 if (Args[i].IsPreallocated) { 10262 Flags.setPreallocated(); 10263 // Set the byval flag for CCAssignFn callbacks that don't know about 10264 // preallocated. This way we can know how many bytes we should've 10265 // allocated and how many bytes a callee cleanup function will pop. If 10266 // we port preallocated to more targets, we'll have to add custom 10267 // preallocated handling in the various CC lowering callbacks. 10268 Flags.setByVal(); 10269 } 10270 if (Args[i].IsInAlloca) { 10271 Flags.setInAlloca(); 10272 // Set the byval flag for CCAssignFn callbacks that don't know about 10273 // inalloca. This way we can know how many bytes we should've allocated 10274 // and how many bytes a callee cleanup function will pop. If we port 10275 // inalloca to more targets, we'll have to add custom inalloca handling 10276 // in the various CC lowering callbacks. 10277 Flags.setByVal(); 10278 } 10279 Align MemAlign; 10280 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10281 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10282 Flags.setByValSize(FrameSize); 10283 10284 // info is not there but there are cases it cannot get right. 10285 if (auto MA = Args[i].Alignment) 10286 MemAlign = *MA; 10287 else 10288 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10289 } else if (auto MA = Args[i].Alignment) { 10290 MemAlign = *MA; 10291 } else { 10292 MemAlign = OriginalAlignment; 10293 } 10294 Flags.setMemAlign(MemAlign); 10295 if (Args[i].IsNest) 10296 Flags.setNest(); 10297 if (NeedsRegBlock) 10298 Flags.setInConsecutiveRegs(); 10299 10300 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10301 CLI.CallConv, VT); 10302 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10303 CLI.CallConv, VT); 10304 SmallVector<SDValue, 4> Parts(NumParts); 10305 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10306 10307 if (Args[i].IsSExt) 10308 ExtendKind = ISD::SIGN_EXTEND; 10309 else if (Args[i].IsZExt) 10310 ExtendKind = ISD::ZERO_EXTEND; 10311 10312 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10313 // for now. 10314 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10315 CanLowerReturn) { 10316 assert((CLI.RetTy == Args[i].Ty || 10317 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10318 CLI.RetTy->getPointerAddressSpace() == 10319 Args[i].Ty->getPointerAddressSpace())) && 10320 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10321 // Before passing 'returned' to the target lowering code, ensure that 10322 // either the register MVT and the actual EVT are the same size or that 10323 // the return value and argument are extended in the same way; in these 10324 // cases it's safe to pass the argument register value unchanged as the 10325 // return register value (although it's at the target's option whether 10326 // to do so) 10327 // TODO: allow code generation to take advantage of partially preserved 10328 // registers rather than clobbering the entire register when the 10329 // parameter extension method is not compatible with the return 10330 // extension method 10331 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10332 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10333 CLI.RetZExt == Args[i].IsZExt)) 10334 Flags.setReturned(); 10335 } 10336 10337 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10338 CLI.CallConv, ExtendKind); 10339 10340 for (unsigned j = 0; j != NumParts; ++j) { 10341 // if it isn't first piece, alignment must be 1 10342 // For scalable vectors the scalable part is currently handled 10343 // by individual targets, so we just use the known minimum size here. 10344 ISD::OutputArg MyFlags( 10345 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10346 i < CLI.NumFixedArgs, i, 10347 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10348 if (NumParts > 1 && j == 0) 10349 MyFlags.Flags.setSplit(); 10350 else if (j != 0) { 10351 MyFlags.Flags.setOrigAlign(Align(1)); 10352 if (j == NumParts - 1) 10353 MyFlags.Flags.setSplitEnd(); 10354 } 10355 10356 CLI.Outs.push_back(MyFlags); 10357 CLI.OutVals.push_back(Parts[j]); 10358 } 10359 10360 if (NeedsRegBlock && Value == NumValues - 1) 10361 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10362 } 10363 } 10364 10365 SmallVector<SDValue, 4> InVals; 10366 CLI.Chain = LowerCall(CLI, InVals); 10367 10368 // Update CLI.InVals to use outside of this function. 10369 CLI.InVals = InVals; 10370 10371 // Verify that the target's LowerCall behaved as expected. 10372 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10373 "LowerCall didn't return a valid chain!"); 10374 assert((!CLI.IsTailCall || InVals.empty()) && 10375 "LowerCall emitted a return value for a tail call!"); 10376 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10377 "LowerCall didn't emit the correct number of values!"); 10378 10379 // For a tail call, the return value is merely live-out and there aren't 10380 // any nodes in the DAG representing it. Return a special value to 10381 // indicate that a tail call has been emitted and no more Instructions 10382 // should be processed in the current block. 10383 if (CLI.IsTailCall) { 10384 CLI.DAG.setRoot(CLI.Chain); 10385 return std::make_pair(SDValue(), SDValue()); 10386 } 10387 10388 #ifndef NDEBUG 10389 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10390 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10391 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10392 "LowerCall emitted a value with the wrong type!"); 10393 } 10394 #endif 10395 10396 SmallVector<SDValue, 4> ReturnValues; 10397 if (!CanLowerReturn) { 10398 // The instruction result is the result of loading from the 10399 // hidden sret parameter. 10400 SmallVector<EVT, 1> PVTs; 10401 Type *PtrRetTy = 10402 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10403 10404 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10405 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10406 EVT PtrVT = PVTs[0]; 10407 10408 unsigned NumValues = RetTys.size(); 10409 ReturnValues.resize(NumValues); 10410 SmallVector<SDValue, 4> Chains(NumValues); 10411 10412 // An aggregate return value cannot wrap around the address space, so 10413 // offsets to its parts don't wrap either. 10414 SDNodeFlags Flags; 10415 Flags.setNoUnsignedWrap(true); 10416 10417 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10418 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10419 for (unsigned i = 0; i < NumValues; ++i) { 10420 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10421 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10422 PtrVT), Flags); 10423 SDValue L = CLI.DAG.getLoad( 10424 RetTys[i], CLI.DL, CLI.Chain, Add, 10425 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10426 DemoteStackIdx, Offsets[i]), 10427 HiddenSRetAlign); 10428 ReturnValues[i] = L; 10429 Chains[i] = L.getValue(1); 10430 } 10431 10432 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10433 } else { 10434 // Collect the legal value parts into potentially illegal values 10435 // that correspond to the original function's return values. 10436 std::optional<ISD::NodeType> AssertOp; 10437 if (CLI.RetSExt) 10438 AssertOp = ISD::AssertSext; 10439 else if (CLI.RetZExt) 10440 AssertOp = ISD::AssertZext; 10441 unsigned CurReg = 0; 10442 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10443 EVT VT = RetTys[I]; 10444 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10445 CLI.CallConv, VT); 10446 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10447 CLI.CallConv, VT); 10448 10449 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10450 NumRegs, RegisterVT, VT, nullptr, 10451 CLI.CallConv, AssertOp)); 10452 CurReg += NumRegs; 10453 } 10454 10455 // For a function returning void, there is no return value. We can't create 10456 // such a node, so we just return a null return value in that case. In 10457 // that case, nothing will actually look at the value. 10458 if (ReturnValues.empty()) 10459 return std::make_pair(SDValue(), CLI.Chain); 10460 } 10461 10462 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10463 CLI.DAG.getVTList(RetTys), ReturnValues); 10464 return std::make_pair(Res, CLI.Chain); 10465 } 10466 10467 /// Places new result values for the node in Results (their number 10468 /// and types must exactly match those of the original return values of 10469 /// the node), or leaves Results empty, which indicates that the node is not 10470 /// to be custom lowered after all. 10471 void TargetLowering::LowerOperationWrapper(SDNode *N, 10472 SmallVectorImpl<SDValue> &Results, 10473 SelectionDAG &DAG) const { 10474 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10475 10476 if (!Res.getNode()) 10477 return; 10478 10479 // If the original node has one result, take the return value from 10480 // LowerOperation as is. It might not be result number 0. 