1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 87 static cl::opt<bool> 88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 89 cl::desc("Enable fast-math-flags for DAG nodes")); 90 91 /// Minimum jump table density for normal functions. 92 static cl::opt<unsigned> 93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 94 cl::desc("Minimum density for building a jump table in " 95 "a normal function")); 96 97 /// Minimum jump table density for -Os or -Oz functions. 98 static cl::opt<unsigned> 99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 100 cl::desc("Minimum density for building a jump table in " 101 "an optsize function")); 102 103 104 // Limit the width of DAG chains. This is important in general to prevent 105 // DAG-based analysis from blowing up. For example, alias analysis and 106 // load clustering may not complete in reasonable time. It is difficult to 107 // recognize and avoid this situation within each individual analysis, and 108 // future analyses are likely to have the same behavior. Limiting DAG width is 109 // the safe approach and will be especially important with global DAGs. 110 // 111 // MaxParallelChains default is arbitrarily high to avoid affecting 112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 113 // sequence over this should have been converted to llvm.memcpy by the 114 // frontend. It is easy to induce this behavior with .ll code such as: 115 // %buffer = alloca [4096 x i8] 116 // %data = load [4096 x i8]* %argPtr 117 // store [4096 x i8] %data, [4096 x i8]* %buffer 118 static const unsigned MaxParallelChains = 64; 119 120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 121 const SDValue *Parts, unsigned NumParts, 122 MVT PartVT, EVT ValueVT, const Value *V); 123 124 /// getCopyFromParts - Create a value that contains the specified legal parts 125 /// combined into the value they represent. If the parts combine to a type 126 /// larger than ValueVT then AssertOp can be used to specify whether the extra 127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 128 /// (ISD::AssertSext). 129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 130 const SDValue *Parts, unsigned NumParts, 131 MVT PartVT, EVT ValueVT, const Value *V, 132 Optional<ISD::NodeType> AssertOp = None) { 133 if (ValueVT.isVector()) 134 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 135 PartVT, ValueVT, V); 136 137 assert(NumParts > 0 && "No parts to assemble!"); 138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 139 SDValue Val = Parts[0]; 140 141 if (NumParts > 1) { 142 // Assemble the value from multiple parts. 143 if (ValueVT.isInteger()) { 144 unsigned PartBits = PartVT.getSizeInBits(); 145 unsigned ValueBits = ValueVT.getSizeInBits(); 146 147 // Assemble the power of 2 part. 148 unsigned RoundParts = NumParts & (NumParts - 1) ? 149 1 << Log2_32(NumParts) : NumParts; 150 unsigned RoundBits = PartBits * RoundParts; 151 EVT RoundVT = RoundBits == ValueBits ? 152 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 153 SDValue Lo, Hi; 154 155 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 156 157 if (RoundParts > 2) { 158 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 159 PartVT, HalfVT, V); 160 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 161 RoundParts / 2, PartVT, HalfVT, V); 162 } else { 163 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 165 } 166 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 170 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 171 172 if (RoundParts < NumParts) { 173 // Assemble the trailing non-power-of-2 part. 174 unsigned OddParts = NumParts - RoundParts; 175 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 176 Hi = getCopyFromParts(DAG, DL, 177 Parts + RoundParts, OddParts, PartVT, OddVT, V); 178 179 // Combine the round and odd parts. 180 Lo = Val; 181 if (DAG.getDataLayout().isBigEndian()) 182 std::swap(Lo, Hi); 183 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 184 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 185 Hi = 186 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 187 DAG.getConstant(Lo.getValueSizeInBits(), DL, 188 TLI.getPointerTy(DAG.getDataLayout()))); 189 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 190 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 191 } 192 } else if (PartVT.isFloatingPoint()) { 193 // FP split into multiple FP parts (for ppcf128) 194 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 195 "Unexpected split"); 196 SDValue Lo, Hi; 197 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 198 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 199 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 200 std::swap(Lo, Hi); 201 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 202 } else { 203 // FP split into integer parts (soft fp) 204 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 205 !PartVT.isVector() && "Unexpected split"); 206 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 208 } 209 } 210 211 // There is now one part, held in Val. Correct it to match ValueVT. 212 // PartEVT is the type of the register class that holds the value. 213 // ValueVT is the type of the inline asm operation. 214 EVT PartEVT = Val.getValueType(); 215 216 if (PartEVT == ValueVT) 217 return Val; 218 219 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 220 ValueVT.bitsLT(PartEVT)) { 221 // For an FP value in an integer part, we need to truncate to the right 222 // width first. 223 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 224 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 225 } 226 227 // Handle types that have the same size. 228 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 229 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 230 231 // Handle types with different sizes. 232 if (PartEVT.isInteger() && ValueVT.isInteger()) { 233 if (ValueVT.bitsLT(PartEVT)) { 234 // For a truncate, see if we have any information to 235 // indicate whether the truncated bits will always be 236 // zero or sign-extension. 237 if (AssertOp.hasValue()) 238 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 239 DAG.getValueType(ValueVT)); 240 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 241 } 242 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 243 } 244 245 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 246 // FP_ROUND's are always exact here. 247 if (ValueVT.bitsLT(Val.getValueType())) 248 return DAG.getNode( 249 ISD::FP_ROUND, DL, ValueVT, Val, 250 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 251 252 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 253 } 254 255 llvm_unreachable("Unknown mismatch!"); 256 } 257 258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 259 const Twine &ErrMsg) { 260 const Instruction *I = dyn_cast_or_null<Instruction>(V); 261 if (!V) 262 return Ctx.emitError(ErrMsg); 263 264 const char *AsmError = ", possible invalid constraint for vector type"; 265 if (const CallInst *CI = dyn_cast<CallInst>(I)) 266 if (isa<InlineAsm>(CI->getCalledValue())) 267 return Ctx.emitError(I, ErrMsg + AsmError); 268 269 return Ctx.emitError(I, ErrMsg); 270 } 271 272 /// getCopyFromPartsVector - Create a value that contains the specified legal 273 /// parts combined into the value they represent. If the parts combine to a 274 /// type larger than ValueVT then AssertOp can be used to specify whether the 275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 276 /// ValueVT (ISD::AssertSext). 277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 278 const SDValue *Parts, unsigned NumParts, 279 MVT PartVT, EVT ValueVT, const Value *V) { 280 assert(ValueVT.isVector() && "Not a vector value"); 281 assert(NumParts > 0 && "No parts to assemble!"); 282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 283 SDValue Val = Parts[0]; 284 285 // Handle a multi-element vector. 286 if (NumParts > 1) { 287 EVT IntermediateVT; 288 MVT RegisterVT; 289 unsigned NumIntermediates; 290 unsigned NumRegs = 291 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 292 NumIntermediates, RegisterVT); 293 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 294 NumParts = NumRegs; // Silence a compiler warning. 295 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 296 assert(RegisterVT.getSizeInBits() == 297 Parts[0].getSimpleValueType().getSizeInBits() && 298 "Part type sizes don't match!"); 299 300 // Assemble the parts into intermediate operands. 301 SmallVector<SDValue, 8> Ops(NumIntermediates); 302 if (NumIntermediates == NumParts) { 303 // If the register was not expanded, truncate or copy the value, 304 // as appropriate. 305 for (unsigned i = 0; i != NumParts; ++i) 306 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 307 PartVT, IntermediateVT, V); 308 } else if (NumParts > 0) { 309 // If the intermediate type was expanded, build the intermediate 310 // operands from the parts. 311 assert(NumParts % NumIntermediates == 0 && 312 "Must expand into a divisible number of parts!"); 313 unsigned Factor = NumParts / NumIntermediates; 314 for (unsigned i = 0; i != NumIntermediates; ++i) 315 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 316 PartVT, IntermediateVT, V); 317 } 318 319 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 320 // intermediate operands. 321 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 322 : ISD::BUILD_VECTOR, 323 DL, ValueVT, Ops); 324 } 325 326 // There is now one part, held in Val. Correct it to match ValueVT. 327 EVT PartEVT = Val.getValueType(); 328 329 if (PartEVT == ValueVT) 330 return Val; 331 332 if (PartEVT.isVector()) { 333 // If the element type of the source/dest vectors are the same, but the 334 // parts vector has more elements than the value vector, then we have a 335 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 336 // elements we want. 337 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 338 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 339 "Cannot narrow, it would be a lossy transformation"); 340 return DAG.getNode( 341 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 342 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 343 } 344 345 // Vector/Vector bitcast. 346 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 347 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 348 349 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 350 "Cannot handle this kind of promotion"); 351 // Promoted vector extract 352 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 353 354 } 355 356 // Trivial bitcast if the types are the same size and the destination 357 // vector type is legal. 358 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 359 TLI.isTypeLegal(ValueVT)) 360 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 361 362 // Handle cases such as i8 -> <1 x i1> 363 if (ValueVT.getVectorNumElements() != 1) { 364 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 365 "non-trivial scalar-to-vector conversion"); 366 return DAG.getUNDEF(ValueVT); 367 } 368 369 if (ValueVT.getVectorNumElements() == 1 && 370 ValueVT.getVectorElementType() != PartEVT) 371 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 372 373 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 374 } 375 376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 377 SDValue Val, SDValue *Parts, unsigned NumParts, 378 MVT PartVT, const Value *V); 379 380 /// getCopyToParts - Create a series of nodes that contain the specified value 381 /// split into legal parts. If the parts contain more bits than Val, then, for 382 /// integers, ExtendKind can be used to specify how to generate the extra bits. 383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 384 SDValue *Parts, unsigned NumParts, MVT PartVT, 385 const Value *V, 386 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 387 EVT ValueVT = Val.getValueType(); 388 389 // Handle the vector case separately. 390 if (ValueVT.isVector()) 391 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 392 393 unsigned PartBits = PartVT.getSizeInBits(); 394 unsigned OrigNumParts = NumParts; 395 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 396 "Copying to an illegal type!"); 397 398 if (NumParts == 0) 399 return; 400 401 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 402 EVT PartEVT = PartVT; 403 if (PartEVT == ValueVT) { 404 assert(NumParts == 1 && "No-op copy with multiple parts!"); 405 Parts[0] = Val; 406 return; 407 } 408 409 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 410 // If the parts cover more bits than the value has, promote the value. 411 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 412 assert(NumParts == 1 && "Do not know what to promote to!"); 413 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 414 } else { 415 if (ValueVT.isFloatingPoint()) { 416 // FP values need to be bitcast, then extended if they are being put 417 // into a larger container. 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 419 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 } 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 } else if (PartBits == ValueVT.getSizeInBits()) { 430 // Different types of the same size. 431 assert(NumParts == 1 && PartEVT != ValueVT); 432 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 433 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 434 // If the parts cover less bits than value has, truncate the value. 435 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 436 ValueVT.isInteger() && 437 "Unknown mismatch!"); 438 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 439 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 440 if (PartVT == MVT::x86mmx) 441 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 442 } 443 444 // The value may have changed - recompute ValueVT. 445 ValueVT = Val.getValueType(); 446 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 447 "Failed to tile the value with PartVT!"); 448 449 if (NumParts == 1) { 450 if (PartEVT != ValueVT) { 451 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 452 "scalar-to-vector conversion failed"); 453 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 454 } 455 456 Parts[0] = Val; 457 return; 458 } 459 460 // Expand the value into multiple parts. 461 if (NumParts & (NumParts - 1)) { 462 // The number of parts is not a power of 2. Split off and copy the tail. 463 assert(PartVT.isInteger() && ValueVT.isInteger() && 464 "Do not know what to expand to!"); 465 unsigned RoundParts = 1 << Log2_32(NumParts); 466 unsigned RoundBits = RoundParts * PartBits; 467 unsigned OddParts = NumParts - RoundParts; 468 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 469 DAG.getIntPtrConstant(RoundBits, DL)); 470 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 471 472 if (DAG.getDataLayout().isBigEndian()) 473 // The odd parts were reversed by getCopyToParts - unreverse them. 474 std::reverse(Parts + RoundParts, Parts + NumParts); 475 476 NumParts = RoundParts; 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 } 480 481 // The number of parts is a power of 2. Repeatedly bisect the value using 482 // EXTRACT_ELEMENT. 483 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 484 EVT::getIntegerVT(*DAG.getContext(), 485 ValueVT.getSizeInBits()), 486 Val); 487 488 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 489 for (unsigned i = 0; i < NumParts; i += StepSize) { 490 unsigned ThisBits = StepSize * PartBits / 2; 491 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 492 SDValue &Part0 = Parts[i]; 493 SDValue &Part1 = Parts[i+StepSize/2]; 494 495 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 496 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 497 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 498 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 499 500 if (ThisBits == PartBits && ThisVT != PartVT) { 501 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 502 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 503 } 504 } 505 } 506 507 if (DAG.getDataLayout().isBigEndian()) 508 std::reverse(Parts, Parts + OrigNumParts); 509 } 510 511 512 /// getCopyToPartsVector - Create a series of nodes that contain the specified 513 /// value split into legal parts. 514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 515 SDValue Val, SDValue *Parts, unsigned NumParts, 516 MVT PartVT, const Value *V) { 517 EVT ValueVT = Val.getValueType(); 518 assert(ValueVT.isVector() && "Not a vector"); 519 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 520 521 if (NumParts == 1) { 522 EVT PartEVT = PartVT; 523 if (PartEVT == ValueVT) { 524 // Nothing to do. 525 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 526 // Bitconvert vector->vector case. 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 530 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 531 EVT ElementVT = PartVT.getVectorElementType(); 532 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 533 // undef elements. 534 SmallVector<SDValue, 16> Ops; 535 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 536 Ops.push_back(DAG.getNode( 537 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 538 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 539 540 for (unsigned i = ValueVT.getVectorNumElements(), 541 e = PartVT.getVectorNumElements(); i != e; ++i) 542 Ops.push_back(DAG.getUNDEF(ElementVT)); 543 544 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 545 546 // FIXME: Use CONCAT for 2x -> 4x. 547 548 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 549 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 550 } else if (PartVT.isVector() && 551 PartEVT.getVectorElementType().bitsGE( 552 ValueVT.getVectorElementType()) && 553 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 554 555 // Promoted vector extract 556 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 557 } else{ 558 // Vector -> scalar conversion. 559 assert(ValueVT.getVectorNumElements() == 1 && 560 "Only trivial vector-to-scalar conversions should get here!"); 561 Val = DAG.getNode( 562 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 563 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 564 565 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 566 } 567 568 Parts[0] = Val; 569 return; 570 } 571 572 // Handle a multi-element vector. 573 EVT IntermediateVT; 574 MVT RegisterVT; 575 unsigned NumIntermediates; 576 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 577 IntermediateVT, 578 NumIntermediates, RegisterVT); 579 unsigned NumElements = ValueVT.getVectorNumElements(); 580 581 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 582 NumParts = NumRegs; // Silence a compiler warning. 583 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 584 585 // Split the vector into intermediate operands. 586 SmallVector<SDValue, 8> Ops(NumIntermediates); 587 for (unsigned i = 0; i != NumIntermediates; ++i) { 588 if (IntermediateVT.isVector()) 589 Ops[i] = 590 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 591 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 592 TLI.getVectorIdxTy(DAG.getDataLayout()))); 593 else 594 Ops[i] = DAG.getNode( 595 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 596 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 597 } 598 599 // Split the intermediate operands into legal parts. 600 if (NumParts == NumIntermediates) { 601 // If the register was not expanded, promote or copy the value, 602 // as appropriate. 603 for (unsigned i = 0; i != NumParts; ++i) 604 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 605 } else if (NumParts > 0) { 606 // If the intermediate type was expanded, split each the value into 607 // legal parts. 608 assert(NumIntermediates != 0 && "division by zero"); 609 assert(NumParts % NumIntermediates == 0 && 610 "Must expand into a divisible number of parts!"); 611 unsigned Factor = NumParts / NumIntermediates; 612 for (unsigned i = 0; i != NumIntermediates; ++i) 613 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 614 } 615 } 616 617 RegsForValue::RegsForValue() {} 618 619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 620 EVT valuevt) 621 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 622 623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 624 const DataLayout &DL, unsigned Reg, Type *Ty) { 625 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 626 627 for (EVT ValueVT : ValueVTs) { 628 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 629 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 630 for (unsigned i = 0; i != NumRegs; ++i) 631 Regs.push_back(Reg + i); 632 RegVTs.push_back(RegisterVT); 633 Reg += NumRegs; 634 } 635 } 636 637 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 638 FunctionLoweringInfo &FuncInfo, 639 const SDLoc &dl, SDValue &Chain, 640 SDValue *Flag, const Value *V) const { 641 // A Value with type {} or [0 x %t] needs no registers. 642 if (ValueVTs.empty()) 643 return SDValue(); 644 645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 646 647 // Assemble the legal parts into the final values. 648 SmallVector<SDValue, 4> Values(ValueVTs.size()); 649 SmallVector<SDValue, 8> Parts; 650 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 651 // Copy the legal parts from the registers. 652 EVT ValueVT = ValueVTs[Value]; 653 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 654 MVT RegisterVT = RegVTs[Value]; 655 656 Parts.resize(NumRegs); 657 for (unsigned i = 0; i != NumRegs; ++i) { 658 SDValue P; 659 if (!Flag) { 660 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 661 } else { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 663 *Flag = P.getValue(2); 664 } 665 666 Chain = P.getValue(1); 667 Parts[i] = P; 668 669 // If the source register was virtual and if we know something about it, 670 // add an assert node. 671 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 672 !RegisterVT.isInteger() || RegisterVT.isVector()) 673 continue; 674 675 const FunctionLoweringInfo::LiveOutInfo *LOI = 676 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 677 if (!LOI) 678 continue; 679 680 unsigned RegSize = RegisterVT.getSizeInBits(); 681 unsigned NumSignBits = LOI->NumSignBits; 682 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 683 684 if (NumZeroBits == RegSize) { 685 // The current value is a zero. 686 // Explicitly express that as it would be easier for 687 // optimizations to kick in. 688 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 689 continue; 690 } 691 692 // FIXME: We capture more information than the dag can represent. For 693 // now, just use the tightest assertzext/assertsext possible. 694 bool isSExt = true; 695 EVT FromVT(MVT::Other); 696 if (NumSignBits == RegSize) { 697 isSExt = true; // ASSERT SEXT 1 698 FromVT = MVT::i1; 699 } else if (NumZeroBits >= RegSize - 1) { 700 isSExt = false; // ASSERT ZEXT 1 701 FromVT = MVT::i1; 702 } else if (NumSignBits > RegSize - 8) { 703 isSExt = true; // ASSERT SEXT 8 704 FromVT = MVT::i8; 705 } else if (NumZeroBits >= RegSize - 8) { 706 isSExt = false; // ASSERT ZEXT 8 707 FromVT = MVT::i8; 708 } else if (NumSignBits > RegSize - 16) { 709 isSExt = true; // ASSERT SEXT 16 710 FromVT = MVT::i16; 711 } else if (NumZeroBits >= RegSize - 16) { 712 isSExt = false; // ASSERT ZEXT 16 713 FromVT = MVT::i16; 714 } else if (NumSignBits > RegSize - 32) { 715 isSExt = true; // ASSERT SEXT 32 716 FromVT = MVT::i32; 717 } else if (NumZeroBits >= RegSize - 32) { 718 isSExt = false; // ASSERT ZEXT 32 719 FromVT = MVT::i32; 720 } else { 721 continue; 722 } 723 // Add an assertion node. 724 assert(FromVT != MVT::Other); 725 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 726 RegisterVT, P, DAG.getValueType(FromVT)); 727 } 728 729 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 730 NumRegs, RegisterVT, ValueVT, V); 731 Part += NumRegs; 732 Parts.clear(); 733 } 734 735 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 736 } 737 738 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 739 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 740 const Value *V, 741 ISD::NodeType PreferredExtendType) const { 742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 743 ISD::NodeType ExtendKind = PreferredExtendType; 744 745 // Get the list of the values's legal parts. 746 unsigned NumRegs = Regs.size(); 747 SmallVector<SDValue, 8> Parts(NumRegs); 748 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 749 EVT ValueVT = ValueVTs[Value]; 750 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 751 MVT RegisterVT = RegVTs[Value]; 752 753 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 754 ExtendKind = ISD::ZERO_EXTEND; 755 756 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 757 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 758 Part += NumParts; 759 } 760 761 // Copy the parts into the registers. 762 SmallVector<SDValue, 8> Chains(NumRegs); 763 for (unsigned i = 0; i != NumRegs; ++i) { 764 SDValue Part; 765 if (!Flag) { 766 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 767 } else { 768 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 769 *Flag = Part.getValue(1); 770 } 771 772 Chains[i] = Part.getValue(0); 773 } 774 775 if (NumRegs == 1 || Flag) 776 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 777 // flagged to it. That is the CopyToReg nodes and the user are considered 778 // a single scheduling unit. If we create a TokenFactor and return it as 779 // chain, then the TokenFactor is both a predecessor (operand) of the 780 // user as well as a successor (the TF operands are flagged to the user). 781 // c1, f1 = CopyToReg 782 // c2, f2 = CopyToReg 783 // c3 = TokenFactor c1, c2 784 // ... 785 // = op c3, ..., f2 786 Chain = Chains[NumRegs-1]; 787 else 788 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 789 } 790 791 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 792 unsigned MatchingIdx, const SDLoc &dl, 793 SelectionDAG &DAG, 794 std::vector<SDValue> &Ops) const { 795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 796 797 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 798 if (HasMatching) 799 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 800 else if (!Regs.empty() && 801 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 802 // Put the register class of the virtual registers in the flag word. That 803 // way, later passes can recompute register class constraints for inline 804 // assembly as well as normal instructions. 805 // Don't do this for tied operands that can use the regclass information 806 // from the def. 807 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 808 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 809 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 810 } 811 812 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 813 Ops.push_back(Res); 814 815 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 816 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 818 MVT RegisterVT = RegVTs[Value]; 819 for (unsigned i = 0; i != NumRegs; ++i) { 820 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 821 unsigned TheReg = Regs[Reg++]; 822 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 823 824 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 825 // If we clobbered the stack pointer, MFI should know about it. 826 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 827 } 828 } 829 } 830 } 831 832 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 833 const TargetLibraryInfo *li) { 834 AA = &aa; 835 GFI = gfi; 836 LibInfo = li; 837 DL = &DAG.getDataLayout(); 838 Context = DAG.getContext(); 839 LPadToCallSiteMap.clear(); 840 } 841 842 void SelectionDAGBuilder::clear() { 843 NodeMap.clear(); 844 UnusedArgNodeMap.clear(); 845 PendingLoads.clear(); 846 PendingExports.clear(); 847 CurInst = nullptr; 848 HasTailCall = false; 849 SDNodeOrder = LowestSDNodeOrder; 850 StatepointLowering.clear(); 851 } 852 853 void SelectionDAGBuilder::clearDanglingDebugInfo() { 854 DanglingDebugInfoMap.clear(); 855 } 856 857 SDValue SelectionDAGBuilder::getRoot() { 858 if (PendingLoads.empty()) 859 return DAG.getRoot(); 860 861 if (PendingLoads.size() == 1) { 862 SDValue Root = PendingLoads[0]; 863 DAG.setRoot(Root); 864 PendingLoads.clear(); 865 return Root; 866 } 867 868 // Otherwise, we have to make a token factor node. 869 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 870 PendingLoads); 871 PendingLoads.clear(); 872 DAG.setRoot(Root); 873 return Root; 874 } 875 876 SDValue SelectionDAGBuilder::getControlRoot() { 877 SDValue Root = DAG.getRoot(); 878 879 if (PendingExports.empty()) 880 return Root; 881 882 // Turn all of the CopyToReg chains into one factored node. 883 if (Root.getOpcode() != ISD::EntryToken) { 884 unsigned i = 0, e = PendingExports.size(); 885 for (; i != e; ++i) { 886 assert(PendingExports[i].getNode()->getNumOperands() > 1); 887 if (PendingExports[i].getNode()->getOperand(0) == Root) 888 break; // Don't add the root if we already indirectly depend on it. 889 } 890 891 if (i == e) 892 PendingExports.push_back(Root); 893 } 894 895 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingExports); 897 PendingExports.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 void SelectionDAGBuilder::visit(const Instruction &I) { 903 // Set up outgoing PHI node register values before emitting the terminator. 904 if (isa<TerminatorInst>(&I)) { 905 HandlePHINodesInSuccessorBlocks(I.getParent()); 906 } 907 908 // Increase the SDNodeOrder if dealing with a non-debug instruction. 909 if (!isa<DbgInfoIntrinsic>(I)) 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 SDDbgValue *SDV; 954 if (Val.getNode()) { 955 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 956 Val)) { 957 SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder); 958 DAG.AddDbgValue(SDV, Val.getNode(), false); 959 } 960 } else 961 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 962 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 963 } 964 } 965 966 /// getCopyFromRegs - If there was virtual register allocated for the value V 967 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 968 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 969 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 970 SDValue Result; 971 972 if (It != FuncInfo.ValueMap.end()) { 973 unsigned InReg = It->second; 974 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 975 DAG.getDataLayout(), InReg, Ty); 976 SDValue Chain = DAG.getEntryNode(); 977 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 978 resolveDanglingDebugInfo(V, Result); 979 } 980 981 return Result; 982 } 983 984 /// getValue - Return an SDValue for the given Value. 985 SDValue SelectionDAGBuilder::getValue(const Value *V) { 986 // If we already have an SDValue for this value, use it. It's important 987 // to do this first, so that we don't create a CopyFromReg if we already 988 // have a regular SDValue. 989 SDValue &N = NodeMap[V]; 990 if (N.getNode()) return N; 991 992 // If there's a virtual register allocated and initialized for this 993 // value, use it. 994 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 995 return copyFromReg; 996 997 // Otherwise create a new SDValue and remember it. 998 SDValue Val = getValueImpl(V); 999 NodeMap[V] = Val; 1000 resolveDanglingDebugInfo(V, Val); 1001 return Val; 1002 } 1003 1004 // Return true if SDValue exists for the given Value 1005 bool SelectionDAGBuilder::findValue(const Value *V) const { 1006 return (NodeMap.find(V) != NodeMap.end()) || 1007 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1008 } 1009 1010 /// getNonRegisterValue - Return an SDValue for the given Value, but 1011 /// don't look in FuncInfo.ValueMap for a virtual register. 1012 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1013 // If we already have an SDValue for this value, use it. 1014 SDValue &N = NodeMap[V]; 1015 if (N.getNode()) { 1016 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1017 // Remove the debug location from the node as the node is about to be used 1018 // in a location which may differ from the original debug location. This 1019 // is relevant to Constant and ConstantFP nodes because they can appear 1020 // as constant expressions inside PHI nodes. 1021 N->setDebugLoc(DebugLoc()); 1022 } 1023 return N; 1024 } 1025 1026 // Otherwise create a new SDValue and remember it. 1027 SDValue Val = getValueImpl(V); 1028 NodeMap[V] = Val; 1029 resolveDanglingDebugInfo(V, Val); 1030 return Val; 1031 } 1032 1033 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1034 /// Create an SDValue for the given value. 1035 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1037 1038 if (const Constant *C = dyn_cast<Constant>(V)) { 1039 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1040 1041 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1042 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1043 1044 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1045 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1046 1047 if (isa<ConstantPointerNull>(C)) { 1048 unsigned AS = V->getType()->getPointerAddressSpace(); 1049 return DAG.getConstant(0, getCurSDLoc(), 1050 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1051 } 1052 1053 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1054 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1055 1056 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1057 return DAG.getUNDEF(VT); 1058 1059 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1060 visit(CE->getOpcode(), *CE); 1061 SDValue N1 = NodeMap[V]; 1062 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1063 return N1; 1064 } 1065 1066 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1067 SmallVector<SDValue, 4> Constants; 1068 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1069 OI != OE; ++OI) { 1070 SDNode *Val = getValue(*OI).getNode(); 1071 // If the operand is an empty aggregate, there are no values. 1072 if (!Val) continue; 1073 // Add each leaf value from the operand to the Constants list 1074 // to form a flattened list of all the values. 1075 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1076 Constants.push_back(SDValue(Val, i)); 1077 } 1078 1079 return DAG.getMergeValues(Constants, getCurSDLoc()); 1080 } 1081 1082 if (const ConstantDataSequential *CDS = 1083 dyn_cast<ConstantDataSequential>(C)) { 1084 SmallVector<SDValue, 4> Ops; 1085 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1086 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1087 // Add each leaf value from the operand to the Constants list 1088 // to form a flattened list of all the values. 1089 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1090 Ops.push_back(SDValue(Val, i)); 1091 } 1092 1093 if (isa<ArrayType>(CDS->getType())) 1094 return DAG.getMergeValues(Ops, getCurSDLoc()); 1095 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1096 VT, Ops); 1097 } 1098 1099 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1100 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1101 "Unknown struct or array constant!"); 1102 1103 SmallVector<EVT, 4> ValueVTs; 1104 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1105 unsigned NumElts = ValueVTs.size(); 1106 if (NumElts == 0) 1107 return SDValue(); // empty struct 1108 SmallVector<SDValue, 4> Constants(NumElts); 1109 for (unsigned i = 0; i != NumElts; ++i) { 1110 EVT EltVT = ValueVTs[i]; 1111 if (isa<UndefValue>(C)) 1112 Constants[i] = DAG.getUNDEF(EltVT); 1113 else if (EltVT.isFloatingPoint()) 1114 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1115 else 1116 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1117 } 1118 1119 return DAG.getMergeValues(Constants, getCurSDLoc()); 1120 } 1121 1122 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1123 return DAG.getBlockAddress(BA, VT); 1124 1125 VectorType *VecTy = cast<VectorType>(V->getType()); 1126 unsigned NumElements = VecTy->getNumElements(); 1127 1128 // Now that we know the number and type of the elements, get that number of 1129 // elements into the Ops array based on what kind of constant it is. 1130 SmallVector<SDValue, 16> Ops; 1131 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1132 for (unsigned i = 0; i != NumElements; ++i) 1133 Ops.push_back(getValue(CV->getOperand(i))); 1134 } else { 1135 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1136 EVT EltVT = 1137 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1138 1139 SDValue Op; 1140 if (EltVT.isFloatingPoint()) 1141 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1142 else 1143 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1144 Ops.assign(NumElements, Op); 1145 } 1146 1147 // Create a BUILD_VECTOR node. 1148 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1149 } 1150 1151 // If this is a static alloca, generate it as the frameindex instead of 1152 // computation. 1153 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1154 DenseMap<const AllocaInst*, int>::iterator SI = 1155 FuncInfo.StaticAllocaMap.find(AI); 1156 if (SI != FuncInfo.StaticAllocaMap.end()) 1157 return DAG.getFrameIndex(SI->second, 1158 TLI.getPointerTy(DAG.getDataLayout())); 1159 } 1160 1161 // If this is an instruction which fast-isel has deferred, select it now. 1162 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1163 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1164 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1165 Inst->getType()); 1166 SDValue Chain = DAG.getEntryNode(); 1167 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1168 } 1169 1170 llvm_unreachable("Can't get register for value!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1175 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1176 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1177 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1178 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1179 if (IsMSVCCXX || IsCoreCLR) 1180 CatchPadMBB->setIsEHFuncletEntry(); 1181 1182 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1183 } 1184 1185 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1186 // Update machine-CFG edge. 1187 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1188 FuncInfo.MBB->addSuccessor(TargetMBB); 1189 1190 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1191 bool IsSEH = isAsynchronousEHPersonality(Pers); 1192 if (IsSEH) { 1193 // If this is not a fall-through branch or optimizations are switched off, 1194 // emit the branch. 1195 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1196 TM.getOptLevel() == CodeGenOpt::None) 1197 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1198 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1199 return; 1200 } 1201 1202 // Figure out the funclet membership for the catchret's successor. 1203 // This will be used by the FuncletLayout pass to determine how to order the 1204 // BB's. 1205 // A 'catchret' returns to the outer scope's color. 1206 Value *ParentPad = I.getCatchSwitchParentPad(); 1207 const BasicBlock *SuccessorColor; 1208 if (isa<ConstantTokenNone>(ParentPad)) 1209 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1210 else 1211 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch 1234 /// instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1304 report_fatal_error("visitCatchSwitch not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1309 auto &DL = DAG.getDataLayout(); 1310 SDValue Chain = getControlRoot(); 1311 SmallVector<ISD::OutputArg, 8> Outs; 1312 SmallVector<SDValue, 8> OutVals; 1313 1314 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1315 // lower 1316 // 1317 // %val = call <ty> @llvm.experimental.deoptimize() 1318 // ret <ty> %val 1319 // 1320 // differently. 1321 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1322 LowerDeoptimizingReturn(); 1323 return; 1324 } 1325 1326 if (!FuncInfo.CanLowerReturn) { 1327 unsigned DemoteReg = FuncInfo.DemoteRegister; 1328 const Function *F = I.getParent()->getParent(); 1329 1330 // Emit a store of the return value through the virtual register. 1331 // Leave Outs empty so that LowerReturn won't try to load return 1332 // registers the usual way. 1333 SmallVector<EVT, 1> PtrValueVTs; 1334 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1335 PtrValueVTs); 1336 1337 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1338 DemoteReg, PtrValueVTs[0]); 1339 SDValue RetOp = getValue(I.getOperand(0)); 1340 1341 SmallVector<EVT, 4> ValueVTs; 1342 SmallVector<uint64_t, 4> Offsets; 1343 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1344 unsigned NumValues = ValueVTs.size(); 1345 1346 // An aggregate return value cannot wrap around the address space, so 1347 // offsets to its parts don't wrap either. 1348 SDNodeFlags Flags; 1349 Flags.setNoUnsignedWrap(true); 1350 1351 SmallVector<SDValue, 4> Chains(NumValues); 1352 for (unsigned i = 0; i != NumValues; ++i) { 1353 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1354 RetPtr.getValueType(), RetPtr, 1355 DAG.getIntPtrConstant(Offsets[i], 1356 getCurSDLoc()), 1357 &Flags); 1358 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1359 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1360 // FIXME: better loc info would be nice. 1361 Add, MachinePointerInfo()); 1362 } 1363 1364 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1365 MVT::Other, Chains); 1366 } else if (I.getNumOperands() != 0) { 1367 SmallVector<EVT, 4> ValueVTs; 1368 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1369 unsigned NumValues = ValueVTs.size(); 1370 if (NumValues) { 1371 SDValue RetOp = getValue(I.getOperand(0)); 1372 1373 const Function *F = I.getParent()->getParent(); 1374 1375 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1376 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1377 Attribute::SExt)) 1378 ExtendKind = ISD::SIGN_EXTEND; 1379 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1380 Attribute::ZExt)) 1381 ExtendKind = ISD::ZERO_EXTEND; 1382 1383 LLVMContext &Context = F->getContext(); 1384 bool RetInReg = F->getAttributes().hasAttribute( 1385 AttributeList::ReturnIndex, Attribute::InReg); 1386 1387 for (unsigned j = 0; j != NumValues; ++j) { 1388 EVT VT = ValueVTs[j]; 1389 1390 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1391 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1392 1393 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1394 MVT PartVT = TLI.getRegisterType(Context, VT); 1395 SmallVector<SDValue, 4> Parts(NumParts); 1396 getCopyToParts(DAG, getCurSDLoc(), 1397 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1398 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1399 1400 // 'inreg' on function refers to return value 1401 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1402 if (RetInReg) 1403 Flags.setInReg(); 1404 1405 // Propagate extension type if any 1406 if (ExtendKind == ISD::SIGN_EXTEND) 1407 Flags.setSExt(); 1408 else if (ExtendKind == ISD::ZERO_EXTEND) 1409 Flags.setZExt(); 1410 1411 for (unsigned i = 0; i < NumParts; ++i) { 1412 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1413 VT, /*isfixed=*/true, 0, 0)); 1414 OutVals.push_back(Parts[i]); 1415 } 1416 } 1417 } 1418 } 1419 1420 // Push in swifterror virtual register as the last element of Outs. This makes 1421 // sure swifterror virtual register will be returned in the swifterror 1422 // physical register. 