xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 67d4c9924c1fbfdbfcfa90bf729945eca0a92f86)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
419                          (IntermediateVT.isVector()
420                               ? IntermediateVT.getVectorNumElements() * NumParts
421                               : NumIntermediates));
422     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
423                                                 : ISD::BUILD_VECTOR,
424                       DL, BuiltVectorTy, Ops);
425   }
426 
427   // There is now one part, held in Val.  Correct it to match ValueVT.
428   EVT PartEVT = Val.getValueType();
429 
430   if (PartEVT == ValueVT)
431     return Val;
432 
433   if (PartEVT.isVector()) {
434     // If the element type of the source/dest vectors are the same, but the
435     // parts vector has more elements than the value vector, then we have a
436     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
437     // elements we want.
438     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
439       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
440              "Cannot narrow, it would be a lossy transformation");
441       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
442                          DAG.getVectorIdxConstant(0, DL));
443     }
444 
445     // Vector/Vector bitcast.
446     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
447       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
450       "Cannot handle this kind of promotion");
451     // Promoted vector extract
452     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
453 
454   }
455 
456   // Trivial bitcast if the types are the same size and the destination
457   // vector type is legal.
458   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
459       TLI.isTypeLegal(ValueVT))
460     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
461 
462   if (ValueVT.getVectorNumElements() != 1) {
463      // Certain ABIs require that vectors are passed as integers. For vectors
464      // are the same size, this is an obvious bitcast.
465      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
466        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
467      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
468        // Bitcast Val back the original type and extract the corresponding
469        // vector we want.
470        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
471        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
472                                            ValueVT.getVectorElementType(), Elts);
473        Val = DAG.getBitcast(WiderVecType, Val);
474        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
475                           DAG.getVectorIdxConstant(0, DL));
476      }
477 
478      diagnosePossiblyInvalidConstraint(
479          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
480      return DAG.getUNDEF(ValueVT);
481   }
482 
483   // Handle cases such as i8 -> <1 x i1>
484   EVT ValueSVT = ValueVT.getVectorElementType();
485   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
486     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
487                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
488 
489   return DAG.getBuildVector(ValueVT, DL, Val);
490 }
491 
492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V,
495                                  Optional<CallingConv::ID> CallConv);
496 
497 /// getCopyToParts - Create a series of nodes that contain the specified value
498 /// split into legal parts.  If the parts contain more bits than Val, then, for
499 /// integers, ExtendKind can be used to specify how to generate the extra bits.
500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
501                            SDValue *Parts, unsigned NumParts, MVT PartVT,
502                            const Value *V,
503                            Optional<CallingConv::ID> CallConv = None,
504                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
505   EVT ValueVT = Val.getValueType();
506 
507   // Handle the vector case separately.
508   if (ValueVT.isVector())
509     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
510                                 CallConv);
511 
512   unsigned PartBits = PartVT.getSizeInBits();
513   unsigned OrigNumParts = NumParts;
514   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
515          "Copying to an illegal type!");
516 
517   if (NumParts == 0)
518     return;
519 
520   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
521   EVT PartEVT = PartVT;
522   if (PartEVT == ValueVT) {
523     assert(NumParts == 1 && "No-op copy with multiple parts!");
524     Parts[0] = Val;
525     return;
526   }
527 
528   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
529     // If the parts cover more bits than the value has, promote the value.
530     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
531       assert(NumParts == 1 && "Do not know what to promote to!");
532       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
533     } else {
534       if (ValueVT.isFloatingPoint()) {
535         // FP values need to be bitcast, then extended if they are being put
536         // into a larger container.
537         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
538         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
539       }
540       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541              ValueVT.isInteger() &&
542              "Unknown mismatch!");
543       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
545       if (PartVT == MVT::x86mmx)
546         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547     }
548   } else if (PartBits == ValueVT.getSizeInBits()) {
549     // Different types of the same size.
550     assert(NumParts == 1 && PartEVT != ValueVT);
551     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
552   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
553     // If the parts cover less bits than value has, truncate the value.
554     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
555            ValueVT.isInteger() &&
556            "Unknown mismatch!");
557     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
558     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
559     if (PartVT == MVT::x86mmx)
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561   }
562 
563   // The value may have changed - recompute ValueVT.
564   ValueVT = Val.getValueType();
565   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
566          "Failed to tile the value with PartVT!");
567 
568   if (NumParts == 1) {
569     if (PartEVT != ValueVT) {
570       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
571                                         "scalar-to-vector conversion failed");
572       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
573     }
574 
575     Parts[0] = Val;
576     return;
577   }
578 
579   // Expand the value into multiple parts.
580   if (NumParts & (NumParts - 1)) {
581     // The number of parts is not a power of 2.  Split off and copy the tail.
582     assert(PartVT.isInteger() && ValueVT.isInteger() &&
583            "Do not know what to expand to!");
584     unsigned RoundParts = 1 << Log2_32(NumParts);
585     unsigned RoundBits = RoundParts * PartBits;
586     unsigned OddParts = NumParts - RoundParts;
587     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
588       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
589 
590     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
591                    CallConv);
592 
593     if (DAG.getDataLayout().isBigEndian())
594       // The odd parts were reversed by getCopyToParts - unreverse them.
595       std::reverse(Parts + RoundParts, Parts + NumParts);
596 
597     NumParts = RoundParts;
598     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
599     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
600   }
601 
602   // The number of parts is a power of 2.  Repeatedly bisect the value using
603   // EXTRACT_ELEMENT.
604   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
605                          EVT::getIntegerVT(*DAG.getContext(),
606                                            ValueVT.getSizeInBits()),
607                          Val);
608 
609   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
610     for (unsigned i = 0; i < NumParts; i += StepSize) {
611       unsigned ThisBits = StepSize * PartBits / 2;
612       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
613       SDValue &Part0 = Parts[i];
614       SDValue &Part1 = Parts[i+StepSize/2];
615 
616       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
618       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
619                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
620 
621       if (ThisBits == PartBits && ThisVT != PartVT) {
622         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
623         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
624       }
625     }
626   }
627 
628   if (DAG.getDataLayout().isBigEndian())
629     std::reverse(Parts, Parts + OrigNumParts);
630 }
631 
632 static SDValue widenVectorToPartType(SelectionDAG &DAG,
633                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
634   if (!PartVT.isVector())
635     return SDValue();
636 
637   EVT ValueVT = Val.getValueType();
638   unsigned PartNumElts = PartVT.getVectorNumElements();
639   unsigned ValueNumElts = ValueVT.getVectorNumElements();
640   if (PartNumElts > ValueNumElts &&
641       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
642     EVT ElementVT = PartVT.getVectorElementType();
643     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
644     // undef elements.
645     SmallVector<SDValue, 16> Ops;
646     DAG.ExtractVectorElements(Val, Ops);
647     SDValue EltUndef = DAG.getUNDEF(ElementVT);
648     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
649       Ops.push_back(EltUndef);
650 
651     // FIXME: Use CONCAT for 2x -> 4x.
652     return DAG.getBuildVector(PartVT, DL, Ops);
653   }
654 
655   return SDValue();
656 }
657 
658 /// getCopyToPartsVector - Create a series of nodes that contain the specified
659 /// value split into legal parts.
660 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
661                                  SDValue Val, SDValue *Parts, unsigned NumParts,
662                                  MVT PartVT, const Value *V,
663                                  Optional<CallingConv::ID> CallConv) {
664   EVT ValueVT = Val.getValueType();
665   assert(ValueVT.isVector() && "Not a vector");
666   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
667   const bool IsABIRegCopy = CallConv.hasValue();
668 
669   if (NumParts == 1) {
670     EVT PartEVT = PartVT;
671     if (PartEVT == ValueVT) {
672       // Nothing to do.
673     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
674       // Bitconvert vector->vector case.
675       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
676     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
677       Val = Widened;
678     } else if (PartVT.isVector() &&
679                PartEVT.getVectorElementType().bitsGE(
680                  ValueVT.getVectorElementType()) &&
681                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
682 
683       // Promoted vector extract
684       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685     } else {
686       if (ValueVT.getVectorNumElements() == 1) {
687         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
688                           DAG.getVectorIdxConstant(0, DL));
689       } else {
690         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
691                "lossy conversion of vector to scalar type");
692         EVT IntermediateType =
693             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
694         Val = DAG.getBitcast(IntermediateType, Val);
695         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
696       }
697     }
698 
699     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
700     Parts[0] = Val;
701     return;
702   }
703 
704   // Handle a multi-element vector.
705   EVT IntermediateVT;
706   MVT RegisterVT;
707   unsigned NumIntermediates;
708   unsigned NumRegs;
709   if (IsABIRegCopy) {
710     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
711         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
712         NumIntermediates, RegisterVT);
713   } else {
714     NumRegs =
715         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
716                                    NumIntermediates, RegisterVT);
717   }
718 
719   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
720   NumParts = NumRegs; // Silence a compiler warning.
721   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
722 
723   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
724     IntermediateVT.getVectorNumElements() : 1;
725 
726   // Convert the vector to the appropriate type if necessary.
727   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
728 
729   EVT BuiltVectorTy = EVT::getVectorVT(
730       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
731   if (ValueVT != BuiltVectorTy) {
732     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733       Val = Widened;
734 
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   }
737 
738   // Split the vector into intermediate operands.
739   SmallVector<SDValue, 8> Ops(NumIntermediates);
740   for (unsigned i = 0; i != NumIntermediates; ++i) {
741     if (IntermediateVT.isVector()) {
742       Ops[i] =
743           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
744                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
745     } else {
746       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747                            DAG.getVectorIdxConstant(i, DL));
748     }
749   }
750 
751   // Split the intermediate operands into legal parts.
752   if (NumParts == NumIntermediates) {
753     // If the register was not expanded, promote or copy the value,
754     // as appropriate.
755     for (unsigned i = 0; i != NumParts; ++i)
756       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757   } else if (NumParts > 0) {
758     // If the intermediate type was expanded, split each the value into
759     // legal parts.
760     assert(NumIntermediates != 0 && "division by zero");
761     assert(NumParts % NumIntermediates == 0 &&
762            "Must expand into a divisible number of parts!");
763     unsigned Factor = NumParts / NumIntermediates;
764     for (unsigned i = 0; i != NumIntermediates; ++i)
765       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766                      CallConv);
767   }
768 }
769 
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771                            EVT valuevt, Optional<CallingConv::ID> CC)
772     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773       RegCount(1, regs.size()), CallConv(CC) {}
774 
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776                            const DataLayout &DL, unsigned Reg, Type *Ty,
777                            Optional<CallingConv::ID> CC) {
778   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
779 
780   CallConv = CC;
781 
782   for (EVT ValueVT : ValueVTs) {
783     unsigned NumRegs =
784         isABIMangled()
785             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786             : TLI.getNumRegisters(Context, ValueVT);
787     MVT RegisterVT =
788         isABIMangled()
789             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getRegisterType(Context, ValueVT);
791     for (unsigned i = 0; i != NumRegs; ++i)
792       Regs.push_back(Reg + i);
793     RegVTs.push_back(RegisterVT);
794     RegCount.push_back(NumRegs);
795     Reg += NumRegs;
796   }
797 }
798 
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800                                       FunctionLoweringInfo &FuncInfo,
801                                       const SDLoc &dl, SDValue &Chain,
802                                       SDValue *Flag, const Value *V) const {
803   // A Value with type {} or [0 x %t] needs no registers.
804   if (ValueVTs.empty())
805     return SDValue();
806 
807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808 
809   // Assemble the legal parts into the final values.
810   SmallVector<SDValue, 4> Values(ValueVTs.size());
811   SmallVector<SDValue, 8> Parts;
812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813     // Copy the legal parts from the registers.
814     EVT ValueVT = ValueVTs[Value];
815     unsigned NumRegs = RegCount[Value];
816     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817                                           *DAG.getContext(),
818                                           CallConv.getValue(), RegVTs[Value])
819                                     : RegVTs[Value];
820 
821     Parts.resize(NumRegs);
822     for (unsigned i = 0; i != NumRegs; ++i) {
823       SDValue P;
824       if (!Flag) {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826       } else {
827         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828         *Flag = P.getValue(2);
829       }
830 
831       Chain = P.getValue(1);
832       Parts[i] = P;
833 
834       // If the source register was virtual and if we know something about it,
835       // add an assert node.
836       if (!Register::isVirtualRegister(Regs[Part + i]) ||
837           !RegisterVT.isInteger())
838         continue;
839 
840       const FunctionLoweringInfo::LiveOutInfo *LOI =
841         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842       if (!LOI)
843         continue;
844 
845       unsigned RegSize = RegisterVT.getScalarSizeInBits();
846       unsigned NumSignBits = LOI->NumSignBits;
847       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
848 
849       if (NumZeroBits == RegSize) {
850         // The current value is a zero.
851         // Explicitly express that as it would be easier for
852         // optimizations to kick in.
853         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854         continue;
855       }
856 
857       // FIXME: We capture more information than the dag can represent.  For
858       // now, just use the tightest assertzext/assertsext possible.
859       bool isSExt;
860       EVT FromVT(MVT::Other);
861       if (NumZeroBits) {
862         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863         isSExt = false;
864       } else if (NumSignBits > 1) {
865         FromVT =
866             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867         isSExt = true;
868       } else {
869         continue;
870       }
871       // Add an assertion node.
872       assert(FromVT != MVT::Other);
873       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874                              RegisterVT, P, DAG.getValueType(FromVT));
875     }
876 
877     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878                                      RegisterVT, ValueVT, V, CallConv);
879     Part += NumRegs;
880     Parts.clear();
881   }
882 
883   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 }
885 
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888                                  const Value *V,
889                                  ISD::NodeType PreferredExtendType) const {
890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891   ISD::NodeType ExtendKind = PreferredExtendType;
892 
893   // Get the list of the values's legal parts.
894   unsigned NumRegs = Regs.size();
895   SmallVector<SDValue, 8> Parts(NumRegs);
896   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897     unsigned NumParts = RegCount[Value];
898 
899     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900                                           *DAG.getContext(),
901                                           CallConv.getValue(), RegVTs[Value])
902                                     : RegVTs[Value];
903 
904     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905       ExtendKind = ISD::ZERO_EXTEND;
906 
907     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908                    NumParts, RegisterVT, V, CallConv, ExtendKind);
909     Part += NumParts;
910   }
911 
912   // Copy the parts into the registers.
913   SmallVector<SDValue, 8> Chains(NumRegs);
914   for (unsigned i = 0; i != NumRegs; ++i) {
915     SDValue Part;
916     if (!Flag) {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918     } else {
919       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920       *Flag = Part.getValue(1);
921     }
922 
923     Chains[i] = Part.getValue(0);
924   }
925 
926   if (NumRegs == 1 || Flag)
927     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928     // flagged to it. That is the CopyToReg nodes and the user are considered
929     // a single scheduling unit. If we create a TokenFactor and return it as
930     // chain, then the TokenFactor is both a predecessor (operand) of the
931     // user as well as a successor (the TF operands are flagged to the user).
932     // c1, f1 = CopyToReg
933     // c2, f2 = CopyToReg
934     // c3     = TokenFactor c1, c2
935     // ...
936     //        = op c3, ..., f2
937     Chain = Chains[NumRegs-1];
938   else
939     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 }
941 
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943                                         unsigned MatchingIdx, const SDLoc &dl,
944                                         SelectionDAG &DAG,
945                                         std::vector<SDValue> &Ops) const {
946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
947 
948   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949   if (HasMatching)
950     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952     // Put the register class of the virtual registers in the flag word.  That
953     // way, later passes can recompute register class constraints for inline
954     // assembly as well as normal instructions.
955     // Don't do this for tied operands that can use the regclass information
956     // from the def.
957     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
960   }
961 
962   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963   Ops.push_back(Res);
964 
965   if (Code == InlineAsm::Kind_Clobber) {
966     // Clobbers should always have a 1:1 mapping with registers, and may
967     // reference registers that have illegal (e.g. vector) types. Hence, we
968     // shouldn't try to apply any sort of splitting logic to them.
969     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970            "No 1:1 mapping from clobbers to regs?");
971     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972     (void)SP;
973     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975       assert(
976           (Regs[I] != SP ||
977            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978           "If we clobbered the stack pointer, MFI should know about it.");
979     }
980     return;
981   }
982 
983   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985     MVT RegisterVT = RegVTs[Value];
986     for (unsigned i = 0; i != NumRegs; ++i) {
987       assert(Reg < Regs.size() && "Mismatch in # registers expected");
988       unsigned TheReg = Regs[Reg++];
989       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
990     }
991   }
992 }
993 
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997   unsigned I = 0;
998   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999     unsigned RegCount = std::get<0>(CountAndVT);
1000     MVT RegisterVT = std::get<1>(CountAndVT);
1001     unsigned RegisterSize = RegisterVT.getSizeInBits();
1002     for (unsigned E = I + RegCount; I != E; ++I)
1003       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004   }
1005   return OutVec;
1006 }
1007 
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009                                const TargetLibraryInfo *li) {
1010   AA = aa;
1011   GFI = gfi;
1012   LibInfo = li;
1013   DL = &DAG.getDataLayout();
1014   Context = DAG.getContext();
1015   LPadToCallSiteMap.clear();
1016   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1017 }
1018 
1019 void SelectionDAGBuilder::clear() {
1020   NodeMap.clear();
1021   UnusedArgNodeMap.clear();
1022   PendingLoads.clear();
1023   PendingExports.clear();
1024   PendingConstrainedFP.clear();
1025   PendingConstrainedFPStrict.clear();
1026   CurInst = nullptr;
1027   HasTailCall = false;
1028   SDNodeOrder = LowestSDNodeOrder;
1029   StatepointLowering.clear();
1030 }
1031 
1032 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1033   DanglingDebugInfoMap.clear();
1034 }
1035 
1036 // Update DAG root to include dependencies on Pending chains.
1037 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1038   SDValue Root = DAG.getRoot();
1039 
1040   if (Pending.empty())
1041     return Root;
1042 
1043   // Add current root to PendingChains, unless we already indirectly
1044   // depend on it.
1045   if (Root.getOpcode() != ISD::EntryToken) {
1046     unsigned i = 0, e = Pending.size();
1047     for (; i != e; ++i) {
1048       assert(Pending[i].getNode()->getNumOperands() > 1);
1049       if (Pending[i].getNode()->getOperand(0) == Root)
1050         break;  // Don't add the root if we already indirectly depend on it.
1051     }
1052 
1053     if (i == e)
1054       Pending.push_back(Root);
1055   }
1056 
1057   if (Pending.size() == 1)
1058     Root = Pending[0];
1059   else
1060     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1061 
1062   DAG.setRoot(Root);
1063   Pending.clear();
1064   return Root;
1065 }
1066 
1067 SDValue SelectionDAGBuilder::getMemoryRoot() {
1068   return updateRoot(PendingLoads);
1069 }
1070 
1071 SDValue SelectionDAGBuilder::getRoot() {
1072   // Chain up all pending constrained intrinsics together with all
1073   // pending loads, by simply appending them to PendingLoads and
1074   // then calling getMemoryRoot().
1075   PendingLoads.reserve(PendingLoads.size() +
1076                        PendingConstrainedFP.size() +
1077                        PendingConstrainedFPStrict.size());
1078   PendingLoads.append(PendingConstrainedFP.begin(),
1079                       PendingConstrainedFP.end());
1080   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1081                       PendingConstrainedFPStrict.end());
1082   PendingConstrainedFP.clear();
1083   PendingConstrainedFPStrict.clear();
1084   return getMemoryRoot();
1085 }
1086 
1087 SDValue SelectionDAGBuilder::getControlRoot() {
1088   // We need to emit pending fpexcept.strict constrained intrinsics,
1089   // so append them to the PendingExports list.
1090   PendingExports.append(PendingConstrainedFPStrict.begin(),
1091                         PendingConstrainedFPStrict.end());
1092   PendingConstrainedFPStrict.clear();
1093   return updateRoot(PendingExports);
1094 }
1095 
1096 void SelectionDAGBuilder::visit(const Instruction &I) {
1097   // Set up outgoing PHI node register values before emitting the terminator.
1098   if (I.isTerminator()) {
1099     HandlePHINodesInSuccessorBlocks(I.getParent());
1100   }
1101 
1102   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1103   if (!isa<DbgInfoIntrinsic>(I))
1104     ++SDNodeOrder;
1105 
1106   CurInst = &I;
1107 
1108   visit(I.getOpcode(), I);
1109 
1110   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1111     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1112     // maps to this instruction.
1113     // TODO: We could handle all flags (nsw, etc) here.
1114     // TODO: If an IR instruction maps to >1 node, only the final node will have
1115     //       flags set.
1116     if (SDNode *Node = getNodeForIRValue(&I)) {
1117       SDNodeFlags IncomingFlags;
1118       IncomingFlags.copyFMF(*FPMO);
1119       if (!Node->getFlags().isDefined())
1120         Node->setFlags(IncomingFlags);
1121       else
1122         Node->intersectFlagsWith(IncomingFlags);
1123     }
1124   }
1125   // Constrained FP intrinsics with fpexcept.ignore should also get
1126   // the NoFPExcept flag.
1127   if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(&I))
1128     if (FPI->getExceptionBehavior() == fp::ExceptionBehavior::ebIgnore)
1129       if (SDNode *Node = getNodeForIRValue(&I)) {
1130         SDNodeFlags Flags = Node->getFlags();
1131         Flags.setNoFPExcept(true);
1132         Node->setFlags(Flags);
1133       }
1134 
1135   if (!I.isTerminator() && !HasTailCall &&
1136       !isStatepoint(&I)) // statepoints handle their exports internally
1137     CopyToExportRegsIfNeeded(&I);
1138 
1139   CurInst = nullptr;
1140 }
1141 
1142 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1143   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1144 }
1145 
1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1147   // Note: this doesn't use InstVisitor, because it has to work with
1148   // ConstantExpr's in addition to instructions.
1149   switch (Opcode) {
1150   default: llvm_unreachable("Unknown instruction type encountered!");
1151     // Build the switch statement using the Instruction.def file.
1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1153     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1154 #include "llvm/IR/Instruction.def"
1155   }
1156 }
1157 
1158 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1159                                                 const DIExpression *Expr) {
1160   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1161     const DbgValueInst *DI = DDI.getDI();
1162     DIVariable *DanglingVariable = DI->getVariable();
1163     DIExpression *DanglingExpr = DI->getExpression();
1164     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1165       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1166       return true;
1167     }
1168     return false;
1169   };
1170 
1171   for (auto &DDIMI : DanglingDebugInfoMap) {
1172     DanglingDebugInfoVector &DDIV = DDIMI.second;
1173 
1174     // If debug info is to be dropped, run it through final checks to see
1175     // whether it can be salvaged.
1176     for (auto &DDI : DDIV)
1177       if (isMatchingDbgValue(DDI))
1178         salvageUnresolvedDbgValue(DDI);
1179 
1180     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1181   }
1182 }
1183 
1184 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1185 // generate the debug data structures now that we've seen its definition.
1186 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1187                                                    SDValue Val) {
1188   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1189   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1190     return;
1191 
1192   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1193   for (auto &DDI : DDIV) {
1194     const DbgValueInst *DI = DDI.getDI();
1195     assert(DI && "Ill-formed DanglingDebugInfo");
1196     DebugLoc dl = DDI.getdl();
1197     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1198     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1199     DILocalVariable *Variable = DI->getVariable();
1200     DIExpression *Expr = DI->getExpression();
1201     assert(Variable->isValidLocationForIntrinsic(dl) &&
1202            "Expected inlined-at fields to agree");
1203     SDDbgValue *SDV;
1204     if (Val.getNode()) {
1205       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1206       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1207       // we couldn't resolve it directly when examining the DbgValue intrinsic
1208       // in the first place we should not be more successful here). Unless we
1209       // have some test case that prove this to be correct we should avoid
1210       // calling EmitFuncArgumentDbgValue here.
1211       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1212         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1213                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1214         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1215         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1216         // inserted after the definition of Val when emitting the instructions
1217         // after ISel. An alternative could be to teach
1218         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1219         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1220                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1221                    << ValSDNodeOrder << "\n");
1222         SDV = getDbgValue(Val, Variable, Expr, dl,
1223                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1224         DAG.AddDbgValue(SDV, Val.getNode(), false);
1225       } else
1226         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1227                           << "in EmitFuncArgumentDbgValue\n");
1228     } else {
1229       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1230       auto Undef =
1231           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1232       auto SDV =
1233           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1234       DAG.AddDbgValue(SDV, nullptr, false);
1235     }
1236   }
1237   DDIV.clear();
1238 }
1239 
1240 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1241   Value *V = DDI.getDI()->getValue();
1242   DILocalVariable *Var = DDI.getDI()->getVariable();
1243   DIExpression *Expr = DDI.getDI()->getExpression();
1244   DebugLoc DL = DDI.getdl();
1245   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1246   unsigned SDOrder = DDI.getSDNodeOrder();
1247 
1248   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1249   // that DW_OP_stack_value is desired.
1250   assert(isa<DbgValueInst>(DDI.getDI()));
1251   bool StackValue = true;
1252 
1253   // Can this Value can be encoded without any further work?
1254   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1255     return;
1256 
1257   // Attempt to salvage back through as many instructions as possible. Bail if
1258   // a non-instruction is seen, such as a constant expression or global
1259   // variable. FIXME: Further work could recover those too.
1260   while (isa<Instruction>(V)) {
1261     Instruction &VAsInst = *cast<Instruction>(V);
1262     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1263 
1264     // If we cannot salvage any further, and haven't yet found a suitable debug
1265     // expression, bail out.
1266     if (!NewExpr)
1267       break;
1268 
1269     // New value and expr now represent this debuginfo.
1270     V = VAsInst.getOperand(0);
1271     Expr = NewExpr;
1272 
1273     // Some kind of simplification occurred: check whether the operand of the
1274     // salvaged debug expression can be encoded in this DAG.
1275     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1276       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1277                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1278       return;
1279     }
1280   }
1281 
1282   // This was the final opportunity to salvage this debug information, and it
1283   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1284   // any earlier variable location.
1285   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1286   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1287   DAG.AddDbgValue(SDV, nullptr, false);
1288 
1289   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1290                     << "\n");
1291   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1292                     << "\n");
1293 }
1294 
1295 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1296                                            DIExpression *Expr, DebugLoc dl,
1297                                            DebugLoc InstDL, unsigned Order) {
1298   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1299   SDDbgValue *SDV;
1300   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1301       isa<ConstantPointerNull>(V)) {
1302     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1303     DAG.AddDbgValue(SDV, nullptr, false);
1304     return true;
1305   }
1306 
1307   // If the Value is a frame index, we can create a FrameIndex debug value
1308   // without relying on the DAG at all.
1309   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1310     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1311     if (SI != FuncInfo.StaticAllocaMap.end()) {
1312       auto SDV =
1313           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1314                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1315       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1316       // is still available even if the SDNode gets optimized out.
1317       DAG.AddDbgValue(SDV, nullptr, false);
1318       return true;
1319     }
1320   }
1321 
1322   // Do not use getValue() in here; we don't want to generate code at
1323   // this point if it hasn't been done yet.
1324   SDValue N = NodeMap[V];
1325   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1326     N = UnusedArgNodeMap[V];
1327   if (N.getNode()) {
1328     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1329       return true;
1330     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1331     DAG.AddDbgValue(SDV, N.getNode(), false);
1332     return true;
1333   }
1334 
1335   // Special rules apply for the first dbg.values of parameter variables in a
1336   // function. Identify them by the fact they reference Argument Values, that
1337   // they're parameters, and they are parameters of the current function. We
1338   // need to let them dangle until they get an SDNode.
1339   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1340                        !InstDL.getInlinedAt();
1341   if (!IsParamOfFunc) {
1342     // The value is not used in this block yet (or it would have an SDNode).
1343     // We still want the value to appear for the user if possible -- if it has
1344     // an associated VReg, we can refer to that instead.
1345     auto VMI = FuncInfo.ValueMap.find(V);
1346     if (VMI != FuncInfo.ValueMap.end()) {
1347       unsigned Reg = VMI->second;
1348       // If this is a PHI node, it may be split up into several MI PHI nodes
1349       // (in FunctionLoweringInfo::set).
1350       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1351                        V->getType(), None);
1352       if (RFV.occupiesMultipleRegs()) {
1353         unsigned Offset = 0;
1354         unsigned BitsToDescribe = 0;
1355         if (auto VarSize = Var->getSizeInBits())
1356           BitsToDescribe = *VarSize;
1357         if (auto Fragment = Expr->getFragmentInfo())
1358           BitsToDescribe = Fragment->SizeInBits;
1359         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1360           unsigned RegisterSize = RegAndSize.second;
1361           // Bail out if all bits are described already.
1362           if (Offset >= BitsToDescribe)
1363             break;
1364           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1365               ? BitsToDescribe - Offset
1366               : RegisterSize;
1367           auto FragmentExpr = DIExpression::createFragmentExpression(
1368               Expr, Offset, FragmentSize);
1369           if (!FragmentExpr)
1370               continue;
1371           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1372                                     false, dl, SDNodeOrder);
1373           DAG.AddDbgValue(SDV, nullptr, false);
1374           Offset += RegisterSize;
1375         }
1376       } else {
1377         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1378         DAG.AddDbgValue(SDV, nullptr, false);
1379       }
1380       return true;
1381     }
1382   }
1383 
1384   return false;
1385 }
1386 
1387 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1388   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1389   for (auto &Pair : DanglingDebugInfoMap)
1390     for (auto &DDI : Pair.second)
1391       salvageUnresolvedDbgValue(DDI);
1392   clearDanglingDebugInfo();
1393 }
1394 
1395 /// getCopyFromRegs - If there was virtual register allocated for the value V
1396 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1397 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1398   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1399   SDValue Result;
1400 
1401   if (It != FuncInfo.ValueMap.end()) {
1402     unsigned InReg = It->second;
1403 
1404     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1405                      DAG.getDataLayout(), InReg, Ty,
1406                      None); // This is not an ABI copy.
1407     SDValue Chain = DAG.getEntryNode();
1408     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1409                                  V);
1410     resolveDanglingDebugInfo(V, Result);
1411   }
1412 
1413   return Result;
1414 }
1415 
1416 /// getValue - Return an SDValue for the given Value.
1417 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1418   // If we already have an SDValue for this value, use it. It's important
1419   // to do this first, so that we don't create a CopyFromReg if we already
1420   // have a regular SDValue.
1421   SDValue &N = NodeMap[V];
1422   if (N.getNode()) return N;
1423 
1424   // If there's a virtual register allocated and initialized for this
1425   // value, use it.
1426   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1427     return copyFromReg;
1428 
1429   // Otherwise create a new SDValue and remember it.
1430   SDValue Val = getValueImpl(V);
1431   NodeMap[V] = Val;
1432   resolveDanglingDebugInfo(V, Val);
1433   return Val;
1434 }
1435 
1436 // Return true if SDValue exists for the given Value
1437 bool SelectionDAGBuilder::findValue(const Value *V) const {
1438   return (NodeMap.find(V) != NodeMap.end()) ||
1439     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1440 }
1441 
1442 /// getNonRegisterValue - Return an SDValue for the given Value, but
1443 /// don't look in FuncInfo.ValueMap for a virtual register.
1444 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1445   // If we already have an SDValue for this value, use it.
1446   SDValue &N = NodeMap[V];
1447   if (N.getNode()) {
1448     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1449       // Remove the debug location from the node as the node is about to be used
1450       // in a location which may differ from the original debug location.  This
1451       // is relevant to Constant and ConstantFP nodes because they can appear
1452       // as constant expressions inside PHI nodes.
1453       N->setDebugLoc(DebugLoc());
1454     }
1455     return N;
1456   }
1457 
1458   // Otherwise create a new SDValue and remember it.
1459   SDValue Val = getValueImpl(V);
1460   NodeMap[V] = Val;
1461   resolveDanglingDebugInfo(V, Val);
1462   return Val;
1463 }
1464 
1465 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1466 /// Create an SDValue for the given value.
1467 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1468   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1469 
1470   if (const Constant *C = dyn_cast<Constant>(V)) {
1471     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1472 
1473     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1474       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1475 
1476     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1477       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1478 
1479     if (isa<ConstantPointerNull>(C)) {
1480       unsigned AS = V->getType()->getPointerAddressSpace();
1481       return DAG.getConstant(0, getCurSDLoc(),
1482                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1483     }
1484 
1485     if (match(C, m_VScale(DAG.getDataLayout())))
1486       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1487 
1488     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1489       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1490 
1491     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1492       return DAG.getUNDEF(VT);
1493 
1494     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1495       visit(CE->getOpcode(), *CE);
1496       SDValue N1 = NodeMap[V];
1497       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1498       return N1;
1499     }
1500 
1501     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1502       SmallVector<SDValue, 4> Constants;
1503       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1504            OI != OE; ++OI) {
1505         SDNode *Val = getValue(*OI).getNode();
1506         // If the operand is an empty aggregate, there are no values.
1507         if (!Val) continue;
1508         // Add each leaf value from the operand to the Constants list
1509         // to form a flattened list of all the values.
1510         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1511           Constants.push_back(SDValue(Val, i));
1512       }
1513 
1514       return DAG.getMergeValues(Constants, getCurSDLoc());
1515     }
1516 
1517     if (const ConstantDataSequential *CDS =
1518           dyn_cast<ConstantDataSequential>(C)) {
1519       SmallVector<SDValue, 4> Ops;
1520       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1521         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1522         // Add each leaf value from the operand to the Constants list
1523         // to form a flattened list of all the values.
1524         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1525           Ops.push_back(SDValue(Val, i));
1526       }
1527 
1528       if (isa<ArrayType>(CDS->getType()))
1529         return DAG.getMergeValues(Ops, getCurSDLoc());
1530       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1531     }
1532 
1533     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1534       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1535              "Unknown struct or array constant!");
1536 
1537       SmallVector<EVT, 4> ValueVTs;
1538       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1539       unsigned NumElts = ValueVTs.size();
1540       if (NumElts == 0)
1541         return SDValue(); // empty struct
1542       SmallVector<SDValue, 4> Constants(NumElts);
1543       for (unsigned i = 0; i != NumElts; ++i) {
1544         EVT EltVT = ValueVTs[i];
1545         if (isa<UndefValue>(C))
1546           Constants[i] = DAG.getUNDEF(EltVT);
1547         else if (EltVT.isFloatingPoint())
1548           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1549         else
1550           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1551       }
1552 
1553       return DAG.getMergeValues(Constants, getCurSDLoc());
1554     }
1555 
1556     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1557       return DAG.getBlockAddress(BA, VT);
1558 
1559     VectorType *VecTy = cast<VectorType>(V->getType());
1560     unsigned NumElements = VecTy->getNumElements();
1561 
1562     // Now that we know the number and type of the elements, get that number of
1563     // elements into the Ops array based on what kind of constant it is.
1564     SmallVector<SDValue, 16> Ops;
1565     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1566       for (unsigned i = 0; i != NumElements; ++i)
1567         Ops.push_back(getValue(CV->getOperand(i)));
1568     } else {
1569       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1570       EVT EltVT =
1571           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1572 
1573       SDValue Op;
1574       if (EltVT.isFloatingPoint())
1575         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1576       else
1577         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1578       Ops.assign(NumElements, Op);
1579     }
1580 
1581     // Create a BUILD_VECTOR node.
1582     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1583   }
1584 
1585   // If this is a static alloca, generate it as the frameindex instead of
1586   // computation.
1587   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1588     DenseMap<const AllocaInst*, int>::iterator SI =
1589       FuncInfo.StaticAllocaMap.find(AI);
1590     if (SI != FuncInfo.StaticAllocaMap.end())
1591       return DAG.getFrameIndex(SI->second,
1592                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1593   }
1594 
1595   // If this is an instruction which fast-isel has deferred, select it now.
1596   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1597     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1598 
1599     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1600                      Inst->getType(), getABIRegCopyCC(V));
1601     SDValue Chain = DAG.getEntryNode();
1602     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1603   }
1604 
1605   llvm_unreachable("Can't get register for value!");
1606 }
1607 
1608 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1609   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1610   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1611   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1612   bool IsSEH = isAsynchronousEHPersonality(Pers);
1613   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1614   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1615   if (!IsSEH)
1616     CatchPadMBB->setIsEHScopeEntry();
1617   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1618   if (IsMSVCCXX || IsCoreCLR)
1619     CatchPadMBB->setIsEHFuncletEntry();
1620   // Wasm does not need catchpads anymore
1621   if (!IsWasmCXX)
1622     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1623                             getControlRoot()));
1624 }
1625 
1626 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1627   // Update machine-CFG edge.
1628   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1629   FuncInfo.MBB->addSuccessor(TargetMBB);
1630 
1631   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1632   bool IsSEH = isAsynchronousEHPersonality(Pers);
1633   if (IsSEH) {
1634     // If this is not a fall-through branch or optimizations are switched off,
1635     // emit the branch.
1636     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1637         TM.getOptLevel() == CodeGenOpt::None)
1638       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1639                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1640     return;
1641   }
1642 
1643   // Figure out the funclet membership for the catchret's successor.
1644   // This will be used by the FuncletLayout pass to determine how to order the
1645   // BB's.
1646   // A 'catchret' returns to the outer scope's color.
1647   Value *ParentPad = I.getCatchSwitchParentPad();
1648   const BasicBlock *SuccessorColor;
1649   if (isa<ConstantTokenNone>(ParentPad))
1650     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1651   else
1652     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1653   assert(SuccessorColor && "No parent funclet for catchret!");
1654   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1655   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1656 
1657   // Create the terminator node.
1658   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1659                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1660                             DAG.getBasicBlock(SuccessorColorMBB));
1661   DAG.setRoot(Ret);
1662 }
1663 
1664 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1665   // Don't emit any special code for the cleanuppad instruction. It just marks
1666   // the start of an EH scope/funclet.
1667   FuncInfo.MBB->setIsEHScopeEntry();
1668   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1669   if (Pers != EHPersonality::Wasm_CXX) {
1670     FuncInfo.MBB->setIsEHFuncletEntry();
1671     FuncInfo.MBB->setIsCleanupFuncletEntry();
1672   }
1673 }
1674 
1675 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1676 // the control flow always stops at the single catch pad, as it does for a
1677 // cleanup pad. In case the exception caught is not of the types the catch pad
1678 // catches, it will be rethrown by a rethrow.
1679 static void findWasmUnwindDestinations(
1680     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1681     BranchProbability Prob,
1682     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1683         &UnwindDests) {
1684   while (EHPadBB) {
1685     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1686     if (isa<CleanupPadInst>(Pad)) {
1687       // Stop on cleanup pads.
1688       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1689       UnwindDests.back().first->setIsEHScopeEntry();
1690       break;
1691     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1692       // Add the catchpad handlers to the possible destinations. We don't
1693       // continue to the unwind destination of the catchswitch for wasm.
1694       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1695         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1696         UnwindDests.back().first->setIsEHScopeEntry();
1697       }
1698       break;
1699     } else {
1700       continue;
1701     }
1702   }
1703 }
1704 
1705 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1706 /// many places it could ultimately go. In the IR, we have a single unwind
1707 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1708 /// This function skips over imaginary basic blocks that hold catchswitch
1709 /// instructions, and finds all the "real" machine
1710 /// basic block destinations. As those destinations may not be successors of
1711 /// EHPadBB, here we also calculate the edge probability to those destinations.
1712 /// The passed-in Prob is the edge probability to EHPadBB.
1713 static void findUnwindDestinations(
1714     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1715     BranchProbability Prob,
1716     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1717         &UnwindDests) {
1718   EHPersonality Personality =
1719     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1720   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1721   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1722   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1723   bool IsSEH = isAsynchronousEHPersonality(Personality);
1724 
1725   if (IsWasmCXX) {
1726     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1727     assert(UnwindDests.size() <= 1 &&
1728            "There should be at most one unwind destination for wasm");
1729     return;
1730   }
1731 
1732   while (EHPadBB) {
1733     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1734     BasicBlock *NewEHPadBB = nullptr;
1735     if (isa<LandingPadInst>(Pad)) {
1736       // Stop on landingpads. They are not funclets.