10481 if (N->getNumValues() == 1) { 10482 Results.push_back(Res); 10483 return; 10484 } 10485 10486 // If the original node has multiple results, then the return node should 10487 // have the same number of results. 10488 assert((N->getNumValues() == Res->getNumValues()) && 10489 "Lowering returned the wrong number of results!"); 10490 10491 // Places new result values base on N result number. 10492 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10493 Results.push_back(Res.getValue(I)); 10494 } 10495 10496 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10497 llvm_unreachable("LowerOperation not implemented for this target!"); 10498 } 10499 10500 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10501 unsigned Reg, 10502 ISD::NodeType ExtendType) { 10503 SDValue Op = getNonRegisterValue(V); 10504 assert((Op.getOpcode() != ISD::CopyFromReg || 10505 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10506 "Copy from a reg to the same reg!"); 10507 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10508 10509 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10510 // If this is an InlineAsm we have to match the registers required, not the 10511 // notional registers required by the type. 10512 10513 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10514 std::nullopt); // This is not an ABI copy. 10515 SDValue Chain = DAG.getEntryNode(); 10516 10517 if (ExtendType == ISD::ANY_EXTEND) { 10518 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10519 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10520 ExtendType = PreferredExtendIt->second; 10521 } 10522 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10523 PendingExports.push_back(Chain); 10524 } 10525 10526 #include "llvm/CodeGen/SelectionDAGISel.h" 10527 10528 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10529 /// entry block, return true. This includes arguments used by switches, since 10530 /// the switch may expand into multiple basic blocks. 10531 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10532 // With FastISel active, we may be splitting blocks, so force creation 10533 // of virtual registers for all non-dead arguments. 10534 if (FastISel) 10535 return A->use_empty(); 10536 10537 const BasicBlock &Entry = A->getParent()->front(); 10538 for (const User *U : A->users()) 10539 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10540 return false; // Use not in entry block. 10541 10542 return true; 10543 } 10544 10545 using ArgCopyElisionMapTy = 10546 DenseMap<const Argument *, 10547 std::pair<const AllocaInst *, const StoreInst *>>; 10548 10549 /// Scan the entry block of the function in FuncInfo for arguments that look 10550 /// like copies into a local alloca. Record any copied arguments in 10551 /// ArgCopyElisionCandidates. 10552 static void 10553 findArgumentCopyElisionCandidates(const DataLayout &DL, 10554 FunctionLoweringInfo *FuncInfo, 10555 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10556 // Record the state of every static alloca used in the entry block. Argument 10557 // allocas are all used in the entry block, so we need approximately as many 10558 // entries as we have arguments. 10559 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10560 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10561 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10562 StaticAllocas.reserve(NumArgs * 2); 10563 10564 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10565 if (!V) 10566 return nullptr; 10567 V = V->stripPointerCasts(); 10568 const auto *AI = dyn_cast<AllocaInst>(V); 10569 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10570 return nullptr; 10571 auto Iter = StaticAllocas.insert({AI, Unknown}); 10572 return &Iter.first->second; 10573 }; 10574 10575 // Look for stores of arguments to static allocas. Look through bitcasts and 10576 // GEPs to handle type coercions, as long as the alloca is fully initialized 10577 // by the store. Any non-store use of an alloca escapes it and any subsequent 10578 // unanalyzed store might write it. 10579 // FIXME: Handle structs initialized with multiple stores. 10580 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10581 // Look for stores, and handle non-store uses conservatively. 10582 const auto *SI = dyn_cast<StoreInst>(&I); 10583 if (!SI) { 10584 // We will look through cast uses, so ignore them completely. 10585 if (I.isCast()) 10586 continue; 10587 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10588 // to allocas. 10589 if (I.isDebugOrPseudoInst()) 10590 continue; 10591 // This is an unknown instruction. Assume it escapes or writes to all 10592 // static alloca operands. 10593 for (const Use &U : I.operands()) { 10594 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10595 *Info = StaticAllocaInfo::Clobbered; 10596 } 10597 continue; 10598 } 10599 10600 // If the stored value is a static alloca, mark it as escaped. 10601 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10602 *Info = StaticAllocaInfo::Clobbered; 10603 10604 // Check if the destination is a static alloca. 10605 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10606 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10607 if (!Info) 10608 continue; 10609 const AllocaInst *AI = cast<AllocaInst>(Dst); 10610 10611 // Skip allocas that have been initialized or clobbered. 10612 if (*Info != StaticAllocaInfo::Unknown) 10613 continue; 10614 10615 // Check if the stored value is an argument, and that this store fully 10616 // initializes the alloca. 10617 // If the argument type has padding bits we can't directly forward a pointer 10618 // as the upper bits may contain garbage. 10619 // Don't elide copies from the same argument twice. 10620 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10621 const auto *Arg = dyn_cast<Argument>(Val); 10622 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10623 Arg->getType()->isEmptyTy() || 10624 DL.getTypeStoreSize(Arg->getType()) != 10625 DL.getTypeAllocSize(AI->getAllocatedType()) || 10626 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10627 ArgCopyElisionCandidates.count(Arg)) { 10628 *Info = StaticAllocaInfo::Clobbered; 10629 continue; 10630 } 10631 10632 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10633 << '\n'); 10634 10635 // Mark this alloca and store for argument copy elision. 10636 *Info = StaticAllocaInfo::Elidable; 10637 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10638 10639 // Stop scanning if we've seen all arguments. This will happen early in -O0 10640 // builds, which is useful, because -O0 builds have large entry blocks and 10641 // many allocas. 10642 if (ArgCopyElisionCandidates.size() == NumArgs) 10643 break; 10644 } 10645 } 10646 10647 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10648 /// ArgVal is a load from a suitable fixed stack object. 10649 static void tryToElideArgumentCopy( 10650 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10651 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10652 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10653 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10654 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10655 // Check if this is a load from a fixed stack object. 10656 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10657 if (!LNode) 10658 return; 10659 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10660 if (!FINode) 10661 return; 10662 10663 // Check that the fixed stack object is the right size and alignment. 10664 // Look at the alignment that the user wrote on the alloca instead of looking 10665 // at the stack object. 