1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (TLI.isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (TLI.isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 168 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 169 TLI.getPointerTy())); 170 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 171 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 172 } 173 } else if (PartVT.isFloatingPoint()) { 174 // FP split into multiple FP parts (for ppcf128) 175 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 176 "Unexpected split"); 177 SDValue Lo, Hi; 178 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 179 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 180 if (TLI.hasBigEndianPartOrdering(ValueVT)) 181 std::swap(Lo, Hi); 182 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 183 } else { 184 // FP split into integer parts (soft fp) 185 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 186 !PartVT.isVector() && "Unexpected split"); 187 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 188 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 189 } 190 } 191 192 // There is now one part, held in Val. Correct it to match ValueVT. 193 EVT PartEVT = Val.getValueType(); 194 195 if (PartEVT == ValueVT) 196 return Val; 197 198 if (PartEVT.isInteger() && ValueVT.isInteger()) { 199 if (ValueVT.bitsLT(PartEVT)) { 200 // For a truncate, see if we have any information to 201 // indicate whether the truncated bits will always be 202 // zero or sign-extension. 203 if (AssertOp != ISD::DELETED_NODE) 204 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 205 DAG.getValueType(ValueVT)); 206 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 207 } 208 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 209 } 210 211 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 212 // FP_ROUND's are always exact here. 213 if (ValueVT.bitsLT(Val.getValueType())) 214 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 215 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 216 217 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 218 } 219 220 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 221 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 222 223 llvm_unreachable("Unknown mismatch!"); 224 } 225 226 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 227 const Twine &ErrMsg) { 228 const Instruction *I = dyn_cast_or_null<Instruction>(V); 229 if (!V) 230 return Ctx.emitError(ErrMsg); 231 232 const char *AsmError = ", possible invalid constraint for vector type"; 233 if (const CallInst *CI = dyn_cast<CallInst>(I)) 234 if (isa<InlineAsm>(CI->getCalledValue())) 235 return Ctx.emitError(I, ErrMsg + AsmError); 236 237 return Ctx.emitError(I, ErrMsg); 238 } 239 240 /// getCopyFromPartsVector - Create a value that contains the specified legal 241 /// parts combined into the value they represent. If the parts combine to a 242 /// type larger then ValueVT then AssertOp can be used to specify whether the 243 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 244 /// ValueVT (ISD::AssertSext). 245 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 246 const SDValue *Parts, unsigned NumParts, 247 MVT PartVT, EVT ValueVT, const Value *V) { 248 assert(ValueVT.isVector() && "Not a vector value"); 249 assert(NumParts > 0 && "No parts to assemble!"); 250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 251 SDValue Val = Parts[0]; 252 253 // Handle a multi-element vector. 254 if (NumParts > 1) { 255 EVT IntermediateVT; 256 MVT RegisterVT; 257 unsigned NumIntermediates; 258 unsigned NumRegs = 259 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 260 NumIntermediates, RegisterVT); 261 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 262 NumParts = NumRegs; // Silence a compiler warning. 263 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 264 assert(RegisterVT == Parts[0].getSimpleValueType() && 265 "Part type doesn't match part!"); 266 267 // Assemble the parts into intermediate operands. 268 SmallVector<SDValue, 8> Ops(NumIntermediates); 269 if (NumIntermediates == NumParts) { 270 // If the register was not expanded, truncate or copy the value, 271 // as appropriate. 272 for (unsigned i = 0; i != NumParts; ++i) 273 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 274 PartVT, IntermediateVT, V); 275 } else if (NumParts > 0) { 276 // If the intermediate type was expanded, build the intermediate 277 // operands from the parts. 278 assert(NumParts % NumIntermediates == 0 && 279 "Must expand into a divisible number of parts!"); 280 unsigned Factor = NumParts / NumIntermediates; 281 for (unsigned i = 0; i != NumIntermediates; ++i) 282 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 283 PartVT, IntermediateVT, V); 284 } 285 286 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 287 // intermediate operands. 288 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 289 : ISD::BUILD_VECTOR, 290 DL, ValueVT, Ops); 291 } 292 293 // There is now one part, held in Val. Correct it to match ValueVT. 294 EVT PartEVT = Val.getValueType(); 295 296 if (PartEVT == ValueVT) 297 return Val; 298 299 if (PartEVT.isVector()) { 300 // If the element type of the source/dest vectors are the same, but the 301 // parts vector has more elements than the value vector, then we have a 302 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 303 // elements we want. 304 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 305 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 306 "Cannot narrow, it would be a lossy transformation"); 307 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 308 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 309 } 310 311 // Vector/Vector bitcast. 312 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 313 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 314 315 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 316 "Cannot handle this kind of promotion"); 317 // Promoted vector extract 318 bool Smaller = ValueVT.bitsLE(PartEVT); 319 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 320 DL, ValueVT, Val); 321 322 } 323 324 // Trivial bitcast if the types are the same size and the destination 325 // vector type is legal. 326 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 327 TLI.isTypeLegal(ValueVT)) 328 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 329 330 // Handle cases such as i8 -> <1 x i1> 331 if (ValueVT.getVectorNumElements() != 1) { 332 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 333 "non-trivial scalar-to-vector conversion"); 334 return DAG.getUNDEF(ValueVT); 335 } 336 337 if (ValueVT.getVectorNumElements() == 1 && 338 ValueVT.getVectorElementType() != PartEVT) { 339 bool Smaller = ValueVT.bitsLE(PartEVT); 340 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 341 DL, ValueVT.getScalarType(), Val); 342 } 343 344 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 345 } 346 347 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V); 350 351 /// getCopyToParts - Create a series of nodes that contain the specified value 352 /// split into legal parts. If the parts contain more bits than Val, then, for 353 /// integers, ExtendKind can be used to specify how to generate the extra bits. 354 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 355 SDValue Val, SDValue *Parts, unsigned NumParts, 356 MVT PartVT, const Value *V, 357 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 358 EVT ValueVT = Val.getValueType(); 359 360 // Handle the vector case separately. 361 if (ValueVT.isVector()) 362 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 363 364 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 368 369 if (NumParts == 0) 370 return; 371 372 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 373 EVT PartEVT = PartVT; 374 if (PartEVT == ValueVT) { 375 assert(NumParts == 1 && "No-op copy with multiple parts!"); 376 Parts[0] = Val; 377 return; 378 } 379 380 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 381 // If the parts cover more bits than the value has, promote the value. 382 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 383 assert(NumParts == 1 && "Do not know what to promote to!"); 384 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 385 } else { 386 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 387 ValueVT.isInteger() && 388 "Unknown mismatch!"); 389 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 390 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 391 if (PartVT == MVT::x86mmx) 392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 393 } 394 } else if (PartBits == ValueVT.getSizeInBits()) { 395 // Different types of the same size. 396 assert(NumParts == 1 && PartEVT != ValueVT); 397 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 398 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 399 // If the parts cover less bits than value has, truncate the value. 400 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 401 ValueVT.isInteger() && 402 "Unknown mismatch!"); 403 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 404 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 405 if (PartVT == MVT::x86mmx) 406 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 407 } 408 409 // The value may have changed - recompute ValueVT. 410 ValueVT = Val.getValueType(); 411 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 412 "Failed to tile the value with PartVT!"); 413 414 if (NumParts == 1) { 415 if (PartEVT != ValueVT) 416 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 417 "scalar-to-vector conversion failed"); 418 419 Parts[0] = Val; 420 return; 421 } 422 423 // Expand the value into multiple parts. 424 if (NumParts & (NumParts - 1)) { 425 // The number of parts is not a power of 2. Split off and copy the tail. 426 assert(PartVT.isInteger() && ValueVT.isInteger() && 427 "Do not know what to expand to!"); 428 unsigned RoundParts = 1 << Log2_32(NumParts); 429 unsigned RoundBits = RoundParts * PartBits; 430 unsigned OddParts = NumParts - RoundParts; 431 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 432 DAG.getIntPtrConstant(RoundBits, DL)); 433 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 434 435 if (TLI.isBigEndian()) 436 // The odd parts were reversed by getCopyToParts - unreverse them. 437 std::reverse(Parts + RoundParts, Parts + NumParts); 438 439 NumParts = RoundParts; 440 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 441 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 442 } 443 444 // The number of parts is a power of 2. Repeatedly bisect the value using 445 // EXTRACT_ELEMENT. 446 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 447 EVT::getIntegerVT(*DAG.getContext(), 448 ValueVT.getSizeInBits()), 449 Val); 450 451 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 452 for (unsigned i = 0; i < NumParts; i += StepSize) { 453 unsigned ThisBits = StepSize * PartBits / 2; 454 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 455 SDValue &Part0 = Parts[i]; 456 SDValue &Part1 = Parts[i+StepSize/2]; 457 458 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 459 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 460 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 461 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 462 463 if (ThisBits == PartBits && ThisVT != PartVT) { 464 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 465 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 466 } 467 } 468 } 469 470 if (TLI.isBigEndian()) 471 std::reverse(Parts, Parts + OrigNumParts); 472 } 473 474 475 /// getCopyToPartsVector - Create a series of nodes that contain the specified 476 /// value split into legal parts. 477 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 478 SDValue Val, SDValue *Parts, unsigned NumParts, 479 MVT PartVT, const Value *V) { 480 EVT ValueVT = Val.getValueType(); 481 assert(ValueVT.isVector() && "Not a vector"); 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 484 if (NumParts == 1) { 485 EVT PartEVT = PartVT; 486 if (PartEVT == ValueVT) { 487 // Nothing to do. 488 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 489 // Bitconvert vector->vector case. 490 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 491 } else if (PartVT.isVector() && 492 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 493 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 494 EVT ElementVT = PartVT.getVectorElementType(); 495 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 496 // undef elements. 497 SmallVector<SDValue, 16> Ops; 498 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 499 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 500 ElementVT, Val, DAG.getConstant(i, DL, 501 TLI.getVectorIdxTy()))); 502 503 for (unsigned i = ValueVT.getVectorNumElements(), 504 e = PartVT.getVectorNumElements(); i != e; ++i) 505 Ops.push_back(DAG.getUNDEF(ElementVT)); 506 507 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 508 509 // FIXME: Use CONCAT for 2x -> 4x. 510 511 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 512 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 513 } else if (PartVT.isVector() && 514 PartEVT.getVectorElementType().bitsGE( 515 ValueVT.getVectorElementType()) && 516 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 517 518 // Promoted vector extract 519 bool Smaller = PartEVT.bitsLE(ValueVT); 520 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 521 DL, PartVT, Val); 522 } else{ 523 // Vector -> scalar conversion. 524 assert(ValueVT.getVectorNumElements() == 1 && 525 "Only trivial vector-to-scalar conversions should get here!"); 526 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 527 PartVT, Val, 528 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 529 530 bool Smaller = ValueVT.bitsLE(PartVT); 531 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 532 DL, PartVT, Val); 533 } 534 535 Parts[0] = Val; 536 return; 537 } 538 539 // Handle a multi-element vector. 540 EVT IntermediateVT; 541 MVT RegisterVT; 542 unsigned NumIntermediates; 543 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 544 IntermediateVT, 545 NumIntermediates, RegisterVT); 546 unsigned NumElements = ValueVT.getVectorNumElements(); 547 548 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 549 NumParts = NumRegs; // Silence a compiler warning. 550 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 551 552 // Split the vector into intermediate operands. 553 SmallVector<SDValue, 8> Ops(NumIntermediates); 554 for (unsigned i = 0; i != NumIntermediates; ++i) { 555 if (IntermediateVT.isVector()) 556 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 559 TLI.getVectorIdxTy())); 560 else 561 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 562 IntermediateVT, Val, 563 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 564 } 565 566 // Split the intermediate operands into legal parts. 567 if (NumParts == NumIntermediates) { 568 // If the register was not expanded, promote or copy the value, 569 // as appropriate. 570 for (unsigned i = 0; i != NumParts; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 572 } else if (NumParts > 0) { 573 // If the intermediate type was expanded, split each the value into 574 // legal parts. 575 assert(NumIntermediates != 0 && "division by zero"); 576 assert(NumParts % NumIntermediates == 0 && 577 "Must expand into a divisible number of parts!"); 578 unsigned Factor = NumParts / NumIntermediates; 579 for (unsigned i = 0; i != NumIntermediates; ++i) 580 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 581 } 582 } 583 584 RegsForValue::RegsForValue() {} 585 586 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 587 EVT valuevt) 588 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 589 590 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli, 591 unsigned Reg, Type *Ty) { 592 ComputeValueVTs(tli, Ty, ValueVTs); 593 594 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 595 EVT ValueVT = ValueVTs[Value]; 596 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 597 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 598 for (unsigned i = 0; i != NumRegs; ++i) 599 Regs.push_back(Reg + i); 600 RegVTs.push_back(RegisterVT); 601 Reg += NumRegs; 602 } 603 } 604 605 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 606 /// this value and returns the result as a ValueVT value. This uses 607 /// Chain/Flag as the input and updates them for the output Chain/Flag. 608 /// If the Flag pointer is NULL, no flag is used. 609 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 610 FunctionLoweringInfo &FuncInfo, 611 SDLoc dl, 612 SDValue &Chain, SDValue *Flag, 613 const Value *V) const { 614 // A Value with type {} or [0 x %t] needs no registers. 615 if (ValueVTs.empty()) 616 return SDValue(); 617 618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 619 620 // Assemble the legal parts into the final values. 621 SmallVector<SDValue, 4> Values(ValueVTs.size()); 622 SmallVector<SDValue, 8> Parts; 623 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 // Copy the legal parts from the registers. 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 627 MVT RegisterVT = RegVTs[Value]; 628 629 Parts.resize(NumRegs); 630 for (unsigned i = 0; i != NumRegs; ++i) { 631 SDValue P; 632 if (!Flag) { 633 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 634 } else { 635 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 636 *Flag = P.getValue(2); 637 } 638 639 Chain = P.getValue(1); 640 Parts[i] = P; 641 642 // If the source register was virtual and if we know something about it, 643 // add an assert node. 644 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 645 !RegisterVT.isInteger() || RegisterVT.isVector()) 646 continue; 647 648 const FunctionLoweringInfo::LiveOutInfo *LOI = 649 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 650 if (!LOI) 651 continue; 652 653 unsigned RegSize = RegisterVT.getSizeInBits(); 654 unsigned NumSignBits = LOI->NumSignBits; 655 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 656 657 if (NumZeroBits == RegSize) { 658 // The current value is a zero. 659 // Explicitly express that as it would be easier for 660 // optimizations to kick in. 661 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 662 continue; 663 } 664 665 // FIXME: We capture more information than the dag can represent. For 666 // now, just use the tightest assertzext/assertsext possible. 667 bool isSExt = true; 668 EVT FromVT(MVT::Other); 669 if (NumSignBits == RegSize) 670 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 671 else if (NumZeroBits >= RegSize-1) 672 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 673 else if (NumSignBits > RegSize-8) 674 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 675 else if (NumZeroBits >= RegSize-8) 676 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 677 else if (NumSignBits > RegSize-16) 678 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 679 else if (NumZeroBits >= RegSize-16) 680 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 681 else if (NumSignBits > RegSize-32) 682 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 683 else if (NumZeroBits >= RegSize-32) 684 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 685 else 686 continue; 687 688 // Add an assertion node. 689 assert(FromVT != MVT::Other); 690 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 691 RegisterVT, P, DAG.getValueType(FromVT)); 692 } 693 694 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 695 NumRegs, RegisterVT, ValueVT, V); 696 Part += NumRegs; 697 Parts.clear(); 698 } 699 700 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 701 } 702 703 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 704 /// specified value into the registers specified by this object. This uses 705 /// Chain/Flag as the input and updates them for the output Chain/Flag. 706 /// If the Flag pointer is NULL, no flag is used. 707 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 708 SDValue &Chain, SDValue *Flag, const Value *V, 709 ISD::NodeType PreferredExtendType) const { 710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 711 ISD::NodeType ExtendKind = PreferredExtendType; 712 713 // Get the list of the values's legal parts. 714 unsigned NumRegs = Regs.size(); 715 SmallVector<SDValue, 8> Parts(NumRegs); 716 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 717 EVT ValueVT = ValueVTs[Value]; 718 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 719 MVT RegisterVT = RegVTs[Value]; 720 721 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 722 ExtendKind = ISD::ZERO_EXTEND; 723 724 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 725 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 726 Part += NumParts; 727 } 728 729 // Copy the parts into the registers. 730 SmallVector<SDValue, 8> Chains(NumRegs); 731 for (unsigned i = 0; i != NumRegs; ++i) { 732 SDValue Part; 733 if (!Flag) { 734 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 735 } else { 736 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 737 *Flag = Part.getValue(1); 738 } 739 740 Chains[i] = Part.getValue(0); 741 } 742 743 if (NumRegs == 1 || Flag) 744 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 745 // flagged to it. That is the CopyToReg nodes and the user are considered 746 // a single scheduling unit. If we create a TokenFactor and return it as 747 // chain, then the TokenFactor is both a predecessor (operand) of the 748 // user as well as a successor (the TF operands are flagged to the user). 749 // c1, f1 = CopyToReg 750 // c2, f2 = CopyToReg 751 // c3 = TokenFactor c1, c2 752 // ... 753 // = op c3, ..., f2 754 Chain = Chains[NumRegs-1]; 755 else 756 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 757 } 758 759 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 760 /// operand list. This adds the code marker and includes the number of 761 /// values added into it. 762 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 763 unsigned MatchingIdx, SDLoc dl, 764 SelectionDAG &DAG, 765 std::vector<SDValue> &Ops) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 769 if (HasMatching) 770 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 771 else if (!Regs.empty() && 772 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 773 // Put the register class of the virtual registers in the flag word. That 774 // way, later passes can recompute register class constraints for inline 775 // assembly as well as normal instructions. 776 // Don't do this for tied operands that can use the regclass information 777 // from the def. 778 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 779 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 780 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 781 } 782 783 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 784 Ops.push_back(Res); 785 786 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 787 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 788 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 789 MVT RegisterVT = RegVTs[Value]; 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 792 unsigned TheReg = Regs[Reg++]; 793 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 794 795 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 796 // If we clobbered the stack pointer, MFI should know about it. 797 assert(DAG.getMachineFunction().getFrameInfo()-> 798 hasInlineAsmWithSPAdjust()); 799 } 800 } 801 } 802 } 803 804 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 805 const TargetLibraryInfo *li) { 806 AA = &aa; 807 GFI = gfi; 808 LibInfo = li; 809 DL = DAG.getTarget().getDataLayout(); 810 Context = DAG.getContext(); 811 LPadToCallSiteMap.clear(); 812 } 813 814 /// clear - Clear out the current SelectionDAG and the associated 815 /// state and prepare this SelectionDAGBuilder object to be used 816 /// for a new block. This doesn't clear out information about 817 /// additional blocks that are needed to complete switch lowering 818 /// or PHI node updating; that information is cleared out as it is 819 /// consumed. 820 void SelectionDAGBuilder::clear() { 821 NodeMap.clear(); 822 UnusedArgNodeMap.clear(); 823 PendingLoads.clear(); 824 PendingExports.clear(); 825 CurInst = nullptr; 826 HasTailCall = false; 827 SDNodeOrder = LowestSDNodeOrder; 828 StatepointLowering.clear(); 829 } 830 831 /// clearDanglingDebugInfo - Clear the dangling debug information 832 /// map. This function is separated from the clear so that debug 833 /// information that is dangling in a basic block can be properly 834 /// resolved in a different basic block. This allows the 835 /// SelectionDAG to resolve dangling debug information attached 836 /// to PHI nodes. 837 void SelectionDAGBuilder::clearDanglingDebugInfo() { 838 DanglingDebugInfoMap.clear(); 839 } 840 841 /// getRoot - Return the current virtual root of the Selection DAG, 842 /// flushing any PendingLoad items. This must be done before emitting 843 /// a store or any other node that may need to be ordered after any 844 /// prior load instructions. 845 /// 846 SDValue SelectionDAGBuilder::getRoot() { 847 if (PendingLoads.empty()) 848 return DAG.getRoot(); 849 850 if (PendingLoads.size() == 1) { 851 SDValue Root = PendingLoads[0]; 852 DAG.setRoot(Root); 853 PendingLoads.clear(); 854 return Root; 855 } 856 857 // Otherwise, we have to make a token factor node. 858 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 859 PendingLoads); 860 PendingLoads.clear(); 861 DAG.setRoot(Root); 862 return Root; 863 } 864 865 /// getControlRoot - Similar to getRoot, but instead of flushing all the 866 /// PendingLoad items, flush all the PendingExports items. It is necessary 867 /// to do this before emitting a terminator instruction. 868 /// 869 SDValue SelectionDAGBuilder::getControlRoot() { 870 SDValue Root = DAG.getRoot(); 871 872 if (PendingExports.empty()) 873 return Root; 874 875 // Turn all of the CopyToReg chains into one factored node. 876 if (Root.getOpcode() != ISD::EntryToken) { 877 unsigned i = 0, e = PendingExports.size(); 878 for (; i != e; ++i) { 879 assert(PendingExports[i].getNode()->getNumOperands() > 1); 880 if (PendingExports[i].getNode()->getOperand(0) == Root) 881 break; // Don't add the root if we already indirectly depend on it. 882 } 883 884 if (i == e) 885 PendingExports.push_back(Root); 886 } 887 888 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 889 PendingExports); 890 PendingExports.clear(); 891 DAG.setRoot(Root); 892 return Root; 893 } 894 895 void SelectionDAGBuilder::visit(const Instruction &I) { 896 // Set up outgoing PHI node register values before emitting the terminator. 897 if (isa<TerminatorInst>(&I)) 898 HandlePHINodesInSuccessorBlocks(I.getParent()); 899 900 ++SDNodeOrder; 901 902 CurInst = &I; 903 904 visit(I.getOpcode(), I); 905 906 if (!isa<TerminatorInst>(&I) && !HasTailCall) 907 CopyToExportRegsIfNeeded(&I); 908 909 CurInst = nullptr; 910 } 911 912 void SelectionDAGBuilder::visitPHI(const PHINode &) { 913 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 914 } 915 916 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 917 // Note: this doesn't use InstVisitor, because it has to work with 918 // ConstantExpr's in addition to instructions. 919 switch (Opcode) { 920 default: llvm_unreachable("Unknown instruction type encountered!"); 921 // Build the switch statement using the Instruction.def file. 922 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 923 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 924 #include "llvm/IR/Instruction.def" 925 } 926 } 927 928 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 929 // generate the debug data structures now that we've seen its definition. 930 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 931 SDValue Val) { 932 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 933 if (DDI.getDI()) { 934 const DbgValueInst *DI = DDI.getDI(); 935 DebugLoc dl = DDI.getdl(); 936 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 937 DILocalVariable *Variable = DI->getVariable(); 938 DIExpression *Expr = DI->getExpression(); 939 assert(Variable->isValidLocationForIntrinsic(dl) && 940 "Expected inlined-at fields to agree"); 941 uint64_t Offset = DI->getOffset(); 942 // A dbg.value for an alloca is always indirect. 943 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 944 SDDbgValue *SDV; 945 if (Val.getNode()) { 946 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 947 Val)) { 948 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 949 IsIndirect, Offset, dl, DbgSDNodeOrder); 950 DAG.AddDbgValue(SDV, Val.getNode(), false); 951 } 952 } else 953 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 954 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 955 } 956 } 957 958 /// getCopyFromRegs - If there was virtual register allocated for the value V 959 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 960 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 961 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 962 SDValue Result; 963 964 if (It != FuncInfo.ValueMap.end()) { 965 unsigned InReg = It->second; 966 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 967 Ty); 968 SDValue Chain = DAG.getEntryNode(); 969 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 970 resolveDanglingDebugInfo(V, Result); 971 } 972 973 return Result; 974 } 975 976 /// getValue - Return an SDValue for the given Value. 977 SDValue SelectionDAGBuilder::getValue(const Value *V) { 978 // If we already have an SDValue for this value, use it. It's important 979 // to do this first, so that we don't create a CopyFromReg if we already 980 // have a regular SDValue. 981 SDValue &N = NodeMap[V]; 982 if (N.getNode()) return N; 983 984 // If there's a virtual register allocated and initialized for this 985 // value, use it. 986 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 987 if (copyFromReg.getNode()) { 988 return copyFromReg; 989 } 990 991 // Otherwise create a new SDValue and remember it. 992 SDValue Val = getValueImpl(V); 993 NodeMap[V] = Val; 994 resolveDanglingDebugInfo(V, Val); 995 return Val; 996 } 997 998 // Return true if SDValue exists for the given Value 999 bool SelectionDAGBuilder::findValue(const Value *V) const { 1000 return (NodeMap.find(V) != NodeMap.end()) || 1001 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1002 } 1003 1004 /// getNonRegisterValue - Return an SDValue for the given Value, but 1005 /// don't look in FuncInfo.ValueMap for a virtual register. 1006 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1007 // If we already have an SDValue for this value, use it. 1008 SDValue &N = NodeMap[V]; 1009 if (N.getNode()) { 1010 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1011 // Remove the debug location from the node as the node is about to be used 1012 // in a location which may differ from the original debug location. This 1013 // is relevant to Constant and ConstantFP nodes because they can appear 1014 // as constant expressions inside PHI nodes. 1015 N->setDebugLoc(DebugLoc()); 1016 } 1017 return N; 1018 } 1019 1020 // Otherwise create a new SDValue and remember it. 1021 SDValue Val = getValueImpl(V); 1022 NodeMap[V] = Val; 1023 resolveDanglingDebugInfo(V, Val); 1024 return Val; 1025 } 1026 1027 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1028 /// Create an SDValue for the given value. 1029 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1030 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1031 1032 if (const Constant *C = dyn_cast<Constant>(V)) { 1033 EVT VT = TLI.getValueType(V->getType(), true); 1034 1035 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1036 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1037 1038 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1039 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1040 1041 if (isa<ConstantPointerNull>(C)) { 1042 unsigned AS = V->getType()->getPointerAddressSpace(); 1043 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1044 } 1045 1046 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1047 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1048 1049 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1050 return DAG.getUNDEF(VT); 1051 1052 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1053 visit(CE->getOpcode(), *CE); 1054 SDValue N1 = NodeMap[V]; 1055 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1056 return N1; 1057 } 1058 1059 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1060 SmallVector<SDValue, 4> Constants; 1061 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1062 OI != OE; ++OI) { 1063 SDNode *Val = getValue(*OI).getNode(); 1064 // If the operand is an empty aggregate, there are no values. 1065 if (!Val) continue; 1066 // Add each leaf value from the operand to the Constants list 1067 // to form a flattened list of all the values. 1068 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1069 Constants.push_back(SDValue(Val, i)); 1070 } 1071 1072 return DAG.getMergeValues(Constants, getCurSDLoc()); 1073 } 1074 1075 if (const ConstantDataSequential *CDS = 1076 dyn_cast<ConstantDataSequential>(C)) { 1077 SmallVector<SDValue, 4> Ops; 1078 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1079 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1080 // Add each leaf value from the operand to the Constants list 1081 // to form a flattened list of all the values. 1082 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1083 Ops.push_back(SDValue(Val, i)); 1084 } 1085 1086 if (isa<ArrayType>(CDS->getType())) 1087 return DAG.getMergeValues(Ops, getCurSDLoc()); 1088 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1089 VT, Ops); 1090 } 1091 1092 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1093 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1094 "Unknown struct or array constant!"); 1095 1096 SmallVector<EVT, 4> ValueVTs; 1097 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1098 unsigned NumElts = ValueVTs.size(); 1099 if (NumElts == 0) 1100 return SDValue(); // empty struct 1101 SmallVector<SDValue, 4> Constants(NumElts); 1102 for (unsigned i = 0; i != NumElts; ++i) { 1103 EVT EltVT = ValueVTs[i]; 1104 if (isa<UndefValue>(C)) 1105 Constants[i] = DAG.getUNDEF(EltVT); 1106 else if (EltVT.isFloatingPoint()) 1107 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1108 else 1109 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1110 } 1111 1112 return DAG.getMergeValues(Constants, getCurSDLoc()); 1113 } 1114 1115 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1116 return DAG.getBlockAddress(BA, VT); 1117 1118 VectorType *VecTy = cast<VectorType>(V->getType()); 1119 unsigned NumElements = VecTy->getNumElements(); 1120 1121 // Now that we know the number and type of the elements, get that number of 1122 // elements into the Ops array based on what kind of constant it is. 1123 SmallVector<SDValue, 16> Ops; 1124 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1125 for (unsigned i = 0; i != NumElements; ++i) 1126 Ops.push_back(getValue(CV->getOperand(i))); 1127 } else { 1128 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1129 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1130 1131 SDValue Op; 1132 if (EltVT.isFloatingPoint()) 1133 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1134 else 1135 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1136 Ops.assign(NumElements, Op); 1137 } 1138 1139 // Create a BUILD_VECTOR node. 1140 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1141 } 1142 1143 // If this is a static alloca, generate it as the frameindex instead of 1144 // computation. 1145 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1146 DenseMap<const AllocaInst*, int>::iterator SI = 1147 FuncInfo.StaticAllocaMap.find(AI); 1148 if (SI != FuncInfo.StaticAllocaMap.end()) 1149 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1150 } 1151 1152 // If this is an instruction which fast-isel has deferred, select it now. 1153 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1154 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1155 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1156 SDValue Chain = DAG.getEntryNode(); 1157 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1158 } 1159 1160 llvm_unreachable("Can't get register for value!"); 1161 } 1162 1163 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1165 SDValue Chain = getControlRoot(); 1166 SmallVector<ISD::OutputArg, 8> Outs; 1167 SmallVector<SDValue, 8> OutVals; 1168 1169 if (!FuncInfo.CanLowerReturn) { 1170 unsigned DemoteReg = FuncInfo.DemoteRegister; 1171 const Function *F = I.getParent()->getParent(); 1172 1173 // Emit a store of the return value through the virtual register. 