1737       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1738       break;
1739     } else if (isa<CleanupPadInst>(Pad)) {
1740       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1741       // personalities.
1742       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1743       UnwindDests.back().first->setIsEHScopeEntry();
1744       UnwindDests.back().first->setIsEHFuncletEntry();
1745       break;
1746     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1747       // Add the catchpad handlers to the possible destinations.
1748       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1749         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1750         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1751         if (IsMSVCCXX || IsCoreCLR)
1752           UnwindDests.back().first->setIsEHFuncletEntry();
1753         if (!IsSEH)
1754           UnwindDests.back().first->setIsEHScopeEntry();
1755       }
1756       NewEHPadBB = CatchSwitch->getUnwindDest();
1757     } else {
1758       continue;
1759     }
1760 
1761     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1762     if (BPI && NewEHPadBB)
1763       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1764     EHPadBB = NewEHPadBB;
1765   }
1766 }
1767 
1768 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1769   // Update successor info.
1770   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1771   auto UnwindDest = I.getUnwindDest();
1772   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1773   BranchProbability UnwindDestProb =
1774       (BPI && UnwindDest)
1775           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1776           : BranchProbability::getZero();
1777   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1778   for (auto &UnwindDest : UnwindDests) {
1779     UnwindDest.first->setIsEHPad();
1780     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1781   }
1782   FuncInfo.MBB->normalizeSuccProbs();
1783 
1784   // Create the terminator node.
1785   SDValue Ret =
1786       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1787   DAG.setRoot(Ret);
1788 }
1789 
1790 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1791   report_fatal_error("visitCatchSwitch not yet implemented!");
1792 }
1793 
1794 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1796   auto &DL = DAG.getDataLayout();
1797   SDValue Chain = getControlRoot();
1798   SmallVector<ISD::OutputArg, 8> Outs;
1799   SmallVector<SDValue, 8> OutVals;
1800 
1801   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1802   // lower
1803   //
1804   //   %val = call <ty> @llvm.experimental.deoptimize()
1805   //   ret <ty> %val
1806   //
1807   // differently.
1808   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1809     LowerDeoptimizingReturn();
1810     return;
1811   }
1812 
1813   if (!FuncInfo.CanLowerReturn) {
1814     unsigned DemoteReg = FuncInfo.DemoteRegister;
1815     const Function *F = I.getParent()->getParent();
1816 
1817     // Emit a store of the return value through the virtual register.
1818     // Leave Outs empty so that LowerReturn won't try to load return
1819     // registers the usual way.
1820     SmallVector<EVT, 1> PtrValueVTs;
1821     ComputeValueVTs(TLI, DL,
1822                     F->getReturnType()->getPointerTo(
1823                         DAG.getDataLayout().getAllocaAddrSpace()),
1824                     PtrValueVTs);
1825 
1826     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1827                                         DemoteReg, PtrValueVTs[0]);
1828     SDValue RetOp = getValue(I.getOperand(0));
1829 
1830     SmallVector<EVT, 4> ValueVTs, MemVTs;
1831     SmallVector<uint64_t, 4> Offsets;
1832     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1833                     &Offsets);
1834     unsigned NumValues = ValueVTs.size();
1835 
1836     SmallVector<SDValue, 4> Chains(NumValues);
1837     for (unsigned i = 0; i != NumValues; ++i) {
1838       // An aggregate return value cannot wrap around the address space, so
1839       // offsets to its parts don't wrap either.
1840       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1841 
1842       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1843       if (MemVTs[i] != ValueVTs[i])
1844         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1845       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1846           // FIXME: better loc info would be nice.
1847           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1848     }
1849 
1850     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1851                         MVT::Other, Chains);
1852   } else if (I.getNumOperands() != 0) {
1853     SmallVector<EVT, 4> ValueVTs;
1854     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1855     unsigned NumValues = ValueVTs.size();
1856     if (NumValues) {
1857       SDValue RetOp = getValue(I.getOperand(0));
1858 
1859       const Function *F = I.getParent()->getParent();
1860 
1861       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1862           I.getOperand(0)->getType(), F->getCallingConv(),
1863           /*IsVarArg*/ false);
1864 
1865       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1866       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1867                                           Attribute::SExt))
1868         ExtendKind = ISD::SIGN_EXTEND;
1869       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1870                                                Attribute::ZExt))
1871         ExtendKind = ISD::ZERO_EXTEND;
1872 
1873       LLVMContext &Context = F->getContext();
1874       bool RetInReg = F->getAttributes().hasAttribute(
1875           AttributeList::ReturnIndex, Attribute::InReg);
1876 
1877       for (unsigned j = 0; j != NumValues; ++j) {
1878         EVT VT = ValueVTs[j];
1879 
1880         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1881           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1882 
1883         CallingConv::ID CC = F->getCallingConv();
1884 
1885         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1886         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1887         SmallVector<SDValue, 4> Parts(NumParts);
1888         getCopyToParts(DAG, getCurSDLoc(),
1889                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1890                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1891 
1892         // 'inreg' on function refers to return value
1893         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1894         if (RetInReg)
1895           Flags.setInReg();
1896 
1897         if (I.getOperand(0)->getType()->isPointerTy()) {
1898           Flags.setPointer();
1899           Flags.setPointerAddrSpace(
1900               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1901         }
1902 
1903         if (NeedsRegBlock) {
1904           Flags.setInConsecutiveRegs();
1905           if (j == NumValues - 1)
1906             Flags.setInConsecutiveRegsLast();
1907         }
1908 
1909         // Propagate extension type if any
1910         if (ExtendKind == ISD::SIGN_EXTEND)
1911           Flags.setSExt();
1912         else if (ExtendKind == ISD::ZERO_EXTEND)
1913           Flags.setZExt();
1914 
1915         for (unsigned i = 0; i < NumParts; ++i) {
1916           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1917                                         VT, /*isfixed=*/true, 0, 0));
1918           OutVals.push_back(Parts[i]);
1919         }
1920       }
1921     }
1922   }
1923 
1924   // Push in swifterror virtual register as the last element of Outs. This makes
1925   // sure swifterror virtual register will be returned in the swifterror
1926   // physical register.
1927   const Function *F = I.getParent()->getParent();
1928   if (TLI.supportSwiftError() &&
1929       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1930     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1931     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1932     Flags.setSwiftError();
1933     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1934                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1935                                   true /*isfixed*/, 1 /*origidx*/,
1936                                   0 /*partOffs*/));
1937     // Create SDNode for the swifterror virtual register.
1938     OutVals.push_back(
1939         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1940                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1941                         EVT(TLI.getPointerTy(DL))));
1942   }
1943 
1944   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1945   CallingConv::ID CallConv =
1946     DAG.getMachineFunction().getFunction().getCallingConv();
1947   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1948       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1949 
1950   // Verify that the target's LowerReturn behaved as expected.
1951   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1952          "LowerReturn didn't return a valid chain!");
1953 
1954   // Update the DAG with the new chain value resulting from return lowering.
1955   DAG.setRoot(Chain);
1956 }
1957 
1958 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1959 /// created for it, emit nodes to copy the value into the virtual
1960 /// registers.
1961 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1962   // Skip empty types
1963   if (V->getType()->isEmptyTy())
1964     return;
1965 
1966   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1967   if (VMI != FuncInfo.ValueMap.end()) {
1968     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1969     CopyValueToVirtualRegister(V, VMI->second);
1970   }
1971 }
1972 
1973 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1974 /// the current basic block, add it to ValueMap now so that we'll get a
1975 /// CopyTo/FromReg.
1976 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1977   // No need to export constants.
1978   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1979 
1980   // Already exported?
1981   if (FuncInfo.isExportedInst(V)) return;
1982 
1983   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1984   CopyValueToVirtualRegister(V, Reg);
1985 }
1986 
1987 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1988                                                      const BasicBlock *FromBB) {
1989   // The operands of the setcc have to be in this block.  We don't know
1990   // how to export them from some other block.
1991   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1992     // Can export from current BB.
1993     if (VI->getParent() == FromBB)
1994       return true;
1995 
1996     // Is already exported, noop.
1997     return FuncInfo.isExportedInst(V);
1998   }
1999 
2000   // If this is an argument, we can export it if the BB is the entry block or
2001   // if it is already exported.
2002   if (isa<Argument>(V)) {
2003     if (FromBB == &FromBB->getParent()->getEntryBlock())
2004       return true;
2005 
2006     // Otherwise, can only export this if it is already exported.
2007     return FuncInfo.isExportedInst(V);
2008   }
2009 
2010   // Otherwise, constants can always be exported.
2011   return true;
2012 }
2013 
2014 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2015 BranchProbability
2016 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2017                                         const MachineBasicBlock *Dst) const {
2018   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2019   const BasicBlock *SrcBB = Src->getBasicBlock();
2020   const BasicBlock *DstBB = Dst->getBasicBlock();
2021   if (!BPI) {
2022     // If BPI is not available, set the default probability as 1 / N, where N is
2023     // the number of successors.
2024     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2025     return BranchProbability(1, SuccSize);
2026   }
2027   return BPI->getEdgeProbability(SrcBB, DstBB);
2028 }
2029 
2030 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2031                                                MachineBasicBlock *Dst,
2032                                                BranchProbability Prob) {
2033   if (!FuncInfo.BPI)
2034     Src->addSuccessorWithoutProb(Dst);
2035   else {
2036     if (Prob.isUnknown())
2037       Prob = getEdgeProbability(Src, Dst);
2038     Src->addSuccessor(Dst, Prob);
2039   }
2040 }
2041 
2042 static bool InBlock(const Value *V, const BasicBlock *BB) {
2043   if (const Instruction *I = dyn_cast<Instruction>(V))
2044     return I->getParent() == BB;
2045   return true;
2046 }
2047 
2048 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2049 /// This function emits a branch and is used at the leaves of an OR or an
2050 /// AND operator tree.
2051 void
2052 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2053                                                   MachineBasicBlock *TBB,
2054                                                   MachineBasicBlock *FBB,
2055                                                   MachineBasicBlock *CurBB,
2056                                                   MachineBasicBlock *SwitchBB,
2057                                                   BranchProbability TProb,
2058                                                   BranchProbability FProb,
2059                                                   bool InvertCond) {
2060   const BasicBlock *BB = CurBB->getBasicBlock();
2061 
2062   // If the leaf of the tree is a comparison, merge the condition into
2063   // the caseblock.
2064   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2065     // The operands of the cmp have to be in this block.  We don't know
2066     // how to export them from some other block.  If this is the first block
2067     // of the sequence, no exporting is needed.
2068     if (CurBB == SwitchBB ||
2069         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2070          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2071       ISD::CondCode Condition;
2072       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2073         ICmpInst::Predicate Pred =
2074             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2075         Condition = getICmpCondCode(Pred);
2076       } else {
2077         const FCmpInst *FC = cast<FCmpInst>(Cond);
2078         FCmpInst::Predicate Pred =
2079             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2080         Condition = getFCmpCondCode(Pred);
2081         if (TM.Options.NoNaNsFPMath)
2082           Condition = getFCmpCodeWithoutNaN(Condition);
2083       }
2084 
2085       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2086                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2087       SL->SwitchCases.push_back(CB);
2088       return;
2089     }
2090   }
2091 
2092   // Create a CaseBlock record representing this branch.
2093   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2094   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2095                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2096   SL->SwitchCases.push_back(CB);
2097 }
2098 
2099 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2100                                                MachineBasicBlock *TBB,
2101                                                MachineBasicBlock *FBB,
2102                                                MachineBasicBlock *CurBB,
2103                                                MachineBasicBlock *SwitchBB,
2104                                                Instruction::BinaryOps Opc,
2105                                                BranchProbability TProb,
2106                                                BranchProbability FProb,
2107                                                bool InvertCond) {
2108   // Skip over not part of the tree and remember to invert op and operands at
2109   // next level.
2110   Value *NotCond;
2111   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2112       InBlock(NotCond, CurBB->getBasicBlock())) {
2113     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2114                          !InvertCond);
2115     return;
2116   }
2117 
2118   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2119   // Compute the effective opcode for Cond, taking into account whether it needs
2120   // to be inverted, e.g.
2121   //   and (not (or A, B)), C
2122   // gets lowered as
2123   //   and (and (not A, not B), C)
2124   unsigned BOpc = 0;
2125   if (BOp) {
2126     BOpc = BOp->getOpcode();
2127     if (InvertCond) {
2128       if (BOpc == Instruction::And)
2129         BOpc = Instruction::Or;
2130       else if (BOpc == Instruction::Or)
2131         BOpc = Instruction::And;
2132     }
2133   }
2134 
2135   // If this node is not part of the or/and tree, emit it as a branch.
2136   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2137       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2138       BOp->getParent() != CurBB->getBasicBlock() ||
2139       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2140       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2141     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2142                                  TProb, FProb, InvertCond);
2143     return;
2144   }
2145 
2146   //  Create TmpBB after CurBB.
2147   MachineFunction::iterator BBI(CurBB);
2148   MachineFunction &MF = DAG.getMachineFunction();
2149   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2150   CurBB->getParent()->insert(++BBI, TmpBB);
2151 
2152   if (Opc == Instruction::Or) {
2153     // Codegen X | Y as:
2154     // BB1:
2155     //   jmp_if_X TBB
2156     //   jmp TmpBB
2157     // TmpBB:
2158     //   jmp_if_Y TBB
2159     //   jmp FBB
2160     //
2161 
2162     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2163     // The requirement is that
2164     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2165     //     = TrueProb for original BB.
2166     // Assuming the original probabilities are A and B, one choice is to set
2167     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2168     // A/(1+B) and 2B/(1+B). This choice assumes that
2169     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2170     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2171     // TmpBB, but the math is more complicated.
2172 
2173     auto NewTrueProb = TProb / 2;
2174     auto NewFalseProb = TProb / 2 + FProb;
2175     // Emit the LHS condition.
2176     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2177                          NewTrueProb, NewFalseProb, InvertCond);
2178 
2179     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2180     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2181     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2182     // Emit the RHS condition into TmpBB.
2183     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2184                          Probs[0], Probs[1], InvertCond);
2185   } else {
2186     assert(Opc == Instruction::And && "Unknown merge op!");
2187     // Codegen X & Y as:
2188     // BB1:
2189     //   jmp_if_X TmpBB
2190     //   jmp FBB
2191     // TmpBB:
2192     //   jmp_if_Y TBB
2193     //   jmp FBB
2194     //
2195     //  This requires creation of TmpBB after CurBB.
2196 
2197     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2198     // The requirement is that
2199     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2200     //     = FalseProb for original BB.
2201     // Assuming the original probabilities are A and B, one choice is to set
2202     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2203     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2204     // TrueProb for BB1 * FalseProb for TmpBB.
2205 
2206     auto NewTrueProb = TProb + FProb / 2;
2207     auto NewFalseProb = FProb / 2;
2208     // Emit the LHS condition.
2209     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2210                          NewTrueProb, NewFalseProb, InvertCond);
2211 
2212     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2213     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2214     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2215     // Emit the RHS condition into TmpBB.
2216     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2217                          Probs[0], Probs[1], InvertCond);
2218   }
2219 }
2220 
2221 /// If the set of cases should be emitted as a series of branches, return true.
2222 /// If we should emit this as a bunch of and/or'd together conditions, return
2223 /// false.
2224 bool
2225 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2226   if (Cases.size() != 2) return true;
2227 
2228   // If this is two comparisons of the same values or'd or and'd together, they
2229   // will get folded into a single comparison, so don't emit two blocks.
2230   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2231        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2232       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2233        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2234     return false;
2235   }
2236 
2237   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2238   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2239   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2240       Cases[0].CC == Cases[1].CC &&
2241       isa<Constant>(Cases[0].CmpRHS) &&
2242       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2243     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2244       return false;
2245     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2246       return false;
2247   }
2248 
2249   return true;
2250 }
2251 
2252 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2253   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2254 
2255   // Update machine-CFG edges.
2256   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2257 
2258   if (I.isUnconditional()) {
2259     // Update machine-CFG edges.
2260     BrMBB->addSuccessor(Succ0MBB);
2261 
2262     // If this is not a fall-through branch or optimizations are switched off,
2263     // emit the branch.
2264     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2265       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2266                               MVT::Other, getControlRoot(),
2267                               DAG.getBasicBlock(Succ0MBB)));
2268 
2269     return;
2270   }
2271 
2272   // If this condition is one of the special cases we handle, do special stuff
2273   // now.
2274   const Value *CondVal = I.getCondition();
2275   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2276 
2277   // If this is a series of conditions that are or'd or and'd together, emit
2278   // this as a sequence of branches instead of setcc's with and/or operations.
2279   // As long as jumps are not expensive, this should improve performance.
2280   // For example, instead of something like:
2281   //     cmp A, B
2282   //     C = seteq
2283   //     cmp D, E
2284   //     F = setle
2285   //     or C, F
2286   //     jnz foo
2287   // Emit:
2288   //     cmp A, B
2289   //     je foo
2290   //     cmp D, E
2291   //     jle foo
2292   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2293     Instruction::BinaryOps Opcode = BOp->getOpcode();
2294     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2295         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2296         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2297       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2298                            Opcode,
2299                            getEdgeProbability(BrMBB, Succ0MBB),
2300                            getEdgeProbability(BrMBB, Succ1MBB),
2301                            /*InvertCond=*/false);
2302       // If the compares in later blocks need to use values not currently
2303       // exported from this block, export them now.  This block should always
2304       // be the first entry.
2305       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2306 
2307       // Allow some cases to be rejected.
2308       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2309         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2310           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2311           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2312         }
2313 
2314         // Emit the branch for this block.
2315         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2316         SL->SwitchCases.erase(SL->SwitchCases.begin());
2317         return;
2318       }
2319 
2320       // Okay, we decided not to do this, remove any inserted MBB's and clear
2321       // SwitchCases.
2322       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2323         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2324 
2325       SL->SwitchCases.clear();
2326     }
2327   }
2328 
2329   // Create a CaseBlock record representing this branch.
2330   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2331                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2332 
2333   // Use visitSwitchCase to actually insert the fast branch sequence for this
2334   // cond branch.
2335   visitSwitchCase(CB, BrMBB);
2336 }
2337 
2338 /// visitSwitchCase - Emits the necessary code to represent a single node in
2339 /// the binary search tree resulting from lowering a switch instruction.
2340 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2341                                           MachineBasicBlock *SwitchBB) {
2342   SDValue Cond;
2343   SDValue CondLHS = getValue(CB.CmpLHS);
2344   SDLoc dl = CB.DL;
2345 
2346   if (CB.CC == ISD::SETTRUE) {
2347     // Branch or fall through to TrueBB.
2348     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2349     SwitchBB->normalizeSuccProbs();
2350     if (CB.TrueBB != NextBlock(SwitchBB)) {
2351       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2352                               DAG.getBasicBlock(CB.TrueBB)));
2353     }
2354     return;
2355   }
2356 
2357   auto &TLI = DAG.getTargetLoweringInfo();
2358   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2359 
2360   // Build the setcc now.
2361   if (!CB.CmpMHS) {
2362     // Fold "(X == true)" to X and "(X == false)" to !X to
2363     // handle common cases produced by branch lowering.
2364     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2365         CB.CC == ISD::SETEQ)
2366       Cond = CondLHS;
2367     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2368              CB.CC == ISD::SETEQ) {
2369       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2370       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2371     } else {
2372       SDValue CondRHS = getValue(CB.CmpRHS);
2373 
2374       // If a pointer's DAG type is larger than its memory type then the DAG
2375       // values are zero-extended. This breaks signed comparisons so truncate
2376       // back to the underlying type before doing the compare.
2377       if (CondLHS.getValueType() != MemVT) {
2378         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2379         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2380       }
2381       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2382     }
2383   } else {
2384     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2385 
2386     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2387     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2388 
2389     SDValue CmpOp = getValue(CB.CmpMHS);
2390     EVT VT = CmpOp.getValueType();
2391 
2392     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2393       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2394                           ISD::SETLE);
2395     } else {
2396       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2397                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2398       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2399                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2400     }
2401   }
2402 
2403   // Update successor info
2404   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2405   // TrueBB and FalseBB are always different unless the incoming IR is
2406   // degenerate. This only happens when running llc on weird IR.
2407   if (CB.TrueBB != CB.FalseBB)
2408     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2409   SwitchBB->normalizeSuccProbs();
2410 
2411   // If the lhs block is the next block, invert the condition so that we can
2412   // fall through to the lhs instead of the rhs block.
2413   if (CB.TrueBB == NextBlock(SwitchBB)) {
2414     std::swap(CB.TrueBB, CB.FalseBB);
2415     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2416     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2417   }
2418 
2419   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2420                                MVT::Other, getControlRoot(), Cond,
2421                                DAG.getBasicBlock(CB.TrueBB));
2422 
2423   // Insert the false branch. Do this even if it's a fall through branch,
2424   // this makes it easier to do DAG optimizations which require inverting
2425   // the branch condition.
2426   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2427                        DAG.getBasicBlock(CB.FalseBB));
2428 
2429   DAG.setRoot(BrCond);
2430 }
2431 
2432 /// visitJumpTable - Emit JumpTable node in the current MBB
2433 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2434   // Emit the code for the jump table
2435   assert(JT.Reg != -1U && "Should lower JT Header first!");
2436   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2437   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2438                                      JT.Reg, PTy);
2439   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2440   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2441                                     MVT::Other, Index.getValue(1),
2442                                     Table, Index);
2443   DAG.setRoot(BrJumpTable);
2444 }
2445 
2446 /// visitJumpTableHeader - This function emits necessary code to produce index
2447 /// in the JumpTable from switch case.
2448 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2449                                                JumpTableHeader &JTH,
2450                                                MachineBasicBlock *SwitchBB) {
2451   SDLoc dl = getCurSDLoc();
2452 
2453   // Subtract the lowest switch case value from the value being switched on.
2454   SDValue SwitchOp = getValue(JTH.SValue);
2455   EVT VT = SwitchOp.getValueType();
2456   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2457                             DAG.getConstant(JTH.First, dl, VT));
2458 
2459   // The SDNode we just created, which holds the value being switched on minus
2460   // the smallest case value, needs to be copied to a virtual register so it
2461   // can be used as an index into the jump table in a subsequent basic block.
2462   // This value may be smaller or larger than the target's pointer type, and
2463   // therefore require extension or truncating.
2464   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2465   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2466 
2467   unsigned JumpTableReg =
2468       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2469   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2470                                     JumpTableReg, SwitchOp);
2471   JT.Reg = JumpTableReg;
2472 
2473   if (!JTH.OmitRangeCheck) {
2474     // Emit the range check for the jump table, and branch to the default block
2475     // for the switch statement if the value being switched on exceeds the
2476     // largest case in the switch.
2477     SDValue CMP = DAG.getSetCC(
2478         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2479                                    Sub.getValueType()),
2480         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2481 
2482     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2483                                  MVT::Other, CopyTo, CMP,
2484                                  DAG.getBasicBlock(JT.Default));
2485 
2486     // Avoid emitting unnecessary branches to the next block.
2487     if (JT.MBB != NextBlock(SwitchBB))
2488       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2489                            DAG.getBasicBlock(JT.MBB));
2490 
2491     DAG.setRoot(BrCond);
2492   } else {
2493     // Avoid emitting unnecessary branches to the next block.
2494     if (JT.MBB != NextBlock(SwitchBB))
2495       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2496                               DAG.getBasicBlock(JT.MBB)));
2497     else
2498       DAG.setRoot(CopyTo);
2499   }
2500 }
2501 
2502 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2503 /// variable if there exists one.
2504 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2505                                  SDValue &Chain) {
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509   MachineFunction &MF = DAG.getMachineFunction();
2510   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2511   MachineSDNode *Node =
2512       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2513   if (Global) {
2514     MachinePointerInfo MPInfo(Global);
2515     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2516                  MachineMemOperand::MODereferenceable;
2517     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2518         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2519     DAG.setNodeMemRefs(Node, {MemRef});
2520   }
2521   if (PtrTy != PtrMemTy)
2522     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2523   return SDValue(Node, 0);
2524 }
2525 
2526 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2527 /// tail spliced into a stack protector check success bb.
2528 ///
2529 /// For a high level explanation of how this fits into the stack protector
2530 /// generation see the comment on the declaration of class
2531 /// StackProtectorDescriptor.
2532 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2533                                                   MachineBasicBlock *ParentBB) {
2534 
2535   // First create the loads to the guard/stack slot for the comparison.
2536   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2537   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2538   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2539 
2540   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2541   int FI = MFI.getStackProtectorIndex();
2542 
2543   SDValue Guard;
2544   SDLoc dl = getCurSDLoc();
2545   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2546   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2547   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2548 
2549   // Generate code to load the content of the guard slot.
2550   SDValue GuardVal = DAG.getLoad(
2551       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2552       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2553       MachineMemOperand::MOVolatile);
2554 
2555   if (TLI.useStackGuardXorFP())
2556     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2557 
2558   // Retrieve guard check function, nullptr if instrumentation is inlined.
2559   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2560     // The target provides a guard check function to validate the guard value.
2561     // Generate a call to that function with the content of the guard slot as
2562     // argument.
2563     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2564     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2565 
2566     TargetLowering::ArgListTy Args;
2567     TargetLowering::ArgListEntry Entry;
2568     Entry.Node = GuardVal;
2569     Entry.Ty = FnTy->getParamType(0);
2570     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2571       Entry.IsInReg = true;
2572     Args.push_back(Entry);
2573 
2574     TargetLowering::CallLoweringInfo CLI(DAG);
2575     CLI.setDebugLoc(getCurSDLoc())
2576         .setChain(DAG.getEntryNode())
2577         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2578                    getValue(GuardCheckFn), std::move(Args));
2579 
2580     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2581     DAG.setRoot(Result.second);
2582     return;
2583   }
2584 
2585   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2586   // Otherwise, emit a volatile load to retrieve the stack guard value.
2587   SDValue Chain = DAG.getEntryNode();
2588   if (TLI.useLoadStackGuardNode()) {
2589     Guard = getLoadStackGuard(DAG, dl, Chain);
2590   } else {
2591     const Value *IRGuard = TLI.getSDagStackGuard(M);
2592     SDValue GuardPtr = getValue(IRGuard);
2593 
2594     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2595                         MachinePointerInfo(IRGuard, 0), Align,
2596                         MachineMemOperand::MOVolatile);
2597   }
2598 
2599   // Perform the comparison via a subtract/getsetcc.
2600   EVT VT = Guard.getValueType();
2601   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2602 
2603   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2604                                                         *DAG.getContext(),
2605                                                         Sub.getValueType()),
2606                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2607 
2608   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2609   // branch to failure MBB.
2610   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2611                                MVT::Other, GuardVal.getOperand(0),
2612                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2613   // Otherwise branch to success MBB.
2614   SDValue Br = DAG.getNode(ISD::BR, dl,
2615                            MVT::Other, BrCond,
2616                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2617 
2618   DAG.setRoot(Br);
2619 }
2620 
2621 /// Codegen the failure basic block for a stack protector check.
2622 ///
2623 /// A failure stack protector machine basic block consists simply of a call to
2624 /// __stack_chk_fail().
2625 ///
2626 /// For a high level explanation of how this fits into the stack protector
2627 /// generation see the comment on the declaration of class
2628 /// StackProtectorDescriptor.
2629 void
2630 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2631   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2632   TargetLowering::MakeLibCallOptions CallOptions;
2633   CallOptions.setDiscardResult(true);
2634   SDValue Chain =
2635       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2636                       None, CallOptions, getCurSDLoc()).second;
2637   // On PS4, the "return address" must still be within the calling function,
2638   // even if it's at the very end, so emit an explicit TRAP here.
2639   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2640   if (TM.getTargetTriple().isPS4CPU())
2641     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2642 
2643   DAG.setRoot(Chain);
2644 }
2645 
2646 /// visitBitTestHeader - This function emits necessary code to produce value
2647 /// suitable for "bit tests"
2648 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2649                                              MachineBasicBlock *SwitchBB) {
2650   SDLoc dl = getCurSDLoc();
2651 
2652   // Subtract the minimum value.
2653   SDValue SwitchOp = getValue(B.SValue);
2654   EVT VT = SwitchOp.getValueType();
2655   SDValue RangeSub =
2656       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2657 
2658   // Determine the type of the test operands.
2659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2660   bool UsePtrType = false;
2661   if (!TLI.isTypeLegal(VT)) {
2662     UsePtrType = true;
2663   } else {
2664     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2665       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2666         // Switch table case range are encoded into series of masks.
2667         // Just use pointer type, it's guaranteed to fit.
2668         UsePtrType = true;
2669         break;
2670       }
2671   }
2672   SDValue Sub = RangeSub;
2673   if (UsePtrType) {
2674     VT = TLI.getPointerTy(DAG.getDataLayout());
2675     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2676   }
2677 
2678   B.RegVT = VT.getSimpleVT();
2679   B.Reg = FuncInfo.CreateReg(B.RegVT);
2680   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2681 
2682   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2683 
2684   if (!B.OmitRangeCheck)
2685     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2686   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2687   SwitchBB->normalizeSuccProbs();
2688 
2689   SDValue Root = CopyTo;
2690   if (!B.OmitRangeCheck) {
2691     // Conditional branch to the default block.
2692     SDValue RangeCmp = DAG.getSetCC(dl,
2693         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2694                                RangeSub.getValueType()),
2695         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2696         ISD::SETUGT);
2697 
2698     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2699                        DAG.getBasicBlock(B.Default));
2700   }
2701 
2702   // Avoid emitting unnecessary branches to the next block.
2703   if (MBB != NextBlock(SwitchBB))
2704     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2705 
2706   DAG.setRoot(Root);
2707 }
2708 
2709 /// visitBitTestCase - this function produces one "bit test"
2710 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2711                                            MachineBasicBlock* NextMBB,
2712                                            BranchProbability BranchProbToNext,
2713                                            unsigned Reg,
2714                                            BitTestCase &B,
2715                                            MachineBasicBlock *SwitchBB) {
2716   SDLoc dl = getCurSDLoc();
2717   MVT VT = BB.RegVT;
2718   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2719   SDValue Cmp;
2720   unsigned PopCount = countPopulation(B.Mask);
2721   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2722   if (PopCount == 1) {
2723     // Testing for a single bit; just compare the shift count with what it
2724     // would need to be to shift a 1 bit in that position.
2725     Cmp = DAG.getSetCC(
2726         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2727         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2728         ISD::SETEQ);
2729   } else if (PopCount == BB.Range) {
2730     // There is only one zero bit in the range, test for it directly.
2731     Cmp = DAG.getSetCC(
2732         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2733         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2734         ISD::SETNE);
2735   } else {
2736     // Make desired shift
2737     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2738                                     DAG.getConstant(1, dl, VT), ShiftOp);
2739 
2740     // Emit bit tests and jumps
2741     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2742                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2743     Cmp = DAG.getSetCC(
2744         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2745         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2746   }
2747 
2748   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2749   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2750   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2751   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2752   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2753   // one as they are relative probabilities (and thus work more like weights),
2754   // and hence we need to normalize them to let the sum of them become one.
2755   SwitchBB->normalizeSuccProbs();
2756 
2757   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2758                               MVT::Other, getControlRoot(),
2759                               Cmp, DAG.getBasicBlock(B.TargetBB));
2760 
2761   // Avoid emitting unnecessary branches to the next block.
2762   if (NextMBB != NextBlock(SwitchBB))
2763     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2764                         DAG.getBasicBlock(NextMBB));
2765 
2766   DAG.setRoot(BrAnd);
2767 }
2768 
2769 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2770   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2771 
2772   // Retrieve successors. Look through artificial IR level blocks like
2773   // catchswitch for successors.
2774   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2775   const BasicBlock *EHPadBB = I.getSuccessor(1);
2776 
2777   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2778   // have to do anything here to lower funclet bundles.
2779   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2780                                         LLVMContext::OB_funclet,
2781                                         LLVMContext::OB_cfguardtarget}) &&
2782          "Cannot lower invokes with arbitrary operand bundles yet!");
2783 
2784   const Value *Callee(I.getCalledValue());
2785   const Function *Fn = dyn_cast<Function>(Callee);
2786   if (isa<InlineAsm>(Callee))
2787     visitInlineAsm(&I);
2788   else if (Fn && Fn->isIntrinsic()) {
2789     switch (Fn->getIntrinsicID()) {
2790     default:
2791       llvm_unreachable("Cannot invoke this intrinsic");
2792     case Intrinsic::donothing:
2793       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2794       break;
2795     case Intrinsic::experimental_patchpoint_void:
2796     case Intrinsic::experimental_patchpoint_i64:
2797       visitPatchpoint(&I, EHPadBB);
2798       break;
2799     case Intrinsic::experimental_gc_statepoint:
2800       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2801       break;
2802     case Intrinsic::wasm_rethrow_in_catch: {
2803       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2804       // special because it can be invoked, so we manually lower it to a DAG
2805       // node here.
2806       SmallVector<SDValue, 8> Ops;
2807       Ops.push_back(getRoot()); // inchain
2808       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2809       Ops.push_back(
2810           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2811                                 TLI.getPointerTy(DAG.getDataLayout())));
2812       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2813       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2814       break;
2815     }
2816     }
2817   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2818     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2819     // Eventually we will support lowering the @llvm.experimental.deoptimize
2820     // intrinsic, and right now there are no plans to support other intrinsics
2821     // with deopt state.
2822     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2823   } else {
2824     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2825   }
2826 
2827   // If the value of the invoke is used outside of its defining block, make it
2828   // available as a virtual register.
2829   // We already took care of the exported value for the statepoint instruction
2830   // during call to the LowerStatepoint.
2831   if (!isStatepoint(I)) {
2832     CopyToExportRegsIfNeeded(&I);
2833   }
2834 
2835   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2836   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2837   BranchProbability EHPadBBProb =
2838       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2839           : BranchProbability::getZero();
2840   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2841 
2842   // Update successor info.
2843   addSuccessorWithProb(InvokeMBB, Return);
2844   for (auto &UnwindDest : UnwindDests) {
2845     UnwindDest.first->setIsEHPad();
2846     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2847   }
2848   InvokeMBB->normalizeSuccProbs();
2849 
2850   // Drop into normal successor.
2851   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2852                           DAG.getBasicBlock(Return)));
2853 }
2854 
2855 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2856   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2857 
2858   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2859   // have to do anything here to lower funclet bundles.
2860   assert(!I.hasOperandBundlesOtherThan(
2861              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2862          "Cannot lower callbrs with arbitrary operand bundles yet!");
2863 
2864   assert(isa<InlineAsm>(I.getCalledValue()) &&
2865          "Only know how to handle inlineasm callbr");
2866   visitInlineAsm(&I);
2867 
2868   // Retrieve successors.
2869   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2870 
2871   // Update successor info.
2872   addSuccessorWithProb(CallBrMBB, Return);
2873   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2874     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2875     addSuccessorWithProb(CallBrMBB, Target);
2876   }
2877   CallBrMBB->normalizeSuccProbs();
2878 
2879   // Drop into default successor.
2880   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2881                           MVT::Other, getControlRoot(),
2882                           DAG.getBasicBlock(Return)));
2883 }
2884 
2885 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2886   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2887 }
2888 
2889 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2890   assert(FuncInfo.MBB->isEHPad() &&
2891          "Call to landingpad not in landing pad!");
2892 
2893   // If there aren't registers to copy the values into (e.g., during SjLj
2894   // exceptions), then don't bother to create these DAG nodes.
2895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2896   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2897   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2898       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2899     return;
2900 
2901   // If landingpad's return type is token type, we don't create DAG nodes
2902   // for its exception pointer and selector value. The extraction of exception
2903   // pointer or selector value from token type landingpads is not currently
2904   // supported.
2905   if (LP.getType()->isTokenTy())
2906     return;
2907 
2908   SmallVector<EVT, 2> ValueVTs;
2909   SDLoc dl = getCurSDLoc();
2910   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2911   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2912 
2913   // Get the two live-in registers as SDValues. The physregs have already been
2914   // copied into virtual registers.
2915   SDValue Ops[2];
2916   if (FuncInfo.ExceptionPointerVirtReg) {
2917     Ops[0] = DAG.getZExtOrTrunc(
2918         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2919                            FuncInfo.ExceptionPointerVirtReg,
2920                            TLI.getPointerTy(DAG.getDataLayout())),
2921         dl, ValueVTs[0]);
2922   } else {
2923     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2924   }
2925   Ops[1] = DAG.getZExtOrTrunc(
2926       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2927                          FuncInfo.ExceptionSelectorVirtReg,
2928                          TLI.getPointerTy(DAG.getDataLayout())),
2929       dl, ValueVTs[1]);
2930 
2931   // Merge into one.
2932   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2933                             DAG.getVTList(ValueVTs), Ops);
2934   setValue(&LP, Res);
2935 }
2936 
2937 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2938                                            MachineBasicBlock *Last) {
2939   // Update JTCases.
2940   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2941     if (SL->JTCases[i].first.HeaderBB == First)
2942       SL->JTCases[i].first.HeaderBB = Last;
2943 
2944   // Update BitTestCases.
2945   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2946     if (SL->BitTestCases[i].Parent == First)
2947       SL->BitTestCases[i].Parent = Last;
2948 }
2949 
2950 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2951   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2952 
2953   // Update machine-CFG edges with unique successors.
2954   SmallSet<BasicBlock*, 32> Done;
2955   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2956     BasicBlock *BB = I.getSuccessor(i);
2957     bool Inserted = Done.insert(BB).second;
2958     if (!Inserted)
2959         continue;
2960 
2961     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2962     addSuccessorWithProb(IndirectBrMBB, Succ);
2963   }
2964   IndirectBrMBB->normalizeSuccProbs();
2965 
2966   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2967                           MVT::Other, getControlRoot(),
2968                           getValue(I.getAddress())));
2969 }
2970 
2971 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2972   if (!DAG.getTarget().Options.TrapUnreachable)
2973     return;
2974 
2975   // We may be able to ignore unreachable behind a noreturn call.
2976   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2977     const BasicBlock &BB = *I.getParent();
2978     if (&I != &BB.front()) {
2979       BasicBlock::const_iterator PredI =
2980         std::prev(BasicBlock::const_iterator(&I));
2981       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2982         if (Call->doesNotReturn())
2983           return;
2984       }
2985     }
2986   }
2987 
2988   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2989 }
2990 
2991 void SelectionDAGBuilder::visitFSub(const User &I) {
2992   // -0.0 - X --> fneg
2993   Type *Ty = I.getType();
2994   if (isa<Constant>(I.getOperand(0)) &&
2995       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2996     SDValue Op2 = getValue(I.getOperand(1));
2997     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2998                              Op2.getValueType(), Op2));
2999     return;
3000   }
3001 
3002   visitBinary(I, ISD::FSUB);
3003 }
3004 
3005 /// Checks if the given instruction performs a vector reduction, in which case
3006 /// we have the freedom to alter the elements in the result as long as the
3007 /// reduction of them stays unchanged.
3008 static bool isVectorReductionOp(const User *I) {
3009   const Instruction *Inst = dyn_cast<Instruction>(I);
3010   if (!Inst || !Inst->getType()->isVectorTy())
3011     return false;
3012 
3013   auto OpCode = Inst->getOpcode();
3014   switch (OpCode) {
3015   case Instruction::Add:
3016   case Instruction::Mul:
3017   case Instruction::And:
3018   case Instruction::Or:
3019   case Instruction::Xor:
3020     break;
3021   case Instruction::FAdd:
3022   case Instruction::FMul:
3023     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3024       if (FPOp->getFastMathFlags().isFast())
3025         break;
3026     LLVM_FALLTHROUGH;
3027   default:
3028     return false;
3029   }
3030 
3031   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3032   // Ensure the reduction size is a power of 2.
3033   if (!isPowerOf2_32(ElemNum))
3034     return false;
3035 
3036   unsigned ElemNumToReduce = ElemNum;
3037 
3038   // Do DFS search on the def-use chain from the given instruction. We only
3039   // allow four kinds of operations during the search until we reach the
3040   // instruction that extracts the first element from the vector:
3041   //
3042   //   1. The reduction operation of the same opcode as the given instruction.