10666 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10667 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10668 const AllocaInst *AI = ArgCopyIter->second.first; 10669 int FixedIndex = FINode->getIndex(); 10670 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10671 int OldIndex = AllocaIndex; 10672 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10673 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10674 LLVM_DEBUG( 10675 dbgs() << " argument copy elision failed due to bad fixed stack " 10676 "object size\n"); 10677 return; 10678 } 10679 Align RequiredAlignment = AI->getAlign(); 10680 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10681 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10682 "greater than stack argument alignment (" 10683 << DebugStr(RequiredAlignment) << " vs " 10684 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10685 return; 10686 } 10687 10688 // Perform the elision. Delete the old stack object and replace its only use 10689 // in the variable info map. Mark the stack object as mutable. 10690 LLVM_DEBUG({ 10691 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10692 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10693 << '\n'; 10694 }); 10695 MFI.RemoveStackObject(OldIndex); 10696 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10697 AllocaIndex = FixedIndex; 10698 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10699 for (SDValue ArgVal : ArgVals) 10700 Chains.push_back(ArgVal.getValue(1)); 10701 10702 // Avoid emitting code for the store implementing the copy. 10703 const StoreInst *SI = ArgCopyIter->second.second; 10704 ElidedArgCopyInstrs.insert(SI); 10705 10706 // Check for uses of the argument again so that we can avoid exporting ArgVal 10707 // if it is't used by anything other than the store. 10708 for (const Value *U : Arg.users()) { 10709 if (U != SI) { 10710 ArgHasUses = true; 10711 break; 10712 } 10713 } 10714 } 10715 10716 void SelectionDAGISel::LowerArguments(const Function &F) { 10717 SelectionDAG &DAG = SDB->DAG; 10718 SDLoc dl = SDB->getCurSDLoc(); 10719 const DataLayout &DL = DAG.getDataLayout(); 10720 SmallVector<ISD::InputArg, 16> Ins; 10721 10722 // In Naked functions we aren't going to save any registers. 10723 if (F.hasFnAttribute(Attribute::Naked)) 10724 return; 10725 10726 if (!FuncInfo->CanLowerReturn) { 10727 // Put in an sret pointer parameter before all the other parameters. 10728 SmallVector<EVT, 1> ValueVTs; 10729 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10730 PointerType::get(F.getContext(), 10731 DAG.getDataLayout().getAllocaAddrSpace()), 10732 ValueVTs); 10733 10734 // NOTE: Assuming that a pointer will never break down to more than one VT 10735 // or one register. 10736 ISD::ArgFlagsTy Flags; 10737 Flags.setSRet(); 10738 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10739 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10740 ISD::InputArg::NoArgIndex, 0); 10741 Ins.push_back(RetArg); 10742 } 10743 10744 // Look for stores of arguments to static allocas. Mark such arguments with a 10745 // flag to ask the target to give us the memory location of that argument if 10746 // available. 10747 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10748 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10749 ArgCopyElisionCandidates); 10750 10751 // Set up the incoming argument description vector. 10752 for (const Argument &Arg : F.args()) { 10753 unsigned ArgNo = Arg.getArgNo(); 10754 SmallVector<EVT, 4> ValueVTs; 10755 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10756 bool isArgValueUsed = !Arg.use_empty(); 10757 unsigned PartBase = 0; 10758 Type *FinalType = Arg.getType(); 10759 if (Arg.hasAttribute(Attribute::ByVal)) 10760 FinalType = Arg.getParamByValType(); 10761 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10762 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10763 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10764 Value != NumValues; ++Value) { 10765 EVT VT = ValueVTs[Value]; 10766 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10767 ISD::ArgFlagsTy Flags; 10768 10769 10770 if (Arg.getType()->isPointerTy()) { 10771 Flags.setPointer(); 10772 Flags.setPointerAddrSpace( 10773 cast<PointerType>(Arg.getType())->getAddressSpace()); 10774 } 10775 if (Arg.hasAttribute(Attribute::ZExt)) 10776 Flags.setZExt(); 10777 if (Arg.hasAttribute(Attribute::SExt)) 10778 Flags.setSExt(); 10779 if (Arg.hasAttribute(Attribute::InReg)) { 10780 // If we are using vectorcall calling convention, a structure that is 10781 // passed InReg - is surely an HVA 10782 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10783 isa<StructType>(Arg.getType())) { 10784 // The first value of a structure is marked 10785 if (0 == Value) 10786 Flags.setHvaStart(); 10787 Flags.setHva(); 10788 } 10789 // Set InReg Flag 10790 Flags.setInReg(); 10791 } 10792 if (Arg.hasAttribute(Attribute::StructRet)) 10793 Flags.setSRet(); 10794 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10795 Flags.setSwiftSelf(); 10796 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10797 Flags.setSwiftAsync(); 10798 if (Arg.hasAttribute(Attribute::SwiftError)) 10799 Flags.setSwiftError(); 10800 if (Arg.hasAttribute(Attribute::ByVal)) 10801 Flags.setByVal(); 10802 if (Arg.hasAttribute(Attribute::ByRef)) 10803 Flags.setByRef(); 10804 if (Arg.hasAttribute(Attribute::InAlloca)) { 10805 Flags.setInAlloca(); 10806 // Set the byval flag for CCAssignFn callbacks that don't know about 10807 // inalloca. This way we can know how many bytes we should've allocated 10808 // and how many bytes a callee cleanup function will pop. If we port 10809 // inalloca to more targets, we'll have to add custom inalloca handling 10810 // in the various CC lowering callbacks. 10811 Flags.setByVal(); 10812 } 10813 if (Arg.hasAttribute(Attribute::Preallocated)) { 10814 Flags.setPreallocated(); 10815 // Set the byval flag for CCAssignFn callbacks that don't know about 10816 // preallocated. This way we can know how many bytes we should've 10817 // allocated and how many bytes a callee cleanup function will pop. If 10818 // we port preallocated to more targets, we'll have to add custom 10819 // preallocated handling in the various CC lowering callbacks. 10820 Flags.setByVal(); 10821 } 10822 10823 // Certain targets (such as MIPS), may have a different ABI alignment 10824 // for a type depending on the context. Give the target a chance to 10825 // specify the alignment it wants. 10826 const Align OriginalAlignment( 10827 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10828 Flags.setOrigAlign(OriginalAlignment); 10829 10830 Align MemAlign; 10831 Type *ArgMemTy = nullptr; 10832 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10833 Flags.isByRef()) { 10834 if (!ArgMemTy) 10835 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10836 10837 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10838 10839 // For in-memory arguments, size and alignment should be passed from FE. 10840 // BE will guess if this info is not there but there are cases it cannot 10841 // get right. 10842 if (auto ParamAlign = Arg.getParamStackAlign()) 10843 MemAlign = *ParamAlign; 10844 else if ((ParamAlign = Arg.getParamAlign())) 10845 MemAlign = *ParamAlign; 10846 else 10847 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10848 if (Flags.isByRef()) 10849 Flags.setByRefSize(MemSize); 10850 else 10851 Flags.setByValSize(MemSize); 10852 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10853 MemAlign = *ParamAlign; 10854 } else { 10855 MemAlign = OriginalAlignment; 10856 } 10857 Flags.setMemAlign(MemAlign); 10858 10859 if (Arg.hasAttribute(Attribute::Nest)) 10860 Flags.setNest(); 10861 if (NeedsRegBlock) 10862 Flags.setInConsecutiveRegs(); 10863 if (ArgCopyElisionCandidates.count(&Arg)) 10864 Flags.setCopyElisionCandidate(); 10865 if (Arg.hasAttribute(Attribute::Returned)) 10866 Flags.setReturned(); 10867 10868 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10869 *CurDAG->getContext(), F.getCallingConv(), VT); 10870 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10871 *CurDAG->getContext(), F.getCallingConv(), VT); 10872 for (unsigned i = 0; i != NumRegs; ++i) { 10873 // For scalable vectors, use the minimum size; individual targets 10874 // are responsible for handling scalable vector arguments and 10875 // return values. 10876 ISD::InputArg MyFlags( 10877 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10878 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10879 if (NumRegs > 1 && i == 0) 10880 MyFlags.Flags.setSplit(); 10881 // if it isn't first piece, alignment must be 1 10882 else if (i > 0) { 10883 MyFlags.Flags.setOrigAlign(Align(1)); 10884 if (i == NumRegs - 1) 10885 MyFlags.Flags.setSplitEnd(); 10886 } 10887 Ins.push_back(MyFlags); 10888 } 10889 if (NeedsRegBlock && Value == NumValues - 1) 10890 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10891 PartBase += VT.getStoreSize().getKnownMinValue(); 10892 } 10893 } 10894 10895 // Call the target to set up the argument values. 