1423 const Function *F = I.getParent()->getParent(); 1424 if (TLI.supportSwiftError() && 1425 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1426 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1427 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1428 Flags.setSwiftError(); 1429 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1430 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1431 true /*isfixed*/, 1 /*origidx*/, 1432 0 /*partOffs*/)); 1433 // Create SDNode for the swifterror virtual register. 1434 OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg( 1435 FuncInfo.MBB, FuncInfo.SwiftErrorArg), 1436 EVT(TLI.getPointerTy(DL)))); 1437 } 1438 1439 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1440 CallingConv::ID CallConv = 1441 DAG.getMachineFunction().getFunction()->getCallingConv(); 1442 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1443 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1444 1445 // Verify that the target's LowerReturn behaved as expected. 1446 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1447 "LowerReturn didn't return a valid chain!"); 1448 1449 // Update the DAG with the new chain value resulting from return lowering. 1450 DAG.setRoot(Chain); 1451 } 1452 1453 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1454 /// created for it, emit nodes to copy the value into the virtual 1455 /// registers. 1456 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1457 // Skip empty types 1458 if (V->getType()->isEmptyTy()) 1459 return; 1460 1461 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1462 if (VMI != FuncInfo.ValueMap.end()) { 1463 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1464 CopyValueToVirtualRegister(V, VMI->second); 1465 } 1466 } 1467 1468 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1469 /// the current basic block, add it to ValueMap now so that we'll get a 1470 /// CopyTo/FromReg. 1471 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1472 // No need to export constants. 1473 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1474 1475 // Already exported? 1476 if (FuncInfo.isExportedInst(V)) return; 1477 1478 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1479 CopyValueToVirtualRegister(V, Reg); 1480 } 1481 1482 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1483 const BasicBlock *FromBB) { 1484 // The operands of the setcc have to be in this block. We don't know 1485 // how to export them from some other block. 1486 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1487 // Can export from current BB. 1488 if (VI->getParent() == FromBB) 1489 return true; 1490 1491 // Is already exported, noop. 1492 return FuncInfo.isExportedInst(V); 1493 } 1494 1495 // If this is an argument, we can export it if the BB is the entry block or 1496 // if it is already exported. 1497 if (isa<Argument>(V)) { 1498 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1499 return true; 1500 1501 // Otherwise, can only export this if it is already exported. 1502 return FuncInfo.isExportedInst(V); 1503 } 1504 1505 // Otherwise, constants can always be exported. 1506 return true; 1507 } 1508 1509 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1510 BranchProbability 1511 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1512 const MachineBasicBlock *Dst) const { 1513 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1514 const BasicBlock *SrcBB = Src->getBasicBlock(); 1515 const BasicBlock *DstBB = Dst->getBasicBlock(); 1516 if (!BPI) { 1517 // If BPI is not available, set the default probability as 1 / N, where N is 1518 // the number of successors. 1519 auto SuccSize = std::max<uint32_t>( 1520 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1521 return BranchProbability(1, SuccSize); 1522 } 1523 return BPI->getEdgeProbability(SrcBB, DstBB); 1524 } 1525 1526 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1527 MachineBasicBlock *Dst, 1528 BranchProbability Prob) { 1529 if (!FuncInfo.BPI) 1530 Src->addSuccessorWithoutProb(Dst); 1531 else { 1532 if (Prob.isUnknown()) 1533 Prob = getEdgeProbability(Src, Dst); 1534 Src->addSuccessor(Dst, Prob); 1535 } 1536 } 1537 1538 static bool InBlock(const Value *V, const BasicBlock *BB) { 1539 if (const Instruction *I = dyn_cast<Instruction>(V)) 1540 return I->getParent() == BB; 1541 return true; 1542 } 1543 1544 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1545 /// This function emits a branch and is used at the leaves of an OR or an 1546 /// AND operator tree. 1547 /// 1548 void 1549 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1550 MachineBasicBlock *TBB, 1551 MachineBasicBlock *FBB, 1552 MachineBasicBlock *CurBB, 1553 MachineBasicBlock *SwitchBB, 1554 BranchProbability TProb, 1555 BranchProbability FProb, 1556 bool InvertCond) { 1557 const BasicBlock *BB = CurBB->getBasicBlock(); 1558 1559 // If the leaf of the tree is a comparison, merge the condition into 1560 // the caseblock. 1561 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1562 // The operands of the cmp have to be in this block. We don't know 1563 // how to export them from some other block. If this is the first block 1564 // of the sequence, no exporting is needed. 1565 if (CurBB == SwitchBB || 1566 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1567 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1568 ISD::CondCode Condition; 1569 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1570 ICmpInst::Predicate Pred = 1571 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1572 Condition = getICmpCondCode(Pred); 1573 } else { 1574 const FCmpInst *FC = cast<FCmpInst>(Cond); 1575 FCmpInst::Predicate Pred = 1576 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1577 Condition = getFCmpCondCode(Pred); 1578 if (TM.Options.NoNaNsFPMath) 1579 Condition = getFCmpCodeWithoutNaN(Condition); 1580 } 1581 1582 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1583 TBB, FBB, CurBB, TProb, FProb); 1584 SwitchCases.push_back(CB); 1585 return; 1586 } 1587 } 1588 1589 // Create a CaseBlock record representing this branch. 1590 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1591 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1592 nullptr, TBB, FBB, CurBB, TProb, FProb); 1593 SwitchCases.push_back(CB); 1594 } 1595 1596 /// FindMergedConditions - If Cond is an expression like 1597 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1598 MachineBasicBlock *TBB, 1599 MachineBasicBlock *FBB, 1600 MachineBasicBlock *CurBB, 1601 MachineBasicBlock *SwitchBB, 1602 Instruction::BinaryOps Opc, 1603 BranchProbability TProb, 1604 BranchProbability FProb, 1605 bool InvertCond) { 1606 // Skip over not part of the tree and remember to invert op and operands at 1607 // next level. 1608 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1609 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1610 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1611 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1612 !InvertCond); 1613 return; 1614 } 1615 } 1616 1617 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1618 // Compute the effective opcode for Cond, taking into account whether it needs 1619 // to be inverted, e.g. 1620 // and (not (or A, B)), C 1621 // gets lowered as 1622 // and (and (not A, not B), C) 1623 unsigned BOpc = 0; 1624 if (BOp) { 1625 BOpc = BOp->getOpcode(); 1626 if (InvertCond) { 1627 if (BOpc == Instruction::And) 1628 BOpc = Instruction::Or; 1629 else if (BOpc == Instruction::Or) 1630 BOpc = Instruction::And; 1631 } 1632 } 1633 1634 // If this node is not part of the or/and tree, emit it as a branch. 1635 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1636 BOpc != Opc || !BOp->hasOneUse() || 1637 BOp->getParent() != CurBB->getBasicBlock() || 1638 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1639 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1640 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1641 TProb, FProb, InvertCond); 1642 return; 1643 } 1644 1645 // Create TmpBB after CurBB. 1646 MachineFunction::iterator BBI(CurBB); 1647 MachineFunction &MF = DAG.getMachineFunction(); 1648 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1649 CurBB->getParent()->insert(++BBI, TmpBB); 1650 1651 if (Opc == Instruction::Or) { 1652 // Codegen X | Y as: 1653 // BB1: 1654 // jmp_if_X TBB 1655 // jmp TmpBB 1656 // TmpBB: 1657 // jmp_if_Y TBB 1658 // jmp FBB 1659 // 1660 1661 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1662 // The requirement is that 1663 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1664 // = TrueProb for original BB. 1665 // Assuming the original probabilities are A and B, one choice is to set 1666 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1667 // A/(1+B) and 2B/(1+B). This choice assumes that 1668 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1669 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1670 // TmpBB, but the math is more complicated. 1671 1672 auto NewTrueProb = TProb / 2; 1673 auto NewFalseProb = TProb / 2 + FProb; 1674 // Emit the LHS condition. 1675 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1676 NewTrueProb, NewFalseProb, InvertCond); 1677 1678 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1679 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1680 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1681 // Emit the RHS condition into TmpBB. 1682 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1683 Probs[0], Probs[1], InvertCond); 1684 } else { 1685 assert(Opc == Instruction::And && "Unknown merge op!"); 1686 // Codegen X & Y as: 1687 // BB1: 1688 // jmp_if_X TmpBB 1689 // jmp FBB 1690 // TmpBB: 1691 // jmp_if_Y TBB 1692 // jmp FBB 1693 // 1694 // This requires creation of TmpBB after CurBB. 1695 1696 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1697 // The requirement is that 1698 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1699 // = FalseProb for original BB. 1700 // Assuming the original probabilities are A and B, one choice is to set 1701 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1702 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1703 // TrueProb for BB1 * FalseProb for TmpBB. 1704 1705 auto NewTrueProb = TProb + FProb / 2; 1706 auto NewFalseProb = FProb / 2; 1707 // Emit the LHS condition. 1708 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1709 NewTrueProb, NewFalseProb, InvertCond); 1710 1711 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1712 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1713 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1714 // Emit the RHS condition into TmpBB. 1715 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1716 Probs[0], Probs[1], InvertCond); 1717 } 1718 } 1719 1720 /// If the set of cases should be emitted as a series of branches, return true. 1721 /// If we should emit this as a bunch of and/or'd together conditions, return 1722 /// false. 1723 bool 1724 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1725 if (Cases.size() != 2) return true; 1726 1727 // If this is two comparisons of the same values or'd or and'd together, they 1728 // will get folded into a single comparison, so don't emit two blocks. 1729 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1730 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1731 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1732 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1733 return false; 1734 } 1735 1736 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1737 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1738 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1739 Cases[0].CC == Cases[1].CC && 1740 isa<Constant>(Cases[0].CmpRHS) && 1741 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1742 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1743 return false; 1744 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1745 return false; 1746 } 1747 1748 return true; 1749 } 1750 1751 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1752 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1753 1754 // Update machine-CFG edges. 1755 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1756 1757 if (I.isUnconditional()) { 1758 // Update machine-CFG edges. 1759 BrMBB->addSuccessor(Succ0MBB); 1760 1761 // If this is not a fall-through branch or optimizations are switched off, 1762 // emit the branch. 1763 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1764 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1765 MVT::Other, getControlRoot(), 1766 DAG.getBasicBlock(Succ0MBB))); 1767 1768 return; 1769 } 1770 1771 // If this condition is one of the special cases we handle, do special stuff 1772 // now. 1773 const Value *CondVal = I.getCondition(); 1774 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1775 1776 // If this is a series of conditions that are or'd or and'd together, emit 1777 // this as a sequence of branches instead of setcc's with and/or operations. 1778 // As long as jumps are not expensive, this should improve performance. 1779 // For example, instead of something like: 1780 // cmp A, B 1781 // C = seteq 1782 // cmp D, E 1783 // F = setle 1784 // or C, F 1785 // jnz foo 1786 // Emit: 1787 // cmp A, B 1788 // je foo 1789 // cmp D, E 1790 // jle foo 1791 // 1792 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1793 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1794 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1795 !I.getMetadata(LLVMContext::MD_unpredictable) && 1796 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1797 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1798 Opcode, 1799 getEdgeProbability(BrMBB, Succ0MBB), 1800 getEdgeProbability(BrMBB, Succ1MBB), 1801 /*InvertCond=*/false); 1802 // If the compares in later blocks need to use values not currently 1803 // exported from this block, export them now. This block should always 1804 // be the first entry. 1805 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1806 1807 // Allow some cases to be rejected. 1808 if (ShouldEmitAsBranches(SwitchCases)) { 1809 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1810 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1811 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1812 } 1813 1814 // Emit the branch for this block. 1815 visitSwitchCase(SwitchCases[0], BrMBB); 1816 SwitchCases.erase(SwitchCases.begin()); 1817 return; 1818 } 1819 1820 // Okay, we decided not to do this, remove any inserted MBB's and clear 1821 // SwitchCases. 1822 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1823 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1824 1825 SwitchCases.clear(); 1826 } 1827 } 1828 1829 // Create a CaseBlock record representing this branch. 1830 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1831 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1832 1833 // Use visitSwitchCase to actually insert the fast branch sequence for this 1834 // cond branch. 1835 visitSwitchCase(CB, BrMBB); 1836 } 1837 1838 /// visitSwitchCase - Emits the necessary code to represent a single node in 1839 /// the binary search tree resulting from lowering a switch instruction. 1840 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1841 MachineBasicBlock *SwitchBB) { 1842 SDValue Cond; 1843 SDValue CondLHS = getValue(CB.CmpLHS); 1844 SDLoc dl = getCurSDLoc(); 1845 1846 // Build the setcc now. 1847 if (!CB.CmpMHS) { 1848 // Fold "(X == true)" to X and "(X == false)" to !X to 1849 // handle common cases produced by branch lowering. 1850 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1851 CB.CC == ISD::SETEQ) 1852 Cond = CondLHS; 1853 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1854 CB.CC == ISD::SETEQ) { 1855 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1856 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1857 } else 1858 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1859 } else { 1860 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1861 1862 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1863 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1864 1865 SDValue CmpOp = getValue(CB.CmpMHS); 1866 EVT VT = CmpOp.getValueType(); 1867 1868 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1869 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1870 ISD::SETLE); 1871 } else { 1872 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1873 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1874 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1875 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1876 } 1877 } 1878 1879 // Update successor info 1880 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1881 // TrueBB and FalseBB are always different unless the incoming IR is 1882 // degenerate. This only happens when running llc on weird IR. 1883 if (CB.TrueBB != CB.FalseBB) 1884 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1885 SwitchBB->normalizeSuccProbs(); 1886 1887 // If the lhs block is the next block, invert the condition so that we can 1888 // fall through to the lhs instead of the rhs block. 1889 if (CB.TrueBB == NextBlock(SwitchBB)) { 1890 std::swap(CB.TrueBB, CB.FalseBB); 1891 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1892 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1893 } 1894 1895 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1896 MVT::Other, getControlRoot(), Cond, 1897 DAG.getBasicBlock(CB.TrueBB)); 1898 1899 // Insert the false branch. Do this even if it's a fall through branch, 1900 // this makes it easier to do DAG optimizations which require inverting 1901 // the branch condition. 1902 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1903 DAG.getBasicBlock(CB.FalseBB)); 1904 1905 DAG.setRoot(BrCond); 1906 } 1907 1908 /// visitJumpTable - Emit JumpTable node in the current MBB 1909 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1910 // Emit the code for the jump table 1911 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1912 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1913 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1914 JT.Reg, PTy); 1915 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1916 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1917 MVT::Other, Index.getValue(1), 1918 Table, Index); 1919 DAG.setRoot(BrJumpTable); 1920 } 1921 1922 /// visitJumpTableHeader - This function emits necessary code to produce index 1923 /// in the JumpTable from switch case. 1924 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1925 JumpTableHeader &JTH, 1926 MachineBasicBlock *SwitchBB) { 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // Subtract the lowest switch case value from the value being switched on and 1930 // conditional branch to default mbb if the result is greater than the 1931 // difference between smallest and largest cases. 1932 SDValue SwitchOp = getValue(JTH.SValue); 1933 EVT VT = SwitchOp.getValueType(); 1934 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1935 DAG.getConstant(JTH.First, dl, VT)); 1936 1937 // The SDNode we just created, which holds the value being switched on minus 1938 // the smallest case value, needs to be copied to a virtual register so it 1939 // can be used as an index into the jump table in a subsequent basic block. 1940 // This value may be smaller or larger than the target's pointer type, and 1941 // therefore require extension or truncating. 1942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1943 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1944 1945 unsigned JumpTableReg = 1946 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1947 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1948 JumpTableReg, SwitchOp); 1949 JT.Reg = JumpTableReg; 1950 1951 // Emit the range check for the jump table, and branch to the default block 1952 // for the switch statement if the value being switched on exceeds the largest 1953 // case in the switch. 1954 SDValue CMP = DAG.getSetCC( 1955 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1956 Sub.getValueType()), 1957 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1958 1959 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, CopyTo, CMP, 1961 DAG.getBasicBlock(JT.Default)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (JT.MBB != NextBlock(SwitchBB)) 1965 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1966 DAG.getBasicBlock(JT.MBB)); 1967 1968 DAG.setRoot(BrCond); 1969 } 1970 1971 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 1972 /// variable if there exists one. 1973 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 1974 SDValue &Chain) { 1975 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1976 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1977 MachineFunction &MF = DAG.getMachineFunction(); 1978 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 1979 MachineSDNode *Node = 1980 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 1981 if (Global) { 1982 MachinePointerInfo MPInfo(Global); 1983 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 1984 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1985 MachineMemOperand::MODereferenceable; 1986 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 1987 DAG.getEVTAlignment(PtrTy)); 1988 Node->setMemRefs(MemRefs, MemRefs + 1); 1989 } 1990 return SDValue(Node, 0); 1991 } 1992 1993 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1994 /// tail spliced into a stack protector check success bb. 1995 /// 1996 /// For a high level explanation of how this fits into the stack protector 1997 /// generation see the comment on the declaration of class 1998 /// StackProtectorDescriptor. 1999 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2000 MachineBasicBlock *ParentBB) { 2001 2002 // First create the loads to the guard/stack slot for the comparison. 2003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2004 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2005 2006 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2007 int FI = MFI.getStackProtectorIndex(); 2008 2009 SDValue Guard; 2010 SDLoc dl = getCurSDLoc(); 2011 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2012 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2013 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2014 2015 // Generate code to load the content of the guard slot. 2016 SDValue StackSlot = DAG.getLoad( 2017 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2018 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2019 MachineMemOperand::MOVolatile); 2020 2021 // Retrieve guard check function, nullptr if instrumentation is inlined. 2022 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2023 // The target provides a guard check function to validate the guard value. 2024 // Generate a call to that function with the content of the guard slot as 2025 // argument. 2026 auto *Fn = cast<Function>(GuardCheck); 2027 FunctionType *FnTy = Fn->getFunctionType(); 2028 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2029 2030 TargetLowering::ArgListTy Args; 2031 TargetLowering::ArgListEntry Entry; 2032 Entry.Node = StackSlot; 2033 Entry.Ty = FnTy->getParamType(0); 2034 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2035 Entry.IsInReg = true; 2036 Args.push_back(Entry); 2037 2038 TargetLowering::CallLoweringInfo CLI(DAG); 2039 CLI.setDebugLoc(getCurSDLoc()) 2040 .setChain(DAG.getEntryNode()) 2041 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2042 getValue(GuardCheck), std::move(Args)); 2043 2044 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2045 DAG.setRoot(Result.second); 2046 return; 2047 } 2048 2049 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2050 // Otherwise, emit a volatile load to retrieve the stack guard value. 2051 SDValue Chain = DAG.getEntryNode(); 2052 if (TLI.useLoadStackGuardNode()) { 2053 Guard = getLoadStackGuard(DAG, dl, Chain); 2054 } else { 2055 const Value *IRGuard = TLI.getSDagStackGuard(M); 2056 SDValue GuardPtr = getValue(IRGuard); 2057 2058 Guard = 2059 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2060 Align, MachineMemOperand::MOVolatile); 2061 } 2062 2063 // Perform the comparison via a subtract/getsetcc. 2064 EVT VT = Guard.getValueType(); 2065 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2066 2067 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2068 *DAG.getContext(), 2069 Sub.getValueType()), 2070 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2071 2072 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2073 // branch to failure MBB. 2074 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2075 MVT::Other, StackSlot.getOperand(0), 2076 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2077 // Otherwise branch to success MBB. 2078 SDValue Br = DAG.getNode(ISD::BR, dl, 2079 MVT::Other, BrCond, 2080 DAG.getBasicBlock(SPD.getSuccessMBB())); 2081 2082 DAG.setRoot(Br); 2083 } 2084 2085 /// Codegen the failure basic block for a stack protector check. 2086 /// 2087 /// A failure stack protector machine basic block consists simply of a call to 2088 /// __stack_chk_fail(). 2089 /// 2090 /// For a high level explanation of how this fits into the stack protector 2091 /// generation see the comment on the declaration of class 2092 /// StackProtectorDescriptor. 2093 void 2094 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2096 SDValue Chain = 2097 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2098 None, false, getCurSDLoc(), false, false).second; 2099 DAG.setRoot(Chain); 2100 } 2101 2102 /// visitBitTestHeader - This function emits necessary code to produce value 2103 /// suitable for "bit tests" 2104 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2105 MachineBasicBlock *SwitchBB) { 2106 SDLoc dl = getCurSDLoc(); 2107 2108 // Subtract the minimum value 2109 SDValue SwitchOp = getValue(B.SValue); 2110 EVT VT = SwitchOp.getValueType(); 2111 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2112 DAG.getConstant(B.First, dl, VT)); 2113 2114 // Check range 2115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2116 SDValue RangeCmp = DAG.getSetCC( 2117 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2118 Sub.getValueType()), 2119 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2120 2121 // Determine the type of the test operands. 2122 bool UsePtrType = false; 2123 if (!TLI.isTypeLegal(VT)) 2124 UsePtrType = true; 2125 else { 2126 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2127 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2128 // Switch table case range are encoded into series of masks. 2129 // Just use pointer type, it's guaranteed to fit. 2130 UsePtrType = true; 2131 break; 2132 } 2133 } 2134 if (UsePtrType) { 2135 VT = TLI.getPointerTy(DAG.getDataLayout()); 2136 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2137 } 2138 2139 B.RegVT = VT.getSimpleVT(); 2140 B.Reg = FuncInfo.CreateReg(B.RegVT); 2141 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2142 2143 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2144 2145 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2146 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2147 SwitchBB->normalizeSuccProbs(); 2148 2149 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2150 MVT::Other, CopyTo, RangeCmp, 2151 DAG.getBasicBlock(B.Default)); 2152 2153 // Avoid emitting unnecessary branches to the next block. 2154 if (MBB != NextBlock(SwitchBB)) 2155 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2156 DAG.getBasicBlock(MBB)); 2157 2158 DAG.setRoot(BrRange); 2159 } 2160 2161 /// visitBitTestCase - this function produces one "bit test" 2162 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2163 MachineBasicBlock* NextMBB, 2164 BranchProbability BranchProbToNext, 2165 unsigned Reg, 2166 BitTestCase &B, 2167 MachineBasicBlock *SwitchBB) { 2168 SDLoc dl = getCurSDLoc(); 2169 MVT VT = BB.RegVT; 2170 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2171 SDValue Cmp; 2172 unsigned PopCount = countPopulation(B.Mask); 2173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2174 if (PopCount == 1) { 2175 // Testing for a single bit; just compare the shift count with what it 2176 // would need to be to shift a 1 bit in that position. 2177 Cmp = DAG.getSetCC( 2178 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2179 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2180 ISD::SETEQ); 2181 } else if (PopCount == BB.Range) { 2182 // There is only one zero bit in the range, test for it directly. 2183 Cmp = DAG.getSetCC( 2184 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2185 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2186 ISD::SETNE); 2187 } else { 2188 // Make desired shift 2189 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2190 DAG.getConstant(1, dl, VT), ShiftOp); 2191 2192 // Emit bit tests and jumps 2193 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2194 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2195 Cmp = DAG.getSetCC( 2196 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2197 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2198 } 2199 2200 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2201 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2202 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2203 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2204 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2205 // one as they are relative probabilities (and thus work more like weights), 2206 // and hence we need to normalize them to let the sum of them become one. 2207 SwitchBB->normalizeSuccProbs(); 2208 2209 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2210 MVT::Other, getControlRoot(), 2211 Cmp, DAG.getBasicBlock(B.TargetBB)); 2212 2213 // Avoid emitting unnecessary branches to the next block. 2214 if (NextMBB != NextBlock(SwitchBB)) 2215 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2216 DAG.getBasicBlock(NextMBB)); 2217 2218 DAG.setRoot(BrAnd); 2219 } 2220 2221 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2222 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2223 2224 // Retrieve successors. Look through artificial IR level blocks like 2225 // catchswitch for successors. 2226 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 const BasicBlock *EHPadBB = I.getSuccessor(1); 2228 2229 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2230 // have to do anything here to lower funclet bundles. 2231 assert(!I.hasOperandBundlesOtherThan( 2232 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2233 "Cannot lower invokes with arbitrary operand bundles yet!"); 2234 2235 const Value *Callee(I.getCalledValue()); 2236 const Function *Fn = dyn_cast<Function>(Callee); 2237 if (isa<InlineAsm>(Callee)) 2238 visitInlineAsm(&I); 2239 else if (Fn && Fn->isIntrinsic()) { 2240 switch (Fn->getIntrinsicID()) { 2241 default: 2242 llvm_unreachable("Cannot invoke this intrinsic"); 2243 case Intrinsic::donothing: 2244 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2245 break; 2246 case Intrinsic::experimental_patchpoint_void: 2247 case Intrinsic::experimental_patchpoint_i64: 2248 visitPatchpoint(&I, EHPadBB); 2249 break; 2250 case Intrinsic::experimental_gc_statepoint: 2251 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2252 break; 2253 } 2254 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2255 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2256 // Eventually we will support lowering the @llvm.experimental.deoptimize 2257 // intrinsic, and right now there are no plans to support other intrinsics 2258 // with deopt state. 2259 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2260 } else { 2261 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2262 } 2263 2264 // If the value of the invoke is used outside of its defining block, make it 2265 // available as a virtual register. 2266 // We already took care of the exported value for the statepoint instruction 2267 // during call to the LowerStatepoint. 2268 if (!isStatepoint(I)) { 2269 CopyToExportRegsIfNeeded(&I); 2270 } 2271 2272 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2273 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2274 BranchProbability EHPadBBProb = 2275 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2276 : BranchProbability::getZero(); 2277 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2278 2279 // Update successor info. 2280 addSuccessorWithProb(InvokeMBB, Return); 2281 for (auto &UnwindDest : UnwindDests) { 2282 UnwindDest.first->setIsEHPad(); 2283 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2284 } 2285 InvokeMBB->normalizeSuccProbs(); 2286 2287 // Drop into normal successor. 2288 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2289 MVT::Other, getControlRoot(), 2290 DAG.getBasicBlock(Return))); 2291 } 2292 2293 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2294 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2295 } 2296 2297 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2298 assert(FuncInfo.MBB->isEHPad() && 2299 "Call to landingpad not in landing pad!"); 2300 2301 MachineBasicBlock *MBB = FuncInfo.MBB; 2302 addLandingPadInfo(LP, *MBB); 2303 2304 // If there aren't registers to copy the values into (e.g., during SjLj 2305 // exceptions), then don't bother to create these DAG nodes. 2306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2307 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2308 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2309 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2310 return; 2311 2312 // If landingpad's return type is token type, we don't create DAG nodes 2313 // for its exception pointer and selector value. The extraction of exception 2314 // pointer or selector value from token type landingpads is not currently 2315 // supported. 2316 if (LP.getType()->isTokenTy()) 2317 return; 2318 2319 SmallVector<EVT, 2> ValueVTs; 2320 SDLoc dl = getCurSDLoc(); 2321 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2322 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2323 2324 // Get the two live-in registers as SDValues. The physregs have already been 2325 // copied into virtual registers. 2326 SDValue Ops[2]; 2327 if (FuncInfo.ExceptionPointerVirtReg) { 2328 Ops[0] = DAG.getZExtOrTrunc( 2329 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2330 FuncInfo.ExceptionPointerVirtReg, 2331 TLI.getPointerTy(DAG.getDataLayout())), 2332 dl, ValueVTs[0]); 2333 } else { 2334 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2335 } 2336 Ops[1] = DAG.getZExtOrTrunc( 2337 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2338 FuncInfo.ExceptionSelectorVirtReg, 2339 TLI.getPointerTy(DAG.getDataLayout())), 2340 dl, ValueVTs[1]); 2341 2342 // Merge into one. 2343 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2344 DAG.getVTList(ValueVTs), Ops); 2345 setValue(&LP, Res); 2346 } 2347 2348 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2349 #ifndef NDEBUG 2350 for (const CaseCluster &CC : Clusters) 2351 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2352 #endif 2353 2354 std::sort(Clusters.begin(), Clusters.end(), 2355 [](const CaseCluster &a, const CaseCluster &b) { 2356 return a.Low->getValue().slt(b.Low->getValue()); 2357 }); 2358 2359 // Merge adjacent clusters with the same destination. 2360 const unsigned N = Clusters.size(); 2361 unsigned DstIndex = 0; 2362 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2363 CaseCluster &CC = Clusters[SrcIndex]; 2364 const ConstantInt *CaseVal = CC.Low; 2365 MachineBasicBlock *Succ = CC.MBB; 2366 2367 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2368 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2369 // If this case has the same successor and is a neighbour, merge it into 2370 // the previous cluster. 2371 Clusters[DstIndex - 1].High = CaseVal; 2372 Clusters[DstIndex - 1].Prob += CC.Prob; 2373 } else { 2374 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2375 sizeof(Clusters[SrcIndex])); 2376 } 2377 } 2378 Clusters.resize(DstIndex); 2379 } 2380 2381 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2382 MachineBasicBlock *Last) { 2383 // Update JTCases. 2384 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2385 if (JTCases[i].first.HeaderBB == First) 2386 JTCases[i].first.HeaderBB = Last; 2387 2388 // Update BitTestCases. 2389 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2390 if (BitTestCases[i].Parent == First) 2391 BitTestCases[i].Parent = Last; 2392 } 2393 2394 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2395 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2396 2397 // Update machine-CFG edges with unique successors. 2398 SmallSet<BasicBlock*, 32> Done; 2399 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2400 BasicBlock *BB = I.getSuccessor(i); 2401 bool Inserted = Done.insert(BB).second; 2402 if (!Inserted) 2403 continue; 2404 2405 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2406 addSuccessorWithProb(IndirectBrMBB, Succ); 2407 } 2408 IndirectBrMBB->normalizeSuccProbs(); 2409 2410 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2411 MVT::Other, getControlRoot(), 2412 getValue(I.getAddress()))); 2413 } 2414 2415 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2416 if (DAG.getTarget().Options.TrapUnreachable) 2417 DAG.setRoot( 2418 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2419 } 2420 2421 void SelectionDAGBuilder::visitFSub(const User &I) { 2422 // -0.0 - X --> fneg 2423 Type *Ty = I.getType(); 2424 if (isa<Constant>(I.getOperand(0)) && 2425 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2426 SDValue Op2 = getValue(I.getOperand(1)); 2427 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2428 Op2.getValueType(), Op2)); 2429 return; 2430 } 2431 2432 visitBinary(I, ISD::FSUB); 2433 } 2434 2435 /// Checks if the given instruction performs a vector reduction, in which case 2436 /// we have the freedom to alter the elements in the result as long as the 2437 /// reduction of them stays unchanged. 2438 static bool isVectorReductionOp(const User *I) { 2439 const Instruction *Inst = dyn_cast<Instruction>(I); 2440 if (!Inst || !Inst->getType()->isVectorTy()) 2441 return false; 2442 2443 auto OpCode = Inst->getOpcode(); 2444 switch (OpCode) { 2445 case Instruction::Add: 2446 case Instruction::Mul: 2447 case Instruction::And: 2448 case Instruction::Or: 2449 case Instruction::Xor: 2450 break; 2451 case Instruction::FAdd: 2452 case Instruction::FMul: 2453 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2454 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2455 break; 2456 LLVM_FALLTHROUGH; 2457 default: 2458 return false; 2459 } 2460 2461 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2462 unsigned ElemNumToReduce = ElemNum; 2463 2464 // Do DFS search on the def-use chain from the given instruction. We only 2465 // allow four kinds of operations during the search until we reach the 2466 // instruction that extracts the first element from the vector: 2467 // 2468 // 1. The reduction operation of the same opcode as the given instruction. 2469 // 2470 // 2. PHI node. 2471 // 2472 // 3. ShuffleVector instruction together with a reduction operation that 2473 // does a partial reduction. 2474 // 2475 // 4. ExtractElement that extracts the first element from the vector, and we 2476 // stop searching the def-use chain here. 2477 // 2478 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2479 // from 1-3 to the stack to continue the DFS. The given instruction is not 2480 // a reduction operation if we meet any other instructions other than those 2481 // listed above. 2482 2483 SmallVector<const User *, 16> UsersToVisit{Inst}; 2484 SmallPtrSet<const User *, 16> Visited; 2485 bool ReduxExtracted = false; 2486 2487 while (!UsersToVisit.empty()) { 2488 auto User = UsersToVisit.back(); 2489 UsersToVisit.pop_back(); 2490 if (!Visited.insert(User).second) 2491 continue; 2492 2493 for (const auto &U : User->users()) { 2494 auto Inst = dyn_cast<Instruction>(U); 2495 if (!Inst) 2496 return false; 2497 2498 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2499 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2500 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2501 return false; 2502 UsersToVisit.push_back(U); 2503 } else if (const ShuffleVectorInst *ShufInst = 2504 dyn_cast<ShuffleVectorInst>(U)) { 2505 // Detect the following pattern: A ShuffleVector instruction together 2506 // with a reduction that do partial reduction on the first and second 2507 // ElemNumToReduce / 2 elements, and store the result in 2508 // ElemNumToReduce / 2 elements in another vector. 2509 2510 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2511 if (ResultElements < ElemNum) 2512 return false; 2513 2514 if (ElemNumToReduce == 1) 2515 return false; 2516 if (!isa<UndefValue>(U->getOperand(1))) 2517 return false; 2518 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2519 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2520 return false; 2521 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2522 if (ShufInst->getMaskValue(i) != -1) 2523 return false; 2524 2525 // There is only one user of this ShuffleVector instruction, which 2526 // must be a reduction operation. 2527 if (!U->hasOneUse()) 2528 return false; 2529 2530 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2531 if (!U2 || U2->getOpcode() != OpCode) 2532 return false; 2533 2534 // Check operands of the reduction operation. 2535 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2536 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2537 UsersToVisit.push_back(U2); 2538 ElemNumToReduce /= 2; 2539 } else 2540 return false; 2541 } else if (isa<ExtractElementInst>(U)) { 2542 // At this moment we should have reduced all elements in the vector. 