3043   //
3044   //   2. PHI node.
3045   //
3046   //   3. ShuffleVector instruction together with a reduction operation that
3047   //      does a partial reduction.
3048   //
3049   //   4. ExtractElement that extracts the first element from the vector, and we
3050   //      stop searching the def-use chain here.
3051   //
3052   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3053   // from 1-3 to the stack to continue the DFS. The given instruction is not
3054   // a reduction operation if we meet any other instructions other than those
3055   // listed above.
3056 
3057   SmallVector<const User *, 16> UsersToVisit{Inst};
3058   SmallPtrSet<const User *, 16> Visited;
3059   bool ReduxExtracted = false;
3060 
3061   while (!UsersToVisit.empty()) {
3062     auto User = UsersToVisit.back();
3063     UsersToVisit.pop_back();
3064     if (!Visited.insert(User).second)
3065       continue;
3066 
3067     for (const auto *U : User->users()) {
3068       auto Inst = dyn_cast<Instruction>(U);
3069       if (!Inst)
3070         return false;
3071 
3072       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3073         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3074           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3075             return false;
3076         UsersToVisit.push_back(U);
3077       } else if (const ShuffleVectorInst *ShufInst =
3078                      dyn_cast<ShuffleVectorInst>(U)) {
3079         // Detect the following pattern: A ShuffleVector instruction together
3080         // with a reduction that do partial reduction on the first and second
3081         // ElemNumToReduce / 2 elements, and store the result in
3082         // ElemNumToReduce / 2 elements in another vector.
3083 
3084         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3085         if (ResultElements < ElemNum)
3086           return false;
3087 
3088         if (ElemNumToReduce == 1)
3089           return false;
3090         if (!isa<UndefValue>(U->getOperand(1)))
3091           return false;
3092         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3093           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3094             return false;
3095         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3096           if (ShufInst->getMaskValue(i) != -1)
3097             return false;
3098 
3099         // There is only one user of this ShuffleVector instruction, which
3100         // must be a reduction operation.
3101         if (!U->hasOneUse())
3102           return false;
3103 
3104         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3105         if (!U2 || U2->getOpcode() != OpCode)
3106           return false;
3107 
3108         // Check operands of the reduction operation.
3109         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3110             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3111           UsersToVisit.push_back(U2);
3112           ElemNumToReduce /= 2;
3113         } else
3114           return false;
3115       } else if (isa<ExtractElementInst>(U)) {
3116         // At this moment we should have reduced all elements in the vector.
3117         if (ElemNumToReduce != 1)
3118           return false;
3119 
3120         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3121         if (!Val || !Val->isZero())
3122           return false;
3123 
3124         ReduxExtracted = true;
3125       } else
3126         return false;
3127     }
3128   }
3129   return ReduxExtracted;
3130 }
3131 
3132 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3133   SDNodeFlags Flags;
3134 
3135   SDValue Op = getValue(I.getOperand(0));
3136   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3137                                     Op, Flags);
3138   setValue(&I, UnNodeValue);
3139 }
3140 
3141 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3142   SDNodeFlags Flags;
3143   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3144     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3145     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3146   }
3147   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3148     Flags.setExact(ExactOp->isExact());
3149   }
3150   if (isVectorReductionOp(&I)) {
3151     Flags.setVectorReduction(true);
3152     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3153 
3154     // If no flags are set we will propagate the incoming flags, if any flags
3155     // are set, we will intersect them with the incoming flag and so we need to
3156     // copy the FMF flags here.
3157     if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) {
3158       Flags.copyFMF(*FPOp);
3159     }
3160   }
3161 
3162   SDValue Op1 = getValue(I.getOperand(0));
3163   SDValue Op2 = getValue(I.getOperand(1));
3164   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3165                                      Op1, Op2, Flags);
3166   setValue(&I, BinNodeValue);
3167 }
3168 
3169 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3170   SDValue Op1 = getValue(I.getOperand(0));
3171   SDValue Op2 = getValue(I.getOperand(1));
3172 
3173   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3174       Op1.getValueType(), DAG.getDataLayout());
3175 
3176   // Coerce the shift amount to the right type if we can.
3177   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3178     unsigned ShiftSize = ShiftTy.getSizeInBits();
3179     unsigned Op2Size = Op2.getValueSizeInBits();
3180     SDLoc DL = getCurSDLoc();
3181 
3182     // If the operand is smaller than the shift count type, promote it.
3183     if (ShiftSize > Op2Size)
3184       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3185 
3186     // If the operand is larger than the shift count type but the shift
3187     // count type has enough bits to represent any shift value, truncate
3188     // it now. This is a common case and it exposes the truncate to
3189     // optimization early.
3190     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3191       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3192     // Otherwise we'll need to temporarily settle for some other convenient
3193     // type.  Type legalization will make adjustments once the shiftee is split.
3194     else
3195       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3196   }
3197 
3198   bool nuw = false;
3199   bool nsw = false;
3200   bool exact = false;
3201 
3202   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3203 
3204     if (const OverflowingBinaryOperator *OFBinOp =
3205             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3206       nuw = OFBinOp->hasNoUnsignedWrap();
3207       nsw = OFBinOp->hasNoSignedWrap();
3208     }
3209     if (const PossiblyExactOperator *ExactOp =
3210             dyn_cast<const PossiblyExactOperator>(&I))
3211       exact = ExactOp->isExact();
3212   }
3213   SDNodeFlags Flags;
3214   Flags.setExact(exact);
3215   Flags.setNoSignedWrap(nsw);
3216   Flags.setNoUnsignedWrap(nuw);
3217   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3218                             Flags);
3219   setValue(&I, Res);
3220 }
3221 
3222 void SelectionDAGBuilder::visitSDiv(const User &I) {
3223   SDValue Op1 = getValue(I.getOperand(0));
3224   SDValue Op2 = getValue(I.getOperand(1));
3225 
3226   SDNodeFlags Flags;
3227   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3228                  cast<PossiblyExactOperator>(&I)->isExact());
3229   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3230                            Op2, Flags));
3231 }
3232 
3233 void SelectionDAGBuilder::visitICmp(const User &I) {
3234   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3235   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3236     predicate = IC->getPredicate();
3237   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3238     predicate = ICmpInst::Predicate(IC->getPredicate());
3239   SDValue Op1 = getValue(I.getOperand(0));
3240   SDValue Op2 = getValue(I.getOperand(1));
3241   ISD::CondCode Opcode = getICmpCondCode(predicate);
3242 
3243   auto &TLI = DAG.getTargetLoweringInfo();
3244   EVT MemVT =
3245       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3246 
3247   // If a pointer's DAG type is larger than its memory type then the DAG values
3248   // are zero-extended. This breaks signed comparisons so truncate back to the
3249   // underlying type before doing the compare.
3250   if (Op1.getValueType() != MemVT) {
3251     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3252     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3253   }
3254 
3255   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3256                                                         I.getType());
3257   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3258 }
3259 
3260 void SelectionDAGBuilder::visitFCmp(const User &I) {
3261   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3262   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3263     predicate = FC->getPredicate();
3264   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3265     predicate = FCmpInst::Predicate(FC->getPredicate());
3266   SDValue Op1 = getValue(I.getOperand(0));
3267   SDValue Op2 = getValue(I.getOperand(1));
3268 
3269   ISD::CondCode Condition = getFCmpCondCode(predicate);
3270   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3271   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3272     Condition = getFCmpCodeWithoutNaN(Condition);
3273 
3274   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3275                                                         I.getType());
3276   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3277 }
3278 
3279 // Check if the condition of the select has one use or two users that are both
3280 // selects with the same condition.
3281 static bool hasOnlySelectUsers(const Value *Cond) {
3282   return llvm::all_of(Cond->users(), [](const Value *V) {
3283     return isa<SelectInst>(V);
3284   });
3285 }
3286 
3287 void SelectionDAGBuilder::visitSelect(const User &I) {
3288   SmallVector<EVT, 4> ValueVTs;
3289   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3290                   ValueVTs);
3291   unsigned NumValues = ValueVTs.size();
3292   if (NumValues == 0) return;
3293 
3294   SmallVector<SDValue, 4> Values(NumValues);
3295   SDValue Cond     = getValue(I.getOperand(0));
3296   SDValue LHSVal   = getValue(I.getOperand(1));
3297   SDValue RHSVal   = getValue(I.getOperand(2));
3298   auto BaseOps = {Cond};
3299   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3300     ISD::VSELECT : ISD::SELECT;
3301 
3302   bool IsUnaryAbs = false;
3303 
3304   // Min/max matching is only viable if all output VTs are the same.
3305   if (is_splat(ValueVTs)) {
3306     EVT VT = ValueVTs[0];
3307     LLVMContext &Ctx = *DAG.getContext();
3308     auto &TLI = DAG.getTargetLoweringInfo();
3309 
3310     // We care about the legality of the operation after it has been type
3311     // legalized.
3312     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3313       VT = TLI.getTypeToTransformTo(Ctx, VT);
3314 
3315     // If the vselect is legal, assume we want to leave this as a vector setcc +
3316     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3317     // min/max is legal on the scalar type.
3318     bool UseScalarMinMax = VT.isVector() &&
3319       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3320 
3321     Value *LHS, *RHS;
3322     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3323     ISD::NodeType Opc = ISD::DELETED_NODE;
3324     switch (SPR.Flavor) {
3325     case SPF_UMAX:    Opc = ISD::UMAX; break;
3326     case SPF_UMIN:    Opc = ISD::UMIN; break;
3327     case SPF_SMAX:    Opc = ISD::SMAX; break;
3328     case SPF_SMIN:    Opc = ISD::SMIN; break;
3329     case SPF_FMINNUM:
3330       switch (SPR.NaNBehavior) {
3331       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3332       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3333       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3334       case SPNB_RETURNS_ANY: {
3335         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3336           Opc = ISD::FMINNUM;
3337         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3338           Opc = ISD::FMINIMUM;
3339         else if (UseScalarMinMax)
3340           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3341             ISD::FMINNUM : ISD::FMINIMUM;
3342         break;
3343       }
3344       }
3345       break;
3346     case SPF_FMAXNUM:
3347       switch (SPR.NaNBehavior) {
3348       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3349       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3350       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3351       case SPNB_RETURNS_ANY:
3352 
3353         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3354           Opc = ISD::FMAXNUM;
3355         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3356           Opc = ISD::FMAXIMUM;
3357         else if (UseScalarMinMax)
3358           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3359             ISD::FMAXNUM : ISD::FMAXIMUM;
3360         break;
3361       }
3362       break;
3363     case SPF_ABS:
3364       IsUnaryAbs = true;
3365       Opc = ISD::ABS;
3366       break;
3367     case SPF_NABS:
3368       // TODO: we need to produce sub(0, abs(X)).
3369     default: break;
3370     }
3371 
3372     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3373         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3374          (UseScalarMinMax &&
3375           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3376         // If the underlying comparison instruction is used by any other
3377         // instruction, the consumed instructions won't be destroyed, so it is
3378         // not profitable to convert to a min/max.
3379         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3380       OpCode = Opc;
3381       LHSVal = getValue(LHS);
3382       RHSVal = getValue(RHS);
3383       BaseOps = {};
3384     }
3385 
3386     if (IsUnaryAbs) {
3387       OpCode = Opc;
3388       LHSVal = getValue(LHS);
3389       BaseOps = {};
3390     }
3391   }
3392 
3393   if (IsUnaryAbs) {
3394     for (unsigned i = 0; i != NumValues; ++i) {
3395       Values[i] =
3396           DAG.getNode(OpCode, getCurSDLoc(),
3397                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3398                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3399     }
3400   } else {
3401     for (unsigned i = 0; i != NumValues; ++i) {
3402       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3403       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3404       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3405       Values[i] = DAG.getNode(
3406           OpCode, getCurSDLoc(),
3407           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3408     }
3409   }
3410 
3411   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3412                            DAG.getVTList(ValueVTs), Values));
3413 }
3414 
3415 void SelectionDAGBuilder::visitTrunc(const User &I) {
3416   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3417   SDValue N = getValue(I.getOperand(0));
3418   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3419                                                         I.getType());
3420   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3421 }
3422 
3423 void SelectionDAGBuilder::visitZExt(const User &I) {
3424   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3425   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3426   SDValue N = getValue(I.getOperand(0));
3427   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3428                                                         I.getType());
3429   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3430 }
3431 
3432 void SelectionDAGBuilder::visitSExt(const User &I) {
3433   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3434   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3435   SDValue N = getValue(I.getOperand(0));
3436   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3437                                                         I.getType());
3438   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3439 }
3440 
3441 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3442   // FPTrunc is never a no-op cast, no need to check
3443   SDValue N = getValue(I.getOperand(0));
3444   SDLoc dl = getCurSDLoc();
3445   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3446   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3448                            DAG.getTargetConstant(
3449                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3450 }
3451 
3452 void SelectionDAGBuilder::visitFPExt(const User &I) {
3453   // FPExt is never a no-op cast, no need to check
3454   SDValue N = getValue(I.getOperand(0));
3455   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3456                                                         I.getType());
3457   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3458 }
3459 
3460 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3461   // FPToUI is never a no-op cast, no need to check
3462   SDValue N = getValue(I.getOperand(0));
3463   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3464                                                         I.getType());
3465   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3466 }
3467 
3468 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3469   // FPToSI is never a no-op cast, no need to check
3470   SDValue N = getValue(I.getOperand(0));
3471   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3472                                                         I.getType());
3473   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3474 }
3475 
3476 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3477   // UIToFP is never a no-op cast, no need to check
3478   SDValue N = getValue(I.getOperand(0));
3479   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3480                                                         I.getType());
3481   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3482 }
3483 
3484 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3485   // SIToFP is never a no-op cast, no need to check
3486   SDValue N = getValue(I.getOperand(0));
3487   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3488                                                         I.getType());
3489   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3490 }
3491 
3492 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3493   // What to do depends on the size of the integer and the size of the pointer.
3494   // We can either truncate, zero extend, or no-op, accordingly.
3495   SDValue N = getValue(I.getOperand(0));
3496   auto &TLI = DAG.getTargetLoweringInfo();
3497   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3498                                                         I.getType());
3499   EVT PtrMemVT =
3500       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3501   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3502   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3503   setValue(&I, N);
3504 }
3505 
3506 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3507   // What to do depends on the size of the integer and the size of the pointer.
3508   // We can either truncate, zero extend, or no-op, accordingly.
3509   SDValue N = getValue(I.getOperand(0));
3510   auto &TLI = DAG.getTargetLoweringInfo();
3511   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3512   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3513   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3514   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3515   setValue(&I, N);
3516 }
3517 
3518 void SelectionDAGBuilder::visitBitCast(const User &I) {
3519   SDValue N = getValue(I.getOperand(0));
3520   SDLoc dl = getCurSDLoc();
3521   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3522                                                         I.getType());
3523 
3524   // BitCast assures us that source and destination are the same size so this is
3525   // either a BITCAST or a no-op.
3526   if (DestVT != N.getValueType())
3527     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3528                              DestVT, N)); // convert types.
3529   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3530   // might fold any kind of constant expression to an integer constant and that
3531   // is not what we are looking for. Only recognize a bitcast of a genuine
3532   // constant integer as an opaque constant.
3533   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3534     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3535                                  /*isOpaque*/true));
3536   else
3537     setValue(&I, N);            // noop cast.
3538 }
3539 
3540 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   const Value *SV = I.getOperand(0);
3543   SDValue N = getValue(SV);
3544   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545 
3546   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3547   unsigned DestAS = I.getType()->getPointerAddressSpace();
3548 
3549   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3550     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3551 
3552   setValue(&I, N);
3553 }
3554 
3555 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3557   SDValue InVec = getValue(I.getOperand(0));
3558   SDValue InVal = getValue(I.getOperand(1));
3559   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3560                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3561   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3562                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3563                            InVec, InVal, InIdx));
3564 }
3565 
3566 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3568   SDValue InVec = getValue(I.getOperand(0));
3569   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3570                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3571   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3572                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3573                            InVec, InIdx));
3574 }
3575 
3576 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3577   SDValue Src1 = getValue(I.getOperand(0));
3578   SDValue Src2 = getValue(I.getOperand(1));
3579   Constant *MaskV = cast<Constant>(I.getOperand(2));
3580   SDLoc DL = getCurSDLoc();
3581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3582   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3583   EVT SrcVT = Src1.getValueType();
3584   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3585 
3586   if (MaskV->isNullValue() && VT.isScalableVector()) {
3587     // Canonical splat form of first element of first input vector.
3588     SDValue FirstElt =
3589         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3590                     DAG.getVectorIdxConstant(0, DL));
3591     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3592     return;
3593   }
3594 
3595   // For now, we only handle splats for scalable vectors.
3596   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3597   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3598   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3599 
3600   SmallVector<int, 8> Mask;
3601   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3602   unsigned MaskNumElts = Mask.size();
3603 
3604   if (SrcNumElts == MaskNumElts) {
3605     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3606     return;
3607   }
3608 
3609   // Normalize the shuffle vector since mask and vector length don't match.
3610   if (SrcNumElts < MaskNumElts) {
3611     // Mask is longer than the source vectors. We can use concatenate vector to
3612     // make the mask and vectors lengths match.
3613 
3614     if (MaskNumElts % SrcNumElts == 0) {
3615       // Mask length is a multiple of the source vector length.
3616       // Check if the shuffle is some kind of concatenation of the input
3617       // vectors.
3618       unsigned NumConcat = MaskNumElts / SrcNumElts;
3619       bool IsConcat = true;
3620       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3621       for (unsigned i = 0; i != MaskNumElts; ++i) {
3622         int Idx = Mask[i];
3623         if (Idx < 0)
3624           continue;
3625         // Ensure the indices in each SrcVT sized piece are sequential and that
3626         // the same source is used for the whole piece.
3627         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3628             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3629              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3630           IsConcat = false;
3631           break;
3632         }
3633         // Remember which source this index came from.
3634         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3635       }
3636 
3637       // The shuffle is concatenating multiple vectors together. Just emit
3638       // a CONCAT_VECTORS operation.
3639       if (IsConcat) {
3640         SmallVector<SDValue, 8> ConcatOps;
3641         for (auto Src : ConcatSrcs) {
3642           if (Src < 0)
3643             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3644           else if (Src == 0)
3645             ConcatOps.push_back(Src1);
3646           else
3647             ConcatOps.push_back(Src2);
3648         }
3649         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3650         return;
3651       }
3652     }
3653 
3654     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3655     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3656     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3657                                     PaddedMaskNumElts);
3658 
3659     // Pad both vectors with undefs to make them the same length as the mask.
3660     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3661 
3662     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3663     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3664     MOps1[0] = Src1;
3665     MOps2[0] = Src2;
3666 
3667     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3668     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3669 
3670     // Readjust mask for new input vector length.
3671     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3672     for (unsigned i = 0; i != MaskNumElts; ++i) {
3673       int Idx = Mask[i];
3674       if (Idx >= (int)SrcNumElts)
3675         Idx -= SrcNumElts - PaddedMaskNumElts;
3676       MappedOps[i] = Idx;
3677     }
3678 
3679     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3680 
3681     // If the concatenated vector was padded, extract a subvector with the
3682     // correct number of elements.
3683     if (MaskNumElts != PaddedMaskNumElts)
3684       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3685                            DAG.getVectorIdxConstant(0, DL));
3686 
3687     setValue(&I, Result);
3688     return;
3689   }
3690 
3691   if (SrcNumElts > MaskNumElts) {
3692     // Analyze the access pattern of the vector to see if we can extract
3693     // two subvectors and do the shuffle.
3694     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3695     bool CanExtract = true;
3696     for (int Idx : Mask) {
3697       unsigned Input = 0;
3698       if (Idx < 0)
3699         continue;
3700 
3701       if (Idx >= (int)SrcNumElts) {
3702         Input = 1;
3703         Idx -= SrcNumElts;
3704       }
3705 
3706       // If all the indices come from the same MaskNumElts sized portion of
3707       // the sources we can use extract. Also make sure the extract wouldn't
3708       // extract past the end of the source.
3709       int NewStartIdx = alignDown(Idx, MaskNumElts);
3710       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3711           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3712         CanExtract = false;
3713       // Make sure we always update StartIdx as we use it to track if all
3714       // elements are undef.
3715       StartIdx[Input] = NewStartIdx;
3716     }
3717 
3718     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3719       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3720       return;
3721     }
3722     if (CanExtract) {
3723       // Extract appropriate subvector and generate a vector shuffle
3724       for (unsigned Input = 0; Input < 2; ++Input) {
3725         SDValue &Src = Input == 0 ? Src1 : Src2;
3726         if (StartIdx[Input] < 0)
3727           Src = DAG.getUNDEF(VT);
3728         else {
3729           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3730                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3731         }
3732       }
3733 
3734       // Calculate new mask.
3735       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3736       for (int &Idx : MappedOps) {
3737         if (Idx >= (int)SrcNumElts)
3738           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3739         else if (Idx >= 0)
3740           Idx -= StartIdx[0];
3741       }
3742 
3743       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3744       return;
3745     }
3746   }
3747 
3748   // We can't use either concat vectors or extract subvectors so fall back to
3749   // replacing the shuffle with extract and build vector.
3750   // to insert and build vector.
3751   EVT EltVT = VT.getVectorElementType();
3752   SmallVector<SDValue,8> Ops;
3753   for (int Idx : Mask) {
3754     SDValue Res;
3755 
3756     if (Idx < 0) {
3757       Res = DAG.getUNDEF(EltVT);
3758     } else {
3759       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3760       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3761 
3762       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3763                         DAG.getVectorIdxConstant(Idx, DL));
3764     }
3765 
3766     Ops.push_back(Res);
3767   }
3768 
3769   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3770 }
3771 
3772 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3773   ArrayRef<unsigned> Indices;
3774   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3775     Indices = IV->getIndices();
3776   else
3777     Indices = cast<ConstantExpr>(&I)->getIndices();
3778 
3779   const Value *Op0 = I.getOperand(0);
3780   const Value *Op1 = I.getOperand(1);
3781   Type *AggTy = I.getType();
3782   Type *ValTy = Op1->getType();
3783   bool IntoUndef = isa<UndefValue>(Op0);
3784   bool FromUndef = isa<UndefValue>(Op1);
3785 
3786   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3787 
3788   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3789   SmallVector<EVT, 4> AggValueVTs;
3790   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3791   SmallVector<EVT, 4> ValValueVTs;
3792   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3793 
3794   unsigned NumAggValues = AggValueVTs.size();
3795   unsigned NumValValues = ValValueVTs.size();
3796   SmallVector<SDValue, 4> Values(NumAggValues);
3797 
3798   // Ignore an insertvalue that produces an empty object
3799   if (!NumAggValues) {
3800     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3801     return;
3802   }
3803 
3804   SDValue Agg = getValue(Op0);
3805   unsigned i = 0;
3806   // Copy the beginning value(s) from the original aggregate.
3807   for (; i != LinearIndex; ++i)
3808     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3809                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3810   // Copy values from the inserted value(s).
3811   if (NumValValues) {
3812     SDValue Val = getValue(Op1);
3813     for (; i != LinearIndex + NumValValues; ++i)
3814       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3815                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3816   }
3817   // Copy remaining value(s) from the original aggregate.
3818   for (; i != NumAggValues; ++i)
3819     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3820                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3821 
3822   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3823                            DAG.getVTList(AggValueVTs), Values));
3824 }
3825 
3826 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3827   ArrayRef<unsigned> Indices;
3828   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3829     Indices = EV->getIndices();
3830   else
3831     Indices = cast<ConstantExpr>(&I)->getIndices();
3832 
3833   const Value *Op0 = I.getOperand(0);
3834   Type *AggTy = Op0->getType();
3835   Type *ValTy = I.getType();
3836   bool OutOfUndef = isa<UndefValue>(Op0);
3837 
3838   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3839 
3840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3841   SmallVector<EVT, 4> ValValueVTs;
3842   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3843 
3844   unsigned NumValValues = ValValueVTs.size();
3845 
3846   // Ignore a extractvalue that produces an empty object
3847   if (!NumValValues) {
3848     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3849     return;
3850   }
3851 
3852   SmallVector<SDValue, 4> Values(NumValValues);
3853 
3854   SDValue Agg = getValue(Op0);
3855   // Copy out the selected value(s).
3856   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3857     Values[i - LinearIndex] =
3858       OutOfUndef ?
3859         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3860         SDValue(Agg.getNode(), Agg.getResNo() + i);
3861 
3862   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3863                            DAG.getVTList(ValValueVTs), Values));
3864 }
3865 
3866 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3867   Value *Op0 = I.getOperand(0);
3868   // Note that the pointer operand may be a vector of pointers. Take the scalar
3869   // element which holds a pointer.
3870   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3871   SDValue N = getValue(Op0);
3872   SDLoc dl = getCurSDLoc();
3873   auto &TLI = DAG.getTargetLoweringInfo();
3874   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3875   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3876 
3877   // Normalize Vector GEP - all scalar operands should be converted to the
3878   // splat vector.
3879   unsigned VectorWidth = I.getType()->isVectorTy() ?
3880     I.getType()->getVectorNumElements() : 0;
3881 
3882   if (VectorWidth && !N.getValueType().isVector()) {
3883     LLVMContext &Context = *DAG.getContext();
3884     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3885     N = DAG.getSplatBuildVector(VT, dl, N);
3886   }
3887 
3888   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3889        GTI != E; ++GTI) {
3890     const Value *Idx = GTI.getOperand();
3891     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3892       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3893       if (Field) {
3894         // N = N + Offset
3895         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3896 
3897         // In an inbounds GEP with an offset that is nonnegative even when
3898         // interpreted as signed, assume there is no unsigned overflow.
3899         SDNodeFlags Flags;
3900         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3901           Flags.setNoUnsignedWrap(true);
3902 
3903         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3904                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3905       }
3906     } else {
3907       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3908       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3909       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3910 
3911       // If this is a scalar constant or a splat vector of constants,
3912       // handle it quickly.
3913       const auto *C = dyn_cast<Constant>(Idx);
3914       if (C && isa<VectorType>(C->getType()))
3915         C = C->getSplatValue();
3916 
3917       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3918         if (CI->isZero())
3919           continue;
3920         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3921         LLVMContext &Context = *DAG.getContext();
3922         SDValue OffsVal = VectorWidth ?
3923           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3924           DAG.getConstant(Offs, dl, IdxTy);
3925 
3926         // In an inbounds GEP with an offset that is nonnegative even when
3927         // interpreted as signed, assume there is no unsigned overflow.
3928         SDNodeFlags Flags;
3929         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3930           Flags.setNoUnsignedWrap(true);
3931 
3932         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3933 
3934         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3935         continue;
3936       }
3937 
3938       // N = N + Idx * ElementSize;
3939       SDValue IdxN = getValue(Idx);
3940 
3941       if (!IdxN.getValueType().isVector() && VectorWidth) {
3942         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3943         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3944       }
3945 
3946       // If the index is smaller or larger than intptr_t, truncate or extend
3947       // it.
3948       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3949 
3950       // If this is a multiply by a power of two, turn it into a shl
3951       // immediately.  This is a very common case.
3952       if (ElementSize != 1) {
3953         if (ElementSize.isPowerOf2()) {
3954           unsigned Amt = ElementSize.logBase2();
3955           IdxN = DAG.getNode(ISD::SHL, dl,
3956                              N.getValueType(), IdxN,
3957                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3958         } else {
3959           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3960                                           IdxN.getValueType());
3961           IdxN = DAG.getNode(ISD::MUL, dl,
3962                              N.getValueType(), IdxN, Scale);
3963         }
3964       }
3965 
3966       N = DAG.getNode(ISD::ADD, dl,
3967                       N.getValueType(), N, IdxN);
3968     }
3969   }
3970 
3971   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3972     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3973 
3974   setValue(&I, N);
3975 }
3976 
3977 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3978   // If this is a fixed sized alloca in the entry block of the function,
3979   // allocate it statically on the stack.
3980   if (FuncInfo.StaticAllocaMap.count(&I))
3981     return;   // getValue will auto-populate this.
3982 
3983   SDLoc dl = getCurSDLoc();
3984   Type *Ty = I.getAllocatedType();
3985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986   auto &DL = DAG.getDataLayout();
3987   uint64_t TySize = DL.getTypeAllocSize(Ty);
3988   unsigned Align =
3989       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3990 
3991   SDValue AllocSize = getValue(I.getArraySize());
3992 
3993   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3994   if (AllocSize.getValueType() != IntPtr)
3995     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3996 
3997   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3998                           AllocSize,
3999                           DAG.getConstant(TySize, dl, IntPtr));
4000 
4001   // Handle alignment.  If the requested alignment is less than or equal to
4002   // the stack alignment, ignore it.  If the size is greater than or equal to
4003   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4004   unsigned StackAlign =
4005       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
4006   if (Align <= StackAlign)
4007     Align = 0;
4008 
4009   // Round the size of the allocation up to the stack alignment size
4010   // by add SA-1 to the size. This doesn't overflow because we're computing
4011   // an address inside an alloca.
4012   SDNodeFlags Flags;
4013   Flags.setNoUnsignedWrap(true);
4014   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4015                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
4016 
4017   // Mask out the low bits for alignment purposes.
4018   AllocSize =
4019       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4020                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4021 
4022   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4023   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4024   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4025   setValue(&I, DSA);
4026   DAG.setRoot(DSA.getValue(1));
4027 
4028   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4029 }
4030 
4031 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4032   if (I.isAtomic())
4033     return visitAtomicLoad(I);
4034 
4035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4036   const Value *SV = I.getOperand(0);
4037   if (TLI.supportSwiftError()) {
4038     // Swifterror values can come from either a function parameter with
4039     // swifterror attribute or an alloca with swifterror attribute.
4040     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4041       if (Arg->hasSwiftErrorAttr())
4042         return visitLoadFromSwiftError(I);
4043     }
4044 
4045     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4046       if (Alloca->isSwiftError())
4047         return visitLoadFromSwiftError(I);
4048     }
4049   }
4050 
4051   SDValue Ptr = getValue(SV);
4052 
4053   Type *Ty = I.getType();
4054   unsigned Alignment = I.getAlignment();
4055 
4056   AAMDNodes AAInfo;
4057   I.getAAMetadata(AAInfo);
4058   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4059 
4060   SmallVector<EVT, 4> ValueVTs, MemVTs;
4061   SmallVector<uint64_t, 4> Offsets;
4062   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4063   unsigned NumValues = ValueVTs.size();
4064   if (NumValues == 0)
4065     return;
4066 
4067   bool isVolatile = I.isVolatile();
4068 
4069   SDValue Root;
4070   bool ConstantMemory = false;
4071   if (isVolatile)
4072     // Serialize volatile loads with other side effects.
4073     Root = getRoot();
4074   else if (NumValues > MaxParallelChains)
4075     Root = getMemoryRoot();
4076   else if (AA &&
4077            AA->pointsToConstantMemory(MemoryLocation(
4078                SV,
4079                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4080                AAInfo))) {
4081     // Do not serialize (non-volatile) loads of constant memory with anything.
4082     Root = DAG.getEntryNode();
4083     ConstantMemory = true;
4084   } else {
4085     // Do not serialize non-volatile loads against each other.
4086     Root = DAG.getRoot();
4087   }
4088 
4089   SDLoc dl = getCurSDLoc();
4090 
4091   if (isVolatile)
4092     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4093 
4094   // An aggregate load cannot wrap around the address space, so offsets to its
4095   // parts don't wrap either.
4096   SDNodeFlags Flags;
4097   Flags.setNoUnsignedWrap(true);
4098 
4099   SmallVector<SDValue, 4> Values(NumValues);
4100   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4101   EVT PtrVT = Ptr.getValueType();
4102 
4103   MachineMemOperand::Flags MMOFlags
4104     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4105 
4106   unsigned ChainI = 0;
4107   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4108     // Serializing loads here may result in excessive register pressure, and
4109     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4110     // could recover a bit by hoisting nodes upward in the chain by recognizing
4111     // they are side-effect free or do not alias. The optimizer should really
4112     // avoid this case by converting large object/array copies to llvm.memcpy
4113     // (MaxParallelChains should always remain as failsafe).
4114     if (ChainI == MaxParallelChains) {
4115       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4116       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4117                                   makeArrayRef(Chains.data(), ChainI));
4118       Root = Chain;
4119       ChainI = 0;
4120     }
4121     SDValue A = DAG.getNode(ISD::ADD, dl,
4122                             PtrVT, Ptr,
4123                             DAG.getConstant(Offsets[i], dl, PtrVT),
4124                             Flags);
4125 
4126     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4127                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4128                             MMOFlags, AAInfo, Ranges);
4129     Chains[ChainI] = L.getValue(1);
4130 
4131     if (MemVTs[i] != ValueVTs[i])
4132       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4133 
4134     Values[i] = L;
4135   }
4136 
4137   if (!ConstantMemory) {
4138     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4139                                 makeArrayRef(Chains.data(), ChainI));
4140     if (isVolatile)
4141       DAG.setRoot(Chain);
4142     else
4143       PendingLoads.push_back(Chain);
4144   }
4145 
4146   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4147                            DAG.getVTList(ValueVTs), Values));
4148 }
4149 
4150 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4151   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4152          "call visitStoreToSwiftError when backend supports swifterror");
4153 
4154   SmallVector<EVT, 4> ValueVTs;
4155   SmallVector<uint64_t, 4> Offsets;
4156   const Value *SrcV = I.getOperand(0);
4157   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4158                   SrcV->getType(), ValueVTs, &Offsets);
4159   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4160          "expect a single EVT for swifterror");
4161 
4162   SDValue Src = getValue(SrcV);
4163   // Create a virtual register, then update the virtual register.
4164   Register VReg =
4165       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4166   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4167   // Chain can be getRoot or getControlRoot.
4168   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4169                                       SDValue(Src.getNode(), Src.getResNo()));
4170   DAG.setRoot(CopyNode);
4171 }
4172 
4173 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4174   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4175          "call visitLoadFromSwiftError when backend supports swifterror");
4176 
4177   assert(!I.isVolatile() &&
4178          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4179          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4180          "Support volatile, non temporal, invariant for load_from_swift_error");
4181 
4182   const Value *SV = I.getOperand(0);
4183   Type *Ty = I.getType();
4184   AAMDNodes AAInfo;
4185   I.getAAMetadata(AAInfo);
4186   assert(
4187       (!AA ||
4188        !AA->pointsToConstantMemory(MemoryLocation(
4189            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4190            AAInfo))) &&
4191       "load_from_swift_error should not be constant memory");
4192 
4193   SmallVector<EVT, 4> ValueVTs;
4194   SmallVector<uint64_t, 4> Offsets;
4195   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4196                   ValueVTs, &Offsets);
4197   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4198          "expect a single EVT for swifterror");
4199 
4200   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4201   SDValue L = DAG.getCopyFromReg(
4202       getRoot(), getCurSDLoc(),
4203       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4204 
4205   setValue(&I, L);
4206 }
4207 
4208 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4209   if (I.isAtomic())
4210     return visitAtomicStore(I);
4211 
4212   const Value *SrcV = I.getOperand(0);
4213   const Value *PtrV = I.getOperand(1);
4214 
4215   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4216   if (TLI.supportSwiftError()) {
4217     // Swifterror values can come from either a function parameter with
4218     // swifterror attribute or an alloca with swifterror attribute.
4219     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4220       if (Arg->hasSwiftErrorAttr())
4221         return visitStoreToSwiftError(I);
4222     }
4223 
4224     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4225       if (Alloca->isSwiftError())
4226         return visitStoreToSwiftError(I);
4227     }
4228   }
4229 
4230   SmallVector<EVT, 4> ValueVTs, MemVTs;
4231   SmallVector<uint64_t, 4> Offsets;
4232   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4233                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4234   unsigned NumValues = ValueVTs.size();
4235   if (NumValues == 0)
4236     return;
4237 
4238   // Get the lowered operands. Note that we do this after
4239   // checking if NumResults is zero, because with zero results
4240   // the operands won't have values in the map.
4241   SDValue Src = getValue(SrcV);
4242   SDValue Ptr = getValue(PtrV);
4243 
4244   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4245   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4246   SDLoc dl = getCurSDLoc();
4247   unsigned Alignment = I.getAlignment();
4248   AAMDNodes AAInfo;
4249   I.getAAMetadata(AAInfo);
4250 
4251   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4252 
4253   // An aggregate load cannot wrap around the address space, so offsets to its
4254   // parts don't wrap either.
4255   SDNodeFlags Flags;
4256   Flags.setNoUnsignedWrap(true);
4257 
4258   unsigned ChainI = 0;
4259   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4260     // See visitLoad comments.
4261     if (ChainI == MaxParallelChains) {
4262       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4263                                   makeArrayRef(Chains.data(), ChainI));
4264       Root = Chain;
4265       ChainI = 0;
4266     }
4267     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4268     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4269     if (MemVTs[i] != ValueVTs[i])
4270       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4271     SDValue St =
4272         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4273                      Alignment, MMOFlags, AAInfo);
4274     Chains[ChainI] = St;
4275   }
4276 
4277   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4278                                   makeArrayRef(Chains.data(), ChainI));
4279   DAG.setRoot(StoreNode);
4280 }
4281 
4282 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4283                                            bool IsCompressing) {
4284   SDLoc sdl = getCurSDLoc();
4285 
4286   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4287                            unsigned& Alignment) {
4288     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4289     Src0 = I.getArgOperand(0);
4290     Ptr = I.getArgOperand(1);
4291     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4292     Mask = I.getArgOperand(3);
4293   };
4294   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4295                            unsigned& Alignment) {
4296     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4297     Src0 = I.getArgOperand(0);
4298     Ptr = I.getArgOperand(1);
4299     Mask = I.getArgOperand(2);
4300     Alignment = 0;
4301   };
4302 
4303   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4304   unsigned Alignment;
4305   if (IsCompressing)
4306     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4307   else
4308     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4309 
4310   SDValue Ptr = getValue(PtrOperand);
4311   SDValue Src0 = getValue(Src0Operand);
4312   SDValue Mask = getValue(MaskOperand);
4313   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4314 
4315   EVT VT = Src0.getValueType();
4316   if (!Alignment)
4317     Alignment = DAG.getEVTAlignment(VT);
4318 
4319   AAMDNodes AAInfo;
4320   I.getAAMetadata(AAInfo);
4321 
4322   MachineMemOperand *MMO =
4323     DAG.getMachineFunction().
4324     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4325                           MachineMemOperand::MOStore,
4326                           // TODO: Make MachineMemOperands aware of scalable
4327                           // vectors.
4328                           VT.getStoreSize().getKnownMinSize(),
4329                           Alignment, AAInfo);
4330   SDValue StoreNode =
4331       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4332                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4333   DAG.setRoot(StoreNode);
4334   setValue(&I, StoreNode);
4335 }
4336 
4337 // Get a uniform base for the Gather/Scatter intrinsic.
4338 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4339 // We try to represent it as a base pointer + vector of indices.
4340 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4341 // The first operand of the GEP may be a single pointer or a vector of pointers
4342 // Example:
4343 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4344 //  or
4345 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4346 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4347 //
4348 // When the first GEP operand is a single pointer - it is the uniform base we
4349 // are looking for. If first operand of the GEP is a splat vector - we
4350 // extract the splat value and use it as a uniform base.
4351 // In all other cases the function returns 'false'.
4352 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4353                            ISD::MemIndexType &IndexType, SDValue &Scale,
4354                            SelectionDAGBuilder *SDB) {
4355   SelectionDAG& DAG = SDB->DAG;
4356   LLVMContext &Context = *DAG.getContext();
4357 
4358   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4359   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4360   if (!GEP)
4361     return false;
4362 
4363   const Value *GEPPtr = GEP->getPointerOperand();
4364   if (!GEPPtr->getType()->isVectorTy())
4365     Ptr = GEPPtr;
4366   else if (!(Ptr = getSplatValue(GEPPtr)))
4367     return false;
4368 
4369   unsigned FinalIndex = GEP->getNumOperands() - 1;
4370   Value *IndexVal = GEP->getOperand(FinalIndex);
4371   gep_type_iterator GTI = gep_type_begin(*GEP);
4372 
4373   // Ensure all the other indices are 0.