10896 SmallVector<SDValue, 8> InVals; 10897 SDValue NewRoot = TLI->LowerFormalArguments( 10898 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10899 10900 // Verify that the target's LowerFormalArguments behaved as expected. 10901 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10902 "LowerFormalArguments didn't return a valid chain!"); 10903 assert(InVals.size() == Ins.size() && 10904 "LowerFormalArguments didn't emit the correct number of values!"); 10905 LLVM_DEBUG({ 10906 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10907 assert(InVals[i].getNode() && 10908 "LowerFormalArguments emitted a null value!"); 10909 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10910 "LowerFormalArguments emitted a value with the wrong type!"); 10911 } 10912 }); 10913 10914 // Update the DAG with the new chain value resulting from argument lowering. 10915 DAG.setRoot(NewRoot); 10916 10917 // Set up the argument values. 10918 unsigned i = 0; 10919 if (!FuncInfo->CanLowerReturn) { 10920 // Create a virtual register for the sret pointer, and put in a copy 10921 // from the sret argument into it. 10922 SmallVector<EVT, 1> ValueVTs; 10923 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10924 PointerType::get(F.getContext(), 10925 DAG.getDataLayout().getAllocaAddrSpace()), 10926 ValueVTs); 10927 MVT VT = ValueVTs[0].getSimpleVT(); 10928 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10929 std::optional<ISD::NodeType> AssertOp; 10930 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10931 nullptr, F.getCallingConv(), AssertOp); 10932 10933 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10934 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10935 Register SRetReg = 10936 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10937 FuncInfo->DemoteRegister = SRetReg; 10938 NewRoot = 10939 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10940 DAG.setRoot(NewRoot); 10941 10942 // i indexes lowered arguments. Bump it past the hidden sret argument. 10943 ++i; 10944 } 10945 10946 SmallVector<SDValue, 4> Chains; 10947 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10948 for (const Argument &Arg : F.args()) { 10949 SmallVector<SDValue, 4> ArgValues; 10950 SmallVector<EVT, 4> ValueVTs; 10951 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10952 unsigned NumValues = ValueVTs.size(); 10953 if (NumValues == 0) 10954 continue; 10955 10956 bool ArgHasUses = !Arg.use_empty(); 10957 10958 // Elide the copying store if the target loaded this argument from a 10959 // suitable fixed stack object. 10960 if (Ins[i].Flags.isCopyElisionCandidate()) { 10961 unsigned NumParts = 0; 10962 for (EVT VT : ValueVTs) 10963 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 10964 F.getCallingConv(), VT); 10965 10966 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10967 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10968 ArrayRef(&InVals[i], NumParts), ArgHasUses); 10969 } 10970 10971 // If this argument is unused then remember its value. It is used to generate 10972 // debugging information. 10973 bool isSwiftErrorArg = 10974 TLI->supportSwiftError() && 10975 Arg.hasAttribute(Attribute::SwiftError); 10976 if (!ArgHasUses && !isSwiftErrorArg) { 10977 SDB->setUnusedArgValue(&Arg, InVals[i]); 10978 10979 // Also remember any frame index for use in FastISel. 10980 if (FrameIndexSDNode *FI = 10981 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10982 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10983 } 10984 10985 for (unsigned Val = 0; Val != NumValues; ++Val) { 10986 EVT VT = ValueVTs[Val]; 10987 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10988 F.getCallingConv(), VT); 10989 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10990 *CurDAG->getContext(), F.getCallingConv(), VT); 10991 10992 // Even an apparent 'unused' swifterror argument needs to be returned. So 10993 // we do generate a copy for it that can be used on return from the 10994 // function. 10995 if (ArgHasUses || isSwiftErrorArg) { 10996 std::optional<ISD::NodeType> AssertOp; 10997 if (Arg.hasAttribute(Attribute::SExt)) 10998 AssertOp = ISD::AssertSext; 10999 else if (Arg.hasAttribute(Attribute::ZExt)) 11000 AssertOp = ISD::AssertZext; 11001 11002 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11003 PartVT, VT, nullptr, 11004 F.getCallingConv(), AssertOp)); 11005 } 11006 11007 i += NumParts; 11008 } 11009 11010 // We don't need to do anything else for unused arguments. 11011 if (ArgValues.empty()) 11012 continue; 11013 11014 // Note down frame index. 11015 if (FrameIndexSDNode *FI = 11016 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11017 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11018 11019 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11020 SDB->getCurSDLoc()); 11021 11022 SDB->setValue(&Arg, Res); 11023 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11024 // We want to associate the argument with the frame index, among 11025 // involved operands, that correspond to the lowest address. The 11026 // getCopyFromParts function, called earlier, is swapping the order of 11027 // the operands to BUILD_PAIR depending on endianness. The result of 11028 // that swapping is that the least significant bits of the argument will 11029 // be in the first operand of the BUILD_PAIR node, and the most 11030 // significant bits will be in the second operand. 11031 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11032 if (LoadSDNode *LNode = 11033 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11034 if (FrameIndexSDNode *FI = 11035 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11036 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11037 } 11038 11039 // Analyses past this point are naive and don't expect an assertion. 11040 if (Res.getOpcode() == ISD::AssertZext) 11041 Res = Res.getOperand(0); 11042 11043 // Update the SwiftErrorVRegDefMap. 11044 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11045 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11046 if (Register::isVirtualRegister(Reg)) 11047 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11048 Reg); 11049 } 11050 11051 // If this argument is live outside of the entry block, insert a copy from 11052 // wherever we got it to the vreg that other BB's will reference it as. 11053 if (Res.getOpcode() == ISD::CopyFromReg) { 11054 // If we can, though, try to skip creating an unnecessary vreg. 11055 // FIXME: This isn't very clean... it would be nice to make this more 11056 // general. 11057 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11058 if (Register::isVirtualRegister(Reg)) { 11059 FuncInfo->ValueMap[&Arg] = Reg; 11060 continue; 11061 } 11062 } 11063 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11064 FuncInfo->InitializeRegForValue(&Arg); 11065 SDB->CopyToExportRegsIfNeeded(&Arg); 11066 } 11067 } 11068 11069 if (!Chains.empty()) { 11070 Chains.push_back(NewRoot); 11071 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11072 } 11073 11074 DAG.setRoot(NewRoot); 11075 11076 assert(i == InVals.size() && "Argument register count mismatch!"); 11077 11078 // If any argument copy elisions occurred and we have debug info, update the 11079 // stale frame indices used in the dbg.declare variable info table. 11080 if (!ArgCopyElisionFrameIndexMap.empty()) { 11081 for (MachineFunction::VariableDbgInfo &VI : 11082 MF->getInStackSlotVariableDbgInfo()) { 11083 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11084 if (I != ArgCopyElisionFrameIndexMap.end()) 11085 VI.updateStackSlot(I->second); 11086 } 11087 } 11088 11089 // Finally, if the target has anything special to do, allow it to do so. 11090 emitFunctionEntryCode(); 11091 } 11092 11093 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11094 /// ensure constants are generated when needed. Remember the virtual registers 11095 /// that need to be added to the Machine PHI nodes as input. We cannot just 11096 /// directly add them, because expansion might result in multiple MBB's for one 11097 /// BB. As such, the start of the BB might correspond to a different MBB than 11098 /// the end. 11099 void 11100 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11101 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11102 11103 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11104 11105 // Check PHI nodes in successors that expect a value to be available from this 11106 // block. 