2543 if (ElemNumToReduce != 1) 2544 return false; 2545 2546 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2547 if (!Val || Val->getZExtValue() != 0) 2548 return false; 2549 2550 ReduxExtracted = true; 2551 } else 2552 return false; 2553 } 2554 } 2555 return ReduxExtracted; 2556 } 2557 2558 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2559 SDValue Op1 = getValue(I.getOperand(0)); 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 2562 bool nuw = false; 2563 bool nsw = false; 2564 bool exact = false; 2565 bool vec_redux = false; 2566 FastMathFlags FMF; 2567 2568 if (const OverflowingBinaryOperator *OFBinOp = 2569 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2570 nuw = OFBinOp->hasNoUnsignedWrap(); 2571 nsw = OFBinOp->hasNoSignedWrap(); 2572 } 2573 if (const PossiblyExactOperator *ExactOp = 2574 dyn_cast<const PossiblyExactOperator>(&I)) 2575 exact = ExactOp->isExact(); 2576 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2577 FMF = FPOp->getFastMathFlags(); 2578 2579 if (isVectorReductionOp(&I)) { 2580 vec_redux = true; 2581 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2582 } 2583 2584 SDNodeFlags Flags; 2585 Flags.setExact(exact); 2586 Flags.setNoSignedWrap(nsw); 2587 Flags.setNoUnsignedWrap(nuw); 2588 Flags.setVectorReduction(vec_redux); 2589 if (EnableFMFInDAG) { 2590 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2591 Flags.setAllowContract(FMF.allowContract()); 2592 Flags.setNoInfs(FMF.noInfs()); 2593 Flags.setNoNaNs(FMF.noNaNs()); 2594 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2595 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2596 } 2597 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2598 Op1, Op2, &Flags); 2599 setValue(&I, BinNodeValue); 2600 } 2601 2602 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2603 SDValue Op1 = getValue(I.getOperand(0)); 2604 SDValue Op2 = getValue(I.getOperand(1)); 2605 2606 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2607 Op2.getValueType(), DAG.getDataLayout()); 2608 2609 // Coerce the shift amount to the right type if we can. 2610 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2611 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2612 unsigned Op2Size = Op2.getValueSizeInBits(); 2613 SDLoc DL = getCurSDLoc(); 2614 2615 // If the operand is smaller than the shift count type, promote it. 2616 if (ShiftSize > Op2Size) 2617 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2618 2619 // If the operand is larger than the shift count type but the shift 2620 // count type has enough bits to represent any shift value, truncate 2621 // it now. This is a common case and it exposes the truncate to 2622 // optimization early. 2623 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2624 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2625 // Otherwise we'll need to temporarily settle for some other convenient 2626 // type. Type legalization will make adjustments once the shiftee is split. 2627 else 2628 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2629 } 2630 2631 bool nuw = false; 2632 bool nsw = false; 2633 bool exact = false; 2634 2635 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2636 2637 if (const OverflowingBinaryOperator *OFBinOp = 2638 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2639 nuw = OFBinOp->hasNoUnsignedWrap(); 2640 nsw = OFBinOp->hasNoSignedWrap(); 2641 } 2642 if (const PossiblyExactOperator *ExactOp = 2643 dyn_cast<const PossiblyExactOperator>(&I)) 2644 exact = ExactOp->isExact(); 2645 } 2646 SDNodeFlags Flags; 2647 Flags.setExact(exact); 2648 Flags.setNoSignedWrap(nsw); 2649 Flags.setNoUnsignedWrap(nuw); 2650 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2651 &Flags); 2652 setValue(&I, Res); 2653 } 2654 2655 void SelectionDAGBuilder::visitSDiv(const User &I) { 2656 SDValue Op1 = getValue(I.getOperand(0)); 2657 SDValue Op2 = getValue(I.getOperand(1)); 2658 2659 SDNodeFlags Flags; 2660 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2661 cast<PossiblyExactOperator>(&I)->isExact()); 2662 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2663 Op2, &Flags)); 2664 } 2665 2666 void SelectionDAGBuilder::visitICmp(const User &I) { 2667 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2668 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2669 predicate = IC->getPredicate(); 2670 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2671 predicate = ICmpInst::Predicate(IC->getPredicate()); 2672 SDValue Op1 = getValue(I.getOperand(0)); 2673 SDValue Op2 = getValue(I.getOperand(1)); 2674 ISD::CondCode Opcode = getICmpCondCode(predicate); 2675 2676 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2677 I.getType()); 2678 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2679 } 2680 2681 void SelectionDAGBuilder::visitFCmp(const User &I) { 2682 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2683 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2684 predicate = FC->getPredicate(); 2685 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2686 predicate = FCmpInst::Predicate(FC->getPredicate()); 2687 SDValue Op1 = getValue(I.getOperand(0)); 2688 SDValue Op2 = getValue(I.getOperand(1)); 2689 ISD::CondCode Condition = getFCmpCondCode(predicate); 2690 2691 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2692 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2693 // further optimization, but currently FMF is only applicable to binary nodes. 2694 if (TM.Options.NoNaNsFPMath) 2695 Condition = getFCmpCodeWithoutNaN(Condition); 2696 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2697 I.getType()); 2698 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2699 } 2700 2701 // Check if the condition of the select has one use or two users that are both 2702 // selects with the same condition. 2703 static bool hasOnlySelectUsers(const Value *Cond) { 2704 return all_of(Cond->users(), [](const Value *V) { 2705 return isa<SelectInst>(V); 2706 }); 2707 } 2708 2709 void SelectionDAGBuilder::visitSelect(const User &I) { 2710 SmallVector<EVT, 4> ValueVTs; 2711 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2712 ValueVTs); 2713 unsigned NumValues = ValueVTs.size(); 2714 if (NumValues == 0) return; 2715 2716 SmallVector<SDValue, 4> Values(NumValues); 2717 SDValue Cond = getValue(I.getOperand(0)); 2718 SDValue LHSVal = getValue(I.getOperand(1)); 2719 SDValue RHSVal = getValue(I.getOperand(2)); 2720 auto BaseOps = {Cond}; 2721 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2722 ISD::VSELECT : ISD::SELECT; 2723 2724 // Min/max matching is only viable if all output VTs are the same. 2725 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2726 EVT VT = ValueVTs[0]; 2727 LLVMContext &Ctx = *DAG.getContext(); 2728 auto &TLI = DAG.getTargetLoweringInfo(); 2729 2730 // We care about the legality of the operation after it has been type 2731 // legalized. 2732 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2733 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2734 VT = TLI.getTypeToTransformTo(Ctx, VT); 2735 2736 // If the vselect is legal, assume we want to leave this as a vector setcc + 2737 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2738 // min/max is legal on the scalar type. 2739 bool UseScalarMinMax = VT.isVector() && 2740 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2741 2742 Value *LHS, *RHS; 2743 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2744 ISD::NodeType Opc = ISD::DELETED_NODE; 2745 switch (SPR.Flavor) { 2746 case SPF_UMAX: Opc = ISD::UMAX; break; 2747 case SPF_UMIN: Opc = ISD::UMIN; break; 2748 case SPF_SMAX: Opc = ISD::SMAX; break; 2749 case SPF_SMIN: Opc = ISD::SMIN; break; 2750 case SPF_FMINNUM: 2751 switch (SPR.NaNBehavior) { 2752 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2753 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2754 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2755 case SPNB_RETURNS_ANY: { 2756 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2757 Opc = ISD::FMINNUM; 2758 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2759 Opc = ISD::FMINNAN; 2760 else if (UseScalarMinMax) 2761 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2762 ISD::FMINNUM : ISD::FMINNAN; 2763 break; 2764 } 2765 } 2766 break; 2767 case SPF_FMAXNUM: 2768 switch (SPR.NaNBehavior) { 2769 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2770 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2771 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2772 case SPNB_RETURNS_ANY: 2773 2774 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2775 Opc = ISD::FMAXNUM; 2776 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2777 Opc = ISD::FMAXNAN; 2778 else if (UseScalarMinMax) 2779 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2780 ISD::FMAXNUM : ISD::FMAXNAN; 2781 break; 2782 } 2783 break; 2784 default: break; 2785 } 2786 2787 if (Opc != ISD::DELETED_NODE && 2788 (TLI.isOperationLegalOrCustom(Opc, VT) || 2789 (UseScalarMinMax && 2790 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2791 // If the underlying comparison instruction is used by any other 2792 // instruction, the consumed instructions won't be destroyed, so it is 2793 // not profitable to convert to a min/max. 2794 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2795 OpCode = Opc; 2796 LHSVal = getValue(LHS); 2797 RHSVal = getValue(RHS); 2798 BaseOps = {}; 2799 } 2800 } 2801 2802 for (unsigned i = 0; i != NumValues; ++i) { 2803 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2804 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2805 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2806 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2807 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2808 Ops); 2809 } 2810 2811 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2812 DAG.getVTList(ValueVTs), Values)); 2813 } 2814 2815 void SelectionDAGBuilder::visitTrunc(const User &I) { 2816 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2817 SDValue N = getValue(I.getOperand(0)); 2818 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2819 I.getType()); 2820 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2821 } 2822 2823 void SelectionDAGBuilder::visitZExt(const User &I) { 2824 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2825 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2826 SDValue N = getValue(I.getOperand(0)); 2827 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2828 I.getType()); 2829 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2830 } 2831 2832 void SelectionDAGBuilder::visitSExt(const User &I) { 2833 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2834 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2835 SDValue N = getValue(I.getOperand(0)); 2836 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2837 I.getType()); 2838 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2839 } 2840 2841 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2842 // FPTrunc is never a no-op cast, no need to check 2843 SDValue N = getValue(I.getOperand(0)); 2844 SDLoc dl = getCurSDLoc(); 2845 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2846 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2847 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2848 DAG.getTargetConstant( 2849 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2850 } 2851 2852 void SelectionDAGBuilder::visitFPExt(const User &I) { 2853 // FPExt is never a no-op cast, no need to check 2854 SDValue N = getValue(I.getOperand(0)); 2855 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2856 I.getType()); 2857 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2858 } 2859 2860 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2861 // FPToUI is never a no-op cast, no need to check 2862 SDValue N = getValue(I.getOperand(0)); 2863 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2864 I.getType()); 2865 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2866 } 2867 2868 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2869 // FPToSI is never a no-op cast, no need to check 2870 SDValue N = getValue(I.getOperand(0)); 2871 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2872 I.getType()); 2873 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2874 } 2875 2876 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2877 // UIToFP is never a no-op cast, no need to check 2878 SDValue N = getValue(I.getOperand(0)); 2879 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2880 I.getType()); 2881 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2882 } 2883 2884 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2885 // SIToFP is never a no-op cast, no need to check 2886 SDValue N = getValue(I.getOperand(0)); 2887 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2888 I.getType()); 2889 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2890 } 2891 2892 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2893 // What to do depends on the size of the integer and the size of the pointer. 2894 // We can either truncate, zero extend, or no-op, accordingly. 2895 SDValue N = getValue(I.getOperand(0)); 2896 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2897 I.getType()); 2898 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2899 } 2900 2901 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2902 // What to do depends on the size of the integer and the size of the pointer. 2903 // We can either truncate, zero extend, or no-op, accordingly. 2904 SDValue N = getValue(I.getOperand(0)); 2905 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2906 I.getType()); 2907 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2908 } 2909 2910 void SelectionDAGBuilder::visitBitCast(const User &I) { 2911 SDValue N = getValue(I.getOperand(0)); 2912 SDLoc dl = getCurSDLoc(); 2913 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2914 I.getType()); 2915 2916 // BitCast assures us that source and destination are the same size so this is 2917 // either a BITCAST or a no-op. 2918 if (DestVT != N.getValueType()) 2919 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2920 DestVT, N)); // convert types. 2921 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2922 // might fold any kind of constant expression to an integer constant and that 2923 // is not what we are looking for. Only recognize a bitcast of a genuine 2924 // constant integer as an opaque constant. 2925 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2926 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2927 /*isOpaque*/true)); 2928 else 2929 setValue(&I, N); // noop cast. 2930 } 2931 2932 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2934 const Value *SV = I.getOperand(0); 2935 SDValue N = getValue(SV); 2936 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2937 2938 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2939 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2940 2941 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2942 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2943 2944 setValue(&I, N); 2945 } 2946 2947 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2949 SDValue InVec = getValue(I.getOperand(0)); 2950 SDValue InVal = getValue(I.getOperand(1)); 2951 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2952 TLI.getVectorIdxTy(DAG.getDataLayout())); 2953 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2954 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2955 InVec, InVal, InIdx)); 2956 } 2957 2958 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2960 SDValue InVec = getValue(I.getOperand(0)); 2961 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2962 TLI.getVectorIdxTy(DAG.getDataLayout())); 2963 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2964 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2965 InVec, InIdx)); 2966 } 2967 2968 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2969 SDValue Src1 = getValue(I.getOperand(0)); 2970 SDValue Src2 = getValue(I.getOperand(1)); 2971 SDLoc DL = getCurSDLoc(); 2972 2973 SmallVector<int, 8> Mask; 2974 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2975 unsigned MaskNumElts = Mask.size(); 2976 2977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2978 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2979 EVT SrcVT = Src1.getValueType(); 2980 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2981 2982 if (SrcNumElts == MaskNumElts) { 2983 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 2984 return; 2985 } 2986 2987 // Normalize the shuffle vector since mask and vector length don't match. 2988 if (SrcNumElts < MaskNumElts) { 2989 // Mask is longer than the source vectors. We can use concatenate vector to 2990 // make the mask and vectors lengths match. 2991 2992 if (MaskNumElts % SrcNumElts == 0) { 2993 // Mask length is a multiple of the source vector length. 2994 // Check if the shuffle is some kind of concatenation of the input 2995 // vectors. 2996 unsigned NumConcat = MaskNumElts / SrcNumElts; 2997 bool IsConcat = true; 2998 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 2999 for (unsigned i = 0; i != MaskNumElts; ++i) { 3000 int Idx = Mask[i]; 3001 if (Idx < 0) 3002 continue; 3003 // Ensure the indices in each SrcVT sized piece are sequential and that 3004 // the same source is used for the whole piece. 3005 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3006 (ConcatSrcs[i / SrcNumElts] >= 0 && 3007 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3008 IsConcat = false; 3009 break; 3010 } 3011 // Remember which source this index came from. 3012 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3013 } 3014 3015 // The shuffle is concatenating multiple vectors together. Just emit 3016 // a CONCAT_VECTORS operation. 3017 if (IsConcat) { 3018 SmallVector<SDValue, 8> ConcatOps; 3019 for (auto Src : ConcatSrcs) { 3020 if (Src < 0) 3021 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3022 else if (Src == 0) 3023 ConcatOps.push_back(Src1); 3024 else 3025 ConcatOps.push_back(Src2); 3026 } 3027 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3028 return; 3029 } 3030 } 3031 3032 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3033 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3034 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3035 PaddedMaskNumElts); 3036 3037 // Pad both vectors with undefs to make them the same length as the mask. 3038 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3039 3040 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3041 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3042 MOps1[0] = Src1; 3043 MOps2[0] = Src2; 3044 3045 Src1 = Src1.isUndef() 3046 ? DAG.getUNDEF(PaddedVT) 3047 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3048 Src2 = Src2.isUndef() 3049 ? DAG.getUNDEF(PaddedVT) 3050 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3051 3052 // Readjust mask for new input vector length. 3053 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3054 for (unsigned i = 0; i != MaskNumElts; ++i) { 3055 int Idx = Mask[i]; 3056 if (Idx >= (int)SrcNumElts) 3057 Idx -= SrcNumElts - PaddedMaskNumElts; 3058 MappedOps[i] = Idx; 3059 } 3060 3061 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3062 3063 // If the concatenated vector was padded, extract a subvector with the 3064 // correct number of elements. 3065 if (MaskNumElts != PaddedMaskNumElts) 3066 Result = DAG.getNode( 3067 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3068 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3069 3070 setValue(&I, Result); 3071 return; 3072 } 3073 3074 if (SrcNumElts > MaskNumElts) { 3075 // Analyze the access pattern of the vector to see if we can extract 3076 // two subvectors and do the shuffle. 3077 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3078 bool CanExtract = true; 3079 for (int Idx : Mask) { 3080 unsigned Input = 0; 3081 if (Idx < 0) 3082 continue; 3083 3084 if (Idx >= (int)SrcNumElts) { 3085 Input = 1; 3086 Idx -= SrcNumElts; 3087 } 3088 3089 // If all the indices come from the same MaskNumElts sized portion of 3090 // the sources we can use extract. Also make sure the extract wouldn't 3091 // extract past the end of the source. 3092 int NewStartIdx = alignDown(Idx, MaskNumElts); 3093 if (NewStartIdx + MaskNumElts > SrcNumElts || 3094 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3095 CanExtract = false; 3096 // Make sure we always update StartIdx as we use it to track if all 3097 // elements are undef. 3098 StartIdx[Input] = NewStartIdx; 3099 } 3100 3101 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3102 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3103 return; 3104 } 3105 if (CanExtract) { 3106 // Extract appropriate subvector and generate a vector shuffle 3107 for (unsigned Input = 0; Input < 2; ++Input) { 3108 SDValue &Src = Input == 0 ? Src1 : Src2; 3109 if (StartIdx[Input] < 0) 3110 Src = DAG.getUNDEF(VT); 3111 else { 3112 Src = DAG.getNode( 3113 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3114 DAG.getConstant(StartIdx[Input], DL, 3115 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3116 } 3117 } 3118 3119 // Calculate new mask. 3120 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3121 for (int &Idx : MappedOps) { 3122 if (Idx >= (int)SrcNumElts) 3123 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3124 else if (Idx >= 0) 3125 Idx -= StartIdx[0]; 3126 } 3127 3128 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3129 return; 3130 } 3131 } 3132 3133 // We can't use either concat vectors or extract subvectors so fall back to 3134 // replacing the shuffle with extract and build vector. 3135 // to insert and build vector. 3136 EVT EltVT = VT.getVectorElementType(); 3137 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3138 SmallVector<SDValue,8> Ops; 3139 for (int Idx : Mask) { 3140 SDValue Res; 3141 3142 if (Idx < 0) { 3143 Res = DAG.getUNDEF(EltVT); 3144 } else { 3145 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3146 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3147 3148 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3149 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3150 } 3151 3152 Ops.push_back(Res); 3153 } 3154 3155 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops)); 3156 } 3157 3158 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3159 const Value *Op0 = I.getOperand(0); 3160 const Value *Op1 = I.getOperand(1); 3161 Type *AggTy = I.getType(); 3162 Type *ValTy = Op1->getType(); 3163 bool IntoUndef = isa<UndefValue>(Op0); 3164 bool FromUndef = isa<UndefValue>(Op1); 3165 3166 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3167 3168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3169 SmallVector<EVT, 4> AggValueVTs; 3170 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3171 SmallVector<EVT, 4> ValValueVTs; 3172 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3173 3174 unsigned NumAggValues = AggValueVTs.size(); 3175 unsigned NumValValues = ValValueVTs.size(); 3176 SmallVector<SDValue, 4> Values(NumAggValues); 3177 3178 // Ignore an insertvalue that produces an empty object 3179 if (!NumAggValues) { 3180 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3181 return; 3182 } 3183 3184 SDValue Agg = getValue(Op0); 3185 unsigned i = 0; 3186 // Copy the beginning value(s) from the original aggregate. 3187 for (; i != LinearIndex; ++i) 3188 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3189 SDValue(Agg.getNode(), Agg.getResNo() + i); 3190 // Copy values from the inserted value(s). 3191 if (NumValValues) { 3192 SDValue Val = getValue(Op1); 3193 for (; i != LinearIndex + NumValValues; ++i) 3194 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3195 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3196 } 3197 // Copy remaining value(s) from the original aggregate. 3198 for (; i != NumAggValues; ++i) 3199 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3200 SDValue(Agg.getNode(), Agg.getResNo() + i); 3201 3202 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3203 DAG.getVTList(AggValueVTs), Values)); 3204 } 3205 3206 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3207 const Value *Op0 = I.getOperand(0); 3208 Type *AggTy = Op0->getType(); 3209 Type *ValTy = I.getType(); 3210 bool OutOfUndef = isa<UndefValue>(Op0); 3211 3212 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3213 3214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3215 SmallVector<EVT, 4> ValValueVTs; 3216 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3217 3218 unsigned NumValValues = ValValueVTs.size(); 3219 3220 // Ignore a extractvalue that produces an empty object 3221 if (!NumValValues) { 3222 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3223 return; 3224 } 3225 3226 SmallVector<SDValue, 4> Values(NumValValues); 3227 3228 SDValue Agg = getValue(Op0); 3229 // Copy out the selected value(s). 3230 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3231 Values[i - LinearIndex] = 3232 OutOfUndef ? 3233 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3234 SDValue(Agg.getNode(), Agg.getResNo() + i); 3235 3236 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3237 DAG.getVTList(ValValueVTs), Values)); 3238 } 3239 3240 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3241 Value *Op0 = I.getOperand(0); 3242 // Note that the pointer operand may be a vector of pointers. Take the scalar 3243 // element which holds a pointer. 3244 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3245 SDValue N = getValue(Op0); 3246 SDLoc dl = getCurSDLoc(); 3247 3248 // Normalize Vector GEP - all scalar operands should be converted to the 3249 // splat vector. 3250 unsigned VectorWidth = I.getType()->isVectorTy() ? 3251 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3252 3253 if (VectorWidth && !N.getValueType().isVector()) { 3254 LLVMContext &Context = *DAG.getContext(); 3255 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3256 N = DAG.getSplatBuildVector(VT, dl, N); 3257 } 3258 3259 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3260 GTI != E; ++GTI) { 3261 const Value *Idx = GTI.getOperand(); 3262 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3263 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3264 if (Field) { 3265 // N = N + Offset 3266 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3267 3268 // In an inbounds GEP with an offset that is nonnegative even when 3269 // interpreted as signed, assume there is no unsigned overflow. 3270 SDNodeFlags Flags; 3271 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3272 Flags.setNoUnsignedWrap(true); 3273 3274 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3275 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3276 } 3277 } else { 3278 MVT PtrTy = 3279 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3280 unsigned PtrSize = PtrTy.getSizeInBits(); 3281 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3282 3283 // If this is a scalar constant or a splat vector of constants, 3284 // handle it quickly. 3285 const auto *CI = dyn_cast<ConstantInt>(Idx); 3286 if (!CI && isa<ConstantDataVector>(Idx) && 3287 cast<ConstantDataVector>(Idx)->getSplatValue()) 3288 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3289 3290 if (CI) { 3291 if (CI->isZero()) 3292 continue; 3293 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3294 LLVMContext &Context = *DAG.getContext(); 3295 SDValue OffsVal = VectorWidth ? 3296 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3297 DAG.getConstant(Offs, dl, PtrTy); 3298 3299 // In an inbouds GEP with an offset that is nonnegative even when 3300 // interpreted as signed, assume there is no unsigned overflow. 3301 SDNodeFlags Flags; 3302 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3303 Flags.setNoUnsignedWrap(true); 3304 3305 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3306 continue; 3307 } 3308 3309 // N = N + Idx * ElementSize; 3310 SDValue IdxN = getValue(Idx); 3311 3312 if (!IdxN.getValueType().isVector() && VectorWidth) { 3313 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3314 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3315 } 3316 3317 // If the index is smaller or larger than intptr_t, truncate or extend 3318 // it. 3319 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3320 3321 // If this is a multiply by a power of two, turn it into a shl 3322 // immediately. This is a very common case. 3323 if (ElementSize != 1) { 3324 if (ElementSize.isPowerOf2()) { 3325 unsigned Amt = ElementSize.logBase2(); 3326 IdxN = DAG.getNode(ISD::SHL, dl, 3327 N.getValueType(), IdxN, 3328 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3329 } else { 3330 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3331 IdxN = DAG.getNode(ISD::MUL, dl, 3332 N.getValueType(), IdxN, Scale); 3333 } 3334 } 3335 3336 N = DAG.getNode(ISD::ADD, dl, 3337 N.getValueType(), N, IdxN); 3338 } 3339 } 3340 3341 setValue(&I, N); 3342 } 3343 3344 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3345 // If this is a fixed sized alloca in the entry block of the function, 3346 // allocate it statically on the stack. 3347 if (FuncInfo.StaticAllocaMap.count(&I)) 3348 return; // getValue will auto-populate this. 3349 3350 SDLoc dl = getCurSDLoc(); 3351 Type *Ty = I.getAllocatedType(); 3352 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3353 auto &DL = DAG.getDataLayout(); 3354 uint64_t TySize = DL.getTypeAllocSize(Ty); 3355 unsigned Align = 3356 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3357 3358 SDValue AllocSize = getValue(I.getArraySize()); 3359 3360 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3361 if (AllocSize.getValueType() != IntPtr) 3362 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3363 3364 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3365 AllocSize, 3366 DAG.getConstant(TySize, dl, IntPtr)); 3367 3368 // Handle alignment. If the requested alignment is less than or equal to 3369 // the stack alignment, ignore it. If the size is greater than or equal to 3370 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3371 unsigned StackAlign = 3372 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3373 if (Align <= StackAlign) 3374 Align = 0; 3375 3376 // Round the size of the allocation up to the stack alignment size 3377 // by add SA-1 to the size. This doesn't overflow because we're computing 3378 // an address inside an alloca. 3379 SDNodeFlags Flags; 3380 Flags.setNoUnsignedWrap(true); 3381 AllocSize = DAG.getNode(ISD::ADD, dl, 3382 AllocSize.getValueType(), AllocSize, 3383 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3384 3385 // Mask out the low bits for alignment purposes. 3386 AllocSize = DAG.getNode(ISD::AND, dl, 3387 AllocSize.getValueType(), AllocSize, 3388 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3389 dl)); 3390 3391 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3392 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3393 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3394 setValue(&I, DSA); 3395 DAG.setRoot(DSA.getValue(1)); 3396 3397 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3398 } 3399 3400 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3401 if (I.isAtomic()) 3402 return visitAtomicLoad(I); 3403 3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3405 const Value *SV = I.getOperand(0); 3406 if (TLI.supportSwiftError()) { 3407 // Swifterror values can come from either a function parameter with 3408 // swifterror attribute or an alloca with swifterror attribute. 3409 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3410 if (Arg->hasSwiftErrorAttr()) 3411 return visitLoadFromSwiftError(I); 3412 } 3413 3414 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3415 if (Alloca->isSwiftError()) 3416 return visitLoadFromSwiftError(I); 3417 } 3418 } 3419 3420 SDValue Ptr = getValue(SV); 3421 3422 Type *Ty = I.getType(); 3423 3424 bool isVolatile = I.isVolatile(); 3425 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3426 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3427 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3428 unsigned Alignment = I.getAlignment(); 3429 3430 AAMDNodes AAInfo; 3431 I.getAAMetadata(AAInfo); 3432 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3433 3434 SmallVector<EVT, 4> ValueVTs; 3435 SmallVector<uint64_t, 4> Offsets; 3436 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3437 unsigned NumValues = ValueVTs.size(); 3438 if (NumValues == 0) 3439 return; 3440 3441 SDValue Root; 3442 bool ConstantMemory = false; 3443 if (isVolatile || NumValues > MaxParallelChains) 3444 // Serialize volatile loads with other side effects. 3445 Root = getRoot(); 3446 else if (AA->pointsToConstantMemory(MemoryLocation( 3447 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3448 // Do not serialize (non-volatile) loads of constant memory with anything. 3449 Root = DAG.getEntryNode(); 3450 ConstantMemory = true; 3451 } else { 3452 // Do not serialize non-volatile loads against each other. 3453 Root = DAG.getRoot(); 3454 } 3455 3456 SDLoc dl = getCurSDLoc(); 3457 3458 if (isVolatile) 3459 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3460 3461 // An aggregate load cannot wrap around the address space, so offsets to its 3462 // parts don't wrap either. 3463 SDNodeFlags Flags; 3464 Flags.setNoUnsignedWrap(true); 3465 3466 SmallVector<SDValue, 4> Values(NumValues); 3467 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3468 EVT PtrVT = Ptr.getValueType(); 3469 unsigned ChainI = 0; 3470 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3471 // Serializing loads here may result in excessive register pressure, and 3472 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3473 // could recover a bit by hoisting nodes upward in the chain by recognizing 3474 // they are side-effect free or do not alias. The optimizer should really 3475 // avoid this case by converting large object/array copies to llvm.memcpy 3476 // (MaxParallelChains should always remain as failsafe). 3477 if (ChainI == MaxParallelChains) { 3478 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3479 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3480 makeArrayRef(Chains.data(), ChainI)); 3481 Root = Chain; 3482 ChainI = 0; 3483 } 3484 SDValue A = DAG.getNode(ISD::ADD, dl, 3485 PtrVT, Ptr, 3486 DAG.getConstant(Offsets[i], dl, PtrVT), 3487 &Flags); 3488 auto MMOFlags = MachineMemOperand::MONone; 3489 if (isVolatile) 3490 MMOFlags |= MachineMemOperand::MOVolatile; 3491 if (isNonTemporal) 3492 MMOFlags |= MachineMemOperand::MONonTemporal; 3493 if (isInvariant) 3494 MMOFlags |= MachineMemOperand::MOInvariant; 3495 if (isDereferenceable) 3496 MMOFlags |= MachineMemOperand::MODereferenceable; 3497 3498 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3499 MachinePointerInfo(SV, Offsets[i]), Alignment, 3500 MMOFlags, AAInfo, Ranges); 3501 3502 Values[i] = L; 3503 Chains[ChainI] = L.getValue(1); 3504 } 3505 3506 if (!ConstantMemory) { 3507 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3508 makeArrayRef(Chains.data(), ChainI)); 3509 if (isVolatile) 3510 DAG.setRoot(Chain); 3511 else 3512 PendingLoads.push_back(Chain); 3513 } 3514 3515 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3516 DAG.getVTList(ValueVTs), Values)); 3517 } 3518 3519 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3521 assert(TLI.supportSwiftError() && 3522 "call visitStoreToSwiftError when backend supports swifterror"); 3523 3524 SmallVector<EVT, 4> ValueVTs; 3525 SmallVector<uint64_t, 4> Offsets; 3526 const Value *SrcV = I.getOperand(0); 3527 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3528 SrcV->getType(), ValueVTs, &Offsets); 3529 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3530 "expect a single EVT for swifterror"); 3531 3532 SDValue Src = getValue(SrcV); 3533 // Create a virtual register, then update the virtual register. 3534 auto &DL = DAG.getDataLayout(); 3535 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3536 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3537 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3538 // Chain can be getRoot or getControlRoot. 3539 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3540 SDValue(Src.getNode(), Src.getResNo())); 3541 DAG.setRoot(CopyNode); 3542 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3543 } 3544 3545 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3546 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3547 "call visitLoadFromSwiftError when backend supports swifterror"); 3548 3549 assert(!I.isVolatile() && 3550 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3551 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3552 "Support volatile, non temporal, invariant for load_from_swift_error"); 3553 3554 const Value *SV = I.getOperand(0); 3555 Type *Ty = I.getType(); 3556 AAMDNodes AAInfo; 3557 I.getAAMetadata(AAInfo); 3558 assert(!AA->pointsToConstantMemory(MemoryLocation( 3559 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3560 "load_from_swift_error should not be constant memory"); 3561 3562 SmallVector<EVT, 4> ValueVTs; 3563 SmallVector<uint64_t, 4> Offsets; 3564 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3565 ValueVTs, &Offsets); 3566 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3567 "expect a single EVT for swifterror"); 3568 3569 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3570 SDValue L = DAG.getCopyFromReg( 3571 getRoot(), getCurSDLoc(), 3572 FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]); 3573 3574 setValue(&I, L); 3575 } 3576 3577 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3578 if (I.isAtomic()) 3579 return visitAtomicStore(I); 3580 3581 const Value *SrcV = I.getOperand(0); 3582 const Value *PtrV = I.getOperand(1); 3583 3584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3585 if (TLI.supportSwiftError()) { 3586 // Swifterror values can come from either a function parameter with 3587 // swifterror attribute or an alloca with swifterror attribute. 3588 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3589 if (Arg->hasSwiftErrorAttr()) 3590 return visitStoreToSwiftError(I); 3591 } 3592 3593 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3594 if (Alloca->isSwiftError()) 3595 return visitStoreToSwiftError(I); 3596 } 3597 } 3598 3599 SmallVector<EVT, 4> ValueVTs; 3600 SmallVector<uint64_t, 4> Offsets; 3601 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3602 SrcV->getType(), ValueVTs, &Offsets); 3603 unsigned NumValues = ValueVTs.size(); 3604 if (NumValues == 0) 3605 return; 3606 3607 // Get the lowered operands. Note that we do this after 3608 // checking if NumResults is zero, because with zero results 3609 // the operands won't have values in the map. 3610 SDValue Src = getValue(SrcV); 3611 SDValue Ptr = getValue(PtrV); 3612 3613 SDValue Root = getRoot(); 3614 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3615 SDLoc dl = getCurSDLoc(); 3616 EVT PtrVT = Ptr.getValueType(); 3617 unsigned Alignment = I.getAlignment(); 3618 AAMDNodes AAInfo; 3619 I.getAAMetadata(AAInfo); 3620 3621 auto MMOFlags = MachineMemOperand::MONone; 3622 if (I.isVolatile()) 3623 MMOFlags |= MachineMemOperand::MOVolatile; 3624 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3625 MMOFlags |= MachineMemOperand::MONonTemporal; 3626 3627 // An aggregate load cannot wrap around the address space, so offsets to its 3628 // parts don't wrap either. 3629 SDNodeFlags Flags; 3630 Flags.setNoUnsignedWrap(true); 3631 3632 unsigned ChainI = 0; 3633 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3634 // See visitLoad comments. 3635 if (ChainI == MaxParallelChains) { 3636 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3637 makeArrayRef(Chains.data(), ChainI)); 3638 Root = Chain; 3639 ChainI = 0; 3640 } 3641 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3642 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3643 SDValue St = DAG.getStore( 3644 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3645 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3646 Chains[ChainI] = St; 3647 } 3648 3649 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3650 makeArrayRef(Chains.data(), ChainI)); 3651 DAG.setRoot(StoreNode); 3652 } 3653 3654 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3655 bool IsCompressing) { 3656 SDLoc sdl = getCurSDLoc(); 3657 3658 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3659 unsigned& Alignment) { 3660 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3661 Src0 = I.getArgOperand(0); 3662 Ptr = I.getArgOperand(1); 3663 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3664 Mask = I.getArgOperand(3); 3665 }; 3666 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3667 unsigned& Alignment) { 3668 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3669 Src0 = I.getArgOperand(0); 3670 Ptr = I.getArgOperand(1); 3671 Mask = I.getArgOperand(2); 3672 Alignment = 0; 3673 }; 3674 3675 Value *PtrOperand, *MaskOperand, *Src0Operand; 3676 unsigned Alignment; 3677 if (IsCompressing) 3678 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3679 else 3680 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3681 3682 SDValue Ptr = getValue(PtrOperand); 3683 SDValue Src0 = getValue(Src0Operand); 3684 SDValue Mask = getValue(MaskOperand); 3685 3686 EVT VT = Src0.getValueType(); 3687 if (!Alignment) 3688 Alignment = DAG.getEVTAlignment(VT); 3689 3690 AAMDNodes AAInfo; 3691 I.getAAMetadata(AAInfo); 3692 3693 MachineMemOperand *MMO = 3694 DAG.getMachineFunction(). 3695 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3696 MachineMemOperand::MOStore, VT.getStoreSize(), 3697 Alignment, AAInfo); 3698 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3699 MMO, false /* Truncating */, 3700 IsCompressing); 3701 DAG.setRoot(StoreNode); 3702 setValue(&I, StoreNode); 3703 } 3704 3705 // Get a uniform base for the Gather/Scatter intrinsic. 3706 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3707 // We try to represent it as a base pointer + vector of indices. 3708 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3709 // The first operand of the GEP may be a single pointer or a vector of pointers 3710 // Example: 3711 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3712 // or 3713 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3714 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3715 // 3716 // When the first GEP operand is a single pointer - it is the uniform base we 3717 // are looking for. If first operand of the GEP is a splat vector - we 3718 // extract the spalt value and use it as a uniform base. 3719 // In all other cases the function returns 'false'. 3720 // 3721 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3722 SelectionDAGBuilder* SDB) { 3723 3724 SelectionDAG& DAG = SDB->DAG; 3725 LLVMContext &Context = *DAG.getContext(); 3726 3727 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3728 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3729 if (!GEP || GEP->getNumOperands() > 2) 3730 return false; 3731 3732 const Value *GEPPtr = GEP->getPointerOperand(); 3733 if (!GEPPtr->getType()->isVectorTy()) 3734 Ptr = GEPPtr; 3735 else if (!