1174 // Leave Outs empty so that LowerReturn won't try to load return 1175 // registers the usual way. 1176 SmallVector<EVT, 1> PtrValueVTs; 1177 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1178 PtrValueVTs); 1179 1180 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1181 SDValue RetOp = getValue(I.getOperand(0)); 1182 1183 SmallVector<EVT, 4> ValueVTs; 1184 SmallVector<uint64_t, 4> Offsets; 1185 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1186 unsigned NumValues = ValueVTs.size(); 1187 1188 SmallVector<SDValue, 4> Chains(NumValues); 1189 for (unsigned i = 0; i != NumValues; ++i) { 1190 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1191 RetPtr.getValueType(), RetPtr, 1192 DAG.getIntPtrConstant(Offsets[i], 1193 getCurSDLoc())); 1194 Chains[i] = 1195 DAG.getStore(Chain, getCurSDLoc(), 1196 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1197 // FIXME: better loc info would be nice. 1198 Add, MachinePointerInfo(), false, false, 0); 1199 } 1200 1201 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1202 MVT::Other, Chains); 1203 } else if (I.getNumOperands() != 0) { 1204 SmallVector<EVT, 4> ValueVTs; 1205 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1206 unsigned NumValues = ValueVTs.size(); 1207 if (NumValues) { 1208 SDValue RetOp = getValue(I.getOperand(0)); 1209 1210 const Function *F = I.getParent()->getParent(); 1211 1212 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1213 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1214 Attribute::SExt)) 1215 ExtendKind = ISD::SIGN_EXTEND; 1216 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1217 Attribute::ZExt)) 1218 ExtendKind = ISD::ZERO_EXTEND; 1219 1220 LLVMContext &Context = F->getContext(); 1221 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1222 Attribute::InReg); 1223 1224 for (unsigned j = 0; j != NumValues; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1228 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1229 1230 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1231 MVT PartVT = TLI.getRegisterType(Context, VT); 1232 SmallVector<SDValue, 4> Parts(NumParts); 1233 getCopyToParts(DAG, getCurSDLoc(), 1234 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1235 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1236 1237 // 'inreg' on function refers to return value 1238 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1239 if (RetInReg) 1240 Flags.setInReg(); 1241 1242 // Propagate extension type if any 1243 if (ExtendKind == ISD::SIGN_EXTEND) 1244 Flags.setSExt(); 1245 else if (ExtendKind == ISD::ZERO_EXTEND) 1246 Flags.setZExt(); 1247 1248 for (unsigned i = 0; i < NumParts; ++i) { 1249 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1250 VT, /*isfixed=*/true, 0, 0)); 1251 OutVals.push_back(Parts[i]); 1252 } 1253 } 1254 } 1255 } 1256 1257 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1258 CallingConv::ID CallConv = 1259 DAG.getMachineFunction().getFunction()->getCallingConv(); 1260 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1261 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1262 1263 // Verify that the target's LowerReturn behaved as expected. 1264 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1265 "LowerReturn didn't return a valid chain!"); 1266 1267 // Update the DAG with the new chain value resulting from return lowering. 1268 DAG.setRoot(Chain); 1269 } 1270 1271 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1272 /// created for it, emit nodes to copy the value into the virtual 1273 /// registers. 1274 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1275 // Skip empty types 1276 if (V->getType()->isEmptyTy()) 1277 return; 1278 1279 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1280 if (VMI != FuncInfo.ValueMap.end()) { 1281 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1282 CopyValueToVirtualRegister(V, VMI->second); 1283 } 1284 } 1285 1286 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1287 /// the current basic block, add it to ValueMap now so that we'll get a 1288 /// CopyTo/FromReg. 1289 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1290 // No need to export constants. 1291 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1292 1293 // Already exported? 1294 if (FuncInfo.isExportedInst(V)) return; 1295 1296 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1297 CopyValueToVirtualRegister(V, Reg); 1298 } 1299 1300 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1301 const BasicBlock *FromBB) { 1302 // The operands of the setcc have to be in this block. We don't know 1303 // how to export them from some other block. 1304 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1305 // Can export from current BB. 1306 if (VI->getParent() == FromBB) 1307 return true; 1308 1309 // Is already exported, noop. 1310 return FuncInfo.isExportedInst(V); 1311 } 1312 1313 // If this is an argument, we can export it if the BB is the entry block or 1314 // if it is already exported. 1315 if (isa<Argument>(V)) { 1316 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1317 return true; 1318 1319 // Otherwise, can only export this if it is already exported. 1320 return FuncInfo.isExportedInst(V); 1321 } 1322 1323 // Otherwise, constants can always be exported. 1324 return true; 1325 } 1326 1327 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1328 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1329 const MachineBasicBlock *Dst) const { 1330 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1331 if (!BPI) 1332 return 0; 1333 const BasicBlock *SrcBB = Src->getBasicBlock(); 1334 const BasicBlock *DstBB = Dst->getBasicBlock(); 1335 return BPI->getEdgeWeight(SrcBB, DstBB); 1336 } 1337 1338 void SelectionDAGBuilder:: 1339 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1340 uint32_t Weight /* = 0 */) { 1341 if (!Weight) 1342 Weight = getEdgeWeight(Src, Dst); 1343 Src->addSuccessor(Dst, Weight); 1344 } 1345 1346 1347 static bool InBlock(const Value *V, const BasicBlock *BB) { 1348 if (const Instruction *I = dyn_cast<Instruction>(V)) 1349 return I->getParent() == BB; 1350 return true; 1351 } 1352 1353 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1354 /// This function emits a branch and is used at the leaves of an OR or an 1355 /// AND operator tree. 1356 /// 1357 void 1358 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1359 MachineBasicBlock *TBB, 1360 MachineBasicBlock *FBB, 1361 MachineBasicBlock *CurBB, 1362 MachineBasicBlock *SwitchBB, 1363 uint32_t TWeight, 1364 uint32_t FWeight) { 1365 const BasicBlock *BB = CurBB->getBasicBlock(); 1366 1367 // If the leaf of the tree is a comparison, merge the condition into 1368 // the caseblock. 1369 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1370 // The operands of the cmp have to be in this block. We don't know 1371 // how to export them from some other block. If this is the first block 1372 // of the sequence, no exporting is needed. 1373 if (CurBB == SwitchBB || 1374 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1375 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1376 ISD::CondCode Condition; 1377 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1378 Condition = getICmpCondCode(IC->getPredicate()); 1379 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1380 Condition = getFCmpCondCode(FC->getPredicate()); 1381 if (TM.Options.NoNaNsFPMath) 1382 Condition = getFCmpCodeWithoutNaN(Condition); 1383 } else { 1384 (void)Condition; // silence warning. 1385 llvm_unreachable("Unknown compare instruction"); 1386 } 1387 1388 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1389 TBB, FBB, CurBB, TWeight, FWeight); 1390 SwitchCases.push_back(CB); 1391 return; 1392 } 1393 } 1394 1395 // Create a CaseBlock record representing this branch. 1396 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1397 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1398 SwitchCases.push_back(CB); 1399 } 1400 1401 /// Scale down both weights to fit into uint32_t. 1402 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1403 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1404 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1405 NewTrue = NewTrue / Scale; 1406 NewFalse = NewFalse / Scale; 1407 } 1408 1409 /// FindMergedConditions - If Cond is an expression like 1410 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1411 MachineBasicBlock *TBB, 1412 MachineBasicBlock *FBB, 1413 MachineBasicBlock *CurBB, 1414 MachineBasicBlock *SwitchBB, 1415 unsigned Opc, uint32_t TWeight, 1416 uint32_t FWeight) { 1417 // If this node is not part of the or/and tree, emit it as a branch. 1418 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1419 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1420 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1421 BOp->getParent() != CurBB->getBasicBlock() || 1422 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1423 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1424 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1425 TWeight, FWeight); 1426 return; 1427 } 1428 1429 // Create TmpBB after CurBB. 1430 MachineFunction::iterator BBI = CurBB; 1431 MachineFunction &MF = DAG.getMachineFunction(); 1432 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1433 CurBB->getParent()->insert(++BBI, TmpBB); 1434 1435 if (Opc == Instruction::Or) { 1436 // Codegen X | Y as: 1437 // BB1: 1438 // jmp_if_X TBB 1439 // jmp TmpBB 1440 // TmpBB: 1441 // jmp_if_Y TBB 1442 // jmp FBB 1443 // 1444 1445 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1446 // The requirement is that 1447 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1448 // = TrueProb for orignal BB. 1449 // Assuming the orignal weights are A and B, one choice is to set BB1's 1450 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1451 // assumes that 1452 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1453 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1454 // TmpBB, but the math is more complicated. 1455 1456 uint64_t NewTrueWeight = TWeight; 1457 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1458 ScaleWeights(NewTrueWeight, NewFalseWeight); 1459 // Emit the LHS condition. 1460 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1461 NewTrueWeight, NewFalseWeight); 1462 1463 NewTrueWeight = TWeight; 1464 NewFalseWeight = 2 * (uint64_t)FWeight; 1465 ScaleWeights(NewTrueWeight, NewFalseWeight); 1466 // Emit the RHS condition into TmpBB. 1467 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1468 NewTrueWeight, NewFalseWeight); 1469 } else { 1470 assert(Opc == Instruction::And && "Unknown merge op!"); 1471 // Codegen X & Y as: 1472 // BB1: 1473 // jmp_if_X TmpBB 1474 // jmp FBB 1475 // TmpBB: 1476 // jmp_if_Y TBB 1477 // jmp FBB 1478 // 1479 // This requires creation of TmpBB after CurBB. 1480 1481 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1482 // The requirement is that 1483 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1484 // = FalseProb for orignal BB. 1485 // Assuming the orignal weights are A and B, one choice is to set BB1's 1486 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1487 // assumes that 1488 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1489 1490 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1491 uint64_t NewFalseWeight = FWeight; 1492 ScaleWeights(NewTrueWeight, NewFalseWeight); 1493 // Emit the LHS condition. 1494 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1495 NewTrueWeight, NewFalseWeight); 1496 1497 NewTrueWeight = 2 * (uint64_t)TWeight; 1498 NewFalseWeight = FWeight; 1499 ScaleWeights(NewTrueWeight, NewFalseWeight); 1500 // Emit the RHS condition into TmpBB. 1501 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1502 NewTrueWeight, NewFalseWeight); 1503 } 1504 } 1505 1506 /// If the set of cases should be emitted as a series of branches, return true. 1507 /// If we should emit this as a bunch of and/or'd together conditions, return 1508 /// false. 1509 bool 1510 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1511 if (Cases.size() != 2) return true; 1512 1513 // If this is two comparisons of the same values or'd or and'd together, they 1514 // will get folded into a single comparison, so don't emit two blocks. 1515 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1516 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1517 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1518 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1519 return false; 1520 } 1521 1522 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1523 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1524 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1525 Cases[0].CC == Cases[1].CC && 1526 isa<Constant>(Cases[0].CmpRHS) && 1527 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1528 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1529 return false; 1530 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1531 return false; 1532 } 1533 1534 return true; 1535 } 1536 1537 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1538 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1539 1540 // Update machine-CFG edges. 1541 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1542 1543 if (I.isUnconditional()) { 1544 // Update machine-CFG edges. 1545 BrMBB->addSuccessor(Succ0MBB); 1546 1547 // If this is not a fall-through branch or optimizations are switched off, 1548 // emit the branch. 1549 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1550 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1551 MVT::Other, getControlRoot(), 1552 DAG.getBasicBlock(Succ0MBB))); 1553 1554 return; 1555 } 1556 1557 // If this condition is one of the special cases we handle, do special stuff 1558 // now. 1559 const Value *CondVal = I.getCondition(); 1560 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1561 1562 // If this is a series of conditions that are or'd or and'd together, emit 1563 // this as a sequence of branches instead of setcc's with and/or operations. 1564 // As long as jumps are not expensive, this should improve performance. 1565 // For example, instead of something like: 1566 // cmp A, B 1567 // C = seteq 1568 // cmp D, E 1569 // F = setle 1570 // or C, F 1571 // jnz foo 1572 // Emit: 1573 // cmp A, B 1574 // je foo 1575 // cmp D, E 1576 // jle foo 1577 // 1578 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1579 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1580 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1581 BOp->getOpcode() == Instruction::Or)) { 1582 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1583 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1584 getEdgeWeight(BrMBB, Succ1MBB)); 1585 // If the compares in later blocks need to use values not currently 1586 // exported from this block, export them now. This block should always 1587 // be the first entry. 1588 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1589 1590 // Allow some cases to be rejected. 1591 if (ShouldEmitAsBranches(SwitchCases)) { 1592 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1593 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1594 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1595 } 1596 1597 // Emit the branch for this block. 1598 visitSwitchCase(SwitchCases[0], BrMBB); 1599 SwitchCases.erase(SwitchCases.begin()); 1600 return; 1601 } 1602 1603 // Okay, we decided not to do this, remove any inserted MBB's and clear 1604 // SwitchCases. 1605 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1606 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1607 1608 SwitchCases.clear(); 1609 } 1610 } 1611 1612 // Create a CaseBlock record representing this branch. 1613 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1614 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1615 1616 // Use visitSwitchCase to actually insert the fast branch sequence for this 1617 // cond branch. 1618 visitSwitchCase(CB, BrMBB); 1619 } 1620 1621 /// visitSwitchCase - Emits the necessary code to represent a single node in 1622 /// the binary search tree resulting from lowering a switch instruction. 1623 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1624 MachineBasicBlock *SwitchBB) { 1625 SDValue Cond; 1626 SDValue CondLHS = getValue(CB.CmpLHS); 1627 SDLoc dl = getCurSDLoc(); 1628 1629 // Build the setcc now. 1630 if (!CB.CmpMHS) { 1631 // Fold "(X == true)" to X and "(X == false)" to !X to 1632 // handle common cases produced by branch lowering. 1633 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1634 CB.CC == ISD::SETEQ) 1635 Cond = CondLHS; 1636 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1637 CB.CC == ISD::SETEQ) { 1638 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1639 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1640 } else 1641 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1642 } else { 1643 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1644 1645 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1646 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1647 1648 SDValue CmpOp = getValue(CB.CmpMHS); 1649 EVT VT = CmpOp.getValueType(); 1650 1651 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1652 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1653 ISD::SETLE); 1654 } else { 1655 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1656 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1657 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1658 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1659 } 1660 } 1661 1662 // Update successor info 1663 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1664 // TrueBB and FalseBB are always different unless the incoming IR is 1665 // degenerate. This only happens when running llc on weird IR. 1666 if (CB.TrueBB != CB.FalseBB) 1667 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1668 1669 // If the lhs block is the next block, invert the condition so that we can 1670 // fall through to the lhs instead of the rhs block. 1671 if (CB.TrueBB == NextBlock(SwitchBB)) { 1672 std::swap(CB.TrueBB, CB.FalseBB); 1673 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1674 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1675 } 1676 1677 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1678 MVT::Other, getControlRoot(), Cond, 1679 DAG.getBasicBlock(CB.TrueBB)); 1680 1681 // Insert the false branch. Do this even if it's a fall through branch, 1682 // this makes it easier to do DAG optimizations which require inverting 1683 // the branch condition. 1684 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1685 DAG.getBasicBlock(CB.FalseBB)); 1686 1687 DAG.setRoot(BrCond); 1688 } 1689 1690 /// visitJumpTable - Emit JumpTable node in the current MBB 1691 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1692 // Emit the code for the jump table 1693 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1694 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1695 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1696 JT.Reg, PTy); 1697 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1698 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1699 MVT::Other, Index.getValue(1), 1700 Table, Index); 1701 DAG.setRoot(BrJumpTable); 1702 } 1703 1704 /// visitJumpTableHeader - This function emits necessary code to produce index 1705 /// in the JumpTable from switch case. 1706 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1707 JumpTableHeader &JTH, 1708 MachineBasicBlock *SwitchBB) { 1709 SDLoc dl = getCurSDLoc(); 1710 1711 // Subtract the lowest switch case value from the value being switched on and 1712 // conditional branch to default mbb if the result is greater than the 1713 // difference between smallest and largest cases. 1714 SDValue SwitchOp = getValue(JTH.SValue); 1715 EVT VT = SwitchOp.getValueType(); 1716 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1717 DAG.getConstant(JTH.First, dl, VT)); 1718 1719 // The SDNode we just created, which holds the value being switched on minus 1720 // the smallest case value, needs to be copied to a virtual register so it 1721 // can be used as an index into the jump table in a subsequent basic block. 1722 // This value may be smaller or larger than the target's pointer type, and 1723 // therefore require extension or truncating. 1724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1725 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1726 1727 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1728 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1729 JumpTableReg, SwitchOp); 1730 JT.Reg = JumpTableReg; 1731 1732 // Emit the range check for the jump table, and branch to the default block 1733 // for the switch statement if the value being switched on exceeds the largest 1734 // case in the switch. 1735 SDValue CMP = 1736 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1737 Sub.getValueType()), 1738 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1739 ISD::SETUGT); 1740 1741 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1742 MVT::Other, CopyTo, CMP, 1743 DAG.getBasicBlock(JT.Default)); 1744 1745 // Avoid emitting unnecessary branches to the next block. 1746 if (JT.MBB != NextBlock(SwitchBB)) 1747 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1748 DAG.getBasicBlock(JT.MBB)); 1749 1750 DAG.setRoot(BrCond); 1751 } 1752 1753 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1754 /// tail spliced into a stack protector check success bb. 1755 /// 1756 /// For a high level explanation of how this fits into the stack protector 1757 /// generation see the comment on the declaration of class 1758 /// StackProtectorDescriptor. 1759 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1760 MachineBasicBlock *ParentBB) { 1761 1762 // First create the loads to the guard/stack slot for the comparison. 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 EVT PtrTy = TLI.getPointerTy(); 1765 1766 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1767 int FI = MFI->getStackProtectorIndex(); 1768 1769 const Value *IRGuard = SPD.getGuard(); 1770 SDValue GuardPtr = getValue(IRGuard); 1771 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1772 1773 unsigned Align = 1774 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1775 1776 SDValue Guard; 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1780 // guard value from the virtual register holding the value. Otherwise, emit a 1781 // volatile load to retrieve the stack guard value. 1782 unsigned GuardReg = SPD.getGuardReg(); 1783 1784 if (GuardReg && TLI.useLoadStackGuardNode()) 1785 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1786 PtrTy); 1787 else 1788 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1789 GuardPtr, MachinePointerInfo(IRGuard, 0), 1790 true, false, false, Align); 1791 1792 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1793 StackSlotPtr, 1794 MachinePointerInfo::getFixedStack(FI), 1795 true, false, false, Align); 1796 1797 // Perform the comparison via a subtract/getsetcc. 1798 EVT VT = Guard.getValueType(); 1799 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1800 1801 SDValue Cmp = 1802 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1803 Sub.getValueType()), 1804 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1805 1806 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1807 // branch to failure MBB. 1808 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1809 MVT::Other, StackSlot.getOperand(0), 1810 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1811 // Otherwise branch to success MBB. 1812 SDValue Br = DAG.getNode(ISD::BR, dl, 1813 MVT::Other, BrCond, 1814 DAG.getBasicBlock(SPD.getSuccessMBB())); 1815 1816 DAG.setRoot(Br); 1817 } 1818 1819 /// Codegen the failure basic block for a stack protector check. 1820 /// 1821 /// A failure stack protector machine basic block consists simply of a call to 1822 /// __stack_chk_fail(). 1823 /// 1824 /// For a high level explanation of how this fits into the stack protector 1825 /// generation see the comment on the declaration of class 1826 /// StackProtectorDescriptor. 1827 void 1828 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1830 SDValue Chain = 1831 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1832 nullptr, 0, false, getCurSDLoc(), false, false).second; 1833 DAG.setRoot(Chain); 1834 } 1835 1836 /// visitBitTestHeader - This function emits necessary code to produce value 1837 /// suitable for "bit tests" 1838 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1839 MachineBasicBlock *SwitchBB) { 1840 SDLoc dl = getCurSDLoc(); 1841 1842 // Subtract the minimum value 1843 SDValue SwitchOp = getValue(B.SValue); 1844 EVT VT = SwitchOp.getValueType(); 1845 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1846 DAG.getConstant(B.First, dl, VT)); 1847 1848 // Check range 1849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1850 SDValue RangeCmp = 1851 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1854 1855 // Determine the type of the test operands. 1856 bool UsePtrType = false; 1857 if (!TLI.isTypeLegal(VT)) 1858 UsePtrType = true; 1859 else { 1860 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1861 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1862 // Switch table case range are encoded into series of masks. 1863 // Just use pointer type, it's guaranteed to fit. 1864 UsePtrType = true; 1865 break; 1866 } 1867 } 1868 if (UsePtrType) { 1869 VT = TLI.getPointerTy(); 1870 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1871 } 1872 1873 B.RegVT = VT.getSimpleVT(); 1874 B.Reg = FuncInfo.CreateReg(B.RegVT); 1875 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1876 1877 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1878 1879 addSuccessorWithWeight(SwitchBB, B.Default); 1880 addSuccessorWithWeight(SwitchBB, MBB); 1881 1882 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1883 MVT::Other, CopyTo, RangeCmp, 1884 DAG.getBasicBlock(B.Default)); 1885 1886 // Avoid emitting unnecessary branches to the next block. 1887 if (MBB != NextBlock(SwitchBB)) 1888 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1889 DAG.getBasicBlock(MBB)); 1890 1891 DAG.setRoot(BrRange); 1892 } 1893 1894 /// visitBitTestCase - this function produces one "bit test" 1895 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1896 MachineBasicBlock* NextMBB, 1897 uint32_t BranchWeightToNext, 1898 unsigned Reg, 1899 BitTestCase &B, 1900 MachineBasicBlock *SwitchBB) { 1901 SDLoc dl = getCurSDLoc(); 1902 MVT VT = BB.RegVT; 1903 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1904 SDValue Cmp; 1905 unsigned PopCount = countPopulation(B.Mask); 1906 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1907 if (PopCount == 1) { 1908 // Testing for a single bit; just compare the shift count with what it 1909 // would need to be to shift a 1 bit in that position. 1910 Cmp = DAG.getSetCC( 1911 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1912 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1913 } else if (PopCount == BB.Range) { 1914 // There is only one zero bit in the range, test for it directly. 1915 Cmp = DAG.getSetCC( 1916 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1917 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1918 } else { 1919 // Make desired shift 1920 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1921 DAG.getConstant(1, dl, VT), ShiftOp); 1922 1923 // Emit bit tests and jumps 1924 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1925 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1926 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1927 DAG.getConstant(0, dl, VT), ISD::SETNE); 1928 } 1929 1930 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1931 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1932 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1933 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1934 1935 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1936 MVT::Other, getControlRoot(), 1937 Cmp, DAG.getBasicBlock(B.TargetBB)); 1938 1939 // Avoid emitting unnecessary branches to the next block. 1940 if (NextMBB != NextBlock(SwitchBB)) 1941 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1942 DAG.getBasicBlock(NextMBB)); 1943 1944 DAG.setRoot(BrAnd); 1945 } 1946 1947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1948 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1949 1950 // Retrieve successors. 1951 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1952 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1953 1954 const Value *Callee(I.getCalledValue()); 1955 const Function *Fn = dyn_cast<Function>(Callee); 1956 if (isa<InlineAsm>(Callee)) 1957 visitInlineAsm(&I); 1958 else if (Fn && Fn->isIntrinsic()) { 1959 switch (Fn->getIntrinsicID()) { 1960 default: 1961 llvm_unreachable("Cannot invoke this intrinsic"); 1962 case Intrinsic::donothing: 1963 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1964 break; 1965 case Intrinsic::experimental_patchpoint_void: 1966 case Intrinsic::experimental_patchpoint_i64: 1967 visitPatchpoint(&I, LandingPad); 1968 break; 1969 case Intrinsic::experimental_gc_statepoint: 1970 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1971 break; 1972 } 1973 } else 1974 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1975 1976 // If the value of the invoke is used outside of its defining block, make it 1977 // available as a virtual register. 1978 // We already took care of the exported value for the statepoint instruction 1979 // during call to the LowerStatepoint. 1980 if (!isStatepoint(I)) { 1981 CopyToExportRegsIfNeeded(&I); 1982 } 1983 1984 // Update successor info 1985 addSuccessorWithWeight(InvokeMBB, Return); 1986 addSuccessorWithWeight(InvokeMBB, LandingPad); 1987 1988 // Drop into normal successor. 1989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1990 MVT::Other, getControlRoot(), 1991 DAG.getBasicBlock(Return))); 1992 } 1993 1994 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1995 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1996 } 1997 1998 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1999 assert(FuncInfo.MBB->isLandingPad() && 2000 "Call to landingpad not in landing pad!"); 2001 2002 MachineBasicBlock *MBB = FuncInfo.MBB; 2003 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2004 AddLandingPadInfo(LP, MMI, MBB); 2005 2006 // If there aren't registers to copy the values into (e.g., during SjLj 2007 // exceptions), then don't bother to create these DAG nodes. 2008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2009 if (TLI.getExceptionPointerRegister() == 0 && 2010 TLI.getExceptionSelectorRegister() == 0) 2011 return; 2012 2013 SmallVector<EVT, 2> ValueVTs; 2014 SDLoc dl = getCurSDLoc(); 2015 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2016 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2017 2018 // Get the two live-in registers as SDValues. The physregs have already been 2019 // copied into virtual registers. 2020 SDValue Ops[2]; 2021 if (FuncInfo.ExceptionPointerVirtReg) { 2022 Ops[0] = DAG.getZExtOrTrunc( 2023 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2024 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2025 dl, ValueVTs[0]); 2026 } else { 2027 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2028 } 2029 Ops[1] = DAG.getZExtOrTrunc( 2030 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2031 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2032 dl, ValueVTs[1]); 2033 2034 // Merge into one. 2035 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2036 DAG.getVTList(ValueVTs), Ops); 2037 setValue(&LP, Res); 2038 } 2039 2040 unsigned 2041 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2042 MachineBasicBlock *LPadBB) { 2043 SDValue Chain = getControlRoot(); 2044 SDLoc dl = getCurSDLoc(); 2045 2046 // Get the typeid that we will dispatch on later. 2047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2048 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2049 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2050 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2051 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2052 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2053 2054 // Branch to the main landing pad block. 2055 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2056 ClauseMBB->addSuccessor(LPadBB); 2057 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2058 DAG.getBasicBlock(LPadBB))); 2059 return VReg; 2060 } 2061 2062 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2063 #ifndef NDEBUG 2064 for (const CaseCluster &CC : Clusters) 2065 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2066 #endif 2067 2068 std::sort(Clusters.begin(), Clusters.end(), 2069 [](const CaseCluster &a, const CaseCluster &b) { 2070 return a.Low->getValue().slt(b.Low->getValue()); 2071 }); 2072 2073 // Merge adjacent clusters with the same destination. 2074 const unsigned N = Clusters.size(); 2075 unsigned DstIndex = 0; 2076 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2077 CaseCluster &CC = Clusters[SrcIndex]; 2078 const ConstantInt *CaseVal = CC.Low; 2079 MachineBasicBlock *Succ = CC.MBB; 2080 2081 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2082 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2083 // If this case has the same successor and is a neighbour, merge it into 2084 // the previous cluster. 2085 Clusters[DstIndex - 1].High = CaseVal; 2086 Clusters[DstIndex - 1].Weight += CC.Weight; 2087 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2088 } else { 2089 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2090 sizeof(Clusters[SrcIndex])); 2091 } 2092 } 2093 Clusters.resize(DstIndex); 2094 } 2095 2096 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2097 MachineBasicBlock *Last) { 2098 // Update JTCases. 2099 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2100 if (JTCases[i].first.HeaderBB == First) 2101 JTCases[i].first.HeaderBB = Last; 2102 2103 // Update BitTestCases. 2104 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2105 if (BitTestCases[i].Parent == First) 2106 BitTestCases[i].Parent = Last; 2107 } 2108 2109 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2110 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2111 2112 // Update machine-CFG edges with unique successors. 2113 SmallSet<BasicBlock*, 32> Done; 2114 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2115 BasicBlock *BB = I.getSuccessor(i); 2116 bool Inserted = Done.insert(BB).second; 2117 if (!Inserted) 2118 continue; 2119 2120 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2121 addSuccessorWithWeight(IndirectBrMBB, Succ); 2122 } 2123 2124 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2125 MVT::Other, getControlRoot(), 2126 getValue(I.getAddress()))); 2127 } 2128 2129 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2130 if (DAG.getTarget().Options.TrapUnreachable) 2131 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2132 } 2133 2134 void SelectionDAGBuilder::visitFSub(const User &I) { 2135 // -0.0 - X --> fneg 2136 Type *Ty = I.getType(); 2137 if (isa<Constant>(I.getOperand(0)) && 2138 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2139 SDValue Op2 = getValue(I.getOperand(1)); 2140 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2141 Op2.getValueType(), Op2)); 2142 return; 2143 } 2144 2145 visitBinary(I, ISD::FSUB); 2146 } 2147 2148 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2149 SDValue Op1 = getValue(I.getOperand(0)); 2150 SDValue Op2 = getValue(I.getOperand(1)); 2151 2152 bool nuw = false; 2153 bool nsw = false; 2154 bool exact = false; 2155 FastMathFlags FMF; 2156 2157 if (const OverflowingBinaryOperator *OFBinOp = 2158 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2159 nuw = OFBinOp->hasNoUnsignedWrap(); 2160 nsw = OFBinOp->hasNoSignedWrap(); 2161 } 2162 if (const PossiblyExactOperator *ExactOp = 2163 dyn_cast<const PossiblyExactOperator>(&I)) 2164 exact = ExactOp->isExact(); 2165 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2166 FMF = FPOp->getFastMathFlags(); 2167 2168 SDNodeFlags Flags; 2169 Flags.setExact(exact); 2170 Flags.setNoSignedWrap(nsw); 2171 Flags.setNoUnsignedWrap(nuw); 2172 if (EnableFMFInDAG) { 2173 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2174 Flags.setNoInfs(FMF.noInfs()); 2175 Flags.setNoNaNs(FMF.noNaNs()); 2176 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2177 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2178 } 2179 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2180 Op1, Op2, &Flags); 2181 setValue(&I, BinNodeValue); 2182 } 2183 2184 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2185 SDValue Op1 = getValue(I.getOperand(0)); 2186 SDValue Op2 = getValue(I.getOperand(1)); 2187 2188 EVT ShiftTy = 2189 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2190 2191 // Coerce the shift amount to the right type if we can. 2192 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2193 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2194 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2195 SDLoc DL = getCurSDLoc(); 2196 2197 // If the operand is smaller than the shift count type, promote it. 2198 if (ShiftSize > Op2Size) 2199 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2200 2201 // If the operand is larger than the shift count type but the shift 2202 // count type has enough bits to represent any shift value, truncate 2203 // it now. This is a common case and it exposes the truncate to 2204 // optimization early. 