11107 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11108 if (!isa<PHINode>(SuccBB->begin())) continue; 11109 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11110 11111 // If this terminator has multiple identical successors (common for 11112 // switches), only handle each succ once. 11113 if (!SuccsHandled.insert(SuccMBB).second) 11114 continue; 11115 11116 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11117 11118 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11119 // nodes and Machine PHI nodes, but the incoming operands have not been 11120 // emitted yet. 11121 for (const PHINode &PN : SuccBB->phis()) { 11122 // Ignore dead phi's. 11123 if (PN.use_empty()) 11124 continue; 11125 11126 // Skip empty types 11127 if (PN.getType()->isEmptyTy()) 11128 continue; 11129 11130 unsigned Reg; 11131 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11132 11133 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11134 unsigned &RegOut = ConstantsOut[C]; 11135 if (RegOut == 0) { 11136 RegOut = FuncInfo.CreateRegs(C); 11137 // We need to zero/sign extend ConstantInt phi operands to match 11138 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11139 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11140 if (auto *CI = dyn_cast<ConstantInt>(C)) 11141 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11142 : ISD::ZERO_EXTEND; 11143 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11144 } 11145 Reg = RegOut; 11146 } else { 11147 DenseMap<const Value *, Register>::iterator I = 11148 FuncInfo.ValueMap.find(PHIOp); 11149 if (I != FuncInfo.ValueMap.end()) 11150 Reg = I->second; 11151 else { 11152 assert(isa<AllocaInst>(PHIOp) && 11153 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11154 "Didn't codegen value into a register!??"); 11155 Reg = FuncInfo.CreateRegs(PHIOp); 11156 CopyValueToVirtualRegister(PHIOp, Reg); 11157 } 11158 } 11159 11160 // Remember that this register needs to added to the machine PHI node as 11161 // the input for this MBB. 11162 SmallVector<EVT, 4> ValueVTs; 11163 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11164 for (EVT VT : ValueVTs) { 11165 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11166 for (unsigned i = 0; i != NumRegisters; ++i) 11167 FuncInfo.PHINodesToUpdate.push_back( 11168 std::make_pair(&*MBBI++, Reg + i)); 11169 Reg += NumRegisters; 11170 } 11171 } 11172 } 11173 11174 ConstantsOut.clear(); 11175 } 11176 11177 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11178 MachineFunction::iterator I(MBB); 11179 if (++I == FuncInfo.MF->end()) 11180 return nullptr; 11181 return &*I; 11182 } 11183 11184 /// During lowering new call nodes can be created (such as memset, etc.). 11185 /// Those will become new roots of the current DAG, but complications arise 11186 /// when they are tail calls. In such cases, the call lowering will update 11187 /// the root, but the builder still needs to know that a tail call has been 11188 /// lowered in order to avoid generating an additional return. 11189 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11190 // If the node is null, we do have a tail call. 11191 if (MaybeTC.getNode() != nullptr) 11192 DAG.setRoot(MaybeTC); 11193 else 11194 HasTailCall = true; 11195 } 11196 11197 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11198 MachineBasicBlock *SwitchMBB, 11199 MachineBasicBlock *DefaultMBB) { 11200 MachineFunction *CurMF = FuncInfo.MF; 11201 MachineBasicBlock *NextMBB = nullptr; 11202 MachineFunction::iterator BBI(W.MBB); 11203 if (++BBI != FuncInfo.MF->end()) 11204 NextMBB = &*BBI; 11205 11206 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11207 11208 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11209 11210 if (Size == 2 && W.MBB == SwitchMBB) { 11211 // If any two of the cases has the same destination, and if one value 11212 // is the same as the other, but has one bit unset that the other has set, 11213 // use bit manipulation to do two compares at once. For example: 11214 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11215 // TODO: This could be extended to merge any 2 cases in switches with 3 11216 // cases. 11217 // TODO: Handle cases where W.CaseBB != SwitchBB. 11218 CaseCluster &Small = *W.FirstCluster; 11219 CaseCluster &Big = *W.LastCluster; 11220 11221 if (Small.Low == Small.High && Big.Low == Big.High && 11222 Small.MBB == Big.MBB) { 11223 const APInt &SmallValue = Small.Low->getValue(); 11224 const APInt &BigValue = Big.Low->getValue(); 11225 11226 // Check that there is only one bit different. 11227 APInt CommonBit = BigValue ^ SmallValue; 11228 if (CommonBit.isPowerOf2()) { 11229 SDValue CondLHS = getValue(Cond); 11230 EVT VT = CondLHS.getValueType(); 11231 SDLoc DL = getCurSDLoc(); 11232 11233 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11234 DAG.getConstant(CommonBit, DL, VT)); 11235 SDValue Cond = DAG.getSetCC( 11236 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11237 ISD::SETEQ); 11238 11239 // Update successor info. 11240 // Both Small and Big will jump to Small.BB, so we sum up the 11241 // probabilities. 11242 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11243 if (BPI) 11244 addSuccessorWithProb( 11245 SwitchMBB, DefaultMBB, 11246 // The default destination is the first successor in IR. 11247 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11248 else 11249 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11250 11251 // Insert the true branch. 11252 SDValue BrCond = 11253 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11254 DAG.getBasicBlock(Small.MBB)); 11255 // Insert the false branch. 11256 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11257 DAG.getBasicBlock(DefaultMBB)); 11258 11259 DAG.setRoot(BrCond); 11260 return; 11261 } 11262 } 11263 } 11264 11265 if (TM.getOptLevel() != CodeGenOpt::None) { 11266 // Here, we order cases by probability so the most likely case will be 11267 // checked first. However, two clusters can have the same probability in 11268 // which case their relative ordering is non-deterministic. So we use Low 11269 // as a tie-breaker as clusters are guaranteed to never overlap. 11270 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11271 [](const CaseCluster &a, const CaseCluster &b) { 11272 return a.Prob != b.Prob ? 11273 a.Prob > b.Prob : 11274 a.Low->getValue().slt(b.Low->getValue()); 11275 }); 11276 11277 // Rearrange the case blocks so that the last one falls through if possible 11278 // without changing the order of probabilities. 11279 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11280 --I; 11281 if (I->Prob > W.LastCluster->Prob) 11282 break; 11283 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11284 std::swap(*I, *W.LastCluster); 11285 break; 11286 } 11287 } 11288 } 11289 11290 // Compute total probability. 11291 BranchProbability DefaultProb = W.DefaultProb; 11292 BranchProbability UnhandledProbs = DefaultProb; 11293 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11294 UnhandledProbs += I->Prob; 11295 11296 MachineBasicBlock *CurMBB = W.MBB; 11297 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11298 bool FallthroughUnreachable = false; 11299 MachineBasicBlock *Fallthrough; 11300 if (I == W.LastCluster) { 11301 // For the last cluster, fall through to the default destination. 11302 Fallthrough = DefaultMBB; 11303 FallthroughUnreachable = isa<UnreachableInst>( 11304 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11305 } else { 11306 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11307 CurMF->insert(BBI, Fallthrough); 11308 // Put Cond in a virtual register to make it available from the new blocks. 11309 ExportFromCurrentBlock(Cond); 11310 } 11311 UnhandledProbs -= I->Prob; 11312 11313 switch (I->Kind) { 11314 case CC_JumpTable: { 11315 // FIXME: Optimize away range check based on pivot comparisons. 11316 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11317 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11318 11319 // The jump block hasn't been inserted yet; insert it here. 11320 MachineBasicBlock *JumpMBB = JT->MBB; 11321 CurMF->insert(BBI, JumpMBB); 11322 11323 auto JumpProb = I->Prob; 11324 auto FallthroughProb = UnhandledProbs; 11325 11326 // If the default statement is a target of the jump table, we evenly 11327 // distribute the default probability to successors of CurMBB. Also 11328 // update the probability on the edge from JumpMBB to Fallthrough. 