(Ptr = getSplatValue(GEPPtr))) 3736 return false; 3737 3738 Value *IndexVal = GEP->getOperand(1); 3739 3740 // The operands of the GEP may be defined in another basic block. 3741 // In this case we'll not find nodes for the operands. 3742 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3743 return false; 3744 3745 Base = SDB->getValue(Ptr); 3746 Index = SDB->getValue(IndexVal); 3747 3748 // Suppress sign extension. 3749 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3750 if (SDB->findValue(Sext->getOperand(0))) { 3751 IndexVal = Sext->getOperand(0); 3752 Index = SDB->getValue(IndexVal); 3753 } 3754 } 3755 if (!Index.getValueType().isVector()) { 3756 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3757 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3758 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3759 } 3760 return true; 3761 } 3762 3763 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3764 SDLoc sdl = getCurSDLoc(); 3765 3766 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3767 const Value *Ptr = I.getArgOperand(1); 3768 SDValue Src0 = getValue(I.getArgOperand(0)); 3769 SDValue Mask = getValue(I.getArgOperand(3)); 3770 EVT VT = Src0.getValueType(); 3771 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3772 if (!Alignment) 3773 Alignment = DAG.getEVTAlignment(VT); 3774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3775 3776 AAMDNodes AAInfo; 3777 I.getAAMetadata(AAInfo); 3778 3779 SDValue Base; 3780 SDValue Index; 3781 const Value *BasePtr = Ptr; 3782 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3783 3784 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3785 MachineMemOperand *MMO = DAG.getMachineFunction(). 3786 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3787 MachineMemOperand::MOStore, VT.getStoreSize(), 3788 Alignment, AAInfo); 3789 if (!UniformBase) { 3790 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3791 Index = getValue(Ptr); 3792 } 3793 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3794 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3795 Ops, MMO); 3796 DAG.setRoot(Scatter); 3797 setValue(&I, Scatter); 3798 } 3799 3800 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3801 SDLoc sdl = getCurSDLoc(); 3802 3803 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3804 unsigned& Alignment) { 3805 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3806 Ptr = I.getArgOperand(0); 3807 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3808 Mask = I.getArgOperand(2); 3809 Src0 = I.getArgOperand(3); 3810 }; 3811 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3812 unsigned& Alignment) { 3813 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3814 Ptr = I.getArgOperand(0); 3815 Alignment = 0; 3816 Mask = I.getArgOperand(1); 3817 Src0 = I.getArgOperand(2); 3818 }; 3819 3820 Value *PtrOperand, *MaskOperand, *Src0Operand; 3821 unsigned Alignment; 3822 if (IsExpanding) 3823 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3824 else 3825 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3826 3827 SDValue Ptr = getValue(PtrOperand); 3828 SDValue Src0 = getValue(Src0Operand); 3829 SDValue Mask = getValue(MaskOperand); 3830 3831 EVT VT = Src0.getValueType(); 3832 if (!Alignment) 3833 Alignment = DAG.getEVTAlignment(VT); 3834 3835 AAMDNodes AAInfo; 3836 I.getAAMetadata(AAInfo); 3837 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3838 3839 // Do not serialize masked loads of constant memory with anything. 3840 bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation( 3841 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3842 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3843 3844 MachineMemOperand *MMO = 3845 DAG.getMachineFunction(). 3846 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3847 MachineMemOperand::MOLoad, VT.getStoreSize(), 3848 Alignment, AAInfo, Ranges); 3849 3850 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3851 ISD::NON_EXTLOAD, IsExpanding); 3852 if (AddToChain) { 3853 SDValue OutChain = Load.getValue(1); 3854 DAG.setRoot(OutChain); 3855 } 3856 setValue(&I, Load); 3857 } 3858 3859 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3860 SDLoc sdl = getCurSDLoc(); 3861 3862 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3863 const Value *Ptr = I.getArgOperand(0); 3864 SDValue Src0 = getValue(I.getArgOperand(3)); 3865 SDValue Mask = getValue(I.getArgOperand(2)); 3866 3867 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3868 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3869 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3870 if (!Alignment) 3871 Alignment = DAG.getEVTAlignment(VT); 3872 3873 AAMDNodes AAInfo; 3874 I.getAAMetadata(AAInfo); 3875 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3876 3877 SDValue Root = DAG.getRoot(); 3878 SDValue Base; 3879 SDValue Index; 3880 const Value *BasePtr = Ptr; 3881 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3882 bool ConstantMemory = false; 3883 if (UniformBase && 3884 AA->pointsToConstantMemory(MemoryLocation( 3885 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3886 AAInfo))) { 3887 // Do not serialize (non-volatile) loads of constant memory with anything. 3888 Root = DAG.getEntryNode(); 3889 ConstantMemory = true; 3890 } 3891 3892 MachineMemOperand *MMO = 3893 DAG.getMachineFunction(). 3894 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3895 MachineMemOperand::MOLoad, VT.getStoreSize(), 3896 Alignment, AAInfo, Ranges); 3897 3898 if (!UniformBase) { 3899 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3900 Index = getValue(Ptr); 3901 } 3902 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3903 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3904 Ops, MMO); 3905 3906 SDValue OutChain = Gather.getValue(1); 3907 if (!ConstantMemory) 3908 PendingLoads.push_back(OutChain); 3909 setValue(&I, Gather); 3910 } 3911 3912 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3913 SDLoc dl = getCurSDLoc(); 3914 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3915 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3916 SynchronizationScope Scope = I.getSynchScope(); 3917 3918 SDValue InChain = getRoot(); 3919 3920 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3921 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3922 SDValue L = DAG.getAtomicCmpSwap( 3923 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3924 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3925 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3926 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3927 3928 SDValue OutChain = L.getValue(2); 3929 3930 setValue(&I, L); 3931 DAG.setRoot(OutChain); 3932 } 3933 3934 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3935 SDLoc dl = getCurSDLoc(); 3936 ISD::NodeType NT; 3937 switch (I.getOperation()) { 3938 default: llvm_unreachable("Unknown atomicrmw operation"); 3939 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3940 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3941 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3942 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3943 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3944 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3945 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3946 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3947 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3948 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3949 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3950 } 3951 AtomicOrdering Order = I.getOrdering(); 3952 SynchronizationScope Scope = I.getSynchScope(); 3953 3954 SDValue InChain = getRoot(); 3955 3956 SDValue L = 3957 DAG.getAtomic(NT, dl, 3958 getValue(I.getValOperand()).getSimpleValueType(), 3959 InChain, 3960 getValue(I.getPointerOperand()), 3961 getValue(I.getValOperand()), 3962 I.getPointerOperand(), 3963 /* Alignment=*/ 0, Order, Scope); 3964 3965 SDValue OutChain = L.getValue(1); 3966 3967 setValue(&I, L); 3968 DAG.setRoot(OutChain); 3969 } 3970 3971 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3972 SDLoc dl = getCurSDLoc(); 3973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3974 SDValue Ops[3]; 3975 Ops[0] = getRoot(); 3976 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 3977 TLI.getPointerTy(DAG.getDataLayout())); 3978 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3979 TLI.getPointerTy(DAG.getDataLayout())); 3980 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3981 } 3982 3983 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3984 SDLoc dl = getCurSDLoc(); 3985 AtomicOrdering Order = I.getOrdering(); 3986 SynchronizationScope Scope = I.getSynchScope(); 3987 3988 SDValue InChain = getRoot(); 3989 3990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3991 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3992 3993 if (I.getAlignment() < VT.getSizeInBits() / 8) 3994 report_fatal_error("Cannot generate unaligned atomic load"); 3995 3996 MachineMemOperand *MMO = 3997 DAG.getMachineFunction(). 3998 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3999 MachineMemOperand::MOVolatile | 4000 MachineMemOperand::MOLoad, 4001 VT.getStoreSize(), 4002 I.getAlignment() ? I.getAlignment() : 4003 DAG.getEVTAlignment(VT), 4004 AAMDNodes(), nullptr, Scope, Order); 4005 4006 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4007 SDValue L = 4008 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4009 getValue(I.getPointerOperand()), MMO); 4010 4011 SDValue OutChain = L.getValue(1); 4012 4013 setValue(&I, L); 4014 DAG.setRoot(OutChain); 4015 } 4016 4017 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4018 SDLoc dl = getCurSDLoc(); 4019 4020 AtomicOrdering Order = I.getOrdering(); 4021 SynchronizationScope Scope = I.getSynchScope(); 4022 4023 SDValue InChain = getRoot(); 4024 4025 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4026 EVT VT = 4027 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4028 4029 if (I.getAlignment() < VT.getSizeInBits() / 8) 4030 report_fatal_error("Cannot generate unaligned atomic store"); 4031 4032 SDValue OutChain = 4033 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4034 InChain, 4035 getValue(I.getPointerOperand()), 4036 getValue(I.getValueOperand()), 4037 I.getPointerOperand(), I.getAlignment(), 4038 Order, Scope); 4039 4040 DAG.setRoot(OutChain); 4041 } 4042 4043 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4044 /// node. 4045 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4046 unsigned Intrinsic) { 4047 // Ignore the callsite's attributes. A specific call site may be marked with 4048 // readnone, but the lowering code will expect the chain based on the 4049 // definition. 4050 const Function *F = I.getCalledFunction(); 4051 bool HasChain = !F->doesNotAccessMemory(); 4052 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4053 4054 // Build the operand list. 4055 SmallVector<SDValue, 8> Ops; 4056 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4057 if (OnlyLoad) { 4058 // We don't need to serialize loads against other loads. 4059 Ops.push_back(DAG.getRoot()); 4060 } else { 4061 Ops.push_back(getRoot()); 4062 } 4063 } 4064 4065 // Info is set by getTgtMemInstrinsic 4066 TargetLowering::IntrinsicInfo Info; 4067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4068 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4069 4070 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4071 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4072 Info.opc == ISD::INTRINSIC_W_CHAIN) 4073 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4074 TLI.getPointerTy(DAG.getDataLayout()))); 4075 4076 // Add all operands of the call to the operand list. 4077 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4078 SDValue Op = getValue(I.getArgOperand(i)); 4079 Ops.push_back(Op); 4080 } 4081 4082 SmallVector<EVT, 4> ValueVTs; 4083 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4084 4085 if (HasChain) 4086 ValueVTs.push_back(MVT::Other); 4087 4088 SDVTList VTs = DAG.getVTList(ValueVTs); 4089 4090 // Create the node. 4091 SDValue Result; 4092 if (IsTgtIntrinsic) { 4093 // This is target intrinsic that touches memory 4094 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4095 VTs, Ops, Info.memVT, 4096 MachinePointerInfo(Info.ptrVal, Info.offset), 4097 Info.align, Info.vol, 4098 Info.readMem, Info.writeMem, Info.size); 4099 } else if (!HasChain) { 4100 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4101 } else if (!I.getType()->isVoidTy()) { 4102 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4103 } else { 4104 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4105 } 4106 4107 if (HasChain) { 4108 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4109 if (OnlyLoad) 4110 PendingLoads.push_back(Chain); 4111 else 4112 DAG.setRoot(Chain); 4113 } 4114 4115 if (!I.getType()->isVoidTy()) { 4116 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4117 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4118 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4119 } else 4120 Result = lowerRangeToAssertZExt(DAG, I, Result); 4121 4122 setValue(&I, Result); 4123 } 4124 } 4125 4126 /// GetSignificand - Get the significand and build it into a floating-point 4127 /// number with exponent of 1: 4128 /// 4129 /// Op = (Op & 0x007fffff) | 0x3f800000; 4130 /// 4131 /// where Op is the hexadecimal representation of floating point value. 4132 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4133 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4134 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4135 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4136 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4137 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4138 } 4139 4140 /// GetExponent - Get the exponent: 4141 /// 4142 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4143 /// 4144 /// where Op is the hexadecimal representation of floating point value. 4145 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4146 const TargetLowering &TLI, const SDLoc &dl) { 4147 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4148 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4149 SDValue t1 = DAG.getNode( 4150 ISD::SRL, dl, MVT::i32, t0, 4151 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4152 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4153 DAG.getConstant(127, dl, MVT::i32)); 4154 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4155 } 4156 4157 /// getF32Constant - Get 32-bit floating point constant. 4158 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4159 const SDLoc &dl) { 4160 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4161 MVT::f32); 4162 } 4163 4164 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4165 SelectionDAG &DAG) { 4166 // TODO: What fast-math-flags should be set on the floating-point nodes? 4167 4168 // IntegerPartOfX = ((int32_t)(t0); 4169 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4170 4171 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4172 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4173 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4174 4175 // IntegerPartOfX <<= 23; 4176 IntegerPartOfX = DAG.getNode( 4177 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4178 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4179 DAG.getDataLayout()))); 4180 4181 SDValue TwoToFractionalPartOfX; 4182 if (LimitFloatPrecision <= 6) { 4183 // For floating-point precision of 6: 4184 // 4185 // TwoToFractionalPartOfX = 4186 // 0.997535578f + 4187 // (0.735607626f + 0.252464424f * x) * x; 4188 // 4189 // error 0.0144103317, which is 6 bits 4190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4191 getF32Constant(DAG, 0x3e814304, dl)); 4192 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4193 getF32Constant(DAG, 0x3f3c50c8, dl)); 4194 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4195 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4196 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4197 } else if (LimitFloatPrecision <= 12) { 4198 // For floating-point precision of 12: 4199 // 4200 // TwoToFractionalPartOfX = 4201 // 0.999892986f + 4202 // (0.696457318f + 4203 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4204 // 4205 // error 0.000107046256, which is 13 to 14 bits 4206 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4207 getF32Constant(DAG, 0x3da235e3, dl)); 4208 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4209 getF32Constant(DAG, 0x3e65b8f3, dl)); 4210 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4211 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4212 getF32Constant(DAG, 0x3f324b07, dl)); 4213 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4214 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4215 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4216 } else { // LimitFloatPrecision <= 18 4217 // For floating-point precision of 18: 4218 // 4219 // TwoToFractionalPartOfX = 4220 // 0.999999982f + 4221 // (0.693148872f + 4222 // (0.240227044f + 4223 // (0.554906021e-1f + 4224 // (0.961591928e-2f + 4225 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4226 // error 2.47208000*10^(-7), which is better than 18 bits 4227 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4228 getF32Constant(DAG, 0x3924b03e, dl)); 4229 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4230 getF32Constant(DAG, 0x3ab24b87, dl)); 4231 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4232 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4233 getF32Constant(DAG, 0x3c1d8c17, dl)); 4234 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4235 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4236 getF32Constant(DAG, 0x3d634a1d, dl)); 4237 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4238 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4239 getF32Constant(DAG, 0x3e75fe14, dl)); 4240 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4241 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4242 getF32Constant(DAG, 0x3f317234, dl)); 4243 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4244 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4245 getF32Constant(DAG, 0x3f800000, dl)); 4246 } 4247 4248 // Add the exponent into the result in integer domain. 4249 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4250 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4251 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4252 } 4253 4254 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4255 /// limited-precision mode. 4256 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4257 const TargetLowering &TLI) { 4258 if (Op.getValueType() == MVT::f32 && 4259 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4260 4261 // Put the exponent in the right bit position for later addition to the 4262 // final result: 4263 // 4264 // #define LOG2OFe 1.4426950f 4265 // t0 = Op * LOG2OFe 4266 4267 // TODO: What fast-math-flags should be set here? 4268 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4269 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4270 return getLimitedPrecisionExp2(t0, dl, DAG); 4271 } 4272 4273 // No special expansion. 4274 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4275 } 4276 4277 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4278 /// limited-precision mode. 4279 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4280 const TargetLowering &TLI) { 4281 4282 // TODO: What fast-math-flags should be set on the floating-point nodes? 4283 4284 if (Op.getValueType() == MVT::f32 && 4285 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4286 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4287 4288 // Scale the exponent by log(2) [0.69314718f]. 4289 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4290 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4291 getF32Constant(DAG, 0x3f317218, dl)); 4292 4293 // Get the significand and build it into a floating-point number with 4294 // exponent of 1. 4295 SDValue X = GetSignificand(DAG, Op1, dl); 4296 4297 SDValue LogOfMantissa; 4298 if (LimitFloatPrecision <= 6) { 4299 // For floating-point precision of 6: 4300 // 4301 // LogofMantissa = 4302 // -1.1609546f + 4303 // (1.4034025f - 0.23903021f * x) * x; 4304 // 4305 // error 0.0034276066, which is better than 8 bits 4306 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4307 getF32Constant(DAG, 0xbe74c456, dl)); 4308 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4309 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4310 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4311 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4312 getF32Constant(DAG, 0x3f949a29, dl)); 4313 } else if (LimitFloatPrecision <= 12) { 4314 // For floating-point precision of 12: 4315 // 4316 // LogOfMantissa = 4317 // -1.7417939f + 4318 // (2.8212026f + 4319 // (-1.4699568f + 4320 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4321 // 4322 // error 0.000061011436, which is 14 bits 4323 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4324 getF32Constant(DAG, 0xbd67b6d6, dl)); 4325 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4326 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4327 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4328 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4329 getF32Constant(DAG, 0x3fbc278b, dl)); 4330 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4331 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4332 getF32Constant(DAG, 0x40348e95, dl)); 4333 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4334 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4335 getF32Constant(DAG, 0x3fdef31a, dl)); 4336 } else { // LimitFloatPrecision <= 18 4337 // For floating-point precision of 18: 4338 // 4339 // LogOfMantissa = 4340 // -2.1072184f + 4341 // (4.2372794f + 4342 // (-3.7029485f + 4343 // (2.2781945f + 4344 // (-0.87823314f + 4345 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4346 // 4347 // error 0.0000023660568, which is better than 18 bits 4348 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4349 getF32Constant(DAG, 0xbc91e5ac, dl)); 4350 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4351 getF32Constant(DAG, 0x3e4350aa, dl)); 4352 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4353 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4354 getF32Constant(DAG, 0x3f60d3e3, dl)); 4355 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4356 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4357 getF32Constant(DAG, 0x4011cdf0, dl)); 4358 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4359 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4360 getF32Constant(DAG, 0x406cfd1c, dl)); 4361 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4362 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4363 getF32Constant(DAG, 0x408797cb, dl)); 4364 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4365 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4366 getF32Constant(DAG, 0x4006dcab, dl)); 4367 } 4368 4369 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4370 } 4371 4372 // No special expansion. 4373 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4374 } 4375 4376 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4377 /// limited-precision mode. 4378 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4379 const TargetLowering &TLI) { 4380 4381 // TODO: What fast-math-flags should be set on the floating-point nodes? 4382 4383 if (Op.getValueType() == MVT::f32 && 4384 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4385 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4386 4387 // Get the exponent. 4388 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4389 4390 // Get the significand and build it into a floating-point number with 4391 // exponent of 1. 4392 SDValue X = GetSignificand(DAG, Op1, dl); 4393 4394 // Different possible minimax approximations of significand in 4395 // floating-point for various degrees of accuracy over [1,2]. 4396 SDValue Log2ofMantissa; 4397 if (LimitFloatPrecision <= 6) { 4398 // For floating-point precision of 6: 4399 // 4400 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4401 // 4402 // error 0.0049451742, which is more than 7 bits 4403 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4404 getF32Constant(DAG, 0xbeb08fe0, dl)); 4405 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4406 getF32Constant(DAG, 0x40019463, dl)); 4407 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4408 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4409 getF32Constant(DAG, 0x3fd6633d, dl)); 4410 } else if (LimitFloatPrecision <= 12) { 4411 // For floating-point precision of 12: 4412 // 4413 // Log2ofMantissa = 4414 // -2.51285454f + 4415 // (4.07009056f + 4416 // (-2.12067489f + 4417 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4418 // 4419 // error 0.0000876136000, which is better than 13 bits 4420 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4421 getF32Constant(DAG, 0xbda7262e, dl)); 4422 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4423 getF32Constant(DAG, 0x3f25280b, dl)); 4424 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4425 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4426 getF32Constant(DAG, 0x4007b923, dl)); 4427 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4428 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4429 getF32Constant(DAG, 0x40823e2f, dl)); 4430 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4431 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4432 getF32Constant(DAG, 0x4020d29c, dl)); 4433 } else { // LimitFloatPrecision <= 18 4434 // For floating-point precision of 18: 4435 // 4436 // Log2ofMantissa = 4437 // -3.0400495f + 4438 // (6.1129976f + 4439 // (-5.3420409f + 4440 // (3.2865683f + 4441 // (-1.2669343f + 4442 // (0.27515199f - 4443 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4444 // 4445 // error 0.0000018516, which is better than 18 bits 4446 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4447 getF32Constant(DAG, 0xbcd2769e, dl)); 4448 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4449 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4450 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4451 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4452 getF32Constant(DAG, 0x3fa22ae7, dl)); 4453 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4454 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4455 getF32Constant(DAG, 0x40525723, dl)); 4456 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4457 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4458 getF32Constant(DAG, 0x40aaf200, dl)); 4459 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4460 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4461 getF32Constant(DAG, 0x40c39dad, dl)); 4462 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4463 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4464 getF32Constant(DAG, 0x4042902c, dl)); 4465 } 4466 4467 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4468 } 4469 4470 // No special expansion. 4471 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4472 } 4473 4474 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4475 /// limited-precision mode. 4476 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4477 const TargetLowering &TLI) { 4478 4479 // TODO: What fast-math-flags should be set on the floating-point nodes? 4480 4481 if (Op.getValueType() == MVT::f32 && 4482 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4483 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4484 4485 // Scale the exponent by log10(2) [0.30102999f]. 4486 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4487 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4488 getF32Constant(DAG, 0x3e9a209a, dl)); 4489 4490 // Get the significand and build it into a floating-point number with 4491 // exponent of 1. 4492 SDValue X = GetSignificand(DAG, Op1, dl); 4493 4494 SDValue Log10ofMantissa; 4495 if (LimitFloatPrecision <= 6) { 4496 // For floating-point precision of 6: 4497 // 4498 // Log10ofMantissa = 4499 // -0.50419619f + 4500 // (0.60948995f - 0.10380950f * x) * x; 4501 // 4502 // error 0.0014886165, which is 6 bits 4503 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4504 getF32Constant(DAG, 0xbdd49a13, dl)); 4505 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4506 getF32Constant(DAG, 0x3f1c0789, dl)); 4507 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4508 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4509 getF32Constant(DAG, 0x3f011300, dl)); 4510 } else if (LimitFloatPrecision <= 12) { 4511 // For floating-point precision of 12: 4512 // 4513 // Log10ofMantissa = 4514 // -0.64831180f + 4515 // (0.91751397f + 4516 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4517 // 4518 // error 0.00019228036, which is better than 12 bits 4519 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4520 getF32Constant(DAG, 0x3d431f31, dl)); 4521 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4522 getF32Constant(DAG, 0x3ea21fb2, dl)); 4523 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4524 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4525 getF32Constant(DAG, 0x3f6ae232, dl)); 4526 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4527 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4528 getF32Constant(DAG, 0x3f25f7c3, dl)); 4529 } else { // LimitFloatPrecision <= 18 4530 // For floating-point precision of 18: 4531 // 4532 // Log10ofMantissa = 4533 // -0.84299375f + 4534 // (1.5327582f + 4535 // (-1.0688956f + 4536 // (0.49102474f + 4537 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4538 // 4539 // error 0.0000037995730, which is better than 18 bits 4540 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4541 getF32Constant(DAG, 0x3c5d51ce, dl)); 4542 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4543 getF32Constant(DAG, 0x3e00685a, dl)); 4544 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4545 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4546 getF32Constant(DAG, 0x3efb6798, dl)); 4547 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4548 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4549 getF32Constant(DAG, 0x3f88d192, dl)); 4550 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4551 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4552 getF32Constant(DAG, 0x3fc4316c, dl)); 4553 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4554 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4555 getF32Constant(DAG, 0x3f57ce70, dl)); 4556 } 4557 4558 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4559 } 4560 4561 // No special expansion. 4562 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4563 } 4564 4565 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4566 /// limited-precision mode. 4567 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4568 const TargetLowering &TLI) { 4569 if (Op.getValueType() == MVT::f32 && 4570 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4571 return getLimitedPrecisionExp2(Op, dl, DAG); 4572 4573 // No special expansion. 4574 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4575 } 4576 4577 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4578 /// limited-precision mode with x == 10.0f. 4579 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4580 SelectionDAG &DAG, const TargetLowering &TLI) { 4581 bool IsExp10 = false; 4582 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4583 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4584 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4585 APFloat Ten(10.0f); 4586 IsExp10 = LHSC->isExactlyValue(Ten); 4587 } 4588 } 4589 4590 // TODO: What fast-math-flags should be set on the FMUL node? 4591 if (IsExp10) { 4592 // Put the exponent in the right bit position for later addition to the 4593 // final result: 4594 // 4595 // #define LOG2OF10 3.3219281f 4596 // t0 = Op * LOG2OF10; 4597 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4598 getF32Constant(DAG, 0x40549a78, dl)); 4599 return getLimitedPrecisionExp2(t0, dl, DAG); 4600 } 4601 4602 // No special expansion. 4603 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4604 } 4605 4606 4607 /// ExpandPowI - Expand a llvm.powi intrinsic. 4608 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4609 SelectionDAG &DAG) { 4610 // If RHS is a constant, we can expand this out to a multiplication tree, 4611 // otherwise we end up lowering to a call to __powidf2 (for example). When 4612 // optimizing for size, we only want to do this if the expansion would produce 4613 // a small number of multiplies, otherwise we do the full expansion. 4614 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4615 // Get the exponent as a positive value. 4616 unsigned Val = RHSC->getSExtValue(); 4617 if ((int)Val < 0) Val = -Val; 4618 4619 // powi(x, 0) -> 1.0 4620 if (Val == 0) 4621 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4622 4623 const Function *F = DAG.getMachineFunction().getFunction(); 4624 if (!F->optForSize() || 4625 // If optimizing for size, don't insert too many multiplies. 4626 // This inserts up to 5 multiplies. 4627 countPopulation(Val) + Log2_32(Val) < 7) { 4628 // We use the simple binary decomposition method to generate the multiply 4629 // sequence. There are more optimal ways to do this (for example, 4630 // powi(x,15) generates one more multiply than it should), but this has 4631 // the benefit of being both really simple and much better than a libcall. 4632 SDValue Res; // Logically starts equal to 1.0 4633 SDValue CurSquare = LHS; 4634 // TODO: Intrinsics should have fast-math-flags that propagate to these 4635 // nodes. 4636 while (Val) { 4637 if (Val & 1) { 4638 if (Res.getNode()) 4639 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4640 else 4641 Res = CurSquare; // 1.0*CurSquare. 4642 } 4643 4644 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4645 CurSquare, CurSquare); 4646 Val >>= 1; 4647 } 4648 4649 // If the original was negative, invert the result, producing 1/(x*x*x). 4650 if (RHSC->getSExtValue() < 0) 4651 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4652 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4653 return Res; 4654 } 4655 } 4656 4657 // Otherwise, expand to a libcall. 4658 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4659 } 4660 4661 // getUnderlyingArgReg - Find underlying register used for a truncated or 4662 // bitcasted argument. 4663 static unsigned getUnderlyingArgReg(const SDValue &N) { 4664 switch (N.getOpcode()) { 4665 case ISD::CopyFromReg: 4666 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4667 case ISD::BITCAST: 4668 case ISD::AssertZext: 4669 case ISD::AssertSext: 4670 case ISD::TRUNCATE: 4671 return getUnderlyingArgReg(N.getOperand(0)); 4672 default: 4673 return 0; 4674 } 4675 } 4676 4677 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4678 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4679 /// At the end of instruction selection, they will be inserted to the entry BB. 4680 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4681 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4682 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4683 const Argument *Arg = dyn_cast<Argument>(V); 4684 if (!Arg) 4685 return false; 4686 4687 MachineFunction &MF = DAG.getMachineFunction(); 4688 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4689 4690 // Ignore inlined function arguments here. 4691 // 4692 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4693 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4694 return false; 4695 4696 Optional<MachineOperand> Op; 4697 // Some arguments' frame index is recorded during argument lowering. 4698 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4699 Op = MachineOperand::CreateFI(FI); 4700 4701 if (!Op && N.getNode()) { 4702 unsigned Reg = getUnderlyingArgReg(N); 4703 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4704 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4705 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4706 if (PR) 4707 Reg = PR; 4708 } 4709 if (Reg) 4710 Op = MachineOperand::CreateReg(Reg, false); 4711 } 4712 4713 if (!Op) { 4714 // Check if ValueMap has reg number. 4715 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4716 if (VMI != FuncInfo.ValueMap.end()) 4717 Op = MachineOperand::CreateReg(VMI->second, false); 4718 } 4719 4720 if (!Op && N.getNode()) 4721 // Check if frame index is available. 4722 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4723 if (FrameIndexSDNode *FINode = 4724 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4725 Op = MachineOperand::CreateFI(FINode->getIndex()); 4726 4727 if (!Op) 4728 return false; 4729 4730 assert(Variable->isValidLocationForIntrinsic(DL) && 4731 "Expected inlined-at fields to agree"); 4732 if (Op->isReg()) 4733 FuncInfo.ArgDbgValues.push_back( 4734 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4735 Op->getReg(), Offset, Variable, Expr)); 4736 else 4737 FuncInfo.ArgDbgValues.push_back( 4738 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4739 .add(*Op) 4740 .addImm(Offset) 4741 .addMetadata(Variable) 4742 .addMetadata(Expr)); 4743 4744 return true; 4745 } 4746 4747 /// Return the appropriate SDDbgValue based on N. 4748 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4749 DILocalVariable *Variable, 4750 DIExpression *Expr, int64_t Offset, 4751 const DebugLoc &dl, 4752 unsigned DbgSDNodeOrder) { 4753 SDDbgValue *SDV; 4754 auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode()); 4755 if (FISDN && Expr->startsWithDeref()) { 4756 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4757 // stack slot locations as such instead of as indirectly addressed 4758 // locations. 4759 ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1, 4760 Expr->elements_end()); 4761 DIExpression *DerefedDIExpr = 4762 DIExpression::get(*DAG.getContext(), TrailingElements); 4763 int FI = FISDN->getIndex(); 4764 SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl, 4765 DbgSDNodeOrder); 4766 } else { 4767 SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, 4768 Offset, dl, DbgSDNodeOrder); 4769 } 4770 return SDV; 4771 } 4772 4773 // VisualStudio defines setjmp as _setjmp 4774 #if defined(_MSC_VER) && defined(setjmp) && \ 4775 !defined(setjmp_undefined_for_msvc) 4776 # pragma push_macro("setjmp") 4777 # undef setjmp 4778 # define setjmp_undefined_for_msvc 4779 #endif 4780 4781 /// Lower the call to the specified intrinsic function. If we want to emit this 4782 /// as a call to a named external function, return the name. Otherwise, lower it 4783 /// and return null. 4784 const char * 4785 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4787 SDLoc sdl = getCurSDLoc(); 4788 DebugLoc dl = getCurDebugLoc(); 4789 SDValue Res; 4790 4791 switch (Intrinsic) { 4792 default: 4793 // By default, turn this into a target intrinsic node. 4794 visitTargetIntrinsic(I, Intrinsic); 4795 return nullptr; 4796 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4797 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4798 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4799 case Intrinsic::returnaddress: 4800 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4801 TLI.getPointerTy(DAG.getDataLayout()), 4802 getValue(I.getArgOperand(0)))); 4803 return nullptr; 4804 case Intrinsic::addressofreturnaddress: 4805 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4806 TLI.getPointerTy(DAG.getDataLayout()))); 4807 return nullptr; 4808 case Intrinsic::frameaddress: 4809 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4810 TLI.getPointerTy(DAG.getDataLayout()), 4811 getValue(I.getArgOperand(0)))); 4812 return nullptr; 4813 case Intrinsic::read_register: { 4814 Value *Reg = I.getArgOperand(0); 4815 SDValue Chain = getRoot(); 4816 SDValue RegName = 4817 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4818 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4819 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4820 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4821 setValue(&I, Res); 4822 DAG.setRoot(Res.getValue(1)); 4823 return nullptr; 4824 } 4825 case Intrinsic::write_register: { 4826 Value *Reg = I.getArgOperand(0); 4827 Value *RegValue = I.getArgOperand(1); 4828 SDValue Chain = getRoot(); 4829 SDValue RegName = 4830 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4831 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4832 RegName, getValue(RegValue))); 4833 return nullptr; 4834 } 4835 case Intrinsic::setjmp: 4836 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4837 case Intrinsic::longjmp: 4838 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4839 case Intrinsic::memcpy: { 4840 SDValue Op1 = getValue(I.getArgOperand(0)); 4841 SDValue Op2 = getValue(I.getArgOperand(1)); 4842 SDValue Op3 = getValue(I.getArgOperand(2)); 4843 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4844 if (!Align) 4845 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4846 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4847 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4848 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4849 false, isTC, 4850 MachinePointerInfo(I.getArgOperand(0)), 4851 MachinePointerInfo(I.getArgOperand(1))); 4852 updateDAGForMaybeTailCall(MC); 4853 return nullptr; 4854 } 4855 case Intrinsic::memset: { 4856 SDValue Op1 = getValue(I.getArgOperand(0)); 4857 SDValue Op2 = getValue(I.getArgOperand(1)); 4858 SDValue Op3 = getValue(I.getArgOperand(2)); 4859 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4860 if (!Align) 4861 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4862 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4863 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4864 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4865 isTC, MachinePointerInfo(I.getArgOperand(0))); 4866 updateDAGForMaybeTailCall(MS); 4867 return nullptr; 4868 } 4869 case Intrinsic::memmove: { 4870 SDValue Op1 = getValue(I.getArgOperand(0)); 4871 SDValue Op2 = getValue(I.getArgOperand(1)); 4872 SDValue Op3 = getValue(I.getArgOperand(2)); 4873 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4874 if (!Align) 4875 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4876 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4877 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4878 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4879 isTC, MachinePointerInfo(I.getArgOperand(0)), 4880 MachinePointerInfo(I.getArgOperand(1))); 4881 updateDAGForMaybeTailCall(MM); 4882 return nullptr; 4883 } 4884 case Intrinsic::memcpy_element_atomic: { 4885 SDValue Dst = getValue(I.getArgOperand(0)); 4886 SDValue Src = getValue(I.getArgOperand(1)); 4887 SDValue NumElements = getValue(I.getArgOperand(2)); 4888 SDValue ElementSize = getValue(I.getArgOperand(3)); 4889 4890 // Emit a library call. 4891 TargetLowering::ArgListTy Args; 4892 TargetLowering::ArgListEntry Entry; 4893 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4894 Entry.Node = Dst; 4895 Args.push_back(Entry); 4896 4897 Entry.Node = Src; 4898 Args.push_back(Entry); 4899 4900 Entry.Ty = I.getArgOperand(2)->getType(); 4901 Entry.Node = NumElements; 4902 Args.push_back(Entry); 4903 4904 Entry.Ty = Type::getInt32Ty(*DAG.getContext()); 4905 Entry.Node = ElementSize; 4906 Args.push_back(Entry); 4907 4908 uint64_t ElementSizeConstant = 4909 cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4910 RTLIB::Libcall LibraryCall = 4911 RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant); 4912 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4913 report_fatal_error("Unsupported element size"); 4914 4915 TargetLowering::CallLoweringInfo CLI(DAG); 4916 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 4917 TLI.getLibcallCallingConv(LibraryCall), 4918 Type::getVoidTy(*DAG.getContext()), 4919 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 4920 TLI.getPointerTy(DAG.getDataLayout())), 4921 std::move(Args)); 4922 4923 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4924 DAG.setRoot(CallResult.second); 4925 return nullptr; 4926 } 4927 case Intrinsic::dbg_declare: { 4928 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4929 DILocalVariable *Variable = DI.getVariable(); 4930 DIExpression *Expression = DI.getExpression(); 4931 const Value *Address = DI.getAddress(); 4932 assert(Variable && "Missing variable"); 4933 if (!Address) { 4934 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4935 return nullptr; 4936 } 4937 4938 // Check if address has undef value. 