2205 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2206 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2207 // Otherwise we'll need to temporarily settle for some other convenient 2208 // type. Type legalization will make adjustments once the shiftee is split. 2209 else 2210 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2211 } 2212 2213 bool nuw = false; 2214 bool nsw = false; 2215 bool exact = false; 2216 2217 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2218 2219 if (const OverflowingBinaryOperator *OFBinOp = 2220 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2221 nuw = OFBinOp->hasNoUnsignedWrap(); 2222 nsw = OFBinOp->hasNoSignedWrap(); 2223 } 2224 if (const PossiblyExactOperator *ExactOp = 2225 dyn_cast<const PossiblyExactOperator>(&I)) 2226 exact = ExactOp->isExact(); 2227 } 2228 SDNodeFlags Flags; 2229 Flags.setExact(exact); 2230 Flags.setNoSignedWrap(nsw); 2231 Flags.setNoUnsignedWrap(nuw); 2232 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2233 &Flags); 2234 setValue(&I, Res); 2235 } 2236 2237 void SelectionDAGBuilder::visitSDiv(const User &I) { 2238 SDValue Op1 = getValue(I.getOperand(0)); 2239 SDValue Op2 = getValue(I.getOperand(1)); 2240 2241 // Turn exact SDivs into multiplications. 2242 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2243 // exact bit. 2244 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2245 !isa<ConstantSDNode>(Op1) && 2246 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2247 setValue(&I, DAG.getTargetLoweringInfo() 2248 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2249 else 2250 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2251 Op1, Op2)); 2252 } 2253 2254 void SelectionDAGBuilder::visitICmp(const User &I) { 2255 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2256 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2257 predicate = IC->getPredicate(); 2258 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2259 predicate = ICmpInst::Predicate(IC->getPredicate()); 2260 SDValue Op1 = getValue(I.getOperand(0)); 2261 SDValue Op2 = getValue(I.getOperand(1)); 2262 ISD::CondCode Opcode = getICmpCondCode(predicate); 2263 2264 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2265 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2266 } 2267 2268 void SelectionDAGBuilder::visitFCmp(const User &I) { 2269 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2270 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2271 predicate = FC->getPredicate(); 2272 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2273 predicate = FCmpInst::Predicate(FC->getPredicate()); 2274 SDValue Op1 = getValue(I.getOperand(0)); 2275 SDValue Op2 = getValue(I.getOperand(1)); 2276 ISD::CondCode Condition = getFCmpCondCode(predicate); 2277 if (TM.Options.NoNaNsFPMath) 2278 Condition = getFCmpCodeWithoutNaN(Condition); 2279 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2280 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2281 } 2282 2283 void SelectionDAGBuilder::visitSelect(const User &I) { 2284 SmallVector<EVT, 4> ValueVTs; 2285 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2286 unsigned NumValues = ValueVTs.size(); 2287 if (NumValues == 0) return; 2288 2289 SmallVector<SDValue, 4> Values(NumValues); 2290 SDValue Cond = getValue(I.getOperand(0)); 2291 SDValue LHSVal = getValue(I.getOperand(1)); 2292 SDValue RHSVal = getValue(I.getOperand(2)); 2293 auto BaseOps = {Cond}; 2294 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2295 ISD::VSELECT : ISD::SELECT; 2296 2297 // Min/max matching is only viable if all output VTs are the same. 2298 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2299 Value *LHS, *RHS; 2300 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2301 ISD::NodeType Opc = ISD::DELETED_NODE; 2302 switch (SPF) { 2303 case SPF_UMAX: Opc = ISD::UMAX; break; 2304 case SPF_UMIN: Opc = ISD::UMIN; break; 2305 case SPF_SMAX: Opc = ISD::SMAX; break; 2306 case SPF_SMIN: Opc = ISD::SMIN; break; 2307 default: break; 2308 } 2309 2310 EVT VT = ValueVTs[0]; 2311 LLVMContext &Ctx = *DAG.getContext(); 2312 auto &TLI = DAG.getTargetLoweringInfo(); 2313 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2314 VT = TLI.getTypeToTransformTo(Ctx, VT); 2315 2316 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2317 // If the underlying comparison instruction is used by any other instruction, 2318 // the consumed instructions won't be destroyed, so it is not profitable 2319 // to convert to a min/max. 2320 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2321 OpCode = Opc; 2322 LHSVal = getValue(LHS); 2323 RHSVal = getValue(RHS); 2324 BaseOps = {}; 2325 } 2326 } 2327 2328 for (unsigned i = 0; i != NumValues; ++i) { 2329 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2330 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2331 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2332 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2333 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2334 Ops); 2335 } 2336 2337 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2338 DAG.getVTList(ValueVTs), Values)); 2339 } 2340 2341 void SelectionDAGBuilder::visitTrunc(const User &I) { 2342 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2343 SDValue N = getValue(I.getOperand(0)); 2344 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2345 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2346 } 2347 2348 void SelectionDAGBuilder::visitZExt(const User &I) { 2349 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2350 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2351 SDValue N = getValue(I.getOperand(0)); 2352 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2353 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2354 } 2355 2356 void SelectionDAGBuilder::visitSExt(const User &I) { 2357 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2358 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2359 SDValue N = getValue(I.getOperand(0)); 2360 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2361 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2362 } 2363 2364 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2365 // FPTrunc is never a no-op cast, no need to check 2366 SDValue N = getValue(I.getOperand(0)); 2367 SDLoc dl = getCurSDLoc(); 2368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2369 EVT DestVT = TLI.getValueType(I.getType()); 2370 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2371 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2372 } 2373 2374 void SelectionDAGBuilder::visitFPExt(const User &I) { 2375 // FPExt is never a no-op cast, no need to check 2376 SDValue N = getValue(I.getOperand(0)); 2377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2378 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2379 } 2380 2381 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2382 // FPToUI is never a no-op cast, no need to check 2383 SDValue N = getValue(I.getOperand(0)); 2384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2385 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2386 } 2387 2388 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2389 // FPToSI is never a no-op cast, no need to check 2390 SDValue N = getValue(I.getOperand(0)); 2391 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2392 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2393 } 2394 2395 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2396 // UIToFP is never a no-op cast, no need to check 2397 SDValue N = getValue(I.getOperand(0)); 2398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2399 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2400 } 2401 2402 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2403 // SIToFP is never a no-op cast, no need to check 2404 SDValue N = getValue(I.getOperand(0)); 2405 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2406 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2407 } 2408 2409 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2410 // What to do depends on the size of the integer and the size of the pointer. 2411 // We can either truncate, zero extend, or no-op, accordingly. 2412 SDValue N = getValue(I.getOperand(0)); 2413 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2414 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2415 } 2416 2417 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2418 // What to do depends on the size of the integer and the size of the pointer. 2419 // We can either truncate, zero extend, or no-op, accordingly. 2420 SDValue N = getValue(I.getOperand(0)); 2421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2422 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2423 } 2424 2425 void SelectionDAGBuilder::visitBitCast(const User &I) { 2426 SDValue N = getValue(I.getOperand(0)); 2427 SDLoc dl = getCurSDLoc(); 2428 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2429 2430 // BitCast assures us that source and destination are the same size so this is 2431 // either a BITCAST or a no-op. 2432 if (DestVT != N.getValueType()) 2433 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2434 DestVT, N)); // convert types. 2435 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2436 // might fold any kind of constant expression to an integer constant and that 2437 // is not what we are looking for. Only regcognize a bitcast of a genuine 2438 // constant integer as an opaque constant. 2439 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2440 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2441 /*isOpaque*/true)); 2442 else 2443 setValue(&I, N); // noop cast. 2444 } 2445 2446 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2448 const Value *SV = I.getOperand(0); 2449 SDValue N = getValue(SV); 2450 EVT DestVT = TLI.getValueType(I.getType()); 2451 2452 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2453 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2454 2455 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2456 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2457 2458 setValue(&I, N); 2459 } 2460 2461 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2463 SDValue InVec = getValue(I.getOperand(0)); 2464 SDValue InVal = getValue(I.getOperand(1)); 2465 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2466 getCurSDLoc(), TLI.getVectorIdxTy()); 2467 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2468 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2469 } 2470 2471 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2473 SDValue InVec = getValue(I.getOperand(0)); 2474 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2475 getCurSDLoc(), TLI.getVectorIdxTy()); 2476 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2477 TLI.getValueType(I.getType()), InVec, InIdx)); 2478 } 2479 2480 // Utility for visitShuffleVector - Return true if every element in Mask, 2481 // beginning from position Pos and ending in Pos+Size, falls within the 2482 // specified sequential range [L, L+Pos). or is undef. 2483 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2484 unsigned Pos, unsigned Size, int Low) { 2485 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2486 if (Mask[i] >= 0 && Mask[i] != Low) 2487 return false; 2488 return true; 2489 } 2490 2491 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2492 SDValue Src1 = getValue(I.getOperand(0)); 2493 SDValue Src2 = getValue(I.getOperand(1)); 2494 2495 SmallVector<int, 8> Mask; 2496 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2497 unsigned MaskNumElts = Mask.size(); 2498 2499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2500 EVT VT = TLI.getValueType(I.getType()); 2501 EVT SrcVT = Src1.getValueType(); 2502 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2503 2504 if (SrcNumElts == MaskNumElts) { 2505 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2506 &Mask[0])); 2507 return; 2508 } 2509 2510 // Normalize the shuffle vector since mask and vector length don't match. 2511 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2512 // Mask is longer than the source vectors and is a multiple of the source 2513 // vectors. We can use concatenate vector to make the mask and vectors 2514 // lengths match. 2515 if (SrcNumElts*2 == MaskNumElts) { 2516 // First check for Src1 in low and Src2 in high 2517 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2518 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2519 // The shuffle is concatenating two vectors together. 2520 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2521 VT, Src1, Src2)); 2522 return; 2523 } 2524 // Then check for Src2 in low and Src1 in high 2525 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2526 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2527 // The shuffle is concatenating two vectors together. 2528 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2529 VT, Src2, Src1)); 2530 return; 2531 } 2532 } 2533 2534 // Pad both vectors with undefs to make them the same length as the mask. 2535 unsigned NumConcat = MaskNumElts / SrcNumElts; 2536 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2537 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2538 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2539 2540 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2541 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2542 MOps1[0] = Src1; 2543 MOps2[0] = Src2; 2544 2545 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2546 getCurSDLoc(), VT, MOps1); 2547 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2548 getCurSDLoc(), VT, MOps2); 2549 2550 // Readjust mask for new input vector length. 2551 SmallVector<int, 8> MappedOps; 2552 for (unsigned i = 0; i != MaskNumElts; ++i) { 2553 int Idx = Mask[i]; 2554 if (Idx >= (int)SrcNumElts) 2555 Idx -= SrcNumElts - MaskNumElts; 2556 MappedOps.push_back(Idx); 2557 } 2558 2559 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2560 &MappedOps[0])); 2561 return; 2562 } 2563 2564 if (SrcNumElts > MaskNumElts) { 2565 // Analyze the access pattern of the vector to see if we can extract 2566 // two subvectors and do the shuffle. The analysis is done by calculating 2567 // the range of elements the mask access on both vectors. 2568 int MinRange[2] = { static_cast<int>(SrcNumElts), 2569 static_cast<int>(SrcNumElts)}; 2570 int MaxRange[2] = {-1, -1}; 2571 2572 for (unsigned i = 0; i != MaskNumElts; ++i) { 2573 int Idx = Mask[i]; 2574 unsigned Input = 0; 2575 if (Idx < 0) 2576 continue; 2577 2578 if (Idx >= (int)SrcNumElts) { 2579 Input = 1; 2580 Idx -= SrcNumElts; 2581 } 2582 if (Idx > MaxRange[Input]) 2583 MaxRange[Input] = Idx; 2584 if (Idx < MinRange[Input]) 2585 MinRange[Input] = Idx; 2586 } 2587 2588 // Check if the access is smaller than the vector size and can we find 2589 // a reasonable extract index. 2590 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2591 // Extract. 2592 int StartIdx[2]; // StartIdx to extract from 2593 for (unsigned Input = 0; Input < 2; ++Input) { 2594 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2595 RangeUse[Input] = 0; // Unused 2596 StartIdx[Input] = 0; 2597 continue; 2598 } 2599 2600 // Find a good start index that is a multiple of the mask length. Then 2601 // see if the rest of the elements are in range. 2602 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2603 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2604 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2605 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2606 } 2607 2608 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2609 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2610 return; 2611 } 2612 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2613 // Extract appropriate subvector and generate a vector shuffle 2614 for (unsigned Input = 0; Input < 2; ++Input) { 2615 SDValue &Src = Input == 0 ? Src1 : Src2; 2616 if (RangeUse[Input] == 0) 2617 Src = DAG.getUNDEF(VT); 2618 else { 2619 SDLoc dl = getCurSDLoc(); 2620 Src = DAG.getNode( 2621 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2622 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2623 } 2624 } 2625 2626 // Calculate new mask. 2627 SmallVector<int, 8> MappedOps; 2628 for (unsigned i = 0; i != MaskNumElts; ++i) { 2629 int Idx = Mask[i]; 2630 if (Idx >= 0) { 2631 if (Idx < (int)SrcNumElts) 2632 Idx -= StartIdx[0]; 2633 else 2634 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2635 } 2636 MappedOps.push_back(Idx); 2637 } 2638 2639 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2640 &MappedOps[0])); 2641 return; 2642 } 2643 } 2644 2645 // We can't use either concat vectors or extract subvectors so fall back to 2646 // replacing the shuffle with extract and build vector. 2647 // to insert and build vector. 2648 EVT EltVT = VT.getVectorElementType(); 2649 EVT IdxVT = TLI.getVectorIdxTy(); 2650 SDLoc dl = getCurSDLoc(); 2651 SmallVector<SDValue,8> Ops; 2652 for (unsigned i = 0; i != MaskNumElts; ++i) { 2653 int Idx = Mask[i]; 2654 SDValue Res; 2655 2656 if (Idx < 0) { 2657 Res = DAG.getUNDEF(EltVT); 2658 } else { 2659 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2660 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2661 2662 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2663 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2664 } 2665 2666 Ops.push_back(Res); 2667 } 2668 2669 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2670 } 2671 2672 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2673 const Value *Op0 = I.getOperand(0); 2674 const Value *Op1 = I.getOperand(1); 2675 Type *AggTy = I.getType(); 2676 Type *ValTy = Op1->getType(); 2677 bool IntoUndef = isa<UndefValue>(Op0); 2678 bool FromUndef = isa<UndefValue>(Op1); 2679 2680 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2681 2682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2683 SmallVector<EVT, 4> AggValueVTs; 2684 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2685 SmallVector<EVT, 4> ValValueVTs; 2686 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2687 2688 unsigned NumAggValues = AggValueVTs.size(); 2689 unsigned NumValValues = ValValueVTs.size(); 2690 SmallVector<SDValue, 4> Values(NumAggValues); 2691 2692 // Ignore an insertvalue that produces an empty object 2693 if (!NumAggValues) { 2694 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2695 return; 2696 } 2697 2698 SDValue Agg = getValue(Op0); 2699 unsigned i = 0; 2700 // Copy the beginning value(s) from the original aggregate. 2701 for (; i != LinearIndex; ++i) 2702 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2703 SDValue(Agg.getNode(), Agg.getResNo() + i); 2704 // Copy values from the inserted value(s). 2705 if (NumValValues) { 2706 SDValue Val = getValue(Op1); 2707 for (; i != LinearIndex + NumValValues; ++i) 2708 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2709 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2710 } 2711 // Copy remaining value(s) from the original aggregate. 2712 for (; i != NumAggValues; ++i) 2713 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2714 SDValue(Agg.getNode(), Agg.getResNo() + i); 2715 2716 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2717 DAG.getVTList(AggValueVTs), Values)); 2718 } 2719 2720 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2721 const Value *Op0 = I.getOperand(0); 2722 Type *AggTy = Op0->getType(); 2723 Type *ValTy = I.getType(); 2724 bool OutOfUndef = isa<UndefValue>(Op0); 2725 2726 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2727 2728 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2729 SmallVector<EVT, 4> ValValueVTs; 2730 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2731 2732 unsigned NumValValues = ValValueVTs.size(); 2733 2734 // Ignore a extractvalue that produces an empty object 2735 if (!NumValValues) { 2736 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2737 return; 2738 } 2739 2740 SmallVector<SDValue, 4> Values(NumValValues); 2741 2742 SDValue Agg = getValue(Op0); 2743 // Copy out the selected value(s). 2744 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2745 Values[i - LinearIndex] = 2746 OutOfUndef ? 2747 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2748 SDValue(Agg.getNode(), Agg.getResNo() + i); 2749 2750 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2751 DAG.getVTList(ValValueVTs), Values)); 2752 } 2753 2754 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2755 Value *Op0 = I.getOperand(0); 2756 // Note that the pointer operand may be a vector of pointers. Take the scalar 2757 // element which holds a pointer. 2758 Type *Ty = Op0->getType()->getScalarType(); 2759 unsigned AS = Ty->getPointerAddressSpace(); 2760 SDValue N = getValue(Op0); 2761 SDLoc dl = getCurSDLoc(); 2762 2763 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2764 OI != E; ++OI) { 2765 const Value *Idx = *OI; 2766 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2767 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2768 if (Field) { 2769 // N = N + Offset 2770 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2771 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2772 DAG.getConstant(Offset, dl, N.getValueType())); 2773 } 2774 2775 Ty = StTy->getElementType(Field); 2776 } else { 2777 Ty = cast<SequentialType>(Ty)->getElementType(); 2778 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2779 unsigned PtrSize = PtrTy.getSizeInBits(); 2780 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2781 2782 // If this is a constant subscript, handle it quickly. 2783 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2784 if (CI->isZero()) 2785 continue; 2786 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2787 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2788 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2789 continue; 2790 } 2791 2792 // N = N + Idx * ElementSize; 2793 SDValue IdxN = getValue(Idx); 2794 2795 // If the index is smaller or larger than intptr_t, truncate or extend 2796 // it. 2797 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2798 2799 // If this is a multiply by a power of two, turn it into a shl 2800 // immediately. This is a very common case. 2801 if (ElementSize != 1) { 2802 if (ElementSize.isPowerOf2()) { 2803 unsigned Amt = ElementSize.logBase2(); 2804 IdxN = DAG.getNode(ISD::SHL, dl, 2805 N.getValueType(), IdxN, 2806 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2807 } else { 2808 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2809 IdxN = DAG.getNode(ISD::MUL, dl, 2810 N.getValueType(), IdxN, Scale); 2811 } 2812 } 2813 2814 N = DAG.getNode(ISD::ADD, dl, 2815 N.getValueType(), N, IdxN); 2816 } 2817 } 2818 2819 setValue(&I, N); 2820 } 2821 2822 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2823 // If this is a fixed sized alloca in the entry block of the function, 2824 // allocate it statically on the stack. 2825 if (FuncInfo.StaticAllocaMap.count(&I)) 2826 return; // getValue will auto-populate this. 2827 2828 SDLoc dl = getCurSDLoc(); 2829 Type *Ty = I.getAllocatedType(); 2830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2831 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2832 unsigned Align = 2833 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2834 I.getAlignment()); 2835 2836 SDValue AllocSize = getValue(I.getArraySize()); 2837 2838 EVT IntPtr = TLI.getPointerTy(); 2839 if (AllocSize.getValueType() != IntPtr) 2840 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2841 2842 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2843 AllocSize, 2844 DAG.getConstant(TySize, dl, IntPtr)); 2845 2846 // Handle alignment. If the requested alignment is less than or equal to 2847 // the stack alignment, ignore it. If the size is greater than or equal to 2848 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2849 unsigned StackAlign = 2850 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2851 if (Align <= StackAlign) 2852 Align = 0; 2853 2854 // Round the size of the allocation up to the stack alignment size 2855 // by add SA-1 to the size. 2856 AllocSize = DAG.getNode(ISD::ADD, dl, 2857 AllocSize.getValueType(), AllocSize, 2858 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2859 2860 // Mask out the low bits for alignment purposes. 2861 AllocSize = DAG.getNode(ISD::AND, dl, 2862 AllocSize.getValueType(), AllocSize, 2863 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2864 dl)); 2865 2866 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2867 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2868 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2869 setValue(&I, DSA); 2870 DAG.setRoot(DSA.getValue(1)); 2871 2872 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2873 } 2874 2875 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2876 if (I.isAtomic()) 2877 return visitAtomicLoad(I); 2878 2879 const Value *SV = I.getOperand(0); 2880 SDValue Ptr = getValue(SV); 2881 2882 Type *Ty = I.getType(); 2883 2884 bool isVolatile = I.isVolatile(); 2885 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2886 2887 // The IR notion of invariant_load only guarantees that all *non-faulting* 2888 // invariant loads result in the same value. The MI notion of invariant load 2889 // guarantees that the load can be legally moved to any location within its 2890 // containing function. The MI notion of invariant_load is stronger than the 2891 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2892 // with a guarantee that the location being loaded from is dereferenceable 2893 // throughout the function's lifetime. 2894 2895 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2896 isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout()); 2897 unsigned Alignment = I.getAlignment(); 2898 2899 AAMDNodes AAInfo; 2900 I.getAAMetadata(AAInfo); 2901 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2902 2903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2904 SmallVector<EVT, 4> ValueVTs; 2905 SmallVector<uint64_t, 4> Offsets; 2906 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2907 unsigned NumValues = ValueVTs.size(); 2908 if (NumValues == 0) 2909 return; 2910 2911 SDValue Root; 2912 bool ConstantMemory = false; 2913 if (isVolatile || NumValues > MaxParallelChains) 2914 // Serialize volatile loads with other side effects. 2915 Root = getRoot(); 2916 else if (AA->pointsToConstantMemory( 2917 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2918 // Do not serialize (non-volatile) loads of constant memory with anything. 2919 Root = DAG.getEntryNode(); 2920 ConstantMemory = true; 2921 } else { 2922 // Do not serialize non-volatile loads against each other. 2923 Root = DAG.getRoot(); 2924 } 2925 2926 SDLoc dl = getCurSDLoc(); 2927 2928 if (isVolatile) 2929 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2930 2931 SmallVector<SDValue, 4> Values(NumValues); 2932 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2933 EVT PtrVT = Ptr.getValueType(); 2934 unsigned ChainI = 0; 2935 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2936 // Serializing loads here may result in excessive register pressure, and 2937 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2938 // could recover a bit by hoisting nodes upward in the chain by recognizing 2939 // they are side-effect free or do not alias. The optimizer should really 2940 // avoid this case by converting large object/array copies to llvm.memcpy 2941 // (MaxParallelChains should always remain as failsafe). 2942 if (ChainI == MaxParallelChains) { 2943 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2944 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2945 makeArrayRef(Chains.data(), ChainI)); 2946 Root = Chain; 2947 ChainI = 0; 2948 } 2949 SDValue A = DAG.getNode(ISD::ADD, dl, 2950 PtrVT, Ptr, 2951 DAG.getConstant(Offsets[i], dl, PtrVT)); 2952 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2953 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2954 isNonTemporal, isInvariant, Alignment, AAInfo, 2955 Ranges); 2956 2957 Values[i] = L; 2958 Chains[ChainI] = L.getValue(1); 2959 } 2960 2961 if (!ConstantMemory) { 2962 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2963 makeArrayRef(Chains.data(), ChainI)); 2964 if (isVolatile) 2965 DAG.setRoot(Chain); 2966 else 2967 PendingLoads.push_back(Chain); 2968 } 2969 2970 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2971 DAG.getVTList(ValueVTs), Values)); 2972 } 2973 2974 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2975 if (I.isAtomic()) 2976 return visitAtomicStore(I); 2977 2978 const Value *SrcV = I.getOperand(0); 2979 const Value *PtrV = I.getOperand(1); 2980 2981 SmallVector<EVT, 4> ValueVTs; 2982 SmallVector<uint64_t, 4> Offsets; 2983 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2984 ValueVTs, &Offsets); 2985 unsigned NumValues = ValueVTs.size(); 2986 if (NumValues == 0) 2987 return; 2988 2989 // Get the lowered operands. Note that we do this after 2990 // checking if NumResults is zero, because with zero results 2991 // the operands won't have values in the map. 2992 SDValue Src = getValue(SrcV); 2993 SDValue Ptr = getValue(PtrV); 2994 2995 SDValue Root = getRoot(); 2996 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2997 EVT PtrVT = Ptr.getValueType(); 2998 bool isVolatile = I.isVolatile(); 2999 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3000 unsigned Alignment = I.getAlignment(); 3001 SDLoc dl = getCurSDLoc(); 3002 3003 AAMDNodes AAInfo; 3004 I.getAAMetadata(AAInfo); 3005 3006 unsigned ChainI = 0; 3007 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3008 // See visitLoad comments. 3009 if (ChainI == MaxParallelChains) { 3010 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3011 makeArrayRef(Chains.data(), ChainI)); 3012 Root = Chain; 3013 ChainI = 0; 3014 } 3015 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3016 DAG.getConstant(Offsets[i], dl, PtrVT)); 3017 SDValue St = DAG.getStore(Root, dl, 3018 SDValue(Src.getNode(), Src.getResNo() + i), 3019 Add, MachinePointerInfo(PtrV, Offsets[i]), 3020 isVolatile, isNonTemporal, Alignment, AAInfo); 3021 Chains[ChainI] = St; 3022 } 3023 3024 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3025 makeArrayRef(Chains.data(), ChainI)); 3026 DAG.setRoot(StoreNode); 3027 } 3028 3029 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3030 SDLoc sdl = getCurSDLoc(); 3031 3032 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3033 Value *PtrOperand = I.getArgOperand(1); 3034 SDValue Ptr = getValue(PtrOperand); 3035 SDValue Src0 = getValue(I.getArgOperand(0)); 3036 SDValue Mask = getValue(I.getArgOperand(3)); 3037 EVT VT = Src0.getValueType(); 3038 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3039 if (!Alignment) 3040 Alignment = DAG.getEVTAlignment(VT); 3041 3042 AAMDNodes AAInfo; 3043 I.getAAMetadata(AAInfo); 3044 3045 MachineMemOperand *MMO = 3046 DAG.getMachineFunction(). 3047 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3048 MachineMemOperand::MOStore, VT.getStoreSize(), 3049 Alignment, AAInfo); 3050 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3051 MMO, false); 3052 DAG.setRoot(StoreNode); 3053 setValue(&I, StoreNode); 3054 } 3055 3056 // Gather/scatter receive a vector of pointers. 3057 // This vector of pointers may be represented as a base pointer + vector of 3058 // indices, it depends on GEP and instruction preceeding GEP 3059 // that calculates indices 3060 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3061 SelectionDAGBuilder* SDB) { 3062 3063 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3064 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3065 if (!Gep || Gep->getNumOperands() > 2) 3066 return false; 3067 ShuffleVectorInst *ShuffleInst = 3068 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3069 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3070 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3071 Instruction::InsertElement) 3072 return false; 3073 3074 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3075 3076 SelectionDAG& DAG = SDB->DAG; 3077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3078 // Check is the Ptr is inside current basic block 3079 // If not, look for the shuffle instruction 3080 if (SDB->findValue(Ptr)) 3081 Base = SDB->getValue(Ptr); 3082 else if (SDB->findValue(ShuffleInst)) { 3083 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3084 SDLoc sdl = ShuffleNode; 3085 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3086 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3087 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3088 SDB->setValue(Ptr, Base); 3089 } 3090 else 3091 return false; 3092 3093 Value *IndexVal = Gep->getOperand(1); 3094 if (SDB->findValue(IndexVal)) { 3095 Index = SDB->getValue(IndexVal); 3096 3097 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3098 IndexVal = Sext->getOperand(0); 3099 if (SDB->findValue(IndexVal)) 3100 Index = SDB->getValue(IndexVal); 3101 } 3102 return true; 3103 } 3104 return false; 3105 } 3106 3107 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3108 SDLoc sdl = getCurSDLoc(); 3109 3110 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3111 Value *Ptr = I.getArgOperand(1); 3112 SDValue Src0 = getValue(I.getArgOperand(0)); 3113 SDValue Mask = getValue(I.getArgOperand(3)); 3114 EVT VT = Src0.getValueType(); 3115 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3116 if (!Alignment) 3117 Alignment = DAG.getEVTAlignment(VT); 3118 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3119 3120 AAMDNodes AAInfo; 3121 I.getAAMetadata(AAInfo); 3122 3123 SDValue Base; 3124 SDValue Index; 3125 Value *BasePtr = Ptr; 3126 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3127 3128 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3129 MachineMemOperand *MMO = DAG.getMachineFunction(). 3130 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3131 MachineMemOperand::MOStore, VT.getStoreSize(), 3132 Alignment, AAInfo); 3133 if (!UniformBase) { 3134 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3135 Index = getValue(Ptr); 3136 } 3137 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3138 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3139 Ops, MMO); 3140 DAG.setRoot(Scatter); 3141 setValue(&I, Scatter); 3142 } 3143 3144 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3145 SDLoc sdl = getCurSDLoc(); 3146 3147 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3148 Value *PtrOperand = I.getArgOperand(0); 3149 SDValue Ptr = getValue(PtrOperand); 3150 SDValue Src0 = getValue(I.getArgOperand(3)); 3151 SDValue Mask = getValue(I.getArgOperand(2)); 3152 3153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3154 EVT VT = TLI.getValueType(I.getType()); 3155 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3156 if (!Alignment) 3157 Alignment = DAG.getEVTAlignment(VT); 3158 3159 AAMDNodes AAInfo; 3160 I.getAAMetadata(AAInfo); 3161 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3162 3163 SDValue InChain = DAG.getRoot(); 3164 if (AA->pointsToConstantMemory(MemoryLocation( 3165 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3166 // Do not serialize (non-volatile) loads of constant memory with anything. 3167 InChain = DAG.getEntryNode(); 3168 } 3169 3170 MachineMemOperand *MMO = 3171 DAG.getMachineFunction(). 