4374   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4375     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4376     if (!C)
4377       return false;
4378     if (isa<VectorType>(C->getType()))
4379       C = C->getSplatValue();
4380     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4381     if (!CI || !CI->isZero())
4382       return false;
4383   }
4384 
4385   // The operands of the GEP may be defined in another basic block.
4386   // In this case we'll not find nodes for the operands.
4387   if (!SDB->findValue(Ptr))
4388     return false;
4389   Constant *C = dyn_cast<Constant>(IndexVal);
4390   if (!C && !SDB->findValue(IndexVal))
4391     return false;
4392 
4393   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4394   const DataLayout &DL = DAG.getDataLayout();
4395   StructType *STy = GTI.getStructTypeOrNull();
4396 
4397   if (STy) {
4398     const StructLayout *SL = DL.getStructLayout(STy);
4399     if (isa<VectorType>(C->getType())) {
4400       C = C->getSplatValue();
4401       // FIXME: If getSplatValue may return nullptr for a structure?
4402       // If not, the following check can be removed.
4403       if (!C)
4404         return false;
4405     }
4406     auto *CI = cast<ConstantInt>(C);
4407     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4408     Index = DAG.getConstant(SL->getElementOffset(CI->getZExtValue()),
4409                             SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4410   } else {
4411     Scale = DAG.getTargetConstant(
4412                 DL.getTypeAllocSize(GEP->getResultElementType()),
4413                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4414     Index = SDB->getValue(IndexVal);
4415   }
4416   Base = SDB->getValue(Ptr);
4417   IndexType = ISD::SIGNED_SCALED;
4418 
4419   if (STy || !Index.getValueType().isVector()) {
4420     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4421     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4422     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4423   }
4424   return true;
4425 }
4426 
4427 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4428   SDLoc sdl = getCurSDLoc();
4429 
4430   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4431   const Value *Ptr = I.getArgOperand(1);
4432   SDValue Src0 = getValue(I.getArgOperand(0));
4433   SDValue Mask = getValue(I.getArgOperand(3));
4434   EVT VT = Src0.getValueType();
4435   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4436   if (!Alignment)
4437     Alignment = DAG.getEVTAlignment(VT);
4438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4439 
4440   AAMDNodes AAInfo;
4441   I.getAAMetadata(AAInfo);
4442 
4443   SDValue Base;
4444   SDValue Index;
4445   ISD::MemIndexType IndexType;
4446   SDValue Scale;
4447   const Value *BasePtr = Ptr;
4448   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4449                                     this);
4450 
4451   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4452   MachineMemOperand *MMO = DAG.getMachineFunction().
4453     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4454                          MachineMemOperand::MOStore,
4455                          // TODO: Make MachineMemOperands aware of scalable
4456                          // vectors.
4457                          VT.getStoreSize().getKnownMinSize(),
4458                          Alignment, AAInfo);
4459   if (!UniformBase) {
4460     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4461     Index = getValue(Ptr);
4462     IndexType = ISD::SIGNED_SCALED;
4463     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4464   }
4465   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4466   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4467                                          Ops, MMO, IndexType);
4468   DAG.setRoot(Scatter);
4469   setValue(&I, Scatter);
4470 }
4471 
4472 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4473   SDLoc sdl = getCurSDLoc();
4474 
4475   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4476                            unsigned& Alignment) {
4477     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4478     Ptr = I.getArgOperand(0);
4479     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4480     Mask = I.getArgOperand(2);
4481     Src0 = I.getArgOperand(3);
4482   };
4483   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4484                            unsigned& Alignment) {
4485     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4486     Ptr = I.getArgOperand(0);
4487     Alignment = 0;
4488     Mask = I.getArgOperand(1);
4489     Src0 = I.getArgOperand(2);
4490   };
4491 
4492   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4493   unsigned Alignment;
4494   if (IsExpanding)
4495     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4496   else
4497     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4498 
4499   SDValue Ptr = getValue(PtrOperand);
4500   SDValue Src0 = getValue(Src0Operand);
4501   SDValue Mask = getValue(MaskOperand);
4502   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4503 
4504   EVT VT = Src0.getValueType();
4505   if (!Alignment)
4506     Alignment = DAG.getEVTAlignment(VT);
4507 
4508   AAMDNodes AAInfo;
4509   I.getAAMetadata(AAInfo);
4510   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4511 
4512   // Do not serialize masked loads of constant memory with anything.
4513   MemoryLocation ML;
4514   if (VT.isScalableVector())
4515     ML = MemoryLocation(PtrOperand);
4516   else
4517     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4518                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4519                            AAInfo);
4520   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4521 
4522   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4523 
4524   MachineMemOperand *MMO =
4525     DAG.getMachineFunction().
4526     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4527                           MachineMemOperand::MOLoad,
4528                           // TODO: Make MachineMemOperands aware of scalable
4529                           // vectors.
4530                           VT.getStoreSize().getKnownMinSize(),
4531                           Alignment, AAInfo, Ranges);
4532 
4533   SDValue Load =
4534       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4535                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4536   if (AddToChain)
4537     PendingLoads.push_back(Load.getValue(1));
4538   setValue(&I, Load);
4539 }
4540 
4541 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4542   SDLoc sdl = getCurSDLoc();
4543 
4544   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4545   const Value *Ptr = I.getArgOperand(0);
4546   SDValue Src0 = getValue(I.getArgOperand(3));
4547   SDValue Mask = getValue(I.getArgOperand(2));
4548 
4549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4550   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4551   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4552   if (!Alignment)
4553     Alignment = DAG.getEVTAlignment(VT);
4554 
4555   AAMDNodes AAInfo;
4556   I.getAAMetadata(AAInfo);
4557   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4558 
4559   SDValue Root = DAG.getRoot();
4560   SDValue Base;
4561   SDValue Index;
4562   ISD::MemIndexType IndexType;
4563   SDValue Scale;
4564   const Value *BasePtr = Ptr;
4565   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4566                                     this);
4567   bool ConstantMemory = false;
4568   if (UniformBase && AA &&
4569       AA->pointsToConstantMemory(
4570           MemoryLocation(BasePtr,
4571                          LocationSize::precise(
4572                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4573                          AAInfo))) {
4574     // Do not serialize (non-volatile) loads of constant memory with anything.
4575     Root = DAG.getEntryNode();
4576     ConstantMemory = true;
4577   }
4578 
4579   MachineMemOperand *MMO =
4580     DAG.getMachineFunction().
4581     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4582                          MachineMemOperand::MOLoad,
4583                          // TODO: Make MachineMemOperands aware of scalable
4584                          // vectors.
4585                          VT.getStoreSize().getKnownMinSize(),
4586                          Alignment, AAInfo, Ranges);
4587 
4588   if (!UniformBase) {
4589     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4590     Index = getValue(Ptr);
4591     IndexType = ISD::SIGNED_SCALED;
4592     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4593   }
4594   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4595   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4596                                        Ops, MMO, IndexType);
4597 
4598   SDValue OutChain = Gather.getValue(1);
4599   if (!ConstantMemory)
4600     PendingLoads.push_back(OutChain);
4601   setValue(&I, Gather);
4602 }
4603 
4604 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4605   SDLoc dl = getCurSDLoc();
4606   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4607   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4608   SyncScope::ID SSID = I.getSyncScopeID();
4609 
4610   SDValue InChain = getRoot();
4611 
4612   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4613   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4614 
4615   auto Alignment = DAG.getEVTAlignment(MemVT);
4616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4617   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4618 
4619   MachineFunction &MF = DAG.getMachineFunction();
4620   MachineMemOperand *MMO =
4621     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4622                             Flags, MemVT.getStoreSize(), Alignment,
4623                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4624                             FailureOrdering);
4625 
4626   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4627                                    dl, MemVT, VTs, InChain,
4628                                    getValue(I.getPointerOperand()),
4629                                    getValue(I.getCompareOperand()),
4630                                    getValue(I.getNewValOperand()), MMO);
4631 
4632   SDValue OutChain = L.getValue(2);
4633 
4634   setValue(&I, L);
4635   DAG.setRoot(OutChain);
4636 }
4637 
4638 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4639   SDLoc dl = getCurSDLoc();
4640   ISD::NodeType NT;
4641   switch (I.getOperation()) {
4642   default: llvm_unreachable("Unknown atomicrmw operation");
4643   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4644   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4645   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4646   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4647   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4648   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4649   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4650   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4651   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4652   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4653   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4654   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4655   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4656   }
4657   AtomicOrdering Ordering = I.getOrdering();
4658   SyncScope::ID SSID = I.getSyncScopeID();
4659 
4660   SDValue InChain = getRoot();
4661 
4662   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4663   auto Alignment = DAG.getEVTAlignment(MemVT);
4664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4665   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4666 
4667   MachineFunction &MF = DAG.getMachineFunction();
4668   MachineMemOperand *MMO =
4669     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4670                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4671                             nullptr, SSID, Ordering);
4672 
4673   SDValue L =
4674     DAG.getAtomic(NT, dl, MemVT, InChain,
4675                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4676                   MMO);
4677 
4678   SDValue OutChain = L.getValue(1);
4679 
4680   setValue(&I, L);
4681   DAG.setRoot(OutChain);
4682 }
4683 
4684 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4685   SDLoc dl = getCurSDLoc();
4686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4687   SDValue Ops[3];
4688   Ops[0] = getRoot();
4689   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4690                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4691   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4692                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4693   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4694 }
4695 
4696 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4697   SDLoc dl = getCurSDLoc();
4698   AtomicOrdering Order = I.getOrdering();
4699   SyncScope::ID SSID = I.getSyncScopeID();
4700 
4701   SDValue InChain = getRoot();
4702 
4703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4704   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4705   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4706 
4707   if (!TLI.supportsUnalignedAtomics() &&
4708       I.getAlignment() < MemVT.getSizeInBits() / 8)
4709     report_fatal_error("Cannot generate unaligned atomic load");
4710 
4711   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4712 
4713   MachineMemOperand *MMO =
4714       DAG.getMachineFunction().
4715       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4716                            Flags, MemVT.getStoreSize(),
4717                            I.getAlignment() ? I.getAlignment() :
4718                                               DAG.getEVTAlignment(MemVT),
4719                            AAMDNodes(), nullptr, SSID, Order);
4720 
4721   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4722 
4723   SDValue Ptr = getValue(I.getPointerOperand());
4724 
4725   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4726     // TODO: Once this is better exercised by tests, it should be merged with
4727     // the normal path for loads to prevent future divergence.
4728     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4729     if (MemVT != VT)
4730       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4731 
4732     setValue(&I, L);
4733     SDValue OutChain = L.getValue(1);
4734     if (!I.isUnordered())
4735       DAG.setRoot(OutChain);
4736     else
4737       PendingLoads.push_back(OutChain);
4738     return;
4739   }
4740 
4741   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4742                             Ptr, MMO);
4743 
4744   SDValue OutChain = L.getValue(1);
4745   if (MemVT != VT)
4746     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4747 
4748   setValue(&I, L);
4749   DAG.setRoot(OutChain);
4750 }
4751 
4752 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4753   SDLoc dl = getCurSDLoc();
4754 
4755   AtomicOrdering Ordering = I.getOrdering();
4756   SyncScope::ID SSID = I.getSyncScopeID();
4757 
4758   SDValue InChain = getRoot();
4759 
4760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4761   EVT MemVT =
4762       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4763 
4764   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4765     report_fatal_error("Cannot generate unaligned atomic store");
4766 
4767   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4768 
4769   MachineFunction &MF = DAG.getMachineFunction();
4770   MachineMemOperand *MMO =
4771     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4772                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4773                             nullptr, SSID, Ordering);
4774 
4775   SDValue Val = getValue(I.getValueOperand());
4776   if (Val.getValueType() != MemVT)
4777     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4778   SDValue Ptr = getValue(I.getPointerOperand());
4779 
4780   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4781     // TODO: Once this is better exercised by tests, it should be merged with
4782     // the normal path for stores to prevent future divergence.
4783     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4784     DAG.setRoot(S);
4785     return;
4786   }
4787   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4788                                    Ptr, Val, MMO);
4789 
4790 
4791   DAG.setRoot(OutChain);
4792 }
4793 
4794 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4795 /// node.
4796 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4797                                                unsigned Intrinsic) {
4798   // Ignore the callsite's attributes. A specific call site may be marked with
4799   // readnone, but the lowering code will expect the chain based on the
4800   // definition.
4801   const Function *F = I.getCalledFunction();
4802   bool HasChain = !F->doesNotAccessMemory();
4803   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4804 
4805   // Build the operand list.
4806   SmallVector<SDValue, 8> Ops;
4807   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4808     if (OnlyLoad) {
4809       // We don't need to serialize loads against other loads.
4810       Ops.push_back(DAG.getRoot());
4811     } else {
4812       Ops.push_back(getRoot());
4813     }
4814   }
4815 
4816   // Info is set by getTgtMemInstrinsic
4817   TargetLowering::IntrinsicInfo Info;
4818   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4819   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4820                                                DAG.getMachineFunction(),
4821                                                Intrinsic);
4822 
4823   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4824   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4825       Info.opc == ISD::INTRINSIC_W_CHAIN)
4826     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4827                                         TLI.getPointerTy(DAG.getDataLayout())));
4828 
4829   // Add all operands of the call to the operand list.
4830   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4831     const Value *Arg = I.getArgOperand(i);
4832     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4833       Ops.push_back(getValue(Arg));
4834       continue;
4835     }
4836 
4837     // Use TargetConstant instead of a regular constant for immarg.
4838     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4839     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4840       assert(CI->getBitWidth() <= 64 &&
4841              "large intrinsic immediates not handled");
4842       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4843     } else {
4844       Ops.push_back(
4845           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4846     }
4847   }
4848 
4849   SmallVector<EVT, 4> ValueVTs;
4850   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4851 
4852   if (HasChain)
4853     ValueVTs.push_back(MVT::Other);
4854 
4855   SDVTList VTs = DAG.getVTList(ValueVTs);
4856 
4857   // Create the node.
4858   SDValue Result;
4859   if (IsTgtIntrinsic) {
4860     // This is target intrinsic that touches memory
4861     AAMDNodes AAInfo;
4862     I.getAAMetadata(AAInfo);
4863     Result = DAG.getMemIntrinsicNode(
4864         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4865         MachinePointerInfo(Info.ptrVal, Info.offset),
4866         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4867   } else if (!HasChain) {
4868     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4869   } else if (!I.getType()->isVoidTy()) {
4870     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4871   } else {
4872     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4873   }
4874 
4875   if (HasChain) {
4876     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4877     if (OnlyLoad)
4878       PendingLoads.push_back(Chain);
4879     else
4880       DAG.setRoot(Chain);
4881   }
4882 
4883   if (!I.getType()->isVoidTy()) {
4884     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4885       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4886       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4887     } else
4888       Result = lowerRangeToAssertZExt(DAG, I, Result);
4889 
4890     setValue(&I, Result);
4891   }
4892 }
4893 
4894 /// GetSignificand - Get the significand and build it into a floating-point
4895 /// number with exponent of 1:
4896 ///
4897 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4898 ///
4899 /// where Op is the hexadecimal representation of floating point value.
4900 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4901   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4902                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4903   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4904                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4905   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4906 }
4907 
4908 /// GetExponent - Get the exponent:
4909 ///
4910 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4911 ///
4912 /// where Op is the hexadecimal representation of floating point value.
4913 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4914                            const TargetLowering &TLI, const SDLoc &dl) {
4915   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4916                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4917   SDValue t1 = DAG.getNode(
4918       ISD::SRL, dl, MVT::i32, t0,
4919       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4920   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4921                            DAG.getConstant(127, dl, MVT::i32));
4922   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4923 }
4924 
4925 /// getF32Constant - Get 32-bit floating point constant.
4926 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4927                               const SDLoc &dl) {
4928   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4929                            MVT::f32);
4930 }
4931 
4932 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4933                                        SelectionDAG &DAG) {
4934   // TODO: What fast-math-flags should be set on the floating-point nodes?
4935 
4936   //   IntegerPartOfX = ((int32_t)(t0);
4937   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4938 
4939   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4940   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4941   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4942 
4943   //   IntegerPartOfX <<= 23;
4944   IntegerPartOfX = DAG.getNode(
4945       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4946       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4947                                   DAG.getDataLayout())));
4948 
4949   SDValue TwoToFractionalPartOfX;
4950   if (LimitFloatPrecision <= 6) {
4951     // For floating-point precision of 6:
4952     //
4953     //   TwoToFractionalPartOfX =
4954     //     0.997535578f +
4955     //       (0.735607626f + 0.252464424f * x) * x;
4956     //
4957     // error 0.0144103317, which is 6 bits
4958     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4959                              getF32Constant(DAG, 0x3e814304, dl));
4960     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4961                              getF32Constant(DAG, 0x3f3c50c8, dl));
4962     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4963     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4964                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4965   } else if (LimitFloatPrecision <= 12) {
4966     // For floating-point precision of 12:
4967     //
4968     //   TwoToFractionalPartOfX =
4969     //     0.999892986f +
4970     //       (0.696457318f +
4971     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4972     //
4973     // error 0.000107046256, which is 13 to 14 bits
4974     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4975                              getF32Constant(DAG, 0x3da235e3, dl));
4976     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4977                              getF32Constant(DAG, 0x3e65b8f3, dl));
4978     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4979     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4980                              getF32Constant(DAG, 0x3f324b07, dl));
4981     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4982     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4983                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4984   } else { // LimitFloatPrecision <= 18
4985     // For floating-point precision of 18:
4986     //
4987     //   TwoToFractionalPartOfX =
4988     //     0.999999982f +
4989     //       (0.693148872f +
4990     //         (0.240227044f +
4991     //           (0.554906021e-1f +
4992     //             (0.961591928e-2f +
4993     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4994     // error 2.47208000*10^(-7), which is better than 18 bits
4995     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4996                              getF32Constant(DAG, 0x3924b03e, dl));
4997     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4998                              getF32Constant(DAG, 0x3ab24b87, dl));
4999     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5000     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5001                              getF32Constant(DAG, 0x3c1d8c17, dl));
5002     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5003     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5004                              getF32Constant(DAG, 0x3d634a1d, dl));
5005     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5006     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5007                              getF32Constant(DAG, 0x3e75fe14, dl));
5008     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5009     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5010                               getF32Constant(DAG, 0x3f317234, dl));
5011     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5012     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5013                                          getF32Constant(DAG, 0x3f800000, dl));
5014   }
5015 
5016   // Add the exponent into the result in integer domain.
5017   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5018   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5019                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5020 }
5021 
5022 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5023 /// limited-precision mode.
5024 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5025                          const TargetLowering &TLI) {
5026   if (Op.getValueType() == MVT::f32 &&
5027       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5028 
5029     // Put the exponent in the right bit position for later addition to the
5030     // final result:
5031     //
5032     // t0 = Op * log2(e)
5033 
5034     // TODO: What fast-math-flags should be set here?
5035     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5036                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5037     return getLimitedPrecisionExp2(t0, dl, DAG);
5038   }
5039 
5040   // No special expansion.
5041   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5042 }
5043 
5044 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5045 /// limited-precision mode.
5046 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5047                          const TargetLowering &TLI) {
5048   // TODO: What fast-math-flags should be set on the floating-point nodes?
5049 
5050   if (Op.getValueType() == MVT::f32 &&
5051       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5052     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5053 
5054     // Scale the exponent by log(2).
5055     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5056     SDValue LogOfExponent =
5057         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5058                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5059 
5060     // Get the significand and build it into a floating-point number with
5061     // exponent of 1.
5062     SDValue X = GetSignificand(DAG, Op1, dl);
5063 
5064     SDValue LogOfMantissa;
5065     if (LimitFloatPrecision <= 6) {
5066       // For floating-point precision of 6:
5067       //
5068       //   LogofMantissa =
5069       //     -1.1609546f +
5070       //       (1.4034025f - 0.23903021f * x) * x;
5071       //
5072       // error 0.0034276066, which is better than 8 bits
5073       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5074                                getF32Constant(DAG, 0xbe74c456, dl));
5075       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5076                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5077       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5078       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5079                                   getF32Constant(DAG, 0x3f949a29, dl));
5080     } else if (LimitFloatPrecision <= 12) {
5081       // For floating-point precision of 12:
5082       //
5083       //   LogOfMantissa =
5084       //     -1.7417939f +
5085       //       (2.8212026f +
5086       //         (-1.4699568f +
5087       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5088       //
5089       // error 0.000061011436, which is 14 bits
5090       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5091                                getF32Constant(DAG, 0xbd67b6d6, dl));
5092       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5093                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5094       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5095       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5096                                getF32Constant(DAG, 0x3fbc278b, dl));
5097       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5098       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5099                                getF32Constant(DAG, 0x40348e95, dl));
5100       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5101       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5102                                   getF32Constant(DAG, 0x3fdef31a, dl));
5103     } else { // LimitFloatPrecision <= 18
5104       // For floating-point precision of 18:
5105       //
5106       //   LogOfMantissa =
5107       //     -2.1072184f +
5108       //       (4.2372794f +
5109       //         (-3.7029485f +
5110       //           (2.2781945f +
5111       //             (-0.87823314f +
5112       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5113       //
5114       // error 0.0000023660568, which is better than 18 bits
5115       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5116                                getF32Constant(DAG, 0xbc91e5ac, dl));
5117       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5118                                getF32Constant(DAG, 0x3e4350aa, dl));
5119       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5120       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5121                                getF32Constant(DAG, 0x3f60d3e3, dl));
5122       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5123       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5124                                getF32Constant(DAG, 0x4011cdf0, dl));
5125       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5126       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5127                                getF32Constant(DAG, 0x406cfd1c, dl));
5128       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5129       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5130                                getF32Constant(DAG, 0x408797cb, dl));
5131       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5132       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5133                                   getF32Constant(DAG, 0x4006dcab, dl));
5134     }
5135 
5136     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5137   }
5138 
5139   // No special expansion.
5140   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5141 }
5142 
5143 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5144 /// limited-precision mode.
5145 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5146                           const TargetLowering &TLI) {
5147   // TODO: What fast-math-flags should be set on the floating-point nodes?
5148 
5149   if (Op.getValueType() == MVT::f32 &&
5150       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5151     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5152 
5153     // Get the exponent.
5154     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5155 
5156     // Get the significand and build it into a floating-point number with
5157     // exponent of 1.
5158     SDValue X = GetSignificand(DAG, Op1, dl);
5159 
5160     // Different possible minimax approximations of significand in
5161     // floating-point for various degrees of accuracy over [1,2].
5162     SDValue Log2ofMantissa;
5163     if (LimitFloatPrecision <= 6) {
5164       // For floating-point precision of 6:
5165       //
5166       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5167       //
5168       // error 0.0049451742, which is more than 7 bits
5169       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5170                                getF32Constant(DAG, 0xbeb08fe0, dl));
5171       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5172                                getF32Constant(DAG, 0x40019463, dl));
5173       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5174       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5175                                    getF32Constant(DAG, 0x3fd6633d, dl));
5176     } else if (LimitFloatPrecision <= 12) {
5177       // For floating-point precision of 12:
5178       //
5179       //   Log2ofMantissa =
5180       //     -2.51285454f +
5181       //       (4.07009056f +
5182       //         (-2.12067489f +
5183       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5184       //
5185       // error 0.0000876136000, which is better than 13 bits
5186       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5187                                getF32Constant(DAG, 0xbda7262e, dl));
5188       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5189                                getF32Constant(DAG, 0x3f25280b, dl));
5190       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5191       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5192                                getF32Constant(DAG, 0x4007b923, dl));
5193       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5194       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5195                                getF32Constant(DAG, 0x40823e2f, dl));
5196       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5197       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5198                                    getF32Constant(DAG, 0x4020d29c, dl));
5199     } else { // LimitFloatPrecision <= 18
5200       // For floating-point precision of 18:
5201       //
5202       //   Log2ofMantissa =
5203       //     -3.0400495f +
5204       //       (6.1129976f +
5205       //         (-5.3420409f +
5206       //           (3.2865683f +
5207       //             (-1.2669343f +
5208       //               (0.27515199f -
5209       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5210       //
5211       // error 0.0000018516, which is better than 18 bits
5212       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5213                                getF32Constant(DAG, 0xbcd2769e, dl));
5214       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5215                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5216       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5217       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5218                                getF32Constant(DAG, 0x3fa22ae7, dl));
5219       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5220       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5221                                getF32Constant(DAG, 0x40525723, dl));
5222       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5223       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5224                                getF32Constant(DAG, 0x40aaf200, dl));
5225       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5226       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5227                                getF32Constant(DAG, 0x40c39dad, dl));
5228       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5229       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5230                                    getF32Constant(DAG, 0x4042902c, dl));
5231     }
5232 
5233     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5234   }
5235 
5236   // No special expansion.
5237   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5238 }
5239 
5240 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5241 /// limited-precision mode.
5242 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5243                            const TargetLowering &TLI) {
5244   // TODO: What fast-math-flags should be set on the floating-point nodes?
5245 
5246   if (Op.getValueType() == MVT::f32 &&
5247       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5248     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5249 
5250     // Scale the exponent by log10(2) [0.30102999f].
5251     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5252     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5253                                         getF32Constant(DAG, 0x3e9a209a, dl));
5254 
5255     // Get the significand and build it into a floating-point number with
5256     // exponent of 1.
5257     SDValue X = GetSignificand(DAG, Op1, dl);
5258 
5259     SDValue Log10ofMantissa;
5260     if (LimitFloatPrecision <= 6) {
5261       // For floating-point precision of 6:
5262       //
5263       //   Log10ofMantissa =
5264       //     -0.50419619f +
5265       //       (0.60948995f - 0.10380950f * x) * x;
5266       //
5267       // error 0.0014886165, which is 6 bits
5268       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5269                                getF32Constant(DAG, 0xbdd49a13, dl));
5270       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5271                                getF32Constant(DAG, 0x3f1c0789, dl));
5272       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5273       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5274                                     getF32Constant(DAG, 0x3f011300, dl));
5275     } else if (LimitFloatPrecision <= 12) {
5276       // For floating-point precision of 12:
5277       //
5278       //   Log10ofMantissa =
5279       //     -0.64831180f +
5280       //       (0.91751397f +
5281       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5282       //
5283       // error 0.00019228036, which is better than 12 bits
5284       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5285                                getF32Constant(DAG, 0x3d431f31, dl));
5286       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5287                                getF32Constant(DAG, 0x3ea21fb2, dl));
5288       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5289       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5290                                getF32Constant(DAG, 0x3f6ae232, dl));
5291       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5292       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5293                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5294     } else { // LimitFloatPrecision <= 18
5295       // For floating-point precision of 18:
5296       //
5297       //   Log10ofMantissa =
5298       //     -0.84299375f +
5299       //       (1.5327582f +
5300       //         (-1.0688956f +
5301       //           (0.49102474f +
5302       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5303       //
5304       // error 0.0000037995730, which is better than 18 bits
5305       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5306                                getF32Constant(DAG, 0x3c5d51ce, dl));
5307       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5308                                getF32Constant(DAG, 0x3e00685a, dl));
5309       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5310       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5311                                getF32Constant(DAG, 0x3efb6798, dl));
5312       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5313       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5314                                getF32Constant(DAG, 0x3f88d192, dl));
5315       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5316       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5317                                getF32Constant(DAG, 0x3fc4316c, dl));
5318       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5319       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5320                                     getF32Constant(DAG, 0x3f57ce70, dl));
5321     }
5322 
5323     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5324   }
5325 
5326   // No special expansion.
5327   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5328 }
5329 
5330 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5331 /// limited-precision mode.
5332 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5333                           const TargetLowering &TLI) {
5334   if (Op.getValueType() == MVT::f32 &&
5335       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5336     return getLimitedPrecisionExp2(Op, dl, DAG);
5337 
5338   // No special expansion.
5339   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5340 }
5341 
5342 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5343 /// limited-precision mode with x == 10.0f.
5344 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5345                          SelectionDAG &DAG, const TargetLowering &TLI) {
5346   bool IsExp10 = false;
5347   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5348       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5349     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5350       APFloat Ten(10.0f);
5351       IsExp10 = LHSC->isExactlyValue(Ten);
5352     }
5353   }
5354 
5355   // TODO: What fast-math-flags should be set on the FMUL node?
5356   if (IsExp10) {
5357     // Put the exponent in the right bit position for later addition to the
5358     // final result:
5359     //
5360     //   #define LOG2OF10 3.3219281f
5361     //   t0 = Op * LOG2OF10;
5362     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5363                              getF32Constant(DAG, 0x40549a78, dl));
5364     return getLimitedPrecisionExp2(t0, dl, DAG);
5365   }
5366 
5367   // No special expansion.
5368   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5369 }
5370 
5371 /// ExpandPowI - Expand a llvm.powi intrinsic.
5372 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5373                           SelectionDAG &DAG) {
5374   // If RHS is a constant, we can expand this out to a multiplication tree,
5375   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5376   // optimizing for size, we only want to do this if the expansion would produce
5377   // a small number of multiplies, otherwise we do the full expansion.
5378   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5379     // Get the exponent as a positive value.
5380     unsigned Val = RHSC->getSExtValue();
5381     if ((int)Val < 0) Val = -Val;
5382 
5383     // powi(x, 0) -> 1.0
5384     if (Val == 0)
5385       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5386 
5387     bool OptForSize = DAG.shouldOptForSize();
5388     if (!OptForSize ||
5389         // If optimizing for size, don't insert too many multiplies.
5390         // This inserts up to 5 multiplies.
5391         countPopulation(Val) + Log2_32(Val) < 7) {
5392       // We use the simple binary decomposition method to generate the multiply
5393       // sequence.  There are more optimal ways to do this (for example,
5394       // powi(x,15) generates one more multiply than it should), but this has
5395       // the benefit of being both really simple and much better than a libcall.
5396       SDValue Res;  // Logically starts equal to 1.0
5397       SDValue CurSquare = LHS;
5398       // TODO: Intrinsics should have fast-math-flags that propagate to these
5399       // nodes.
5400       while (Val) {
5401         if (Val & 1) {
5402           if (Res.getNode())
5403             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5404           else
5405             Res = CurSquare;  // 1.0*CurSquare.
5406         }
5407 
5408         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5409                                 CurSquare, CurSquare);
5410         Val >>= 1;
5411       }
5412 
5413       // If the original was negative, invert the result, producing 1/(x*x*x).
5414       if (RHSC->getSExtValue() < 0)
5415         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5416                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5417       return Res;
5418     }
5419   }
5420 
5421   // Otherwise, expand to a libcall.
5422   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5423 }
5424 
5425 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5426                             SDValue LHS, SDValue RHS, SDValue Scale,
5427                             SelectionDAG &DAG, const TargetLowering &TLI) {
5428   EVT VT = LHS.getValueType();
5429   bool Signed = Opcode == ISD::SDIVFIX;
5430   LLVMContext &Ctx = *DAG.getContext();
5431 
5432   // If the type is legal but the operation isn't, this node might survive all
5433   // the way to operation legalization. If we end up there and we do not have
5434   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5435   // node.
5436 
5437   // Coax the legalizer into expanding the node during type legalization instead
5438   // by bumping the size by one bit. This will force it to Promote, enabling the
5439   // early expansion and avoiding the need to expand later.
5440 
5441   // We don't have to do this if Scale is 0; that can always be expanded.
5442 
5443   // FIXME: We wouldn't have to do this (or any of the early
5444   // expansion/promotion) if it was possible to expand a libcall of an
5445   // illegal type during operation legalization. But it's not, so things
5446   // get a bit hacky.
5447   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5448   if (ScaleInt > 0 &&
5449       (TLI.isTypeLegal(VT) ||
5450        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5451     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5452         Opcode, VT, ScaleInt);
5453     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5454       EVT PromVT;
5455       if (VT.isScalarInteger())
5456         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5457       else if (VT.isVector()) {
5458         PromVT = VT.getVectorElementType();
5459         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5460         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5461       } else
5462         llvm_unreachable("Wrong VT for DIVFIX?");
5463       if (Signed) {
5464         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5465         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5466       } else {
5467         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5468         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5469       }
5470       // TODO: Saturation.
5471       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5472       return DAG.getZExtOrTrunc(Res, DL, VT);
5473     }
5474   }
5475 
5476   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5477 }
5478 
5479 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5480 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5481 static void
5482 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5483                      const SDValue &N) {
5484   switch (N.getOpcode()) {
5485   case ISD::CopyFromReg: {
5486     SDValue Op = N.getOperand(1);
5487     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5488                       Op.getValueType().getSizeInBits());
5489     return;
5490   }
5491   case ISD::BITCAST:
5492   case ISD::AssertZext:
5493   case ISD::AssertSext:
5494   case ISD::TRUNCATE:
5495     getUnderlyingArgRegs(Regs, N.getOperand(0));
5496     return;
5497   case ISD::BUILD_PAIR:
5498   case ISD::BUILD_VECTOR:
5499   case ISD::CONCAT_VECTORS:
5500     for (SDValue Op : N->op_values())
5501       getUnderlyingArgRegs(Regs, Op);
5502     return;
5503   default:
5504     return;
5505   }
5506 }
5507 
5508 /// If the DbgValueInst is a dbg_value of a function argument, create the
5509 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5510 /// instruction selection, they will be inserted to the entry BB.
5511 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5512     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5513     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5514   const Argument *Arg = dyn_cast<Argument>(V);
5515   if (!Arg)
5516     return false;
5517 
5518   if (!IsDbgDeclare) {
5519     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5520     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5521     // the entry block.
5522     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5523     if (!IsInEntryBlock)
5524       return false;
5525 
5526     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5527     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5528     // variable that also is a param.
5529     //
5530     // Although, if we are at the top of the entry block already, we can still
5531     // emit using ArgDbgValue. This might catch some situations when the
5532     // dbg.value refers to an argument that isn't used in the entry block, so
5533     // any CopyToReg node would be optimized out and the only way to express
5534     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5535     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5536     // we should only emit as ArgDbgValue if the Variable is an argument to the
5537     // current function, and the dbg.value intrinsic is found in the entry
5538     // block.
5539     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5540         !DL->getInlinedAt();
5541     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5542     if (!IsInPrologue && !VariableIsFunctionInputArg)
5543       return false;
5544 
5545     // Here we assume that a function argument on IR level only can be used to
5546     // describe one input parameter on source level. If we for example have
5547     // source code like this
5548     //
5549     //    struct A { long x, y; };
5550     //    void foo(struct A a, long b) {
5551     //      ...
5552     //      b = a.x;
5553     //      ...
5554     //    }
5555     //
5556     // and IR like this
5557     //
5558     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5559     //  entry:
5560     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5561     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5562     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5563     //    ...
5564     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5565     //    ...
5566     //
5567     // then the last dbg.value is describing a parameter "b" using a value that
5568     // is an argument. But since we already has used %a1 to describe a parameter
5569     // we should not handle that last dbg.value here (that would result in an
5570     // incorrect hoisting of the DBG_VALUE to the function entry).
5571     // Notice that we allow one dbg.value per IR level argument, to accommodate
5572     // for the situation with fragments above.
5573     if (VariableIsFunctionInputArg) {
5574       unsigned ArgNo = Arg->getArgNo();
5575       if (ArgNo >= FuncInfo.DescribedArgs.size())
5576         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5577       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5578         return false;
5579       FuncInfo.DescribedArgs.set(ArgNo);
5580     }
5581   }
5582 
5583   MachineFunction &MF = DAG.getMachineFunction();
5584   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5585 
5586   Optional<MachineOperand> Op;
5587   // Some arguments' frame index is recorded during argument lowering.
5588   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5589   if (FI != std::numeric_limits<int>::max())
5590     Op = MachineOperand::CreateFI(FI);
5591 
5592   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5593   if (!Op && N.getNode()) {
5594     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5595     Register Reg;
5596     if (ArgRegsAndSizes.size() == 1)
5597       Reg = ArgRegsAndSizes.front().first;
5598 
5599     if (Reg && Reg.isVirtual()) {
5600       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5601       Register PR = RegInfo.getLiveInPhysReg(Reg);
5602       if (PR)
5603         Reg = PR;
5604     }
5605     if (Reg) {
5606       Op = MachineOperand::CreateReg(Reg, false);
5607     }
5608   }
5609 
5610   if (!Op && N.getNode()) {
5611     // Check if frame index is available.
5612     SDValue LCandidate = peekThroughBitcasts(N);
5613     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5614       if (FrameIndexSDNode *FINode =
5615           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5616         Op = MachineOperand::CreateFI(FINode->getIndex());
5617   }
5618 
5619   if (!Op) {
5620     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5621     auto splitMultiRegDbgValue
5622       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5623       unsigned Offset = 0;
5624       for (auto RegAndSize : SplitRegs) {
5625         // If the expression is already a fragment, the current register
5626         // offset+size might extend beyond the fragment. In this case, only
5627         // the register bits that are inside the fragment are relevant.
5628         int RegFragmentSizeInBits = RegAndSize.second;
5629         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5630           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5631           // The register is entirely outside the expression fragment,
5632           // so is irrelevant for debug info.
5633           if (Offset >= ExprFragmentSizeInBits)
5634             break;
5635           // The register is partially outside the expression fragment, only
5636           // the low bits within the fragment are relevant for debug info.
5637           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5638             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5639           }
5640         }
5641 
5642         auto FragmentExpr = DIExpression::createFragmentExpression(
5643             Expr, Offset, RegFragmentSizeInBits);
5644         Offset += RegAndSize.second;
5645         // If a valid fragment expression cannot be created, the variable's
5646         // correct value cannot be determined and so it is set as Undef.
5647         if (!FragmentExpr) {
5648           SDDbgValue *SDV = DAG.getConstantDbgValue(
5649               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5650           DAG.AddDbgValue(SDV, nullptr, false);
5651           continue;
5652         }
5653         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5654         FuncInfo.ArgDbgValues.push_back(
5655           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5656                   RegAndSize.first, Variable, *FragmentExpr));
5657       }
5658     };
5659 
5660     // Check if ValueMap has reg number.
5661     DenseMap<const Value *, unsigned>::const_iterator
5662       VMI = FuncInfo.ValueMap.find(V);
5663     if (VMI != FuncInfo.ValueMap.end()) {
5664       const auto &TLI = DAG.getTargetLoweringInfo();
5665       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5666                        V->getType(), getABIRegCopyCC(V));
5667       if (RFV.occupiesMultipleRegs()) {
5668         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5669         return true;
5670       }
5671 
5672       Op = MachineOperand::CreateReg(VMI->second, false);
5673     } else if (ArgRegsAndSizes.size() > 1) {
5674       // This was split due to the calling convention, and no virtual register
5675       // mapping exists for the value.
5676       splitMultiRegDbgValue(ArgRegsAndSizes);
5677       return true;
5678     }
5679   }
5680 
5681   if (!Op)
5682     return false;
5683 
5684   assert(Variable->isValidLocationForIntrinsic(DL) &&
5685          "Expected inlined-at fields to agree");
5686 
5687   // If the argument arrives in a stack slot, then what the IR thought was a
5688   // normal Value is actually in memory, and we must add a deref to load it.
5689   if (Op->isFI()) {
5690     int FI = Op->getIndex();
5691     unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI);
5692     if (Expr->isImplicit()) {
5693       SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
5694       Expr = DIExpression::prependOpcodes(Expr, Ops);
5695     } else {
5696       Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
5697     }
5698   }
5699 
5700   // If this location was specified with a dbg.declare, then it and its
5701   // expression calculate the address of the variable. Append a deref to
5702   // force it to be a memory location.
5703   if (IsDbgDeclare)
5704     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5705 
5706   FuncInfo.ArgDbgValues.push_back(
5707       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5708               *Op, Variable, Expr));
5709 
5710   return true;
5711 }
5712 
5713 /// Return the appropriate SDDbgValue based on N.
5714 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5715                                              DILocalVariable *Variable,
5716                                              DIExpression *Expr,
5717                                              const DebugLoc &dl,
5718                                              unsigned DbgSDNodeOrder) {
5719   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5720     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5721     // stack slot locations.