4939 if (isa<UndefValue>(Address) || 4940 (Address->use_empty() && !isa<Argument>(Address))) { 4941 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4942 return nullptr; 4943 } 4944 4945 SDValue &N = NodeMap[Address]; 4946 if (!N.getNode() && isa<Argument>(Address)) 4947 // Check unused arguments map. 4948 N = UnusedArgNodeMap[Address]; 4949 SDDbgValue *SDV; 4950 if (N.getNode()) { 4951 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4952 Address = BCI->getOperand(0); 4953 // Parameters are handled specially. 4954 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4955 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4956 if (isParameter && FINode) { 4957 // Byval parameter. We have a frame index at this point. 4958 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4959 FINode->getIndex(), 0, dl, SDNodeOrder); 4960 } else if (isa<Argument>(Address)) { 4961 // Address is an argument, so try to emit its dbg value using 4962 // virtual register info from the FuncInfo.ValueMap. 4963 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4964 N); 4965 return nullptr; 4966 } else { 4967 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4968 true, 0, dl, SDNodeOrder); 4969 } 4970 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4971 } else { 4972 // If Address is an argument then try to emit its dbg value using 4973 // virtual register info from the FuncInfo.ValueMap. 4974 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4975 N)) { 4976 // If variable is pinned by a alloca in dominating bb then 4977 // use StaticAllocaMap. 4978 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4979 if (AI->getParent() != DI.getParent()) { 4980 DenseMap<const AllocaInst*, int>::iterator SI = 4981 FuncInfo.StaticAllocaMap.find(AI); 4982 if (SI != FuncInfo.StaticAllocaMap.end()) { 4983 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4984 0, dl, SDNodeOrder); 4985 DAG.AddDbgValue(SDV, nullptr, false); 4986 return nullptr; 4987 } 4988 } 4989 } 4990 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4991 } 4992 } 4993 return nullptr; 4994 } 4995 case Intrinsic::dbg_value: { 4996 const DbgValueInst &DI = cast<DbgValueInst>(I); 4997 assert(DI.getVariable() && "Missing variable"); 4998 4999 DILocalVariable *Variable = DI.getVariable(); 5000 DIExpression *Expression = DI.getExpression(); 5001 uint64_t Offset = DI.getOffset(); 5002 const Value *V = DI.getValue(); 5003 if (!V) 5004 return nullptr; 5005 5006 SDDbgValue *SDV; 5007 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5008 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 5009 SDNodeOrder); 5010 DAG.AddDbgValue(SDV, nullptr, false); 5011 } else { 5012 // Do not use getValue() in here; we don't want to generate code at 5013 // this point if it hasn't been done yet. 5014 SDValue N = NodeMap[V]; 5015 if (!N.getNode() && isa<Argument>(V)) 5016 // Check unused arguments map. 5017 N = UnusedArgNodeMap[V]; 5018 if (N.getNode()) { 5019 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 5020 false, N)) { 5021 SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder); 5022 DAG.AddDbgValue(SDV, N.getNode(), false); 5023 } 5024 } else if (!V->use_empty() ) { 5025 // Do not call getValue(V) yet, as we don't want to generate code. 5026 // Remember it for later. 5027 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5028 DanglingDebugInfoMap[V] = DDI; 5029 } else { 5030 // We may expand this to cover more cases. One case where we have no 5031 // data available is an unreferenced parameter. 5032 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5033 } 5034 } 5035 5036 // Build a debug info table entry. 5037 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 5038 V = BCI->getOperand(0); 5039 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 5040 // Don't handle byval struct arguments or VLAs, for example. 5041 if (!AI) { 5042 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5043 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5044 return nullptr; 5045 } 5046 DenseMap<const AllocaInst*, int>::iterator SI = 5047 FuncInfo.StaticAllocaMap.find(AI); 5048 if (SI == FuncInfo.StaticAllocaMap.end()) 5049 return nullptr; // VLAs. 5050 return nullptr; 5051 } 5052 5053 case Intrinsic::eh_typeid_for: { 5054 // Find the type id for the given typeinfo. 5055 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5056 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5057 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5058 setValue(&I, Res); 5059 return nullptr; 5060 } 5061 5062 case Intrinsic::eh_return_i32: 5063 case Intrinsic::eh_return_i64: 5064 DAG.getMachineFunction().setCallsEHReturn(true); 5065 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5066 MVT::Other, 5067 getControlRoot(), 5068 getValue(I.getArgOperand(0)), 5069 getValue(I.getArgOperand(1)))); 5070 return nullptr; 5071 case Intrinsic::eh_unwind_init: 5072 DAG.getMachineFunction().setCallsUnwindInit(true); 5073 return nullptr; 5074 case Intrinsic::eh_dwarf_cfa: { 5075 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5076 TLI.getPointerTy(DAG.getDataLayout()), 5077 getValue(I.getArgOperand(0)))); 5078 return nullptr; 5079 } 5080 case Intrinsic::eh_sjlj_callsite: { 5081 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5082 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5083 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5084 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5085 5086 MMI.setCurrentCallSite(CI->getZExtValue()); 5087 return nullptr; 5088 } 5089 case Intrinsic::eh_sjlj_functioncontext: { 5090 // Get and store the index of the function context. 5091 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5092 AllocaInst *FnCtx = 5093 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5094 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5095 MFI.setFunctionContextIndex(FI); 5096 return nullptr; 5097 } 5098 case Intrinsic::eh_sjlj_setjmp: { 5099 SDValue Ops[2]; 5100 Ops[0] = getRoot(); 5101 Ops[1] = getValue(I.getArgOperand(0)); 5102 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5103 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5104 setValue(&I, Op.getValue(0)); 5105 DAG.setRoot(Op.getValue(1)); 5106 return nullptr; 5107 } 5108 case Intrinsic::eh_sjlj_longjmp: { 5109 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5110 getRoot(), getValue(I.getArgOperand(0)))); 5111 return nullptr; 5112 } 5113 case Intrinsic::eh_sjlj_setup_dispatch: { 5114 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5115 getRoot())); 5116 return nullptr; 5117 } 5118 5119 case Intrinsic::masked_gather: 5120 visitMaskedGather(I); 5121 return nullptr; 5122 case Intrinsic::masked_load: 5123 visitMaskedLoad(I); 5124 return nullptr; 5125 case Intrinsic::masked_scatter: 5126 visitMaskedScatter(I); 5127 return nullptr; 5128 case Intrinsic::masked_store: 5129 visitMaskedStore(I); 5130 return nullptr; 5131 case Intrinsic::masked_expandload: 5132 visitMaskedLoad(I, true /* IsExpanding */); 5133 return nullptr; 5134 case Intrinsic::masked_compressstore: 5135 visitMaskedStore(I, true /* IsCompressing */); 5136 return nullptr; 5137 case Intrinsic::x86_mmx_pslli_w: 5138 case Intrinsic::x86_mmx_pslli_d: 5139 case Intrinsic::x86_mmx_pslli_q: 5140 case Intrinsic::x86_mmx_psrli_w: 5141 case Intrinsic::x86_mmx_psrli_d: 5142 case Intrinsic::x86_mmx_psrli_q: 5143 case Intrinsic::x86_mmx_psrai_w: 5144 case Intrinsic::x86_mmx_psrai_d: { 5145 SDValue ShAmt = getValue(I.getArgOperand(1)); 5146 if (isa<ConstantSDNode>(ShAmt)) { 5147 visitTargetIntrinsic(I, Intrinsic); 5148 return nullptr; 5149 } 5150 unsigned NewIntrinsic = 0; 5151 EVT ShAmtVT = MVT::v2i32; 5152 switch (Intrinsic) { 5153 case Intrinsic::x86_mmx_pslli_w: 5154 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5155 break; 5156 case Intrinsic::x86_mmx_pslli_d: 5157 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5158 break; 5159 case Intrinsic::x86_mmx_pslli_q: 5160 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5161 break; 5162 case Intrinsic::x86_mmx_psrli_w: 5163 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5164 break; 5165 case Intrinsic::x86_mmx_psrli_d: 5166 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5167 break; 5168 case Intrinsic::x86_mmx_psrli_q: 5169 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5170 break; 5171 case Intrinsic::x86_mmx_psrai_w: 5172 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5173 break; 5174 case Intrinsic::x86_mmx_psrai_d: 5175 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5176 break; 5177 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5178 } 5179 5180 // The vector shift intrinsics with scalars uses 32b shift amounts but 5181 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5182 // to be zero. 5183 // We must do this early because v2i32 is not a legal type. 5184 SDValue ShOps[2]; 5185 ShOps[0] = ShAmt; 5186 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5187 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5188 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5189 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5190 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5191 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5192 getValue(I.getArgOperand(0)), ShAmt); 5193 setValue(&I, Res); 5194 return nullptr; 5195 } 5196 case Intrinsic::powi: 5197 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5198 getValue(I.getArgOperand(1)), DAG)); 5199 return nullptr; 5200 case Intrinsic::log: 5201 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5202 return nullptr; 5203 case Intrinsic::log2: 5204 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5205 return nullptr; 5206 case Intrinsic::log10: 5207 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5208 return nullptr; 5209 case Intrinsic::exp: 5210 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5211 return nullptr; 5212 case Intrinsic::exp2: 5213 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5214 return nullptr; 5215 case Intrinsic::pow: 5216 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5217 getValue(I.getArgOperand(1)), DAG, TLI)); 5218 return nullptr; 5219 case Intrinsic::sqrt: 5220 case Intrinsic::fabs: 5221 case Intrinsic::sin: 5222 case Intrinsic::cos: 5223 case Intrinsic::floor: 5224 case Intrinsic::ceil: 5225 case Intrinsic::trunc: 5226 case Intrinsic::rint: 5227 case Intrinsic::nearbyint: 5228 case Intrinsic::round: 5229 case Intrinsic::canonicalize: { 5230 unsigned Opcode; 5231 switch (Intrinsic) { 5232 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5233 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5234 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5235 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5236 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5237 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5238 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5239 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5240 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5241 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5242 case Intrinsic::round: Opcode = ISD::FROUND; break; 5243 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5244 } 5245 5246 setValue(&I, DAG.getNode(Opcode, sdl, 5247 getValue(I.getArgOperand(0)).getValueType(), 5248 getValue(I.getArgOperand(0)))); 5249 return nullptr; 5250 } 5251 case Intrinsic::minnum: { 5252 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5253 unsigned Opc = 5254 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5255 ? ISD::FMINNAN 5256 : ISD::FMINNUM; 5257 setValue(&I, DAG.getNode(Opc, sdl, VT, 5258 getValue(I.getArgOperand(0)), 5259 getValue(I.getArgOperand(1)))); 5260 return nullptr; 5261 } 5262 case Intrinsic::maxnum: { 5263 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5264 unsigned Opc = 5265 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5266 ? ISD::FMAXNAN 5267 : ISD::FMAXNUM; 5268 setValue(&I, DAG.getNode(Opc, sdl, VT, 5269 getValue(I.getArgOperand(0)), 5270 getValue(I.getArgOperand(1)))); 5271 return nullptr; 5272 } 5273 case Intrinsic::copysign: 5274 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5275 getValue(I.getArgOperand(0)).getValueType(), 5276 getValue(I.getArgOperand(0)), 5277 getValue(I.getArgOperand(1)))); 5278 return nullptr; 5279 case Intrinsic::fma: 5280 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5281 getValue(I.getArgOperand(0)).getValueType(), 5282 getValue(I.getArgOperand(0)), 5283 getValue(I.getArgOperand(1)), 5284 getValue(I.getArgOperand(2)))); 5285 return nullptr; 5286 case Intrinsic::experimental_constrained_fadd: 5287 case Intrinsic::experimental_constrained_fsub: 5288 case Intrinsic::experimental_constrained_fmul: 5289 case Intrinsic::experimental_constrained_fdiv: 5290 case Intrinsic::experimental_constrained_frem: 5291 visitConstrainedFPIntrinsic(I, Intrinsic); 5292 return nullptr; 5293 case Intrinsic::fmuladd: { 5294 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5295 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5296 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5297 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5298 getValue(I.getArgOperand(0)).getValueType(), 5299 getValue(I.getArgOperand(0)), 5300 getValue(I.getArgOperand(1)), 5301 getValue(I.getArgOperand(2)))); 5302 } else { 5303 // TODO: Intrinsic calls should have fast-math-flags. 5304 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5305 getValue(I.getArgOperand(0)).getValueType(), 5306 getValue(I.getArgOperand(0)), 5307 getValue(I.getArgOperand(1))); 5308 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5309 getValue(I.getArgOperand(0)).getValueType(), 5310 Mul, 5311 getValue(I.getArgOperand(2))); 5312 setValue(&I, Add); 5313 } 5314 return nullptr; 5315 } 5316 case Intrinsic::convert_to_fp16: 5317 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5318 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5319 getValue(I.getArgOperand(0)), 5320 DAG.getTargetConstant(0, sdl, 5321 MVT::i32)))); 5322 return nullptr; 5323 case Intrinsic::convert_from_fp16: 5324 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5325 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5326 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5327 getValue(I.getArgOperand(0))))); 5328 return nullptr; 5329 case Intrinsic::pcmarker: { 5330 SDValue Tmp = getValue(I.getArgOperand(0)); 5331 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5332 return nullptr; 5333 } 5334 case Intrinsic::readcyclecounter: { 5335 SDValue Op = getRoot(); 5336 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5337 DAG.getVTList(MVT::i64, MVT::Other), Op); 5338 setValue(&I, Res); 5339 DAG.setRoot(Res.getValue(1)); 5340 return nullptr; 5341 } 5342 case Intrinsic::bitreverse: 5343 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5344 getValue(I.getArgOperand(0)).getValueType(), 5345 getValue(I.getArgOperand(0)))); 5346 return nullptr; 5347 case Intrinsic::bswap: 5348 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5349 getValue(I.getArgOperand(0)).getValueType(), 5350 getValue(I.getArgOperand(0)))); 5351 return nullptr; 5352 case Intrinsic::cttz: { 5353 SDValue Arg = getValue(I.getArgOperand(0)); 5354 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5355 EVT Ty = Arg.getValueType(); 5356 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5357 sdl, Ty, Arg)); 5358 return nullptr; 5359 } 5360 case Intrinsic::ctlz: { 5361 SDValue Arg = getValue(I.getArgOperand(0)); 5362 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5363 EVT Ty = Arg.getValueType(); 5364 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5365 sdl, Ty, Arg)); 5366 return nullptr; 5367 } 5368 case Intrinsic::ctpop: { 5369 SDValue Arg = getValue(I.getArgOperand(0)); 5370 EVT Ty = Arg.getValueType(); 5371 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5372 return nullptr; 5373 } 5374 case Intrinsic::stacksave: { 5375 SDValue Op = getRoot(); 5376 Res = DAG.getNode( 5377 ISD::STACKSAVE, sdl, 5378 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5379 setValue(&I, Res); 5380 DAG.setRoot(Res.getValue(1)); 5381 return nullptr; 5382 } 5383 case Intrinsic::stackrestore: { 5384 Res = getValue(I.getArgOperand(0)); 5385 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5386 return nullptr; 5387 } 5388 case Intrinsic::get_dynamic_area_offset: { 5389 SDValue Op = getRoot(); 5390 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5391 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5392 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5393 // target. 5394 if (PtrTy != ResTy) 5395 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5396 " intrinsic!"); 5397 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5398 Op); 5399 DAG.setRoot(Op); 5400 setValue(&I, Res); 5401 return nullptr; 5402 } 5403 case Intrinsic::stackguard: { 5404 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5405 MachineFunction &MF = DAG.getMachineFunction(); 5406 const Module &M = *MF.getFunction()->getParent(); 5407 SDValue Chain = getRoot(); 5408 if (TLI.useLoadStackGuardNode()) { 5409 Res = getLoadStackGuard(DAG, sdl, Chain); 5410 } else { 5411 const Value *Global = TLI.getSDagStackGuard(M); 5412 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5413 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5414 MachinePointerInfo(Global, 0), Align, 5415 MachineMemOperand::MOVolatile); 5416 } 5417 DAG.setRoot(Chain); 5418 setValue(&I, Res); 5419 return nullptr; 5420 } 5421 case Intrinsic::stackprotector: { 5422 // Emit code into the DAG to store the stack guard onto the stack. 5423 MachineFunction &MF = DAG.getMachineFunction(); 5424 MachineFrameInfo &MFI = MF.getFrameInfo(); 5425 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5426 SDValue Src, Chain = getRoot(); 5427 5428 if (TLI.useLoadStackGuardNode()) 5429 Src = getLoadStackGuard(DAG, sdl, Chain); 5430 else 5431 Src = getValue(I.getArgOperand(0)); // The guard's value. 5432 5433 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5434 5435 int FI = FuncInfo.StaticAllocaMap[Slot]; 5436 MFI.setStackProtectorIndex(FI); 5437 5438 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5439 5440 // Store the stack protector onto the stack. 5441 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5442 DAG.getMachineFunction(), FI), 5443 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5444 setValue(&I, Res); 5445 DAG.setRoot(Res); 5446 return nullptr; 5447 } 5448 case Intrinsic::objectsize: { 5449 // If we don't know by now, we're never going to know. 5450 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5451 5452 assert(CI && "Non-constant type in __builtin_object_size?"); 5453 5454 SDValue Arg = getValue(I.getCalledValue()); 5455 EVT Ty = Arg.getValueType(); 5456 5457 if (CI->isZero()) 5458 Res = DAG.getConstant(-1ULL, sdl, Ty); 5459 else 5460 Res = DAG.getConstant(0, sdl, Ty); 5461 5462 setValue(&I, Res); 5463 return nullptr; 5464 } 5465 case Intrinsic::annotation: 5466 case Intrinsic::ptr_annotation: 5467 case Intrinsic::invariant_group_barrier: 5468 // Drop the intrinsic, but forward the value 5469 setValue(&I, getValue(I.getOperand(0))); 5470 return nullptr; 5471 case Intrinsic::assume: 5472 case Intrinsic::var_annotation: 5473 // Discard annotate attributes and assumptions 5474 return nullptr; 5475 5476 case Intrinsic::init_trampoline: { 5477 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5478 5479 SDValue Ops[6]; 5480 Ops[0] = getRoot(); 5481 Ops[1] = getValue(I.getArgOperand(0)); 5482 Ops[2] = getValue(I.getArgOperand(1)); 5483 Ops[3] = getValue(I.getArgOperand(2)); 5484 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5485 Ops[5] = DAG.getSrcValue(F); 5486 5487 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5488 5489 DAG.setRoot(Res); 5490 return nullptr; 5491 } 5492 case Intrinsic::adjust_trampoline: { 5493 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5494 TLI.getPointerTy(DAG.getDataLayout()), 5495 getValue(I.getArgOperand(0)))); 5496 return nullptr; 5497 } 5498 case Intrinsic::gcroot: { 5499 MachineFunction &MF = DAG.getMachineFunction(); 5500 const Function *F = MF.getFunction(); 5501 (void)F; 5502 assert(F->hasGC() && 5503 "only valid in functions with gc specified, enforced by Verifier"); 5504 assert(GFI && "implied by previous"); 5505 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5506 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5507 5508 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5509 GFI->addStackRoot(FI->getIndex(), TypeMap); 5510 return nullptr; 5511 } 5512 case Intrinsic::gcread: 5513 case Intrinsic::gcwrite: 5514 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5515 case Intrinsic::flt_rounds: 5516 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5517 return nullptr; 5518 5519 case Intrinsic::expect: { 5520 // Just replace __builtin_expect(exp, c) with EXP. 5521 setValue(&I, getValue(I.getArgOperand(0))); 5522 return nullptr; 5523 } 5524 5525 case Intrinsic::debugtrap: 5526 case Intrinsic::trap: { 5527 StringRef TrapFuncName = 5528 I.getAttributes() 5529 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5530 .getValueAsString(); 5531 if (TrapFuncName.empty()) { 5532 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5533 ISD::TRAP : ISD::DEBUGTRAP; 5534 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5535 return nullptr; 5536 } 5537 TargetLowering::ArgListTy Args; 5538 5539 TargetLowering::CallLoweringInfo CLI(DAG); 5540 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5541 CallingConv::C, I.getType(), 5542 DAG.getExternalSymbol(TrapFuncName.data(), 5543 TLI.getPointerTy(DAG.getDataLayout())), 5544 std::move(Args)); 5545 5546 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5547 DAG.setRoot(Result.second); 5548 return nullptr; 5549 } 5550 5551 case Intrinsic::uadd_with_overflow: 5552 case Intrinsic::sadd_with_overflow: 5553 case Intrinsic::usub_with_overflow: 5554 case Intrinsic::ssub_with_overflow: 5555 case Intrinsic::umul_with_overflow: 5556 case Intrinsic::smul_with_overflow: { 5557 ISD::NodeType Op; 5558 switch (Intrinsic) { 5559 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5560 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5561 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5562 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5563 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5564 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5565 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5566 } 5567 SDValue Op1 = getValue(I.getArgOperand(0)); 5568 SDValue Op2 = getValue(I.getArgOperand(1)); 5569 5570 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5571 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5572 return nullptr; 5573 } 5574 case Intrinsic::prefetch: { 5575 SDValue Ops[5]; 5576 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5577 Ops[0] = getRoot(); 5578 Ops[1] = getValue(I.getArgOperand(0)); 5579 Ops[2] = getValue(I.getArgOperand(1)); 5580 Ops[3] = getValue(I.getArgOperand(2)); 5581 Ops[4] = getValue(I.getArgOperand(3)); 5582 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5583 DAG.getVTList(MVT::Other), Ops, 5584 EVT::getIntegerVT(*Context, 8), 5585 MachinePointerInfo(I.getArgOperand(0)), 5586 0, /* align */ 5587 false, /* volatile */ 5588 rw==0, /* read */ 5589 rw==1)); /* write */ 5590 return nullptr; 5591 } 5592 case Intrinsic::lifetime_start: 5593 case Intrinsic::lifetime_end: { 5594 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5595 // Stack coloring is not enabled in O0, discard region information. 5596 if (TM.getOptLevel() == CodeGenOpt::None) 5597 return nullptr; 5598 5599 SmallVector<Value *, 4> Allocas; 5600 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5601 5602 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5603 E = Allocas.end(); Object != E; ++Object) { 5604 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5605 5606 // Could not find an Alloca. 5607 if (!LifetimeObject) 5608 continue; 5609 5610 // First check that the Alloca is static, otherwise it won't have a 5611 // valid frame index. 5612 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5613 if (SI == FuncInfo.StaticAllocaMap.end()) 5614 return nullptr; 5615 5616 int FI = SI->second; 5617 5618 SDValue Ops[2]; 5619 Ops[0] = getRoot(); 5620 Ops[1] = 5621 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5622 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5623 5624 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5625 DAG.setRoot(Res); 5626 } 5627 return nullptr; 5628 } 5629 case Intrinsic::invariant_start: 5630 // Discard region information. 5631 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5632 return nullptr; 5633 case Intrinsic::invariant_end: 5634 // Discard region information. 5635 return nullptr; 5636 case Intrinsic::clear_cache: 5637 return TLI.getClearCacheBuiltinName(); 5638 case Intrinsic::donothing: 5639 // ignore 5640 return nullptr; 5641 case Intrinsic::experimental_stackmap: { 5642 visitStackmap(I); 5643 return nullptr; 5644 } 5645 case Intrinsic::experimental_patchpoint_void: 5646 case Intrinsic::experimental_patchpoint_i64: { 5647 visitPatchpoint(&I); 5648 return nullptr; 5649 } 5650 case Intrinsic::experimental_gc_statepoint: { 5651 LowerStatepoint(ImmutableStatepoint(&I)); 5652 return nullptr; 5653 } 5654 case Intrinsic::experimental_gc_result: { 5655 visitGCResult(cast<GCResultInst>(I)); 5656 return nullptr; 5657 } 5658 case Intrinsic::experimental_gc_relocate: { 5659 visitGCRelocate(cast<GCRelocateInst>(I)); 5660 return nullptr; 5661 } 5662 case Intrinsic::instrprof_increment: 5663 llvm_unreachable("instrprof failed to lower an increment"); 5664 case Intrinsic::instrprof_value_profile: 5665 llvm_unreachable("instrprof failed to lower a value profiling call"); 5666 case Intrinsic::localescape: { 5667 MachineFunction &MF = DAG.getMachineFunction(); 5668 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5669 5670 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5671 // is the same on all targets. 5672 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5673 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5674 if (isa<ConstantPointerNull>(Arg)) 5675 continue; // Skip null pointers. They represent a hole in index space. 5676 AllocaInst *Slot = cast<AllocaInst>(Arg); 5677 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5678 "can only escape static allocas"); 5679 int FI = FuncInfo.StaticAllocaMap[Slot]; 5680 MCSymbol *FrameAllocSym = 5681 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5682 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5684 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5685 .addSym(FrameAllocSym) 5686 .addFrameIndex(FI); 5687 } 5688 5689 return nullptr; 5690 } 5691 5692 case Intrinsic::localrecover: { 5693 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5694 MachineFunction &MF = DAG.getMachineFunction(); 5695 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5696 5697 // Get the symbol that defines the frame offset. 5698 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5699 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5700 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5701 MCSymbol *FrameAllocSym = 5702 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5703 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5704 5705 // Create a MCSymbol for the label to avoid any target lowering 5706 // that would make this PC relative. 5707 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5708 SDValue OffsetVal = 5709 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5710 5711 // Add the offset to the FP. 5712 Value *FP = I.getArgOperand(1); 5713 SDValue FPVal = getValue(FP); 5714 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5715 setValue(&I, Add); 5716 5717 return nullptr; 5718 } 5719 5720 case Intrinsic::eh_exceptionpointer: 5721 case Intrinsic::eh_exceptioncode: { 5722 // Get the exception pointer vreg, copy from it, and resize it to fit. 5723 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5724 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5725 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5726 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5727 SDValue N = 5728 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5729 if (Intrinsic == Intrinsic::eh_exceptioncode) 5730 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5731 setValue(&I, N); 5732 return nullptr; 5733 } 5734 5735 case Intrinsic::experimental_deoptimize: 5736 LowerDeoptimizeCall(&I); 5737 return nullptr; 5738 } 5739 } 5740 5741 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(const CallInst &I, 5742 unsigned Intrinsic) { 5743 SDLoc sdl = getCurSDLoc(); 5744 unsigned Opcode; 5745 switch (Intrinsic) { 5746 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5747 case Intrinsic::experimental_constrained_fadd: 5748 Opcode = ISD::STRICT_FADD; 5749 break; 5750 case Intrinsic::experimental_constrained_fsub: 5751 Opcode = ISD::STRICT_FSUB; 5752 break; 5753 case Intrinsic::experimental_constrained_fmul: 5754 Opcode = ISD::STRICT_FMUL; 5755 break; 5756 case Intrinsic::experimental_constrained_fdiv: 5757 Opcode = ISD::STRICT_FDIV; 5758 break; 5759 case Intrinsic::experimental_constrained_frem: 5760 Opcode = ISD::STRICT_FREM; 5761 break; 5762 } 5763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5764 SDValue Chain = getRoot(); 5765 SDValue Ops[3] = { Chain, getValue(I.getArgOperand(0)), 5766 getValue(I.getArgOperand(1)) }; 5767 SmallVector<EVT, 4> ValueVTs; 5768 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5769 ValueVTs.push_back(MVT::Other); // Out chain 5770 5771 SDVTList VTs = DAG.getVTList(ValueVTs); 5772 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Ops); 5773 5774 assert(Result.getNode()->getNumValues() == 2); 5775 SDValue OutChain = Result.getValue(1); 5776 DAG.setRoot(OutChain); 5777 SDValue FPResult = Result.getValue(0); 5778 setValue(&I, FPResult); 5779 } 5780 5781 std::pair<SDValue, SDValue> 5782 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5783 const BasicBlock *EHPadBB) { 5784 MachineFunction &MF = DAG.getMachineFunction(); 5785 MachineModuleInfo &MMI = MF.getMMI(); 5786 MCSymbol *BeginLabel = nullptr; 5787 5788 if (EHPadBB) { 5789 // Insert a label before the invoke call to mark the try range. This can be 5790 // used to detect deletion of the invoke via the MachineModuleInfo. 5791 BeginLabel = MMI.getContext().createTempSymbol(); 5792 5793 // For SjLj, keep track of which landing pads go with which invokes 5794 // so as to maintain the ordering of pads in the LSDA. 5795 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5796 if (CallSiteIndex) { 5797 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5798 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5799 5800 // Now that the call site is handled, stop tracking it. 5801 MMI.setCurrentCallSite(0); 5802 } 5803 5804 // Both PendingLoads and PendingExports must be flushed here; 5805 // this call might not return. 5806 (void)getRoot(); 5807 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5808 5809 CLI.setChain(getRoot()); 5810 } 5811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5812 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5813 5814 assert((CLI.IsTailCall || Result.second.getNode()) && 5815 "Non-null chain expected with non-tail call!"); 5816 assert((Result.second.getNode() || !Result.first.getNode()) && 5817 "Null value expected with tail call!"); 5818 5819 if (!Result.second.getNode()) { 5820 // As a special case, a null chain means that a tail call has been emitted 5821 // and the DAG root is already updated. 5822 HasTailCall = true; 5823 5824 // Since there's no actual continuation from this block, nothing can be 5825 // relying on us setting vregs for them. 5826 PendingExports.clear(); 5827 } else { 5828 DAG.setRoot(Result.second); 5829 } 5830 5831 if (EHPadBB) { 5832 // Insert a label at the end of the invoke call to mark the try range. This 5833 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5834 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5835 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5836 5837 // Inform MachineModuleInfo of range. 5838 if (MF.hasEHFunclets()) { 5839 assert(CLI.CS); 5840 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5841 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5842 BeginLabel, EndLabel); 5843 } else { 5844 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5845 } 5846 } 5847 5848 return Result; 5849 } 5850 5851 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5852 bool isTailCall, 5853 const BasicBlock *EHPadBB) { 5854 auto &DL = DAG.getDataLayout(); 5855 FunctionType *FTy = CS.getFunctionType(); 5856 Type *RetTy = CS.getType(); 5857 5858 TargetLowering::ArgListTy Args; 5859 Args.reserve(CS.arg_size()); 5860 5861 const Value *SwiftErrorVal = nullptr; 5862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5863 5864 // We can't tail call inside a function with a swifterror argument. Lowering 5865 // does not support this yet. It would have to move into the swifterror 5866 // register before the call. 5867 auto *Caller = CS.getInstruction()->getParent()->getParent(); 5868 if (TLI.supportSwiftError() && 5869 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 5870 isTailCall = false; 5871 5872 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5873 i != e; ++i) { 5874 TargetLowering::ArgListEntry Entry; 5875 const Value *V = *i; 5876 5877 // Skip empty types 5878 if (V->getType()->isEmptyTy()) 5879 continue; 5880 5881 SDValue ArgNode = getValue(V); 5882 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5883 5884 // Skip the first return-type Attribute to get to params. 5885 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5886 5887 // Use swifterror virtual register as input to the call. 5888 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 5889 SwiftErrorVal = V; 5890 // We find the virtual register for the actual swifterror argument. 5891 // Instead of using the Value, we use the virtual register instead. 5892 Entry.Node = 5893 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V), 5894 EVT(TLI.getPointerTy(DL))); 5895 } 5896 5897 Args.push_back(Entry); 5898 5899 // If we have an explicit sret argument that is an Instruction, (i.e., it 5900 // might point to function-local memory), we can't meaningfully tail-call. 5901 if (Entry.IsSRet && isa<Instruction>(V)) 5902 isTailCall = false; 5903 } 5904 5905 // Check if target-independent constraints permit a tail call here. 5906 // Target-dependent constraints are checked within TLI->LowerCallTo. 5907 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5908 isTailCall = false; 5909 5910 // Disable tail calls if there is an swifterror argument. Targets have not 5911 // been updated to support tail calls. 5912 if (TLI.supportSwiftError() && SwiftErrorVal) 5913 isTailCall = false; 5914 5915 TargetLowering::CallLoweringInfo CLI(DAG); 5916 CLI.setDebugLoc(getCurSDLoc()) 5917 .setChain(getRoot()) 5918 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5919 .setTailCall(isTailCall) 5920 .setConvergent(CS.isConvergent()); 5921 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5922 5923 if (Result.first.getNode()) { 5924 const Instruction *Inst = CS.getInstruction(); 5925 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5926 setValue(Inst, Result.first); 5927 } 5928 5929 // The last element of CLI.InVals has the SDValue for swifterror return. 5930 // Here we copy it to a virtual register and update SwiftErrorMap for 5931 // book-keeping. 5932 if (SwiftErrorVal && TLI.supportSwiftError()) { 5933 // Get the last element of InVals. 5934 SDValue Src = CLI.InVals.back(); 5935 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5936 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5937 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5938 // We update the virtual register for the actual swifterror argument. 5939 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5940 DAG.setRoot(CopyNode); 5941 } 5942 } 5943 5944 /// Return true if it only matters that the value is equal or not-equal to zero. 5945 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5946 for (const User *U : V->users()) { 5947 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5948 if (IC->isEquality()) 5949 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5950 if (C->isNullValue()) 5951 continue; 5952 // Unknown instruction. 5953 return false; 5954 } 5955 return true; 5956 } 5957 5958 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5959 SelectionDAGBuilder &Builder) { 5960 5961 // Check to see if this load can be trivially constant folded, e.g. if the 5962 // input is from a string literal. 5963 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5964 // Cast pointer to the type we really want to load. 5965 Type *LoadTy = 5966 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 5967 if (LoadVT.isVector()) 5968 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 5969 5970 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5971 PointerType::getUnqual(LoadTy)); 5972 5973 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5974 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5975 return Builder.getValue(LoadCst); 5976 } 5977 5978 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5979 // still constant memory, the input chain can be the entry node. 5980 SDValue Root; 5981 bool ConstantMemory = false; 5982 5983 // Do not serialize (non-volatile) loads of constant memory with anything. 5984 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5985 Root = Builder.DAG.getEntryNode(); 5986 ConstantMemory = true; 5987 } else { 5988 // Do not serialize non-volatile loads against each other. 5989 Root = Builder.DAG.getRoot(); 5990 } 5991 5992 SDValue Ptr = Builder.getValue(PtrVal); 5993 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5994 Ptr, MachinePointerInfo(PtrVal), 5995 /* Alignment = */ 1); 5996 5997 if (!ConstantMemory) 5998 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5999 return LoadVal; 6000 } 6001 6002 /// Record the value for an instruction that produces an integer result, 6003 /// converting the type where necessary. 6004 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6005 SDValue Value, 6006 bool IsSigned) { 6007 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6008 I.getType(), true); 6009 if (IsSigned) 6010 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6011 else 6012 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6013 setValue(&I, Value); 6014 } 6015 6016 /// See if we can lower a memcmp call into an optimized form. If so, return 6017 /// true and lower it. Otherwise return false, and it will be lowered like a 6018 /// normal call. 6019 /// The caller already checked that \p I calls the appropriate LibFunc with a 6020 /// correct prototype. 6021 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6022 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6023 const Value *Size = I.getArgOperand(2); 6024 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6025 if (CSize && CSize->getZExtValue() == 0) { 6026 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6027 I.getType(), true); 6028 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6029 return true; 6030 } 6031 6032 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6033 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6034 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6035 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6036 if (Res.first.getNode()) { 6037 processIntegerCallValue(I, Res.first, true); 6038 PendingLoads.push_back(Res.second); 6039 return true; 6040 } 6041 6042 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6043 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6044 if (!CSize || !IsOnlyUsedInZeroEqualityComparison(&I)) 6045 return false; 6046 6047 // If the target has a fast compare for the given size, it will return a 6048 // preferred load type for that size. Require that the load VT is legal and 6049 // that the target supports unaligned loads of that type. Otherwise, return 6050 // INVALID. 6051 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6053 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6054 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6055 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6056 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6057 // TODO: Check alignment of src and dest ptrs. 6058 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6059 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6060 if (!TLI.isTypeLegal(LVT) || 6061 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6062 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6063 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6064 } 6065 6066 return LVT; 6067 }; 6068 6069 // This turns into unaligned loads. We only do this if the target natively 6070 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6071 // we'll only produce a small number of byte loads. 