11329 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11330 SE = JumpMBB->succ_end(); 11331 SI != SE; ++SI) { 11332 if (*SI == DefaultMBB) { 11333 JumpProb += DefaultProb / 2; 11334 FallthroughProb -= DefaultProb / 2; 11335 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11336 JumpMBB->normalizeSuccProbs(); 11337 break; 11338 } 11339 } 11340 11341 // If the default clause is unreachable, propagate that knowledge into 11342 // JTH->FallthroughUnreachable which will use it to suppress the range 11343 // check. 11344 // 11345 // However, don't do this if we're doing branch target enforcement, 11346 // because a table branch _without_ a range check can be a tempting JOP 11347 // gadget - out-of-bounds inputs that are impossible in correct 11348 // execution become possible again if an attacker can influence the 11349 // control flow. So if an attacker doesn't already have a BTI bypass 11350 // available, we don't want them to be able to get one out of this 11351 // table branch. 11352 if (FallthroughUnreachable) { 11353 Function &CurFunc = CurMF->getFunction(); 11354 bool HasBranchTargetEnforcement = false; 11355 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11356 HasBranchTargetEnforcement = 11357 CurFunc.getFnAttribute("branch-target-enforcement") 11358 .getValueAsBool(); 11359 } else { 11360 HasBranchTargetEnforcement = 11361 CurMF->getMMI().getModule()->getModuleFlag( 11362 "branch-target-enforcement"); 11363 } 11364 if (!HasBranchTargetEnforcement) 11365 JTH->FallthroughUnreachable = true; 11366 } 11367 11368 if (!JTH->FallthroughUnreachable) 11369 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11370 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11371 CurMBB->normalizeSuccProbs(); 11372 11373 // The jump table header will be inserted in our current block, do the 11374 // range check, and fall through to our fallthrough block. 11375 JTH->HeaderBB = CurMBB; 11376 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11377 11378 // If we're in the right place, emit the jump table header right now. 11379 if (CurMBB == SwitchMBB) { 11380 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11381 JTH->Emitted = true; 11382 } 11383 break; 11384 } 11385 case CC_BitTests: { 11386 // FIXME: Optimize away range check based on pivot comparisons. 11387 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11388 11389 // The bit test blocks haven't been inserted yet; insert them here. 11390 for (BitTestCase &BTC : BTB->Cases) 11391 CurMF->insert(BBI, BTC.ThisBB); 11392 11393 // Fill in fields of the BitTestBlock. 11394 BTB->Parent = CurMBB; 11395 BTB->Default = Fallthrough; 11396 11397 BTB->DefaultProb = UnhandledProbs; 11398 // If the cases in bit test don't form a contiguous range, we evenly 11399 // distribute the probability on the edge to Fallthrough to two 11400 // successors of CurMBB. 11401 if (!BTB->ContiguousRange) { 11402 BTB->Prob += DefaultProb / 2; 11403 BTB->DefaultProb -= DefaultProb / 2; 11404 } 11405 11406 if (FallthroughUnreachable) 11407 BTB->FallthroughUnreachable = true; 11408 11409 // If we're in the right place, emit the bit test header right now. 11410 if (CurMBB == SwitchMBB) { 11411 visitBitTestHeader(*BTB, SwitchMBB); 11412 BTB->Emitted = true; 11413 } 11414 break; 11415 } 11416 case CC_Range: { 11417 const Value *RHS, *LHS, *MHS; 11418 ISD::CondCode CC; 11419 if (I->Low == I->High) { 11420 // Check Cond == I->Low. 11421 CC = ISD::SETEQ; 11422 LHS = Cond; 11423 RHS=I->Low; 11424 MHS = nullptr; 11425 } else { 11426 // Check I->Low <= Cond <= I->High. 11427 CC = ISD::SETLE; 11428 LHS = I->Low; 11429 MHS = Cond; 11430 RHS = I->High; 11431 } 11432 11433 // If Fallthrough is unreachable, fold away the comparison. 11434 if (FallthroughUnreachable) 11435 CC = ISD::SETTRUE; 11436 11437 // The false probability is the sum of all unhandled cases. 11438 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11439 getCurSDLoc(), I->Prob, UnhandledProbs); 11440 11441 if (CurMBB == SwitchMBB) 11442 visitSwitchCase(CB, SwitchMBB); 11443 else 11444 SL->SwitchCases.push_back(CB); 11445 11446 break; 11447 } 11448 } 11449 CurMBB = Fallthrough; 11450 } 11451 } 11452 11453 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11454 CaseClusterIt First, 11455 CaseClusterIt Last) { 11456 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11457 if (X.Prob != CC.Prob) 11458 return X.Prob > CC.Prob; 11459 11460 // Ties are broken by comparing the case value. 11461 return X.Low->getValue().slt(CC.Low->getValue()); 11462 }); 11463 } 11464 11465 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11466 const SwitchWorkListItem &W, 11467 Value *Cond, 11468 MachineBasicBlock *SwitchMBB) { 11469 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11470 "Clusters not sorted?"); 11471 11472 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11473 11474 // Balance the tree based on branch probabilities to create a near-optimal (in 11475 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11476 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11477 CaseClusterIt LastLeft = W.FirstCluster; 11478 CaseClusterIt FirstRight = W.LastCluster; 11479 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11480 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11481 11482 // Move LastLeft and FirstRight towards each other from opposite directions to 11483 // find a partitioning of the clusters which balances the probability on both 11484 // sides. If LeftProb and RightProb are equal, alternate which side is 11485 // taken to ensure 0-probability nodes are distributed evenly. 11486 unsigned I = 0; 11487 while (LastLeft + 1 < FirstRight) { 11488 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11489 LeftProb += (++LastLeft)->Prob; 11490 else 11491 RightProb += (--FirstRight)->Prob; 11492 I++; 11493 } 11494 11495 while (true) { 11496 // Our binary search tree differs from a typical BST in that ours can have up 11497 // to three values in each leaf. The pivot selection above doesn't take that 11498 // into account, which means the tree might require more nodes and be less 11499 // efficient. We compensate for this here. 11500 11501 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11502 unsigned NumRight = W.LastCluster - FirstRight + 1; 11503 11504 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11505 // If one side has less than 3 clusters, and the other has more than 3, 11506 // consider taking a cluster from the other side. 11507 11508 if (NumLeft < NumRight) { 11509 // Consider moving the first cluster on the right to the left side. 11510 CaseCluster &CC = *FirstRight; 11511 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11512 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11513 if (LeftSideRank <= RightSideRank) { 11514 // Moving the cluster to the left does not demote it. 11515 ++LastLeft; 11516 ++FirstRight; 11517 continue; 11518 } 11519 } else { 11520 assert(NumRight < NumLeft); 11521 // Consider moving the last element on the left to the right side. 11522 CaseCluster &CC = *LastLeft; 11523 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11524 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11525 if (RightSideRank <= LeftSideRank) { 11526 // Moving the cluster to the right does not demot it. 11527 --LastLeft; 11528 --FirstRight; 11529 continue; 11530 } 11531 } 11532 } 11533 break; 11534 } 11535 11536 assert(LastLeft + 1 == FirstRight); 11537 assert(LastLeft >= W.FirstCluster); 11538 assert(FirstRight <= W.LastCluster); 11539 11540 // Use the first element on the right as pivot since we will make less-than 11541 // comparisons against it. 11542 CaseClusterIt PivotCluster = FirstRight; 11543 assert(PivotCluster > W.FirstCluster); 11544 assert(PivotCluster <= W.LastCluster); 11545 11546 CaseClusterIt FirstLeft = W.FirstCluster; 11547 CaseClusterIt LastRight = W.LastCluster; 11548 11549 const ConstantInt *Pivot = PivotCluster->Low; 11550 11551 // New blocks will be inserted immediately after the current one. 11552 MachineFunction::iterator BBI(W.MBB); 11553 ++BBI; 11554 11555 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11556 // we can branch to its destination directly if it's squeezed exactly in 11557 // between the known lower bound and Pivot - 1. 