5722     //
5723     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5724     // debug values here after optimization:
5725     //
5726     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5727     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5728     //
5729     // Both describe the direct values of their associated variables.
5730     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5731                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5732   }
5733   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5734                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5735 }
5736 
5737 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5738   switch (Intrinsic) {
5739   case Intrinsic::smul_fix:
5740     return ISD::SMULFIX;
5741   case Intrinsic::umul_fix:
5742     return ISD::UMULFIX;
5743   case Intrinsic::smul_fix_sat:
5744     return ISD::SMULFIXSAT;
5745   case Intrinsic::umul_fix_sat:
5746     return ISD::UMULFIXSAT;
5747   case Intrinsic::sdiv_fix:
5748     return ISD::SDIVFIX;
5749   case Intrinsic::udiv_fix:
5750     return ISD::UDIVFIX;
5751   default:
5752     llvm_unreachable("Unhandled fixed point intrinsic");
5753   }
5754 }
5755 
5756 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5757                                            const char *FunctionName) {
5758   assert(FunctionName && "FunctionName must not be nullptr");
5759   SDValue Callee = DAG.getExternalSymbol(
5760       FunctionName,
5761       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5762   LowerCallTo(&I, Callee, I.isTailCall());
5763 }
5764 
5765 /// Lower the call to the specified intrinsic function.
5766 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5767                                              unsigned Intrinsic) {
5768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5769   SDLoc sdl = getCurSDLoc();
5770   DebugLoc dl = getCurDebugLoc();
5771   SDValue Res;
5772 
5773   switch (Intrinsic) {
5774   default:
5775     // By default, turn this into a target intrinsic node.
5776     visitTargetIntrinsic(I, Intrinsic);
5777     return;
5778   case Intrinsic::vscale: {
5779     match(&I, m_VScale(DAG.getDataLayout()));
5780     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5781     setValue(&I,
5782              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5783     return;
5784   }
5785   case Intrinsic::vastart:  visitVAStart(I); return;
5786   case Intrinsic::vaend:    visitVAEnd(I); return;
5787   case Intrinsic::vacopy:   visitVACopy(I); return;
5788   case Intrinsic::returnaddress:
5789     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5790                              TLI.getPointerTy(DAG.getDataLayout()),
5791                              getValue(I.getArgOperand(0))));
5792     return;
5793   case Intrinsic::addressofreturnaddress:
5794     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5795                              TLI.getPointerTy(DAG.getDataLayout())));
5796     return;
5797   case Intrinsic::sponentry:
5798     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5799                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5800     return;
5801   case Intrinsic::frameaddress:
5802     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5803                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5804                              getValue(I.getArgOperand(0))));
5805     return;
5806   case Intrinsic::read_register: {
5807     Value *Reg = I.getArgOperand(0);
5808     SDValue Chain = getRoot();
5809     SDValue RegName =
5810         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5811     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5812     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5813       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5814     setValue(&I, Res);
5815     DAG.setRoot(Res.getValue(1));
5816     return;
5817   }
5818   case Intrinsic::write_register: {
5819     Value *Reg = I.getArgOperand(0);
5820     Value *RegValue = I.getArgOperand(1);
5821     SDValue Chain = getRoot();
5822     SDValue RegName =
5823         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5824     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5825                             RegName, getValue(RegValue)));
5826     return;
5827   }
5828   case Intrinsic::memcpy: {
5829     const auto &MCI = cast<MemCpyInst>(I);
5830     SDValue Op1 = getValue(I.getArgOperand(0));
5831     SDValue Op2 = getValue(I.getArgOperand(1));
5832     SDValue Op3 = getValue(I.getArgOperand(2));
5833     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5834     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5835     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5836     unsigned Align = MinAlign(DstAlign, SrcAlign);
5837     bool isVol = MCI.isVolatile();
5838     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5839     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5840     // node.
5841     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5842     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Align, isVol,
5843                                false, isTC,
5844                                MachinePointerInfo(I.getArgOperand(0)),
5845                                MachinePointerInfo(I.getArgOperand(1)));
5846     updateDAGForMaybeTailCall(MC);
5847     return;
5848   }
5849   case Intrinsic::memset: {
5850     const auto &MSI = cast<MemSetInst>(I);
5851     SDValue Op1 = getValue(I.getArgOperand(0));
5852     SDValue Op2 = getValue(I.getArgOperand(1));
5853     SDValue Op3 = getValue(I.getArgOperand(2));
5854     // @llvm.memset defines 0 and 1 to both mean no alignment.
5855     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5856     bool isVol = MSI.isVolatile();
5857     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5858     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5859     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Align, isVol,
5860                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5861     updateDAGForMaybeTailCall(MS);
5862     return;
5863   }
5864   case Intrinsic::memmove: {
5865     const auto &MMI = cast<MemMoveInst>(I);
5866     SDValue Op1 = getValue(I.getArgOperand(0));
5867     SDValue Op2 = getValue(I.getArgOperand(1));
5868     SDValue Op3 = getValue(I.getArgOperand(2));
5869     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5870     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5871     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5872     unsigned Align = MinAlign(DstAlign, SrcAlign);
5873     bool isVol = MMI.isVolatile();
5874     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5875     // FIXME: Support passing different dest/src alignments to the memmove DAG
5876     // node.
5877     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5878     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Align, isVol,
5879                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5880                                 MachinePointerInfo(I.getArgOperand(1)));
5881     updateDAGForMaybeTailCall(MM);
5882     return;
5883   }
5884   case Intrinsic::memcpy_element_unordered_atomic: {
5885     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5886     SDValue Dst = getValue(MI.getRawDest());
5887     SDValue Src = getValue(MI.getRawSource());
5888     SDValue Length = getValue(MI.getLength());
5889 
5890     unsigned DstAlign = MI.getDestAlignment();
5891     unsigned SrcAlign = MI.getSourceAlignment();
5892     Type *LengthTy = MI.getLength()->getType();
5893     unsigned ElemSz = MI.getElementSizeInBytes();
5894     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5895     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5896                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5897                                      MachinePointerInfo(MI.getRawDest()),
5898                                      MachinePointerInfo(MI.getRawSource()));
5899     updateDAGForMaybeTailCall(MC);
5900     return;
5901   }
5902   case Intrinsic::memmove_element_unordered_atomic: {
5903     auto &MI = cast<AtomicMemMoveInst>(I);
5904     SDValue Dst = getValue(MI.getRawDest());
5905     SDValue Src = getValue(MI.getRawSource());
5906     SDValue Length = getValue(MI.getLength());
5907 
5908     unsigned DstAlign = MI.getDestAlignment();
5909     unsigned SrcAlign = MI.getSourceAlignment();
5910     Type *LengthTy = MI.getLength()->getType();
5911     unsigned ElemSz = MI.getElementSizeInBytes();
5912     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5913     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5914                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5915                                       MachinePointerInfo(MI.getRawDest()),
5916                                       MachinePointerInfo(MI.getRawSource()));
5917     updateDAGForMaybeTailCall(MC);
5918     return;
5919   }
5920   case Intrinsic::memset_element_unordered_atomic: {
5921     auto &MI = cast<AtomicMemSetInst>(I);
5922     SDValue Dst = getValue(MI.getRawDest());
5923     SDValue Val = getValue(MI.getValue());
5924     SDValue Length = getValue(MI.getLength());
5925 
5926     unsigned DstAlign = MI.getDestAlignment();
5927     Type *LengthTy = MI.getLength()->getType();
5928     unsigned ElemSz = MI.getElementSizeInBytes();
5929     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5930     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5931                                      LengthTy, ElemSz, isTC,
5932                                      MachinePointerInfo(MI.getRawDest()));
5933     updateDAGForMaybeTailCall(MC);
5934     return;
5935   }
5936   case Intrinsic::dbg_addr:
5937   case Intrinsic::dbg_declare: {
5938     const auto &DI = cast<DbgVariableIntrinsic>(I);
5939     DILocalVariable *Variable = DI.getVariable();
5940     DIExpression *Expression = DI.getExpression();
5941     dropDanglingDebugInfo(Variable, Expression);
5942     assert(Variable && "Missing variable");
5943 
5944     // Check if address has undef value.
5945     const Value *Address = DI.getVariableLocation();
5946     if (!Address || isa<UndefValue>(Address) ||
5947         (Address->use_empty() && !isa<Argument>(Address))) {
5948       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5949       return;
5950     }
5951 
5952     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5953 
5954     // Check if this variable can be described by a frame index, typically
5955     // either as a static alloca or a byval parameter.
5956     int FI = std::numeric_limits<int>::max();
5957     if (const auto *AI =
5958             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5959       if (AI->isStaticAlloca()) {
5960         auto I = FuncInfo.StaticAllocaMap.find(AI);
5961         if (I != FuncInfo.StaticAllocaMap.end())
5962           FI = I->second;
5963       }
5964     } else if (const auto *Arg = dyn_cast<Argument>(
5965                    Address->stripInBoundsConstantOffsets())) {
5966       FI = FuncInfo.getArgumentFrameIndex(Arg);
5967     }
5968 
5969     // llvm.dbg.addr is control dependent and always generates indirect
5970     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5971     // the MachineFunction variable table.
5972     if (FI != std::numeric_limits<int>::max()) {
5973       if (Intrinsic == Intrinsic::dbg_addr) {
5974         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5975             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5976         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5977       }
5978       return;
5979     }
5980 
5981     SDValue &N = NodeMap[Address];
5982     if (!N.getNode() && isa<Argument>(Address))
5983       // Check unused arguments map.
5984       N = UnusedArgNodeMap[Address];
5985     SDDbgValue *SDV;
5986     if (N.getNode()) {
5987       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5988         Address = BCI->getOperand(0);
5989       // Parameters are handled specially.
5990       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5991       if (isParameter && FINode) {
5992         // Byval parameter. We have a frame index at this point.
5993         SDV =
5994             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5995                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5996       } else if (isa<Argument>(Address)) {
5997         // Address is an argument, so try to emit its dbg value using
5998         // virtual register info from the FuncInfo.ValueMap.
5999         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6000         return;
6001       } else {
6002         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6003                               true, dl, SDNodeOrder);
6004       }
6005       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
6006     } else {
6007       // If Address is an argument then try to emit its dbg value using
6008       // virtual register info from the FuncInfo.ValueMap.
6009       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6010                                     N)) {
6011         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
6012       }
6013     }
6014     return;
6015   }
6016   case Intrinsic::dbg_label: {
6017     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6018     DILabel *Label = DI.getLabel();
6019     assert(Label && "Missing label");
6020 
6021     SDDbgLabel *SDV;
6022     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6023     DAG.AddDbgLabel(SDV);
6024     return;
6025   }
6026   case Intrinsic::dbg_value: {
6027     const DbgValueInst &DI = cast<DbgValueInst>(I);
6028     assert(DI.getVariable() && "Missing variable");
6029 
6030     DILocalVariable *Variable = DI.getVariable();
6031     DIExpression *Expression = DI.getExpression();
6032     dropDanglingDebugInfo(Variable, Expression);
6033     const Value *V = DI.getValue();
6034     if (!V)
6035       return;
6036 
6037     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
6038         SDNodeOrder))
6039       return;
6040 
6041     // TODO: Dangling debug info will eventually either be resolved or produce
6042     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
6043     // between the original dbg.value location and its resolved DBG_VALUE, which
6044     // we should ideally fill with an extra Undef DBG_VALUE.
6045 
6046     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
6047     return;
6048   }
6049 
6050   case Intrinsic::eh_typeid_for: {
6051     // Find the type id for the given typeinfo.
6052     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6053     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6054     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6055     setValue(&I, Res);
6056     return;
6057   }
6058 
6059   case Intrinsic::eh_return_i32:
6060   case Intrinsic::eh_return_i64:
6061     DAG.getMachineFunction().setCallsEHReturn(true);
6062     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6063                             MVT::Other,
6064                             getControlRoot(),
6065                             getValue(I.getArgOperand(0)),
6066                             getValue(I.getArgOperand(1))));
6067     return;
6068   case Intrinsic::eh_unwind_init:
6069     DAG.getMachineFunction().setCallsUnwindInit(true);
6070     return;
6071   case Intrinsic::eh_dwarf_cfa:
6072     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6073                              TLI.getPointerTy(DAG.getDataLayout()),
6074                              getValue(I.getArgOperand(0))));
6075     return;
6076   case Intrinsic::eh_sjlj_callsite: {
6077     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6078     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6079     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6080     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6081 
6082     MMI.setCurrentCallSite(CI->getZExtValue());
6083     return;
6084   }
6085   case Intrinsic::eh_sjlj_functioncontext: {
6086     // Get and store the index of the function context.
6087     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6088     AllocaInst *FnCtx =
6089       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6090     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6091     MFI.setFunctionContextIndex(FI);
6092     return;
6093   }
6094   case Intrinsic::eh_sjlj_setjmp: {
6095     SDValue Ops[2];
6096     Ops[0] = getRoot();
6097     Ops[1] = getValue(I.getArgOperand(0));
6098     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6099                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6100     setValue(&I, Op.getValue(0));
6101     DAG.setRoot(Op.getValue(1));
6102     return;
6103   }
6104   case Intrinsic::eh_sjlj_longjmp:
6105     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6106                             getRoot(), getValue(I.getArgOperand(0))));
6107     return;
6108   case Intrinsic::eh_sjlj_setup_dispatch:
6109     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6110                             getRoot()));
6111     return;
6112   case Intrinsic::masked_gather:
6113     visitMaskedGather(I);
6114     return;
6115   case Intrinsic::masked_load:
6116     visitMaskedLoad(I);
6117     return;
6118   case Intrinsic::masked_scatter:
6119     visitMaskedScatter(I);
6120     return;
6121   case Intrinsic::masked_store:
6122     visitMaskedStore(I);
6123     return;
6124   case Intrinsic::masked_expandload:
6125     visitMaskedLoad(I, true /* IsExpanding */);
6126     return;
6127   case Intrinsic::masked_compressstore:
6128     visitMaskedStore(I, true /* IsCompressing */);
6129     return;
6130   case Intrinsic::powi:
6131     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6132                             getValue(I.getArgOperand(1)), DAG));
6133     return;
6134   case Intrinsic::log:
6135     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6136     return;
6137   case Intrinsic::log2:
6138     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6139     return;
6140   case Intrinsic::log10:
6141     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6142     return;
6143   case Intrinsic::exp:
6144     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6145     return;
6146   case Intrinsic::exp2:
6147     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6148     return;
6149   case Intrinsic::pow:
6150     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6151                            getValue(I.getArgOperand(1)), DAG, TLI));
6152     return;
6153   case Intrinsic::sqrt:
6154   case Intrinsic::fabs:
6155   case Intrinsic::sin:
6156   case Intrinsic::cos:
6157   case Intrinsic::floor:
6158   case Intrinsic::ceil:
6159   case Intrinsic::trunc:
6160   case Intrinsic::rint:
6161   case Intrinsic::nearbyint:
6162   case Intrinsic::round:
6163   case Intrinsic::canonicalize: {
6164     unsigned Opcode;
6165     switch (Intrinsic) {
6166     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6167     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6168     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6169     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6170     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6171     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6172     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6173     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6174     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6175     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6176     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6177     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6178     }
6179 
6180     setValue(&I, DAG.getNode(Opcode, sdl,
6181                              getValue(I.getArgOperand(0)).getValueType(),
6182                              getValue(I.getArgOperand(0))));
6183     return;
6184   }
6185   case Intrinsic::lround:
6186   case Intrinsic::llround:
6187   case Intrinsic::lrint:
6188   case Intrinsic::llrint: {
6189     unsigned Opcode;
6190     switch (Intrinsic) {
6191     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6192     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6193     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6194     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6195     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6196     }
6197 
6198     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6199     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6200                              getValue(I.getArgOperand(0))));
6201     return;
6202   }
6203   case Intrinsic::minnum:
6204     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6205                              getValue(I.getArgOperand(0)).getValueType(),
6206                              getValue(I.getArgOperand(0)),
6207                              getValue(I.getArgOperand(1))));
6208     return;
6209   case Intrinsic::maxnum:
6210     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6211                              getValue(I.getArgOperand(0)).getValueType(),
6212                              getValue(I.getArgOperand(0)),
6213                              getValue(I.getArgOperand(1))));
6214     return;
6215   case Intrinsic::minimum:
6216     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6217                              getValue(I.getArgOperand(0)).getValueType(),
6218                              getValue(I.getArgOperand(0)),
6219                              getValue(I.getArgOperand(1))));
6220     return;
6221   case Intrinsic::maximum:
6222     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6223                              getValue(I.getArgOperand(0)).getValueType(),
6224                              getValue(I.getArgOperand(0)),
6225                              getValue(I.getArgOperand(1))));
6226     return;
6227   case Intrinsic::copysign:
6228     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6229                              getValue(I.getArgOperand(0)).getValueType(),
6230                              getValue(I.getArgOperand(0)),
6231                              getValue(I.getArgOperand(1))));
6232     return;
6233   case Intrinsic::fma:
6234     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6235                              getValue(I.getArgOperand(0)).getValueType(),
6236                              getValue(I.getArgOperand(0)),
6237                              getValue(I.getArgOperand(1)),
6238                              getValue(I.getArgOperand(2))));
6239     return;
6240 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6241   case Intrinsic::INTRINSIC:
6242 #include "llvm/IR/ConstrainedOps.def"
6243     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6244     return;
6245   case Intrinsic::fmuladd: {
6246     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6247     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6248         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6249       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6250                                getValue(I.getArgOperand(0)).getValueType(),
6251                                getValue(I.getArgOperand(0)),
6252                                getValue(I.getArgOperand(1)),
6253                                getValue(I.getArgOperand(2))));
6254     } else {
6255       // TODO: Intrinsic calls should have fast-math-flags.
6256       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6257                                 getValue(I.getArgOperand(0)).getValueType(),
6258                                 getValue(I.getArgOperand(0)),
6259                                 getValue(I.getArgOperand(1)));
6260       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6261                                 getValue(I.getArgOperand(0)).getValueType(),
6262                                 Mul,
6263                                 getValue(I.getArgOperand(2)));
6264       setValue(&I, Add);
6265     }
6266     return;
6267   }
6268   case Intrinsic::convert_to_fp16:
6269     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6270                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6271                                          getValue(I.getArgOperand(0)),
6272                                          DAG.getTargetConstant(0, sdl,
6273                                                                MVT::i32))));
6274     return;
6275   case Intrinsic::convert_from_fp16:
6276     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6277                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6278                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6279                                          getValue(I.getArgOperand(0)))));
6280     return;
6281   case Intrinsic::pcmarker: {
6282     SDValue Tmp = getValue(I.getArgOperand(0));
6283     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6284     return;
6285   }
6286   case Intrinsic::readcyclecounter: {
6287     SDValue Op = getRoot();
6288     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6289                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6290     setValue(&I, Res);
6291     DAG.setRoot(Res.getValue(1));
6292     return;
6293   }
6294   case Intrinsic::bitreverse:
6295     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6296                              getValue(I.getArgOperand(0)).getValueType(),
6297                              getValue(I.getArgOperand(0))));
6298     return;
6299   case Intrinsic::bswap:
6300     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6301                              getValue(I.getArgOperand(0)).getValueType(),
6302                              getValue(I.getArgOperand(0))));
6303     return;
6304   case Intrinsic::cttz: {
6305     SDValue Arg = getValue(I.getArgOperand(0));
6306     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6307     EVT Ty = Arg.getValueType();
6308     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6309                              sdl, Ty, Arg));
6310     return;
6311   }
6312   case Intrinsic::ctlz: {
6313     SDValue Arg = getValue(I.getArgOperand(0));
6314     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6315     EVT Ty = Arg.getValueType();
6316     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6317                              sdl, Ty, Arg));
6318     return;
6319   }
6320   case Intrinsic::ctpop: {
6321     SDValue Arg = getValue(I.getArgOperand(0));
6322     EVT Ty = Arg.getValueType();
6323     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6324     return;
6325   }
6326   case Intrinsic::fshl:
6327   case Intrinsic::fshr: {
6328     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6329     SDValue X = getValue(I.getArgOperand(0));
6330     SDValue Y = getValue(I.getArgOperand(1));
6331     SDValue Z = getValue(I.getArgOperand(2));
6332     EVT VT = X.getValueType();
6333     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6334     SDValue Zero = DAG.getConstant(0, sdl, VT);
6335     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6336 
6337     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6338     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6339       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6340       return;
6341     }
6342 
6343     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6344     // avoid the select that is necessary in the general case to filter out
6345     // the 0-shift possibility that leads to UB.
6346     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6347       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6348       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6349         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6350         return;
6351       }
6352 
6353       // Some targets only rotate one way. Try the opposite direction.
6354       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6355       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6356         // Negate the shift amount because it is safe to ignore the high bits.
6357         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6358         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6359         return;
6360       }
6361 
6362       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6363       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6364       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6365       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6366       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6367       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6368       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6369       return;
6370     }
6371 
6372     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6373     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6374     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6375     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6376     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6377     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6378 
6379     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6380     // and that is undefined. We must compare and select to avoid UB.
6381     EVT CCVT = MVT::i1;
6382     if (VT.isVector())
6383       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6384 
6385     // For fshl, 0-shift returns the 1st arg (X).
6386     // For fshr, 0-shift returns the 2nd arg (Y).
6387     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6388     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6389     return;
6390   }
6391   case Intrinsic::sadd_sat: {
6392     SDValue Op1 = getValue(I.getArgOperand(0));
6393     SDValue Op2 = getValue(I.getArgOperand(1));
6394     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6395     return;
6396   }
6397   case Intrinsic::uadd_sat: {
6398     SDValue Op1 = getValue(I.getArgOperand(0));
6399     SDValue Op2 = getValue(I.getArgOperand(1));
6400     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6401     return;
6402   }
6403   case Intrinsic::ssub_sat: {
6404     SDValue Op1 = getValue(I.getArgOperand(0));
6405     SDValue Op2 = getValue(I.getArgOperand(1));
6406     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6407     return;
6408   }
6409   case Intrinsic::usub_sat: {
6410     SDValue Op1 = getValue(I.getArgOperand(0));
6411     SDValue Op2 = getValue(I.getArgOperand(1));
6412     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6413     return;
6414   }
6415   case Intrinsic::smul_fix:
6416   case Intrinsic::umul_fix:
6417   case Intrinsic::smul_fix_sat:
6418   case Intrinsic::umul_fix_sat: {
6419     SDValue Op1 = getValue(I.getArgOperand(0));
6420     SDValue Op2 = getValue(I.getArgOperand(1));
6421     SDValue Op3 = getValue(I.getArgOperand(2));
6422     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6423                              Op1.getValueType(), Op1, Op2, Op3));
6424     return;
6425   }
6426   case Intrinsic::sdiv_fix:
6427   case Intrinsic::udiv_fix: {
6428     SDValue Op1 = getValue(I.getArgOperand(0));
6429     SDValue Op2 = getValue(I.getArgOperand(1));
6430     SDValue Op3 = getValue(I.getArgOperand(2));
6431     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6432                               Op1, Op2, Op3, DAG, TLI));
6433     return;
6434   }
6435   case Intrinsic::stacksave: {
6436     SDValue Op = getRoot();
6437     Res = DAG.getNode(
6438         ISD::STACKSAVE, sdl,
6439         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6440     setValue(&I, Res);
6441     DAG.setRoot(Res.getValue(1));
6442     return;
6443   }
6444   case Intrinsic::stackrestore:
6445     Res = getValue(I.getArgOperand(0));
6446     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6447     return;
6448   case Intrinsic::get_dynamic_area_offset: {
6449     SDValue Op = getRoot();
6450     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6451     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6452     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6453     // target.
6454     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6455       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6456                          " intrinsic!");
6457     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6458                       Op);
6459     DAG.setRoot(Op);
6460     setValue(&I, Res);
6461     return;
6462   }
6463   case Intrinsic::stackguard: {
6464     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6465     MachineFunction &MF = DAG.getMachineFunction();
6466     const Module &M = *MF.getFunction().getParent();
6467     SDValue Chain = getRoot();
6468     if (TLI.useLoadStackGuardNode()) {
6469       Res = getLoadStackGuard(DAG, sdl, Chain);
6470     } else {
6471       const Value *Global = TLI.getSDagStackGuard(M);
6472       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6473       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6474                         MachinePointerInfo(Global, 0), Align,
6475                         MachineMemOperand::MOVolatile);
6476     }
6477     if (TLI.useStackGuardXorFP())
6478       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6479     DAG.setRoot(Chain);
6480     setValue(&I, Res);
6481     return;
6482   }
6483   case Intrinsic::stackprotector: {
6484     // Emit code into the DAG to store the stack guard onto the stack.
6485     MachineFunction &MF = DAG.getMachineFunction();
6486     MachineFrameInfo &MFI = MF.getFrameInfo();
6487     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6488     SDValue Src, Chain = getRoot();
6489 
6490     if (TLI.useLoadStackGuardNode())
6491       Src = getLoadStackGuard(DAG, sdl, Chain);
6492     else
6493       Src = getValue(I.getArgOperand(0));   // The guard's value.
6494 
6495     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6496 
6497     int FI = FuncInfo.StaticAllocaMap[Slot];
6498     MFI.setStackProtectorIndex(FI);
6499 
6500     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6501 
6502     // Store the stack protector onto the stack.
6503     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6504                                                  DAG.getMachineFunction(), FI),
6505                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6506     setValue(&I, Res);
6507     DAG.setRoot(Res);
6508     return;
6509   }
6510   case Intrinsic::objectsize:
6511     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6512 
6513   case Intrinsic::is_constant:
6514     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6515 
6516   case Intrinsic::annotation:
6517   case Intrinsic::ptr_annotation:
6518   case Intrinsic::launder_invariant_group:
6519   case Intrinsic::strip_invariant_group:
6520     // Drop the intrinsic, but forward the value
6521     setValue(&I, getValue(I.getOperand(0)));
6522     return;
6523   case Intrinsic::assume:
6524   case Intrinsic::var_annotation:
6525   case Intrinsic::sideeffect:
6526     // Discard annotate attributes, assumptions, and artificial side-effects.
6527     return;
6528 
6529   case Intrinsic::codeview_annotation: {
6530     // Emit a label associated with this metadata.
6531     MachineFunction &MF = DAG.getMachineFunction();
6532     MCSymbol *Label =
6533         MF.getMMI().getContext().createTempSymbol("annotation", true);
6534     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6535     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6536     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6537     DAG.setRoot(Res);
6538     return;
6539   }
6540 
6541   case Intrinsic::init_trampoline: {
6542     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6543 
6544     SDValue Ops[6];
6545     Ops[0] = getRoot();
6546     Ops[1] = getValue(I.getArgOperand(0));
6547     Ops[2] = getValue(I.getArgOperand(1));
6548     Ops[3] = getValue(I.getArgOperand(2));
6549     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6550     Ops[5] = DAG.getSrcValue(F);
6551 
6552     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6553 
6554     DAG.setRoot(Res);
6555     return;
6556   }
6557   case Intrinsic::adjust_trampoline:
6558     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6559                              TLI.getPointerTy(DAG.getDataLayout()),
6560                              getValue(I.getArgOperand(0))));
6561     return;
6562   case Intrinsic::gcroot: {
6563     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6564            "only valid in functions with gc specified, enforced by Verifier");
6565     assert(GFI && "implied by previous");
6566     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6567     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6568 
6569     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6570     GFI->addStackRoot(FI->getIndex(), TypeMap);
6571     return;
6572   }
6573   case Intrinsic::gcread:
6574   case Intrinsic::gcwrite:
6575     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6576   case Intrinsic::flt_rounds:
6577     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6578     return;
6579 
6580   case Intrinsic::expect:
6581     // Just replace __builtin_expect(exp, c) with EXP.
6582     setValue(&I, getValue(I.getArgOperand(0)));
6583     return;
6584 
6585   case Intrinsic::debugtrap:
6586   case Intrinsic::trap: {
6587     StringRef TrapFuncName =
6588         I.getAttributes()
6589             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6590             .getValueAsString();
6591     if (TrapFuncName.empty()) {
6592       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6593         ISD::TRAP : ISD::DEBUGTRAP;
6594       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6595       return;
6596     }
6597     TargetLowering::ArgListTy Args;
6598 
6599     TargetLowering::CallLoweringInfo CLI(DAG);
6600     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6601         CallingConv::C, I.getType(),
6602         DAG.getExternalSymbol(TrapFuncName.data(),
6603                               TLI.getPointerTy(DAG.getDataLayout())),
6604         std::move(Args));
6605 
6606     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6607     DAG.setRoot(Result.second);
6608     return;
6609   }
6610 
6611   case Intrinsic::uadd_with_overflow:
6612   case Intrinsic::sadd_with_overflow:
6613   case Intrinsic::usub_with_overflow:
6614   case Intrinsic::ssub_with_overflow:
6615   case Intrinsic::umul_with_overflow:
6616   case Intrinsic::smul_with_overflow: {
6617     ISD::NodeType Op;
6618     switch (Intrinsic) {
6619     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6620     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6621     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6622     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6623     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6624     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6625     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6626     }
6627     SDValue Op1 = getValue(I.getArgOperand(0));
6628     SDValue Op2 = getValue(I.getArgOperand(1));
6629 
6630     EVT ResultVT = Op1.getValueType();
6631     EVT OverflowVT = MVT::i1;
6632     if (ResultVT.isVector())
6633       OverflowVT = EVT::getVectorVT(
6634           *Context, OverflowVT, ResultVT.getVectorNumElements());
6635 
6636     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6637     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6638     return;
6639   }
6640   case Intrinsic::prefetch: {
6641     SDValue Ops[5];
6642     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6643     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6644     Ops[0] = DAG.getRoot();
6645     Ops[1] = getValue(I.getArgOperand(0));
6646     Ops[2] = getValue(I.getArgOperand(1));
6647     Ops[3] = getValue(I.getArgOperand(2));
6648     Ops[4] = getValue(I.getArgOperand(3));
6649     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6650                                              DAG.getVTList(MVT::Other), Ops,
6651                                              EVT::getIntegerVT(*Context, 8),
6652                                              MachinePointerInfo(I.getArgOperand(0)),
6653                                              0, /* align */
6654                                              Flags);
6655 
6656     // Chain the prefetch in parallell with any pending loads, to stay out of
6657     // the way of later optimizations.
6658     PendingLoads.push_back(Result);
6659     Result = getRoot();
6660     DAG.setRoot(Result);
6661     return;
6662   }
6663   case Intrinsic::lifetime_start:
6664   case Intrinsic::lifetime_end: {
6665     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6666     // Stack coloring is not enabled in O0, discard region information.
6667     if (TM.getOptLevel() == CodeGenOpt::None)
6668       return;
6669 
6670     const int64_t ObjectSize =
6671         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6672     Value *const ObjectPtr = I.getArgOperand(1);
6673     SmallVector<const Value *, 4> Allocas;
6674     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6675 
6676     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6677            E = Allocas.end(); Object != E; ++Object) {
6678       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6679 
6680       // Could not find an Alloca.
6681       if (!LifetimeObject)
6682         continue;
6683 
6684       // First check that the Alloca is static, otherwise it won't have a
6685       // valid frame index.
6686       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6687       if (SI == FuncInfo.StaticAllocaMap.end())
6688         return;
6689 
6690       const int FrameIndex = SI->second;
6691       int64_t Offset;
6692       if (GetPointerBaseWithConstantOffset(
6693               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6694         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6695       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6696                                 Offset);
6697       DAG.setRoot(Res);
6698     }
6699     return;
6700   }
6701   case Intrinsic::invariant_start:
6702     // Discard region information.
6703     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6704     return;
6705   case Intrinsic::invariant_end:
6706     // Discard region information.
6707     return;
6708   case Intrinsic::clear_cache:
6709     /// FunctionName may be null.
6710     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6711       lowerCallToExternalSymbol(I, FunctionName);
6712     return;
6713   case Intrinsic::donothing:
6714     // ignore
6715     return;
6716   case Intrinsic::experimental_stackmap:
6717     visitStackmap(I);
6718     return;
6719   case Intrinsic::experimental_patchpoint_void:
6720   case Intrinsic::experimental_patchpoint_i64:
6721     visitPatchpoint(&I);
6722     return;
6723   case Intrinsic::experimental_gc_statepoint:
6724     LowerStatepoint(ImmutableStatepoint(&I));
6725     return;
6726   case Intrinsic::experimental_gc_result:
6727     visitGCResult(cast<GCResultInst>(I));
6728     return;
6729   case Intrinsic::experimental_gc_relocate:
6730     visitGCRelocate(cast<GCRelocateInst>(I));
6731     return;
6732   case Intrinsic::instrprof_increment:
6733     llvm_unreachable("instrprof failed to lower an increment");
6734   case Intrinsic::instrprof_value_profile:
6735     llvm_unreachable("instrprof failed to lower a value profiling call");
6736   case Intrinsic::localescape: {
6737     MachineFunction &MF = DAG.getMachineFunction();
6738     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6739 
6740     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6741     // is the same on all targets.
6742     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6743       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6744       if (isa<ConstantPointerNull>(Arg))
6745         continue; // Skip null pointers. They represent a hole in index space.
6746       AllocaInst *Slot = cast<AllocaInst>(Arg);
6747       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6748              "can only escape static allocas");
6749       int FI = FuncInfo.StaticAllocaMap[Slot];
6750       MCSymbol *FrameAllocSym =
6751           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6752               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6753       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6754               TII->get(TargetOpcode::LOCAL_ESCAPE))
6755           .addSym(FrameAllocSym)
6756           .addFrameIndex(FI);
6757     }
6758 
6759     return;
6760   }
6761 
6762   case Intrinsic::localrecover: {
6763     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6764     MachineFunction &MF = DAG.getMachineFunction();
6765     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6766 
6767     // Get the symbol that defines the frame offset.
6768     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6769     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6770     unsigned IdxVal =
6771         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6772     MCSymbol *FrameAllocSym =
6773         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6774             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6775 
6776     // Create a MCSymbol for the label to avoid any target lowering
6777     // that would make this PC relative.
6778     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6779     SDValue OffsetVal =
6780         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6781 
6782     // Add the offset to the FP.
6783     Value *FP = I.getArgOperand(1);
6784     SDValue FPVal = getValue(FP);
6785     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6786     setValue(&I, Add);
6787 
6788     return;
6789   }
6790 
6791   case Intrinsic::eh_exceptionpointer:
6792   case Intrinsic::eh_exceptioncode: {
6793     // Get the exception pointer vreg, copy from it, and resize it to fit.
6794     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6795     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6796     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6797     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6798     SDValue N =
6799         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6800     if (Intrinsic == Intrinsic::eh_exceptioncode)
6801       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6802     setValue(&I, N);
6803     return;
6804   }
6805   case Intrinsic::xray_customevent: {
6806     // Here we want to make sure that the intrinsic behaves as if it has a
6807     // specific calling convention, and only for x86_64.
6808     // FIXME: Support other platforms later.
6809     const auto &Triple = DAG.getTarget().getTargetTriple();
6810     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6811       return;
6812 
6813     SDLoc DL = getCurSDLoc();
6814     SmallVector<SDValue, 8> Ops;
6815 
6816     // We want to say that we always want the arguments in registers.
6817     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6818     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6819     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6820     SDValue Chain = getRoot();
6821     Ops.push_back(LogEntryVal);
6822     Ops.push_back(StrSizeVal);
6823     Ops.push_back(Chain);
6824 
6825     // We need to enforce the calling convention for the callsite, so that
6826     // argument ordering is enforced correctly, and that register allocation can
6827     // see that some registers may be assumed clobbered and have to preserve
6828     // them across calls to the intrinsic.
6829     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6830                                            DL, NodeTys, Ops);
6831     SDValue patchableNode = SDValue(MN, 0);
6832     DAG.setRoot(patchableNode);
6833     setValue(&I, patchableNode);
6834     return;
6835   }
6836   case Intrinsic::xray_typedevent: {
6837     // Here we want to make sure that the intrinsic behaves as if it has a
6838     // specific calling convention, and only for x86_64.
6839     // FIXME: Support other platforms later.
6840     const auto &Triple = DAG.getTarget().getTargetTriple();
6841     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6842       return;
6843 
6844     SDLoc DL = getCurSDLoc();
6845     SmallVector<SDValue, 8> Ops;
6846 
6847     // We want to say that we always want the arguments in registers.
6848     // It's unclear to me how manipulating the selection DAG here forces callers
6849     // to provide arguments in registers instead of on the stack.
6850     SDValue LogTypeId = getValue(I.getArgOperand(0));
6851     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6852     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6853     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6854     SDValue Chain = getRoot();
6855     Ops.push_back(LogTypeId);
6856     Ops.push_back(LogEntryVal);
6857     Ops.push_back(StrSizeVal);
6858     Ops.push_back(Chain);
6859 
6860     // We need to enforce the calling convention for the callsite, so that
6861     // argument ordering is enforced correctly, and that register allocation can
6862     // see that some registers may be assumed clobbered and have to preserve
6863     // them across calls to the intrinsic.
6864     MachineSDNode *MN = DAG.getMachineNode(
6865         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6866     SDValue patchableNode = SDValue(MN, 0);
6867     DAG.setRoot(patchableNode);
6868     setValue(&I, patchableNode);
6869     return;
6870   }
6871   case Intrinsic::experimental_deoptimize:
6872     LowerDeoptimizeCall(&I);
6873     return;
6874 
6875   case Intrinsic::experimental_vector_reduce_v2_fadd:
6876   case Intrinsic::experimental_vector_reduce_v2_fmul:
6877   case Intrinsic::experimental_vector_reduce_add:
6878   case Intrinsic::experimental_vector_reduce_mul:
6879   case Intrinsic::experimental_vector_reduce_and:
6880   case Intrinsic::experimental_vector_reduce_or:
6881   case Intrinsic::experimental_vector_reduce_xor:
6882   case Intrinsic::experimental_vector_reduce_smax:
6883   case Intrinsic::experimental_vector_reduce_smin:
6884   case Intrinsic::experimental_vector_reduce_umax:
6885   case Intrinsic::experimental_vector_reduce_umin:
6886   case Intrinsic::experimental_vector_reduce_fmax:
6887   case Intrinsic::experimental_vector_reduce_fmin:
6888     visitVectorReduce(I, Intrinsic);
6889     return;
6890 
6891   case Intrinsic::icall_branch_funnel: {
6892     SmallVector<SDValue, 16> Ops;
6893     Ops.push_back(getValue(I.getArgOperand(0)));
6894 
6895     int64_t Offset;
6896     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6897         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6898     if (!Base)
6899       report_fatal_error(
6900           "llvm.icall.branch.funnel operand must be a GlobalValue");
6901     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6902 
6903     struct BranchFunnelTarget {
6904       int64_t Offset;
6905       SDValue Target;
6906     };
6907     SmallVector<BranchFunnelTarget, 8> Targets;
6908 
6909     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6910       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6911           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6912       if (ElemBase != Base)
6913         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6914                            "to the same GlobalValue");
6915 
6916       SDValue Val = getValue(I.getArgOperand(Op + 1));
6917       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6918       if (!GA)
6919         report_fatal_error(
6920             "llvm.icall.branch.funnel operand must be a GlobalValue");
6921       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6922                                      GA->getGlobal(), getCurSDLoc(),
6923                                      Val.getValueType(), GA->getOffset())});
6924     }
6925     llvm::sort(Targets,
6926                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6927                  return T1.Offset < T2.Offset;
6928                });
6929 
6930     for (auto &T : Targets) {
6931       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6932       Ops.push_back(T.Target);
6933     }
6934 
6935     Ops.push_back(DAG.getRoot()); // Chain
6936     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6937                                  getCurSDLoc(), MVT::Other, Ops),
6938               0);
6939     DAG.setRoot(N);
6940     setValue(&I, N);
6941     HasTailCall = true;
6942     return;
6943   }
6944 
6945   case Intrinsic::wasm_landingpad_index:
6946     // Information this intrinsic contained has been transferred to
6947     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6948     // delete it now.