3172 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3173 MachineMemOperand::MOLoad, VT.getStoreSize(), 3174 Alignment, AAInfo, Ranges); 3175 3176 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3177 ISD::NON_EXTLOAD); 3178 SDValue OutChain = Load.getValue(1); 3179 DAG.setRoot(OutChain); 3180 setValue(&I, Load); 3181 } 3182 3183 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3184 SDLoc sdl = getCurSDLoc(); 3185 3186 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3187 Value *Ptr = I.getArgOperand(0); 3188 SDValue Src0 = getValue(I.getArgOperand(3)); 3189 SDValue Mask = getValue(I.getArgOperand(2)); 3190 3191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3192 EVT VT = TLI.getValueType(I.getType()); 3193 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3194 if (!Alignment) 3195 Alignment = DAG.getEVTAlignment(VT); 3196 3197 AAMDNodes AAInfo; 3198 I.getAAMetadata(AAInfo); 3199 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3200 3201 SDValue Root = DAG.getRoot(); 3202 SDValue Base; 3203 SDValue Index; 3204 Value *BasePtr = Ptr; 3205 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3206 bool ConstantMemory = false; 3207 if (UniformBase && 3208 AA->pointsToConstantMemory( 3209 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3210 // Do not serialize (non-volatile) loads of constant memory with anything. 3211 Root = DAG.getEntryNode(); 3212 ConstantMemory = true; 3213 } 3214 3215 MachineMemOperand *MMO = 3216 DAG.getMachineFunction(). 3217 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3218 MachineMemOperand::MOLoad, VT.getStoreSize(), 3219 Alignment, AAInfo, Ranges); 3220 3221 if (!UniformBase) { 3222 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3223 Index = getValue(Ptr); 3224 } 3225 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3226 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3227 Ops, MMO); 3228 3229 SDValue OutChain = Gather.getValue(1); 3230 if (!ConstantMemory) 3231 PendingLoads.push_back(OutChain); 3232 setValue(&I, Gather); 3233 } 3234 3235 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3236 SDLoc dl = getCurSDLoc(); 3237 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3238 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3239 SynchronizationScope Scope = I.getSynchScope(); 3240 3241 SDValue InChain = getRoot(); 3242 3243 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3244 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3245 SDValue L = DAG.getAtomicCmpSwap( 3246 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3247 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3248 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3249 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3250 3251 SDValue OutChain = L.getValue(2); 3252 3253 setValue(&I, L); 3254 DAG.setRoot(OutChain); 3255 } 3256 3257 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3258 SDLoc dl = getCurSDLoc(); 3259 ISD::NodeType NT; 3260 switch (I.getOperation()) { 3261 default: llvm_unreachable("Unknown atomicrmw operation"); 3262 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3263 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3264 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3265 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3266 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3267 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3268 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3269 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3270 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3271 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3272 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3273 } 3274 AtomicOrdering Order = I.getOrdering(); 3275 SynchronizationScope Scope = I.getSynchScope(); 3276 3277 SDValue InChain = getRoot(); 3278 3279 SDValue L = 3280 DAG.getAtomic(NT, dl, 3281 getValue(I.getValOperand()).getSimpleValueType(), 3282 InChain, 3283 getValue(I.getPointerOperand()), 3284 getValue(I.getValOperand()), 3285 I.getPointerOperand(), 3286 /* Alignment=*/ 0, Order, Scope); 3287 3288 SDValue OutChain = L.getValue(1); 3289 3290 setValue(&I, L); 3291 DAG.setRoot(OutChain); 3292 } 3293 3294 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3295 SDLoc dl = getCurSDLoc(); 3296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3297 SDValue Ops[3]; 3298 Ops[0] = getRoot(); 3299 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3300 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3301 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3302 } 3303 3304 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3305 SDLoc dl = getCurSDLoc(); 3306 AtomicOrdering Order = I.getOrdering(); 3307 SynchronizationScope Scope = I.getSynchScope(); 3308 3309 SDValue InChain = getRoot(); 3310 3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3312 EVT VT = TLI.getValueType(I.getType()); 3313 3314 if (I.getAlignment() < VT.getSizeInBits() / 8) 3315 report_fatal_error("Cannot generate unaligned atomic load"); 3316 3317 MachineMemOperand *MMO = 3318 DAG.getMachineFunction(). 3319 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3320 MachineMemOperand::MOVolatile | 3321 MachineMemOperand::MOLoad, 3322 VT.getStoreSize(), 3323 I.getAlignment() ? I.getAlignment() : 3324 DAG.getEVTAlignment(VT)); 3325 3326 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3327 SDValue L = 3328 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3329 getValue(I.getPointerOperand()), MMO, 3330 Order, Scope); 3331 3332 SDValue OutChain = L.getValue(1); 3333 3334 setValue(&I, L); 3335 DAG.setRoot(OutChain); 3336 } 3337 3338 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3339 SDLoc dl = getCurSDLoc(); 3340 3341 AtomicOrdering Order = I.getOrdering(); 3342 SynchronizationScope Scope = I.getSynchScope(); 3343 3344 SDValue InChain = getRoot(); 3345 3346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3347 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3348 3349 if (I.getAlignment() < VT.getSizeInBits() / 8) 3350 report_fatal_error("Cannot generate unaligned atomic store"); 3351 3352 SDValue OutChain = 3353 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3354 InChain, 3355 getValue(I.getPointerOperand()), 3356 getValue(I.getValueOperand()), 3357 I.getPointerOperand(), I.getAlignment(), 3358 Order, Scope); 3359 3360 DAG.setRoot(OutChain); 3361 } 3362 3363 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3364 /// node. 3365 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3366 unsigned Intrinsic) { 3367 bool HasChain = !I.doesNotAccessMemory(); 3368 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3369 3370 // Build the operand list. 3371 SmallVector<SDValue, 8> Ops; 3372 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3373 if (OnlyLoad) { 3374 // We don't need to serialize loads against other loads. 3375 Ops.push_back(DAG.getRoot()); 3376 } else { 3377 Ops.push_back(getRoot()); 3378 } 3379 } 3380 3381 // Info is set by getTgtMemInstrinsic 3382 TargetLowering::IntrinsicInfo Info; 3383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3384 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3385 3386 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3387 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3388 Info.opc == ISD::INTRINSIC_W_CHAIN) 3389 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3390 TLI.getPointerTy())); 3391 3392 // Add all operands of the call to the operand list. 3393 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3394 SDValue Op = getValue(I.getArgOperand(i)); 3395 Ops.push_back(Op); 3396 } 3397 3398 SmallVector<EVT, 4> ValueVTs; 3399 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3400 3401 if (HasChain) 3402 ValueVTs.push_back(MVT::Other); 3403 3404 SDVTList VTs = DAG.getVTList(ValueVTs); 3405 3406 // Create the node. 3407 SDValue Result; 3408 if (IsTgtIntrinsic) { 3409 // This is target intrinsic that touches memory 3410 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3411 VTs, Ops, Info.memVT, 3412 MachinePointerInfo(Info.ptrVal, Info.offset), 3413 Info.align, Info.vol, 3414 Info.readMem, Info.writeMem, Info.size); 3415 } else if (!HasChain) { 3416 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3417 } else if (!I.getType()->isVoidTy()) { 3418 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3419 } else { 3420 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3421 } 3422 3423 if (HasChain) { 3424 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3425 if (OnlyLoad) 3426 PendingLoads.push_back(Chain); 3427 else 3428 DAG.setRoot(Chain); 3429 } 3430 3431 if (!I.getType()->isVoidTy()) { 3432 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3433 EVT VT = TLI.getValueType(PTy); 3434 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3435 } 3436 3437 setValue(&I, Result); 3438 } 3439 } 3440 3441 /// GetSignificand - Get the significand and build it into a floating-point 3442 /// number with exponent of 1: 3443 /// 3444 /// Op = (Op & 0x007fffff) | 0x3f800000; 3445 /// 3446 /// where Op is the hexadecimal representation of floating point value. 3447 static SDValue 3448 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3449 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3450 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3451 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3452 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3453 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3454 } 3455 3456 /// GetExponent - Get the exponent: 3457 /// 3458 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3459 /// 3460 /// where Op is the hexadecimal representation of floating point value. 3461 static SDValue 3462 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3463 SDLoc dl) { 3464 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3465 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3466 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3467 DAG.getConstant(23, dl, TLI.getPointerTy())); 3468 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3469 DAG.getConstant(127, dl, MVT::i32)); 3470 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3471 } 3472 3473 /// getF32Constant - Get 32-bit floating point constant. 3474 static SDValue 3475 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3476 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3477 MVT::f32); 3478 } 3479 3480 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3481 SelectionDAG &DAG) { 3482 // IntegerPartOfX = ((int32_t)(t0); 3483 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3484 3485 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3486 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3487 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3488 3489 // IntegerPartOfX <<= 23; 3490 IntegerPartOfX = DAG.getNode( 3491 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3492 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3493 3494 SDValue TwoToFractionalPartOfX; 3495 if (LimitFloatPrecision <= 6) { 3496 // For floating-point precision of 6: 3497 // 3498 // TwoToFractionalPartOfX = 3499 // 0.997535578f + 3500 // (0.735607626f + 0.252464424f * x) * x; 3501 // 3502 // error 0.0144103317, which is 6 bits 3503 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3504 getF32Constant(DAG, 0x3e814304, dl)); 3505 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3506 getF32Constant(DAG, 0x3f3c50c8, dl)); 3507 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3508 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3509 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3510 } else if (LimitFloatPrecision <= 12) { 3511 // For floating-point precision of 12: 3512 // 3513 // TwoToFractionalPartOfX = 3514 // 0.999892986f + 3515 // (0.696457318f + 3516 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3517 // 3518 // error 0.000107046256, which is 13 to 14 bits 3519 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3520 getF32Constant(DAG, 0x3da235e3, dl)); 3521 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3522 getF32Constant(DAG, 0x3e65b8f3, dl)); 3523 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3524 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3525 getF32Constant(DAG, 0x3f324b07, dl)); 3526 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3527 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3528 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3529 } else { // LimitFloatPrecision <= 18 3530 // For floating-point precision of 18: 3531 // 3532 // TwoToFractionalPartOfX = 3533 // 0.999999982f + 3534 // (0.693148872f + 3535 // (0.240227044f + 3536 // (0.554906021e-1f + 3537 // (0.961591928e-2f + 3538 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3539 // error 2.47208000*10^(-7), which is better than 18 bits 3540 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3541 getF32Constant(DAG, 0x3924b03e, dl)); 3542 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3543 getF32Constant(DAG, 0x3ab24b87, dl)); 3544 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3545 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3546 getF32Constant(DAG, 0x3c1d8c17, dl)); 3547 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3548 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3549 getF32Constant(DAG, 0x3d634a1d, dl)); 3550 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3551 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3552 getF32Constant(DAG, 0x3e75fe14, dl)); 3553 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3554 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3555 getF32Constant(DAG, 0x3f317234, dl)); 3556 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3557 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3558 getF32Constant(DAG, 0x3f800000, dl)); 3559 } 3560 3561 // Add the exponent into the result in integer domain. 3562 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3563 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3564 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3565 } 3566 3567 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3568 /// limited-precision mode. 3569 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3570 const TargetLowering &TLI) { 3571 if (Op.getValueType() == MVT::f32 && 3572 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3573 3574 // Put the exponent in the right bit position for later addition to the 3575 // final result: 3576 // 3577 // #define LOG2OFe 1.4426950f 3578 // t0 = Op * LOG2OFe 3579 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3580 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3581 return getLimitedPrecisionExp2(t0, dl, DAG); 3582 } 3583 3584 // No special expansion. 3585 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3586 } 3587 3588 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3589 /// limited-precision mode. 3590 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3591 const TargetLowering &TLI) { 3592 if (Op.getValueType() == MVT::f32 && 3593 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3594 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3595 3596 // Scale the exponent by log(2) [0.69314718f]. 3597 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3598 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3599 getF32Constant(DAG, 0x3f317218, dl)); 3600 3601 // Get the significand and build it into a floating-point number with 3602 // exponent of 1. 3603 SDValue X = GetSignificand(DAG, Op1, dl); 3604 3605 SDValue LogOfMantissa; 3606 if (LimitFloatPrecision <= 6) { 3607 // For floating-point precision of 6: 3608 // 3609 // LogofMantissa = 3610 // -1.1609546f + 3611 // (1.4034025f - 0.23903021f * x) * x; 3612 // 3613 // error 0.0034276066, which is better than 8 bits 3614 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3615 getF32Constant(DAG, 0xbe74c456, dl)); 3616 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3617 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3618 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3619 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3620 getF32Constant(DAG, 0x3f949a29, dl)); 3621 } else if (LimitFloatPrecision <= 12) { 3622 // For floating-point precision of 12: 3623 // 3624 // LogOfMantissa = 3625 // -1.7417939f + 3626 // (2.8212026f + 3627 // (-1.4699568f + 3628 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3629 // 3630 // error 0.000061011436, which is 14 bits 3631 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3632 getF32Constant(DAG, 0xbd67b6d6, dl)); 3633 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3634 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3635 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3636 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3637 getF32Constant(DAG, 0x3fbc278b, dl)); 3638 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3639 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3640 getF32Constant(DAG, 0x40348e95, dl)); 3641 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3642 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3643 getF32Constant(DAG, 0x3fdef31a, dl)); 3644 } else { // LimitFloatPrecision <= 18 3645 // For floating-point precision of 18: 3646 // 3647 // LogOfMantissa = 3648 // -2.1072184f + 3649 // (4.2372794f + 3650 // (-3.7029485f + 3651 // (2.2781945f + 3652 // (-0.87823314f + 3653 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3654 // 3655 // error 0.0000023660568, which is better than 18 bits 3656 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3657 getF32Constant(DAG, 0xbc91e5ac, dl)); 3658 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3659 getF32Constant(DAG, 0x3e4350aa, dl)); 3660 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3661 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3662 getF32Constant(DAG, 0x3f60d3e3, dl)); 3663 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3664 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3665 getF32Constant(DAG, 0x4011cdf0, dl)); 3666 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3667 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3668 getF32Constant(DAG, 0x406cfd1c, dl)); 3669 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3670 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3671 getF32Constant(DAG, 0x408797cb, dl)); 3672 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3673 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3674 getF32Constant(DAG, 0x4006dcab, dl)); 3675 } 3676 3677 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3678 } 3679 3680 // No special expansion. 3681 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3682 } 3683 3684 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3685 /// limited-precision mode. 3686 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3687 const TargetLowering &TLI) { 3688 if (Op.getValueType() == MVT::f32 && 3689 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3690 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3691 3692 // Get the exponent. 3693 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3694 3695 // Get the significand and build it into a floating-point number with 3696 // exponent of 1. 3697 SDValue X = GetSignificand(DAG, Op1, dl); 3698 3699 // Different possible minimax approximations of significand in 3700 // floating-point for various degrees of accuracy over [1,2]. 3701 SDValue Log2ofMantissa; 3702 if (LimitFloatPrecision <= 6) { 3703 // For floating-point precision of 6: 3704 // 3705 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3706 // 3707 // error 0.0049451742, which is more than 7 bits 3708 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3709 getF32Constant(DAG, 0xbeb08fe0, dl)); 3710 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3711 getF32Constant(DAG, 0x40019463, dl)); 3712 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3713 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3714 getF32Constant(DAG, 0x3fd6633d, dl)); 3715 } else if (LimitFloatPrecision <= 12) { 3716 // For floating-point precision of 12: 3717 // 3718 // Log2ofMantissa = 3719 // -2.51285454f + 3720 // (4.07009056f + 3721 // (-2.12067489f + 3722 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3723 // 3724 // error 0.0000876136000, which is better than 13 bits 3725 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3726 getF32Constant(DAG, 0xbda7262e, dl)); 3727 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3728 getF32Constant(DAG, 0x3f25280b, dl)); 3729 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3730 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3731 getF32Constant(DAG, 0x4007b923, dl)); 3732 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3733 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3734 getF32Constant(DAG, 0x40823e2f, dl)); 3735 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3736 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3737 getF32Constant(DAG, 0x4020d29c, dl)); 3738 } else { // LimitFloatPrecision <= 18 3739 // For floating-point precision of 18: 3740 // 3741 // Log2ofMantissa = 3742 // -3.0400495f + 3743 // (6.1129976f + 3744 // (-5.3420409f + 3745 // (3.2865683f + 3746 // (-1.2669343f + 3747 // (0.27515199f - 3748 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3749 // 3750 // error 0.0000018516, which is better than 18 bits 3751 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3752 getF32Constant(DAG, 0xbcd2769e, dl)); 3753 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3754 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3755 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3756 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3757 getF32Constant(DAG, 0x3fa22ae7, dl)); 3758 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3759 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3760 getF32Constant(DAG, 0x40525723, dl)); 3761 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3762 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3763 getF32Constant(DAG, 0x40aaf200, dl)); 3764 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3765 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3766 getF32Constant(DAG, 0x40c39dad, dl)); 3767 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3768 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3769 getF32Constant(DAG, 0x4042902c, dl)); 3770 } 3771 3772 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3773 } 3774 3775 // No special expansion. 3776 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3777 } 3778 3779 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3780 /// limited-precision mode. 3781 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3782 const TargetLowering &TLI) { 3783 if (Op.getValueType() == MVT::f32 && 3784 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3785 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3786 3787 // Scale the exponent by log10(2) [0.30102999f]. 3788 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3789 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3790 getF32Constant(DAG, 0x3e9a209a, dl)); 3791 3792 // Get the significand and build it into a floating-point number with 3793 // exponent of 1. 3794 SDValue X = GetSignificand(DAG, Op1, dl); 3795 3796 SDValue Log10ofMantissa; 3797 if (LimitFloatPrecision <= 6) { 3798 // For floating-point precision of 6: 3799 // 3800 // Log10ofMantissa = 3801 // -0.50419619f + 3802 // (0.60948995f - 0.10380950f * x) * x; 3803 // 3804 // error 0.0014886165, which is 6 bits 3805 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3806 getF32Constant(DAG, 0xbdd49a13, dl)); 3807 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3808 getF32Constant(DAG, 0x3f1c0789, dl)); 3809 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3810 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3811 getF32Constant(DAG, 0x3f011300, dl)); 3812 } else if (LimitFloatPrecision <= 12) { 3813 // For floating-point precision of 12: 3814 // 3815 // Log10ofMantissa = 3816 // -0.64831180f + 3817 // (0.91751397f + 3818 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3819 // 3820 // error 0.00019228036, which is better than 12 bits 3821 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3822 getF32Constant(DAG, 0x3d431f31, dl)); 3823 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3824 getF32Constant(DAG, 0x3ea21fb2, dl)); 3825 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3826 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3827 getF32Constant(DAG, 0x3f6ae232, dl)); 3828 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3829 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3830 getF32Constant(DAG, 0x3f25f7c3, dl)); 3831 } else { // LimitFloatPrecision <= 18 3832 // For floating-point precision of 18: 3833 // 3834 // Log10ofMantissa = 3835 // -0.84299375f + 3836 // (1.5327582f + 3837 // (-1.0688956f + 3838 // (0.49102474f + 3839 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3840 // 3841 // error 0.0000037995730, which is better than 18 bits 3842 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3843 getF32Constant(DAG, 0x3c5d51ce, dl)); 3844 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3845 getF32Constant(DAG, 0x3e00685a, dl)); 3846 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3847 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3848 getF32Constant(DAG, 0x3efb6798, dl)); 3849 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3850 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3851 getF32Constant(DAG, 0x3f88d192, dl)); 3852 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3853 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3854 getF32Constant(DAG, 0x3fc4316c, dl)); 3855 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3856 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3857 getF32Constant(DAG, 0x3f57ce70, dl)); 3858 } 3859 3860 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3861 } 3862 3863 // No special expansion. 3864 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3865 } 3866 3867 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3868 /// limited-precision mode. 3869 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3870 const TargetLowering &TLI) { 3871 if (Op.getValueType() == MVT::f32 && 3872 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3873 return getLimitedPrecisionExp2(Op, dl, DAG); 3874 3875 // No special expansion. 3876 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3877 } 3878 3879 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3880 /// limited-precision mode with x == 10.0f. 3881 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3882 SelectionDAG &DAG, const TargetLowering &TLI) { 3883 bool IsExp10 = false; 3884 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3885 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3886 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3887 APFloat Ten(10.0f); 3888 IsExp10 = LHSC->isExactlyValue(Ten); 3889 } 3890 } 3891 3892 if (IsExp10) { 3893 // Put the exponent in the right bit position for later addition to the 3894 // final result: 3895 // 3896 // #define LOG2OF10 3.3219281f 3897 // t0 = Op * LOG2OF10; 3898 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3899 getF32Constant(DAG, 0x40549a78, dl)); 3900 return getLimitedPrecisionExp2(t0, dl, DAG); 3901 } 3902 3903 // No special expansion. 3904 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3905 } 3906 3907 3908 /// ExpandPowI - Expand a llvm.powi intrinsic. 3909 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3910 SelectionDAG &DAG) { 3911 // If RHS is a constant, we can expand this out to a multiplication tree, 3912 // otherwise we end up lowering to a call to __powidf2 (for example). When 3913 // optimizing for size, we only want to do this if the expansion would produce 3914 // a small number of multiplies, otherwise we do the full expansion. 3915 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3916 // Get the exponent as a positive value. 3917 unsigned Val = RHSC->getSExtValue(); 3918 if ((int)Val < 0) Val = -Val; 3919 3920 // powi(x, 0) -> 1.0 3921 if (Val == 0) 3922 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3923 3924 const Function *F = DAG.getMachineFunction().getFunction(); 3925 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3926 // If optimizing for size, don't insert too many multiplies. This 3927 // inserts up to 5 multiplies. 3928 countPopulation(Val) + Log2_32(Val) < 7) { 3929 // We use the simple binary decomposition method to generate the multiply 3930 // sequence. There are more optimal ways to do this (for example, 3931 // powi(x,15) generates one more multiply than it should), but this has 3932 // the benefit of being both really simple and much better than a libcall. 3933 SDValue Res; // Logically starts equal to 1.0 3934 SDValue CurSquare = LHS; 3935 while (Val) { 3936 if (Val & 1) { 3937 if (Res.getNode()) 3938 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3939 else 3940 Res = CurSquare; // 1.0*CurSquare. 3941 } 3942 3943 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3944 CurSquare, CurSquare); 3945 Val >>= 1; 3946 } 3947 3948 // If the original was negative, invert the result, producing 1/(x*x*x). 3949 if (RHSC->getSExtValue() < 0) 3950 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3951 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3952 return Res; 3953 } 3954 } 3955 3956 // Otherwise, expand to a libcall. 3957 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3958 } 3959 3960 // getTruncatedArgReg - Find underlying register used for an truncated 3961 // argument. 3962 static unsigned getTruncatedArgReg(const SDValue &N) { 3963 if (N.getOpcode() != ISD::TRUNCATE) 3964 return 0; 3965 3966 const SDValue &Ext = N.getOperand(0); 3967 if (Ext.getOpcode() == ISD::AssertZext || 3968 Ext.getOpcode() == ISD::AssertSext) { 3969 const SDValue &CFR = Ext.getOperand(0); 3970 if (CFR.getOpcode() == ISD::CopyFromReg) 3971 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3972 if (CFR.getOpcode() == ISD::TRUNCATE) 3973 return getTruncatedArgReg(CFR); 3974 } 3975 return 0; 3976 } 3977 3978 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3979 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3980 /// At the end of instruction selection, they will be inserted to the entry BB. 3981 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3982 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 3983 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3984 const Argument *Arg = dyn_cast<Argument>(V); 3985 if (!Arg) 3986 return false; 3987 3988 MachineFunction &MF = DAG.getMachineFunction(); 3989 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3990 3991 // Ignore inlined function arguments here. 3992 // 3993 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3994 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3995 return false; 3996 3997 Optional<MachineOperand> Op; 3998 // Some arguments' frame index is recorded during argument lowering. 3999 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4000 Op = MachineOperand::CreateFI(FI); 4001 4002 if (!Op && N.getNode()) { 4003 unsigned Reg; 4004 if (N.getOpcode() == ISD::CopyFromReg) 4005 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4006 else 4007 Reg = getTruncatedArgReg(N); 4008 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4009 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4010 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4011 if (PR) 4012 Reg = PR; 4013 } 4014 if (Reg) 4015 Op = MachineOperand::CreateReg(Reg, false); 4016 } 4017 4018 if (!Op) { 4019 // Check if ValueMap has reg number. 4020 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4021 if (VMI != FuncInfo.ValueMap.end()) 4022 Op = MachineOperand::CreateReg(VMI->second, false); 4023 } 4024 4025 if (!Op && N.getNode()) 4026 // Check if frame index is available. 4027 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4028 if (FrameIndexSDNode *FINode = 4029 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4030 Op = MachineOperand::CreateFI(FINode->getIndex()); 4031 4032 if (!Op) 4033 return false; 4034 4035 assert(Variable->isValidLocationForIntrinsic(DL) && 4036 "Expected inlined-at fields to agree"); 4037 if (Op->isReg()) 4038 FuncInfo.ArgDbgValues.push_back( 4039 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4040 Op->getReg(), Offset, Variable, Expr)); 4041 else 4042 FuncInfo.ArgDbgValues.push_back( 4043 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4044 .addOperand(*Op) 4045 .addImm(Offset) 4046 .addMetadata(Variable) 4047 .addMetadata(Expr)); 4048 4049 return true; 4050 } 4051 4052 // VisualStudio defines setjmp as _setjmp 4053 #if defined(_MSC_VER) && defined(setjmp) && \ 4054 !defined(setjmp_undefined_for_msvc) 4055 # pragma push_macro("setjmp") 4056 # undef setjmp 4057 # define setjmp_undefined_for_msvc 4058 #endif 4059 4060 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4061 /// we want to emit this as a call to a named external function, return the name 4062 /// otherwise lower it and return null. 4063 const char * 4064 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4066 SDLoc sdl = getCurSDLoc(); 4067 DebugLoc dl = getCurDebugLoc(); 4068 SDValue Res; 4069 4070 switch (Intrinsic) { 4071 default: 4072 // By default, turn this into a target intrinsic node. 4073 visitTargetIntrinsic(I, Intrinsic); 4074 return nullptr; 4075 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4076 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4077 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4078 case Intrinsic::returnaddress: 4079 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4080 getValue(I.getArgOperand(0)))); 4081 return nullptr; 4082 case Intrinsic::frameaddress: 4083 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4084 getValue(I.getArgOperand(0)))); 4085 return nullptr; 4086 case Intrinsic::read_register: { 4087 Value *Reg = I.getArgOperand(0); 4088 SDValue Chain = getRoot(); 4089 SDValue RegName = 4090 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4091 EVT VT = TLI.getValueType(I.getType()); 4092 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4093 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4094 setValue(&I, Res); 4095 DAG.setRoot(Res.getValue(1)); 4096 return nullptr; 4097 } 4098 case Intrinsic::write_register: { 4099 Value *Reg = I.getArgOperand(0); 4100 Value *RegValue = I.getArgOperand(1); 4101 SDValue Chain = getRoot(); 4102 SDValue RegName = 4103 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4104 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4105 RegName, getValue(RegValue))); 4106 return nullptr; 4107 } 4108 case Intrinsic::setjmp: 4109 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4110 case Intrinsic::longjmp: 4111 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4112 case Intrinsic::memcpy: { 4113 // FIXME: this definition of "user defined address space" is x86-specific 4114 // Assert for address < 256 since we support only user defined address 4115 // spaces. 4116 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4117 < 256 && 4118 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4119 < 256 && 4120 "Unknown address space"); 4121 SDValue Op1 = getValue(I.getArgOperand(0)); 4122 SDValue Op2 = getValue(I.getArgOperand(1)); 4123 SDValue Op3 = getValue(I.getArgOperand(2)); 4124 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4125 if (!Align) 4126 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4127 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4128 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4129 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4130 false, isTC, 4131 MachinePointerInfo(I.getArgOperand(0)), 4132 MachinePointerInfo(I.getArgOperand(1))); 4133 updateDAGForMaybeTailCall(MC); 4134 return nullptr; 4135 } 4136 case Intrinsic::memset: { 4137 // FIXME: this definition of "user defined address space" is x86-specific 4138 // Assert for address < 256 since we support only user defined address 4139 // spaces. 4140 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4141 < 256 && 4142 "Unknown address space"); 4143 SDValue Op1 = getValue(I.getArgOperand(0)); 4144 SDValue Op2 = getValue(I.getArgOperand(1)); 4145 SDValue Op3 = getValue(I.getArgOperand(2)); 4146 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4147 if (!Align) 4148 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4149 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4150 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4151 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4152 isTC, MachinePointerInfo(I.getArgOperand(0))); 4153 updateDAGForMaybeTailCall(MS); 4154 return nullptr; 4155 } 4156 case Intrinsic::memmove: { 4157 // FIXME: this definition of "user defined address space" is x86-specific 4158 // Assert for address < 256 since we support only user defined address 4159 // spaces. 