11558 MachineBasicBlock *LeftMBB; 11559 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11560 FirstLeft->Low == W.GE && 11561 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11562 LeftMBB = FirstLeft->MBB; 11563 } else { 11564 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11565 FuncInfo.MF->insert(BBI, LeftMBB); 11566 WorkList.push_back( 11567 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11568 // Put Cond in a virtual register to make it available from the new blocks. 11569 ExportFromCurrentBlock(Cond); 11570 } 11571 11572 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11573 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11574 // directly if RHS.High equals the current upper bound. 11575 MachineBasicBlock *RightMBB; 11576 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11577 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11578 RightMBB = FirstRight->MBB; 11579 } else { 11580 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11581 FuncInfo.MF->insert(BBI, RightMBB); 11582 WorkList.push_back( 11583 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11584 // Put Cond in a virtual register to make it available from the new blocks. 11585 ExportFromCurrentBlock(Cond); 11586 } 11587 11588 // Create the CaseBlock record that will be used to lower the branch. 11589 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11590 getCurSDLoc(), LeftProb, RightProb); 11591 11592 if (W.MBB == SwitchMBB) 11593 visitSwitchCase(CB, SwitchMBB); 11594 else 11595 SL->SwitchCases.push_back(CB); 11596 } 11597 11598 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11599 // from the swith statement. 11600 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11601 BranchProbability PeeledCaseProb) { 11602 if (PeeledCaseProb == BranchProbability::getOne()) 11603 return BranchProbability::getZero(); 11604 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11605 11606 uint32_t Numerator = CaseProb.getNumerator(); 11607 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11608 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11609 } 11610 11611 // Try to peel the top probability case if it exceeds the threshold. 11612 // Return current MachineBasicBlock for the switch statement if the peeling 11613 // does not occur. 11614 // If the peeling is performed, return the newly created MachineBasicBlock 11615 // for the peeled switch statement. Also update Clusters to remove the peeled 11616 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11617 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11618 const SwitchInst &SI, CaseClusterVector &Clusters, 11619 BranchProbability &PeeledCaseProb) { 11620 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11621 // Don't perform if there is only one cluster or optimizing for size. 11622 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11623 TM.getOptLevel() == CodeGenOpt::None || 11624 SwitchMBB->getParent()->getFunction().hasMinSize()) 11625 return SwitchMBB; 11626 11627 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11628 unsigned PeeledCaseIndex = 0; 11629 bool SwitchPeeled = false; 11630 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11631 CaseCluster &CC = Clusters[Index]; 11632 if (CC.Prob < TopCaseProb) 11633 continue; 11634 TopCaseProb = CC.Prob; 11635 PeeledCaseIndex = Index; 11636 SwitchPeeled = true; 11637 } 11638 if (!SwitchPeeled) 11639 return SwitchMBB; 11640 11641 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11642 << TopCaseProb << "\n"); 11643 11644 // Record the MBB for the peeled switch statement. 11645 MachineFunction::iterator BBI(SwitchMBB); 11646 ++BBI; 11647 MachineBasicBlock *PeeledSwitchMBB = 11648 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11649 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11650 11651 ExportFromCurrentBlock(SI.getCondition()); 11652 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11653 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11654 nullptr, nullptr, TopCaseProb.getCompl()}; 11655 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11656 11657 Clusters.erase(PeeledCaseIt); 11658 for (CaseCluster &CC : Clusters) { 11659 LLVM_DEBUG( 11660 dbgs() << "Scale the probablity for one cluster, before scaling: " 11661 << CC.Prob << "\n"); 11662 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11663 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11664 } 11665 PeeledCaseProb = TopCaseProb; 11666 return PeeledSwitchMBB; 11667 } 11668 11669 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11670 // Extract cases from the switch. 11671 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11672 CaseClusterVector Clusters; 11673 Clusters.reserve(SI.getNumCases()); 11674 for (auto I : SI.cases()) { 11675 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11676 const ConstantInt *CaseVal = I.getCaseValue(); 11677 BranchProbability Prob = 11678 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11679 : BranchProbability(1, SI.getNumCases() + 1); 11680 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11681 } 11682 11683 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11684 11685 // Cluster adjacent cases with the same destination. We do this at all 11686 // optimization levels because it's cheap to do and will make codegen faster 11687 // if there are many clusters. 11688 sortAndRangeify(Clusters); 11689 11690 // The branch probablity of the peeled case. 11691 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11692 MachineBasicBlock *PeeledSwitchMBB = 11693 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11694 11695 // If there is only the default destination, jump there directly. 11696 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11697 if (Clusters.empty()) { 11698 assert(PeeledSwitchMBB == SwitchMBB); 11699 SwitchMBB->addSuccessor(DefaultMBB); 11700 if (DefaultMBB != NextBlock(SwitchMBB)) { 11701 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11702 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11703 } 11704 return; 11705 } 11706 11707 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11708 SL->findBitTestClusters(Clusters, &SI); 11709 11710 LLVM_DEBUG({ 11711 dbgs() << "Case clusters: "; 11712 for (const CaseCluster &C : Clusters) { 11713 if (C.Kind == CC_JumpTable) 11714 dbgs() << "JT:"; 11715 if (C.Kind == CC_BitTests) 11716 dbgs() << "BT:"; 11717 11718 C.Low->getValue().print(dbgs(), true); 11719 if (C.Low != C.High) { 11720 dbgs() << '-'; 11721 C.High->getValue().print(dbgs(), true); 11722 } 11723 dbgs() << ' '; 11724 } 11725 dbgs() << '\n'; 11726 }); 11727 11728 assert(!Clusters.empty()); 11729 SwitchWorkList WorkList; 11730 CaseClusterIt First = Clusters.begin(); 11731 CaseClusterIt Last = Clusters.end() - 1; 11732 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11733 // Scale the branchprobability for DefaultMBB if the peel occurs and 11734 // DefaultMBB is not replaced. 11735 if (PeeledCaseProb != BranchProbability::getZero() && 11736 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11737 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11738 WorkList.push_back( 11739 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11740 11741 while (!WorkList.empty()) { 11742 SwitchWorkListItem W = WorkList.pop_back_val(); 11743 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11744 11745 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11746 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11747 // For optimized builds, lower large range as a balanced binary tree. 11748 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11749 continue; 11750 } 11751 11752 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11753 } 11754 } 11755 11756 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11758 auto DL = getCurSDLoc(); 11759 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11760 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11761 } 11762 11763 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11764 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11765 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11766 11767 SDLoc DL = getCurSDLoc(); 11768 SDValue V = getValue(I.getOperand(0)); 11769 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11770 11771 if (VT.isScalableVector()) { 11772 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11773 return; 11774 } 11775 11776 // Use VECTOR_SHUFFLE for the fixed-length vector 11777 // to maintain existing behavior. 