6949     return;
6950 
6951   case Intrinsic::aarch64_settag:
6952   case Intrinsic::aarch64_settag_zero: {
6953     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6954     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6955     SDValue Val = TSI.EmitTargetCodeForSetTag(
6956         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6957         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6958         ZeroMemory);
6959     DAG.setRoot(Val);
6960     setValue(&I, Val);
6961     return;
6962   }
6963   case Intrinsic::ptrmask: {
6964     SDValue Ptr = getValue(I.getOperand(0));
6965     SDValue Const = getValue(I.getOperand(1));
6966 
6967     EVT DestVT =
6968         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6969 
6970     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6971                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6972     return;
6973   }
6974   }
6975 }
6976 
6977 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6978     const ConstrainedFPIntrinsic &FPI) {
6979   SDLoc sdl = getCurSDLoc();
6980 
6981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6982   SmallVector<EVT, 4> ValueVTs;
6983   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6984   ValueVTs.push_back(MVT::Other); // Out chain
6985 
6986   // We do not need to serialize constrained FP intrinsics against
6987   // each other or against (nonvolatile) loads, so they can be
6988   // chained like loads.
6989   SDValue Chain = DAG.getRoot();
6990   SmallVector<SDValue, 4> Opers;
6991   Opers.push_back(Chain);
6992   if (FPI.isUnaryOp()) {
6993     Opers.push_back(getValue(FPI.getArgOperand(0)));
6994   } else if (FPI.isTernaryOp()) {
6995     Opers.push_back(getValue(FPI.getArgOperand(0)));
6996     Opers.push_back(getValue(FPI.getArgOperand(1)));
6997     Opers.push_back(getValue(FPI.getArgOperand(2)));
6998   } else {
6999     Opers.push_back(getValue(FPI.getArgOperand(0)));
7000     Opers.push_back(getValue(FPI.getArgOperand(1)));
7001   }
7002 
7003   unsigned Opcode;
7004   switch (FPI.getIntrinsicID()) {
7005   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7006 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7007   case Intrinsic::INTRINSIC:                                                   \
7008     Opcode = ISD::STRICT_##DAGN;                                               \
7009     break;
7010 #include "llvm/IR/ConstrainedOps.def"
7011   }
7012 
7013   // A few strict DAG nodes carry additional operands that are not
7014   // set up by the default code above.
7015   switch (Opcode) {
7016   default: break;
7017   case ISD::STRICT_FP_ROUND:
7018     Opers.push_back(
7019         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7020     break;
7021   case ISD::STRICT_FSETCC:
7022   case ISD::STRICT_FSETCCS: {
7023     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7024     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7025     break;
7026   }
7027   }
7028 
7029   SDVTList VTs = DAG.getVTList(ValueVTs);
7030   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers);
7031 
7032   assert(Result.getNode()->getNumValues() == 2);
7033 
7034   // Push node to the appropriate list so that future instructions can be
7035   // chained up correctly.
7036   SDValue OutChain = Result.getValue(1);
7037   switch (FPI.getExceptionBehavior().getValue()) {
7038   case fp::ExceptionBehavior::ebIgnore:
7039     // The only reason why ebIgnore nodes still need to be chained is that
7040     // they might depend on the current rounding mode, and therefore must
7041     // not be moved across instruction that may change that mode.
7042     LLVM_FALLTHROUGH;
7043   case fp::ExceptionBehavior::ebMayTrap:
7044     // These must not be moved across calls or instructions that may change
7045     // floating-point exception masks.
7046     PendingConstrainedFP.push_back(OutChain);
7047     break;
7048   case fp::ExceptionBehavior::ebStrict:
7049     // These must not be moved across calls or instructions that may change
7050     // floating-point exception masks or read floating-point exception flags.
7051     // In addition, they cannot be optimized out even if unused.
7052     PendingConstrainedFPStrict.push_back(OutChain);
7053     break;
7054   }
7055 
7056   SDValue FPResult = Result.getValue(0);
7057   setValue(&FPI, FPResult);
7058 }
7059 
7060 std::pair<SDValue, SDValue>
7061 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7062                                     const BasicBlock *EHPadBB) {
7063   MachineFunction &MF = DAG.getMachineFunction();
7064   MachineModuleInfo &MMI = MF.getMMI();
7065   MCSymbol *BeginLabel = nullptr;
7066 
7067   if (EHPadBB) {
7068     // Insert a label before the invoke call to mark the try range.  This can be
7069     // used to detect deletion of the invoke via the MachineModuleInfo.
7070     BeginLabel = MMI.getContext().createTempSymbol();
7071 
7072     // For SjLj, keep track of which landing pads go with which invokes
7073     // so as to maintain the ordering of pads in the LSDA.
7074     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7075     if (CallSiteIndex) {
7076       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7077       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7078 
7079       // Now that the call site is handled, stop tracking it.
7080       MMI.setCurrentCallSite(0);
7081     }
7082 
7083     // Both PendingLoads and PendingExports must be flushed here;
7084     // this call might not return.
7085     (void)getRoot();
7086     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7087 
7088     CLI.setChain(getRoot());
7089   }
7090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7091   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7092 
7093   assert((CLI.IsTailCall || Result.second.getNode()) &&
7094          "Non-null chain expected with non-tail call!");
7095   assert((Result.second.getNode() || !Result.first.getNode()) &&
7096          "Null value expected with tail call!");
7097 
7098   if (!Result.second.getNode()) {
7099     // As a special case, a null chain means that a tail call has been emitted
7100     // and the DAG root is already updated.
7101     HasTailCall = true;
7102 
7103     // Since there's no actual continuation from this block, nothing can be
7104     // relying on us setting vregs for them.
7105     PendingExports.clear();
7106   } else {
7107     DAG.setRoot(Result.second);
7108   }
7109 
7110   if (EHPadBB) {
7111     // Insert a label at the end of the invoke call to mark the try range.  This
7112     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7113     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7114     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7115 
7116     // Inform MachineModuleInfo of range.
7117     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7118     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7119     // actually use outlined funclets and their LSDA info style.
7120     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7121       assert(CLI.CS);
7122       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7123       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7124                                 BeginLabel, EndLabel);
7125     } else if (!isScopedEHPersonality(Pers)) {
7126       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7127     }
7128   }
7129 
7130   return Result;
7131 }
7132 
7133 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7134                                       bool isTailCall,
7135                                       const BasicBlock *EHPadBB) {
7136   auto &DL = DAG.getDataLayout();
7137   FunctionType *FTy = CS.getFunctionType();
7138   Type *RetTy = CS.getType();
7139 
7140   TargetLowering::ArgListTy Args;
7141   Args.reserve(CS.arg_size());
7142 
7143   const Value *SwiftErrorVal = nullptr;
7144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7145 
7146   if (isTailCall) {
7147     // Avoid emitting tail calls in functions with the disable-tail-calls
7148     // attribute.
7149     auto *Caller = CS.getInstruction()->getParent()->getParent();
7150     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7151         "true")
7152       isTailCall = false;
7153 
7154     // We can't tail call inside a function with a swifterror argument. Lowering
7155     // does not support this yet. It would have to move into the swifterror
7156     // register before the call.
7157     if (TLI.supportSwiftError() &&
7158         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7159       isTailCall = false;
7160   }
7161 
7162   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7163        i != e; ++i) {
7164     TargetLowering::ArgListEntry Entry;
7165     const Value *V = *i;
7166 
7167     // Skip empty types
7168     if (V->getType()->isEmptyTy())
7169       continue;
7170 
7171     SDValue ArgNode = getValue(V);
7172     Entry.Node = ArgNode; Entry.Ty = V->getType();
7173 
7174     Entry.setAttributes(&CS, i - CS.arg_begin());
7175 
7176     // Use swifterror virtual register as input to the call.
7177     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7178       SwiftErrorVal = V;
7179       // We find the virtual register for the actual swifterror argument.
7180       // Instead of using the Value, we use the virtual register instead.
7181       Entry.Node = DAG.getRegister(
7182           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7183           EVT(TLI.getPointerTy(DL)));
7184     }
7185 
7186     Args.push_back(Entry);
7187 
7188     // If we have an explicit sret argument that is an Instruction, (i.e., it
7189     // might point to function-local memory), we can't meaningfully tail-call.
7190     if (Entry.IsSRet && isa<Instruction>(V))
7191       isTailCall = false;
7192   }
7193 
7194   // If call site has a cfguardtarget operand bundle, create and add an
7195   // additional ArgListEntry.
7196   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7197     TargetLowering::ArgListEntry Entry;
7198     Value *V = Bundle->Inputs[0];
7199     SDValue ArgNode = getValue(V);
7200     Entry.Node = ArgNode;
7201     Entry.Ty = V->getType();
7202     Entry.IsCFGuardTarget = true;
7203     Args.push_back(Entry);
7204   }
7205 
7206   // Check if target-independent constraints permit a tail call here.
7207   // Target-dependent constraints are checked within TLI->LowerCallTo.
7208   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7209     isTailCall = false;
7210 
7211   // Disable tail calls if there is an swifterror argument. Targets have not
7212   // been updated to support tail calls.
7213   if (TLI.supportSwiftError() && SwiftErrorVal)
7214     isTailCall = false;
7215 
7216   TargetLowering::CallLoweringInfo CLI(DAG);
7217   CLI.setDebugLoc(getCurSDLoc())
7218       .setChain(getRoot())
7219       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7220       .setTailCall(isTailCall)
7221       .setConvergent(CS.isConvergent());
7222   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7223 
7224   if (Result.first.getNode()) {
7225     const Instruction *Inst = CS.getInstruction();
7226     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7227     setValue(Inst, Result.first);
7228   }
7229 
7230   // The last element of CLI.InVals has the SDValue for swifterror return.
7231   // Here we copy it to a virtual register and update SwiftErrorMap for
7232   // book-keeping.
7233   if (SwiftErrorVal && TLI.supportSwiftError()) {
7234     // Get the last element of InVals.
7235     SDValue Src = CLI.InVals.back();
7236     Register VReg = SwiftError.getOrCreateVRegDefAt(
7237         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7238     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7239     DAG.setRoot(CopyNode);
7240   }
7241 }
7242 
7243 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7244                              SelectionDAGBuilder &Builder) {
7245   // Check to see if this load can be trivially constant folded, e.g. if the
7246   // input is from a string literal.
7247   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7248     // Cast pointer to the type we really want to load.
7249     Type *LoadTy =
7250         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7251     if (LoadVT.isVector())
7252       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7253 
7254     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7255                                          PointerType::getUnqual(LoadTy));
7256 
7257     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7258             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7259       return Builder.getValue(LoadCst);
7260   }
7261 
7262   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7263   // still constant memory, the input chain can be the entry node.
7264   SDValue Root;
7265   bool ConstantMemory = false;
7266 
7267   // Do not serialize (non-volatile) loads of constant memory with anything.
7268   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7269     Root = Builder.DAG.getEntryNode();
7270     ConstantMemory = true;
7271   } else {
7272     // Do not serialize non-volatile loads against each other.
7273     Root = Builder.DAG.getRoot();
7274   }
7275 
7276   SDValue Ptr = Builder.getValue(PtrVal);
7277   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7278                                         Ptr, MachinePointerInfo(PtrVal),
7279                                         /* Alignment = */ 1);
7280 
7281   if (!ConstantMemory)
7282     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7283   return LoadVal;
7284 }
7285 
7286 /// Record the value for an instruction that produces an integer result,
7287 /// converting the type where necessary.
7288 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7289                                                   SDValue Value,
7290                                                   bool IsSigned) {
7291   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7292                                                     I.getType(), true);
7293   if (IsSigned)
7294     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7295   else
7296     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7297   setValue(&I, Value);
7298 }
7299 
7300 /// See if we can lower a memcmp call into an optimized form. If so, return
7301 /// true and lower it. Otherwise return false, and it will be lowered like a
7302 /// normal call.
7303 /// The caller already checked that \p I calls the appropriate LibFunc with a
7304 /// correct prototype.
7305 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7306   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7307   const Value *Size = I.getArgOperand(2);
7308   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7309   if (CSize && CSize->getZExtValue() == 0) {
7310     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7311                                                           I.getType(), true);
7312     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7313     return true;
7314   }
7315 
7316   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7317   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7318       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7319       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7320   if (Res.first.getNode()) {
7321     processIntegerCallValue(I, Res.first, true);
7322     PendingLoads.push_back(Res.second);
7323     return true;
7324   }
7325 
7326   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7327   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7328   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7329     return false;
7330 
7331   // If the target has a fast compare for the given size, it will return a
7332   // preferred load type for that size. Require that the load VT is legal and
7333   // that the target supports unaligned loads of that type. Otherwise, return
7334   // INVALID.
7335   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7336     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7337     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7338     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7339       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7340       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7341       // TODO: Check alignment of src and dest ptrs.
7342       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7343       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7344       if (!TLI.isTypeLegal(LVT) ||
7345           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7346           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7347         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7348     }
7349 
7350     return LVT;
7351   };
7352 
7353   // This turns into unaligned loads. We only do this if the target natively
7354   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7355   // we'll only produce a small number of byte loads.
7356   MVT LoadVT;
7357   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7358   switch (NumBitsToCompare) {
7359   default:
7360     return false;
7361   case 16:
7362     LoadVT = MVT::i16;
7363     break;
7364   case 32:
7365     LoadVT = MVT::i32;
7366     break;
7367   case 64:
7368   case 128:
7369   case 256:
7370     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7371     break;
7372   }
7373 
7374   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7375     return false;
7376 
7377   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7378   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7379 
7380   // Bitcast to a wide integer type if the loads are vectors.
7381   if (LoadVT.isVector()) {
7382     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7383     LoadL = DAG.getBitcast(CmpVT, LoadL);
7384     LoadR = DAG.getBitcast(CmpVT, LoadR);
7385   }
7386 
7387   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7388   processIntegerCallValue(I, Cmp, false);
7389   return true;
7390 }
7391 
7392 /// See if we can lower a memchr call into an optimized form. If so, return
7393 /// true and lower it. Otherwise return false, and it will be lowered like a
7394 /// normal call.
7395 /// The caller already checked that \p I calls the appropriate LibFunc with a
7396 /// correct prototype.
7397 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7398   const Value *Src = I.getArgOperand(0);
7399   const Value *Char = I.getArgOperand(1);
7400   const Value *Length = I.getArgOperand(2);
7401 
7402   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7403   std::pair<SDValue, SDValue> Res =
7404     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7405                                 getValue(Src), getValue(Char), getValue(Length),
7406                                 MachinePointerInfo(Src));
7407   if (Res.first.getNode()) {
7408     setValue(&I, Res.first);
7409     PendingLoads.push_back(Res.second);
7410     return true;
7411   }
7412 
7413   return false;
7414 }
7415 
7416 /// See if we can lower a mempcpy call into an optimized form. If so, return
7417 /// true and lower it. Otherwise return false, and it will be lowered like a
7418 /// normal call.
7419 /// The caller already checked that \p I calls the appropriate LibFunc with a
7420 /// correct prototype.
7421 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7422   SDValue Dst = getValue(I.getArgOperand(0));
7423   SDValue Src = getValue(I.getArgOperand(1));
7424   SDValue Size = getValue(I.getArgOperand(2));
7425 
7426   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7427   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7428   unsigned Align = std::min(DstAlign, SrcAlign);
7429   if (Align == 0) // Alignment of one or both could not be inferred.
7430     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7431 
7432   bool isVol = false;
7433   SDLoc sdl = getCurSDLoc();
7434 
7435   // In the mempcpy context we need to pass in a false value for isTailCall
7436   // because the return pointer needs to be adjusted by the size of
7437   // the copied memory.
7438   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7439   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Align, isVol,
7440                              false, /*isTailCall=*/false,
7441                              MachinePointerInfo(I.getArgOperand(0)),
7442                              MachinePointerInfo(I.getArgOperand(1)));
7443   assert(MC.getNode() != nullptr &&
7444          "** memcpy should not be lowered as TailCall in mempcpy context **");
7445   DAG.setRoot(MC);
7446 
7447   // Check if Size needs to be truncated or extended.
7448   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7449 
7450   // Adjust return pointer to point just past the last dst byte.
7451   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7452                                     Dst, Size);
7453   setValue(&I, DstPlusSize);
7454   return true;
7455 }
7456 
7457 /// See if we can lower a strcpy call into an optimized form.  If so, return
7458 /// true and lower it, otherwise return false and it will be lowered like a
7459 /// normal call.
7460 /// The caller already checked that \p I calls the appropriate LibFunc with a
7461 /// correct prototype.
7462 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7463   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7464 
7465   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7466   std::pair<SDValue, SDValue> Res =
7467     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7468                                 getValue(Arg0), getValue(Arg1),
7469                                 MachinePointerInfo(Arg0),
7470                                 MachinePointerInfo(Arg1), isStpcpy);
7471   if (Res.first.getNode()) {
7472     setValue(&I, Res.first);
7473     DAG.setRoot(Res.second);
7474     return true;
7475   }
7476 
7477   return false;
7478 }
7479 
7480 /// See if we can lower a strcmp call into an optimized form.  If so, return
7481 /// true and lower it, otherwise return false and it will be lowered like a
7482 /// normal call.
7483 /// The caller already checked that \p I calls the appropriate LibFunc with a
7484 /// correct prototype.
7485 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7486   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7487 
7488   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7489   std::pair<SDValue, SDValue> Res =
7490     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7491                                 getValue(Arg0), getValue(Arg1),
7492                                 MachinePointerInfo(Arg0),
7493                                 MachinePointerInfo(Arg1));
7494   if (Res.first.getNode()) {
7495     processIntegerCallValue(I, Res.first, true);
7496     PendingLoads.push_back(Res.second);
7497     return true;
7498   }
7499 
7500   return false;
7501 }
7502 
7503 /// See if we can lower a strlen call into an optimized form.  If so, return
7504 /// true and lower it, otherwise return false and it will be lowered like a
7505 /// normal call.
7506 /// The caller already checked that \p I calls the appropriate LibFunc with a
7507 /// correct prototype.
7508 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7509   const Value *Arg0 = I.getArgOperand(0);
7510 
7511   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7512   std::pair<SDValue, SDValue> Res =
7513     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7514                                 getValue(Arg0), MachinePointerInfo(Arg0));
7515   if (Res.first.getNode()) {
7516     processIntegerCallValue(I, Res.first, false);
7517     PendingLoads.push_back(Res.second);
7518     return true;
7519   }
7520 
7521   return false;
7522 }
7523 
7524 /// See if we can lower a strnlen call into an optimized form.  If so, return
7525 /// true and lower it, otherwise return false and it will be lowered like a
7526 /// normal call.
7527 /// The caller already checked that \p I calls the appropriate LibFunc with a
7528 /// correct prototype.
7529 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7530   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7531 
7532   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7533   std::pair<SDValue, SDValue> Res =
7534     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7535                                  getValue(Arg0), getValue(Arg1),
7536                                  MachinePointerInfo(Arg0));
7537   if (Res.first.getNode()) {
7538     processIntegerCallValue(I, Res.first, false);
7539     PendingLoads.push_back(Res.second);
7540     return true;
7541   }
7542 
7543   return false;
7544 }
7545 
7546 /// See if we can lower a unary floating-point operation into an SDNode with
7547 /// the specified Opcode.  If so, return true and lower it, otherwise return
7548 /// false and it will be lowered like a normal call.
7549 /// The caller already checked that \p I calls the appropriate LibFunc with a
7550 /// correct prototype.
7551 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7552                                               unsigned Opcode) {
7553   // We already checked this call's prototype; verify it doesn't modify errno.
7554   if (!I.onlyReadsMemory())
7555     return false;
7556 
7557   SDValue Tmp = getValue(I.getArgOperand(0));
7558   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7559   return true;
7560 }
7561 
7562 /// See if we can lower a binary floating-point operation into an SDNode with
7563 /// the specified Opcode. If so, return true and lower it. Otherwise return
7564 /// false, and it will be lowered like a normal call.
7565 /// The caller already checked that \p I calls the appropriate LibFunc with a
7566 /// correct prototype.
7567 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7568                                                unsigned Opcode) {
7569   // We already checked this call's prototype; verify it doesn't modify errno.
7570   if (!I.onlyReadsMemory())
7571     return false;
7572 
7573   SDValue Tmp0 = getValue(I.getArgOperand(0));
7574   SDValue Tmp1 = getValue(I.getArgOperand(1));
7575   EVT VT = Tmp0.getValueType();
7576   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7577   return true;
7578 }
7579 
7580 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7581   // Handle inline assembly differently.
7582   if (isa<InlineAsm>(I.getCalledValue())) {
7583     visitInlineAsm(&I);
7584     return;
7585   }
7586 
7587   if (Function *F = I.getCalledFunction()) {
7588     if (F->isDeclaration()) {
7589       // Is this an LLVM intrinsic or a target-specific intrinsic?
7590       unsigned IID = F->getIntrinsicID();
7591       if (!IID)
7592         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7593           IID = II->getIntrinsicID(F);
7594 
7595       if (IID) {
7596         visitIntrinsicCall(I, IID);
7597         return;
7598       }
7599     }
7600 
7601     // Check for well-known libc/libm calls.  If the function is internal, it
7602     // can't be a library call.  Don't do the check if marked as nobuiltin for
7603     // some reason or the call site requires strict floating point semantics.
7604     LibFunc Func;
7605     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7606         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7607         LibInfo->hasOptimizedCodeGen(Func)) {
7608       switch (Func) {
7609       default: break;
7610       case LibFunc_copysign:
7611       case LibFunc_copysignf:
7612       case LibFunc_copysignl:
7613         // We already checked this call's prototype; verify it doesn't modify
7614         // errno.
7615         if (I.onlyReadsMemory()) {
7616           SDValue LHS = getValue(I.getArgOperand(0));
7617           SDValue RHS = getValue(I.getArgOperand(1));
7618           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7619                                    LHS.getValueType(), LHS, RHS));
7620           return;
7621         }
7622         break;
7623       case LibFunc_fabs:
7624       case LibFunc_fabsf:
7625       case LibFunc_fabsl:
7626         if (visitUnaryFloatCall(I, ISD::FABS))
7627           return;
7628         break;
7629       case LibFunc_fmin:
7630       case LibFunc_fminf:
7631       case LibFunc_fminl:
7632         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7633           return;
7634         break;
7635       case LibFunc_fmax:
7636       case LibFunc_fmaxf:
7637       case LibFunc_fmaxl:
7638         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7639           return;
7640         break;
7641       case LibFunc_sin:
7642       case LibFunc_sinf:
7643       case LibFunc_sinl:
7644         if (visitUnaryFloatCall(I, ISD::FSIN))
7645           return;
7646         break;
7647       case LibFunc_cos:
7648       case LibFunc_cosf:
7649       case LibFunc_cosl:
7650         if (visitUnaryFloatCall(I, ISD::FCOS))
7651           return;
7652         break;
7653       case LibFunc_sqrt:
7654       case LibFunc_sqrtf:
7655       case LibFunc_sqrtl:
7656       case LibFunc_sqrt_finite:
7657       case LibFunc_sqrtf_finite:
7658       case LibFunc_sqrtl_finite:
7659         if (visitUnaryFloatCall(I, ISD::FSQRT))
7660           return;
7661         break;
7662       case LibFunc_floor:
7663       case LibFunc_floorf:
7664       case LibFunc_floorl:
7665         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7666           return;
7667         break;
7668       case LibFunc_nearbyint:
7669       case LibFunc_nearbyintf:
7670       case LibFunc_nearbyintl:
7671         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7672           return;
7673         break;
7674       case LibFunc_ceil:
7675       case LibFunc_ceilf:
7676       case LibFunc_ceill:
7677         if (visitUnaryFloatCall(I, ISD::FCEIL))
7678           return;
7679         break;
7680       case LibFunc_rint:
7681       case LibFunc_rintf:
7682       case LibFunc_rintl:
7683         if (visitUnaryFloatCall(I, ISD::FRINT))
7684           return;
7685         break;
7686       case LibFunc_round:
7687       case LibFunc_roundf:
7688       case LibFunc_roundl:
7689         if (visitUnaryFloatCall(I, ISD::FROUND))
7690           return;
7691         break;
7692       case LibFunc_trunc:
7693       case LibFunc_truncf:
7694       case LibFunc_truncl:
7695         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7696           return;
7697         break;
7698       case LibFunc_log2:
7699       case LibFunc_log2f:
7700       case LibFunc_log2l:
7701         if (visitUnaryFloatCall(I, ISD::FLOG2))
7702           return;
7703         break;
7704       case LibFunc_exp2:
7705       case LibFunc_exp2f:
7706       case LibFunc_exp2l:
7707         if (visitUnaryFloatCall(I, ISD::FEXP2))
7708           return;
7709         break;
7710       case LibFunc_memcmp:
7711         if (visitMemCmpCall(I))
7712           return;
7713         break;
7714       case LibFunc_mempcpy:
7715         if (visitMemPCpyCall(I))
7716           return;
7717         break;
7718       case LibFunc_memchr:
7719         if (visitMemChrCall(I))
7720           return;
7721         break;
7722       case LibFunc_strcpy:
7723         if (visitStrCpyCall(I, false))
7724           return;
7725         break;
7726       case LibFunc_stpcpy:
7727         if (visitStrCpyCall(I, true))
7728           return;
7729         break;
7730       case LibFunc_strcmp:
7731         if (visitStrCmpCall(I))
7732           return;
7733         break;
7734       case LibFunc_strlen:
7735         if (visitStrLenCall(I))
7736           return;
7737         break;
7738       case LibFunc_strnlen:
7739         if (visitStrNLenCall(I))
7740           return;
7741         break;
7742       }
7743     }
7744   }
7745 
7746   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7747   // have to do anything here to lower funclet bundles.
7748   // CFGuardTarget bundles are lowered in LowerCallTo.
7749   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7750                                         LLVMContext::OB_funclet,
7751                                         LLVMContext::OB_cfguardtarget}) &&
7752          "Cannot lower calls with arbitrary operand bundles!");
7753 
7754   SDValue Callee = getValue(I.getCalledValue());
7755 
7756   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7757     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7758   else
7759     // Check if we can potentially perform a tail call. More detailed checking
7760     // is be done within LowerCallTo, after more information about the call is
7761     // known.
7762     LowerCallTo(&I, Callee, I.isTailCall());
7763 }
7764 
7765 namespace {
7766 
7767 /// AsmOperandInfo - This contains information for each constraint that we are
7768 /// lowering.
7769 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7770 public:
7771   /// CallOperand - If this is the result output operand or a clobber
7772   /// this is null, otherwise it is the incoming operand to the CallInst.
7773   /// This gets modified as the asm is processed.
7774   SDValue CallOperand;
7775 
7776   /// AssignedRegs - If this is a register or register class operand, this
7777   /// contains the set of register corresponding to the operand.
7778   RegsForValue AssignedRegs;
7779 
7780   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7781     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7782   }
7783 
7784   /// Whether or not this operand accesses memory
7785   bool hasMemory(const TargetLowering &TLI) const {
7786     // Indirect operand accesses access memory.
7787     if (isIndirect)
7788       return true;
7789 
7790     for (const auto &Code : Codes)
7791       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7792         return true;
7793 
7794     return false;
7795   }
7796 
7797   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7798   /// corresponds to.  If there is no Value* for this operand, it returns
7799   /// MVT::Other.
7800   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7801                            const DataLayout &DL) const {
7802     if (!CallOperandVal) return MVT::Other;
7803 
7804     if (isa<BasicBlock>(CallOperandVal))
7805       return TLI.getPointerTy(DL);
7806 
7807     llvm::Type *OpTy = CallOperandVal->getType();
7808 
7809     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7810     // If this is an indirect operand, the operand is a pointer to the
7811     // accessed type.
7812     if (isIndirect) {
7813       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7814       if (!PtrTy)
7815         report_fatal_error("Indirect operand for inline asm not a pointer!");
7816       OpTy = PtrTy->getElementType();
7817     }
7818 
7819     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7820     if (StructType *STy = dyn_cast<StructType>(OpTy))
7821       if (STy->getNumElements() == 1)
7822         OpTy = STy->getElementType(0);
7823 
7824     // If OpTy is not a single value, it may be a struct/union that we
7825     // can tile with integers.
7826     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7827       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7828       switch (BitSize) {
7829       default: break;
7830       case 1:
7831       case 8:
7832       case 16:
7833       case 32:
7834       case 64:
7835       case 128:
7836         OpTy = IntegerType::get(Context, BitSize);
7837         break;
7838       }
7839     }
7840 
7841     return TLI.getValueType(DL, OpTy, true);
7842   }
7843 };
7844 
7845 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7846 
7847 } // end anonymous namespace
7848 
7849 /// Make sure that the output operand \p OpInfo and its corresponding input
7850 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7851 /// out).
7852 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7853                                SDISelAsmOperandInfo &MatchingOpInfo,
7854                                SelectionDAG &DAG) {
7855   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7856     return;
7857 
7858   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7859   const auto &TLI = DAG.getTargetLoweringInfo();
7860 
7861   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7862       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7863                                        OpInfo.ConstraintVT);
7864   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7865       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7866                                        MatchingOpInfo.ConstraintVT);
7867   if ((OpInfo.ConstraintVT.isInteger() !=
7868        MatchingOpInfo.ConstraintVT.isInteger()) ||
7869       (MatchRC.second != InputRC.second)) {
7870     // FIXME: error out in a more elegant fashion
7871     report_fatal_error("Unsupported asm: input constraint"
7872                        " with a matching output constraint of"
7873                        " incompatible type!");
7874   }
7875   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7876 }
7877 
7878 /// Get a direct memory input to behave well as an indirect operand.
7879 /// This may introduce stores, hence the need for a \p Chain.
7880 /// \return The (possibly updated) chain.
7881 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7882                                         SDISelAsmOperandInfo &OpInfo,
7883                                         SelectionDAG &DAG) {
7884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7885 
7886   // If we don't have an indirect input, put it in the constpool if we can,
7887   // otherwise spill it to a stack slot.
7888   // TODO: This isn't quite right. We need to handle these according to
7889   // the addressing mode that the constraint wants. Also, this may take
7890   // an additional register for the computation and we don't want that
7891   // either.
7892 
7893   // If the operand is a float, integer, or vector constant, spill to a
7894   // constant pool entry to get its address.
7895   const Value *OpVal = OpInfo.CallOperandVal;
7896   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7897       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7898     OpInfo.CallOperand = DAG.getConstantPool(
7899         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7900     return Chain;
7901   }
7902 
7903   // Otherwise, create a stack slot and emit a store to it before the asm.
7904   Type *Ty = OpVal->getType();
7905   auto &DL = DAG.getDataLayout();
7906   uint64_t TySize = DL.getTypeAllocSize(Ty);
7907   unsigned Align = DL.getPrefTypeAlignment(Ty);
7908   MachineFunction &MF = DAG.getMachineFunction();
7909   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7910   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7911   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7912                             MachinePointerInfo::getFixedStack(MF, SSFI),
7913                             TLI.getMemValueType(DL, Ty));
7914   OpInfo.CallOperand = StackSlot;
7915 
7916   return Chain;
7917 }
7918 
7919 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7920 /// specified operand.  We prefer to assign virtual registers, to allow the
7921 /// register allocator to handle the assignment process.  However, if the asm
7922 /// uses features that we can't model on machineinstrs, we have SDISel do the
7923 /// allocation.  This produces generally horrible, but correct, code.
7924 ///
7925 ///   OpInfo describes the operand
7926 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7927 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7928                                  SDISelAsmOperandInfo &OpInfo,
7929                                  SDISelAsmOperandInfo &RefOpInfo) {
7930   LLVMContext &Context = *DAG.getContext();
7931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7932 
7933   MachineFunction &MF = DAG.getMachineFunction();
7934   SmallVector<unsigned, 4> Regs;
7935   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7936 
7937   // No work to do for memory operations.
7938   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7939     return;
7940 
7941   // If this is a constraint for a single physreg, or a constraint for a
7942   // register class, find it.
7943   unsigned AssignedReg;
7944   const TargetRegisterClass *RC;
7945   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7946       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7947   // RC is unset only on failure. Return immediately.
7948   if (!RC)
7949     return;
7950 
7951   // Get the actual register value type.  This is important, because the user
7952   // may have asked for (e.g.) the AX register in i32 type.  We need to
7953   // remember that AX is actually i16 to get the right extension.
7954   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7955 
7956   if (OpInfo.ConstraintVT != MVT::Other) {
7957     // If this is an FP operand in an integer register (or visa versa), or more
7958     // generally if the operand value disagrees with the register class we plan
7959     // to stick it in, fix the operand type.
7960     //
7961     // If this is an input value, the bitcast to the new type is done now.
7962     // Bitcast for output value is done at the end of visitInlineAsm().
7963     if ((OpInfo.Type == InlineAsm::isOutput ||
7964          OpInfo.Type == InlineAsm::isInput) &&
7965         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7966       // Try to convert to the first EVT that the reg class contains.  If the
7967       // types are identical size, use a bitcast to convert (e.g. two differing
7968       // vector types).  Note: output bitcast is done at the end of
7969       // visitInlineAsm().
7970       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7971         // Exclude indirect inputs while they are unsupported because the code
7972         // to perform the load is missing and thus OpInfo.CallOperand still
7973         // refers to the input address rather than the pointed-to value.
7974         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7975           OpInfo.CallOperand =
7976               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7977         OpInfo.ConstraintVT = RegVT;
7978         // If the operand is an FP value and we want it in integer registers,
7979         // use the corresponding integer type. This turns an f64 value into
7980         // i64, which can be passed with two i32 values on a 32-bit machine.
7981       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7982         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7983         if (OpInfo.Type == InlineAsm::isInput)
7984           OpInfo.CallOperand =
7985               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7986         OpInfo.ConstraintVT = VT;
7987       }
7988     }
7989   }
7990 
7991   // No need to allocate a matching input constraint since the constraint it's
7992   // matching to has already been allocated.
7993   if (OpInfo.isMatchingInputConstraint())
7994     return;
7995 
7996   EVT ValueVT = OpInfo.ConstraintVT;
7997   if (OpInfo.ConstraintVT == MVT::Other)
7998     ValueVT = RegVT;
7999 
8000   // Initialize NumRegs.
8001   unsigned NumRegs = 1;
8002   if (OpInfo.ConstraintVT != MVT::Other)
8003     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8004 
8005   // If this is a constraint for a specific physical register, like {r17},
8006   // assign it now.
8007 
8008   // If this associated to a specific register, initialize iterator to correct
8009   // place. If virtual, make sure we have enough registers
8010 
8011   // Initialize iterator if necessary
8012   TargetRegisterClass::iterator I = RC->begin();
8013   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8014 
8015   // Do not check for single registers.
8016   if (AssignedReg) {
8017       for (; *I != AssignedReg; ++I)
8018         assert(I != RC->end() && "AssignedReg should be member of RC");
8019   }
8020 
8021   for (; NumRegs; --NumRegs, ++I) {
8022     assert(I != RC->end() && "Ran out of registers to allocate!");
8023     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8024     Regs.push_back(R);
8025   }
8026 
8027   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8028 }
8029 
8030 static unsigned
8031 findMatchingInlineAsmOperand(unsigned OperandNo,
8032                              const std::vector<SDValue> &AsmNodeOperands) {
8033   // Scan until we find the definition we already emitted of this operand.
8034   unsigned CurOp = InlineAsm::Op_FirstOperand;
8035   for (; OperandNo; --OperandNo) {
8036     // Advance to the next operand.
8037     unsigned OpFlag =
8038         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8039     assert((InlineAsm::isRegDefKind(OpFlag) ||
8040             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8041             InlineAsm::isMemKind(OpFlag)) &&
8042            "Skipped past definitions?");
8043     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8044   }
8045   return CurOp;
8046 }
8047 
8048 namespace {
8049 
8050 class ExtraFlags {
8051   unsigned Flags = 0;
8052 
8053 public:
8054   explicit ExtraFlags(ImmutableCallSite CS) {
8055     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8056     if (IA->hasSideEffects())
8057       Flags |= InlineAsm::Extra_HasSideEffects;
8058     if (IA->isAlignStack())
8059       Flags |= InlineAsm::Extra_IsAlignStack;
8060     if (CS.isConvergent())
8061       Flags |= InlineAsm::Extra_IsConvergent;
8062     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8063   }
8064 
8065   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8066     // Ideally, we would only check against memory constraints.  However, the
8067     // meaning of an Other constraint can be target-specific and we can't easily
8068     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8069     // for Other constraints as well.
8070     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8071         OpInfo.ConstraintType == TargetLowering::C_Other) {
8072       if (OpInfo.Type == InlineAsm::isInput)
8073         Flags |= InlineAsm::Extra_MayLoad;
8074       else if (OpInfo.Type == InlineAsm::isOutput)
8075         Flags |= InlineAsm::Extra_MayStore;
8076       else if (OpInfo.Type == InlineAsm::isClobber)
8077         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8078     }
8079   }
8080 
8081   unsigned get() const { return Flags; }
8082 };
8083 
8084 } // end anonymous namespace
8085 
8086 /// visitInlineAsm - Handle a call to an InlineAsm object.
8087 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8088   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8089 
8090   /// ConstraintOperands - Information about all of the constraints.
8091   SDISelAsmOperandInfoVector ConstraintOperands;
8092 
8093   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8094   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8095       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8096 
8097   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8098   // AsmDialect, MayLoad, MayStore).
8099   bool HasSideEffect = IA->hasSideEffects();
8100   ExtraFlags ExtraInfo(CS);
8101 
8102   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8103   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8104   for (auto &T : TargetConstraints) {
8105     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8106     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8107 
8108     // Compute the value type for each operand.
8109     if (OpInfo.Type == InlineAsm::isInput ||
8110         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8111       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8112 
8113       // Process the call argument. BasicBlocks are labels, currently appearing
8114       // only in asm's.
8115       const Instruction *I = CS.getInstruction();
8116       if (isa<CallBrInst>(I) &&
8117           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8118                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8119         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8120         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8121         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8122       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8123         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8124       } else {
8125         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8126       }
8127 
8128       OpInfo.ConstraintVT =
8129           OpInfo
8130               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8131               .getSimpleVT();
8132     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8133       // The return value of the call is this value.  As such, there is no
8134       // corresponding argument.
8135       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8136       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8137         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8138             DAG.getDataLayout(), STy->getElementType(ResNo));
8139       } else {
8140         assert(ResNo == 0 && "Asm only has one result!");
8141         OpInfo.ConstraintVT =
8142             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8143       }
8144       ++ResNo;
8145     } else {
8146       OpInfo.ConstraintVT = MVT::Other;
8147     }
8148 
8149     if (!HasSideEffect)
8150       HasSideEffect = OpInfo.hasMemory(TLI);
8151 
8152     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8153     // FIXME: Could we compute this on OpInfo rather than T?
8154 
8155     // Compute the constraint code and ConstraintType to use.
8156     TLI.ComputeConstraintToUse(T, SDValue());
8157 
8158     if (T.ConstraintType == TargetLowering::C_Immediate &&
8159         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8160       // We've delayed emitting a diagnostic like the "n" constraint because
8161       // inlining could cause an integer showing up.
8162       return emitInlineAsmError(
8163           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8164                   "integer constant expression");
8165 
8166     ExtraInfo.update(T);
8167   }
8168 
8169 
8170   // We won't need to flush pending loads if this asm doesn't touch
8171   // memory and is nonvolatile.
8172   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8173 
8174   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8175   if (IsCallBr) {
8176     // If this is a callbr we need to flush pending exports since inlineasm_br
8177     // is a terminator. We need to do this before nodes are glued to
8178     // the inlineasm_br node.
8179     Chain = getControlRoot();
8180   }
8181 
8182   // Second pass over the constraints: compute which constraint option to use.
8183   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8184     // If this is an output operand with a matching input operand, look up the
8185     // matching input. If their types mismatch, e.g. one is an integer, the
8186     // other is floating point, or their sizes are different, flag it as an
8187     // error.
8188     if (OpInfo.hasMatchingInput()) {
8189       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8190       patchMatchingInput(OpInfo, Input, DAG);
8191     }
8192 
8193     // Compute the constraint code and ConstraintType to use.