4160 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4161 < 256 && 4162 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4163 < 256 && 4164 "Unknown address space"); 4165 SDValue Op1 = getValue(I.getArgOperand(0)); 4166 SDValue Op2 = getValue(I.getArgOperand(1)); 4167 SDValue Op3 = getValue(I.getArgOperand(2)); 4168 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4169 if (!Align) 4170 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4171 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4172 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4173 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4174 isTC, MachinePointerInfo(I.getArgOperand(0)), 4175 MachinePointerInfo(I.getArgOperand(1))); 4176 updateDAGForMaybeTailCall(MM); 4177 return nullptr; 4178 } 4179 case Intrinsic::dbg_declare: { 4180 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4181 DILocalVariable *Variable = DI.getVariable(); 4182 DIExpression *Expression = DI.getExpression(); 4183 const Value *Address = DI.getAddress(); 4184 assert(Variable && "Missing variable"); 4185 if (!Address) { 4186 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4187 return nullptr; 4188 } 4189 4190 // Check if address has undef value. 4191 if (isa<UndefValue>(Address) || 4192 (Address->use_empty() && !isa<Argument>(Address))) { 4193 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4194 return nullptr; 4195 } 4196 4197 SDValue &N = NodeMap[Address]; 4198 if (!N.getNode() && isa<Argument>(Address)) 4199 // Check unused arguments map. 4200 N = UnusedArgNodeMap[Address]; 4201 SDDbgValue *SDV; 4202 if (N.getNode()) { 4203 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4204 Address = BCI->getOperand(0); 4205 // Parameters are handled specially. 4206 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4207 isa<Argument>(Address); 4208 4209 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4210 4211 if (isParameter && !AI) { 4212 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4213 if (FINode) 4214 // Byval parameter. We have a frame index at this point. 4215 SDV = DAG.getFrameIndexDbgValue( 4216 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4217 else { 4218 // Address is an argument, so try to emit its dbg value using 4219 // virtual register info from the FuncInfo.ValueMap. 4220 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4221 N); 4222 return nullptr; 4223 } 4224 } else if (AI) 4225 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4226 true, 0, dl, SDNodeOrder); 4227 else { 4228 // Can't do anything with other non-AI cases yet. 4229 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4230 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4231 DEBUG(Address->dump()); 4232 return nullptr; 4233 } 4234 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4235 } else { 4236 // If Address is an argument then try to emit its dbg value using 4237 // virtual register info from the FuncInfo.ValueMap. 4238 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4239 N)) { 4240 // If variable is pinned by a alloca in dominating bb then 4241 // use StaticAllocaMap. 4242 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4243 if (AI->getParent() != DI.getParent()) { 4244 DenseMap<const AllocaInst*, int>::iterator SI = 4245 FuncInfo.StaticAllocaMap.find(AI); 4246 if (SI != FuncInfo.StaticAllocaMap.end()) { 4247 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4248 0, dl, SDNodeOrder); 4249 DAG.AddDbgValue(SDV, nullptr, false); 4250 return nullptr; 4251 } 4252 } 4253 } 4254 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4255 } 4256 } 4257 return nullptr; 4258 } 4259 case Intrinsic::dbg_value: { 4260 const DbgValueInst &DI = cast<DbgValueInst>(I); 4261 assert(DI.getVariable() && "Missing variable"); 4262 4263 DILocalVariable *Variable = DI.getVariable(); 4264 DIExpression *Expression = DI.getExpression(); 4265 uint64_t Offset = DI.getOffset(); 4266 const Value *V = DI.getValue(); 4267 if (!V) 4268 return nullptr; 4269 4270 SDDbgValue *SDV; 4271 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4272 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4273 SDNodeOrder); 4274 DAG.AddDbgValue(SDV, nullptr, false); 4275 } else { 4276 // Do not use getValue() in here; we don't want to generate code at 4277 // this point if it hasn't been done yet. 4278 SDValue N = NodeMap[V]; 4279 if (!N.getNode() && isa<Argument>(V)) 4280 // Check unused arguments map. 4281 N = UnusedArgNodeMap[V]; 4282 if (N.getNode()) { 4283 // A dbg.value for an alloca is always indirect. 4284 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4285 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4286 IsIndirect, N)) { 4287 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4288 IsIndirect, Offset, dl, SDNodeOrder); 4289 DAG.AddDbgValue(SDV, N.getNode(), false); 4290 } 4291 } else if (!V->use_empty() ) { 4292 // Do not call getValue(V) yet, as we don't want to generate code. 4293 // Remember it for later. 4294 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4295 DanglingDebugInfoMap[V] = DDI; 4296 } else { 4297 // We may expand this to cover more cases. One case where we have no 4298 // data available is an unreferenced parameter. 4299 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4300 } 4301 } 4302 4303 // Build a debug info table entry. 4304 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4305 V = BCI->getOperand(0); 4306 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4307 // Don't handle byval struct arguments or VLAs, for example. 4308 if (!AI) { 4309 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4310 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4311 return nullptr; 4312 } 4313 DenseMap<const AllocaInst*, int>::iterator SI = 4314 FuncInfo.StaticAllocaMap.find(AI); 4315 if (SI == FuncInfo.StaticAllocaMap.end()) 4316 return nullptr; // VLAs. 4317 return nullptr; 4318 } 4319 4320 case Intrinsic::eh_typeid_for: { 4321 // Find the type id for the given typeinfo. 4322 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4323 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4324 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4325 setValue(&I, Res); 4326 return nullptr; 4327 } 4328 4329 case Intrinsic::eh_return_i32: 4330 case Intrinsic::eh_return_i64: 4331 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4332 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4333 MVT::Other, 4334 getControlRoot(), 4335 getValue(I.getArgOperand(0)), 4336 getValue(I.getArgOperand(1)))); 4337 return nullptr; 4338 case Intrinsic::eh_unwind_init: 4339 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4340 return nullptr; 4341 case Intrinsic::eh_dwarf_cfa: { 4342 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4343 TLI.getPointerTy()); 4344 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4345 CfaArg.getValueType(), 4346 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4347 CfaArg.getValueType()), 4348 CfaArg); 4349 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4350 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4351 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4352 FA, Offset)); 4353 return nullptr; 4354 } 4355 case Intrinsic::eh_sjlj_callsite: { 4356 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4357 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4358 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4359 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4360 4361 MMI.setCurrentCallSite(CI->getZExtValue()); 4362 return nullptr; 4363 } 4364 case Intrinsic::eh_sjlj_functioncontext: { 4365 // Get and store the index of the function context. 4366 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4367 AllocaInst *FnCtx = 4368 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4369 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4370 MFI->setFunctionContextIndex(FI); 4371 return nullptr; 4372 } 4373 case Intrinsic::eh_sjlj_setjmp: { 4374 SDValue Ops[2]; 4375 Ops[0] = getRoot(); 4376 Ops[1] = getValue(I.getArgOperand(0)); 4377 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4378 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4379 setValue(&I, Op.getValue(0)); 4380 DAG.setRoot(Op.getValue(1)); 4381 return nullptr; 4382 } 4383 case Intrinsic::eh_sjlj_longjmp: { 4384 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4385 getRoot(), getValue(I.getArgOperand(0)))); 4386 return nullptr; 4387 } 4388 4389 case Intrinsic::masked_gather: 4390 visitMaskedGather(I); 4391 return nullptr; 4392 case Intrinsic::masked_load: 4393 visitMaskedLoad(I); 4394 return nullptr; 4395 case Intrinsic::masked_scatter: 4396 visitMaskedScatter(I); 4397 return nullptr; 4398 case Intrinsic::masked_store: 4399 visitMaskedStore(I); 4400 return nullptr; 4401 case Intrinsic::x86_mmx_pslli_w: 4402 case Intrinsic::x86_mmx_pslli_d: 4403 case Intrinsic::x86_mmx_pslli_q: 4404 case Intrinsic::x86_mmx_psrli_w: 4405 case Intrinsic::x86_mmx_psrli_d: 4406 case Intrinsic::x86_mmx_psrli_q: 4407 case Intrinsic::x86_mmx_psrai_w: 4408 case Intrinsic::x86_mmx_psrai_d: { 4409 SDValue ShAmt = getValue(I.getArgOperand(1)); 4410 if (isa<ConstantSDNode>(ShAmt)) { 4411 visitTargetIntrinsic(I, Intrinsic); 4412 return nullptr; 4413 } 4414 unsigned NewIntrinsic = 0; 4415 EVT ShAmtVT = MVT::v2i32; 4416 switch (Intrinsic) { 4417 case Intrinsic::x86_mmx_pslli_w: 4418 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4419 break; 4420 case Intrinsic::x86_mmx_pslli_d: 4421 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4422 break; 4423 case Intrinsic::x86_mmx_pslli_q: 4424 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4425 break; 4426 case Intrinsic::x86_mmx_psrli_w: 4427 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4428 break; 4429 case Intrinsic::x86_mmx_psrli_d: 4430 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4431 break; 4432 case Intrinsic::x86_mmx_psrli_q: 4433 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4434 break; 4435 case Intrinsic::x86_mmx_psrai_w: 4436 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4437 break; 4438 case Intrinsic::x86_mmx_psrai_d: 4439 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4440 break; 4441 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4442 } 4443 4444 // The vector shift intrinsics with scalars uses 32b shift amounts but 4445 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4446 // to be zero. 4447 // We must do this early because v2i32 is not a legal type. 4448 SDValue ShOps[2]; 4449 ShOps[0] = ShAmt; 4450 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4451 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4452 EVT DestVT = TLI.getValueType(I.getType()); 4453 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4454 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4455 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4456 getValue(I.getArgOperand(0)), ShAmt); 4457 setValue(&I, Res); 4458 return nullptr; 4459 } 4460 case Intrinsic::convertff: 4461 case Intrinsic::convertfsi: 4462 case Intrinsic::convertfui: 4463 case Intrinsic::convertsif: 4464 case Intrinsic::convertuif: 4465 case Intrinsic::convertss: 4466 case Intrinsic::convertsu: 4467 case Intrinsic::convertus: 4468 case Intrinsic::convertuu: { 4469 ISD::CvtCode Code = ISD::CVT_INVALID; 4470 switch (Intrinsic) { 4471 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4472 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4473 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4474 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4475 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4476 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4477 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4478 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4479 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4480 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4481 } 4482 EVT DestVT = TLI.getValueType(I.getType()); 4483 const Value *Op1 = I.getArgOperand(0); 4484 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4485 DAG.getValueType(DestVT), 4486 DAG.getValueType(getValue(Op1).getValueType()), 4487 getValue(I.getArgOperand(1)), 4488 getValue(I.getArgOperand(2)), 4489 Code); 4490 setValue(&I, Res); 4491 return nullptr; 4492 } 4493 case Intrinsic::powi: 4494 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4495 getValue(I.getArgOperand(1)), DAG)); 4496 return nullptr; 4497 case Intrinsic::log: 4498 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4499 return nullptr; 4500 case Intrinsic::log2: 4501 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4502 return nullptr; 4503 case Intrinsic::log10: 4504 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4505 return nullptr; 4506 case Intrinsic::exp: 4507 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4508 return nullptr; 4509 case Intrinsic::exp2: 4510 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4511 return nullptr; 4512 case Intrinsic::pow: 4513 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4514 getValue(I.getArgOperand(1)), DAG, TLI)); 4515 return nullptr; 4516 case Intrinsic::sqrt: 4517 case Intrinsic::fabs: 4518 case Intrinsic::sin: 4519 case Intrinsic::cos: 4520 case Intrinsic::floor: 4521 case Intrinsic::ceil: 4522 case Intrinsic::trunc: 4523 case Intrinsic::rint: 4524 case Intrinsic::nearbyint: 4525 case Intrinsic::round: { 4526 unsigned Opcode; 4527 switch (Intrinsic) { 4528 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4529 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4530 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4531 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4532 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4533 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4534 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4535 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4536 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4537 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4538 case Intrinsic::round: Opcode = ISD::FROUND; break; 4539 } 4540 4541 setValue(&I, DAG.getNode(Opcode, sdl, 4542 getValue(I.getArgOperand(0)).getValueType(), 4543 getValue(I.getArgOperand(0)))); 4544 return nullptr; 4545 } 4546 case Intrinsic::minnum: 4547 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4548 getValue(I.getArgOperand(0)).getValueType(), 4549 getValue(I.getArgOperand(0)), 4550 getValue(I.getArgOperand(1)))); 4551 return nullptr; 4552 case Intrinsic::maxnum: 4553 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4554 getValue(I.getArgOperand(0)).getValueType(), 4555 getValue(I.getArgOperand(0)), 4556 getValue(I.getArgOperand(1)))); 4557 return nullptr; 4558 case Intrinsic::copysign: 4559 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4560 getValue(I.getArgOperand(0)).getValueType(), 4561 getValue(I.getArgOperand(0)), 4562 getValue(I.getArgOperand(1)))); 4563 return nullptr; 4564 case Intrinsic::fma: 4565 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4566 getValue(I.getArgOperand(0)).getValueType(), 4567 getValue(I.getArgOperand(0)), 4568 getValue(I.getArgOperand(1)), 4569 getValue(I.getArgOperand(2)))); 4570 return nullptr; 4571 case Intrinsic::fmuladd: { 4572 EVT VT = TLI.getValueType(I.getType()); 4573 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4574 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4575 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4576 getValue(I.getArgOperand(0)).getValueType(), 4577 getValue(I.getArgOperand(0)), 4578 getValue(I.getArgOperand(1)), 4579 getValue(I.getArgOperand(2)))); 4580 } else { 4581 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4582 getValue(I.getArgOperand(0)).getValueType(), 4583 getValue(I.getArgOperand(0)), 4584 getValue(I.getArgOperand(1))); 4585 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4586 getValue(I.getArgOperand(0)).getValueType(), 4587 Mul, 4588 getValue(I.getArgOperand(2))); 4589 setValue(&I, Add); 4590 } 4591 return nullptr; 4592 } 4593 case Intrinsic::convert_to_fp16: 4594 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4595 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4596 getValue(I.getArgOperand(0)), 4597 DAG.getTargetConstant(0, sdl, 4598 MVT::i32)))); 4599 return nullptr; 4600 case Intrinsic::convert_from_fp16: 4601 setValue(&I, 4602 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4603 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4604 getValue(I.getArgOperand(0))))); 4605 return nullptr; 4606 case Intrinsic::pcmarker: { 4607 SDValue Tmp = getValue(I.getArgOperand(0)); 4608 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4609 return nullptr; 4610 } 4611 case Intrinsic::readcyclecounter: { 4612 SDValue Op = getRoot(); 4613 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4614 DAG.getVTList(MVT::i64, MVT::Other), Op); 4615 setValue(&I, Res); 4616 DAG.setRoot(Res.getValue(1)); 4617 return nullptr; 4618 } 4619 case Intrinsic::bswap: 4620 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4621 getValue(I.getArgOperand(0)).getValueType(), 4622 getValue(I.getArgOperand(0)))); 4623 return nullptr; 4624 case Intrinsic::cttz: { 4625 SDValue Arg = getValue(I.getArgOperand(0)); 4626 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4627 EVT Ty = Arg.getValueType(); 4628 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4629 sdl, Ty, Arg)); 4630 return nullptr; 4631 } 4632 case Intrinsic::ctlz: { 4633 SDValue Arg = getValue(I.getArgOperand(0)); 4634 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4635 EVT Ty = Arg.getValueType(); 4636 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4637 sdl, Ty, Arg)); 4638 return nullptr; 4639 } 4640 case Intrinsic::ctpop: { 4641 SDValue Arg = getValue(I.getArgOperand(0)); 4642 EVT Ty = Arg.getValueType(); 4643 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4644 return nullptr; 4645 } 4646 case Intrinsic::stacksave: { 4647 SDValue Op = getRoot(); 4648 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4649 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4650 setValue(&I, Res); 4651 DAG.setRoot(Res.getValue(1)); 4652 return nullptr; 4653 } 4654 case Intrinsic::stackrestore: { 4655 Res = getValue(I.getArgOperand(0)); 4656 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4657 return nullptr; 4658 } 4659 case Intrinsic::stackprotector: { 4660 // Emit code into the DAG to store the stack guard onto the stack. 4661 MachineFunction &MF = DAG.getMachineFunction(); 4662 MachineFrameInfo *MFI = MF.getFrameInfo(); 4663 EVT PtrTy = TLI.getPointerTy(); 4664 SDValue Src, Chain = getRoot(); 4665 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4666 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4667 4668 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4669 // global variable __stack_chk_guard. 4670 if (!GV) 4671 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4672 if (BC->getOpcode() == Instruction::BitCast) 4673 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4674 4675 if (GV && TLI.useLoadStackGuardNode()) { 4676 // Emit a LOAD_STACK_GUARD node. 4677 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4678 sdl, PtrTy, Chain); 4679 MachinePointerInfo MPInfo(GV); 4680 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4681 unsigned Flags = MachineMemOperand::MOLoad | 4682 MachineMemOperand::MOInvariant; 4683 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4684 PtrTy.getSizeInBits() / 8, 4685 DAG.getEVTAlignment(PtrTy)); 4686 Node->setMemRefs(MemRefs, MemRefs + 1); 4687 4688 // Copy the guard value to a virtual register so that it can be 4689 // retrieved in the epilogue. 4690 Src = SDValue(Node, 0); 4691 const TargetRegisterClass *RC = 4692 TLI.getRegClassFor(Src.getSimpleValueType()); 4693 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4694 4695 SPDescriptor.setGuardReg(Reg); 4696 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4697 } else { 4698 Src = getValue(I.getArgOperand(0)); // The guard's value. 4699 } 4700 4701 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4702 4703 int FI = FuncInfo.StaticAllocaMap[Slot]; 4704 MFI->setStackProtectorIndex(FI); 4705 4706 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4707 4708 // Store the stack protector onto the stack. 4709 Res = DAG.getStore(Chain, sdl, Src, FIN, 4710 MachinePointerInfo::getFixedStack(FI), 4711 true, false, 0); 4712 setValue(&I, Res); 4713 DAG.setRoot(Res); 4714 return nullptr; 4715 } 4716 case Intrinsic::objectsize: { 4717 // If we don't know by now, we're never going to know. 4718 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4719 4720 assert(CI && "Non-constant type in __builtin_object_size?"); 4721 4722 SDValue Arg = getValue(I.getCalledValue()); 4723 EVT Ty = Arg.getValueType(); 4724 4725 if (CI->isZero()) 4726 Res = DAG.getConstant(-1ULL, sdl, Ty); 4727 else 4728 Res = DAG.getConstant(0, sdl, Ty); 4729 4730 setValue(&I, Res); 4731 return nullptr; 4732 } 4733 case Intrinsic::annotation: 4734 case Intrinsic::ptr_annotation: 4735 // Drop the intrinsic, but forward the value 4736 setValue(&I, getValue(I.getOperand(0))); 4737 return nullptr; 4738 case Intrinsic::assume: 4739 case Intrinsic::var_annotation: 4740 // Discard annotate attributes and assumptions 4741 return nullptr; 4742 4743 case Intrinsic::init_trampoline: { 4744 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4745 4746 SDValue Ops[6]; 4747 Ops[0] = getRoot(); 4748 Ops[1] = getValue(I.getArgOperand(0)); 4749 Ops[2] = getValue(I.getArgOperand(1)); 4750 Ops[3] = getValue(I.getArgOperand(2)); 4751 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4752 Ops[5] = DAG.getSrcValue(F); 4753 4754 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4755 4756 DAG.setRoot(Res); 4757 return nullptr; 4758 } 4759 case Intrinsic::adjust_trampoline: { 4760 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4761 TLI.getPointerTy(), 4762 getValue(I.getArgOperand(0)))); 4763 return nullptr; 4764 } 4765 case Intrinsic::gcroot: 4766 if (GFI) { 4767 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4768 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4769 4770 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4771 GFI->addStackRoot(FI->getIndex(), TypeMap); 4772 } 4773 return nullptr; 4774 case Intrinsic::gcread: 4775 case Intrinsic::gcwrite: 4776 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4777 case Intrinsic::flt_rounds: 4778 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4779 return nullptr; 4780 4781 case Intrinsic::expect: { 4782 // Just replace __builtin_expect(exp, c) with EXP. 4783 setValue(&I, getValue(I.getArgOperand(0))); 4784 return nullptr; 4785 } 4786 4787 case Intrinsic::debugtrap: 4788 case Intrinsic::trap: { 4789 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4790 if (TrapFuncName.empty()) { 4791 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4792 ISD::TRAP : ISD::DEBUGTRAP; 4793 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4794 return nullptr; 4795 } 4796 TargetLowering::ArgListTy Args; 4797 4798 TargetLowering::CallLoweringInfo CLI(DAG); 4799 CLI.setDebugLoc(sdl).setChain(getRoot()) 4800 .setCallee(CallingConv::C, I.getType(), 4801 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4802 std::move(Args), 0); 4803 4804 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4805 DAG.setRoot(Result.second); 4806 return nullptr; 4807 } 4808 4809 case Intrinsic::uadd_with_overflow: 4810 case Intrinsic::sadd_with_overflow: 4811 case Intrinsic::usub_with_overflow: 4812 case Intrinsic::ssub_with_overflow: 4813 case Intrinsic::umul_with_overflow: 4814 case Intrinsic::smul_with_overflow: { 4815 ISD::NodeType Op; 4816 switch (Intrinsic) { 4817 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4818 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4819 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4820 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4821 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4822 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4823 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4824 } 4825 SDValue Op1 = getValue(I.getArgOperand(0)); 4826 SDValue Op2 = getValue(I.getArgOperand(1)); 4827 4828 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4829 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4830 return nullptr; 4831 } 4832 case Intrinsic::prefetch: { 4833 SDValue Ops[5]; 4834 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4835 Ops[0] = getRoot(); 4836 Ops[1] = getValue(I.getArgOperand(0)); 4837 Ops[2] = getValue(I.getArgOperand(1)); 4838 Ops[3] = getValue(I.getArgOperand(2)); 4839 Ops[4] = getValue(I.getArgOperand(3)); 4840 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4841 DAG.getVTList(MVT::Other), Ops, 4842 EVT::getIntegerVT(*Context, 8), 4843 MachinePointerInfo(I.getArgOperand(0)), 4844 0, /* align */ 4845 false, /* volatile */ 4846 rw==0, /* read */ 4847 rw==1)); /* write */ 4848 return nullptr; 4849 } 4850 case Intrinsic::lifetime_start: 4851 case Intrinsic::lifetime_end: { 4852 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4853 // Stack coloring is not enabled in O0, discard region information. 4854 if (TM.getOptLevel() == CodeGenOpt::None) 4855 return nullptr; 4856 4857 SmallVector<Value *, 4> Allocas; 4858 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4859 4860 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4861 E = Allocas.end(); Object != E; ++Object) { 4862 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4863 4864 // Could not find an Alloca. 4865 if (!LifetimeObject) 4866 continue; 4867 4868 // First check that the Alloca is static, otherwise it won't have a 4869 // valid frame index. 4870 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4871 if (SI == FuncInfo.StaticAllocaMap.end()) 4872 return nullptr; 4873 4874 int FI = SI->second; 4875 4876 SDValue Ops[2]; 4877 Ops[0] = getRoot(); 4878 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4879 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4880 4881 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4882 DAG.setRoot(Res); 4883 } 4884 return nullptr; 4885 } 4886 case Intrinsic::invariant_start: 4887 // Discard region information. 4888 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4889 return nullptr; 4890 case Intrinsic::invariant_end: 4891 // Discard region information. 4892 return nullptr; 4893 case Intrinsic::stackprotectorcheck: { 4894 // Do not actually emit anything for this basic block. Instead we initialize 4895 // the stack protector descriptor and export the guard variable so we can 4896 // access it in FinishBasicBlock. 4897 const BasicBlock *BB = I.getParent(); 4898 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4899 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4900 4901 // Flush our exports since we are going to process a terminator. 4902 (void)getControlRoot(); 4903 return nullptr; 4904 } 4905 case Intrinsic::clear_cache: 4906 return TLI.getClearCacheBuiltinName(); 4907 case Intrinsic::eh_actions: 4908 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4909 return nullptr; 4910 case Intrinsic::donothing: 4911 // ignore 4912 return nullptr; 4913 case Intrinsic::experimental_stackmap: { 4914 visitStackmap(I); 4915 return nullptr; 4916 } 4917 case Intrinsic::experimental_patchpoint_void: 4918 case Intrinsic::experimental_patchpoint_i64: { 4919 visitPatchpoint(&I); 4920 return nullptr; 4921 } 4922 case Intrinsic::experimental_gc_statepoint: { 4923 visitStatepoint(I); 4924 return nullptr; 4925 } 4926 case Intrinsic::experimental_gc_result_int: 4927 case Intrinsic::experimental_gc_result_float: 4928 case Intrinsic::experimental_gc_result_ptr: 4929 case Intrinsic::experimental_gc_result: { 4930 visitGCResult(I); 4931 return nullptr; 4932 } 4933 case Intrinsic::experimental_gc_relocate: { 4934 visitGCRelocate(I); 4935 return nullptr; 4936 } 4937 case Intrinsic::instrprof_increment: 4938 llvm_unreachable("instrprof failed to lower an increment"); 4939 4940 case Intrinsic::frameescape: { 4941 MachineFunction &MF = DAG.getMachineFunction(); 4942 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4943 4944 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4945 // is the same on all targets. 4946 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4947 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4948 if (isa<ConstantPointerNull>(Arg)) 4949 continue; // Skip null pointers. They represent a hole in index space. 4950 AllocaInst *Slot = cast<AllocaInst>(Arg); 4951 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4952 "can only escape static allocas"); 4953 int FI = FuncInfo.StaticAllocaMap[Slot]; 4954 MCSymbol *FrameAllocSym = 4955 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4956 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4958 TII->get(TargetOpcode::FRAME_ALLOC)) 4959 .addSym(FrameAllocSym) 4960 .addFrameIndex(FI); 4961 } 4962 4963 return nullptr; 4964 } 4965 4966 case Intrinsic::framerecover: { 4967 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4968 MachineFunction &MF = DAG.getMachineFunction(); 4969 MVT PtrVT = TLI.getPointerTy(0); 4970 4971 // Get the symbol that defines the frame offset. 4972 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4973 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4974 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4975 MCSymbol *FrameAllocSym = 4976 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4977 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4978 4979 // Create a TargetExternalSymbol for the label to avoid any target lowering 4980 // that would make this PC relative. 4981 StringRef Name = FrameAllocSym->getName(); 4982 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4983 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4984 SDValue OffsetVal = 4985 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4986 4987 // Add the offset to the FP. 4988 Value *FP = I.getArgOperand(1); 4989 SDValue FPVal = getValue(FP); 4990 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4991 setValue(&I, Add); 4992 4993 return nullptr; 4994 } 4995 case Intrinsic::eh_begincatch: 4996 case Intrinsic::eh_endcatch: 4997 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4998 case Intrinsic::eh_exceptioncode: { 4999 unsigned Reg = TLI.getExceptionPointerRegister(); 5000 assert(Reg && "cannot get exception code on this platform"); 5001 MVT PtrVT = TLI.getPointerTy(); 5002 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5003 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5004 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5005 SDValue N = 5006 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5007 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5008 setValue(&I, N); 5009 return nullptr; 5010 } 5011 } 5012 } 5013 5014 std::pair<SDValue, SDValue> 5015 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5016 MachineBasicBlock *LandingPad) { 5017 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5018 MCSymbol *BeginLabel = nullptr; 5019 5020 if (LandingPad) { 5021 // Insert a label before the invoke call to mark the try range. This can be 5022 // used to detect deletion of the invoke via the MachineModuleInfo. 5023 BeginLabel = MMI.getContext().createTempSymbol(); 5024 5025 // For SjLj, keep track of which landing pads go with which invokes 5026 // so as to maintain the ordering of pads in the LSDA. 5027 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5028 if (CallSiteIndex) { 5029 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5030 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5031 5032 // Now that the call site is handled, stop tracking it. 5033 MMI.setCurrentCallSite(0); 5034 } 5035 5036 // Both PendingLoads and PendingExports must be flushed here; 5037 // this call might not return. 5038 (void)getRoot(); 5039 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5040 5041 CLI.setChain(getRoot()); 5042 } 5043 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5044 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5045 5046 assert((CLI.IsTailCall || Result.second.getNode()) && 5047 "Non-null chain expected with non-tail call!"); 5048 assert((Result.second.getNode() || !Result.first.getNode()) && 5049 "Null value expected with tail call!"); 5050 5051 if (!Result.second.getNode()) { 5052 // As a special case, a null chain means that a tail call has been emitted 5053 // and the DAG root is already updated. 5054 HasTailCall = true; 5055 5056 // Since there's no actual continuation from this block, nothing can be 5057 // relying on us setting vregs for them. 5058 PendingExports.clear(); 5059 } else { 5060 DAG.setRoot(Result.second); 5061 } 5062 5063 if (LandingPad) { 5064 // Insert a label at the end of the invoke call to mark the try range. This 5065 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5066 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5067 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5068 5069 // Inform MachineModuleInfo of range. 5070 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5071 } 5072 5073 return Result; 5074 } 5075 5076 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5077 bool isTailCall, 5078 MachineBasicBlock *LandingPad) { 5079 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5080 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5081 Type *RetTy = FTy->getReturnType(); 5082 5083 TargetLowering::ArgListTy Args; 5084 TargetLowering::ArgListEntry Entry; 5085 Args.reserve(CS.arg_size()); 5086 5087 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5088 i != e; ++i) { 5089 const Value *V = *i; 5090 5091 // Skip empty types 5092 if (V->getType()->isEmptyTy()) 5093 continue; 5094 5095 SDValue ArgNode = getValue(V); 5096 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5097 5098 // Skip the first return-type Attribute to get to params. 5099 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5100 Args.push_back(Entry); 5101 5102 // If we have an explicit sret argument that is an Instruction, (i.e., it 5103 // might point to function-local memory), we can't meaningfully tail-call. 5104 if (Entry.isSRet && isa<Instruction>(V)) 5105 isTailCall = false; 5106 } 5107 5108 // Check if target-independent constraints permit a tail call here. 5109 // Target-dependent constraints are checked within TLI->LowerCallTo. 5110 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5111 isTailCall = false; 5112 5113 TargetLowering::CallLoweringInfo CLI(DAG); 5114 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5115 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5116 .setTailCall(isTailCall); 5117 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5118 5119 if (Result.first.getNode()) 5120 setValue(CS.getInstruction(), Result.first); 5121 } 5122 5123 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5124 /// value is equal or not-equal to zero. 5125 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5126 for (const User *U : V->users()) { 5127 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5128 if (IC->isEquality()) 5129 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5130 if (C->isNullValue()) 5131 continue; 5132 // Unknown instruction. 5133 return false; 5134 } 5135 return true; 5136 } 5137 5138 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5139 Type *LoadTy, 5140 SelectionDAGBuilder &Builder) { 5141 5142 // Check to see if this load can be trivially constant folded, e.g. if the 5143 // input is from a string literal. 5144 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5145 // Cast pointer to the type we really want to load. 5146 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5147 PointerType::getUnqual(LoadTy)); 5148 5149 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5150 const_cast<Constant *>(LoadInput), *Builder.DL)) 5151 return Builder.getValue(LoadCst); 5152 } 5153 5154 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5155 // still constant memory, the input chain can be the entry node. 5156 SDValue Root; 5157 bool ConstantMemory = false; 5158 5159 // Do not serialize (non-volatile) loads of constant memory with anything. 5160 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5161 Root = Builder.DAG.getEntryNode(); 5162 ConstantMemory = true; 5163 } else { 5164 // Do not serialize non-volatile loads against each other. 5165 Root = Builder.DAG.getRoot(); 5166 } 5167 5168 SDValue Ptr = Builder.getValue(PtrVal); 5169 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5170 Ptr, MachinePointerInfo(PtrVal), 5171 false /*volatile*/, 5172 false /*nontemporal*/, 5173 false /*isinvariant*/, 1 /* align=1 */); 5174 5175 if (!ConstantMemory) 5176 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5177 return LoadVal; 5178 } 5179 5180 /// processIntegerCallValue - Record the value for an instruction that 5181 /// produces an integer result, converting the type where necessary. 