6072 MVT LoadVT; 6073 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6074 switch (NumBitsToCompare) { 6075 default: 6076 return false; 6077 case 16: 6078 LoadVT = MVT::i16; 6079 break; 6080 case 32: 6081 LoadVT = MVT::i32; 6082 break; 6083 case 64: 6084 case 128: 6085 case 256: 6086 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6087 break; 6088 } 6089 6090 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6091 return false; 6092 6093 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6094 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6095 6096 // Bitcast to a wide integer type if the loads are vectors. 6097 if (LoadVT.isVector()) { 6098 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6099 LoadL = DAG.getBitcast(CmpVT, LoadL); 6100 LoadR = DAG.getBitcast(CmpVT, LoadR); 6101 } 6102 6103 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6104 processIntegerCallValue(I, Cmp, false); 6105 return true; 6106 } 6107 6108 /// See if we can lower a memchr call into an optimized form. If so, return 6109 /// true and lower it. Otherwise return false, and it will be lowered like a 6110 /// normal call. 6111 /// The caller already checked that \p I calls the appropriate LibFunc with a 6112 /// correct prototype. 6113 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6114 const Value *Src = I.getArgOperand(0); 6115 const Value *Char = I.getArgOperand(1); 6116 const Value *Length = I.getArgOperand(2); 6117 6118 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6119 std::pair<SDValue, SDValue> Res = 6120 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6121 getValue(Src), getValue(Char), getValue(Length), 6122 MachinePointerInfo(Src)); 6123 if (Res.first.getNode()) { 6124 setValue(&I, Res.first); 6125 PendingLoads.push_back(Res.second); 6126 return true; 6127 } 6128 6129 return false; 6130 } 6131 6132 /// See if we can lower a mempcpy call into an optimized form. If so, return 6133 /// true and lower it. Otherwise return false, and it will be lowered like a 6134 /// normal call. 6135 /// The caller already checked that \p I calls the appropriate LibFunc with a 6136 /// correct prototype. 6137 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6138 SDValue Dst = getValue(I.getArgOperand(0)); 6139 SDValue Src = getValue(I.getArgOperand(1)); 6140 SDValue Size = getValue(I.getArgOperand(2)); 6141 6142 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6143 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6144 unsigned Align = std::min(DstAlign, SrcAlign); 6145 if (Align == 0) // Alignment of one or both could not be inferred. 6146 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6147 6148 bool isVol = false; 6149 SDLoc sdl = getCurSDLoc(); 6150 6151 // In the mempcpy context we need to pass in a false value for isTailCall 6152 // because the return pointer needs to be adjusted by the size of 6153 // the copied memory. 6154 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6155 false, /*isTailCall=*/false, 6156 MachinePointerInfo(I.getArgOperand(0)), 6157 MachinePointerInfo(I.getArgOperand(1))); 6158 assert(MC.getNode() != nullptr && 6159 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6160 DAG.setRoot(MC); 6161 6162 // Check if Size needs to be truncated or extended. 6163 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6164 6165 // Adjust return pointer to point just past the last dst byte. 6166 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6167 Dst, Size); 6168 setValue(&I, DstPlusSize); 6169 return true; 6170 } 6171 6172 /// See if we can lower a strcpy call into an optimized form. If so, return 6173 /// true and lower it, otherwise return false and it will be lowered like a 6174 /// normal call. 6175 /// The caller already checked that \p I calls the appropriate LibFunc with a 6176 /// correct prototype. 6177 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6178 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6179 6180 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6181 std::pair<SDValue, SDValue> Res = 6182 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6183 getValue(Arg0), getValue(Arg1), 6184 MachinePointerInfo(Arg0), 6185 MachinePointerInfo(Arg1), isStpcpy); 6186 if (Res.first.getNode()) { 6187 setValue(&I, Res.first); 6188 DAG.setRoot(Res.second); 6189 return true; 6190 } 6191 6192 return false; 6193 } 6194 6195 /// See if we can lower a strcmp call into an optimized form. If so, return 6196 /// true and lower it, otherwise return false and it will be lowered like a 6197 /// normal call. 6198 /// The caller already checked that \p I calls the appropriate LibFunc with a 6199 /// correct prototype. 6200 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6201 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6202 6203 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6204 std::pair<SDValue, SDValue> Res = 6205 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6206 getValue(Arg0), getValue(Arg1), 6207 MachinePointerInfo(Arg0), 6208 MachinePointerInfo(Arg1)); 6209 if (Res.first.getNode()) { 6210 processIntegerCallValue(I, Res.first, true); 6211 PendingLoads.push_back(Res.second); 6212 return true; 6213 } 6214 6215 return false; 6216 } 6217 6218 /// See if we can lower a strlen call into an optimized form. If so, return 6219 /// true and lower it, otherwise return false and it will be lowered like a 6220 /// normal call. 6221 /// The caller already checked that \p I calls the appropriate LibFunc with a 6222 /// correct prototype. 6223 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6224 const Value *Arg0 = I.getArgOperand(0); 6225 6226 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6227 std::pair<SDValue, SDValue> Res = 6228 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6229 getValue(Arg0), MachinePointerInfo(Arg0)); 6230 if (Res.first.getNode()) { 6231 processIntegerCallValue(I, Res.first, false); 6232 PendingLoads.push_back(Res.second); 6233 return true; 6234 } 6235 6236 return false; 6237 } 6238 6239 /// See if we can lower a strnlen call into an optimized form. If so, return 6240 /// true and lower it, otherwise return false and it will be lowered like a 6241 /// normal call. 6242 /// The caller already checked that \p I calls the appropriate LibFunc with a 6243 /// correct prototype. 6244 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6245 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6246 6247 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6248 std::pair<SDValue, SDValue> Res = 6249 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6250 getValue(Arg0), getValue(Arg1), 6251 MachinePointerInfo(Arg0)); 6252 if (Res.first.getNode()) { 6253 processIntegerCallValue(I, Res.first, false); 6254 PendingLoads.push_back(Res.second); 6255 return true; 6256 } 6257 6258 return false; 6259 } 6260 6261 /// See if we can lower a unary floating-point operation into an SDNode with 6262 /// the specified Opcode. If so, return true and lower it, otherwise return 6263 /// false and it will be lowered like a normal call. 6264 /// The caller already checked that \p I calls the appropriate LibFunc with a 6265 /// correct prototype. 6266 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6267 unsigned Opcode) { 6268 // We already checked this call's prototype; verify it doesn't modify errno. 6269 if (!I.onlyReadsMemory()) 6270 return false; 6271 6272 SDValue Tmp = getValue(I.getArgOperand(0)); 6273 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6274 return true; 6275 } 6276 6277 /// See if we can lower a binary floating-point operation into an SDNode with 6278 /// the specified Opcode. If so, return true and lower it. Otherwise return 6279 /// false, and it will be lowered like a normal call. 6280 /// The caller already checked that \p I calls the appropriate LibFunc with a 6281 /// correct prototype. 6282 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6283 unsigned Opcode) { 6284 // We already checked this call's prototype; verify it doesn't modify errno. 6285 if (!I.onlyReadsMemory()) 6286 return false; 6287 6288 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6289 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6290 EVT VT = Tmp0.getValueType(); 6291 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6292 return true; 6293 } 6294 6295 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6296 // Handle inline assembly differently. 6297 if (isa<InlineAsm>(I.getCalledValue())) { 6298 visitInlineAsm(&I); 6299 return; 6300 } 6301 6302 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6303 computeUsesVAFloatArgument(I, MMI); 6304 6305 const char *RenameFn = nullptr; 6306 if (Function *F = I.getCalledFunction()) { 6307 if (F->isDeclaration()) { 6308 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6309 if (unsigned IID = II->getIntrinsicID(F)) { 6310 RenameFn = visitIntrinsicCall(I, IID); 6311 if (!RenameFn) 6312 return; 6313 } 6314 } 6315 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6316 RenameFn = visitIntrinsicCall(I, IID); 6317 if (!RenameFn) 6318 return; 6319 } 6320 } 6321 6322 // Check for well-known libc/libm calls. If the function is internal, it 6323 // can't be a library call. Don't do the check if marked as nobuiltin for 6324 // some reason. 6325 LibFunc Func; 6326 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6327 LibInfo->getLibFunc(*F, Func) && 6328 LibInfo->hasOptimizedCodeGen(Func)) { 6329 switch (Func) { 6330 default: break; 6331 case LibFunc_copysign: 6332 case LibFunc_copysignf: 6333 case LibFunc_copysignl: 6334 // We already checked this call's prototype; verify it doesn't modify 6335 // errno. 6336 if (I.onlyReadsMemory()) { 6337 SDValue LHS = getValue(I.getArgOperand(0)); 6338 SDValue RHS = getValue(I.getArgOperand(1)); 6339 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6340 LHS.getValueType(), LHS, RHS)); 6341 return; 6342 } 6343 break; 6344 case LibFunc_fabs: 6345 case LibFunc_fabsf: 6346 case LibFunc_fabsl: 6347 if (visitUnaryFloatCall(I, ISD::FABS)) 6348 return; 6349 break; 6350 case LibFunc_fmin: 6351 case LibFunc_fminf: 6352 case LibFunc_fminl: 6353 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6354 return; 6355 break; 6356 case LibFunc_fmax: 6357 case LibFunc_fmaxf: 6358 case LibFunc_fmaxl: 6359 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6360 return; 6361 break; 6362 case LibFunc_sin: 6363 case LibFunc_sinf: 6364 case LibFunc_sinl: 6365 if (visitUnaryFloatCall(I, ISD::FSIN)) 6366 return; 6367 break; 6368 case LibFunc_cos: 6369 case LibFunc_cosf: 6370 case LibFunc_cosl: 6371 if (visitUnaryFloatCall(I, ISD::FCOS)) 6372 return; 6373 break; 6374 case LibFunc_sqrt: 6375 case LibFunc_sqrtf: 6376 case LibFunc_sqrtl: 6377 case LibFunc_sqrt_finite: 6378 case LibFunc_sqrtf_finite: 6379 case LibFunc_sqrtl_finite: 6380 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6381 return; 6382 break; 6383 case LibFunc_floor: 6384 case LibFunc_floorf: 6385 case LibFunc_floorl: 6386 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6387 return; 6388 break; 6389 case LibFunc_nearbyint: 6390 case LibFunc_nearbyintf: 6391 case LibFunc_nearbyintl: 6392 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6393 return; 6394 break; 6395 case LibFunc_ceil: 6396 case LibFunc_ceilf: 6397 case LibFunc_ceill: 6398 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6399 return; 6400 break; 6401 case LibFunc_rint: 6402 case LibFunc_rintf: 6403 case LibFunc_rintl: 6404 if (visitUnaryFloatCall(I, ISD::FRINT)) 6405 return; 6406 break; 6407 case LibFunc_round: 6408 case LibFunc_roundf: 6409 case LibFunc_roundl: 6410 if (visitUnaryFloatCall(I, ISD::FROUND)) 6411 return; 6412 break; 6413 case LibFunc_trunc: 6414 case LibFunc_truncf: 6415 case LibFunc_truncl: 6416 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6417 return; 6418 break; 6419 case LibFunc_log2: 6420 case LibFunc_log2f: 6421 case LibFunc_log2l: 6422 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6423 return; 6424 break; 6425 case LibFunc_exp2: 6426 case LibFunc_exp2f: 6427 case LibFunc_exp2l: 6428 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6429 return; 6430 break; 6431 case LibFunc_memcmp: 6432 if (visitMemCmpCall(I)) 6433 return; 6434 break; 6435 case LibFunc_mempcpy: 6436 if (visitMemPCpyCall(I)) 6437 return; 6438 break; 6439 case LibFunc_memchr: 6440 if (visitMemChrCall(I)) 6441 return; 6442 break; 6443 case LibFunc_strcpy: 6444 if (visitStrCpyCall(I, false)) 6445 return; 6446 break; 6447 case LibFunc_stpcpy: 6448 if (visitStrCpyCall(I, true)) 6449 return; 6450 break; 6451 case LibFunc_strcmp: 6452 if (visitStrCmpCall(I)) 6453 return; 6454 break; 6455 case LibFunc_strlen: 6456 if (visitStrLenCall(I)) 6457 return; 6458 break; 6459 case LibFunc_strnlen: 6460 if (visitStrNLenCall(I)) 6461 return; 6462 break; 6463 } 6464 } 6465 } 6466 6467 SDValue Callee; 6468 if (!RenameFn) 6469 Callee = getValue(I.getCalledValue()); 6470 else 6471 Callee = DAG.getExternalSymbol( 6472 RenameFn, 6473 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6474 6475 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6476 // have to do anything here to lower funclet bundles. 6477 assert(!I.hasOperandBundlesOtherThan( 6478 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6479 "Cannot lower calls with arbitrary operand bundles!"); 6480 6481 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6482 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6483 else 6484 // Check if we can potentially perform a tail call. More detailed checking 6485 // is be done within LowerCallTo, after more information about the call is 6486 // known. 6487 LowerCallTo(&I, Callee, I.isTailCall()); 6488 } 6489 6490 namespace { 6491 6492 /// AsmOperandInfo - This contains information for each constraint that we are 6493 /// lowering. 6494 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6495 public: 6496 /// CallOperand - If this is the result output operand or a clobber 6497 /// this is null, otherwise it is the incoming operand to the CallInst. 6498 /// This gets modified as the asm is processed. 6499 SDValue CallOperand; 6500 6501 /// AssignedRegs - If this is a register or register class operand, this 6502 /// contains the set of register corresponding to the operand. 6503 RegsForValue AssignedRegs; 6504 6505 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6506 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6507 } 6508 6509 /// Whether or not this operand accesses memory 6510 bool hasMemory(const TargetLowering &TLI) const { 6511 // Indirect operand accesses access memory. 6512 if (isIndirect) 6513 return true; 6514 6515 for (const auto &Code : Codes) 6516 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6517 return true; 6518 6519 return false; 6520 } 6521 6522 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6523 /// corresponds to. If there is no Value* for this operand, it returns 6524 /// MVT::Other. 6525 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6526 const DataLayout &DL) const { 6527 if (!CallOperandVal) return MVT::Other; 6528 6529 if (isa<BasicBlock>(CallOperandVal)) 6530 return TLI.getPointerTy(DL); 6531 6532 llvm::Type *OpTy = CallOperandVal->getType(); 6533 6534 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6535 // If this is an indirect operand, the operand is a pointer to the 6536 // accessed type. 6537 if (isIndirect) { 6538 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6539 if (!PtrTy) 6540 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6541 OpTy = PtrTy->getElementType(); 6542 } 6543 6544 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6545 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6546 if (STy->getNumElements() == 1) 6547 OpTy = STy->getElementType(0); 6548 6549 // If OpTy is not a single value, it may be a struct/union that we 6550 // can tile with integers. 6551 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6552 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6553 switch (BitSize) { 6554 default: break; 6555 case 1: 6556 case 8: 6557 case 16: 6558 case 32: 6559 case 64: 6560 case 128: 6561 OpTy = IntegerType::get(Context, BitSize); 6562 break; 6563 } 6564 } 6565 6566 return TLI.getValueType(DL, OpTy, true); 6567 } 6568 }; 6569 6570 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6571 6572 } // end anonymous namespace 6573 6574 /// Make sure that the output operand \p OpInfo and its corresponding input 6575 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6576 /// out). 6577 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6578 SDISelAsmOperandInfo &MatchingOpInfo, 6579 SelectionDAG &DAG) { 6580 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6581 return; 6582 6583 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6584 const auto &TLI = DAG.getTargetLoweringInfo(); 6585 6586 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6587 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6588 OpInfo.ConstraintVT); 6589 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6590 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6591 MatchingOpInfo.ConstraintVT); 6592 if ((OpInfo.ConstraintVT.isInteger() != 6593 MatchingOpInfo.ConstraintVT.isInteger()) || 6594 (MatchRC.second != InputRC.second)) { 6595 // FIXME: error out in a more elegant fashion 6596 report_fatal_error("Unsupported asm: input constraint" 6597 " with a matching output constraint of" 6598 " incompatible type!"); 6599 } 6600 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6601 } 6602 6603 /// Get a direct memory input to behave well as an indirect operand. 6604 /// This may introduce stores, hence the need for a \p Chain. 6605 /// \return The (possibly updated) chain. 6606 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6607 SDISelAsmOperandInfo &OpInfo, 6608 SelectionDAG &DAG) { 6609 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6610 6611 // If we don't have an indirect input, put it in the constpool if we can, 6612 // otherwise spill it to a stack slot. 6613 // TODO: This isn't quite right. We need to handle these according to 6614 // the addressing mode that the constraint wants. Also, this may take 6615 // an additional register for the computation and we don't want that 6616 // either. 6617 6618 // If the operand is a float, integer, or vector constant, spill to a 6619 // constant pool entry to get its address. 6620 const Value *OpVal = OpInfo.CallOperandVal; 6621 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6622 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6623 OpInfo.CallOperand = DAG.getConstantPool( 6624 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6625 return Chain; 6626 } 6627 6628 // Otherwise, create a stack slot and emit a store to it before the asm. 6629 Type *Ty = OpVal->getType(); 6630 auto &DL = DAG.getDataLayout(); 6631 uint64_t TySize = DL.getTypeAllocSize(Ty); 6632 unsigned Align = DL.getPrefTypeAlignment(Ty); 6633 MachineFunction &MF = DAG.getMachineFunction(); 6634 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6635 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL)); 6636 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6637 MachinePointerInfo::getFixedStack(MF, SSFI)); 6638 OpInfo.CallOperand = StackSlot; 6639 6640 return Chain; 6641 } 6642 6643 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6644 /// specified operand. We prefer to assign virtual registers, to allow the 6645 /// register allocator to handle the assignment process. However, if the asm 6646 /// uses features that we can't model on machineinstrs, we have SDISel do the 6647 /// allocation. This produces generally horrible, but correct, code. 6648 /// 6649 /// OpInfo describes the operand. 6650 /// 6651 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6652 const SDLoc &DL, 6653 SDISelAsmOperandInfo &OpInfo) { 6654 LLVMContext &Context = *DAG.getContext(); 6655 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 SmallVector<unsigned, 4> Regs; 6658 6659 // If this is a constraint for a single physreg, or a constraint for a 6660 // register class, find it. 6661 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6662 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6663 OpInfo.ConstraintCode, 6664 OpInfo.ConstraintVT); 6665 6666 unsigned NumRegs = 1; 6667 if (OpInfo.ConstraintVT != MVT::Other) { 6668 // If this is a FP input in an integer register (or visa versa) insert a bit 6669 // cast of the input value. More generally, handle any case where the input 6670 // value disagrees with the register class we plan to stick this in. 6671 if (OpInfo.Type == InlineAsm::isInput && 6672 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6673 // Try to convert to the first EVT that the reg class contains. If the 6674 // types are identical size, use a bitcast to convert (e.g. two differing 6675 // vector types). 6676 MVT RegVT = *PhysReg.second->vt_begin(); 6677 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6678 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6679 RegVT, OpInfo.CallOperand); 6680 OpInfo.ConstraintVT = RegVT; 6681 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6682 // If the input is a FP value and we want it in FP registers, do a 6683 // bitcast to the corresponding integer type. This turns an f64 value 6684 // into i64, which can be passed with two i32 values on a 32-bit 6685 // machine. 6686 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6687 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6688 RegVT, OpInfo.CallOperand); 6689 OpInfo.ConstraintVT = RegVT; 6690 } 6691 } 6692 6693 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6694 } 6695 6696 MVT RegVT; 6697 EVT ValueVT = OpInfo.ConstraintVT; 6698 6699 // If this is a constraint for a specific physical register, like {r17}, 6700 // assign it now. 6701 if (unsigned AssignedReg = PhysReg.first) { 6702 const TargetRegisterClass *RC = PhysReg.second; 6703 if (OpInfo.ConstraintVT == MVT::Other) 6704 ValueVT = *RC->vt_begin(); 6705 6706 // Get the actual register value type. This is important, because the user 6707 // may have asked for (e.g.) the AX register in i32 type. We need to 6708 // remember that AX is actually i16 to get the right extension. 6709 RegVT = *RC->vt_begin(); 6710 6711 // This is a explicit reference to a physical register. 6712 Regs.push_back(AssignedReg); 6713 6714 // If this is an expanded reference, add the rest of the regs to Regs. 6715 if (NumRegs != 1) { 6716 TargetRegisterClass::iterator I = RC->begin(); 6717 for (; *I != AssignedReg; ++I) 6718 assert(I != RC->end() && "Didn't find reg!"); 6719 6720 // Already added the first reg. 6721 --NumRegs; ++I; 6722 for (; NumRegs; --NumRegs, ++I) { 6723 assert(I != RC->end() && "Ran out of registers to allocate!"); 6724 Regs.push_back(*I); 6725 } 6726 } 6727 6728 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6729 return; 6730 } 6731 6732 // Otherwise, if this was a reference to an LLVM register class, create vregs 6733 // for this reference. 6734 if (const TargetRegisterClass *RC = PhysReg.second) { 6735 RegVT = *RC->vt_begin(); 6736 if (OpInfo.ConstraintVT == MVT::Other) 6737 ValueVT = RegVT; 6738 6739 // Create the appropriate number of virtual registers. 6740 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6741 for (; NumRegs; --NumRegs) 6742 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6743 6744 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6745 return; 6746 } 6747 6748 // Otherwise, we couldn't allocate enough registers for this. 6749 } 6750 6751 static unsigned 6752 findMatchingInlineAsmOperand(unsigned OperandNo, 6753 const std::vector<SDValue> &AsmNodeOperands) { 6754 // Scan until we find the definition we already emitted of this operand. 6755 unsigned CurOp = InlineAsm::Op_FirstOperand; 6756 for (; OperandNo; --OperandNo) { 6757 // Advance to the next operand. 6758 unsigned OpFlag = 6759 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6760 assert((InlineAsm::isRegDefKind(OpFlag) || 6761 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6762 InlineAsm::isMemKind(OpFlag)) && 6763 "Skipped past definitions?"); 6764 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6765 } 6766 return CurOp; 6767 } 6768 6769 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6770 /// \return true if it has succeeded, false otherwise 6771 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6772 MVT RegVT, SelectionDAG &DAG) { 6773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6774 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6775 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 6776 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6777 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6778 else 6779 return false; 6780 } 6781 return true; 6782 } 6783 6784 class ExtraFlags { 6785 unsigned Flags = 0; 6786 6787 public: 6788 explicit ExtraFlags(ImmutableCallSite CS) { 6789 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6790 if (IA->hasSideEffects()) 6791 Flags |= InlineAsm::Extra_HasSideEffects; 6792 if (IA->isAlignStack()) 6793 Flags |= InlineAsm::Extra_IsAlignStack; 6794 if (CS.isConvergent()) 6795 Flags |= InlineAsm::Extra_IsConvergent; 6796 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6797 } 6798 6799 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 6800 // Ideally, we would only check against memory constraints. However, the 6801 // meaning of an Other constraint can be target-specific and we can't easily 6802 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6803 // for Other constraints as well. 6804 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6805 OpInfo.ConstraintType == TargetLowering::C_Other) { 6806 if (OpInfo.Type == InlineAsm::isInput) 6807 Flags |= InlineAsm::Extra_MayLoad; 6808 else if (OpInfo.Type == InlineAsm::isOutput) 6809 Flags |= InlineAsm::Extra_MayStore; 6810 else if (OpInfo.Type == InlineAsm::isClobber) 6811 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6812 } 6813 } 6814 6815 unsigned get() const { return Flags; } 6816 }; 6817 6818 /// visitInlineAsm - Handle a call to an InlineAsm object. 6819 /// 6820 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6821 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6822 6823 /// ConstraintOperands - Information about all of the constraints. 6824 SDISelAsmOperandInfoVector ConstraintOperands; 6825 6826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6827 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6828 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6829 6830 bool hasMemory = false; 6831 6832 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6833 ExtraFlags ExtraInfo(CS); 6834 6835 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6836 unsigned ResNo = 0; // ResNo - The result number of the next output. 6837 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6838 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6839 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6840 6841 MVT OpVT = MVT::Other; 6842 6843 // Compute the value type for each operand. 6844 if (OpInfo.Type == InlineAsm::isInput || 6845 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 6846 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6847 6848 // Process the call argument. BasicBlocks are labels, currently appearing 6849 // only in asm's. 6850 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6851 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6852 } else { 6853 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6854 } 6855 6856 OpVT = 6857 OpInfo 6858 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 6859 .getSimpleVT(); 6860 } 6861 6862 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 6863 // The return value of the call is this value. As such, there is no 6864 // corresponding argument. 6865 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6866 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6867 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6868 STy->getElementType(ResNo)); 6869 } else { 6870 assert(ResNo == 0 && "Asm only has one result!"); 6871 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6872 } 6873 ++ResNo; 6874 } 6875 6876 OpInfo.ConstraintVT = OpVT; 6877 6878 if (!hasMemory) 6879 hasMemory = OpInfo.hasMemory(TLI); 6880 6881 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6882 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 6883 auto TargetConstraint = TargetConstraints[i]; 6884 6885 // Compute the constraint code and ConstraintType to use. 6886 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 6887 6888 ExtraInfo.update(TargetConstraint); 6889 } 6890 6891 SDValue Chain, Flag; 6892 6893 // We won't need to flush pending loads if this asm doesn't touch 6894 // memory and is nonvolatile. 6895 if (hasMemory || IA->hasSideEffects()) 6896 Chain = getRoot(); 6897 else 6898 Chain = DAG.getRoot(); 6899 6900 // Second pass over the constraints: compute which constraint option to use 6901 // and assign registers to constraints that want a specific physreg. 6902 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6903 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6904 6905 // If this is an output operand with a matching input operand, look up the 6906 // matching input. If their types mismatch, e.g. one is an integer, the 6907 // other is floating point, or their sizes are different, flag it as an 6908 // error. 6909 if (OpInfo.hasMatchingInput()) { 6910 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6911 patchMatchingInput(OpInfo, Input, DAG); 6912 } 6913 6914 // Compute the constraint code and ConstraintType to use. 6915 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6916 6917 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6918 OpInfo.Type == InlineAsm::isClobber) 6919 continue; 6920 6921 // If this is a memory input, and if the operand is not indirect, do what we 6922 // need to to provide an address for the memory input. 6923 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6924 !OpInfo.isIndirect) { 6925 assert((OpInfo.isMultipleAlternative || 6926 (OpInfo.Type == InlineAsm::isInput)) && 6927 "Can only indirectify direct input operands!"); 6928 6929 // Memory operands really want the address of the value. 6930 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 6931 6932 // There is no longer a Value* corresponding to this operand. 6933 OpInfo.CallOperandVal = nullptr; 6934 6935 // It is now an indirect operand. 6936 OpInfo.isIndirect = true; 6937 } 6938 6939 // If this constraint is for a specific register, allocate it before 6940 // anything else. 6941 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6942 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6943 } 6944 6945 // Third pass - Loop over all of the operands, assigning virtual or physregs 6946 // to register class operands. 6947 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6948 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6949 6950 // C_Register operands have already been allocated, Other/Memory don't need 6951 // to be. 6952 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6953 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6954 } 6955 6956 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6957 std::vector<SDValue> AsmNodeOperands; 6958 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6959 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6960 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6961 6962 // If we have a !srcloc metadata node associated with it, we want to attach 6963 // this to the ultimately generated inline asm machineinstr. To do this, we 6964 // pass in the third operand as this (potentially null) inline asm MDNode. 6965 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6966 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6967 6968 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6969 // bits as operand 3. 6970 AsmNodeOperands.push_back(DAG.getTargetConstant( 6971 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6972 6973 // Loop over all of the inputs, copying the operand values into the 6974 // appropriate registers and processing the output regs. 6975 RegsForValue RetValRegs; 6976 6977 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6978 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6979 6980 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6981 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6982 6983 switch (OpInfo.Type) { 6984 case InlineAsm::isOutput: { 6985 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6986 OpInfo.ConstraintType != TargetLowering::C_Register) { 6987 // Memory output, or 'other' output (e.g. 'X' constraint). 6988 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6989 6990 unsigned ConstraintID = 6991 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6992 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6993 "Failed to convert memory constraint code to constraint id."); 6994 6995 // Add information to the INLINEASM node to know about this output. 6996 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6997 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6998 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6999 MVT::i32)); 7000 AsmNodeOperands.push_back(OpInfo.CallOperand); 7001 break; 7002 } 7003 7004 // Otherwise, this is a register or register class output. 7005 7006 // Copy the output from the appropriate register. Find a register that 7007 // we can use. 7008 if (OpInfo.AssignedRegs.Regs.empty()) { 7009 emitInlineAsmError( 7010 CS, "couldn't allocate output register for constraint '" + 7011 Twine(OpInfo.ConstraintCode) + "'"); 7012 return; 7013 } 7014 7015 // If this is an indirect operand, store through the pointer after the 7016 // asm. 7017 if (OpInfo.isIndirect) { 7018 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7019 OpInfo.CallOperandVal)); 7020 } else { 7021 // This is the result value of the call. 7022 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7023 // Concatenate this output onto the outputs list. 7024 RetValRegs.append(OpInfo.AssignedRegs); 7025 } 7026 7027 // Add information to the INLINEASM node to know that this register is 7028 // set. 7029 OpInfo.AssignedRegs 7030 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7031 ? InlineAsm::Kind_RegDefEarlyClobber 7032 : InlineAsm::Kind_RegDef, 7033 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7034 break; 7035 } 7036 case InlineAsm::isInput: { 7037 SDValue InOperandVal = OpInfo.CallOperand; 7038 7039 if (OpInfo.isMatchingInputConstraint()) { 7040 // If this is required to match an output register we have already set, 7041 // just use its register. 7042 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7043 AsmNodeOperands); 7044 unsigned OpFlag = 7045 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7046 if (InlineAsm::isRegDefKind(OpFlag) || 7047 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7048 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7049 if (OpInfo.isIndirect) { 7050 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7051 emitInlineAsmError(CS, "inline asm not supported yet:" 7052 " don't know how to handle tied " 7053 "indirect register inputs"); 7054 return; 7055 } 7056 7057 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7058 SmallVector<unsigned, 4> Regs; 7059 7060 if (!createVirtualRegs(Regs, 7061 InlineAsm::getNumOperandRegisters(OpFlag), 7062 RegVT, DAG)) { 7063 emitInlineAsmError(CS, "inline asm error: This value type register " 7064 "class is not natively supported!"); 7065 return; 7066 } 7067 7068 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7069 7070 SDLoc dl = getCurSDLoc(); 7071 // Use the produced MatchedRegs object to 7072 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7073 Chain, &Flag, CS.getInstruction()); 7074 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7075 true, OpInfo.getMatchedOperand(), dl, 7076 DAG, AsmNodeOperands); 7077 break; 7078 } 7079 7080 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7081 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7082 "Unexpected number of operands"); 7083 // Add information to the INLINEASM node to know about this input. 7084 // See InlineAsm.h isUseOperandTiedToDef. 7085 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7086 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7087 OpInfo.getMatchedOperand()); 7088 AsmNodeOperands.push_back(DAG.getTargetConstant( 7089 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7090 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7091 break; 7092 } 7093 7094 // Treat indirect 'X' constraint as memory. 7095 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7096 OpInfo.isIndirect) 7097 OpInfo.ConstraintType = TargetLowering::C_Memory; 7098 7099 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7100 std::vector<SDValue> Ops; 7101 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7102 Ops, DAG); 7103 if (Ops.empty()) { 7104 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7105 Twine(OpInfo.ConstraintCode) + "'"); 7106 return; 7107 } 7108 7109 // Add information to the INLINEASM node to know about this input. 7110 unsigned ResOpType = 7111 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7112 AsmNodeOperands.push_back(DAG.getTargetConstant( 7113 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7114 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7115 break; 7116 } 7117 7118 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7119 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7120 assert(InOperandVal.getValueType() == 7121 TLI.getPointerTy(DAG.getDataLayout()) && 7122 "Memory operands expect pointer values"); 7123 7124 unsigned ConstraintID = 7125 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7126 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7127 "Failed to convert memory constraint code to constraint id."); 7128 7129 // Add information to the INLINEASM node to know about this input. 7130 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7131 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7132 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7133 getCurSDLoc(), 7134 MVT::i32)); 7135 AsmNodeOperands.push_back(InOperandVal); 7136 break; 7137 } 7138 7139 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7140 OpInfo.ConstraintType == TargetLowering::C_Register) && 7141 "Unknown constraint type!"); 7142 7143 // TODO: Support this. 7144 if (OpInfo.isIndirect) { 7145 emitInlineAsmError( 7146 CS, "Don't know how to handle indirect register inputs yet " 7147 "for constraint '" + 7148 Twine(OpInfo.ConstraintCode) + "'"); 7149 return; 7150 } 7151 7152 // Copy the input into the appropriate registers. 7153 if (OpInfo.AssignedRegs.Regs.empty()) { 7154 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7155 Twine(OpInfo.ConstraintCode) + "'"); 7156 return; 7157 } 7158 7159 SDLoc dl = getCurSDLoc(); 7160 7161 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7162 Chain, &Flag, CS.getInstruction()); 7163 7164 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7165 dl, DAG, AsmNodeOperands); 7166 break; 7167 } 7168 case InlineAsm::isClobber: { 7169 // Add the clobbered value to the operand list, so that the register 7170 // allocator is aware that the physreg got clobbered. 7171 if (!OpInfo.AssignedRegs.Regs.empty()) 7172 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7173 false, 0, getCurSDLoc(), DAG, 7174 AsmNodeOperands); 7175 break; 7176 } 7177 } 7178 } 7179 7180 // Finish up input operands. Set the input chain and add the flag last. 7181 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7182 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7183 7184 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7185 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7186 Flag = Chain.getValue(1); 7187 7188 // If this asm returns a register value, copy the result from that register 7189 // and set it as the value of the call. 7190 if (!RetValRegs.Regs.empty()) { 7191 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7192 Chain, &Flag, CS.getInstruction()); 7193 7194 // FIXME: Why don't we do this for inline asms with MRVs? 7195 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7196 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7197 7198 // If any of the results of the inline asm is a vector, it may have the 7199 // wrong width/num elts. This can happen for register classes that can 7200 // contain multiple different value types. The preg or vreg allocated may 7201 // not have the same VT as was expected. Convert it to the right type 7202 // with bit_convert. 7203 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7204 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7205 ResultType, Val); 7206 7207 } else if (ResultType != Val.getValueType() && 7208 ResultType.isInteger() && Val.getValueType().isInteger()) { 7209 // If a result value was tied to an input value, the computed result may 7210 // have a wider width than the expected result. Extract the relevant 7211 // portion. 7212 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7213 } 7214 7215 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7216 } 7217 7218 setValue(CS.getInstruction(), Val); 7219 // Don't need to use this as a chain in this case. 7220 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7221 return; 7222 } 7223 7224 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7225 7226 // Process indirect outputs, first output all of the flagged copies out of 7227 // physregs. 7228 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7229 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7230 const Value *Ptr = IndirectStoresToEmit[i].second; 7231 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7232 Chain, &Flag, IA); 7233 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7234 } 7235 7236 // Emit the non-flagged stores from the physregs. 