8194     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8195 
8196     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8197         OpInfo.Type == InlineAsm::isClobber)
8198       continue;
8199 
8200     // If this is a memory input, and if the operand is not indirect, do what we
8201     // need to provide an address for the memory input.
8202     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8203         !OpInfo.isIndirect) {
8204       assert((OpInfo.isMultipleAlternative ||
8205               (OpInfo.Type == InlineAsm::isInput)) &&
8206              "Can only indirectify direct input operands!");
8207 
8208       // Memory operands really want the address of the value.
8209       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8210 
8211       // There is no longer a Value* corresponding to this operand.
8212       OpInfo.CallOperandVal = nullptr;
8213 
8214       // It is now an indirect operand.
8215       OpInfo.isIndirect = true;
8216     }
8217 
8218   }
8219 
8220   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8221   std::vector<SDValue> AsmNodeOperands;
8222   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8223   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8224       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8225 
8226   // If we have a !srcloc metadata node associated with it, we want to attach
8227   // this to the ultimately generated inline asm machineinstr.  To do this, we
8228   // pass in the third operand as this (potentially null) inline asm MDNode.
8229   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8230   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8231 
8232   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8233   // bits as operand 3.
8234   AsmNodeOperands.push_back(DAG.getTargetConstant(
8235       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8236 
8237   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8238   // this, assign virtual and physical registers for inputs and otput.
8239   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8240     // Assign Registers.
8241     SDISelAsmOperandInfo &RefOpInfo =
8242         OpInfo.isMatchingInputConstraint()
8243             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8244             : OpInfo;
8245     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8246 
8247     switch (OpInfo.Type) {
8248     case InlineAsm::isOutput:
8249       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8250         unsigned ConstraintID =
8251             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8252         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8253                "Failed to convert memory constraint code to constraint id.");
8254 
8255         // Add information to the INLINEASM node to know about this output.
8256         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8257         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8258         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8259                                                         MVT::i32));
8260         AsmNodeOperands.push_back(OpInfo.CallOperand);
8261       } else {
8262         // Otherwise, this outputs to a register (directly for C_Register /
8263         // C_RegisterClass, and a target-defined fashion for
8264         // C_Immediate/C_Other). Find a register that we can use.
8265         if (OpInfo.AssignedRegs.Regs.empty()) {
8266           emitInlineAsmError(
8267               CS, "couldn't allocate output register for constraint '" +
8268                       Twine(OpInfo.ConstraintCode) + "'");
8269           return;
8270         }
8271 
8272         // Add information to the INLINEASM node to know that this register is
8273         // set.
8274         OpInfo.AssignedRegs.AddInlineAsmOperands(
8275             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8276                                   : InlineAsm::Kind_RegDef,
8277             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8278       }
8279       break;
8280 
8281     case InlineAsm::isInput: {
8282       SDValue InOperandVal = OpInfo.CallOperand;
8283 
8284       if (OpInfo.isMatchingInputConstraint()) {
8285         // If this is required to match an output register we have already set,
8286         // just use its register.
8287         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8288                                                   AsmNodeOperands);
8289         unsigned OpFlag =
8290           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8291         if (InlineAsm::isRegDefKind(OpFlag) ||
8292             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8293           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8294           if (OpInfo.isIndirect) {
8295             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8296             emitInlineAsmError(CS, "inline asm not supported yet:"
8297                                    " don't know how to handle tied "
8298                                    "indirect register inputs");
8299             return;
8300           }
8301 
8302           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8303           SmallVector<unsigned, 4> Regs;
8304 
8305           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8306             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8307             MachineRegisterInfo &RegInfo =
8308                 DAG.getMachineFunction().getRegInfo();
8309             for (unsigned i = 0; i != NumRegs; ++i)
8310               Regs.push_back(RegInfo.createVirtualRegister(RC));
8311           } else {
8312             emitInlineAsmError(CS, "inline asm error: This value type register "
8313                                    "class is not natively supported!");
8314             return;
8315           }
8316 
8317           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8318 
8319           SDLoc dl = getCurSDLoc();
8320           // Use the produced MatchedRegs object to
8321           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8322                                     CS.getInstruction());
8323           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8324                                            true, OpInfo.getMatchedOperand(), dl,
8325                                            DAG, AsmNodeOperands);
8326           break;
8327         }
8328 
8329         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8330         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8331                "Unexpected number of operands");
8332         // Add information to the INLINEASM node to know about this input.
8333         // See InlineAsm.h isUseOperandTiedToDef.
8334         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8335         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8336                                                     OpInfo.getMatchedOperand());
8337         AsmNodeOperands.push_back(DAG.getTargetConstant(
8338             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8339         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8340         break;
8341       }
8342 
8343       // Treat indirect 'X' constraint as memory.
8344       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8345           OpInfo.isIndirect)
8346         OpInfo.ConstraintType = TargetLowering::C_Memory;
8347 
8348       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8349           OpInfo.ConstraintType == TargetLowering::C_Other) {
8350         std::vector<SDValue> Ops;
8351         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8352                                           Ops, DAG);
8353         if (Ops.empty()) {
8354           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8355             if (isa<ConstantSDNode>(InOperandVal)) {
8356               emitInlineAsmError(CS, "value out of range for constraint '" +
8357                                  Twine(OpInfo.ConstraintCode) + "'");
8358               return;
8359             }
8360 
8361           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8362                                      Twine(OpInfo.ConstraintCode) + "'");
8363           return;
8364         }
8365 
8366         // Add information to the INLINEASM node to know about this input.
8367         unsigned ResOpType =
8368           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8369         AsmNodeOperands.push_back(DAG.getTargetConstant(
8370             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8371         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8372         break;
8373       }
8374 
8375       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8376         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8377         assert(InOperandVal.getValueType() ==
8378                    TLI.getPointerTy(DAG.getDataLayout()) &&
8379                "Memory operands expect pointer values");
8380 
8381         unsigned ConstraintID =
8382             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8383         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8384                "Failed to convert memory constraint code to constraint id.");
8385 
8386         // Add information to the INLINEASM node to know about this input.
8387         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8388         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8389         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8390                                                         getCurSDLoc(),
8391                                                         MVT::i32));
8392         AsmNodeOperands.push_back(InOperandVal);
8393         break;
8394       }
8395 
8396       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8397               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8398              "Unknown constraint type!");
8399 
8400       // TODO: Support this.
8401       if (OpInfo.isIndirect) {
8402         emitInlineAsmError(
8403             CS, "Don't know how to handle indirect register inputs yet "
8404                 "for constraint '" +
8405                     Twine(OpInfo.ConstraintCode) + "'");
8406         return;
8407       }
8408 
8409       // Copy the input into the appropriate registers.
8410       if (OpInfo.AssignedRegs.Regs.empty()) {
8411         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8412                                    Twine(OpInfo.ConstraintCode) + "'");
8413         return;
8414       }
8415 
8416       SDLoc dl = getCurSDLoc();
8417 
8418       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8419                                         Chain, &Flag, CS.getInstruction());
8420 
8421       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8422                                                dl, DAG, AsmNodeOperands);
8423       break;
8424     }
8425     case InlineAsm::isClobber:
8426       // Add the clobbered value to the operand list, so that the register
8427       // allocator is aware that the physreg got clobbered.
8428       if (!OpInfo.AssignedRegs.Regs.empty())
8429         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8430                                                  false, 0, getCurSDLoc(), DAG,
8431                                                  AsmNodeOperands);
8432       break;
8433     }
8434   }
8435 
8436   // Finish up input operands.  Set the input chain and add the flag last.
8437   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8438   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8439 
8440   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8441   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8442                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8443   Flag = Chain.getValue(1);
8444 
8445   // Do additional work to generate outputs.
8446 
8447   SmallVector<EVT, 1> ResultVTs;
8448   SmallVector<SDValue, 1> ResultValues;
8449   SmallVector<SDValue, 8> OutChains;
8450 
8451   llvm::Type *CSResultType = CS.getType();
8452   ArrayRef<Type *> ResultTypes;
8453   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8454     ResultTypes = StructResult->elements();
8455   else if (!CSResultType->isVoidTy())
8456     ResultTypes = makeArrayRef(CSResultType);
8457 
8458   auto CurResultType = ResultTypes.begin();
8459   auto handleRegAssign = [&](SDValue V) {
8460     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8461     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8462     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8463     ++CurResultType;
8464     // If the type of the inline asm call site return value is different but has
8465     // same size as the type of the asm output bitcast it.  One example of this
8466     // is for vectors with different width / number of elements.  This can
8467     // happen for register classes that can contain multiple different value
8468     // types.  The preg or vreg allocated may not have the same VT as was
8469     // expected.
8470     //
8471     // This can also happen for a return value that disagrees with the register
8472     // class it is put in, eg. a double in a general-purpose register on a
8473     // 32-bit machine.
8474     if (ResultVT != V.getValueType() &&
8475         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8476       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8477     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8478              V.getValueType().isInteger()) {
8479       // If a result value was tied to an input value, the computed result
8480       // may have a wider width than the expected result.  Extract the
8481       // relevant portion.
8482       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8483     }
8484     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8485     ResultVTs.push_back(ResultVT);
8486     ResultValues.push_back(V);
8487   };
8488 
8489   // Deal with output operands.
8490   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8491     if (OpInfo.Type == InlineAsm::isOutput) {
8492       SDValue Val;
8493       // Skip trivial output operands.
8494       if (OpInfo.AssignedRegs.Regs.empty())
8495         continue;
8496 
8497       switch (OpInfo.ConstraintType) {
8498       case TargetLowering::C_Register:
8499       case TargetLowering::C_RegisterClass:
8500         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8501             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8502         break;
8503       case TargetLowering::C_Immediate:
8504       case TargetLowering::C_Other:
8505         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8506                                               OpInfo, DAG);
8507         break;
8508       case TargetLowering::C_Memory:
8509         break; // Already handled.
8510       case TargetLowering::C_Unknown:
8511         assert(false && "Unexpected unknown constraint");
8512       }
8513 
8514       // Indirect output manifest as stores. Record output chains.
8515       if (OpInfo.isIndirect) {
8516         const Value *Ptr = OpInfo.CallOperandVal;
8517         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8518         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8519                                      MachinePointerInfo(Ptr));
8520         OutChains.push_back(Store);
8521       } else {
8522         // generate CopyFromRegs to associated registers.
8523         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8524         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8525           for (const SDValue &V : Val->op_values())
8526             handleRegAssign(V);
8527         } else
8528           handleRegAssign(Val);
8529       }
8530     }
8531   }
8532 
8533   // Set results.
8534   if (!ResultValues.empty()) {
8535     assert(CurResultType == ResultTypes.end() &&
8536            "Mismatch in number of ResultTypes");
8537     assert(ResultValues.size() == ResultTypes.size() &&
8538            "Mismatch in number of output operands in asm result");
8539 
8540     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8541                             DAG.getVTList(ResultVTs), ResultValues);
8542     setValue(CS.getInstruction(), V);
8543   }
8544 
8545   // Collect store chains.
8546   if (!OutChains.empty())
8547     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8548 
8549   // Only Update Root if inline assembly has a memory effect.
8550   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8551     DAG.setRoot(Chain);
8552 }
8553 
8554 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8555                                              const Twine &Message) {
8556   LLVMContext &Ctx = *DAG.getContext();
8557   Ctx.emitError(CS.getInstruction(), Message);
8558 
8559   // Make sure we leave the DAG in a valid state
8560   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8561   SmallVector<EVT, 1> ValueVTs;
8562   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8563 
8564   if (ValueVTs.empty())
8565     return;
8566 
8567   SmallVector<SDValue, 1> Ops;
8568   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8569     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8570 
8571   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8572 }
8573 
8574 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8575   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8576                           MVT::Other, getRoot(),
8577                           getValue(I.getArgOperand(0)),
8578                           DAG.getSrcValue(I.getArgOperand(0))));
8579 }
8580 
8581 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8582   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8583   const DataLayout &DL = DAG.getDataLayout();
8584   SDValue V = DAG.getVAArg(
8585       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8586       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8587       DL.getABITypeAlignment(I.getType()));
8588   DAG.setRoot(V.getValue(1));
8589 
8590   if (I.getType()->isPointerTy())
8591     V = DAG.getPtrExtOrTrunc(
8592         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8593   setValue(&I, V);
8594 }
8595 
8596 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8597   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8598                           MVT::Other, getRoot(),
8599                           getValue(I.getArgOperand(0)),
8600                           DAG.getSrcValue(I.getArgOperand(0))));
8601 }
8602 
8603 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8604   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8605                           MVT::Other, getRoot(),
8606                           getValue(I.getArgOperand(0)),
8607                           getValue(I.getArgOperand(1)),
8608                           DAG.getSrcValue(I.getArgOperand(0)),
8609                           DAG.getSrcValue(I.getArgOperand(1))));
8610 }
8611 
8612 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8613                                                     const Instruction &I,
8614                                                     SDValue Op) {
8615   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8616   if (!Range)
8617     return Op;
8618 
8619   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8620   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8621     return Op;
8622 
8623   APInt Lo = CR.getUnsignedMin();
8624   if (!Lo.isMinValue())
8625     return Op;
8626 
8627   APInt Hi = CR.getUnsignedMax();
8628   unsigned Bits = std::max(Hi.getActiveBits(),
8629                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8630 
8631   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8632 
8633   SDLoc SL = getCurSDLoc();
8634 
8635   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8636                              DAG.getValueType(SmallVT));
8637   unsigned NumVals = Op.getNode()->getNumValues();
8638   if (NumVals == 1)
8639     return ZExt;
8640 
8641   SmallVector<SDValue, 4> Ops;
8642 
8643   Ops.push_back(ZExt);
8644   for (unsigned I = 1; I != NumVals; ++I)
8645     Ops.push_back(Op.getValue(I));
8646 
8647   return DAG.getMergeValues(Ops, SL);
8648 }
8649 
8650 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8651 /// the call being lowered.
8652 ///
8653 /// This is a helper for lowering intrinsics that follow a target calling
8654 /// convention or require stack pointer adjustment. Only a subset of the
8655 /// intrinsic's operands need to participate in the calling convention.
8656 void SelectionDAGBuilder::populateCallLoweringInfo(
8657     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8658     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8659     bool IsPatchPoint) {
8660   TargetLowering::ArgListTy Args;
8661   Args.reserve(NumArgs);
8662 
8663   // Populate the argument list.
8664   // Attributes for args start at offset 1, after the return attribute.
8665   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8666        ArgI != ArgE; ++ArgI) {
8667     const Value *V = Call->getOperand(ArgI);
8668 
8669     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8670 
8671     TargetLowering::ArgListEntry Entry;
8672     Entry.Node = getValue(V);
8673     Entry.Ty = V->getType();
8674     Entry.setAttributes(Call, ArgI);
8675     Args.push_back(Entry);
8676   }
8677 
8678   CLI.setDebugLoc(getCurSDLoc())
8679       .setChain(getRoot())
8680       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8681       .setDiscardResult(Call->use_empty())
8682       .setIsPatchPoint(IsPatchPoint);
8683 }
8684 
8685 /// Add a stack map intrinsic call's live variable operands to a stackmap
8686 /// or patchpoint target node's operand list.
8687 ///
8688 /// Constants are converted to TargetConstants purely as an optimization to
8689 /// avoid constant materialization and register allocation.
8690 ///
8691 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8692 /// generate addess computation nodes, and so FinalizeISel can convert the
8693 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8694 /// address materialization and register allocation, but may also be required
8695 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8696 /// alloca in the entry block, then the runtime may assume that the alloca's
8697 /// StackMap location can be read immediately after compilation and that the
8698 /// location is valid at any point during execution (this is similar to the
8699 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8700 /// only available in a register, then the runtime would need to trap when
8701 /// execution reaches the StackMap in order to read the alloca's location.
8702 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8703                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8704                                 SelectionDAGBuilder &Builder) {
8705   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8706     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8707     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8708       Ops.push_back(
8709         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8710       Ops.push_back(
8711         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8712     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8713       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8714       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8715           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8716     } else
8717       Ops.push_back(OpVal);
8718   }
8719 }
8720 
8721 /// Lower llvm.experimental.stackmap directly to its target opcode.
8722 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8723   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8724   //                                  [live variables...])
8725 
8726   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8727 
8728   SDValue Chain, InFlag, Callee, NullPtr;
8729   SmallVector<SDValue, 32> Ops;
8730 
8731   SDLoc DL = getCurSDLoc();
8732   Callee = getValue(CI.getCalledValue());
8733   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8734 
8735   // The stackmap intrinsic only records the live variables (the arguments
8736   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8737   // intrinsic, this won't be lowered to a function call. This means we don't
8738   // have to worry about calling conventions and target specific lowering code.
8739   // Instead we perform the call lowering right here.
8740   //
8741   // chain, flag = CALLSEQ_START(chain, 0, 0)
8742   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8743   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8744   //
8745   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8746   InFlag = Chain.getValue(1);
8747 
8748   // Add the <id> and <numBytes> constants.
8749   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8750   Ops.push_back(DAG.getTargetConstant(
8751                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8752   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8753   Ops.push_back(DAG.getTargetConstant(
8754                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8755                   MVT::i32));
8756 
8757   // Push live variables for the stack map.
8758   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8759 
8760   // We are not pushing any register mask info here on the operands list,
8761   // because the stackmap doesn't clobber anything.
8762 
8763   // Push the chain and the glue flag.
8764   Ops.push_back(Chain);
8765   Ops.push_back(InFlag);
8766 
8767   // Create the STACKMAP node.
8768   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8769   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8770   Chain = SDValue(SM, 0);
8771   InFlag = Chain.getValue(1);
8772 
8773   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8774 
8775   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8776 
8777   // Set the root to the target-lowered call chain.
8778   DAG.setRoot(Chain);
8779 
8780   // Inform the Frame Information that we have a stackmap in this function.
8781   FuncInfo.MF->getFrameInfo().setHasStackMap();
8782 }
8783 
8784 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8785 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8786                                           const BasicBlock *EHPadBB) {
8787   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8788   //                                                 i32 <numBytes>,
8789   //                                                 i8* <target>,
8790   //                                                 i32 <numArgs>,
8791   //                                                 [Args...],
8792   //                                                 [live variables...])
8793 
8794   CallingConv::ID CC = CS.getCallingConv();
8795   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8796   bool HasDef = !CS->getType()->isVoidTy();
8797   SDLoc dl = getCurSDLoc();
8798   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8799 
8800   // Handle immediate and symbolic callees.
8801   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8802     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8803                                    /*isTarget=*/true);
8804   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8805     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8806                                          SDLoc(SymbolicCallee),
8807                                          SymbolicCallee->getValueType(0));
8808 
8809   // Get the real number of arguments participating in the call <numArgs>
8810   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8811   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8812 
8813   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8814   // Intrinsics include all meta-operands up to but not including CC.
8815   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8816   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8817          "Not enough arguments provided to the patchpoint intrinsic");
8818 
8819   // For AnyRegCC the arguments are lowered later on manually.
8820   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8821   Type *ReturnTy =
8822     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8823 
8824   TargetLowering::CallLoweringInfo CLI(DAG);
8825   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8826                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8827   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8828 
8829   SDNode *CallEnd = Result.second.getNode();
8830   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8831     CallEnd = CallEnd->getOperand(0).getNode();
8832 
8833   /// Get a call instruction from the call sequence chain.
8834   /// Tail calls are not allowed.
8835   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8836          "Expected a callseq node.");
8837   SDNode *Call = CallEnd->getOperand(0).getNode();
8838   bool HasGlue = Call->getGluedNode();
8839 
8840   // Replace the target specific call node with the patchable intrinsic.
8841   SmallVector<SDValue, 8> Ops;
8842 
8843   // Add the <id> and <numBytes> constants.
8844   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8845   Ops.push_back(DAG.getTargetConstant(
8846                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8847   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8848   Ops.push_back(DAG.getTargetConstant(
8849                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8850                   MVT::i32));
8851 
8852   // Add the callee.
8853   Ops.push_back(Callee);
8854 
8855   // Adjust <numArgs> to account for any arguments that have been passed on the
8856   // stack instead.
8857   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8858   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8859   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8860   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8861 
8862   // Add the calling convention
8863   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8864 
8865   // Add the arguments we omitted previously. The register allocator should
8866   // place these in any free register.
8867   if (IsAnyRegCC)
8868     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8869       Ops.push_back(getValue(CS.getArgument(i)));
8870 
8871   // Push the arguments from the call instruction up to the register mask.
8872   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8873   Ops.append(Call->op_begin() + 2, e);
8874 
8875   // Push live variables for the stack map.
8876   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8877 
8878   // Push the register mask info.
8879   if (HasGlue)
8880     Ops.push_back(*(Call->op_end()-2));
8881   else
8882     Ops.push_back(*(Call->op_end()-1));
8883 
8884   // Push the chain (this is originally the first operand of the call, but
8885   // becomes now the last or second to last operand).
8886   Ops.push_back(*(Call->op_begin()));
8887 
8888   // Push the glue flag (last operand).
8889   if (HasGlue)
8890     Ops.push_back(*(Call->op_end()-1));
8891 
8892   SDVTList NodeTys;
8893   if (IsAnyRegCC && HasDef) {
8894     // Create the return types based on the intrinsic definition
8895     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8896     SmallVector<EVT, 3> ValueVTs;
8897     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8898     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8899 
8900     // There is always a chain and a glue type at the end
8901     ValueVTs.push_back(MVT::Other);
8902     ValueVTs.push_back(MVT::Glue);
8903     NodeTys = DAG.getVTList(ValueVTs);
8904   } else
8905     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8906 
8907   // Replace the target specific call node with a PATCHPOINT node.
8908   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8909                                          dl, NodeTys, Ops);
8910 
8911   // Update the NodeMap.
8912   if (HasDef) {
8913     if (IsAnyRegCC)
8914       setValue(CS.getInstruction(), SDValue(MN, 0));
8915     else
8916       setValue(CS.getInstruction(), Result.first);
8917   }
8918 
8919   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8920   // call sequence. Furthermore the location of the chain and glue can change
8921   // when the AnyReg calling convention is used and the intrinsic returns a
8922   // value.
8923   if (IsAnyRegCC && HasDef) {
8924     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8925     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8926     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8927   } else
8928     DAG.ReplaceAllUsesWith(Call, MN);
8929   DAG.DeleteNode(Call);
8930 
8931   // Inform the Frame Information that we have a patchpoint in this function.
8932   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8933 }
8934 
8935 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8936                                             unsigned Intrinsic) {
8937   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8938   SDValue Op1 = getValue(I.getArgOperand(0));
8939   SDValue Op2;
8940   if (I.getNumArgOperands() > 1)
8941     Op2 = getValue(I.getArgOperand(1));
8942   SDLoc dl = getCurSDLoc();
8943   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8944   SDValue Res;
8945   FastMathFlags FMF;
8946   if (isa<FPMathOperator>(I))
8947     FMF = I.getFastMathFlags();
8948 
8949   switch (Intrinsic) {
8950   case Intrinsic::experimental_vector_reduce_v2_fadd:
8951     if (FMF.allowReassoc())
8952       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8953                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8954     else
8955       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8956     break;
8957   case Intrinsic::experimental_vector_reduce_v2_fmul:
8958     if (FMF.allowReassoc())
8959       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8960                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8961     else
8962       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8963     break;
8964   case Intrinsic::experimental_vector_reduce_add:
8965     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8966     break;
8967   case Intrinsic::experimental_vector_reduce_mul:
8968     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8969     break;
8970   case Intrinsic::experimental_vector_reduce_and:
8971     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8972     break;
8973   case Intrinsic::experimental_vector_reduce_or:
8974     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8975     break;
8976   case Intrinsic::experimental_vector_reduce_xor:
8977     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8978     break;
8979   case Intrinsic::experimental_vector_reduce_smax:
8980     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8981     break;
8982   case Intrinsic::experimental_vector_reduce_smin:
8983     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8984     break;
8985   case Intrinsic::experimental_vector_reduce_umax:
8986     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8987     break;
8988   case Intrinsic::experimental_vector_reduce_umin:
8989     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8990     break;
8991   case Intrinsic::experimental_vector_reduce_fmax:
8992     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8993     break;
8994   case Intrinsic::experimental_vector_reduce_fmin:
8995     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8996     break;
8997   default:
8998     llvm_unreachable("Unhandled vector reduce intrinsic");
8999   }
9000   setValue(&I, Res);
9001 }
9002 
9003 /// Returns an AttributeList representing the attributes applied to the return
9004 /// value of the given call.
9005 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9006   SmallVector<Attribute::AttrKind, 2> Attrs;
9007   if (CLI.RetSExt)
9008     Attrs.push_back(Attribute::SExt);
9009   if (CLI.RetZExt)
9010     Attrs.push_back(Attribute::ZExt);
9011   if (CLI.IsInReg)
9012     Attrs.push_back(Attribute::InReg);
9013 
9014   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9015                             Attrs);
9016 }
9017 
9018 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9019 /// implementation, which just calls LowerCall.
9020 /// FIXME: When all targets are
9021 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9022 std::pair<SDValue, SDValue>
9023 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9024   // Handle the incoming return values from the call.
9025   CLI.Ins.clear();
9026   Type *OrigRetTy = CLI.RetTy;
9027   SmallVector<EVT, 4> RetTys;
9028   SmallVector<uint64_t, 4> Offsets;
9029   auto &DL = CLI.DAG.getDataLayout();
9030   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9031 
9032   if (CLI.IsPostTypeLegalization) {
9033     // If we are lowering a libcall after legalization, split the return type.
9034     SmallVector<EVT, 4> OldRetTys;
9035     SmallVector<uint64_t, 4> OldOffsets;
9036     RetTys.swap(OldRetTys);
9037     Offsets.swap(OldOffsets);
9038 
9039     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9040       EVT RetVT = OldRetTys[i];
9041       uint64_t Offset = OldOffsets[i];
9042       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9043       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9044       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9045       RetTys.append(NumRegs, RegisterVT);
9046       for (unsigned j = 0; j != NumRegs; ++j)
9047         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9048     }
9049   }
9050 
9051   SmallVector<ISD::OutputArg, 4> Outs;
9052   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9053 
9054   bool CanLowerReturn =
9055       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9056                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9057 
9058   SDValue DemoteStackSlot;
9059   int DemoteStackIdx = -100;
9060   if (!CanLowerReturn) {
9061     // FIXME: equivalent assert?
9062     // assert(!CS.hasInAllocaArgument() &&
9063     //        "sret demotion is incompatible with inalloca");
9064     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9065     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9066     MachineFunction &MF = CLI.DAG.getMachineFunction();
9067     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9068     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9069                                               DL.getAllocaAddrSpace());
9070 
9071     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9072     ArgListEntry Entry;
9073     Entry.Node = DemoteStackSlot;
9074     Entry.Ty = StackSlotPtrType;
9075     Entry.IsSExt = false;
9076     Entry.IsZExt = false;
9077     Entry.IsInReg = false;
9078     Entry.IsSRet = true;
9079     Entry.IsNest = false;
9080     Entry.IsByVal = false;
9081     Entry.IsReturned = false;
9082     Entry.IsSwiftSelf = false;
9083     Entry.IsSwiftError = false;
9084     Entry.IsCFGuardTarget = false;
9085     Entry.Alignment = Align;
9086     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9087     CLI.NumFixedArgs += 1;
9088     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9089 
9090     // sret demotion isn't compatible with tail-calls, since the sret argument
9091     // points into the callers stack frame.
9092     CLI.IsTailCall = false;
9093   } else {
9094     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9095         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9096     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9097       ISD::ArgFlagsTy Flags;
9098       if (NeedsRegBlock) {
9099         Flags.setInConsecutiveRegs();
9100         if (I == RetTys.size() - 1)
9101           Flags.setInConsecutiveRegsLast();
9102       }
9103       EVT VT = RetTys[I];
9104       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9105                                                      CLI.CallConv, VT);
9106       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9107                                                        CLI.CallConv, VT);
9108       for (unsigned i = 0; i != NumRegs; ++i) {
9109         ISD::InputArg MyFlags;
9110         MyFlags.Flags = Flags;
9111         MyFlags.VT = RegisterVT;
9112         MyFlags.ArgVT = VT;
9113         MyFlags.Used = CLI.IsReturnValueUsed;
9114         if (CLI.RetTy->isPointerTy()) {
9115           MyFlags.Flags.setPointer();
9116           MyFlags.Flags.setPointerAddrSpace(
9117               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9118         }
9119         if (CLI.RetSExt)
9120           MyFlags.Flags.setSExt();
9121         if (CLI.RetZExt)
9122           MyFlags.Flags.setZExt();
9123         if (CLI.IsInReg)
9124           MyFlags.Flags.setInReg();
9125         CLI.Ins.push_back(MyFlags);
9126       }
9127     }
9128   }
9129 
9130   // We push in swifterror return as the last element of CLI.Ins.
9131   ArgListTy &Args = CLI.getArgs();
9132   if (supportSwiftError()) {
9133     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9134       if (Args[i].IsSwiftError) {
9135         ISD::InputArg MyFlags;
9136         MyFlags.VT = getPointerTy(DL);
9137         MyFlags.ArgVT = EVT(getPointerTy(DL));
9138         MyFlags.Flags.setSwiftError();
9139         CLI.Ins.push_back(MyFlags);
9140       }
9141     }
9142   }
9143 
9144   // Handle all of the outgoing arguments.
9145   CLI.Outs.clear();
9146   CLI.OutVals.clear();
9147   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9148     SmallVector<EVT, 4> ValueVTs;
9149     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9150     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9151     Type *FinalType = Args[i].Ty;
9152     if (Args[i].IsByVal)
9153       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9154     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9155         FinalType, CLI.CallConv, CLI.IsVarArg);
9156     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9157          ++Value) {
9158       EVT VT = ValueVTs[Value];
9159       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9160       SDValue Op = SDValue(Args[i].Node.getNode(),
9161                            Args[i].Node.getResNo() + Value);
9162       ISD::ArgFlagsTy Flags;
9163 
9164       // Certain targets (such as MIPS), may have a different ABI alignment
9165       // for a type depending on the context. Give the target a chance to
9166       // specify the alignment it wants.
9167       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9168 
9169       if (Args[i].Ty->isPointerTy()) {
9170         Flags.setPointer();
9171         Flags.setPointerAddrSpace(
9172             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9173       }
9174       if (Args[i].IsZExt)
9175         Flags.setZExt();
9176       if (Args[i].IsSExt)
9177         Flags.setSExt();
9178       if (Args[i].IsInReg) {
9179         // If we are using vectorcall calling convention, a structure that is
9180         // passed InReg - is surely an HVA
9181         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9182             isa<StructType>(FinalType)) {
9183           // The first value of a structure is marked
9184           if (0 == Value)
9185             Flags.setHvaStart();
9186           Flags.setHva();
9187         }
9188         // Set InReg Flag
9189         Flags.setInReg();
9190       }
9191       if (Args[i].IsSRet)
9192         Flags.setSRet();
9193       if (Args[i].IsSwiftSelf)
9194         Flags.setSwiftSelf();
9195       if (Args[i].IsSwiftError)
9196         Flags.setSwiftError();
9197       if (Args[i].IsCFGuardTarget)
9198         Flags.setCFGuardTarget();
9199       if (Args[i].IsByVal)
9200         Flags.setByVal();
9201       if (Args[i].IsInAlloca) {
9202         Flags.setInAlloca();
9203         // Set the byval flag for CCAssignFn callbacks that don't know about
9204         // inalloca.  This way we can know how many bytes we should've allocated
9205         // and how many bytes a callee cleanup function will pop.  If we port
9206         // inalloca to more targets, we'll have to add custom inalloca handling
9207         // in the various CC lowering callbacks.
9208         Flags.setByVal();
9209       }
9210       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9211         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9212         Type *ElementTy = Ty->getElementType();
9213 
9214         unsigned FrameSize = DL.getTypeAllocSize(
9215             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9216         Flags.setByValSize(FrameSize);
9217 
9218         // info is not there but there are cases it cannot get right.
9219         unsigned FrameAlign;
9220         if (Args[i].Alignment)
9221           FrameAlign = Args[i].Alignment;
9222         else
9223           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9224         Flags.setByValAlign(Align(FrameAlign));
9225       }
9226       if (Args[i].IsNest)
9227         Flags.setNest();
9228       if (NeedsRegBlock)
9229         Flags.setInConsecutiveRegs();
9230       Flags.setOrigAlign(OriginalAlignment);
9231 
9232       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9233                                                  CLI.CallConv, VT);
9234       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9235                                                         CLI.CallConv, VT);
9236       SmallVector<SDValue, 4> Parts(NumParts);
9237       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9238 
9239       if (Args[i].IsSExt)
9240         ExtendKind = ISD::SIGN_EXTEND;
9241       else if (Args[i].IsZExt)
9242         ExtendKind = ISD::ZERO_EXTEND;
9243 
9244       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9245       // for now.
9246       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9247           CanLowerReturn) {
9248         assert((CLI.RetTy == Args[i].Ty ||
9249                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9250                  CLI.RetTy->getPointerAddressSpace() ==
9251                      Args[i].Ty->getPointerAddressSpace())) &&
9252                RetTys.size() == NumValues && "unexpected use of 'returned'");
9253         // Before passing 'returned' to the target lowering code, ensure that
9254         // either the register MVT and the actual EVT are the same size or that
9255         // the return value and argument are extended in the same way; in these
9256         // cases it's safe to pass the argument register value unchanged as the
9257         // return register value (although it's at the target's option whether
9258         // to do so)
9259         // TODO: allow code generation to take advantage of partially preserved
9260         // registers rather than clobbering the entire register when the
9261         // parameter extension method is not compatible with the return
9262         // extension method
9263         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9264             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9265              CLI.RetZExt == Args[i].IsZExt))
9266           Flags.setReturned();
9267       }
9268 
9269       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9270                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9271 
9272       for (unsigned j = 0; j != NumParts; ++j) {
9273         // if it isn't first piece, alignment must be 1
9274         // For scalable vectors the scalable part is currently handled
9275         // by individual targets, so we just use the known minimum size here.
9276         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9277                     i < CLI.NumFixedArgs, i,
9278                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9279         if (NumParts > 1 && j == 0)
9280           MyFlags.Flags.setSplit();
9281         else if (j != 0) {
9282           MyFlags.Flags.setOrigAlign(Align::None());
9283           if (j == NumParts - 1)
9284             MyFlags.Flags.setSplitEnd();
9285         }
9286 
9287         CLI.Outs.push_back(MyFlags);
9288         CLI.OutVals.push_back(Parts[j]);
9289       }
9290 
9291       if (NeedsRegBlock && Value == NumValues - 1)
9292         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9293     }
9294   }
9295 
9296   SmallVector<SDValue, 4> InVals;
9297   CLI.Chain = LowerCall(CLI, InVals);
9298 
9299   // Update CLI.InVals to use outside of this function.
9300   CLI.InVals = InVals;
9301 
9302   // Verify that the target's LowerCall behaved as expected.
9303   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9304          "LowerCall didn't return a valid chain!");
9305   assert((!CLI.IsTailCall || InVals.empty()) &&
9306          "LowerCall emitted a return value for a tail call!");
9307   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9308          "LowerCall didn't emit the correct number of values!");
9309 
9310   // For a tail call, the return value is merely live-out and there aren't
9311   // any nodes in the DAG representing it. Return a special value to
9312   // indicate that a tail call has been emitted and no more Instructions
9313   // should be processed in the current block.
9314   if (CLI.IsTailCall) {
9315     CLI.DAG.setRoot(CLI.Chain);
9316     return std::make_pair(SDValue(), SDValue());
9317   }
9318 
9319 #ifndef NDEBUG
9320   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9321     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9322     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9323            "LowerCall emitted a value with the wrong type!");
9324   }
9325 #endif
9326 
9327   SmallVector<SDValue, 4> ReturnValues;
9328   if (!CanLowerReturn) {
9329     // The instruction result is the result of loading from the
9330     // hidden sret parameter.
9331     SmallVector<EVT, 1> PVTs;
9332     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9333 
9334     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9335     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9336     EVT PtrVT = PVTs[0];
9337 
9338     unsigned NumValues = RetTys.size();
9339     ReturnValues.resize(NumValues);
9340     SmallVector<SDValue, 4> Chains(NumValues);
9341 
9342     // An aggregate return value cannot wrap around the address space, so
9343     // offsets to its parts don't wrap either.
9344     SDNodeFlags Flags;
9345     Flags.setNoUnsignedWrap(true);
9346 
9347     for (unsigned i = 0; i < NumValues; ++i) {
9348       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9349                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9350                                                         PtrVT), Flags);
9351       SDValue L = CLI.DAG.getLoad(
9352           RetTys[i], CLI.DL, CLI.Chain, Add,
9353           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9354                                             DemoteStackIdx, Offsets[i]),
9355           /* Alignment = */ 1);
9356       ReturnValues[i] = L;
9357       Chains[i] = L.getValue(1);
9358     }
9359 
9360     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9361   } else {
9362     // Collect the legal value parts into potentially illegal values
9363     // that correspond to the original function's return values.
9364     Optional<ISD::NodeType> AssertOp;
9365     if (CLI.RetSExt)
9366       AssertOp = ISD::AssertSext;
9367     else if (CLI.RetZExt)
9368       AssertOp = ISD::AssertZext;
9369     unsigned CurReg = 0;
9370     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9371       EVT VT = RetTys[I];
9372       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9373                                                      CLI.CallConv, VT);
9374       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9375                                                        CLI.CallConv, VT);
9376 
9377       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9378                                               NumRegs, RegisterVT, VT, nullptr,
9379                                               CLI.CallConv, AssertOp));
9380       CurReg += NumRegs;
9381     }
9382 
9383     // For a function returning void, there is no return value. We can't create
9384     // such a node, so we just return a null return value in that case. In
9385     // that case, nothing will actually look at the value.
9386     if (ReturnValues.empty())
9387       return std::make_pair(SDValue(), CLI.Chain);
9388   }
9389 
9390   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9391                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9392   return std::make_pair(Res, CLI.Chain);
9393 }
9394 
9395 void TargetLowering::LowerOperationWrapper(SDNode *N,
9396                                            SmallVectorImpl<SDValue> &Results,
9397                                            SelectionDAG &DAG) const {
9398   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9399     Results.push_back(Res);
9400 }
9401 
9402 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9403   llvm_unreachable("LowerOperation not implemented for this target!");
9404 }
9405 
9406 void
9407 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9408   SDValue Op = getNonRegisterValue(V);
9409   assert((Op.getOpcode() != ISD::CopyFromReg ||
9410           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9411          "Copy from a reg to the same reg!");
9412   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9413 
9414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9415   // If this is an InlineAsm we have to match the registers required, not the
9416   // notional registers required by the type.
9417 
9418   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9419                    None); // This is not an ABI copy.
9420   SDValue Chain = DAG.getEntryNode();
9421 
9422   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9423                               FuncInfo.PreferredExtendType.end())
9424                                  ? ISD::ANY_EXTEND
9425                                  : FuncInfo.PreferredExtendType[V];
9426   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9427   PendingExports.push_back(Chain);
9428 }
9429 
9430 #include "llvm/CodeGen/SelectionDAGISel.h"
9431 
9432 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9433 /// entry block, return true.  This includes arguments used by switches, since
9434 /// the switch may expand into multiple basic blocks.
9435 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9436   // With FastISel active, we may be splitting blocks, so force creation
9437   // of virtual registers for all non-dead arguments.
9438   if (FastISel)
9439     return A->use_empty();
9440 
9441   const BasicBlock &Entry = A->getParent()->front();
9442   for (const User *U : A->users())
9443     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9444       return false;  // Use not in entry block.
9445 
9446   return true;
9447 }
9448 
9449 using ArgCopyElisionMapTy =
9450     DenseMap<const Argument *,
9451              std::pair<const AllocaInst *, const StoreInst *>>;
9452 
9453 /// Scan the entry block of the function in FuncInfo for arguments that look
9454 /// like copies into a local alloca. Record any copied arguments in
9455 /// ArgCopyElisionCandidates.