5182 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5183 SDValue Value, 5184 bool IsSigned) { 5185 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5186 if (IsSigned) 5187 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5188 else 5189 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5190 setValue(&I, Value); 5191 } 5192 5193 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5194 /// If so, return true and lower it, otherwise return false and it will be 5195 /// lowered like a normal call. 5196 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5197 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5198 if (I.getNumArgOperands() != 3) 5199 return false; 5200 5201 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5202 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5203 !I.getArgOperand(2)->getType()->isIntegerTy() || 5204 !I.getType()->isIntegerTy()) 5205 return false; 5206 5207 const Value *Size = I.getArgOperand(2); 5208 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5209 if (CSize && CSize->getZExtValue() == 0) { 5210 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5211 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5212 return true; 5213 } 5214 5215 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5216 std::pair<SDValue, SDValue> Res = 5217 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5218 getValue(LHS), getValue(RHS), getValue(Size), 5219 MachinePointerInfo(LHS), 5220 MachinePointerInfo(RHS)); 5221 if (Res.first.getNode()) { 5222 processIntegerCallValue(I, Res.first, true); 5223 PendingLoads.push_back(Res.second); 5224 return true; 5225 } 5226 5227 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5228 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5229 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5230 bool ActuallyDoIt = true; 5231 MVT LoadVT; 5232 Type *LoadTy; 5233 switch (CSize->getZExtValue()) { 5234 default: 5235 LoadVT = MVT::Other; 5236 LoadTy = nullptr; 5237 ActuallyDoIt = false; 5238 break; 5239 case 2: 5240 LoadVT = MVT::i16; 5241 LoadTy = Type::getInt16Ty(CSize->getContext()); 5242 break; 5243 case 4: 5244 LoadVT = MVT::i32; 5245 LoadTy = Type::getInt32Ty(CSize->getContext()); 5246 break; 5247 case 8: 5248 LoadVT = MVT::i64; 5249 LoadTy = Type::getInt64Ty(CSize->getContext()); 5250 break; 5251 /* 5252 case 16: 5253 LoadVT = MVT::v4i32; 5254 LoadTy = Type::getInt32Ty(CSize->getContext()); 5255 LoadTy = VectorType::get(LoadTy, 4); 5256 break; 5257 */ 5258 } 5259 5260 // This turns into unaligned loads. We only do this if the target natively 5261 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5262 // we'll only produce a small number of byte loads. 5263 5264 // Require that we can find a legal MVT, and only do this if the target 5265 // supports unaligned loads of that type. Expanding into byte loads would 5266 // bloat the code. 5267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5268 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5269 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5270 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5271 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5272 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5273 // TODO: Check alignment of src and dest ptrs. 5274 if (!TLI.isTypeLegal(LoadVT) || 5275 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5276 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5277 ActuallyDoIt = false; 5278 } 5279 5280 if (ActuallyDoIt) { 5281 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5282 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5283 5284 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5285 ISD::SETNE); 5286 processIntegerCallValue(I, Res, false); 5287 return true; 5288 } 5289 } 5290 5291 5292 return false; 5293 } 5294 5295 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5296 /// form. If so, return true and lower it, otherwise return false and it 5297 /// will be lowered like a normal call. 5298 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5299 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5300 if (I.getNumArgOperands() != 3) 5301 return false; 5302 5303 const Value *Src = I.getArgOperand(0); 5304 const Value *Char = I.getArgOperand(1); 5305 const Value *Length = I.getArgOperand(2); 5306 if (!Src->getType()->isPointerTy() || 5307 !Char->getType()->isIntegerTy() || 5308 !Length->getType()->isIntegerTy() || 5309 !I.getType()->isPointerTy()) 5310 return false; 5311 5312 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5313 std::pair<SDValue, SDValue> Res = 5314 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5315 getValue(Src), getValue(Char), getValue(Length), 5316 MachinePointerInfo(Src)); 5317 if (Res.first.getNode()) { 5318 setValue(&I, Res.first); 5319 PendingLoads.push_back(Res.second); 5320 return true; 5321 } 5322 5323 return false; 5324 } 5325 5326 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5327 /// optimized form. If so, return true and lower it, otherwise return false 5328 /// and it will be lowered like a normal call. 5329 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5330 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5331 if (I.getNumArgOperands() != 2) 5332 return false; 5333 5334 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5335 if (!Arg0->getType()->isPointerTy() || 5336 !Arg1->getType()->isPointerTy() || 5337 !I.getType()->isPointerTy()) 5338 return false; 5339 5340 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5341 std::pair<SDValue, SDValue> Res = 5342 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5343 getValue(Arg0), getValue(Arg1), 5344 MachinePointerInfo(Arg0), 5345 MachinePointerInfo(Arg1), isStpcpy); 5346 if (Res.first.getNode()) { 5347 setValue(&I, Res.first); 5348 DAG.setRoot(Res.second); 5349 return true; 5350 } 5351 5352 return false; 5353 } 5354 5355 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5356 /// If so, return true and lower it, otherwise return false and it will be 5357 /// lowered like a normal call. 5358 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5359 // Verify that the prototype makes sense. int strcmp(void*,void*) 5360 if (I.getNumArgOperands() != 2) 5361 return false; 5362 5363 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5364 if (!Arg0->getType()->isPointerTy() || 5365 !Arg1->getType()->isPointerTy() || 5366 !I.getType()->isIntegerTy()) 5367 return false; 5368 5369 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5370 std::pair<SDValue, SDValue> Res = 5371 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5372 getValue(Arg0), getValue(Arg1), 5373 MachinePointerInfo(Arg0), 5374 MachinePointerInfo(Arg1)); 5375 if (Res.first.getNode()) { 5376 processIntegerCallValue(I, Res.first, true); 5377 PendingLoads.push_back(Res.second); 5378 return true; 5379 } 5380 5381 return false; 5382 } 5383 5384 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5385 /// form. If so, return true and lower it, otherwise return false and it 5386 /// will be lowered like a normal call. 5387 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5388 // Verify that the prototype makes sense. size_t strlen(char *) 5389 if (I.getNumArgOperands() != 1) 5390 return false; 5391 5392 const Value *Arg0 = I.getArgOperand(0); 5393 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5394 return false; 5395 5396 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5397 std::pair<SDValue, SDValue> Res = 5398 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5399 getValue(Arg0), MachinePointerInfo(Arg0)); 5400 if (Res.first.getNode()) { 5401 processIntegerCallValue(I, Res.first, false); 5402 PendingLoads.push_back(Res.second); 5403 return true; 5404 } 5405 5406 return false; 5407 } 5408 5409 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5410 /// form. If so, return true and lower it, otherwise return false and it 5411 /// will be lowered like a normal call. 5412 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5413 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5414 if (I.getNumArgOperands() != 2) 5415 return false; 5416 5417 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5418 if (!Arg0->getType()->isPointerTy() || 5419 !Arg1->getType()->isIntegerTy() || 5420 !I.getType()->isIntegerTy()) 5421 return false; 5422 5423 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5424 std::pair<SDValue, SDValue> Res = 5425 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5426 getValue(Arg0), getValue(Arg1), 5427 MachinePointerInfo(Arg0)); 5428 if (Res.first.getNode()) { 5429 processIntegerCallValue(I, Res.first, false); 5430 PendingLoads.push_back(Res.second); 5431 return true; 5432 } 5433 5434 return false; 5435 } 5436 5437 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5438 /// operation (as expected), translate it to an SDNode with the specified opcode 5439 /// and return true. 5440 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5441 unsigned Opcode) { 5442 // Sanity check that it really is a unary floating-point call. 5443 if (I.getNumArgOperands() != 1 || 5444 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5445 I.getType() != I.getArgOperand(0)->getType() || 5446 !I.onlyReadsMemory()) 5447 return false; 5448 5449 SDValue Tmp = getValue(I.getArgOperand(0)); 5450 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5451 return true; 5452 } 5453 5454 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5455 /// operation (as expected), translate it to an SDNode with the specified opcode 5456 /// and return true. 5457 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5458 unsigned Opcode) { 5459 // Sanity check that it really is a binary floating-point call. 5460 if (I.getNumArgOperands() != 2 || 5461 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5462 I.getType() != I.getArgOperand(0)->getType() || 5463 I.getType() != I.getArgOperand(1)->getType() || 5464 !I.onlyReadsMemory()) 5465 return false; 5466 5467 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5468 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5469 EVT VT = Tmp0.getValueType(); 5470 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5471 return true; 5472 } 5473 5474 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5475 // Handle inline assembly differently. 5476 if (isa<InlineAsm>(I.getCalledValue())) { 5477 visitInlineAsm(&I); 5478 return; 5479 } 5480 5481 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5482 ComputeUsesVAFloatArgument(I, &MMI); 5483 5484 const char *RenameFn = nullptr; 5485 if (Function *F = I.getCalledFunction()) { 5486 if (F->isDeclaration()) { 5487 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5488 if (unsigned IID = II->getIntrinsicID(F)) { 5489 RenameFn = visitIntrinsicCall(I, IID); 5490 if (!RenameFn) 5491 return; 5492 } 5493 } 5494 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5495 RenameFn = visitIntrinsicCall(I, IID); 5496 if (!RenameFn) 5497 return; 5498 } 5499 } 5500 5501 // Check for well-known libc/libm calls. If the function is internal, it 5502 // can't be a library call. 5503 LibFunc::Func Func; 5504 if (!F->hasLocalLinkage() && F->hasName() && 5505 LibInfo->getLibFunc(F->getName(), Func) && 5506 LibInfo->hasOptimizedCodeGen(Func)) { 5507 switch (Func) { 5508 default: break; 5509 case LibFunc::copysign: 5510 case LibFunc::copysignf: 5511 case LibFunc::copysignl: 5512 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5513 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5514 I.getType() == I.getArgOperand(0)->getType() && 5515 I.getType() == I.getArgOperand(1)->getType() && 5516 I.onlyReadsMemory()) { 5517 SDValue LHS = getValue(I.getArgOperand(0)); 5518 SDValue RHS = getValue(I.getArgOperand(1)); 5519 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5520 LHS.getValueType(), LHS, RHS)); 5521 return; 5522 } 5523 break; 5524 case LibFunc::fabs: 5525 case LibFunc::fabsf: 5526 case LibFunc::fabsl: 5527 if (visitUnaryFloatCall(I, ISD::FABS)) 5528 return; 5529 break; 5530 case LibFunc::fmin: 5531 case LibFunc::fminf: 5532 case LibFunc::fminl: 5533 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5534 return; 5535 break; 5536 case LibFunc::fmax: 5537 case LibFunc::fmaxf: 5538 case LibFunc::fmaxl: 5539 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5540 return; 5541 break; 5542 case LibFunc::sin: 5543 case LibFunc::sinf: 5544 case LibFunc::sinl: 5545 if (visitUnaryFloatCall(I, ISD::FSIN)) 5546 return; 5547 break; 5548 case LibFunc::cos: 5549 case LibFunc::cosf: 5550 case LibFunc::cosl: 5551 if (visitUnaryFloatCall(I, ISD::FCOS)) 5552 return; 5553 break; 5554 case LibFunc::sqrt: 5555 case LibFunc::sqrtf: 5556 case LibFunc::sqrtl: 5557 case LibFunc::sqrt_finite: 5558 case LibFunc::sqrtf_finite: 5559 case LibFunc::sqrtl_finite: 5560 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5561 return; 5562 break; 5563 case LibFunc::floor: 5564 case LibFunc::floorf: 5565 case LibFunc::floorl: 5566 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5567 return; 5568 break; 5569 case LibFunc::nearbyint: 5570 case LibFunc::nearbyintf: 5571 case LibFunc::nearbyintl: 5572 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5573 return; 5574 break; 5575 case LibFunc::ceil: 5576 case LibFunc::ceilf: 5577 case LibFunc::ceill: 5578 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5579 return; 5580 break; 5581 case LibFunc::rint: 5582 case LibFunc::rintf: 5583 case LibFunc::rintl: 5584 if (visitUnaryFloatCall(I, ISD::FRINT)) 5585 return; 5586 break; 5587 case LibFunc::round: 5588 case LibFunc::roundf: 5589 case LibFunc::roundl: 5590 if (visitUnaryFloatCall(I, ISD::FROUND)) 5591 return; 5592 break; 5593 case LibFunc::trunc: 5594 case LibFunc::truncf: 5595 case LibFunc::truncl: 5596 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5597 return; 5598 break; 5599 case LibFunc::log2: 5600 case LibFunc::log2f: 5601 case LibFunc::log2l: 5602 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5603 return; 5604 break; 5605 case LibFunc::exp2: 5606 case LibFunc::exp2f: 5607 case LibFunc::exp2l: 5608 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5609 return; 5610 break; 5611 case LibFunc::memcmp: 5612 if (visitMemCmpCall(I)) 5613 return; 5614 break; 5615 case LibFunc::memchr: 5616 if (visitMemChrCall(I)) 5617 return; 5618 break; 5619 case LibFunc::strcpy: 5620 if (visitStrCpyCall(I, false)) 5621 return; 5622 break; 5623 case LibFunc::stpcpy: 5624 if (visitStrCpyCall(I, true)) 5625 return; 5626 break; 5627 case LibFunc::strcmp: 5628 if (visitStrCmpCall(I)) 5629 return; 5630 break; 5631 case LibFunc::strlen: 5632 if (visitStrLenCall(I)) 5633 return; 5634 break; 5635 case LibFunc::strnlen: 5636 if (visitStrNLenCall(I)) 5637 return; 5638 break; 5639 } 5640 } 5641 } 5642 5643 SDValue Callee; 5644 if (!RenameFn) 5645 Callee = getValue(I.getCalledValue()); 5646 else 5647 Callee = DAG.getExternalSymbol(RenameFn, 5648 DAG.getTargetLoweringInfo().getPointerTy()); 5649 5650 // Check if we can potentially perform a tail call. More detailed checking is 5651 // be done within LowerCallTo, after more information about the call is known. 5652 LowerCallTo(&I, Callee, I.isTailCall()); 5653 } 5654 5655 namespace { 5656 5657 /// AsmOperandInfo - This contains information for each constraint that we are 5658 /// lowering. 5659 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5660 public: 5661 /// CallOperand - If this is the result output operand or a clobber 5662 /// this is null, otherwise it is the incoming operand to the CallInst. 5663 /// This gets modified as the asm is processed. 5664 SDValue CallOperand; 5665 5666 /// AssignedRegs - If this is a register or register class operand, this 5667 /// contains the set of register corresponding to the operand. 5668 RegsForValue AssignedRegs; 5669 5670 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5671 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5672 } 5673 5674 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5675 /// corresponds to. If there is no Value* for this operand, it returns 5676 /// MVT::Other. 5677 EVT getCallOperandValEVT(LLVMContext &Context, 5678 const TargetLowering &TLI, 5679 const DataLayout *DL) const { 5680 if (!CallOperandVal) return MVT::Other; 5681 5682 if (isa<BasicBlock>(CallOperandVal)) 5683 return TLI.getPointerTy(); 5684 5685 llvm::Type *OpTy = CallOperandVal->getType(); 5686 5687 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5688 // If this is an indirect operand, the operand is a pointer to the 5689 // accessed type. 5690 if (isIndirect) { 5691 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5692 if (!PtrTy) 5693 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5694 OpTy = PtrTy->getElementType(); 5695 } 5696 5697 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5698 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5699 if (STy->getNumElements() == 1) 5700 OpTy = STy->getElementType(0); 5701 5702 // If OpTy is not a single value, it may be a struct/union that we 5703 // can tile with integers. 5704 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5705 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5706 switch (BitSize) { 5707 default: break; 5708 case 1: 5709 case 8: 5710 case 16: 5711 case 32: 5712 case 64: 5713 case 128: 5714 OpTy = IntegerType::get(Context, BitSize); 5715 break; 5716 } 5717 } 5718 5719 return TLI.getValueType(OpTy, true); 5720 } 5721 }; 5722 5723 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5724 5725 } // end anonymous namespace 5726 5727 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5728 /// specified operand. We prefer to assign virtual registers, to allow the 5729 /// register allocator to handle the assignment process. However, if the asm 5730 /// uses features that we can't model on machineinstrs, we have SDISel do the 5731 /// allocation. This produces generally horrible, but correct, code. 5732 /// 5733 /// OpInfo describes the operand. 5734 /// 5735 static void GetRegistersForValue(SelectionDAG &DAG, 5736 const TargetLowering &TLI, 5737 SDLoc DL, 5738 SDISelAsmOperandInfo &OpInfo) { 5739 LLVMContext &Context = *DAG.getContext(); 5740 5741 MachineFunction &MF = DAG.getMachineFunction(); 5742 SmallVector<unsigned, 4> Regs; 5743 5744 // If this is a constraint for a single physreg, or a constraint for a 5745 // register class, find it. 5746 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5747 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5748 OpInfo.ConstraintCode, 5749 OpInfo.ConstraintVT); 5750 5751 unsigned NumRegs = 1; 5752 if (OpInfo.ConstraintVT != MVT::Other) { 5753 // If this is a FP input in an integer register (or visa versa) insert a bit 5754 // cast of the input value. More generally, handle any case where the input 5755 // value disagrees with the register class we plan to stick this in. 5756 if (OpInfo.Type == InlineAsm::isInput && 5757 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5758 // Try to convert to the first EVT that the reg class contains. If the 5759 // types are identical size, use a bitcast to convert (e.g. two differing 5760 // vector types). 5761 MVT RegVT = *PhysReg.second->vt_begin(); 5762 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5763 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5764 RegVT, OpInfo.CallOperand); 5765 OpInfo.ConstraintVT = RegVT; 5766 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5767 // If the input is a FP value and we want it in FP registers, do a 5768 // bitcast to the corresponding integer type. This turns an f64 value 5769 // into i64, which can be passed with two i32 values on a 32-bit 5770 // machine. 5771 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5772 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5773 RegVT, OpInfo.CallOperand); 5774 OpInfo.ConstraintVT = RegVT; 5775 } 5776 } 5777 5778 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5779 } 5780 5781 MVT RegVT; 5782 EVT ValueVT = OpInfo.ConstraintVT; 5783 5784 // If this is a constraint for a specific physical register, like {r17}, 5785 // assign it now. 5786 if (unsigned AssignedReg = PhysReg.first) { 5787 const TargetRegisterClass *RC = PhysReg.second; 5788 if (OpInfo.ConstraintVT == MVT::Other) 5789 ValueVT = *RC->vt_begin(); 5790 5791 // Get the actual register value type. This is important, because the user 5792 // may have asked for (e.g.) the AX register in i32 type. We need to 5793 // remember that AX is actually i16 to get the right extension. 5794 RegVT = *RC->vt_begin(); 5795 5796 // This is a explicit reference to a physical register. 5797 Regs.push_back(AssignedReg); 5798 5799 // If this is an expanded reference, add the rest of the regs to Regs. 5800 if (NumRegs != 1) { 5801 TargetRegisterClass::iterator I = RC->begin(); 5802 for (; *I != AssignedReg; ++I) 5803 assert(I != RC->end() && "Didn't find reg!"); 5804 5805 // Already added the first reg. 5806 --NumRegs; ++I; 5807 for (; NumRegs; --NumRegs, ++I) { 5808 assert(I != RC->end() && "Ran out of registers to allocate!"); 5809 Regs.push_back(*I); 5810 } 5811 } 5812 5813 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5814 return; 5815 } 5816 5817 // Otherwise, if this was a reference to an LLVM register class, create vregs 5818 // for this reference. 5819 if (const TargetRegisterClass *RC = PhysReg.second) { 5820 RegVT = *RC->vt_begin(); 5821 if (OpInfo.ConstraintVT == MVT::Other) 5822 ValueVT = RegVT; 5823 5824 // Create the appropriate number of virtual registers. 5825 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5826 for (; NumRegs; --NumRegs) 5827 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5828 5829 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5830 return; 5831 } 5832 5833 // Otherwise, we couldn't allocate enough registers for this. 5834 } 5835 5836 /// visitInlineAsm - Handle a call to an InlineAsm object. 5837 /// 5838 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5839 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5840 5841 /// ConstraintOperands - Information about all of the constraints. 5842 SDISelAsmOperandInfoVector ConstraintOperands; 5843 5844 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5845 TargetLowering::AsmOperandInfoVector TargetConstraints = 5846 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5847 5848 bool hasMemory = false; 5849 5850 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5851 unsigned ResNo = 0; // ResNo - The result number of the next output. 5852 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5853 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5854 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5855 5856 MVT OpVT = MVT::Other; 5857 5858 // Compute the value type for each operand. 5859 switch (OpInfo.Type) { 5860 case InlineAsm::isOutput: 5861 // Indirect outputs just consume an argument. 5862 if (OpInfo.isIndirect) { 5863 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5864 break; 5865 } 5866 5867 // The return value of the call is this value. As such, there is no 5868 // corresponding argument. 5869 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5870 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5871 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5872 } else { 5873 assert(ResNo == 0 && "Asm only has one result!"); 5874 OpVT = TLI.getSimpleValueType(CS.getType()); 5875 } 5876 ++ResNo; 5877 break; 5878 case InlineAsm::isInput: 5879 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5880 break; 5881 case InlineAsm::isClobber: 5882 // Nothing to do. 5883 break; 5884 } 5885 5886 // If this is an input or an indirect output, process the call argument. 5887 // BasicBlocks are labels, currently appearing only in asm's. 5888 if (OpInfo.CallOperandVal) { 5889 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5890 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5891 } else { 5892 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5893 } 5894 5895 OpVT = 5896 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5897 } 5898 5899 OpInfo.ConstraintVT = OpVT; 5900 5901 // Indirect operand accesses access memory. 5902 if (OpInfo.isIndirect) 5903 hasMemory = true; 5904 else { 5905 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5906 TargetLowering::ConstraintType 5907 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5908 if (CType == TargetLowering::C_Memory) { 5909 hasMemory = true; 5910 break; 5911 } 5912 } 5913 } 5914 } 5915 5916 SDValue Chain, Flag; 5917 5918 // We won't need to flush pending loads if this asm doesn't touch 5919 // memory and is nonvolatile. 5920 if (hasMemory || IA->hasSideEffects()) 5921 Chain = getRoot(); 5922 else 5923 Chain = DAG.getRoot(); 5924 5925 // Second pass over the constraints: compute which constraint option to use 5926 // and assign registers to constraints that want a specific physreg. 5927 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5928 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5929 5930 // If this is an output operand with a matching input operand, look up the 5931 // matching input. If their types mismatch, e.g. one is an integer, the 5932 // other is floating point, or their sizes are different, flag it as an 5933 // error. 5934 if (OpInfo.hasMatchingInput()) { 5935 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5936 5937 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5938 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5939 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5940 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5941 OpInfo.ConstraintVT); 5942 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5943 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5944 Input.ConstraintVT); 5945 if ((OpInfo.ConstraintVT.isInteger() != 5946 Input.ConstraintVT.isInteger()) || 5947 (MatchRC.second != InputRC.second)) { 5948 report_fatal_error("Unsupported asm: input constraint" 5949 " with a matching output constraint of" 5950 " incompatible type!"); 5951 } 5952 Input.ConstraintVT = OpInfo.ConstraintVT; 5953 } 5954 } 5955 5956 // Compute the constraint code and ConstraintType to use. 5957 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5958 5959 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5960 OpInfo.Type == InlineAsm::isClobber) 5961 continue; 5962 5963 // If this is a memory input, and if the operand is not indirect, do what we 5964 // need to to provide an address for the memory input. 5965 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5966 !OpInfo.isIndirect) { 5967 assert((OpInfo.isMultipleAlternative || 5968 (OpInfo.Type == InlineAsm::isInput)) && 5969 "Can only indirectify direct input operands!"); 5970 5971 // Memory operands really want the address of the value. If we don't have 5972 // an indirect input, put it in the constpool if we can, otherwise spill 5973 // it to a stack slot. 5974 // TODO: This isn't quite right. We need to handle these according to 5975 // the addressing mode that the constraint wants. Also, this may take 5976 // an additional register for the computation and we don't want that 5977 // either. 5978 5979 // If the operand is a float, integer, or vector constant, spill to a 5980 // constant pool entry to get its address. 5981 const Value *OpVal = OpInfo.CallOperandVal; 5982 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5983 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5984 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5985 TLI.getPointerTy()); 5986 } else { 5987 // Otherwise, create a stack slot and emit a store to it before the 5988 // asm. 5989 Type *Ty = OpVal->getType(); 5990 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5991 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5992 MachineFunction &MF = DAG.getMachineFunction(); 5993 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5994 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5995 Chain = DAG.getStore(Chain, getCurSDLoc(), 5996 OpInfo.CallOperand, StackSlot, 5997 MachinePointerInfo::getFixedStack(SSFI), 5998 false, false, 0); 5999 OpInfo.CallOperand = StackSlot; 6000 } 6001 6002 // There is no longer a Value* corresponding to this operand. 6003 OpInfo.CallOperandVal = nullptr; 6004 6005 // It is now an indirect operand. 6006 OpInfo.isIndirect = true; 6007 } 6008 6009 // If this constraint is for a specific register, allocate it before 6010 // anything else. 6011 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6012 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6013 } 6014 6015 // Second pass - Loop over all of the operands, assigning virtual or physregs 6016 // to register class operands. 6017 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6018 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6019 6020 // C_Register operands have already been allocated, Other/Memory don't need 6021 // to be. 6022 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6023 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6024 } 6025 6026 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6027 std::vector<SDValue> AsmNodeOperands; 6028 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6029 AsmNodeOperands.push_back( 6030 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6031 TLI.getPointerTy())); 6032 6033 // If we have a !srcloc metadata node associated with it, we want to attach 6034 // this to the ultimately generated inline asm machineinstr. To do this, we 6035 // pass in the third operand as this (potentially null) inline asm MDNode. 6036 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6037 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6038 6039 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6040 // bits as operand 3. 6041 unsigned ExtraInfo = 0; 6042 if (IA->hasSideEffects()) 6043 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6044 if (IA->isAlignStack()) 6045 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6046 // Set the asm dialect. 6047 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6048 6049 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6050 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6051 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6052 6053 // Compute the constraint code and ConstraintType to use. 6054 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6055 6056 // Ideally, we would only check against memory constraints. However, the 6057 // meaning of an other constraint can be target-specific and we can't easily 6058 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6059 // for other constriants as well. 6060 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6061 OpInfo.ConstraintType == TargetLowering::C_Other) { 6062 if (OpInfo.Type == InlineAsm::isInput) 6063 ExtraInfo |= InlineAsm::Extra_MayLoad; 6064 else if (OpInfo.Type == InlineAsm::isOutput) 6065 ExtraInfo |= InlineAsm::Extra_MayStore; 6066 else if (OpInfo.Type == InlineAsm::isClobber) 6067 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6068 } 6069 } 6070 6071 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6072 TLI.getPointerTy())); 6073 6074 // Loop over all of the inputs, copying the operand values into the 6075 // appropriate registers and processing the output regs. 6076 RegsForValue RetValRegs; 6077 6078 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6079 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6080 6081 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6082 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6083 6084 switch (OpInfo.Type) { 6085 case InlineAsm::isOutput: { 6086 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6087 OpInfo.ConstraintType != TargetLowering::C_Register) { 6088 // Memory output, or 'other' output (e.g. 'X' constraint). 6089 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6090 6091 unsigned ConstraintID = 6092 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6093 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6094 "Failed to convert memory constraint code to constraint id."); 6095 6096 // Add information to the INLINEASM node to know about this output. 6097 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6098 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6099 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6100 MVT::i32)); 6101 AsmNodeOperands.push_back(OpInfo.CallOperand); 6102 break; 6103 } 6104 6105 // Otherwise, this is a register or register class output. 6106 6107 // Copy the output from the appropriate register. Find a register that 6108 // we can use. 6109 if (OpInfo.AssignedRegs.Regs.empty()) { 6110 LLVMContext &Ctx = *DAG.getContext(); 6111 Ctx.emitError(CS.getInstruction(), 6112 "couldn't allocate output register for constraint '" + 6113 Twine(OpInfo.ConstraintCode) + "'"); 6114 return; 6115 } 6116 6117 // If this is an indirect operand, store through the pointer after the 6118 // asm. 6119 if (OpInfo.isIndirect) { 6120 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6121 OpInfo.CallOperandVal)); 6122 } else { 6123 // This is the result value of the call. 6124 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6125 // Concatenate this output onto the outputs list. 6126 RetValRegs.append(OpInfo.AssignedRegs); 6127 } 6128 6129 // Add information to the INLINEASM node to know that this register is 6130 // set. 6131 OpInfo.AssignedRegs 6132 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6133 ? InlineAsm::Kind_RegDefEarlyClobber 6134 : InlineAsm::Kind_RegDef, 6135 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6136 break; 6137 } 6138 case InlineAsm::isInput: { 6139 SDValue InOperandVal = OpInfo.CallOperand; 6140 6141 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6142 // If this is required to match an output register we have already set, 6143 // just use its register. 6144 unsigned OperandNo = OpInfo.getMatchedOperand(); 6145 6146 // Scan until we find the definition we already emitted of this operand. 6147 // When we find it, create a RegsForValue operand. 6148 unsigned CurOp = InlineAsm::Op_FirstOperand; 6149 for (; OperandNo; --OperandNo) { 6150 // Advance to the next operand. 6151 unsigned OpFlag = 6152 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6153 assert((InlineAsm::isRegDefKind(OpFlag) || 6154 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6155 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6156 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6157 } 6158 6159 unsigned OpFlag = 6160 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6161 if (InlineAsm::isRegDefKind(OpFlag) || 6162 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6163 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6164 if (OpInfo.isIndirect) { 6165 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6166 LLVMContext &Ctx = *DAG.getContext(); 6167 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6168 " don't know how to handle tied " 6169 "indirect register inputs"); 6170 return; 6171 } 6172 6173 RegsForValue MatchedRegs; 6174 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6175 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6176 MatchedRegs.RegVTs.push_back(RegVT); 6177 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6178 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6179 i != e; ++i) { 6180 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6181 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6182 else { 6183 LLVMContext &Ctx = *DAG.getContext(); 6184 Ctx.emitError(CS.getInstruction(), 6185 "inline asm error: This value" 6186 " type register class is not natively supported!"); 6187 return; 6188 } 6189 } 6190 SDLoc dl = getCurSDLoc(); 6191 // Use the produced MatchedRegs object to 6192 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6193 Chain, &Flag, CS.getInstruction()); 6194 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6195 true, OpInfo.getMatchedOperand(), dl, 6196 DAG, AsmNodeOperands); 6197 break; 6198 } 6199 6200 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6201 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6202 "Unexpected number of operands"); 6203 // Add information to the INLINEASM node to know about this input. 6204 // See InlineAsm.h isUseOperandTiedToDef. 6205 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6206 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6207 OpInfo.getMatchedOperand()); 6208 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6209 TLI.getPointerTy())); 6210 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6211 break; 6212 } 6213 6214 // Treat indirect 'X' constraint as memory. 