7237 SmallVector<SDValue, 8> OutChains; 7238 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7239 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7240 getValue(StoresToEmit[i].second), 7241 MachinePointerInfo(StoresToEmit[i].second)); 7242 OutChains.push_back(Val); 7243 } 7244 7245 if (!OutChains.empty()) 7246 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7247 7248 DAG.setRoot(Chain); 7249 } 7250 7251 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7252 const Twine &Message) { 7253 LLVMContext &Ctx = *DAG.getContext(); 7254 Ctx.emitError(CS.getInstruction(), Message); 7255 7256 // Make sure we leave the DAG in a valid state 7257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7258 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7259 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7260 } 7261 7262 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7263 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7264 MVT::Other, getRoot(), 7265 getValue(I.getArgOperand(0)), 7266 DAG.getSrcValue(I.getArgOperand(0)))); 7267 } 7268 7269 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7271 const DataLayout &DL = DAG.getDataLayout(); 7272 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7273 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7274 DAG.getSrcValue(I.getOperand(0)), 7275 DL.getABITypeAlignment(I.getType())); 7276 setValue(&I, V); 7277 DAG.setRoot(V.getValue(1)); 7278 } 7279 7280 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7281 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7282 MVT::Other, getRoot(), 7283 getValue(I.getArgOperand(0)), 7284 DAG.getSrcValue(I.getArgOperand(0)))); 7285 } 7286 7287 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7288 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7289 MVT::Other, getRoot(), 7290 getValue(I.getArgOperand(0)), 7291 getValue(I.getArgOperand(1)), 7292 DAG.getSrcValue(I.getArgOperand(0)), 7293 DAG.getSrcValue(I.getArgOperand(1)))); 7294 } 7295 7296 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7297 const Instruction &I, 7298 SDValue Op) { 7299 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7300 if (!Range) 7301 return Op; 7302 7303 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7304 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7305 return Op; 7306 7307 APInt Lo = CR.getUnsignedMin(); 7308 if (!Lo.isMinValue()) 7309 return Op; 7310 7311 APInt Hi = CR.getUnsignedMax(); 7312 unsigned Bits = Hi.getActiveBits(); 7313 7314 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7315 7316 SDLoc SL = getCurSDLoc(); 7317 7318 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7319 DAG.getValueType(SmallVT)); 7320 unsigned NumVals = Op.getNode()->getNumValues(); 7321 if (NumVals == 1) 7322 return ZExt; 7323 7324 SmallVector<SDValue, 4> Ops; 7325 7326 Ops.push_back(ZExt); 7327 for (unsigned I = 1; I != NumVals; ++I) 7328 Ops.push_back(Op.getValue(I)); 7329 7330 return DAG.getMergeValues(Ops, SL); 7331 } 7332 7333 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7334 /// the call being lowered. 7335 /// 7336 /// This is a helper for lowering intrinsics that follow a target calling 7337 /// convention or require stack pointer adjustment. Only a subset of the 7338 /// intrinsic's operands need to participate in the calling convention. 7339 void SelectionDAGBuilder::populateCallLoweringInfo( 7340 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7341 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7342 bool IsPatchPoint) { 7343 TargetLowering::ArgListTy Args; 7344 Args.reserve(NumArgs); 7345 7346 // Populate the argument list. 7347 // Attributes for args start at offset 1, after the return attribute. 7348 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7349 ArgI != ArgE; ++ArgI) { 7350 const Value *V = CS->getOperand(ArgI); 7351 7352 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7353 7354 TargetLowering::ArgListEntry Entry; 7355 Entry.Node = getValue(V); 7356 Entry.Ty = V->getType(); 7357 Entry.setAttributes(&CS, AttrI); 7358 Args.push_back(Entry); 7359 } 7360 7361 CLI.setDebugLoc(getCurSDLoc()) 7362 .setChain(getRoot()) 7363 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7364 .setDiscardResult(CS->use_empty()) 7365 .setIsPatchPoint(IsPatchPoint); 7366 } 7367 7368 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7369 /// or patchpoint target node's operand list. 7370 /// 7371 /// Constants are converted to TargetConstants purely as an optimization to 7372 /// avoid constant materialization and register allocation. 7373 /// 7374 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7375 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7376 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7377 /// address materialization and register allocation, but may also be required 7378 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7379 /// alloca in the entry block, then the runtime may assume that the alloca's 7380 /// StackMap location can be read immediately after compilation and that the 7381 /// location is valid at any point during execution (this is similar to the 7382 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7383 /// only available in a register, then the runtime would need to trap when 7384 /// execution reaches the StackMap in order to read the alloca's location. 7385 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7386 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7387 SelectionDAGBuilder &Builder) { 7388 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7389 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7390 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7391 Ops.push_back( 7392 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7393 Ops.push_back( 7394 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7395 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7396 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7397 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7398 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7399 } else 7400 Ops.push_back(OpVal); 7401 } 7402 } 7403 7404 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7405 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7406 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7407 // [live variables...]) 7408 7409 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7410 7411 SDValue Chain, InFlag, Callee, NullPtr; 7412 SmallVector<SDValue, 32> Ops; 7413 7414 SDLoc DL = getCurSDLoc(); 7415 Callee = getValue(CI.getCalledValue()); 7416 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7417 7418 // The stackmap intrinsic only records the live variables (the arguemnts 7419 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7420 // intrinsic, this won't be lowered to a function call. This means we don't 7421 // have to worry about calling conventions and target specific lowering code. 7422 // Instead we perform the call lowering right here. 7423 // 7424 // chain, flag = CALLSEQ_START(chain, 0) 7425 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7426 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7427 // 7428 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7429 InFlag = Chain.getValue(1); 7430 7431 // Add the <id> and <numBytes> constants. 7432 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7433 Ops.push_back(DAG.getTargetConstant( 7434 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7435 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7436 Ops.push_back(DAG.getTargetConstant( 7437 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7438 MVT::i32)); 7439 7440 // Push live variables for the stack map. 7441 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7442 7443 // We are not pushing any register mask info here on the operands list, 7444 // because the stackmap doesn't clobber anything. 7445 7446 // Push the chain and the glue flag. 7447 Ops.push_back(Chain); 7448 Ops.push_back(InFlag); 7449 7450 // Create the STACKMAP node. 7451 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7452 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7453 Chain = SDValue(SM, 0); 7454 InFlag = Chain.getValue(1); 7455 7456 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7457 7458 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7459 7460 // Set the root to the target-lowered call chain. 7461 DAG.setRoot(Chain); 7462 7463 // Inform the Frame Information that we have a stackmap in this function. 7464 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7465 } 7466 7467 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7468 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7469 const BasicBlock *EHPadBB) { 7470 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7471 // i32 <numBytes>, 7472 // i8* <target>, 7473 // i32 <numArgs>, 7474 // [Args...], 7475 // [live variables...]) 7476 7477 CallingConv::ID CC = CS.getCallingConv(); 7478 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7479 bool HasDef = !CS->getType()->isVoidTy(); 7480 SDLoc dl = getCurSDLoc(); 7481 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7482 7483 // Handle immediate and symbolic callees. 7484 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7485 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7486 /*isTarget=*/true); 7487 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7488 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7489 SDLoc(SymbolicCallee), 7490 SymbolicCallee->getValueType(0)); 7491 7492 // Get the real number of arguments participating in the call <numArgs> 7493 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7494 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7495 7496 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7497 // Intrinsics include all meta-operands up to but not including CC. 7498 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7499 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7500 "Not enough arguments provided to the patchpoint intrinsic"); 7501 7502 // For AnyRegCC the arguments are lowered later on manually. 7503 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7504 Type *ReturnTy = 7505 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7506 7507 TargetLowering::CallLoweringInfo CLI(DAG); 7508 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7509 true); 7510 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7511 7512 SDNode *CallEnd = Result.second.getNode(); 7513 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7514 CallEnd = CallEnd->getOperand(0).getNode(); 7515 7516 /// Get a call instruction from the call sequence chain. 7517 /// Tail calls are not allowed. 7518 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7519 "Expected a callseq node."); 7520 SDNode *Call = CallEnd->getOperand(0).getNode(); 7521 bool HasGlue = Call->getGluedNode(); 7522 7523 // Replace the target specific call node with the patchable intrinsic. 7524 SmallVector<SDValue, 8> Ops; 7525 7526 // Add the <id> and <numBytes> constants. 7527 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7528 Ops.push_back(DAG.getTargetConstant( 7529 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7530 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7531 Ops.push_back(DAG.getTargetConstant( 7532 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7533 MVT::i32)); 7534 7535 // Add the callee. 7536 Ops.push_back(Callee); 7537 7538 // Adjust <numArgs> to account for any arguments that have been passed on the 7539 // stack instead. 7540 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7541 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7542 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7543 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7544 7545 // Add the calling convention 7546 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7547 7548 // Add the arguments we omitted previously. The register allocator should 7549 // place these in any free register. 7550 if (IsAnyRegCC) 7551 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7552 Ops.push_back(getValue(CS.getArgument(i))); 7553 7554 // Push the arguments from the call instruction up to the register mask. 7555 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7556 Ops.append(Call->op_begin() + 2, e); 7557 7558 // Push live variables for the stack map. 7559 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7560 7561 // Push the register mask info. 7562 if (HasGlue) 7563 Ops.push_back(*(Call->op_end()-2)); 7564 else 7565 Ops.push_back(*(Call->op_end()-1)); 7566 7567 // Push the chain (this is originally the first operand of the call, but 7568 // becomes now the last or second to last operand). 7569 Ops.push_back(*(Call->op_begin())); 7570 7571 // Push the glue flag (last operand). 7572 if (HasGlue) 7573 Ops.push_back(*(Call->op_end()-1)); 7574 7575 SDVTList NodeTys; 7576 if (IsAnyRegCC && HasDef) { 7577 // Create the return types based on the intrinsic definition 7578 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7579 SmallVector<EVT, 3> ValueVTs; 7580 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7581 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7582 7583 // There is always a chain and a glue type at the end 7584 ValueVTs.push_back(MVT::Other); 7585 ValueVTs.push_back(MVT::Glue); 7586 NodeTys = DAG.getVTList(ValueVTs); 7587 } else 7588 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7589 7590 // Replace the target specific call node with a PATCHPOINT node. 7591 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7592 dl, NodeTys, Ops); 7593 7594 // Update the NodeMap. 7595 if (HasDef) { 7596 if (IsAnyRegCC) 7597 setValue(CS.getInstruction(), SDValue(MN, 0)); 7598 else 7599 setValue(CS.getInstruction(), Result.first); 7600 } 7601 7602 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7603 // call sequence. Furthermore the location of the chain and glue can change 7604 // when the AnyReg calling convention is used and the intrinsic returns a 7605 // value. 7606 if (IsAnyRegCC && HasDef) { 7607 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7608 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7609 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7610 } else 7611 DAG.ReplaceAllUsesWith(Call, MN); 7612 DAG.DeleteNode(Call); 7613 7614 // Inform the Frame Information that we have a patchpoint in this function. 7615 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7616 } 7617 7618 /// Returns an AttributeList representing the attributes applied to the return 7619 /// value of the given call. 7620 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7621 SmallVector<Attribute::AttrKind, 2> Attrs; 7622 if (CLI.RetSExt) 7623 Attrs.push_back(Attribute::SExt); 7624 if (CLI.RetZExt) 7625 Attrs.push_back(Attribute::ZExt); 7626 if (CLI.IsInReg) 7627 Attrs.push_back(Attribute::InReg); 7628 7629 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 7630 Attrs); 7631 } 7632 7633 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7634 /// implementation, which just calls LowerCall. 7635 /// FIXME: When all targets are 7636 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7637 std::pair<SDValue, SDValue> 7638 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7639 // Handle the incoming return values from the call. 7640 CLI.Ins.clear(); 7641 Type *OrigRetTy = CLI.RetTy; 7642 SmallVector<EVT, 4> RetTys; 7643 SmallVector<uint64_t, 4> Offsets; 7644 auto &DL = CLI.DAG.getDataLayout(); 7645 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7646 7647 SmallVector<ISD::OutputArg, 4> Outs; 7648 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7649 7650 bool CanLowerReturn = 7651 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7652 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7653 7654 SDValue DemoteStackSlot; 7655 int DemoteStackIdx = -100; 7656 if (!CanLowerReturn) { 7657 // FIXME: equivalent assert? 7658 // assert(!CS.hasInAllocaArgument() && 7659 // "sret demotion is incompatible with inalloca"); 7660 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7661 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7662 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7663 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7664 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7665 7666 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7667 ArgListEntry Entry; 7668 Entry.Node = DemoteStackSlot; 7669 Entry.Ty = StackSlotPtrType; 7670 Entry.IsSExt = false; 7671 Entry.IsZExt = false; 7672 Entry.IsInReg = false; 7673 Entry.IsSRet = true; 7674 Entry.IsNest = false; 7675 Entry.IsByVal = false; 7676 Entry.IsReturned = false; 7677 Entry.IsSwiftSelf = false; 7678 Entry.IsSwiftError = false; 7679 Entry.Alignment = Align; 7680 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7681 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7682 7683 // sret demotion isn't compatible with tail-calls, since the sret argument 7684 // points into the callers stack frame. 7685 CLI.IsTailCall = false; 7686 } else { 7687 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7688 EVT VT = RetTys[I]; 7689 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7690 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7691 for (unsigned i = 0; i != NumRegs; ++i) { 7692 ISD::InputArg MyFlags; 7693 MyFlags.VT = RegisterVT; 7694 MyFlags.ArgVT = VT; 7695 MyFlags.Used = CLI.IsReturnValueUsed; 7696 if (CLI.RetSExt) 7697 MyFlags.Flags.setSExt(); 7698 if (CLI.RetZExt) 7699 MyFlags.Flags.setZExt(); 7700 if (CLI.IsInReg) 7701 MyFlags.Flags.setInReg(); 7702 CLI.Ins.push_back(MyFlags); 7703 } 7704 } 7705 } 7706 7707 // We push in swifterror return as the last element of CLI.Ins. 7708 ArgListTy &Args = CLI.getArgs(); 7709 if (supportSwiftError()) { 7710 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7711 if (Args[i].IsSwiftError) { 7712 ISD::InputArg MyFlags; 7713 MyFlags.VT = getPointerTy(DL); 7714 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7715 MyFlags.Flags.setSwiftError(); 7716 CLI.Ins.push_back(MyFlags); 7717 } 7718 } 7719 } 7720 7721 // Handle all of the outgoing arguments. 7722 CLI.Outs.clear(); 7723 CLI.OutVals.clear(); 7724 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7725 SmallVector<EVT, 4> ValueVTs; 7726 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7727 Type *FinalType = Args[i].Ty; 7728 if (Args[i].IsByVal) 7729 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7730 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7731 FinalType, CLI.CallConv, CLI.IsVarArg); 7732 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7733 ++Value) { 7734 EVT VT = ValueVTs[Value]; 7735 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7736 SDValue Op = SDValue(Args[i].Node.getNode(), 7737 Args[i].Node.getResNo() + Value); 7738 ISD::ArgFlagsTy Flags; 7739 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7740 7741 if (Args[i].IsZExt) 7742 Flags.setZExt(); 7743 if (Args[i].IsSExt) 7744 Flags.setSExt(); 7745 if (Args[i].IsInReg) { 7746 // If we are using vectorcall calling convention, a structure that is 7747 // passed InReg - is surely an HVA 7748 if (CLI.CallConv == CallingConv::X86_VectorCall && 7749 isa<StructType>(FinalType)) { 7750 // The first value of a structure is marked 7751 if (0 == Value) 7752 Flags.setHvaStart(); 7753 Flags.setHva(); 7754 } 7755 // Set InReg Flag 7756 Flags.setInReg(); 7757 } 7758 if (Args[i].IsSRet) 7759 Flags.setSRet(); 7760 if (Args[i].IsSwiftSelf) 7761 Flags.setSwiftSelf(); 7762 if (Args[i].IsSwiftError) 7763 Flags.setSwiftError(); 7764 if (Args[i].IsByVal) 7765 Flags.setByVal(); 7766 if (Args[i].IsInAlloca) { 7767 Flags.setInAlloca(); 7768 // Set the byval flag for CCAssignFn callbacks that don't know about 7769 // inalloca. This way we can know how many bytes we should've allocated 7770 // and how many bytes a callee cleanup function will pop. If we port 7771 // inalloca to more targets, we'll have to add custom inalloca handling 7772 // in the various CC lowering callbacks. 7773 Flags.setByVal(); 7774 } 7775 if (Args[i].IsByVal || Args[i].IsInAlloca) { 7776 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7777 Type *ElementTy = Ty->getElementType(); 7778 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7779 // For ByVal, alignment should come from FE. BE will guess if this 7780 // info is not there but there are cases it cannot get right. 7781 unsigned FrameAlign; 7782 if (Args[i].Alignment) 7783 FrameAlign = Args[i].Alignment; 7784 else 7785 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7786 Flags.setByValAlign(FrameAlign); 7787 } 7788 if (Args[i].IsNest) 7789 Flags.setNest(); 7790 if (NeedsRegBlock) 7791 Flags.setInConsecutiveRegs(); 7792 Flags.setOrigAlign(OriginalAlignment); 7793 7794 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7795 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7796 SmallVector<SDValue, 4> Parts(NumParts); 7797 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7798 7799 if (Args[i].IsSExt) 7800 ExtendKind = ISD::SIGN_EXTEND; 7801 else if (Args[i].IsZExt) 7802 ExtendKind = ISD::ZERO_EXTEND; 7803 7804 // Conservatively only handle 'returned' on non-vectors for now 7805 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 7806 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7807 "unexpected use of 'returned'"); 7808 // Before passing 'returned' to the target lowering code, ensure that 7809 // either the register MVT and the actual EVT are the same size or that 7810 // the return value and argument are extended in the same way; in these 7811 // cases it's safe to pass the argument register value unchanged as the 7812 // return register value (although it's at the target's option whether 7813 // to do so) 7814 // TODO: allow code generation to take advantage of partially preserved 7815 // registers rather than clobbering the entire register when the 7816 // parameter extension method is not compatible with the return 7817 // extension method 7818 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7819 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 7820 CLI.RetZExt == Args[i].IsZExt)) 7821 Flags.setReturned(); 7822 } 7823 7824 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7825 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7826 7827 for (unsigned j = 0; j != NumParts; ++j) { 7828 // if it isn't first piece, alignment must be 1 7829 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7830 i < CLI.NumFixedArgs, 7831 i, j*Parts[j].getValueType().getStoreSize()); 7832 if (NumParts > 1 && j == 0) 7833 MyFlags.Flags.setSplit(); 7834 else if (j != 0) { 7835 MyFlags.Flags.setOrigAlign(1); 7836 if (j == NumParts - 1) 7837 MyFlags.Flags.setSplitEnd(); 7838 } 7839 7840 CLI.Outs.push_back(MyFlags); 7841 CLI.OutVals.push_back(Parts[j]); 7842 } 7843 7844 if (NeedsRegBlock && Value == NumValues - 1) 7845 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7846 } 7847 } 7848 7849 SmallVector<SDValue, 4> InVals; 7850 CLI.Chain = LowerCall(CLI, InVals); 7851 7852 // Update CLI.InVals to use outside of this function. 7853 CLI.InVals = InVals; 7854 7855 // Verify that the target's LowerCall behaved as expected. 7856 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7857 "LowerCall didn't return a valid chain!"); 7858 assert((!CLI.IsTailCall || InVals.empty()) && 7859 "LowerCall emitted a return value for a tail call!"); 7860 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7861 "LowerCall didn't emit the correct number of values!"); 7862 7863 // For a tail call, the return value is merely live-out and there aren't 7864 // any nodes in the DAG representing it. Return a special value to 7865 // indicate that a tail call has been emitted and no more Instructions 7866 // should be processed in the current block. 7867 if (CLI.IsTailCall) { 7868 CLI.DAG.setRoot(CLI.Chain); 7869 return std::make_pair(SDValue(), SDValue()); 7870 } 7871 7872 #ifndef NDEBUG 7873 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7874 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7875 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7876 "LowerCall emitted a value with the wrong type!"); 7877 } 7878 #endif 7879 7880 SmallVector<SDValue, 4> ReturnValues; 7881 if (!CanLowerReturn) { 7882 // The instruction result is the result of loading from the 7883 // hidden sret parameter. 7884 SmallVector<EVT, 1> PVTs; 7885 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7886 7887 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7888 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7889 EVT PtrVT = PVTs[0]; 7890 7891 unsigned NumValues = RetTys.size(); 7892 ReturnValues.resize(NumValues); 7893 SmallVector<SDValue, 4> Chains(NumValues); 7894 7895 // An aggregate return value cannot wrap around the address space, so 7896 // offsets to its parts don't wrap either. 7897 SDNodeFlags Flags; 7898 Flags.setNoUnsignedWrap(true); 7899 7900 for (unsigned i = 0; i < NumValues; ++i) { 7901 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7902 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7903 PtrVT), &Flags); 7904 SDValue L = CLI.DAG.getLoad( 7905 RetTys[i], CLI.DL, CLI.Chain, Add, 7906 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7907 DemoteStackIdx, Offsets[i]), 7908 /* Alignment = */ 1); 7909 ReturnValues[i] = L; 7910 Chains[i] = L.getValue(1); 7911 } 7912 7913 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7914 } else { 7915 // Collect the legal value parts into potentially illegal values 7916 // that correspond to the original function's return values. 7917 Optional<ISD::NodeType> AssertOp; 7918 if (CLI.RetSExt) 7919 AssertOp = ISD::AssertSext; 7920 else if (CLI.RetZExt) 7921 AssertOp = ISD::AssertZext; 7922 unsigned CurReg = 0; 7923 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7924 EVT VT = RetTys[I]; 7925 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7926 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7927 7928 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7929 NumRegs, RegisterVT, VT, nullptr, 7930 AssertOp)); 7931 CurReg += NumRegs; 7932 } 7933 7934 // For a function returning void, there is no return value. We can't create 7935 // such a node, so we just return a null return value in that case. In 7936 // that case, nothing will actually look at the value. 7937 if (ReturnValues.empty()) 7938 return std::make_pair(SDValue(), CLI.Chain); 7939 } 7940 7941 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7942 CLI.DAG.getVTList(RetTys), ReturnValues); 7943 return std::make_pair(Res, CLI.Chain); 7944 } 7945 7946 void TargetLowering::LowerOperationWrapper(SDNode *N, 7947 SmallVectorImpl<SDValue> &Results, 7948 SelectionDAG &DAG) const { 7949 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7950 Results.push_back(Res); 7951 } 7952 7953 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7954 llvm_unreachable("LowerOperation not implemented for this target!"); 7955 } 7956 7957 void 7958 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7959 SDValue Op = getNonRegisterValue(V); 7960 assert((Op.getOpcode() != ISD::CopyFromReg || 7961 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7962 "Copy from a reg to the same reg!"); 7963 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7964 7965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7966 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7967 V->getType()); 7968 SDValue Chain = DAG.getEntryNode(); 7969 7970 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7971 FuncInfo.PreferredExtendType.end()) 7972 ? ISD::ANY_EXTEND 7973 : FuncInfo.PreferredExtendType[V]; 7974 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7975 PendingExports.push_back(Chain); 7976 } 7977 7978 #include "llvm/CodeGen/SelectionDAGISel.h" 7979 7980 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7981 /// entry block, return true. This includes arguments used by switches, since 7982 /// the switch may expand into multiple basic blocks. 7983 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7984 // With FastISel active, we may be splitting blocks, so force creation 7985 // of virtual registers for all non-dead arguments. 7986 if (FastISel) 7987 return A->use_empty(); 7988 7989 const BasicBlock &Entry = A->getParent()->front(); 7990 for (const User *U : A->users()) 7991 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7992 return false; // Use not in entry block. 7993 7994 return true; 7995 } 7996 7997 typedef DenseMap<const Argument *, 7998 std::pair<const AllocaInst *, const StoreInst *>> 7999 ArgCopyElisionMapTy; 8000 8001 /// Scan the entry block of the function in FuncInfo for arguments that look 8002 /// like copies into a local alloca. Record any copied arguments in 8003 /// ArgCopyElisionCandidates. 8004 static void 8005 findArgumentCopyElisionCandidates(const DataLayout &DL, 8006 FunctionLoweringInfo *FuncInfo, 8007 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8008 // Record the state of every static alloca used in the entry block. Argument 8009 // allocas are all used in the entry block, so we need approximately as many 8010 // entries as we have arguments. 8011 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8012 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8013 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8014 StaticAllocas.reserve(NumArgs * 2); 8015 8016 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8017 if (!V) 8018 return nullptr; 8019 V = V->stripPointerCasts(); 8020 const auto *AI = dyn_cast<AllocaInst>(V); 8021 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8022 return nullptr; 8023 auto Iter = StaticAllocas.insert({AI, Unknown}); 8024 return &Iter.first->second; 8025 }; 8026 8027 // Look for stores of arguments to static allocas. Look through bitcasts and 8028 // GEPs to handle type coercions, as long as the alloca is fully initialized 8029 // by the store. Any non-store use of an alloca escapes it and any subsequent 8030 // unanalyzed store might write it. 8031 // FIXME: Handle structs initialized with multiple stores. 8032 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8033 // Look for stores, and handle non-store uses conservatively. 8034 const auto *SI = dyn_cast<StoreInst>(&I); 8035 if (!SI) { 8036 // We will look through cast uses, so ignore them completely. 8037 if (I.isCast()) 8038 continue; 8039 // Ignore debug info intrinsics, they don't escape or store to allocas. 8040 if (isa<DbgInfoIntrinsic>(I)) 8041 continue; 8042 // This is an unknown instruction. Assume it escapes or writes to all 8043 // static alloca operands. 8044 for (const Use &U : I.operands()) { 8045 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8046 *Info = StaticAllocaInfo::Clobbered; 8047 } 8048 continue; 8049 } 8050 8051 // If the stored value is a static alloca, mark it as escaped. 8052 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8053 *Info = StaticAllocaInfo::Clobbered; 8054 8055 // Check if the destination is a static alloca. 8056 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8057 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8058 if (!Info) 8059 continue; 8060 const AllocaInst *AI = cast<AllocaInst>(Dst); 8061 8062 // Skip allocas that have been initialized or clobbered. 8063 if (*Info != StaticAllocaInfo::Unknown) 8064 continue; 8065 8066 // Check if the stored value is an argument, and that this store fully 8067 // initializes the alloca. Don't elide copies from the same argument twice. 8068 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8069 const auto *Arg = dyn_cast<Argument>(Val); 8070 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8071 Arg->getType()->isEmptyTy() || 8072 DL.getTypeStoreSize(Arg->getType()) != 8073 DL.getTypeAllocSize(AI->getAllocatedType()) || 8074 ArgCopyElisionCandidates.count(Arg)) { 8075 *Info = StaticAllocaInfo::Clobbered; 8076 continue; 8077 } 8078 8079 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8080 8081 // Mark this alloca and store for argument copy elision. 8082 *Info = StaticAllocaInfo::Elidable; 8083 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8084 8085 // Stop scanning if we've seen all arguments. This will happen early in -O0 8086 // builds, which is useful, because -O0 builds have large entry blocks and 8087 // many allocas. 8088 if (ArgCopyElisionCandidates.size() == NumArgs) 8089 break; 8090 } 8091 } 8092 8093 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8094 /// ArgVal is a load from a suitable fixed stack object. 8095 static void tryToElideArgumentCopy( 8096 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8097 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8098 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8099 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8100 SDValue ArgVal, bool &ArgHasUses) { 8101 // Check if this is a load from a fixed stack object. 8102 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8103 if (!LNode) 8104 return; 8105 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8106 if (!FINode) 8107 return; 8108 8109 // Check that the fixed stack object is the right size and alignment. 8110 // Look at the alignment that the user wrote on the alloca instead of looking 8111 // at the stack object. 8112 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8113 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8114 const AllocaInst *AI = ArgCopyIter->second.first; 8115 int FixedIndex = FINode->getIndex(); 8116 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8117 int OldIndex = AllocaIndex; 8118 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8119 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8120 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8121 "object size\n"); 8122 return; 8123 } 8124 unsigned RequiredAlignment = AI->getAlignment(); 8125 if (!RequiredAlignment) { 8126 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8127 AI->getAllocatedType()); 8128 } 8129 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8130 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8131 "greater than stack argument alignment (" 8132 << RequiredAlignment << " vs " 8133 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8134 return; 8135 } 8136 8137 // Perform the elision. Delete the old stack object and replace its only use 8138 // in the variable info map. Mark the stack object as mutable. 8139 DEBUG({ 8140 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8141 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8142 << '\n'; 8143 }); 8144 MFI.RemoveStackObject(OldIndex); 8145 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8146 AllocaIndex = FixedIndex; 8147 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8148 Chains.push_back(ArgVal.getValue(1)); 8149 8150 // Avoid emitting code for the store implementing the copy. 8151 const StoreInst *SI = ArgCopyIter->second.second; 8152 ElidedArgCopyInstrs.insert(SI); 8153 8154 // Check for uses of the argument again so that we can avoid exporting ArgVal 8155 // if it is't used by anything other than the store. 8156 for (const Value *U : Arg.users()) { 8157 if (U != SI) { 8158 ArgHasUses = true; 8159 break; 8160 } 8161 } 8162 } 8163 8164 void SelectionDAGISel::LowerArguments(const Function &F) { 8165 SelectionDAG &DAG = SDB->DAG; 8166 SDLoc dl = SDB->getCurSDLoc(); 8167 const DataLayout &DL = DAG.getDataLayout(); 8168 SmallVector<ISD::InputArg, 16> Ins; 8169 8170 if (!FuncInfo->CanLowerReturn) { 8171 // Put in an sret pointer parameter before all the other parameters. 8172 SmallVector<EVT, 1> ValueVTs; 8173 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8174 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8175 8176 // NOTE: Assuming that a pointer will never break down to more than one VT 8177 // or one register. 8178 ISD::ArgFlagsTy Flags; 8179 Flags.setSRet(); 8180 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8181 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8182 ISD::InputArg::NoArgIndex, 0); 8183 Ins.push_back(RetArg); 8184 } 8185 8186 // Look for stores of arguments to static allocas. Mark such arguments with a 8187 // flag to ask the target to give us the memory location of that argument if 8188 // available. 8189 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8190 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8191 8192 // Set up the incoming argument description vector. 8193 unsigned Idx = 0; 8194 for (const Argument &Arg : F.args()) { 8195 ++Idx; 8196 SmallVector<EVT, 4> ValueVTs; 8197 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8198 bool isArgValueUsed = !Arg.use_empty(); 8199 unsigned PartBase = 0; 8200 Type *FinalType = Arg.getType(); 8201 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8202 FinalType = cast<PointerType>(FinalType)->getElementType(); 8203 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8204 FinalType, F.getCallingConv(), F.isVarArg()); 8205 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8206 Value != NumValues; ++Value) { 8207 EVT VT = ValueVTs[Value]; 8208 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8209 ISD::ArgFlagsTy Flags; 8210 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 8211 8212 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8213 Flags.setZExt(); 8214 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8215 Flags.setSExt(); 8216 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) { 8217 // If we are using vectorcall calling convention, a structure that is 8218 // passed InReg - is surely an HVA 8219 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8220 isa<StructType>(Arg.getType())) { 8221 // The first value of a structure is marked 8222 if (0 == Value) 8223 Flags.setHvaStart(); 8224 Flags.setHva(); 8225 } 8226 // Set InReg Flag 8227 Flags.setInReg(); 8228 } 8229 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 8230 Flags.setSRet(); 8231 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 8232 Flags.setSwiftSelf(); 8233 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 8234 Flags.setSwiftError(); 8235 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 8236 Flags.setByVal(); 8237 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 8238 Flags.setInAlloca(); 8239 // Set the byval flag for CCAssignFn callbacks that don't know about 8240 // inalloca. This way we can know how many bytes we should've allocated 8241 // and how many bytes a callee cleanup function will pop. If we port 8242 // inalloca to more targets, we'll have to add custom inalloca handling 8243 // in the various CC lowering callbacks. 8244 Flags.setByVal(); 8245 } 8246 if (F.getCallingConv() == CallingConv::X86_INTR) { 8247 // IA Interrupt passes frame (1st parameter) by value in the stack. 8248 if (Idx == 1) 8249 Flags.setByVal(); 8250 } 8251 if (Flags.isByVal() || Flags.isInAlloca()) { 8252 PointerType *Ty = cast<PointerType>(Arg.getType()); 8253 Type *ElementTy = Ty->getElementType(); 8254 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8255 // For ByVal, alignment should be passed from FE. BE will guess if 8256 // this info is not there but there are cases it cannot get right. 8257 unsigned FrameAlign; 8258 if (F.getParamAlignment(Idx)) 8259 FrameAlign = F.getParamAlignment(Idx); 8260 else 8261 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8262 Flags.setByValAlign(FrameAlign); 8263 } 8264 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 8265 Flags.setNest(); 8266 if (NeedsRegBlock) 8267 Flags.setInConsecutiveRegs(); 8268 Flags.setOrigAlign(OriginalAlignment); 8269 if (ArgCopyElisionCandidates.count(&Arg)) 8270 Flags.setCopyElisionCandidate(); 8271 8272 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8273 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8274 for (unsigned i = 0; i != NumRegs; ++i) { 8275 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8276 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 8277 if (NumRegs > 1 && i == 0) 8278 MyFlags.Flags.setSplit(); 8279 // if it isn't first piece, alignment must be 1 8280 else if (i > 0) { 8281 MyFlags.Flags.setOrigAlign(1); 8282 if (i == NumRegs - 1) 8283 MyFlags.Flags.setSplitEnd(); 8284 } 8285 Ins.push_back(MyFlags); 8286 } 8287 if (NeedsRegBlock && Value == NumValues - 1) 8288 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8289 PartBase += VT.getStoreSize(); 8290 } 8291 } 8292 8293 // Call the target to set up the argument values. 8294 SmallVector<SDValue, 8> InVals; 8295 SDValue NewRoot = TLI->LowerFormalArguments( 8296 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8297 8298 // Verify that the target's LowerFormalArguments behaved as expected. 8299 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8300 "LowerFormalArguments didn't return a valid chain!"); 8301 assert(InVals.size() == Ins.size() && 8302 "LowerFormalArguments didn't emit the correct number of values!"); 8303 DEBUG({ 8304 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8305 assert(InVals[i].getNode() && 8306 "LowerFormalArguments emitted a null value!"); 8307 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8308 "LowerFormalArguments emitted a value with the wrong type!"); 8309 } 8310 }); 8311 8312 // Update the DAG with the new chain value resulting from argument lowering. 8313 DAG.setRoot(NewRoot); 8314 8315 // Set up the argument values. 8316 unsigned i = 0; 8317 Idx = 0; 8318 if (!FuncInfo->CanLowerReturn) { 8319 // Create a virtual register for the sret pointer, and put in a copy 8320 // from the sret argument into it. 8321 SmallVector<EVT, 1> ValueVTs; 8322 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8323 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8324 MVT VT = ValueVTs[0].getSimpleVT(); 8325 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8326 Optional<ISD::NodeType> AssertOp = None; 8327 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8328 RegVT, VT, nullptr, AssertOp); 8329 8330 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8331 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8332 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8333 FuncInfo->DemoteRegister = SRetReg; 8334 NewRoot = 8335 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8336 DAG.setRoot(NewRoot); 8337 8338 // i indexes lowered arguments. Bump it past the hidden sret argument. 8339 // Idx indexes LLVM arguments. Don't touch it. 8340 ++i; 8341 } 8342 8343 SmallVector<SDValue, 4> Chains; 8344 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8345 for (const Argument &Arg : F.args()) { 8346 ++Idx; 8347 SmallVector<SDValue, 4> ArgValues; 8348 SmallVector<EVT, 4> ValueVTs; 8349 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8350 unsigned NumValues = ValueVTs.size(); 8351 if (NumValues == 0) 8352 continue; 8353 8354 bool ArgHasUses = !Arg.use_empty(); 8355 8356 // Elide the copying store if the target loaded this argument from a 8357 // suitable fixed stack object. 8358 if (Ins[i].Flags.isCopyElisionCandidate()) { 8359 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8360 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8361 InVals[i], ArgHasUses); 8362 } 8363 8364 // If this argument is unused then remember its value. It is used to generate 8365 // debugging information. 