9456 static void
9457 findArgumentCopyElisionCandidates(const DataLayout &DL,
9458                                   FunctionLoweringInfo *FuncInfo,
9459                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9460   // Record the state of every static alloca used in the entry block. Argument
9461   // allocas are all used in the entry block, so we need approximately as many
9462   // entries as we have arguments.
9463   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9464   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9465   unsigned NumArgs = FuncInfo->Fn->arg_size();
9466   StaticAllocas.reserve(NumArgs * 2);
9467 
9468   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9469     if (!V)
9470       return nullptr;
9471     V = V->stripPointerCasts();
9472     const auto *AI = dyn_cast<AllocaInst>(V);
9473     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9474       return nullptr;
9475     auto Iter = StaticAllocas.insert({AI, Unknown});
9476     return &Iter.first->second;
9477   };
9478 
9479   // Look for stores of arguments to static allocas. Look through bitcasts and
9480   // GEPs to handle type coercions, as long as the alloca is fully initialized
9481   // by the store. Any non-store use of an alloca escapes it and any subsequent
9482   // unanalyzed store might write it.
9483   // FIXME: Handle structs initialized with multiple stores.
9484   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9485     // Look for stores, and handle non-store uses conservatively.
9486     const auto *SI = dyn_cast<StoreInst>(&I);
9487     if (!SI) {
9488       // We will look through cast uses, so ignore them completely.
9489       if (I.isCast())
9490         continue;
9491       // Ignore debug info intrinsics, they don't escape or store to allocas.
9492       if (isa<DbgInfoIntrinsic>(I))
9493         continue;
9494       // This is an unknown instruction. Assume it escapes or writes to all
9495       // static alloca operands.
9496       for (const Use &U : I.operands()) {
9497         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9498           *Info = StaticAllocaInfo::Clobbered;
9499       }
9500       continue;
9501     }
9502 
9503     // If the stored value is a static alloca, mark it as escaped.
9504     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9505       *Info = StaticAllocaInfo::Clobbered;
9506 
9507     // Check if the destination is a static alloca.
9508     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9509     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9510     if (!Info)
9511       continue;
9512     const AllocaInst *AI = cast<AllocaInst>(Dst);
9513 
9514     // Skip allocas that have been initialized or clobbered.
9515     if (*Info != StaticAllocaInfo::Unknown)
9516       continue;
9517 
9518     // Check if the stored value is an argument, and that this store fully
9519     // initializes the alloca. Don't elide copies from the same argument twice.
9520     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9521     const auto *Arg = dyn_cast<Argument>(Val);
9522     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9523         Arg->getType()->isEmptyTy() ||
9524         DL.getTypeStoreSize(Arg->getType()) !=
9525             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9526         ArgCopyElisionCandidates.count(Arg)) {
9527       *Info = StaticAllocaInfo::Clobbered;
9528       continue;
9529     }
9530 
9531     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9532                       << '\n');
9533 
9534     // Mark this alloca and store for argument copy elision.
9535     *Info = StaticAllocaInfo::Elidable;
9536     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9537 
9538     // Stop scanning if we've seen all arguments. This will happen early in -O0
9539     // builds, which is useful, because -O0 builds have large entry blocks and
9540     // many allocas.
9541     if (ArgCopyElisionCandidates.size() == NumArgs)
9542       break;
9543   }
9544 }
9545 
9546 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9547 /// ArgVal is a load from a suitable fixed stack object.
9548 static void tryToElideArgumentCopy(
9549     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9550     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9551     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9552     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9553     SDValue ArgVal, bool &ArgHasUses) {
9554   // Check if this is a load from a fixed stack object.
9555   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9556   if (!LNode)
9557     return;
9558   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9559   if (!FINode)
9560     return;
9561 
9562   // Check that the fixed stack object is the right size and alignment.
9563   // Look at the alignment that the user wrote on the alloca instead of looking
9564   // at the stack object.
9565   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9566   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9567   const AllocaInst *AI = ArgCopyIter->second.first;
9568   int FixedIndex = FINode->getIndex();
9569   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9570   int OldIndex = AllocaIndex;
9571   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9572   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9573     LLVM_DEBUG(
9574         dbgs() << "  argument copy elision failed due to bad fixed stack "
9575                   "object size\n");
9576     return;
9577   }
9578   unsigned RequiredAlignment = AI->getAlignment();
9579   if (!RequiredAlignment) {
9580     RequiredAlignment = FuncInfo.MF->getDataLayout().getABITypeAlignment(
9581         AI->getAllocatedType());
9582   }
9583   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9584     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9585                          "greater than stack argument alignment ("
9586                       << RequiredAlignment << " vs "
9587                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9588     return;
9589   }
9590 
9591   // Perform the elision. Delete the old stack object and replace its only use
9592   // in the variable info map. Mark the stack object as mutable.
9593   LLVM_DEBUG({
9594     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9595            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9596            << '\n';
9597   });
9598   MFI.RemoveStackObject(OldIndex);
9599   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9600   AllocaIndex = FixedIndex;
9601   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9602   Chains.push_back(ArgVal.getValue(1));
9603 
9604   // Avoid emitting code for the store implementing the copy.
9605   const StoreInst *SI = ArgCopyIter->second.second;
9606   ElidedArgCopyInstrs.insert(SI);
9607 
9608   // Check for uses of the argument again so that we can avoid exporting ArgVal
9609   // if it is't used by anything other than the store.
9610   for (const Value *U : Arg.users()) {
9611     if (U != SI) {
9612       ArgHasUses = true;
9613       break;
9614     }
9615   }
9616 }
9617 
9618 void SelectionDAGISel::LowerArguments(const Function &F) {
9619   SelectionDAG &DAG = SDB->DAG;
9620   SDLoc dl = SDB->getCurSDLoc();
9621   const DataLayout &DL = DAG.getDataLayout();
9622   SmallVector<ISD::InputArg, 16> Ins;
9623 
9624   if (!FuncInfo->CanLowerReturn) {
9625     // Put in an sret pointer parameter before all the other parameters.
9626     SmallVector<EVT, 1> ValueVTs;
9627     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9628                     F.getReturnType()->getPointerTo(
9629                         DAG.getDataLayout().getAllocaAddrSpace()),
9630                     ValueVTs);
9631 
9632     // NOTE: Assuming that a pointer will never break down to more than one VT
9633     // or one register.
9634     ISD::ArgFlagsTy Flags;
9635     Flags.setSRet();
9636     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9637     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9638                          ISD::InputArg::NoArgIndex, 0);
9639     Ins.push_back(RetArg);
9640   }
9641 
9642   // Look for stores of arguments to static allocas. Mark such arguments with a
9643   // flag to ask the target to give us the memory location of that argument if
9644   // available.
9645   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9646   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9647                                     ArgCopyElisionCandidates);
9648 
9649   // Set up the incoming argument description vector.
9650   for (const Argument &Arg : F.args()) {
9651     unsigned ArgNo = Arg.getArgNo();
9652     SmallVector<EVT, 4> ValueVTs;
9653     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9654     bool isArgValueUsed = !Arg.use_empty();
9655     unsigned PartBase = 0;
9656     Type *FinalType = Arg.getType();
9657     if (Arg.hasAttribute(Attribute::ByVal))
9658       FinalType = Arg.getParamByValType();
9659     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9660         FinalType, F.getCallingConv(), F.isVarArg());
9661     for (unsigned Value = 0, NumValues = ValueVTs.size();
9662          Value != NumValues; ++Value) {
9663       EVT VT = ValueVTs[Value];
9664       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9665       ISD::ArgFlagsTy Flags;
9666 
9667       // Certain targets (such as MIPS), may have a different ABI alignment
9668       // for a type depending on the context. Give the target a chance to
9669       // specify the alignment it wants.
9670       const Align OriginalAlignment(
9671           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9672 
9673       if (Arg.getType()->isPointerTy()) {
9674         Flags.setPointer();
9675         Flags.setPointerAddrSpace(
9676             cast<PointerType>(Arg.getType())->getAddressSpace());
9677       }
9678       if (Arg.hasAttribute(Attribute::ZExt))
9679         Flags.setZExt();
9680       if (Arg.hasAttribute(Attribute::SExt))
9681         Flags.setSExt();
9682       if (Arg.hasAttribute(Attribute::InReg)) {
9683         // If we are using vectorcall calling convention, a structure that is
9684         // passed InReg - is surely an HVA
9685         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9686             isa<StructType>(Arg.getType())) {
9687           // The first value of a structure is marked
9688           if (0 == Value)
9689             Flags.setHvaStart();
9690           Flags.setHva();
9691         }
9692         // Set InReg Flag
9693         Flags.setInReg();
9694       }
9695       if (Arg.hasAttribute(Attribute::StructRet))
9696         Flags.setSRet();
9697       if (Arg.hasAttribute(Attribute::SwiftSelf))
9698         Flags.setSwiftSelf();
9699       if (Arg.hasAttribute(Attribute::SwiftError))
9700         Flags.setSwiftError();
9701       if (Arg.hasAttribute(Attribute::ByVal))
9702         Flags.setByVal();
9703       if (Arg.hasAttribute(Attribute::InAlloca)) {
9704         Flags.setInAlloca();
9705         // Set the byval flag for CCAssignFn callbacks that don't know about
9706         // inalloca.  This way we can know how many bytes we should've allocated
9707         // and how many bytes a callee cleanup function will pop.  If we port
9708         // inalloca to more targets, we'll have to add custom inalloca handling
9709         // in the various CC lowering callbacks.
9710         Flags.setByVal();
9711       }
9712       if (F.getCallingConv() == CallingConv::X86_INTR) {
9713         // IA Interrupt passes frame (1st parameter) by value in the stack.
9714         if (ArgNo == 0)
9715           Flags.setByVal();
9716       }
9717       if (Flags.isByVal() || Flags.isInAlloca()) {
9718         Type *ElementTy = Arg.getParamByValType();
9719 
9720         // For ByVal, size and alignment should be passed from FE.  BE will
9721         // guess if this info is not there but there are cases it cannot get
9722         // right.
9723         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9724         Flags.setByValSize(FrameSize);
9725 
9726         unsigned FrameAlign;
9727         if (Arg.getParamAlignment())
9728           FrameAlign = Arg.getParamAlignment();
9729         else
9730           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9731         Flags.setByValAlign(Align(FrameAlign));
9732       }
9733       if (Arg.hasAttribute(Attribute::Nest))
9734         Flags.setNest();
9735       if (NeedsRegBlock)
9736         Flags.setInConsecutiveRegs();
9737       Flags.setOrigAlign(OriginalAlignment);
9738       if (ArgCopyElisionCandidates.count(&Arg))
9739         Flags.setCopyElisionCandidate();
9740       if (Arg.hasAttribute(Attribute::Returned))
9741         Flags.setReturned();
9742 
9743       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9744           *CurDAG->getContext(), F.getCallingConv(), VT);
9745       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9746           *CurDAG->getContext(), F.getCallingConv(), VT);
9747       for (unsigned i = 0; i != NumRegs; ++i) {
9748         // For scalable vectors, use the minimum size; individual targets
9749         // are responsible for handling scalable vector arguments and
9750         // return values.
9751         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9752                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9753         if (NumRegs > 1 && i == 0)
9754           MyFlags.Flags.setSplit();
9755         // if it isn't first piece, alignment must be 1
9756         else if (i > 0) {
9757           MyFlags.Flags.setOrigAlign(Align::None());
9758           if (i == NumRegs - 1)
9759             MyFlags.Flags.setSplitEnd();
9760         }
9761         Ins.push_back(MyFlags);
9762       }
9763       if (NeedsRegBlock && Value == NumValues - 1)
9764         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9765       PartBase += VT.getStoreSize().getKnownMinSize();
9766     }
9767   }
9768 
9769   // Call the target to set up the argument values.
9770   SmallVector<SDValue, 8> InVals;
9771   SDValue NewRoot = TLI->LowerFormalArguments(
9772       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9773 
9774   // Verify that the target's LowerFormalArguments behaved as expected.
9775   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9776          "LowerFormalArguments didn't return a valid chain!");
9777   assert(InVals.size() == Ins.size() &&
9778          "LowerFormalArguments didn't emit the correct number of values!");
9779   LLVM_DEBUG({
9780     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9781       assert(InVals[i].getNode() &&
9782              "LowerFormalArguments emitted a null value!");
9783       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9784              "LowerFormalArguments emitted a value with the wrong type!");
9785     }
9786   });
9787 
9788   // Update the DAG with the new chain value resulting from argument lowering.
9789   DAG.setRoot(NewRoot);
9790 
9791   // Set up the argument values.
9792   unsigned i = 0;
9793   if (!FuncInfo->CanLowerReturn) {
9794     // Create a virtual register for the sret pointer, and put in a copy
9795     // from the sret argument into it.
9796     SmallVector<EVT, 1> ValueVTs;
9797     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9798                     F.getReturnType()->getPointerTo(
9799                         DAG.getDataLayout().getAllocaAddrSpace()),
9800                     ValueVTs);
9801     MVT VT = ValueVTs[0].getSimpleVT();
9802     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9803     Optional<ISD::NodeType> AssertOp = None;
9804     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9805                                         nullptr, F.getCallingConv(), AssertOp);
9806 
9807     MachineFunction& MF = SDB->DAG.getMachineFunction();
9808     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9809     Register SRetReg =
9810         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9811     FuncInfo->DemoteRegister = SRetReg;
9812     NewRoot =
9813         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9814     DAG.setRoot(NewRoot);
9815 
9816     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9817     ++i;
9818   }
9819 
9820   SmallVector<SDValue, 4> Chains;
9821   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9822   for (const Argument &Arg : F.args()) {
9823     SmallVector<SDValue, 4> ArgValues;
9824     SmallVector<EVT, 4> ValueVTs;
9825     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9826     unsigned NumValues = ValueVTs.size();
9827     if (NumValues == 0)
9828       continue;
9829 
9830     bool ArgHasUses = !Arg.use_empty();
9831 
9832     // Elide the copying store if the target loaded this argument from a
9833     // suitable fixed stack object.
9834     if (Ins[i].Flags.isCopyElisionCandidate()) {
9835       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9836                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9837                              InVals[i], ArgHasUses);
9838     }
9839 
9840     // If this argument is unused then remember its value. It is used to generate
9841     // debugging information.
9842     bool isSwiftErrorArg =
9843         TLI->supportSwiftError() &&
9844         Arg.hasAttribute(Attribute::SwiftError);
9845     if (!ArgHasUses && !isSwiftErrorArg) {
9846       SDB->setUnusedArgValue(&Arg, InVals[i]);
9847 
9848       // Also remember any frame index for use in FastISel.
9849       if (FrameIndexSDNode *FI =
9850           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9851         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9852     }
9853 
9854     for (unsigned Val = 0; Val != NumValues; ++Val) {
9855       EVT VT = ValueVTs[Val];
9856       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9857                                                       F.getCallingConv(), VT);
9858       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9859           *CurDAG->getContext(), F.getCallingConv(), VT);
9860 
9861       // Even an apparent 'unused' swifterror argument needs to be returned. So
9862       // we do generate a copy for it that can be used on return from the
9863       // function.
9864       if (ArgHasUses || isSwiftErrorArg) {
9865         Optional<ISD::NodeType> AssertOp;
9866         if (Arg.hasAttribute(Attribute::SExt))
9867           AssertOp = ISD::AssertSext;
9868         else if (Arg.hasAttribute(Attribute::ZExt))
9869           AssertOp = ISD::AssertZext;
9870 
9871         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9872                                              PartVT, VT, nullptr,
9873                                              F.getCallingConv(), AssertOp));
9874       }
9875 
9876       i += NumParts;
9877     }
9878 
9879     // We don't need to do anything else for unused arguments.
9880     if (ArgValues.empty())
9881       continue;
9882 
9883     // Note down frame index.
9884     if (FrameIndexSDNode *FI =
9885         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9886       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9887 
9888     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9889                                      SDB->getCurSDLoc());
9890 
9891     SDB->setValue(&Arg, Res);
9892     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9893       // We want to associate the argument with the frame index, among
9894       // involved operands, that correspond to the lowest address. The
9895       // getCopyFromParts function, called earlier, is swapping the order of
9896       // the operands to BUILD_PAIR depending on endianness. The result of
9897       // that swapping is that the least significant bits of the argument will
9898       // be in the first operand of the BUILD_PAIR node, and the most
9899       // significant bits will be in the second operand.
9900       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9901       if (LoadSDNode *LNode =
9902           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9903         if (FrameIndexSDNode *FI =
9904             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9905           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9906     }
9907 
9908     // Analyses past this point are naive and don't expect an assertion.
9909     if (Res.getOpcode() == ISD::AssertZext)
9910       Res = Res.getOperand(0);
9911 
9912     // Update the SwiftErrorVRegDefMap.
9913     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9914       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9915       if (Register::isVirtualRegister(Reg))
9916         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9917                                    Reg);
9918     }
9919 
9920     // If this argument is live outside of the entry block, insert a copy from
9921     // wherever we got it to the vreg that other BB's will reference it as.
9922     if (Res.getOpcode() == ISD::CopyFromReg) {
9923       // If we can, though, try to skip creating an unnecessary vreg.
9924       // FIXME: This isn't very clean... it would be nice to make this more
9925       // general.
9926       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9927       if (Register::isVirtualRegister(Reg)) {
9928         FuncInfo->ValueMap[&Arg] = Reg;
9929         continue;
9930       }
9931     }
9932     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9933       FuncInfo->InitializeRegForValue(&Arg);
9934       SDB->CopyToExportRegsIfNeeded(&Arg);
9935     }
9936   }
9937 
9938   if (!Chains.empty()) {
9939     Chains.push_back(NewRoot);
9940     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9941   }
9942 
9943   DAG.setRoot(NewRoot);
9944 
9945   assert(i == InVals.size() && "Argument register count mismatch!");
9946 
9947   // If any argument copy elisions occurred and we have debug info, update the
9948   // stale frame indices used in the dbg.declare variable info table.
9949   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9950   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9951     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9952       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9953       if (I != ArgCopyElisionFrameIndexMap.end())
9954         VI.Slot = I->second;
9955     }
9956   }
9957 
9958   // Finally, if the target has anything special to do, allow it to do so.
9959   EmitFunctionEntryCode();
9960 }
9961 
9962 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9963 /// ensure constants are generated when needed.  Remember the virtual registers
9964 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9965 /// directly add them, because expansion might result in multiple MBB's for one
9966 /// BB.  As such, the start of the BB might correspond to a different MBB than
9967 /// the end.
9968 void
9969 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9970   const Instruction *TI = LLVMBB->getTerminator();
9971 
9972   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9973 
9974   // Check PHI nodes in successors that expect a value to be available from this
9975   // block.
9976   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9977     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9978     if (!isa<PHINode>(SuccBB->begin())) continue;
9979     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9980 
9981     // If this terminator has multiple identical successors (common for
9982     // switches), only handle each succ once.
9983     if (!SuccsHandled.insert(SuccMBB).second)
9984       continue;
9985 
9986     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9987 
9988     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9989     // nodes and Machine PHI nodes, but the incoming operands have not been
9990     // emitted yet.
9991     for (const PHINode &PN : SuccBB->phis()) {
9992       // Ignore dead phi's.
9993       if (PN.use_empty())
9994         continue;
9995 
9996       // Skip empty types
9997       if (PN.getType()->isEmptyTy())
9998         continue;
9999 
10000       unsigned Reg;
10001       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10002 
10003       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10004         unsigned &RegOut = ConstantsOut[C];
10005         if (RegOut == 0) {
10006           RegOut = FuncInfo.CreateRegs(C);
10007           CopyValueToVirtualRegister(C, RegOut);
10008         }
10009         Reg = RegOut;
10010       } else {
10011         DenseMap<const Value *, unsigned>::iterator I =
10012           FuncInfo.ValueMap.find(PHIOp);
10013         if (I != FuncInfo.ValueMap.end())
10014           Reg = I->second;
10015         else {
10016           assert(isa<AllocaInst>(PHIOp) &&
10017                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10018                  "Didn't codegen value into a register!??");
10019           Reg = FuncInfo.CreateRegs(PHIOp);
10020           CopyValueToVirtualRegister(PHIOp, Reg);
10021         }
10022       }
10023 
10024       // Remember that this register needs to added to the machine PHI node as
10025       // the input for this MBB.
10026       SmallVector<EVT, 4> ValueVTs;
10027       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10028       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10029       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10030         EVT VT = ValueVTs[vti];
10031         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10032         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10033           FuncInfo.PHINodesToUpdate.push_back(
10034               std::make_pair(&*MBBI++, Reg + i));
10035         Reg += NumRegisters;
10036       }
10037     }
10038   }
10039 
10040   ConstantsOut.clear();
10041 }
10042 
10043 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10044 /// is 0.
10045 MachineBasicBlock *
10046 SelectionDAGBuilder::StackProtectorDescriptor::
10047 AddSuccessorMBB(const BasicBlock *BB,
10048                 MachineBasicBlock *ParentMBB,
10049                 bool IsLikely,
10050                 MachineBasicBlock *SuccMBB) {
10051   // If SuccBB has not been created yet, create it.
10052   if (!SuccMBB) {
10053     MachineFunction *MF = ParentMBB->getParent();
10054     MachineFunction::iterator BBI(ParentMBB);
10055     SuccMBB = MF->CreateMachineBasicBlock(BB);
10056     MF->insert(++BBI, SuccMBB);
10057   }
10058   // Add it as a successor of ParentMBB.
10059   ParentMBB->addSuccessor(
10060       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10061   return SuccMBB;
10062 }
10063 
10064 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10065   MachineFunction::iterator I(MBB);
10066   if (++I == FuncInfo.MF->end())
10067     return nullptr;
10068   return &*I;
10069 }
10070 
10071 /// During lowering new call nodes can be created (such as memset, etc.).
10072 /// Those will become new roots of the current DAG, but complications arise
10073 /// when they are tail calls. In such cases, the call lowering will update
10074 /// the root, but the builder still needs to know that a tail call has been
10075 /// lowered in order to avoid generating an additional return.
10076 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10077   // If the node is null, we do have a tail call.
10078   if (MaybeTC.getNode() != nullptr)
10079     DAG.setRoot(MaybeTC);
10080   else
10081     HasTailCall = true;
10082 }
10083 
10084 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10085                                         MachineBasicBlock *SwitchMBB,
10086                                         MachineBasicBlock *DefaultMBB) {
10087   MachineFunction *CurMF = FuncInfo.MF;
10088   MachineBasicBlock *NextMBB = nullptr;
10089   MachineFunction::iterator BBI(W.MBB);
10090   if (++BBI != FuncInfo.MF->end())
10091     NextMBB = &*BBI;
10092 
10093   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10094 
10095   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10096 
10097   if (Size == 2 && W.MBB == SwitchMBB) {
10098     // If any two of the cases has the same destination, and if one value
10099     // is the same as the other, but has one bit unset that the other has set,
10100     // use bit manipulation to do two compares at once.  For example:
10101     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10102     // TODO: This could be extended to merge any 2 cases in switches with 3
10103     // cases.
10104     // TODO: Handle cases where W.CaseBB != SwitchBB.
10105     CaseCluster &Small = *W.FirstCluster;
10106     CaseCluster &Big = *W.LastCluster;
10107 
10108     if (Small.Low == Small.High && Big.Low == Big.High &&
10109         Small.MBB == Big.MBB) {
10110       const APInt &SmallValue = Small.Low->getValue();
10111       const APInt &BigValue = Big.Low->getValue();
10112 
10113       // Check that there is only one bit different.
10114       APInt CommonBit = BigValue ^ SmallValue;
10115       if (CommonBit.isPowerOf2()) {
10116         SDValue CondLHS = getValue(Cond);
10117         EVT VT = CondLHS.getValueType();
10118         SDLoc DL = getCurSDLoc();
10119 
10120         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10121                                  DAG.getConstant(CommonBit, DL, VT));
10122         SDValue Cond = DAG.getSetCC(
10123             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10124             ISD::SETEQ);
10125 
10126         // Update successor info.
10127         // Both Small and Big will jump to Small.BB, so we sum up the
10128         // probabilities.
10129         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10130         if (BPI)
10131           addSuccessorWithProb(
10132               SwitchMBB, DefaultMBB,
10133               // The default destination is the first successor in IR.
10134               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10135         else
10136           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10137 
10138         // Insert the true branch.
10139         SDValue BrCond =
10140             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10141                         DAG.getBasicBlock(Small.MBB));
10142         // Insert the false branch.
10143         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10144                              DAG.getBasicBlock(DefaultMBB));
10145 
10146         DAG.setRoot(BrCond);
10147         return;
10148       }
10149     }
10150   }
10151 
10152   if (TM.getOptLevel() != CodeGenOpt::None) {
10153     // Here, we order cases by probability so the most likely case will be
10154     // checked first. However, two clusters can have the same probability in
10155     // which case their relative ordering is non-deterministic. So we use Low
10156     // as a tie-breaker as clusters are guaranteed to never overlap.
10157     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10158                [](const CaseCluster &a, const CaseCluster &b) {
10159       return a.Prob != b.Prob ?
10160              a.Prob > b.Prob :
10161              a.Low->getValue().slt(b.Low->getValue());
10162     });
10163 
10164     // Rearrange the case blocks so that the last one falls through if possible
10165     // without changing the order of probabilities.
10166     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10167       --I;
10168       if (I->Prob > W.LastCluster->Prob)
10169         break;
10170       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10171         std::swap(*I, *W.LastCluster);
10172         break;
10173       }
10174     }
10175   }
10176 
10177   // Compute total probability.
10178   BranchProbability DefaultProb = W.DefaultProb;
10179   BranchProbability UnhandledProbs = DefaultProb;
10180   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10181     UnhandledProbs += I->Prob;
10182 
10183   MachineBasicBlock *CurMBB = W.MBB;
10184   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10185     bool FallthroughUnreachable = false;
10186     MachineBasicBlock *Fallthrough;
10187     if (I == W.LastCluster) {
10188       // For the last cluster, fall through to the default destination.
10189       Fallthrough = DefaultMBB;
10190       FallthroughUnreachable = isa<UnreachableInst>(
10191           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10192     } else {
10193       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10194       CurMF->insert(BBI, Fallthrough);
10195       // Put Cond in a virtual register to make it available from the new blocks.
10196       ExportFromCurrentBlock(Cond);
10197     }
10198     UnhandledProbs -= I->Prob;
10199 
10200     switch (I->Kind) {
10201       case CC_JumpTable: {
10202         // FIXME: Optimize away range check based on pivot comparisons.
10203         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10204         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10205 
10206         // The jump block hasn't been inserted yet; insert it here.
10207         MachineBasicBlock *JumpMBB = JT->MBB;
10208         CurMF->insert(BBI, JumpMBB);
10209 
10210         auto JumpProb = I->Prob;
10211         auto FallthroughProb = UnhandledProbs;
10212 
10213         // If the default statement is a target of the jump table, we evenly
10214         // distribute the default probability to successors of CurMBB. Also
10215         // update the probability on the edge from JumpMBB to Fallthrough.
10216         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10217                                               SE = JumpMBB->succ_end();
10218              SI != SE; ++SI) {
10219           if (*SI == DefaultMBB) {
10220             JumpProb += DefaultProb / 2;
10221             FallthroughProb -= DefaultProb / 2;
10222             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10223             JumpMBB->normalizeSuccProbs();
10224             break;
10225           }
10226         }
10227 
10228         if (FallthroughUnreachable) {
10229           // Skip the range check if the fallthrough block is unreachable.
10230           JTH->OmitRangeCheck = true;
10231         }
10232 
10233         if (!JTH->OmitRangeCheck)
10234           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10235         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10236         CurMBB->normalizeSuccProbs();
10237 
10238         // The jump table header will be inserted in our current block, do the
10239         // range check, and fall through to our fallthrough block.
10240         JTH->HeaderBB = CurMBB;
10241         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10242 
10243         // If we're in the right place, emit the jump table header right now.
10244         if (CurMBB == SwitchMBB) {
10245           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10246           JTH->Emitted = true;
10247         }
10248         break;
10249       }
10250       case CC_BitTests: {
10251         // FIXME: Optimize away range check based on pivot comparisons.
10252         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10253 
10254         // The bit test blocks haven't been inserted yet; insert them here.
10255         for (BitTestCase &BTC : BTB->Cases)
10256           CurMF->insert(BBI, BTC.ThisBB);
10257 
10258         // Fill in fields of the BitTestBlock.
10259         BTB->Parent = CurMBB;
10260         BTB->Default = Fallthrough;
10261 
10262         BTB->DefaultProb = UnhandledProbs;
10263         // If the cases in bit test don't form a contiguous range, we evenly
10264         // distribute the probability on the edge to Fallthrough to two
10265         // successors of CurMBB.
10266         if (!BTB->ContiguousRange) {
10267           BTB->Prob += DefaultProb / 2;
10268           BTB->DefaultProb -= DefaultProb / 2;
10269         }
10270 
10271         if (FallthroughUnreachable) {
10272           // Skip the range check if the fallthrough block is unreachable.
10273           BTB->OmitRangeCheck = true;
10274         }
10275 
10276         // If we're in the right place, emit the bit test header right now.
10277         if (CurMBB == SwitchMBB) {
10278           visitBitTestHeader(*BTB, SwitchMBB);
10279           BTB->Emitted = true;
10280         }
10281         break;
10282       }
10283       case CC_Range: {
10284         const Value *RHS, *LHS, *MHS;
10285         ISD::CondCode CC;
10286         if (I->Low == I->High) {
10287           // Check Cond == I->Low.
10288           CC = ISD::SETEQ;
10289           LHS = Cond;
10290           RHS=I->Low;
10291           MHS = nullptr;
10292         } else {
10293           // Check I->Low <= Cond <= I->High.
10294           CC = ISD::SETLE;
10295           LHS = I->Low;
10296           MHS = Cond;
10297           RHS = I->High;
10298         }
10299 
10300         // If Fallthrough is unreachable, fold away the comparison.
10301         if (FallthroughUnreachable)
10302           CC = ISD::SETTRUE;
10303 
10304         // The false probability is the sum of all unhandled cases.
10305         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10306                      getCurSDLoc(), I->Prob, UnhandledProbs);
10307 
10308         if (CurMBB == SwitchMBB)
10309           visitSwitchCase(CB, SwitchMBB);
10310         else
10311           SL->SwitchCases.push_back(CB);
10312 
10313         break;
10314       }
10315     }
10316     CurMBB = Fallthrough;
10317   }
10318 }
10319 
10320 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10321                                               CaseClusterIt First,
10322                                               CaseClusterIt Last) {
10323   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10324     if (X.Prob != CC.Prob)
10325       return X.Prob > CC.Prob;
10326 
10327     // Ties are broken by comparing the case value.
10328     return X.Low->getValue().slt(CC.Low->getValue());
10329   });
10330 }
10331 
10332 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10333                                         const SwitchWorkListItem &W,
10334                                         Value *Cond,
10335                                         MachineBasicBlock *SwitchMBB) {
10336   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10337          "Clusters not sorted?");
10338 
10339   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10340 
10341   // Balance the tree based on branch probabilities to create a near-optimal (in
10342   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10343   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10344   CaseClusterIt LastLeft = W.FirstCluster;
10345   CaseClusterIt FirstRight = W.LastCluster;
10346   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10347   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10348 
10349   // Move LastLeft and FirstRight towards each other from opposite directions to
10350   // find a partitioning of the clusters which balances the probability on both
10351   // sides. If LeftProb and RightProb are equal, alternate which side is
10352   // taken to ensure 0-probability nodes are distributed evenly.
10353   unsigned I = 0;
10354   while (LastLeft + 1 < FirstRight) {
10355     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10356       LeftProb += (++LastLeft)->Prob;
10357     else
10358       RightProb += (--FirstRight)->Prob;
10359     I++;
10360   }
10361 
10362   while (true) {
10363     // Our binary search tree differs from a typical BST in that ours can have up
10364     // to three values in each leaf. The pivot selection above doesn't take that
10365     // into account, which means the tree might require more nodes and be less
10366     // efficient. We compensate for this here.
10367 
10368     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10369     unsigned NumRight = W.LastCluster - FirstRight + 1;
10370 
10371     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10372       // If one side has less than 3 clusters, and the other has more than 3,
10373       // consider taking a cluster from the other side.
10374 
10375       if (NumLeft < NumRight) {
10376         // Consider moving the first cluster on the right to the left side.
10377         CaseCluster &CC = *FirstRight;
10378         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10379         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10380         if (LeftSideRank <= RightSideRank) {
10381           // Moving the cluster to the left does not demote it.
10382           ++LastLeft;
10383           ++FirstRight;
10384           continue;
10385         }
10386       } else {
10387         assert(NumRight < NumLeft);
10388         // Consider moving the last element on the left to the right side.
10389         CaseCluster &CC = *LastLeft;
10390         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10391         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10392         if (RightSideRank <= LeftSideRank) {
10393           // Moving the cluster to the right does not demot it.
10394           --LastLeft;
10395           --FirstRight;
10396           continue;
10397         }
10398       }
10399     }
10400     break;
10401   }
10402 
10403   assert(LastLeft + 1 == FirstRight);
10404   assert(LastLeft >= W.FirstCluster);
10405   assert(FirstRight <= W.LastCluster);
10406 
10407   // Use the first element on the right as pivot since we will make less-than
10408   // comparisons against it.
10409   CaseClusterIt PivotCluster = FirstRight;
10410   assert(PivotCluster > W.FirstCluster);
10411   assert(PivotCluster <= W.LastCluster);
10412 
10413   CaseClusterIt FirstLeft = W.FirstCluster;
10414   CaseClusterIt LastRight = W.LastCluster;
10415 
10416   const ConstantInt *Pivot = PivotCluster->Low;
10417 
10418   // New blocks will be inserted immediately after the current one.
10419   MachineFunction::iterator BBI(W.MBB);
10420   ++BBI;
10421 
10422   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10423   // we can branch to its destination directly if it's squeezed exactly in
10424   // between the known lower bound and Pivot - 1.
10425   MachineBasicBlock *LeftMBB;
10426   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10427       FirstLeft->Low == W.GE &&
10428       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10429     LeftMBB = FirstLeft->MBB;
10430   } else {
10431     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10432     FuncInfo.MF->insert(BBI, LeftMBB);
10433     WorkList.push_back(
10434         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10435     // Put Cond in a virtual register to make it available from the new blocks.
10436     ExportFromCurrentBlock(Cond);
10437   }
10438 
10439   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10440   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10441   // directly if RHS.High equals the current upper bound.
10442   MachineBasicBlock *RightMBB;
10443   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10444       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10445     RightMBB = FirstRight->MBB;
10446   } else {
10447     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10448     FuncInfo.MF->insert(BBI, RightMBB);
10449     WorkList.push_back(
10450         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10451     // Put Cond in a virtual register to make it available from the new blocks.
10452     ExportFromCurrentBlock(Cond);
10453   }
10454 
10455   // Create the CaseBlock record that will be used to lower the branch.
10456   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10457                getCurSDLoc(), LeftProb, RightProb);
10458 
10459   if (W.MBB == SwitchMBB)
10460     visitSwitchCase(CB, SwitchMBB);
10461   else
10462     SL->SwitchCases.push_back(CB);
10463 }
10464 
10465 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10466 // from the swith statement.
10467 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10468                                             BranchProbability PeeledCaseProb) {
10469   if (PeeledCaseProb == BranchProbability::getOne())
10470     return BranchProbability::getZero();
10471   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10472 
10473   uint32_t Numerator = CaseProb.getNumerator();
10474   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10475   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10476 }
10477 
10478 // Try to peel the top probability case if it exceeds the threshold.
10479 // Return current MachineBasicBlock for the switch statement if the peeling
10480 // does not occur.
10481 // If the peeling is performed, return the newly created MachineBasicBlock
10482 // for the peeled switch statement. Also update Clusters to remove the peeled
10483 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10484 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10485     const SwitchInst &SI, CaseClusterVector &Clusters,
10486     BranchProbability &PeeledCaseProb) {
10487   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10488   // Don't perform if there is only one cluster or optimizing for size.
10489   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10490       TM.getOptLevel() == CodeGenOpt::None ||
10491       SwitchMBB->getParent()->getFunction().hasMinSize())
10492     return SwitchMBB;
10493 
10494   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10495   unsigned PeeledCaseIndex = 0;
10496   bool SwitchPeeled = false;
10497   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10498     CaseCluster &CC = Clusters[Index];
10499     if (CC.Prob < TopCaseProb)
10500       continue;
10501     TopCaseProb = CC.Prob;
10502     PeeledCaseIndex = Index;
10503     SwitchPeeled = true;
10504   }
10505   if (!SwitchPeeled)
10506     return SwitchMBB;
10507 
10508   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10509                     << TopCaseProb << "\n");
10510 
10511   // Record the MBB for the peeled switch statement.
10512   MachineFunction::iterator BBI(SwitchMBB);
10513   ++BBI;
10514   MachineBasicBlock *PeeledSwitchMBB =
10515       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10516   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10517 
10518   ExportFromCurrentBlock(SI.getCondition());
10519   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10520   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10521                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10522   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10523 
10524   Clusters.erase(PeeledCaseIt);
10525   for (CaseCluster &CC : Clusters) {
10526     LLVM_DEBUG(
10527         dbgs() << "Scale the probablity for one cluster, before scaling: "
10528                << CC.Prob << "\n");
10529     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10530     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10531   }
10532   PeeledCaseProb = TopCaseProb;
10533   return PeeledSwitchMBB;
10534 }
10535 
10536 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10537   // Extract cases from the switch.
10538   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10539   CaseClusterVector Clusters;
10540   Clusters.reserve(SI.getNumCases());
10541   for (auto I : SI.cases()) {
10542     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10543     const ConstantInt *CaseVal = I.getCaseValue();
10544     BranchProbability Prob =
10545         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10546             : BranchProbability(1, SI.getNumCases() + 1);
10547     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10548   }
10549 
10550   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10551 
10552   // Cluster adjacent cases with the same destination. We do this at all
10553   // optimization levels because it's cheap to do and will make codegen faster
10554   // if there are many clusters.
10555   sortAndRangeify(Clusters);
10556 
10557   // The branch probablity of the peeled case.
10558   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10559   MachineBasicBlock *PeeledSwitchMBB =
10560       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10561 
10562   // If there is only the default destination, jump there directly.
10563   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10564   if (Clusters.empty()) {
10565     assert(PeeledSwitchMBB == SwitchMBB);
10566     SwitchMBB->addSuccessor(DefaultMBB);
10567     if (DefaultMBB != NextBlock(SwitchMBB)) {
10568       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10569                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10570     }
10571     return;
10572   }
10573 
10574   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10575   SL->findBitTestClusters(Clusters, &SI);
10576 
10577   LLVM_DEBUG({
10578     dbgs() << "Case clusters: ";
10579     for (const CaseCluster &C : Clusters) {
10580       if (C.Kind == CC_JumpTable)
10581         dbgs() << "JT:";
10582       if (C.Kind == CC_BitTests)
10583         dbgs() << "BT:";
10584 
10585       C.Low->getValue().print(dbgs(), true);
10586       if (C.Low != C.High) {
10587         dbgs() << '-';
10588         C.High->getValue().print(dbgs(), true);
10589       }
10590       dbgs() << ' ';
10591     }
10592     dbgs() << '\n';
10593   });
10594 
10595   assert(!Clusters.empty());
10596   SwitchWorkList WorkList;
10597   CaseClusterIt First = Clusters.begin();
10598   CaseClusterIt Last = Clusters.end() - 1;
10599   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10600   // Scale the branchprobability for DefaultMBB if the peel occurs and
10601   // DefaultMBB is not replaced.
10602   if (PeeledCaseProb != BranchProbability::getZero() &&
10603       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10604     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10605   WorkList.push_back(
10606       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10607 
10608   while (!WorkList.empty()) {
10609     SwitchWorkListItem W = WorkList.back();
10610     WorkList.pop_back();
10611     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10612 
10613     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10614         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10615       // For optimized builds, lower large range as a balanced binary tree.
10616       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10617       continue;
10618     }
10619 
10620     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10621   }
10622 }
10623 
10624 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10625   SDValue N = getValue(I.getOperand(0));
10626   setValue(&I, N);
10627 }
10628