6215 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6216 OpInfo.isIndirect) 6217 OpInfo.ConstraintType = TargetLowering::C_Memory; 6218 6219 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6220 std::vector<SDValue> Ops; 6221 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6222 Ops, DAG); 6223 if (Ops.empty()) { 6224 LLVMContext &Ctx = *DAG.getContext(); 6225 Ctx.emitError(CS.getInstruction(), 6226 "invalid operand for inline asm constraint '" + 6227 Twine(OpInfo.ConstraintCode) + "'"); 6228 return; 6229 } 6230 6231 // Add information to the INLINEASM node to know about this input. 6232 unsigned ResOpType = 6233 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6234 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6235 getCurSDLoc(), 6236 TLI.getPointerTy())); 6237 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6238 break; 6239 } 6240 6241 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6242 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6243 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6244 "Memory operands expect pointer values"); 6245 6246 unsigned ConstraintID = 6247 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6248 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6249 "Failed to convert memory constraint code to constraint id."); 6250 6251 // Add information to the INLINEASM node to know about this input. 6252 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6253 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6254 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6255 getCurSDLoc(), 6256 MVT::i32)); 6257 AsmNodeOperands.push_back(InOperandVal); 6258 break; 6259 } 6260 6261 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6262 OpInfo.ConstraintType == TargetLowering::C_Register) && 6263 "Unknown constraint type!"); 6264 6265 // TODO: Support this. 6266 if (OpInfo.isIndirect) { 6267 LLVMContext &Ctx = *DAG.getContext(); 6268 Ctx.emitError(CS.getInstruction(), 6269 "Don't know how to handle indirect register inputs yet " 6270 "for constraint '" + 6271 Twine(OpInfo.ConstraintCode) + "'"); 6272 return; 6273 } 6274 6275 // Copy the input into the appropriate registers. 6276 if (OpInfo.AssignedRegs.Regs.empty()) { 6277 LLVMContext &Ctx = *DAG.getContext(); 6278 Ctx.emitError(CS.getInstruction(), 6279 "couldn't allocate input reg for constraint '" + 6280 Twine(OpInfo.ConstraintCode) + "'"); 6281 return; 6282 } 6283 6284 SDLoc dl = getCurSDLoc(); 6285 6286 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6287 Chain, &Flag, CS.getInstruction()); 6288 6289 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6290 dl, DAG, AsmNodeOperands); 6291 break; 6292 } 6293 case InlineAsm::isClobber: { 6294 // Add the clobbered value to the operand list, so that the register 6295 // allocator is aware that the physreg got clobbered. 6296 if (!OpInfo.AssignedRegs.Regs.empty()) 6297 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6298 false, 0, getCurSDLoc(), DAG, 6299 AsmNodeOperands); 6300 break; 6301 } 6302 } 6303 } 6304 6305 // Finish up input operands. Set the input chain and add the flag last. 6306 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6307 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6308 6309 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6310 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6311 Flag = Chain.getValue(1); 6312 6313 // If this asm returns a register value, copy the result from that register 6314 // and set it as the value of the call. 6315 if (!RetValRegs.Regs.empty()) { 6316 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6317 Chain, &Flag, CS.getInstruction()); 6318 6319 // FIXME: Why don't we do this for inline asms with MRVs? 6320 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6321 EVT ResultType = TLI.getValueType(CS.getType()); 6322 6323 // If any of the results of the inline asm is a vector, it may have the 6324 // wrong width/num elts. This can happen for register classes that can 6325 // contain multiple different value types. The preg or vreg allocated may 6326 // not have the same VT as was expected. Convert it to the right type 6327 // with bit_convert. 6328 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6329 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6330 ResultType, Val); 6331 6332 } else if (ResultType != Val.getValueType() && 6333 ResultType.isInteger() && Val.getValueType().isInteger()) { 6334 // If a result value was tied to an input value, the computed result may 6335 // have a wider width than the expected result. Extract the relevant 6336 // portion. 6337 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6338 } 6339 6340 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6341 } 6342 6343 setValue(CS.getInstruction(), Val); 6344 // Don't need to use this as a chain in this case. 6345 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6346 return; 6347 } 6348 6349 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6350 6351 // Process indirect outputs, first output all of the flagged copies out of 6352 // physregs. 6353 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6354 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6355 const Value *Ptr = IndirectStoresToEmit[i].second; 6356 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6357 Chain, &Flag, IA); 6358 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6359 } 6360 6361 // Emit the non-flagged stores from the physregs. 6362 SmallVector<SDValue, 8> OutChains; 6363 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6364 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6365 StoresToEmit[i].first, 6366 getValue(StoresToEmit[i].second), 6367 MachinePointerInfo(StoresToEmit[i].second), 6368 false, false, 0); 6369 OutChains.push_back(Val); 6370 } 6371 6372 if (!OutChains.empty()) 6373 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6374 6375 DAG.setRoot(Chain); 6376 } 6377 6378 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6379 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6380 MVT::Other, getRoot(), 6381 getValue(I.getArgOperand(0)), 6382 DAG.getSrcValue(I.getArgOperand(0)))); 6383 } 6384 6385 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6386 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6387 const DataLayout &DL = *TLI.getDataLayout(); 6388 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6389 getRoot(), getValue(I.getOperand(0)), 6390 DAG.getSrcValue(I.getOperand(0)), 6391 DL.getABITypeAlignment(I.getType())); 6392 setValue(&I, V); 6393 DAG.setRoot(V.getValue(1)); 6394 } 6395 6396 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6397 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6398 MVT::Other, getRoot(), 6399 getValue(I.getArgOperand(0)), 6400 DAG.getSrcValue(I.getArgOperand(0)))); 6401 } 6402 6403 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6404 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6405 MVT::Other, getRoot(), 6406 getValue(I.getArgOperand(0)), 6407 getValue(I.getArgOperand(1)), 6408 DAG.getSrcValue(I.getArgOperand(0)), 6409 DAG.getSrcValue(I.getArgOperand(1)))); 6410 } 6411 6412 /// \brief Lower an argument list according to the target calling convention. 6413 /// 6414 /// \return A tuple of <return-value, token-chain> 6415 /// 6416 /// This is a helper for lowering intrinsics that follow a target calling 6417 /// convention or require stack pointer adjustment. Only a subset of the 6418 /// intrinsic's operands need to participate in the calling convention. 6419 std::pair<SDValue, SDValue> 6420 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6421 unsigned NumArgs, SDValue Callee, 6422 Type *ReturnTy, 6423 MachineBasicBlock *LandingPad, 6424 bool IsPatchPoint) { 6425 TargetLowering::ArgListTy Args; 6426 Args.reserve(NumArgs); 6427 6428 // Populate the argument list. 6429 // Attributes for args start at offset 1, after the return attribute. 6430 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6431 ArgI != ArgE; ++ArgI) { 6432 const Value *V = CS->getOperand(ArgI); 6433 6434 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6435 6436 TargetLowering::ArgListEntry Entry; 6437 Entry.Node = getValue(V); 6438 Entry.Ty = V->getType(); 6439 Entry.setAttributes(&CS, AttrI); 6440 Args.push_back(Entry); 6441 } 6442 6443 TargetLowering::CallLoweringInfo CLI(DAG); 6444 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6445 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6446 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6447 6448 return lowerInvokable(CLI, LandingPad); 6449 } 6450 6451 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6452 /// or patchpoint target node's operand list. 6453 /// 6454 /// Constants are converted to TargetConstants purely as an optimization to 6455 /// avoid constant materialization and register allocation. 6456 /// 6457 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6458 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6459 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6460 /// address materialization and register allocation, but may also be required 6461 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6462 /// alloca in the entry block, then the runtime may assume that the alloca's 6463 /// StackMap location can be read immediately after compilation and that the 6464 /// location is valid at any point during execution (this is similar to the 6465 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6466 /// only available in a register, then the runtime would need to trap when 6467 /// execution reaches the StackMap in order to read the alloca's location. 6468 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6469 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6470 SelectionDAGBuilder &Builder) { 6471 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6472 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6473 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6474 Ops.push_back( 6475 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6476 Ops.push_back( 6477 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6478 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6479 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6480 Ops.push_back( 6481 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6482 } else 6483 Ops.push_back(OpVal); 6484 } 6485 } 6486 6487 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6488 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6489 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6490 // [live variables...]) 6491 6492 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6493 6494 SDValue Chain, InFlag, Callee, NullPtr; 6495 SmallVector<SDValue, 32> Ops; 6496 6497 SDLoc DL = getCurSDLoc(); 6498 Callee = getValue(CI.getCalledValue()); 6499 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6500 6501 // The stackmap intrinsic only records the live variables (the arguemnts 6502 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6503 // intrinsic, this won't be lowered to a function call. This means we don't 6504 // have to worry about calling conventions and target specific lowering code. 6505 // Instead we perform the call lowering right here. 6506 // 6507 // chain, flag = CALLSEQ_START(chain, 0) 6508 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6509 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6510 // 6511 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6512 InFlag = Chain.getValue(1); 6513 6514 // Add the <id> and <numBytes> constants. 6515 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6516 Ops.push_back(DAG.getTargetConstant( 6517 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6518 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6519 Ops.push_back(DAG.getTargetConstant( 6520 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6521 MVT::i32)); 6522 6523 // Push live variables for the stack map. 6524 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6525 6526 // We are not pushing any register mask info here on the operands list, 6527 // because the stackmap doesn't clobber anything. 6528 6529 // Push the chain and the glue flag. 6530 Ops.push_back(Chain); 6531 Ops.push_back(InFlag); 6532 6533 // Create the STACKMAP node. 6534 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6535 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6536 Chain = SDValue(SM, 0); 6537 InFlag = Chain.getValue(1); 6538 6539 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6540 6541 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6542 6543 // Set the root to the target-lowered call chain. 6544 DAG.setRoot(Chain); 6545 6546 // Inform the Frame Information that we have a stackmap in this function. 6547 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6548 } 6549 6550 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6551 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6552 MachineBasicBlock *LandingPad) { 6553 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6554 // i32 <numBytes>, 6555 // i8* <target>, 6556 // i32 <numArgs>, 6557 // [Args...], 6558 // [live variables...]) 6559 6560 CallingConv::ID CC = CS.getCallingConv(); 6561 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6562 bool HasDef = !CS->getType()->isVoidTy(); 6563 SDLoc dl = getCurSDLoc(); 6564 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6565 6566 // Handle immediate and symbolic callees. 6567 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6568 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6569 /*isTarget=*/true); 6570 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6571 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6572 SDLoc(SymbolicCallee), 6573 SymbolicCallee->getValueType(0)); 6574 6575 // Get the real number of arguments participating in the call <numArgs> 6576 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6577 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6578 6579 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6580 // Intrinsics include all meta-operands up to but not including CC. 6581 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6582 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6583 "Not enough arguments provided to the patchpoint intrinsic"); 6584 6585 // For AnyRegCC the arguments are lowered later on manually. 6586 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6587 Type *ReturnTy = 6588 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6589 std::pair<SDValue, SDValue> Result = 6590 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6591 LandingPad, true); 6592 6593 SDNode *CallEnd = Result.second.getNode(); 6594 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6595 CallEnd = CallEnd->getOperand(0).getNode(); 6596 6597 /// Get a call instruction from the call sequence chain. 6598 /// Tail calls are not allowed. 6599 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6600 "Expected a callseq node."); 6601 SDNode *Call = CallEnd->getOperand(0).getNode(); 6602 bool HasGlue = Call->getGluedNode(); 6603 6604 // Replace the target specific call node with the patchable intrinsic. 6605 SmallVector<SDValue, 8> Ops; 6606 6607 // Add the <id> and <numBytes> constants. 6608 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6609 Ops.push_back(DAG.getTargetConstant( 6610 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6611 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6612 Ops.push_back(DAG.getTargetConstant( 6613 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6614 MVT::i32)); 6615 6616 // Add the callee. 6617 Ops.push_back(Callee); 6618 6619 // Adjust <numArgs> to account for any arguments that have been passed on the 6620 // stack instead. 6621 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6622 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6623 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6624 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6625 6626 // Add the calling convention 6627 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6628 6629 // Add the arguments we omitted previously. The register allocator should 6630 // place these in any free register. 6631 if (IsAnyRegCC) 6632 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6633 Ops.push_back(getValue(CS.getArgument(i))); 6634 6635 // Push the arguments from the call instruction up to the register mask. 6636 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6637 Ops.append(Call->op_begin() + 2, e); 6638 6639 // Push live variables for the stack map. 6640 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6641 6642 // Push the register mask info. 6643 if (HasGlue) 6644 Ops.push_back(*(Call->op_end()-2)); 6645 else 6646 Ops.push_back(*(Call->op_end()-1)); 6647 6648 // Push the chain (this is originally the first operand of the call, but 6649 // becomes now the last or second to last operand). 6650 Ops.push_back(*(Call->op_begin())); 6651 6652 // Push the glue flag (last operand). 6653 if (HasGlue) 6654 Ops.push_back(*(Call->op_end()-1)); 6655 6656 SDVTList NodeTys; 6657 if (IsAnyRegCC && HasDef) { 6658 // Create the return types based on the intrinsic definition 6659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6660 SmallVector<EVT, 3> ValueVTs; 6661 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6662 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6663 6664 // There is always a chain and a glue type at the end 6665 ValueVTs.push_back(MVT::Other); 6666 ValueVTs.push_back(MVT::Glue); 6667 NodeTys = DAG.getVTList(ValueVTs); 6668 } else 6669 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6670 6671 // Replace the target specific call node with a PATCHPOINT node. 6672 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6673 dl, NodeTys, Ops); 6674 6675 // Update the NodeMap. 6676 if (HasDef) { 6677 if (IsAnyRegCC) 6678 setValue(CS.getInstruction(), SDValue(MN, 0)); 6679 else 6680 setValue(CS.getInstruction(), Result.first); 6681 } 6682 6683 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6684 // call sequence. Furthermore the location of the chain and glue can change 6685 // when the AnyReg calling convention is used and the intrinsic returns a 6686 // value. 6687 if (IsAnyRegCC && HasDef) { 6688 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6689 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6690 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6691 } else 6692 DAG.ReplaceAllUsesWith(Call, MN); 6693 DAG.DeleteNode(Call); 6694 6695 // Inform the Frame Information that we have a patchpoint in this function. 6696 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6697 } 6698 6699 /// Returns an AttributeSet representing the attributes applied to the return 6700 /// value of the given call. 6701 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6702 SmallVector<Attribute::AttrKind, 2> Attrs; 6703 if (CLI.RetSExt) 6704 Attrs.push_back(Attribute::SExt); 6705 if (CLI.RetZExt) 6706 Attrs.push_back(Attribute::ZExt); 6707 if (CLI.IsInReg) 6708 Attrs.push_back(Attribute::InReg); 6709 6710 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6711 Attrs); 6712 } 6713 6714 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6715 /// implementation, which just calls LowerCall. 6716 /// FIXME: When all targets are 6717 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6718 std::pair<SDValue, SDValue> 6719 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6720 // Handle the incoming return values from the call. 6721 CLI.Ins.clear(); 6722 Type *OrigRetTy = CLI.RetTy; 6723 SmallVector<EVT, 4> RetTys; 6724 SmallVector<uint64_t, 4> Offsets; 6725 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6726 6727 SmallVector<ISD::OutputArg, 4> Outs; 6728 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6729 6730 bool CanLowerReturn = 6731 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6732 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6733 6734 SDValue DemoteStackSlot; 6735 int DemoteStackIdx = -100; 6736 if (!CanLowerReturn) { 6737 // FIXME: equivalent assert? 6738 // assert(!CS.hasInAllocaArgument() && 6739 // "sret demotion is incompatible with inalloca"); 6740 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6741 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6742 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6743 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6744 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6745 6746 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6747 ArgListEntry Entry; 6748 Entry.Node = DemoteStackSlot; 6749 Entry.Ty = StackSlotPtrType; 6750 Entry.isSExt = false; 6751 Entry.isZExt = false; 6752 Entry.isInReg = false; 6753 Entry.isSRet = true; 6754 Entry.isNest = false; 6755 Entry.isByVal = false; 6756 Entry.isReturned = false; 6757 Entry.Alignment = Align; 6758 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6759 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6760 6761 // sret demotion isn't compatible with tail-calls, since the sret argument 6762 // points into the callers stack frame. 6763 CLI.IsTailCall = false; 6764 } else { 6765 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6766 EVT VT = RetTys[I]; 6767 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6768 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6769 for (unsigned i = 0; i != NumRegs; ++i) { 6770 ISD::InputArg MyFlags; 6771 MyFlags.VT = RegisterVT; 6772 MyFlags.ArgVT = VT; 6773 MyFlags.Used = CLI.IsReturnValueUsed; 6774 if (CLI.RetSExt) 6775 MyFlags.Flags.setSExt(); 6776 if (CLI.RetZExt) 6777 MyFlags.Flags.setZExt(); 6778 if (CLI.IsInReg) 6779 MyFlags.Flags.setInReg(); 6780 CLI.Ins.push_back(MyFlags); 6781 } 6782 } 6783 } 6784 6785 // Handle all of the outgoing arguments. 6786 CLI.Outs.clear(); 6787 CLI.OutVals.clear(); 6788 ArgListTy &Args = CLI.getArgs(); 6789 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6790 SmallVector<EVT, 4> ValueVTs; 6791 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6792 Type *FinalType = Args[i].Ty; 6793 if (Args[i].isByVal) 6794 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6795 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6796 FinalType, CLI.CallConv, CLI.IsVarArg); 6797 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6798 ++Value) { 6799 EVT VT = ValueVTs[Value]; 6800 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6801 SDValue Op = SDValue(Args[i].Node.getNode(), 6802 Args[i].Node.getResNo() + Value); 6803 ISD::ArgFlagsTy Flags; 6804 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6805 6806 if (Args[i].isZExt) 6807 Flags.setZExt(); 6808 if (Args[i].isSExt) 6809 Flags.setSExt(); 6810 if (Args[i].isInReg) 6811 Flags.setInReg(); 6812 if (Args[i].isSRet) 6813 Flags.setSRet(); 6814 if (Args[i].isByVal) 6815 Flags.setByVal(); 6816 if (Args[i].isInAlloca) { 6817 Flags.setInAlloca(); 6818 // Set the byval flag for CCAssignFn callbacks that don't know about 6819 // inalloca. This way we can know how many bytes we should've allocated 6820 // and how many bytes a callee cleanup function will pop. If we port 6821 // inalloca to more targets, we'll have to add custom inalloca handling 6822 // in the various CC lowering callbacks. 6823 Flags.setByVal(); 6824 } 6825 if (Args[i].isByVal || Args[i].isInAlloca) { 6826 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6827 Type *ElementTy = Ty->getElementType(); 6828 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6829 // For ByVal, alignment should come from FE. BE will guess if this 6830 // info is not there but there are cases it cannot get right. 6831 unsigned FrameAlign; 6832 if (Args[i].Alignment) 6833 FrameAlign = Args[i].Alignment; 6834 else 6835 FrameAlign = getByValTypeAlignment(ElementTy); 6836 Flags.setByValAlign(FrameAlign); 6837 } 6838 if (Args[i].isNest) 6839 Flags.setNest(); 6840 if (NeedsRegBlock) 6841 Flags.setInConsecutiveRegs(); 6842 Flags.setOrigAlign(OriginalAlignment); 6843 6844 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6845 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6846 SmallVector<SDValue, 4> Parts(NumParts); 6847 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6848 6849 if (Args[i].isSExt) 6850 ExtendKind = ISD::SIGN_EXTEND; 6851 else if (Args[i].isZExt) 6852 ExtendKind = ISD::ZERO_EXTEND; 6853 6854 // Conservatively only handle 'returned' on non-vectors for now 6855 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6856 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6857 "unexpected use of 'returned'"); 6858 // Before passing 'returned' to the target lowering code, ensure that 6859 // either the register MVT and the actual EVT are the same size or that 6860 // the return value and argument are extended in the same way; in these 6861 // cases it's safe to pass the argument register value unchanged as the 6862 // return register value (although it's at the target's option whether 6863 // to do so) 6864 // TODO: allow code generation to take advantage of partially preserved 6865 // registers rather than clobbering the entire register when the 6866 // parameter extension method is not compatible with the return 6867 // extension method 6868 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6869 (ExtendKind != ISD::ANY_EXTEND && 6870 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6871 Flags.setReturned(); 6872 } 6873 6874 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6875 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6876 6877 for (unsigned j = 0; j != NumParts; ++j) { 6878 // if it isn't first piece, alignment must be 1 6879 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6880 i < CLI.NumFixedArgs, 6881 i, j*Parts[j].getValueType().getStoreSize()); 6882 if (NumParts > 1 && j == 0) 6883 MyFlags.Flags.setSplit(); 6884 else if (j != 0) 6885 MyFlags.Flags.setOrigAlign(1); 6886 6887 CLI.Outs.push_back(MyFlags); 6888 CLI.OutVals.push_back(Parts[j]); 6889 } 6890 6891 if (NeedsRegBlock && Value == NumValues - 1) 6892 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6893 } 6894 } 6895 6896 SmallVector<SDValue, 4> InVals; 6897 CLI.Chain = LowerCall(CLI, InVals); 6898 6899 // Verify that the target's LowerCall behaved as expected. 6900 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6901 "LowerCall didn't return a valid chain!"); 6902 assert((!CLI.IsTailCall || InVals.empty()) && 6903 "LowerCall emitted a return value for a tail call!"); 6904 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6905 "LowerCall didn't emit the correct number of values!"); 6906 6907 // For a tail call, the return value is merely live-out and there aren't 6908 // any nodes in the DAG representing it. Return a special value to 6909 // indicate that a tail call has been emitted and no more Instructions 6910 // should be processed in the current block. 6911 if (CLI.IsTailCall) { 6912 CLI.DAG.setRoot(CLI.Chain); 6913 return std::make_pair(SDValue(), SDValue()); 6914 } 6915 6916 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6917 assert(InVals[i].getNode() && 6918 "LowerCall emitted a null value!"); 6919 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6920 "LowerCall emitted a value with the wrong type!"); 6921 }); 6922 6923 SmallVector<SDValue, 4> ReturnValues; 6924 if (!CanLowerReturn) { 6925 // The instruction result is the result of loading from the 6926 // hidden sret parameter. 6927 SmallVector<EVT, 1> PVTs; 6928 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6929 6930 ComputeValueVTs(*this, PtrRetTy, PVTs); 6931 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6932 EVT PtrVT = PVTs[0]; 6933 6934 unsigned NumValues = RetTys.size(); 6935 ReturnValues.resize(NumValues); 6936 SmallVector<SDValue, 4> Chains(NumValues); 6937 6938 for (unsigned i = 0; i < NumValues; ++i) { 6939 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6940 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6941 PtrVT)); 6942 SDValue L = CLI.DAG.getLoad( 6943 RetTys[i], CLI.DL, CLI.Chain, Add, 6944 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6945 false, false, 1); 6946 ReturnValues[i] = L; 6947 Chains[i] = L.getValue(1); 6948 } 6949 6950 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6951 } else { 6952 // Collect the legal value parts into potentially illegal values 6953 // that correspond to the original function's return values. 6954 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6955 if (CLI.RetSExt) 6956 AssertOp = ISD::AssertSext; 6957 else if (CLI.RetZExt) 6958 AssertOp = ISD::AssertZext; 6959 unsigned CurReg = 0; 6960 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6961 EVT VT = RetTys[I]; 6962 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6963 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6964 6965 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6966 NumRegs, RegisterVT, VT, nullptr, 6967 AssertOp)); 6968 CurReg += NumRegs; 6969 } 6970 6971 // For a function returning void, there is no return value. We can't create 6972 // such a node, so we just return a null return value in that case. In 6973 // that case, nothing will actually look at the value. 6974 if (ReturnValues.empty()) 6975 return std::make_pair(SDValue(), CLI.Chain); 6976 } 6977 6978 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6979 CLI.DAG.getVTList(RetTys), ReturnValues); 6980 return std::make_pair(Res, CLI.Chain); 6981 } 6982 6983 void TargetLowering::LowerOperationWrapper(SDNode *N, 6984 SmallVectorImpl<SDValue> &Results, 6985 SelectionDAG &DAG) const { 6986 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6987 if (Res.getNode()) 6988 Results.push_back(Res); 6989 } 6990 6991 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6992 llvm_unreachable("LowerOperation not implemented for this target!"); 6993 } 6994 6995 void 6996 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6997 SDValue Op = getNonRegisterValue(V); 6998 assert((Op.getOpcode() != ISD::CopyFromReg || 6999 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7000 "Copy from a reg to the same reg!"); 7001 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7002 7003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7004 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7005 SDValue Chain = DAG.getEntryNode(); 7006 7007 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7008 FuncInfo.PreferredExtendType.end()) 7009 ? ISD::ANY_EXTEND 7010 : FuncInfo.PreferredExtendType[V]; 7011 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7012 PendingExports.push_back(Chain); 7013 } 7014 7015 #include "llvm/CodeGen/SelectionDAGISel.h" 7016 7017 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7018 /// entry block, return true. This includes arguments used by switches, since 7019 /// the switch may expand into multiple basic blocks. 7020 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7021 // With FastISel active, we may be splitting blocks, so force creation 7022 // of virtual registers for all non-dead arguments. 7023 if (FastISel) 7024 return A->use_empty(); 7025 7026 const BasicBlock *Entry = A->getParent()->begin(); 7027 for (const User *U : A->users()) 7028 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7029 return false; // Use not in entry block. 7030 7031 return true; 7032 } 7033 7034 void SelectionDAGISel::LowerArguments(const Function &F) { 7035 SelectionDAG &DAG = SDB->DAG; 7036 SDLoc dl = SDB->getCurSDLoc(); 7037 const DataLayout *DL = TLI->getDataLayout(); 7038 SmallVector<ISD::InputArg, 16> Ins; 7039 7040 if (!FuncInfo->CanLowerReturn) { 7041 // Put in an sret pointer parameter before all the other parameters. 7042 SmallVector<EVT, 1> ValueVTs; 7043 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7044 7045 // NOTE: Assuming that a pointer will never break down to more than one VT 7046 // or one register. 7047 ISD::ArgFlagsTy Flags; 7048 Flags.setSRet(); 7049 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7050 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7051 ISD::InputArg::NoArgIndex, 0); 7052 Ins.push_back(RetArg); 7053 } 7054 7055 // Set up the incoming argument description vector. 7056 unsigned Idx = 1; 7057 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7058 I != E; ++I, ++Idx) { 7059 SmallVector<EVT, 4> ValueVTs; 7060 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7061 bool isArgValueUsed = !I->use_empty(); 7062 unsigned PartBase = 0; 7063 Type *FinalType = I->getType(); 7064 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7065 FinalType = cast<PointerType>(FinalType)->getElementType(); 7066 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7067 FinalType, F.getCallingConv(), F.isVarArg()); 7068 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7069 Value != NumValues; ++Value) { 7070 EVT VT = ValueVTs[Value]; 7071 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7072 ISD::ArgFlagsTy Flags; 7073 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7074 7075 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7076 Flags.setZExt(); 7077 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7078 Flags.setSExt(); 7079 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7080 Flags.setInReg(); 7081 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7082 Flags.setSRet(); 7083 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7084 Flags.setByVal(); 7085 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7086 Flags.setInAlloca(); 7087 // Set the byval flag for CCAssignFn callbacks that don't know about 7088 // inalloca. This way we can know how many bytes we should've allocated 7089 // and how many bytes a callee cleanup function will pop. If we port 7090 // inalloca to more targets, we'll have to add custom inalloca handling 7091 // in the various CC lowering callbacks. 7092 Flags.setByVal(); 7093 } 7094 if (Flags.isByVal() || Flags.isInAlloca()) { 7095 PointerType *Ty = cast<PointerType>(I->getType()); 7096 Type *ElementTy = Ty->getElementType(); 7097 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7098 // For ByVal, alignment should be passed from FE. BE will guess if 7099 // this info is not there but there are cases it cannot get right. 7100 unsigned FrameAlign; 7101 if (F.getParamAlignment(Idx)) 7102 FrameAlign = F.getParamAlignment(Idx); 7103 else 7104 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7105 Flags.setByValAlign(FrameAlign); 7106 } 7107 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7108 Flags.setNest(); 7109 if (NeedsRegBlock) 7110 Flags.setInConsecutiveRegs(); 7111 Flags.setOrigAlign(OriginalAlignment); 7112 7113 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7114 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7115 for (unsigned i = 0; i != NumRegs; ++i) { 7116 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7117 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7118 if (NumRegs > 1 && i == 0) 7119 MyFlags.Flags.setSplit(); 7120 // if it isn't first piece, alignment must be 1 7121 else if (i > 0) 7122 MyFlags.Flags.setOrigAlign(1); 7123 Ins.push_back(MyFlags); 7124 } 7125 if (NeedsRegBlock && Value == NumValues - 1) 7126 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7127 PartBase += VT.getStoreSize(); 7128 } 7129 } 7130 7131 // Call the target to set up the argument values. 7132 SmallVector<SDValue, 8> InVals; 7133 SDValue NewRoot = TLI->LowerFormalArguments( 7134 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7135 7136 // Verify that the target's LowerFormalArguments behaved as expected. 7137 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7138 "LowerFormalArguments didn't return a valid chain!"); 7139 assert(InVals.size() == Ins.size() && 7140 "LowerFormalArguments didn't emit the correct number of values!"); 7141 DEBUG({ 7142 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7143 assert(InVals[i].getNode() && 7144 "LowerFormalArguments emitted a null value!"); 7145 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7146 "LowerFormalArguments emitted a value with the wrong type!"); 7147 } 7148 }); 7149 7150 // Update the DAG with the new chain value resulting from argument lowering. 7151 DAG.setRoot(NewRoot); 7152 7153 // Set up the argument values. 7154 unsigned i = 0; 7155 Idx = 1; 7156 if (!FuncInfo->CanLowerReturn) { 7157 // Create a virtual register for the sret pointer, and put in a copy 7158 // from the sret argument into it. 7159 SmallVector<EVT, 1> ValueVTs; 7160 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7161 MVT VT = ValueVTs[0].getSimpleVT(); 7162 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7163 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7164 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7165 RegVT, VT, nullptr, AssertOp); 7166 7167 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7168 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7169 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7170 FuncInfo->DemoteRegister = SRetReg; 7171 NewRoot = 7172 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7173 DAG.setRoot(NewRoot); 7174 7175 // i indexes lowered arguments. Bump it past the hidden sret argument. 