8366 bool isSwiftErrorArg = 8367 TLI->supportSwiftError() && 8368 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError); 8369 if (!ArgHasUses && !isSwiftErrorArg) { 8370 SDB->setUnusedArgValue(&Arg, InVals[i]); 8371 8372 // Also remember any frame index for use in FastISel. 8373 if (FrameIndexSDNode *FI = 8374 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8375 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8376 } 8377 8378 for (unsigned Val = 0; Val != NumValues; ++Val) { 8379 EVT VT = ValueVTs[Val]; 8380 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8381 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 8382 8383 // Even an apparant 'unused' swifterror argument needs to be returned. So 8384 // we do generate a copy for it that can be used on return from the 8385 // function. 8386 if (ArgHasUses || isSwiftErrorArg) { 8387 Optional<ISD::NodeType> AssertOp; 8388 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 8389 AssertOp = ISD::AssertSext; 8390 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 8391 AssertOp = ISD::AssertZext; 8392 8393 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8394 PartVT, VT, nullptr, AssertOp)); 8395 } 8396 8397 i += NumParts; 8398 } 8399 8400 // We don't need to do anything else for unused arguments. 8401 if (ArgValues.empty()) 8402 continue; 8403 8404 // Note down frame index. 8405 if (FrameIndexSDNode *FI = 8406 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8407 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8408 8409 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8410 SDB->getCurSDLoc()); 8411 8412 SDB->setValue(&Arg, Res); 8413 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8414 if (LoadSDNode *LNode = 8415 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8416 if (FrameIndexSDNode *FI = 8417 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8418 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8419 } 8420 8421 // Update the SwiftErrorVRegDefMap. 8422 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8423 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8424 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8425 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8426 FuncInfo->SwiftErrorArg, Reg); 8427 } 8428 8429 // If this argument is live outside of the entry block, insert a copy from 8430 // wherever we got it to the vreg that other BB's will reference it as. 8431 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8432 // If we can, though, try to skip creating an unnecessary vreg. 8433 // FIXME: This isn't very clean... it would be nice to make this more 8434 // general. It's also subtly incompatible with the hacks FastISel 8435 // uses with vregs. 8436 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8437 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8438 FuncInfo->ValueMap[&Arg] = Reg; 8439 continue; 8440 } 8441 } 8442 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8443 FuncInfo->InitializeRegForValue(&Arg); 8444 SDB->CopyToExportRegsIfNeeded(&Arg); 8445 } 8446 } 8447 8448 if (!Chains.empty()) { 8449 Chains.push_back(NewRoot); 8450 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8451 } 8452 8453 DAG.setRoot(NewRoot); 8454 8455 assert(i == InVals.size() && "Argument register count mismatch!"); 8456 8457 // If any argument copy elisions occurred and we have debug info, update the 8458 // stale frame indices used in the dbg.declare variable info table. 8459 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8460 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8461 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8462 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8463 if (I != ArgCopyElisionFrameIndexMap.end()) 8464 VI.Slot = I->second; 8465 } 8466 } 8467 8468 // Finally, if the target has anything special to do, allow it to do so. 8469 EmitFunctionEntryCode(); 8470 } 8471 8472 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8473 /// ensure constants are generated when needed. Remember the virtual registers 8474 /// that need to be added to the Machine PHI nodes as input. We cannot just 8475 /// directly add them, because expansion might result in multiple MBB's for one 8476 /// BB. As such, the start of the BB might correspond to a different MBB than 8477 /// the end. 8478 /// 8479 void 8480 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8481 const TerminatorInst *TI = LLVMBB->getTerminator(); 8482 8483 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8484 8485 // Check PHI nodes in successors that expect a value to be available from this 8486 // block. 8487 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8488 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8489 if (!isa<PHINode>(SuccBB->begin())) continue; 8490 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8491 8492 // If this terminator has multiple identical successors (common for 8493 // switches), only handle each succ once. 8494 if (!SuccsHandled.insert(SuccMBB).second) 8495 continue; 8496 8497 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8498 8499 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8500 // nodes and Machine PHI nodes, but the incoming operands have not been 8501 // emitted yet. 8502 for (BasicBlock::const_iterator I = SuccBB->begin(); 8503 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8504 // Ignore dead phi's. 8505 if (PN->use_empty()) continue; 8506 8507 // Skip empty types 8508 if (PN->getType()->isEmptyTy()) 8509 continue; 8510 8511 unsigned Reg; 8512 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8513 8514 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8515 unsigned &RegOut = ConstantsOut[C]; 8516 if (RegOut == 0) { 8517 RegOut = FuncInfo.CreateRegs(C->getType()); 8518 CopyValueToVirtualRegister(C, RegOut); 8519 } 8520 Reg = RegOut; 8521 } else { 8522 DenseMap<const Value *, unsigned>::iterator I = 8523 FuncInfo.ValueMap.find(PHIOp); 8524 if (I != FuncInfo.ValueMap.end()) 8525 Reg = I->second; 8526 else { 8527 assert(isa<AllocaInst>(PHIOp) && 8528 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8529 "Didn't codegen value into a register!??"); 8530 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8531 CopyValueToVirtualRegister(PHIOp, Reg); 8532 } 8533 } 8534 8535 // Remember that this register needs to added to the machine PHI node as 8536 // the input for this MBB. 8537 SmallVector<EVT, 4> ValueVTs; 8538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8539 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8540 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8541 EVT VT = ValueVTs[vti]; 8542 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8543 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8544 FuncInfo.PHINodesToUpdate.push_back( 8545 std::make_pair(&*MBBI++, Reg + i)); 8546 Reg += NumRegisters; 8547 } 8548 } 8549 } 8550 8551 ConstantsOut.clear(); 8552 } 8553 8554 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8555 /// is 0. 8556 MachineBasicBlock * 8557 SelectionDAGBuilder::StackProtectorDescriptor:: 8558 AddSuccessorMBB(const BasicBlock *BB, 8559 MachineBasicBlock *ParentMBB, 8560 bool IsLikely, 8561 MachineBasicBlock *SuccMBB) { 8562 // If SuccBB has not been created yet, create it. 8563 if (!SuccMBB) { 8564 MachineFunction *MF = ParentMBB->getParent(); 8565 MachineFunction::iterator BBI(ParentMBB); 8566 SuccMBB = MF->CreateMachineBasicBlock(BB); 8567 MF->insert(++BBI, SuccMBB); 8568 } 8569 // Add it as a successor of ParentMBB. 8570 ParentMBB->addSuccessor( 8571 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8572 return SuccMBB; 8573 } 8574 8575 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8576 MachineFunction::iterator I(MBB); 8577 if (++I == FuncInfo.MF->end()) 8578 return nullptr; 8579 return &*I; 8580 } 8581 8582 /// During lowering new call nodes can be created (such as memset, etc.). 8583 /// Those will become new roots of the current DAG, but complications arise 8584 /// when they are tail calls. In such cases, the call lowering will update 8585 /// the root, but the builder still needs to know that a tail call has been 8586 /// lowered in order to avoid generating an additional return. 8587 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8588 // If the node is null, we do have a tail call. 8589 if (MaybeTC.getNode() != nullptr) 8590 DAG.setRoot(MaybeTC); 8591 else 8592 HasTailCall = true; 8593 } 8594 8595 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8596 const SmallVectorImpl<unsigned> &TotalCases, 8597 unsigned First, unsigned Last, 8598 unsigned Density) const { 8599 assert(Last >= First); 8600 assert(TotalCases[Last] >= TotalCases[First]); 8601 8602 const APInt &LowCase = Clusters[First].Low->getValue(); 8603 const APInt &HighCase = Clusters[Last].High->getValue(); 8604 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8605 8606 // FIXME: A range of consecutive cases has 100% density, but only requires one 8607 // comparison to lower. We should discriminate against such consecutive ranges 8608 // in jump tables. 8609 8610 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8611 uint64_t Range = Diff + 1; 8612 8613 uint64_t NumCases = 8614 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8615 8616 assert(NumCases < UINT64_MAX / 100); 8617 assert(Range >= NumCases); 8618 8619 return NumCases * 100 >= Range * Density; 8620 } 8621 8622 static inline bool areJTsAllowed(const TargetLowering &TLI, 8623 const SwitchInst *SI) { 8624 const Function *Fn = SI->getParent()->getParent(); 8625 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8626 return false; 8627 8628 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8629 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8630 } 8631 8632 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8633 unsigned First, unsigned Last, 8634 const SwitchInst *SI, 8635 MachineBasicBlock *DefaultMBB, 8636 CaseCluster &JTCluster) { 8637 assert(First <= Last); 8638 8639 auto Prob = BranchProbability::getZero(); 8640 unsigned NumCmps = 0; 8641 std::vector<MachineBasicBlock*> Table; 8642 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8643 8644 // Initialize probabilities in JTProbs. 8645 for (unsigned I = First; I <= Last; ++I) 8646 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8647 8648 for (unsigned I = First; I <= Last; ++I) { 8649 assert(Clusters[I].Kind == CC_Range); 8650 Prob += Clusters[I].Prob; 8651 const APInt &Low = Clusters[I].Low->getValue(); 8652 const APInt &High = Clusters[I].High->getValue(); 8653 NumCmps += (Low == High) ? 1 : 2; 8654 if (I != First) { 8655 // Fill the gap between this and the previous cluster. 8656 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8657 assert(PreviousHigh.slt(Low)); 8658 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8659 for (uint64_t J = 0; J < Gap; J++) 8660 Table.push_back(DefaultMBB); 8661 } 8662 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8663 for (uint64_t J = 0; J < ClusterSize; ++J) 8664 Table.push_back(Clusters[I].MBB); 8665 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8666 } 8667 8668 unsigned NumDests = JTProbs.size(); 8669 if (isSuitableForBitTests(NumDests, NumCmps, 8670 Clusters[First].Low->getValue(), 8671 Clusters[Last].High->getValue())) { 8672 // Clusters[First..Last] should be lowered as bit tests instead. 8673 return false; 8674 } 8675 8676 // Create the MBB that will load from and jump through the table. 8677 // Note: We create it here, but it's not inserted into the function yet. 8678 MachineFunction *CurMF = FuncInfo.MF; 8679 MachineBasicBlock *JumpTableMBB = 8680 CurMF->CreateMachineBasicBlock(SI->getParent()); 8681 8682 // Add successors. Note: use table order for determinism. 8683 SmallPtrSet<MachineBasicBlock *, 8> Done; 8684 for (MachineBasicBlock *Succ : Table) { 8685 if (Done.count(Succ)) 8686 continue; 8687 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8688 Done.insert(Succ); 8689 } 8690 JumpTableMBB->normalizeSuccProbs(); 8691 8692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8693 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8694 ->createJumpTableIndex(Table); 8695 8696 // Set up the jump table info. 8697 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8698 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8699 Clusters[Last].High->getValue(), SI->getCondition(), 8700 nullptr, false); 8701 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8702 8703 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8704 JTCases.size() - 1, Prob); 8705 return true; 8706 } 8707 8708 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8709 const SwitchInst *SI, 8710 MachineBasicBlock *DefaultMBB) { 8711 #ifndef NDEBUG 8712 // Clusters must be non-empty, sorted, and only contain Range clusters. 8713 assert(!Clusters.empty()); 8714 for (CaseCluster &C : Clusters) 8715 assert(C.Kind == CC_Range); 8716 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8717 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8718 #endif 8719 8720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8721 if (!areJTsAllowed(TLI, SI)) 8722 return; 8723 8724 const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize(); 8725 8726 const int64_t N = Clusters.size(); 8727 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 8728 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 8729 const unsigned MaxJumpTableSize = 8730 OptForSize || TLI.getMaximumJumpTableSize() == 0 8731 ? UINT_MAX : TLI.getMaximumJumpTableSize(); 8732 8733 if (N < 2 || N < MinJumpTableEntries) 8734 return; 8735 8736 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8737 SmallVector<unsigned, 8> TotalCases(N); 8738 for (unsigned i = 0; i < N; ++i) { 8739 const APInt &Hi = Clusters[i].High->getValue(); 8740 const APInt &Lo = Clusters[i].Low->getValue(); 8741 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8742 if (i != 0) 8743 TotalCases[i] += TotalCases[i - 1]; 8744 } 8745 8746 const unsigned MinDensity = 8747 OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 8748 8749 // Cheap case: the whole range may be suitable for jump table. 8750 unsigned JumpTableSize = (Clusters[N - 1].High->getValue() - 8751 Clusters[0].Low->getValue()) 8752 .getLimitedValue(UINT_MAX - 1) + 1; 8753 if (JumpTableSize <= MaxJumpTableSize && 8754 isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) { 8755 CaseCluster JTCluster; 8756 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8757 Clusters[0] = JTCluster; 8758 Clusters.resize(1); 8759 return; 8760 } 8761 } 8762 8763 // The algorithm below is not suitable for -O0. 8764 if (TM.getOptLevel() == CodeGenOpt::None) 8765 return; 8766 8767 // Split Clusters into minimum number of dense partitions. The algorithm uses 8768 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8769 // for the Case Statement'" (1994), but builds the MinPartitions array in 8770 // reverse order to make it easier to reconstruct the partitions in ascending 8771 // order. In the choice between two optimal partitionings, it picks the one 8772 // which yields more jump tables. 8773 8774 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8775 SmallVector<unsigned, 8> MinPartitions(N); 8776 // LastElement[i] is the last element of the partition starting at i. 8777 SmallVector<unsigned, 8> LastElement(N); 8778 // PartitionsScore[i] is used to break ties when choosing between two 8779 // partitionings resulting in the same number of partitions. 8780 SmallVector<unsigned, 8> PartitionsScore(N); 8781 // For PartitionsScore, a small number of comparisons is considered as good as 8782 // a jump table and a single comparison is considered better than a jump 8783 // table. 8784 enum PartitionScores : unsigned { 8785 NoTable = 0, 8786 Table = 1, 8787 FewCases = 1, 8788 SingleCase = 2 8789 }; 8790 8791 // Base case: There is only one way to partition Clusters[N-1]. 8792 MinPartitions[N - 1] = 1; 8793 LastElement[N - 1] = N - 1; 8794 PartitionsScore[N - 1] = PartitionScores::SingleCase; 8795 8796 // Note: loop indexes are signed to avoid underflow. 8797 for (int64_t i = N - 2; i >= 0; i--) { 8798 // Find optimal partitioning of Clusters[i..N-1]. 8799 // Baseline: Put Clusters[i] into a partition on its own. 8800 MinPartitions[i] = MinPartitions[i + 1] + 1; 8801 LastElement[i] = i; 8802 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 8803 8804 // Search for a solution that results in fewer partitions. 8805 for (int64_t j = N - 1; j > i; j--) { 8806 // Try building a partition from Clusters[i..j]. 8807 JumpTableSize = (Clusters[j].High->getValue() - 8808 Clusters[i].Low->getValue()) 8809 .getLimitedValue(UINT_MAX - 1) + 1; 8810 if (JumpTableSize <= MaxJumpTableSize && 8811 isDense(Clusters, TotalCases, i, j, MinDensity)) { 8812 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8813 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 8814 int64_t NumEntries = j - i + 1; 8815 8816 if (NumEntries == 1) 8817 Score += PartitionScores::SingleCase; 8818 else if (NumEntries <= SmallNumberOfEntries) 8819 Score += PartitionScores::FewCases; 8820 else if (NumEntries >= MinJumpTableEntries) 8821 Score += PartitionScores::Table; 8822 8823 // If this leads to fewer partitions, or to the same number of 8824 // partitions with better score, it is a better partitioning. 8825 if (NumPartitions < MinPartitions[i] || 8826 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 8827 MinPartitions[i] = NumPartitions; 8828 LastElement[i] = j; 8829 PartitionsScore[i] = Score; 8830 } 8831 } 8832 } 8833 } 8834 8835 // Iterate over the partitions, replacing some with jump tables in-place. 8836 unsigned DstIndex = 0; 8837 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8838 Last = LastElement[First]; 8839 assert(Last >= First); 8840 assert(DstIndex <= First); 8841 unsigned NumClusters = Last - First + 1; 8842 8843 CaseCluster JTCluster; 8844 if (NumClusters >= MinJumpTableEntries && 8845 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8846 Clusters[DstIndex++] = JTCluster; 8847 } else { 8848 for (unsigned I = First; I <= Last; ++I) 8849 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8850 } 8851 } 8852 Clusters.resize(DstIndex); 8853 } 8854 8855 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8856 // FIXME: Using the pointer type doesn't seem ideal. 8857 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8858 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8859 return Range <= BW; 8860 } 8861 8862 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8863 unsigned NumCmps, 8864 const APInt &Low, 8865 const APInt &High) { 8866 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8867 // range of cases both require only one branch to lower. Just looking at the 8868 // number of clusters and destinations should be enough to decide whether to 8869 // build bit tests. 8870 8871 // To lower a range with bit tests, the range must fit the bitwidth of a 8872 // machine word. 8873 if (!rangeFitsInWord(Low, High)) 8874 return false; 8875 8876 // Decide whether it's profitable to lower this range with bit tests. Each 8877 // destination requires a bit test and branch, and there is an overall range 8878 // check branch. For a small number of clusters, separate comparisons might be 8879 // cheaper, and for many destinations, splitting the range might be better. 8880 return (NumDests == 1 && NumCmps >= 3) || 8881 (NumDests == 2 && NumCmps >= 5) || 8882 (NumDests == 3 && NumCmps >= 6); 8883 } 8884 8885 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8886 unsigned First, unsigned Last, 8887 const SwitchInst *SI, 8888 CaseCluster &BTCluster) { 8889 assert(First <= Last); 8890 if (First == Last) 8891 return false; 8892 8893 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8894 unsigned NumCmps = 0; 8895 for (int64_t I = First; I <= Last; ++I) { 8896 assert(Clusters[I].Kind == CC_Range); 8897 Dests.set(Clusters[I].MBB->getNumber()); 8898 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8899 } 8900 unsigned NumDests = Dests.count(); 8901 8902 APInt Low = Clusters[First].Low->getValue(); 8903 APInt High = Clusters[Last].High->getValue(); 8904 assert(Low.slt(High)); 8905 8906 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8907 return false; 8908 8909 APInt LowBound; 8910 APInt CmpRange; 8911 8912 const int BitWidth = DAG.getTargetLoweringInfo() 8913 .getPointerTy(DAG.getDataLayout()) 8914 .getSizeInBits(); 8915 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8916 8917 // Check if the clusters cover a contiguous range such that no value in the 8918 // range will jump to the default statement. 8919 bool ContiguousRange = true; 8920 for (int64_t I = First + 1; I <= Last; ++I) { 8921 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8922 ContiguousRange = false; 8923 break; 8924 } 8925 } 8926 8927 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8928 // Optimize the case where all the case values fit in a word without having 8929 // to subtract minValue. In this case, we can optimize away the subtraction. 8930 LowBound = APInt::getNullValue(Low.getBitWidth()); 8931 CmpRange = High; 8932 ContiguousRange = false; 8933 } else { 8934 LowBound = Low; 8935 CmpRange = High - Low; 8936 } 8937 8938 CaseBitsVector CBV; 8939 auto TotalProb = BranchProbability::getZero(); 8940 for (unsigned i = First; i <= Last; ++i) { 8941 // Find the CaseBits for this destination. 8942 unsigned j; 8943 for (j = 0; j < CBV.size(); ++j) 8944 if (CBV[j].BB == Clusters[i].MBB) 8945 break; 8946 if (j == CBV.size()) 8947 CBV.push_back( 8948 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8949 CaseBits *CB = &CBV[j]; 8950 8951 // Update Mask, Bits and ExtraProb. 8952 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8953 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8954 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8955 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8956 CB->Bits += Hi - Lo + 1; 8957 CB->ExtraProb += Clusters[i].Prob; 8958 TotalProb += Clusters[i].Prob; 8959 } 8960 8961 BitTestInfo BTI; 8962 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8963 // Sort by probability first, number of bits second. 8964 if (a.ExtraProb != b.ExtraProb) 8965 return a.ExtraProb > b.ExtraProb; 8966 return a.Bits > b.Bits; 8967 }); 8968 8969 for (auto &CB : CBV) { 8970 MachineBasicBlock *BitTestBB = 8971 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8972 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8973 } 8974 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8975 SI->getCondition(), -1U, MVT::Other, false, 8976 ContiguousRange, nullptr, nullptr, std::move(BTI), 8977 TotalProb); 8978 8979 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8980 BitTestCases.size() - 1, TotalProb); 8981 return true; 8982 } 8983 8984 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8985 const SwitchInst *SI) { 8986 // Partition Clusters into as few subsets as possible, where each subset has a 8987 // range that fits in a machine word and has <= 3 unique destinations. 8988 8989 #ifndef NDEBUG 8990 // Clusters must be sorted and contain Range or JumpTable clusters. 8991 assert(!Clusters.empty()); 8992 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8993 for (const CaseCluster &C : Clusters) 8994 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8995 for (unsigned i = 1; i < Clusters.size(); ++i) 8996 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8997 #endif 8998 8999 // The algorithm below is not suitable for -O0. 9000 if (TM.getOptLevel() == CodeGenOpt::None) 9001 return; 9002 9003 // If target does not have legal shift left, do not emit bit tests at all. 9004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9005 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 9006 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9007 return; 9008 9009 int BitWidth = PTy.getSizeInBits(); 9010 const int64_t N = Clusters.size(); 9011 9012 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9013 SmallVector<unsigned, 8> MinPartitions(N); 9014 // LastElement[i] is the last element of the partition starting at i. 9015 SmallVector<unsigned, 8> LastElement(N); 9016 9017 // FIXME: This might not be the best algorithm for finding bit test clusters. 9018 9019 // Base case: There is only one way to partition Clusters[N-1]. 9020 MinPartitions[N - 1] = 1; 9021 LastElement[N - 1] = N - 1; 9022 9023 // Note: loop indexes are signed to avoid underflow. 9024 for (int64_t i = N - 2; i >= 0; --i) { 9025 // Find optimal partitioning of Clusters[i..N-1]. 9026 // Baseline: Put Clusters[i] into a partition on its own. 9027 MinPartitions[i] = MinPartitions[i + 1] + 1; 9028 LastElement[i] = i; 9029 9030 // Search for a solution that results in fewer partitions. 9031 // Note: the search is limited by BitWidth, reducing time complexity. 9032 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9033 // Try building a partition from Clusters[i..j]. 9034 9035 // Check the range. 9036 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 9037 Clusters[j].High->getValue())) 9038 continue; 9039 9040 // Check nbr of destinations and cluster types. 9041 // FIXME: This works, but doesn't seem very efficient. 9042 bool RangesOnly = true; 9043 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9044 for (int64_t k = i; k <= j; k++) { 9045 if (Clusters[k].Kind != CC_Range) { 9046 RangesOnly = false; 9047 break; 9048 } 9049 Dests.set(Clusters[k].MBB->getNumber()); 9050 } 9051 if (!RangesOnly || Dests.count() > 3) 9052 break; 9053 9054 // Check if it's a better partition. 9055 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9056 if (NumPartitions < MinPartitions[i]) { 9057 // Found a better partition. 9058 MinPartitions[i] = NumPartitions; 9059 LastElement[i] = j; 9060 } 9061 } 9062 } 9063 9064 // Iterate over the partitions, replacing with bit-test clusters in-place. 9065 unsigned DstIndex = 0; 9066 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9067 Last = LastElement[First]; 9068 assert(First <= Last); 9069 assert(DstIndex <= First); 9070 9071 CaseCluster BitTestCluster; 9072 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9073 Clusters[DstIndex++] = BitTestCluster; 9074 } else { 9075 size_t NumClusters = Last - First + 1; 9076 std::memmove(&Clusters[DstIndex], &Clusters[First], 9077 sizeof(Clusters[0]) * NumClusters); 9078 DstIndex += NumClusters; 9079 } 9080 } 9081 Clusters.resize(DstIndex); 9082 } 9083 9084 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9085 MachineBasicBlock *SwitchMBB, 9086 MachineBasicBlock *DefaultMBB) { 9087 MachineFunction *CurMF = FuncInfo.MF; 9088 MachineBasicBlock *NextMBB = nullptr; 9089 MachineFunction::iterator BBI(W.MBB); 9090 if (++BBI != FuncInfo.MF->end()) 9091 NextMBB = &*BBI; 9092 9093 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9094 9095 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9096 9097 if (Size == 2 && W.MBB == SwitchMBB) { 9098 // If any two of the cases has the same destination, and if one value 9099 // is the same as the other, but has one bit unset that the other has set, 9100 // use bit manipulation to do two compares at once. For example: 9101 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9102 // TODO: This could be extended to merge any 2 cases in switches with 3 9103 // cases. 9104 // TODO: Handle cases where W.CaseBB != SwitchBB. 9105 CaseCluster &Small = *W.FirstCluster; 9106 CaseCluster &Big = *W.LastCluster; 9107 9108 if (Small.Low == Small.High && Big.Low == Big.High && 9109 Small.MBB == Big.MBB) { 9110 const APInt &SmallValue = Small.Low->getValue(); 9111 const APInt &BigValue = Big.Low->getValue(); 9112 9113 // Check that there is only one bit different. 9114 APInt CommonBit = BigValue ^ SmallValue; 9115 if (CommonBit.isPowerOf2()) { 9116 SDValue CondLHS = getValue(Cond); 9117 EVT VT = CondLHS.getValueType(); 9118 SDLoc DL = getCurSDLoc(); 9119 9120 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9121 DAG.getConstant(CommonBit, DL, VT)); 9122 SDValue Cond = DAG.getSetCC( 9123 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9124 ISD::SETEQ); 9125 9126 // Update successor info. 9127 // Both Small and Big will jump to Small.BB, so we sum up the 9128 // probabilities. 9129 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9130 if (BPI) 9131 addSuccessorWithProb( 9132 SwitchMBB, DefaultMBB, 9133 // The default destination is the first successor in IR. 9134 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9135 else 9136 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9137 9138 // Insert the true branch. 9139 SDValue BrCond = 9140 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9141 DAG.getBasicBlock(Small.MBB)); 9142 // Insert the false branch. 9143 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9144 DAG.getBasicBlock(DefaultMBB)); 9145 9146 DAG.setRoot(BrCond); 9147 return; 9148 } 9149 } 9150 } 9151 9152 if (TM.getOptLevel() != CodeGenOpt::None) { 9153 // Order cases by probability so the most likely case will be checked first. 9154 std::sort(W.FirstCluster, W.LastCluster + 1, 9155 [](const CaseCluster &a, const CaseCluster &b) { 9156 return a.Prob > b.Prob; 9157 }); 9158 9159 // Rearrange the case blocks so that the last one falls through if possible 9160 // without without changing the order of probabilities. 9161 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9162 --I; 9163 if (I->Prob > W.LastCluster->Prob) 9164 break; 9165 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9166 std::swap(*I, *W.LastCluster); 9167 break; 9168 } 9169 } 9170 } 9171 9172 // Compute total probability. 9173 BranchProbability DefaultProb = W.DefaultProb; 9174 BranchProbability UnhandledProbs = DefaultProb; 9175 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9176 UnhandledProbs += I->Prob; 9177 9178 MachineBasicBlock *CurMBB = W.MBB; 9179 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9180 MachineBasicBlock *Fallthrough; 9181 if (I == W.LastCluster) { 9182 // For the last cluster, fall through to the default destination. 9183 Fallthrough = DefaultMBB; 9184 } else { 9185 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9186 CurMF->insert(BBI, Fallthrough); 9187 // Put Cond in a virtual register to make it available from the new blocks. 9188 ExportFromCurrentBlock(Cond); 9189 } 9190 UnhandledProbs -= I->Prob; 9191 9192 switch (I->Kind) { 9193 case CC_JumpTable: { 9194 // FIXME: Optimize away range check based on pivot comparisons. 9195 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9196 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9197 9198 // The jump block hasn't been inserted yet; insert it here. 9199 MachineBasicBlock *JumpMBB = JT->MBB; 9200 CurMF->insert(BBI, JumpMBB); 9201 9202 auto JumpProb = I->Prob; 9203 auto FallthroughProb = UnhandledProbs; 9204 9205 // If the default statement is a target of the jump table, we evenly 9206 // distribute the default probability to successors of CurMBB. Also 9207 // update the probability on the edge from JumpMBB to Fallthrough. 9208 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9209 SE = JumpMBB->succ_end(); 9210 SI != SE; ++SI) { 9211 if (*SI == DefaultMBB) { 9212 JumpProb += DefaultProb / 2; 9213 FallthroughProb -= DefaultProb / 2; 9214 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9215 JumpMBB->normalizeSuccProbs(); 9216 break; 9217 } 9218 } 9219 9220 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9221 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9222 CurMBB->normalizeSuccProbs(); 9223 9224 // The jump table header will be inserted in our current block, do the 9225 // range check, and fall through to our fallthrough block. 9226 JTH->HeaderBB = CurMBB; 9227 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9228 9229 // If we're in the right place, emit the jump table header right now. 9230 if (CurMBB == SwitchMBB) { 9231 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9232 JTH->Emitted = true; 9233 } 9234 break; 9235 } 9236 case CC_BitTests: { 9237 // FIXME: Optimize away range check based on pivot comparisons. 9238 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9239 9240 // The bit test blocks haven't been inserted yet; insert them here. 9241 for (BitTestCase &BTC : BTB->Cases) 9242 CurMF->insert(BBI, BTC.ThisBB); 9243 9244 // Fill in fields of the BitTestBlock. 9245 BTB->Parent = CurMBB; 9246 BTB->Default = Fallthrough; 9247 9248 BTB->DefaultProb = UnhandledProbs; 9249 // If the cases in bit test don't form a contiguous range, we evenly 9250 // distribute the probability on the edge to Fallthrough to two 9251 // successors of CurMBB. 9252 if (!BTB->ContiguousRange) { 9253 BTB->Prob += DefaultProb / 2; 9254 BTB->DefaultProb -= DefaultProb / 2; 9255 } 9256 9257 // If we're in the right place, emit the bit test header right now. 9258 if (CurMBB == SwitchMBB) { 9259 visitBitTestHeader(*BTB, SwitchMBB); 9260 BTB->Emitted = true; 9261 } 9262 break; 9263 } 9264 case CC_Range: { 9265 const Value *RHS, *LHS, *MHS; 9266 ISD::CondCode CC; 9267 if (I->Low == I->High) { 9268 // Check Cond == I->Low. 9269 CC = ISD::SETEQ; 9270 LHS = Cond; 9271 RHS=I->Low; 9272 MHS = nullptr; 9273 } else { 9274 // Check I->Low <= Cond <= I->High. 9275 CC = ISD::SETLE; 9276 LHS = I->Low; 9277 MHS = Cond; 9278 RHS = I->High; 9279 } 9280 9281 // The false probability is the sum of all unhandled cases. 9282 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9283 UnhandledProbs); 9284 9285 if (CurMBB == SwitchMBB) 9286 visitSwitchCase(CB, SwitchMBB); 9287 else 9288 SwitchCases.push_back(CB); 9289 9290 break; 9291 } 9292 } 9293 CurMBB = Fallthrough; 9294 } 9295 } 9296 9297 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9298 CaseClusterIt First, 9299 CaseClusterIt Last) { 9300 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9301 if (X.Prob != CC.Prob) 9302 return X.Prob > CC.Prob; 9303 9304 // Ties are broken by comparing the case value. 9305 return X.Low->getValue().slt(CC.Low->getValue()); 9306 }); 9307 } 9308 9309 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9310 const SwitchWorkListItem &W, 9311 Value *Cond, 9312 MachineBasicBlock *SwitchMBB) { 9313 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9314 "Clusters not sorted?"); 9315 9316 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9317 9318 // Balance the tree based on branch probabilities to create a near-optimal (in 9319 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9320 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9321 CaseClusterIt LastLeft = W.FirstCluster; 9322 CaseClusterIt FirstRight = W.LastCluster; 9323 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9324 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9325 9326 // Move LastLeft and FirstRight towards each other from opposite directions to 9327 // find a partitioning of the clusters which balances the probability on both 9328 // sides. If LeftProb and RightProb are equal, alternate which side is 9329 // taken to ensure 0-probability nodes are distributed evenly. 9330 unsigned I = 0; 9331 while (LastLeft + 1 < FirstRight) { 9332 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9333 LeftProb += (++LastLeft)->Prob; 9334 else 9335 RightProb += (--FirstRight)->Prob; 9336 I++; 9337 } 9338 9339 for (;;) { 9340 // Our binary search tree differs from a typical BST in that ours can have up 9341 // to three values in each leaf. The pivot selection above doesn't take that 9342 // into account, which means the tree might require more nodes and be less 9343 // efficient. We compensate for this here. 9344 9345 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9346 unsigned NumRight = W.LastCluster - FirstRight + 1; 9347 9348 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9349 // If one side has less than 3 clusters, and the other has more than 3, 9350 // consider taking a cluster from the other side. 9351 9352 if (NumLeft < NumRight) { 9353 // Consider moving the first cluster on the right to the left side. 9354 CaseCluster &CC = *FirstRight; 9355 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9356 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9357 if (LeftSideRank <= RightSideRank) { 9358 // Moving the cluster to the left does not demote it. 9359 ++LastLeft; 9360 ++FirstRight; 9361 continue; 9362 } 9363 } else { 9364 assert(NumRight < NumLeft); 9365 // Consider moving the last element on the left to the right side. 9366 CaseCluster &CC = *LastLeft; 9367 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9368 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9369 if (RightSideRank <= LeftSideRank) { 9370 // Moving the cluster to the right does not demot it. 9371 --LastLeft; 9372 --FirstRight; 9373 continue; 9374 } 9375 } 9376 } 9377 break; 9378 } 9379 9380 assert(LastLeft + 1 == FirstRight); 9381 assert(LastLeft >= W.FirstCluster); 9382 assert(FirstRight <= W.LastCluster); 9383 9384 // Use the first element on the right as pivot since we will make less-than 9385 // comparisons against it. 9386 CaseClusterIt PivotCluster = FirstRight; 9387 assert(PivotCluster > W.FirstCluster); 9388 assert(PivotCluster <= W.LastCluster); 9389 9390 CaseClusterIt FirstLeft = W.FirstCluster; 9391 CaseClusterIt LastRight = W.LastCluster; 9392 9393 const ConstantInt *Pivot = PivotCluster->Low; 9394 9395 // New blocks will be inserted immediately after the current one. 9396 MachineFunction::iterator BBI(W.MBB); 9397 ++BBI; 9398 9399 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9400 // we can branch to its destination directly if it's squeezed exactly in 9401 // between the known lower bound and Pivot - 1. 9402 MachineBasicBlock *LeftMBB; 9403 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9404 FirstLeft->Low == W.GE && 9405 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9406 LeftMBB = FirstLeft->MBB; 9407 } else { 9408 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9409 FuncInfo.MF->insert(BBI, LeftMBB); 9410 WorkList.push_back( 9411 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9412 // Put Cond in a virtual register to make it available from the new blocks. 9413 ExportFromCurrentBlock(Cond); 9414 } 9415 9416 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9417 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9418 // directly if RHS.High equals the current upper bound. 9419 MachineBasicBlock *RightMBB; 9420 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9421 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9422 RightMBB = FirstRight->MBB; 9423 } else { 9424 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9425 FuncInfo.MF->insert(BBI, RightMBB); 9426 WorkList.push_back( 9427 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9428 // Put Cond in a virtual register to make it available from the new blocks. 9429 ExportFromCurrentBlock(Cond); 9430 } 9431 9432 // Create the CaseBlock record that will be used to lower the branch. 9433 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9434 LeftProb, RightProb); 9435 9436 if (W.MBB == SwitchMBB) 9437 visitSwitchCase(CB, SwitchMBB); 9438 else 9439 SwitchCases.push_back(CB); 9440 } 9441 9442 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9443 // Extract cases from the switch. 9444 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9445 CaseClusterVector Clusters; 9446 Clusters.reserve(SI.getNumCases()); 9447 for (auto I : SI.cases()) { 9448 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9449 const ConstantInt *CaseVal = I.getCaseValue(); 9450 BranchProbability Prob = 9451 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9452 : BranchProbability(1, SI.getNumCases() + 1); 9453 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9454 } 9455 9456 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9457 9458 // Cluster adjacent cases with the same destination. We do this at all 9459 // optimization levels because it's cheap to do and will make codegen faster 9460 // if there are many clusters. 9461 sortAndRangeify(Clusters); 9462 9463 if (TM.getOptLevel() != CodeGenOpt::None) { 9464 // Replace an unreachable default with the most popular destination. 9465 // FIXME: Exploit unreachable default more aggressively. 9466 bool UnreachableDefault = 9467 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9468 if (UnreachableDefault && !Clusters.empty()) { 9469 DenseMap<const BasicBlock *, unsigned> Popularity; 9470 unsigned MaxPop = 0; 9471 const BasicBlock *MaxBB = nullptr; 9472 for (auto I : SI.cases()) { 9473 const BasicBlock *BB = I.getCaseSuccessor(); 9474 if (++Popularity[BB] > MaxPop) { 9475 MaxPop = Popularity[BB]; 9476 MaxBB = BB; 9477 } 9478 } 9479 // Set new default. 9480 assert(MaxPop > 0 && MaxBB); 9481 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9482 9483 // Remove cases that were pointing to the destination that is now the 9484 // default. 9485 CaseClusterVector New; 9486 New.reserve(Clusters.size()); 9487 for (CaseCluster &CC : Clusters) { 9488 if (CC.MBB != DefaultMBB) 9489 New.push_back(CC); 9490 } 9491 Clusters = std::move(New); 9492 } 9493 } 9494 9495 // If there is only the default destination, jump there directly. 9496 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9497 if (Clusters.empty()) { 9498 SwitchMBB->addSuccessor(DefaultMBB); 9499 if (DefaultMBB != NextBlock(SwitchMBB)) { 9500 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9501 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9502 } 9503 return; 9504 } 9505 9506 findJumpTables(Clusters, &SI, DefaultMBB); 9507 findBitTestClusters(Clusters, &SI); 9508 9509 DEBUG({ 9510 dbgs() << "Case clusters: "; 9511 for (const CaseCluster &C : Clusters) { 9512 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9513 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9514 9515 C.Low->getValue().print(dbgs(), true); 9516 if (C.Low != C.High) { 9517 dbgs() << '-'; 9518 C.High->getValue().print(dbgs(), true); 9519 } 9520 dbgs() << ' '; 9521 } 9522 dbgs() << '\n'; 9523 }); 9524 9525 assert(!Clusters.empty()); 9526 SwitchWorkList WorkList; 9527 CaseClusterIt First = Clusters.begin(); 9528 CaseClusterIt Last = Clusters.end() - 1; 9529 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9530 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9531 9532 while (!WorkList.empty()) { 9533 SwitchWorkListItem W = WorkList.back(); 9534 WorkList.pop_back(); 9535 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9536 9537 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9538 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9539 // For optimized builds, lower large range as a balanced binary tree. 9540 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9541 continue; 9542 } 9543 9544 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9545 } 9546 } 9547