11778 SmallVector<int, 8> Mask; 11779 unsigned NumElts = VT.getVectorMinNumElements(); 11780 for (unsigned i = 0; i != NumElts; ++i) 11781 Mask.push_back(NumElts - 1 - i); 11782 11783 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11784 } 11785 11786 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11787 auto DL = getCurSDLoc(); 11788 SDValue InVec = getValue(I.getOperand(0)); 11789 EVT OutVT = 11790 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11791 11792 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11793 11794 // ISD Node needs the input vectors split into two equal parts 11795 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11796 DAG.getVectorIdxConstant(0, DL)); 11797 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11798 DAG.getVectorIdxConstant(OutNumElts, DL)); 11799 11800 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11801 // legalisation and combines. 11802 if (OutVT.isFixedLengthVector()) { 11803 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11804 createStrideMask(0, 2, OutNumElts)); 11805 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11806 createStrideMask(1, 2, OutNumElts)); 11807 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11808 setValue(&I, Res); 11809 return; 11810 } 11811 11812 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11813 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11814 setValue(&I, Res); 11815 } 11816 11817 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11818 auto DL = getCurSDLoc(); 11819 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11820 SDValue InVec0 = getValue(I.getOperand(0)); 11821 SDValue InVec1 = getValue(I.getOperand(1)); 11822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11823 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11824 11825 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11826 // legalisation and combines. 11827 if (OutVT.isFixedLengthVector()) { 11828 unsigned NumElts = InVT.getVectorMinNumElements(); 11829 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11830 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11831 createInterleaveMask(NumElts, 2))); 11832 return; 11833 } 11834 11835 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11836 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11837 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11838 Res.getValue(1)); 11839 setValue(&I, Res); 11840 } 11841 11842 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11843 SmallVector<EVT, 4> ValueVTs; 11844 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11845 ValueVTs); 11846 unsigned NumValues = ValueVTs.size(); 11847 if (NumValues == 0) return; 11848 11849 SmallVector<SDValue, 4> Values(NumValues); 11850 SDValue Op = getValue(I.getOperand(0)); 11851 11852 for (unsigned i = 0; i != NumValues; ++i) 11853 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11854 SDValue(Op.getNode(), Op.getResNo() + i)); 11855 11856 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11857 DAG.getVTList(ValueVTs), Values)); 11858 } 11859 11860 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11862 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11863 11864 SDLoc DL = getCurSDLoc(); 11865 SDValue V1 = getValue(I.getOperand(0)); 11866 SDValue V2 = getValue(I.getOperand(1)); 11867 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11868 11869 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11870 if (VT.isScalableVector()) { 11871 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11872 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11873 DAG.getConstant(Imm, DL, IdxVT))); 11874 return; 11875 } 11876 11877 unsigned NumElts = VT.getVectorNumElements(); 11878 11879 uint64_t Idx = (NumElts + Imm) % NumElts; 11880 11881 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11882 SmallVector<int, 8> Mask; 11883 for (unsigned i = 0; i < NumElts; ++i) 11884 Mask.push_back(Idx + i); 11885 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11886 } 11887 11888 // Consider the following MIR after SelectionDAG, which produces output in 11889 // phyregs in the first case or virtregs in the second case. 11890 // 11891 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 11892 // %5:gr32 = COPY $ebx 11893 // %6:gr32 = COPY $edx 11894 // %1:gr32 = COPY %6:gr32 11895 // %0:gr32 = COPY %5:gr32 11896 // 11897 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 11898 // %1:gr32 = COPY %6:gr32 11899 // %0:gr32 = COPY %5:gr32 11900 // 11901 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 11902 // Given %1, we'd like to return $edx in the first case and %6 in the second. 11903 // 11904 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 11905 // to a single virtreg (such as %0). The remaining outputs monotonically 11906 // increase in virtreg number from there. If a callbr has no outputs, then it 11907 // should not have a corresponding callbr landingpad; in fact, the callbr 11908 // landingpad would not even be able to refer to such a callbr. 11909 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 11910 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 11911 // There is definitely at least one copy. 11912 assert(MI->getOpcode() == TargetOpcode::COPY && 11913 "start of copy chain MUST be COPY"); 11914 Reg = MI->getOperand(1).getReg(); 11915 MI = MRI.def_begin(Reg)->getParent(); 11916 // There may be an optional second copy. 11917 if (MI->getOpcode() == TargetOpcode::COPY) { 11918 assert(Reg.isVirtual() && "expected COPY of virtual register"); 11919 Reg = MI->getOperand(1).getReg(); 11920 assert(Reg.isPhysical() && "expected COPY of physical register"); 11921 MI = MRI.def_begin(Reg)->getParent(); 11922 } 11923 // The start of the chain must be an INLINEASM_BR. 11924 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 11925 "end of copy chain MUST be INLINEASM_BR"); 11926 return Reg; 11927 } 11928 11929 // We must do this walk rather than the simpler 11930 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 11931 // otherwise we will end up with copies of virtregs only valid along direct 11932 // edges. 11933 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 11934 SmallVector<EVT, 8> ResultVTs; 11935 SmallVector<SDValue, 8> ResultValues; 11936 const auto *CBR = 11937 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 11938 11939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11940 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 11941 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11942 11943 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 11944 SDValue Chain = DAG.getRoot(); 11945 11946 // Re-parse the asm constraints string. 11947 TargetLowering::AsmOperandInfoVector TargetConstraints = 11948 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 11949 for (auto &T : TargetConstraints) { 11950 SDISelAsmOperandInfo OpInfo(T); 11951 if (OpInfo.Type != InlineAsm::isOutput) 11952 continue; 11953 11954 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 11955 // individual constraint. 11956 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 11957 11958 switch (OpInfo.ConstraintType) { 11959 case TargetLowering::C_Register: 11960 case TargetLowering::C_RegisterClass: { 11961 // Fill in OpInfo.AssignedRegs.Regs. 11962 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 11963 11964 // getRegistersForValue may produce 1 to many registers based on whether 11965 // the OpInfo.ConstraintVT is legal on the target or not. 11966 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 11967 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 11968 if (Register::isPhysicalRegister(OriginalDef)) 11969 FuncInfo.MBB->addLiveIn(OriginalDef); 11970 // Update the assigned registers to use the original defs. 11971 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 11972 } 11973 11974 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 11975 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 11976 ResultValues.push_back(V); 11977 ResultVTs.push_back(OpInfo.ConstraintVT); 11978 break; 11979 } 11980 case TargetLowering::C_Other: { 11981 SDValue Flag; 11982 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 11983 OpInfo, DAG); 11984 ++InitialDef; 11985 ResultValues.push_back(V); 11986 ResultVTs.push_back(OpInfo.ConstraintVT); 11987 break; 11988 } 11989 default: 11990 break; 11991 } 11992 } 11993 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11994 DAG.getVTList(ResultVTs), ResultValues); 11995 setValue(&I, V); 11996 } 11997