7176 // Idx indexes LLVM arguments. Don't touch it. 7177 ++i; 7178 } 7179 7180 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7181 ++I, ++Idx) { 7182 SmallVector<SDValue, 4> ArgValues; 7183 SmallVector<EVT, 4> ValueVTs; 7184 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7185 unsigned NumValues = ValueVTs.size(); 7186 7187 // If this argument is unused then remember its value. It is used to generate 7188 // debugging information. 7189 if (I->use_empty() && NumValues) { 7190 SDB->setUnusedArgValue(I, InVals[i]); 7191 7192 // Also remember any frame index for use in FastISel. 7193 if (FrameIndexSDNode *FI = 7194 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7195 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7196 } 7197 7198 for (unsigned Val = 0; Val != NumValues; ++Val) { 7199 EVT VT = ValueVTs[Val]; 7200 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7201 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7202 7203 if (!I->use_empty()) { 7204 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7205 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7206 AssertOp = ISD::AssertSext; 7207 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7208 AssertOp = ISD::AssertZext; 7209 7210 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7211 NumParts, PartVT, VT, 7212 nullptr, AssertOp)); 7213 } 7214 7215 i += NumParts; 7216 } 7217 7218 // We don't need to do anything else for unused arguments. 7219 if (ArgValues.empty()) 7220 continue; 7221 7222 // Note down frame index. 7223 if (FrameIndexSDNode *FI = 7224 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7225 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7226 7227 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7228 SDB->getCurSDLoc()); 7229 7230 SDB->setValue(I, Res); 7231 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7232 if (LoadSDNode *LNode = 7233 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7234 if (FrameIndexSDNode *FI = 7235 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7236 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7237 } 7238 7239 // If this argument is live outside of the entry block, insert a copy from 7240 // wherever we got it to the vreg that other BB's will reference it as. 7241 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7242 // If we can, though, try to skip creating an unnecessary vreg. 7243 // FIXME: This isn't very clean... it would be nice to make this more 7244 // general. It's also subtly incompatible with the hacks FastISel 7245 // uses with vregs. 7246 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7247 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7248 FuncInfo->ValueMap[I] = Reg; 7249 continue; 7250 } 7251 } 7252 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7253 FuncInfo->InitializeRegForValue(I); 7254 SDB->CopyToExportRegsIfNeeded(I); 7255 } 7256 } 7257 7258 assert(i == InVals.size() && "Argument register count mismatch!"); 7259 7260 // Finally, if the target has anything special to do, allow it to do so. 7261 EmitFunctionEntryCode(); 7262 } 7263 7264 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7265 /// ensure constants are generated when needed. Remember the virtual registers 7266 /// that need to be added to the Machine PHI nodes as input. We cannot just 7267 /// directly add them, because expansion might result in multiple MBB's for one 7268 /// BB. As such, the start of the BB might correspond to a different MBB than 7269 /// the end. 7270 /// 7271 void 7272 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7273 const TerminatorInst *TI = LLVMBB->getTerminator(); 7274 7275 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7276 7277 // Check PHI nodes in successors that expect a value to be available from this 7278 // block. 7279 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7280 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7281 if (!isa<PHINode>(SuccBB->begin())) continue; 7282 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7283 7284 // If this terminator has multiple identical successors (common for 7285 // switches), only handle each succ once. 7286 if (!SuccsHandled.insert(SuccMBB).second) 7287 continue; 7288 7289 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7290 7291 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7292 // nodes and Machine PHI nodes, but the incoming operands have not been 7293 // emitted yet. 7294 for (BasicBlock::const_iterator I = SuccBB->begin(); 7295 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7296 // Ignore dead phi's. 7297 if (PN->use_empty()) continue; 7298 7299 // Skip empty types 7300 if (PN->getType()->isEmptyTy()) 7301 continue; 7302 7303 unsigned Reg; 7304 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7305 7306 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7307 unsigned &RegOut = ConstantsOut[C]; 7308 if (RegOut == 0) { 7309 RegOut = FuncInfo.CreateRegs(C->getType()); 7310 CopyValueToVirtualRegister(C, RegOut); 7311 } 7312 Reg = RegOut; 7313 } else { 7314 DenseMap<const Value *, unsigned>::iterator I = 7315 FuncInfo.ValueMap.find(PHIOp); 7316 if (I != FuncInfo.ValueMap.end()) 7317 Reg = I->second; 7318 else { 7319 assert(isa<AllocaInst>(PHIOp) && 7320 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7321 "Didn't codegen value into a register!??"); 7322 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7323 CopyValueToVirtualRegister(PHIOp, Reg); 7324 } 7325 } 7326 7327 // Remember that this register needs to added to the machine PHI node as 7328 // the input for this MBB. 7329 SmallVector<EVT, 4> ValueVTs; 7330 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7331 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7332 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7333 EVT VT = ValueVTs[vti]; 7334 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7335 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7336 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7337 Reg += NumRegisters; 7338 } 7339 } 7340 } 7341 7342 ConstantsOut.clear(); 7343 } 7344 7345 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7346 /// is 0. 7347 MachineBasicBlock * 7348 SelectionDAGBuilder::StackProtectorDescriptor:: 7349 AddSuccessorMBB(const BasicBlock *BB, 7350 MachineBasicBlock *ParentMBB, 7351 bool IsLikely, 7352 MachineBasicBlock *SuccMBB) { 7353 // If SuccBB has not been created yet, create it. 7354 if (!SuccMBB) { 7355 MachineFunction *MF = ParentMBB->getParent(); 7356 MachineFunction::iterator BBI = ParentMBB; 7357 SuccMBB = MF->CreateMachineBasicBlock(BB); 7358 MF->insert(++BBI, SuccMBB); 7359 } 7360 // Add it as a successor of ParentMBB. 7361 ParentMBB->addSuccessor( 7362 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7363 return SuccMBB; 7364 } 7365 7366 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7367 MachineFunction::iterator I = MBB; 7368 if (++I == FuncInfo.MF->end()) 7369 return nullptr; 7370 return I; 7371 } 7372 7373 /// During lowering new call nodes can be created (such as memset, etc.). 7374 /// Those will become new roots of the current DAG, but complications arise 7375 /// when they are tail calls. In such cases, the call lowering will update 7376 /// the root, but the builder still needs to know that a tail call has been 7377 /// lowered in order to avoid generating an additional return. 7378 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7379 // If the node is null, we do have a tail call. 7380 if (MaybeTC.getNode() != nullptr) 7381 DAG.setRoot(MaybeTC); 7382 else 7383 HasTailCall = true; 7384 } 7385 7386 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7387 unsigned *TotalCases, unsigned First, 7388 unsigned Last) { 7389 assert(Last >= First); 7390 assert(TotalCases[Last] >= TotalCases[First]); 7391 7392 APInt LowCase = Clusters[First].Low->getValue(); 7393 APInt HighCase = Clusters[Last].High->getValue(); 7394 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7395 7396 // FIXME: A range of consecutive cases has 100% density, but only requires one 7397 // comparison to lower. We should discriminate against such consecutive ranges 7398 // in jump tables. 7399 7400 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7401 uint64_t Range = Diff + 1; 7402 7403 uint64_t NumCases = 7404 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7405 7406 assert(NumCases < UINT64_MAX / 100); 7407 assert(Range >= NumCases); 7408 7409 return NumCases * 100 >= Range * MinJumpTableDensity; 7410 } 7411 7412 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7413 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7414 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7415 } 7416 7417 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7418 unsigned First, unsigned Last, 7419 const SwitchInst *SI, 7420 MachineBasicBlock *DefaultMBB, 7421 CaseCluster &JTCluster) { 7422 assert(First <= Last); 7423 7424 uint32_t Weight = 0; 7425 unsigned NumCmps = 0; 7426 std::vector<MachineBasicBlock*> Table; 7427 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7428 for (unsigned I = First; I <= Last; ++I) { 7429 assert(Clusters[I].Kind == CC_Range); 7430 Weight += Clusters[I].Weight; 7431 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7432 APInt Low = Clusters[I].Low->getValue(); 7433 APInt High = Clusters[I].High->getValue(); 7434 NumCmps += (Low == High) ? 1 : 2; 7435 if (I != First) { 7436 // Fill the gap between this and the previous cluster. 7437 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7438 assert(PreviousHigh.slt(Low)); 7439 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7440 for (uint64_t J = 0; J < Gap; J++) 7441 Table.push_back(DefaultMBB); 7442 } 7443 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7444 for (uint64_t J = 0; J < ClusterSize; ++J) 7445 Table.push_back(Clusters[I].MBB); 7446 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7447 } 7448 7449 unsigned NumDests = JTWeights.size(); 7450 if (isSuitableForBitTests(NumDests, NumCmps, 7451 Clusters[First].Low->getValue(), 7452 Clusters[Last].High->getValue())) { 7453 // Clusters[First..Last] should be lowered as bit tests instead. 7454 return false; 7455 } 7456 7457 // Create the MBB that will load from and jump through the table. 7458 // Note: We create it here, but it's not inserted into the function yet. 7459 MachineFunction *CurMF = FuncInfo.MF; 7460 MachineBasicBlock *JumpTableMBB = 7461 CurMF->CreateMachineBasicBlock(SI->getParent()); 7462 7463 // Add successors. Note: use table order for determinism. 7464 SmallPtrSet<MachineBasicBlock *, 8> Done; 7465 for (MachineBasicBlock *Succ : Table) { 7466 if (Done.count(Succ)) 7467 continue; 7468 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7469 Done.insert(Succ); 7470 } 7471 7472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7473 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7474 ->createJumpTableIndex(Table); 7475 7476 // Set up the jump table info. 7477 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7478 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7479 Clusters[Last].High->getValue(), SI->getCondition(), 7480 nullptr, false); 7481 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7482 7483 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7484 JTCases.size() - 1, Weight); 7485 return true; 7486 } 7487 7488 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7489 const SwitchInst *SI, 7490 MachineBasicBlock *DefaultMBB) { 7491 #ifndef NDEBUG 7492 // Clusters must be non-empty, sorted, and only contain Range clusters. 7493 assert(!Clusters.empty()); 7494 for (CaseCluster &C : Clusters) 7495 assert(C.Kind == CC_Range); 7496 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7497 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7498 #endif 7499 7500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7501 if (!areJTsAllowed(TLI)) 7502 return; 7503 7504 const int64_t N = Clusters.size(); 7505 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7506 7507 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7508 SmallVector<unsigned, 8> TotalCases(N); 7509 7510 for (unsigned i = 0; i < N; ++i) { 7511 APInt Hi = Clusters[i].High->getValue(); 7512 APInt Lo = Clusters[i].Low->getValue(); 7513 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7514 if (i != 0) 7515 TotalCases[i] += TotalCases[i - 1]; 7516 } 7517 7518 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7519 // Cheap case: the whole range might be suitable for jump table. 7520 CaseCluster JTCluster; 7521 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7522 Clusters[0] = JTCluster; 7523 Clusters.resize(1); 7524 return; 7525 } 7526 } 7527 7528 // The algorithm below is not suitable for -O0. 7529 if (TM.getOptLevel() == CodeGenOpt::None) 7530 return; 7531 7532 // Split Clusters into minimum number of dense partitions. The algorithm uses 7533 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7534 // for the Case Statement'" (1994), but builds the MinPartitions array in 7535 // reverse order to make it easier to reconstruct the partitions in ascending 7536 // order. In the choice between two optimal partitionings, it picks the one 7537 // which yields more jump tables. 7538 7539 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7540 SmallVector<unsigned, 8> MinPartitions(N); 7541 // LastElement[i] is the last element of the partition starting at i. 7542 SmallVector<unsigned, 8> LastElement(N); 7543 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7544 SmallVector<unsigned, 8> NumTables(N); 7545 7546 // Base case: There is only one way to partition Clusters[N-1]. 7547 MinPartitions[N - 1] = 1; 7548 LastElement[N - 1] = N - 1; 7549 assert(MinJumpTableSize > 1); 7550 NumTables[N - 1] = 0; 7551 7552 // Note: loop indexes are signed to avoid underflow. 7553 for (int64_t i = N - 2; i >= 0; i--) { 7554 // Find optimal partitioning of Clusters[i..N-1]. 7555 // Baseline: Put Clusters[i] into a partition on its own. 7556 MinPartitions[i] = MinPartitions[i + 1] + 1; 7557 LastElement[i] = i; 7558 NumTables[i] = NumTables[i + 1]; 7559 7560 // Search for a solution that results in fewer partitions. 7561 for (int64_t j = N - 1; j > i; j--) { 7562 // Try building a partition from Clusters[i..j]. 7563 if (isDense(Clusters, &TotalCases[0], i, j)) { 7564 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7565 bool IsTable = j - i + 1 >= MinJumpTableSize; 7566 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7567 7568 // If this j leads to fewer partitions, or same number of partitions 7569 // with more lookup tables, it is a better partitioning. 7570 if (NumPartitions < MinPartitions[i] || 7571 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7572 MinPartitions[i] = NumPartitions; 7573 LastElement[i] = j; 7574 NumTables[i] = Tables; 7575 } 7576 } 7577 } 7578 } 7579 7580 // Iterate over the partitions, replacing some with jump tables in-place. 7581 unsigned DstIndex = 0; 7582 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7583 Last = LastElement[First]; 7584 assert(Last >= First); 7585 assert(DstIndex <= First); 7586 unsigned NumClusters = Last - First + 1; 7587 7588 CaseCluster JTCluster; 7589 if (NumClusters >= MinJumpTableSize && 7590 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7591 Clusters[DstIndex++] = JTCluster; 7592 } else { 7593 for (unsigned I = First; I <= Last; ++I) 7594 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7595 } 7596 } 7597 Clusters.resize(DstIndex); 7598 } 7599 7600 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7601 // FIXME: Using the pointer type doesn't seem ideal. 7602 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7603 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7604 return Range <= BW; 7605 } 7606 7607 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7608 unsigned NumCmps, 7609 const APInt &Low, 7610 const APInt &High) { 7611 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7612 // range of cases both require only one branch to lower. Just looking at the 7613 // number of clusters and destinations should be enough to decide whether to 7614 // build bit tests. 7615 7616 // To lower a range with bit tests, the range must fit the bitwidth of a 7617 // machine word. 7618 if (!rangeFitsInWord(Low, High)) 7619 return false; 7620 7621 // Decide whether it's profitable to lower this range with bit tests. Each 7622 // destination requires a bit test and branch, and there is an overall range 7623 // check branch. For a small number of clusters, separate comparisons might be 7624 // cheaper, and for many destinations, splitting the range might be better. 7625 return (NumDests == 1 && NumCmps >= 3) || 7626 (NumDests == 2 && NumCmps >= 5) || 7627 (NumDests == 3 && NumCmps >= 6); 7628 } 7629 7630 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7631 unsigned First, unsigned Last, 7632 const SwitchInst *SI, 7633 CaseCluster &BTCluster) { 7634 assert(First <= Last); 7635 if (First == Last) 7636 return false; 7637 7638 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7639 unsigned NumCmps = 0; 7640 for (int64_t I = First; I <= Last; ++I) { 7641 assert(Clusters[I].Kind == CC_Range); 7642 Dests.set(Clusters[I].MBB->getNumber()); 7643 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7644 } 7645 unsigned NumDests = Dests.count(); 7646 7647 APInt Low = Clusters[First].Low->getValue(); 7648 APInt High = Clusters[Last].High->getValue(); 7649 assert(Low.slt(High)); 7650 7651 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7652 return false; 7653 7654 APInt LowBound; 7655 APInt CmpRange; 7656 7657 const int BitWidth = 7658 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7659 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7660 7661 if (Low.isNonNegative() && High.slt(BitWidth)) { 7662 // Optimize the case where all the case values fit in a 7663 // word without having to subtract minValue. In this case, 7664 // we can optimize away the subtraction. 7665 LowBound = APInt::getNullValue(Low.getBitWidth()); 7666 CmpRange = High; 7667 } else { 7668 LowBound = Low; 7669 CmpRange = High - Low; 7670 } 7671 7672 CaseBitsVector CBV; 7673 uint32_t TotalWeight = 0; 7674 for (unsigned i = First; i <= Last; ++i) { 7675 // Find the CaseBits for this destination. 7676 unsigned j; 7677 for (j = 0; j < CBV.size(); ++j) 7678 if (CBV[j].BB == Clusters[i].MBB) 7679 break; 7680 if (j == CBV.size()) 7681 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7682 CaseBits *CB = &CBV[j]; 7683 7684 // Update Mask, Bits and ExtraWeight. 7685 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7686 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7687 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7688 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7689 CB->Bits += Hi - Lo + 1; 7690 CB->ExtraWeight += Clusters[i].Weight; 7691 TotalWeight += Clusters[i].Weight; 7692 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7693 } 7694 7695 BitTestInfo BTI; 7696 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7697 // Sort by weight first, number of bits second. 7698 if (a.ExtraWeight != b.ExtraWeight) 7699 return a.ExtraWeight > b.ExtraWeight; 7700 return a.Bits > b.Bits; 7701 }); 7702 7703 for (auto &CB : CBV) { 7704 MachineBasicBlock *BitTestBB = 7705 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7706 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7707 } 7708 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7709 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7710 nullptr, std::move(BTI)); 7711 7712 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7713 BitTestCases.size() - 1, TotalWeight); 7714 return true; 7715 } 7716 7717 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7718 const SwitchInst *SI) { 7719 // Partition Clusters into as few subsets as possible, where each subset has a 7720 // range that fits in a machine word and has <= 3 unique destinations. 7721 7722 #ifndef NDEBUG 7723 // Clusters must be sorted and contain Range or JumpTable clusters. 7724 assert(!Clusters.empty()); 7725 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7726 for (const CaseCluster &C : Clusters) 7727 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7728 for (unsigned i = 1; i < Clusters.size(); ++i) 7729 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7730 #endif 7731 7732 // The algorithm below is not suitable for -O0. 7733 if (TM.getOptLevel() == CodeGenOpt::None) 7734 return; 7735 7736 // If target does not have legal shift left, do not emit bit tests at all. 7737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7738 EVT PTy = TLI.getPointerTy(); 7739 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7740 return; 7741 7742 int BitWidth = PTy.getSizeInBits(); 7743 const int64_t N = Clusters.size(); 7744 7745 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7746 SmallVector<unsigned, 8> MinPartitions(N); 7747 // LastElement[i] is the last element of the partition starting at i. 7748 SmallVector<unsigned, 8> LastElement(N); 7749 7750 // FIXME: This might not be the best algorithm for finding bit test clusters. 7751 7752 // Base case: There is only one way to partition Clusters[N-1]. 7753 MinPartitions[N - 1] = 1; 7754 LastElement[N - 1] = N - 1; 7755 7756 // Note: loop indexes are signed to avoid underflow. 7757 for (int64_t i = N - 2; i >= 0; --i) { 7758 // Find optimal partitioning of Clusters[i..N-1]. 7759 // Baseline: Put Clusters[i] into a partition on its own. 7760 MinPartitions[i] = MinPartitions[i + 1] + 1; 7761 LastElement[i] = i; 7762 7763 // Search for a solution that results in fewer partitions. 7764 // Note: the search is limited by BitWidth, reducing time complexity. 7765 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7766 // Try building a partition from Clusters[i..j]. 7767 7768 // Check the range. 7769 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7770 Clusters[j].High->getValue())) 7771 continue; 7772 7773 // Check nbr of destinations and cluster types. 7774 // FIXME: This works, but doesn't seem very efficient. 7775 bool RangesOnly = true; 7776 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7777 for (int64_t k = i; k <= j; k++) { 7778 if (Clusters[k].Kind != CC_Range) { 7779 RangesOnly = false; 7780 break; 7781 } 7782 Dests.set(Clusters[k].MBB->getNumber()); 7783 } 7784 if (!RangesOnly || Dests.count() > 3) 7785 break; 7786 7787 // Check if it's a better partition. 7788 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7789 if (NumPartitions < MinPartitions[i]) { 7790 // Found a better partition. 7791 MinPartitions[i] = NumPartitions; 7792 LastElement[i] = j; 7793 } 7794 } 7795 } 7796 7797 // Iterate over the partitions, replacing with bit-test clusters in-place. 7798 unsigned DstIndex = 0; 7799 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7800 Last = LastElement[First]; 7801 assert(First <= Last); 7802 assert(DstIndex <= First); 7803 7804 CaseCluster BitTestCluster; 7805 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7806 Clusters[DstIndex++] = BitTestCluster; 7807 } else { 7808 size_t NumClusters = Last - First + 1; 7809 std::memmove(&Clusters[DstIndex], &Clusters[First], 7810 sizeof(Clusters[0]) * NumClusters); 7811 DstIndex += NumClusters; 7812 } 7813 } 7814 Clusters.resize(DstIndex); 7815 } 7816 7817 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7818 MachineBasicBlock *SwitchMBB, 7819 MachineBasicBlock *DefaultMBB) { 7820 MachineFunction *CurMF = FuncInfo.MF; 7821 MachineBasicBlock *NextMBB = nullptr; 7822 MachineFunction::iterator BBI = W.MBB; 7823 if (++BBI != FuncInfo.MF->end()) 7824 NextMBB = BBI; 7825 7826 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7827 7828 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7829 7830 if (Size == 2 && W.MBB == SwitchMBB) { 7831 // If any two of the cases has the same destination, and if one value 7832 // is the same as the other, but has one bit unset that the other has set, 7833 // use bit manipulation to do two compares at once. For example: 7834 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7835 // TODO: This could be extended to merge any 2 cases in switches with 3 7836 // cases. 7837 // TODO: Handle cases where W.CaseBB != SwitchBB. 7838 CaseCluster &Small = *W.FirstCluster; 7839 CaseCluster &Big = *W.LastCluster; 7840 7841 if (Small.Low == Small.High && Big.Low == Big.High && 7842 Small.MBB == Big.MBB) { 7843 const APInt &SmallValue = Small.Low->getValue(); 7844 const APInt &BigValue = Big.Low->getValue(); 7845 7846 // Check that there is only one bit different. 7847 APInt CommonBit = BigValue ^ SmallValue; 7848 if (CommonBit.isPowerOf2()) { 7849 SDValue CondLHS = getValue(Cond); 7850 EVT VT = CondLHS.getValueType(); 7851 SDLoc DL = getCurSDLoc(); 7852 7853 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7854 DAG.getConstant(CommonBit, DL, VT)); 7855 SDValue Cond = DAG.getSetCC( 7856 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7857 ISD::SETEQ); 7858 7859 // Update successor info. 7860 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7861 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7862 addSuccessorWithWeight( 7863 SwitchMBB, DefaultMBB, 7864 // The default destination is the first successor in IR. 7865 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7866 : 0); 7867 7868 // Insert the true branch. 7869 SDValue BrCond = 7870 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7871 DAG.getBasicBlock(Small.MBB)); 7872 // Insert the false branch. 7873 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7874 DAG.getBasicBlock(DefaultMBB)); 7875 7876 DAG.setRoot(BrCond); 7877 return; 7878 } 7879 } 7880 } 7881 7882 if (TM.getOptLevel() != CodeGenOpt::None) { 7883 // Order cases by weight so the most likely case will be checked first. 7884 std::sort(W.FirstCluster, W.LastCluster + 1, 7885 [](const CaseCluster &a, const CaseCluster &b) { 7886 return a.Weight > b.Weight; 7887 }); 7888 7889 // Rearrange the case blocks so that the last one falls through if possible 7890 // without without changing the order of weights. 7891 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7892 --I; 7893 if (I->Weight > W.LastCluster->Weight) 7894 break; 7895 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7896 std::swap(*I, *W.LastCluster); 7897 break; 7898 } 7899 } 7900 } 7901 7902 // Compute total weight. 7903 uint32_t UnhandledWeights = 0; 7904 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7905 UnhandledWeights += I->Weight; 7906 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7907 } 7908 7909 MachineBasicBlock *CurMBB = W.MBB; 7910 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7911 MachineBasicBlock *Fallthrough; 7912 if (I == W.LastCluster) { 7913 // For the last cluster, fall through to the default destination. 7914 Fallthrough = DefaultMBB; 7915 } else { 7916 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7917 CurMF->insert(BBI, Fallthrough); 7918 // Put Cond in a virtual register to make it available from the new blocks. 7919 ExportFromCurrentBlock(Cond); 7920 } 7921 7922 switch (I->Kind) { 7923 case CC_JumpTable: { 7924 // FIXME: Optimize away range check based on pivot comparisons. 7925 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7926 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7927 7928 // The jump block hasn't been inserted yet; insert it here. 7929 MachineBasicBlock *JumpMBB = JT->MBB; 7930 CurMF->insert(BBI, JumpMBB); 7931 addSuccessorWithWeight(CurMBB, Fallthrough); 7932 addSuccessorWithWeight(CurMBB, JumpMBB); 7933 7934 // The jump table header will be inserted in our current block, do the 7935 // range check, and fall through to our fallthrough block. 7936 JTH->HeaderBB = CurMBB; 7937 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7938 7939 // If we're in the right place, emit the jump table header right now. 7940 if (CurMBB == SwitchMBB) { 7941 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7942 JTH->Emitted = true; 7943 } 7944 break; 7945 } 7946 case CC_BitTests: { 7947 // FIXME: Optimize away range check based on pivot comparisons. 7948 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7949 7950 // The bit test blocks haven't been inserted yet; insert them here. 7951 for (BitTestCase &BTC : BTB->Cases) 7952 CurMF->insert(BBI, BTC.ThisBB); 7953 7954 // Fill in fields of the BitTestBlock. 7955 BTB->Parent = CurMBB; 7956 BTB->Default = Fallthrough; 7957 7958 // If we're in the right place, emit the bit test header header right now. 7959 if (CurMBB ==SwitchMBB) { 7960 visitBitTestHeader(*BTB, SwitchMBB); 7961 BTB->Emitted = true; 7962 } 7963 break; 7964 } 7965 case CC_Range: { 7966 const Value *RHS, *LHS, *MHS; 7967 ISD::CondCode CC; 7968 if (I->Low == I->High) { 7969 // Check Cond == I->Low. 7970 CC = ISD::SETEQ; 7971 LHS = Cond; 7972 RHS=I->Low; 7973 MHS = nullptr; 7974 } else { 7975 // Check I->Low <= Cond <= I->High. 7976 CC = ISD::SETLE; 7977 LHS = I->Low; 7978 MHS = Cond; 7979 RHS = I->High; 7980 } 7981 7982 // The false weight is the sum of all unhandled cases. 7983 UnhandledWeights -= I->Weight; 7984 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7985 UnhandledWeights); 7986 7987 if (CurMBB == SwitchMBB) 7988 visitSwitchCase(CB, SwitchMBB); 7989 else 7990 SwitchCases.push_back(CB); 7991 7992 break; 7993 } 7994 } 7995 CurMBB = Fallthrough; 7996 } 7997 } 7998 7999 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8000 const SwitchWorkListItem &W, 8001 Value *Cond, 8002 MachineBasicBlock *SwitchMBB) { 8003 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8004 "Clusters not sorted?"); 8005 8006 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8007 8008 // Balance the tree based on branch weights to create a near-optimal (in terms 8009 // of search time given key frequency) binary search tree. See e.g. Kurt 8010 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8011 CaseClusterIt LastLeft = W.FirstCluster; 8012 CaseClusterIt FirstRight = W.LastCluster; 8013 uint32_t LeftWeight = LastLeft->Weight; 8014 uint32_t RightWeight = FirstRight->Weight; 8015 8016 // Move LastLeft and FirstRight towards each other from opposite directions to 8017 // find a partitioning of the clusters which balances the weight on both 8018 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8019 // taken to ensure 0-weight nodes are distributed evenly. 8020 unsigned I = 0; 8021 while (LastLeft + 1 < FirstRight) { 8022 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8023 LeftWeight += (++LastLeft)->Weight; 8024 else 8025 RightWeight += (--FirstRight)->Weight; 8026 I++; 8027 } 8028 assert(LastLeft + 1 == FirstRight); 8029 assert(LastLeft >= W.FirstCluster); 8030 assert(FirstRight <= W.LastCluster); 8031 8032 // Use the first element on the right as pivot since we will make less-than 8033 // comparisons against it. 8034 CaseClusterIt PivotCluster = FirstRight; 8035 assert(PivotCluster > W.FirstCluster); 8036 assert(PivotCluster <= W.LastCluster); 8037 8038 CaseClusterIt FirstLeft = W.FirstCluster; 8039 CaseClusterIt LastRight = W.LastCluster; 8040 8041 const ConstantInt *Pivot = PivotCluster->Low; 8042 8043 // New blocks will be inserted immediately after the current one. 8044 MachineFunction::iterator BBI = W.MBB; 8045 ++BBI; 8046 8047 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8048 // we can branch to its destination directly if it's squeezed exactly in 8049 // between the known lower bound and Pivot - 1. 8050 MachineBasicBlock *LeftMBB; 8051 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8052 FirstLeft->Low == W.GE && 8053 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8054 LeftMBB = FirstLeft->MBB; 8055 } else { 8056 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8057 FuncInfo.MF->insert(BBI, LeftMBB); 8058 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8059 // Put Cond in a virtual register to make it available from the new blocks. 8060 ExportFromCurrentBlock(Cond); 8061 } 8062 8063 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8064 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8065 // directly if RHS.High equals the current upper bound. 8066 MachineBasicBlock *RightMBB; 8067 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8068 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8069 RightMBB = FirstRight->MBB; 8070 } else { 8071 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8072 FuncInfo.MF->insert(BBI, RightMBB); 8073 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8074 // Put Cond in a virtual register to make it available from the new blocks. 8075 ExportFromCurrentBlock(Cond); 8076 } 8077 8078 // Create the CaseBlock record that will be used to lower the branch. 8079 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8080 LeftWeight, RightWeight); 8081 8082 if (W.MBB == SwitchMBB) 8083 visitSwitchCase(CB, SwitchMBB); 8084 else 8085 SwitchCases.push_back(CB); 8086 } 8087 8088 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8089 // Extract cases from the switch. 8090 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8091 CaseClusterVector Clusters; 8092 Clusters.reserve(SI.getNumCases()); 8093 for (auto I : SI.cases()) { 8094 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8095 const ConstantInt *CaseVal = I.getCaseValue(); 8096 uint32_t Weight = 8097 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8098 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8099 } 8100 8101 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8102 8103 // Cluster adjacent cases with the same destination. We do this at all 8104 // optimization levels because it's cheap to do and will make codegen faster 8105 // if there are many clusters. 8106 sortAndRangeify(Clusters); 8107 8108 if (TM.getOptLevel() != CodeGenOpt::None) { 8109 // Replace an unreachable default with the most popular destination. 8110 // FIXME: Exploit unreachable default more aggressively. 8111 bool UnreachableDefault = 8112 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8113 if (UnreachableDefault && !Clusters.empty()) { 8114 DenseMap<const BasicBlock *, unsigned> Popularity; 8115 unsigned MaxPop = 0; 8116 const BasicBlock *MaxBB = nullptr; 8117 for (auto I : SI.cases()) { 8118 const BasicBlock *BB = I.getCaseSuccessor(); 8119 if (++Popularity[BB] > MaxPop) { 8120 MaxPop = Popularity[BB]; 8121 MaxBB = BB; 8122 } 8123 } 8124 // Set new default. 8125 assert(MaxPop > 0 && MaxBB); 8126 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8127 8128 // Remove cases that were pointing to the destination that is now the 8129 // default. 8130 CaseClusterVector New; 8131 New.reserve(Clusters.size()); 8132 for (CaseCluster &CC : Clusters) { 8133 if (CC.MBB != DefaultMBB) 8134 New.push_back(CC); 8135 } 8136 Clusters = std::move(New); 8137 } 8138 } 8139 8140 // If there is only the default destination, jump there directly. 8141 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8142 if (Clusters.empty()) { 8143 SwitchMBB->addSuccessor(DefaultMBB); 8144 if (DefaultMBB != NextBlock(SwitchMBB)) { 8145 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8146 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8147 } 8148 return; 8149 } 8150 8151 findJumpTables(Clusters, &SI, DefaultMBB); 8152 findBitTestClusters(Clusters, &SI); 8153 8154 DEBUG({ 8155 dbgs() << "Case clusters: "; 8156 for (const CaseCluster &C : Clusters) { 8157 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8158 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8159 8160 C.Low->getValue().print(dbgs(), true); 8161 if (C.Low != C.High) { 8162 dbgs() << '-'; 8163 C.High->getValue().print(dbgs(), true); 8164 } 8165 dbgs() << ' '; 8166 } 8167 dbgs() << '\n'; 8168 }); 8169 8170 assert(!Clusters.empty()); 8171 SwitchWorkList WorkList; 8172 CaseClusterIt First = Clusters.begin(); 8173 CaseClusterIt Last = Clusters.end() - 1; 8174 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8175 8176 while (!WorkList.empty()) { 8177 SwitchWorkListItem W = WorkList.back(); 8178 WorkList.pop_back(); 8179 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8180 8181 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8182 // For optimized builds, lower large range as a balanced binary tree. 8183 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8184 continue; 8185 } 8186 8187 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8188 } 8189 } 8190