1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 525 526 bool Smaller = ValueVT.bitsLE(PartVT); 527 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 528 DL, PartVT, Val); 529 } 530 531 Parts[0] = Val; 532 return; 533 } 534 535 // Handle a multi-element vector. 536 EVT IntermediateVT; 537 MVT RegisterVT; 538 unsigned NumIntermediates; 539 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 540 IntermediateVT, 541 NumIntermediates, RegisterVT); 542 unsigned NumElements = ValueVT.getVectorNumElements(); 543 544 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 545 NumParts = NumRegs; // Silence a compiler warning. 546 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 547 548 // Split the vector into intermediate operands. 549 SmallVector<SDValue, 8> Ops(NumIntermediates); 550 for (unsigned i = 0; i != NumIntermediates; ++i) { 551 if (IntermediateVT.isVector()) 552 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i * (NumElements / NumIntermediates), 555 TLI.getVectorIdxTy())); 556 else 557 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 558 IntermediateVT, Val, 559 DAG.getConstant(i, TLI.getVectorIdxTy())); 560 } 561 562 // Split the intermediate operands into legal parts. 563 if (NumParts == NumIntermediates) { 564 // If the register was not expanded, promote or copy the value, 565 // as appropriate. 566 for (unsigned i = 0; i != NumParts; ++i) 567 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 568 } else if (NumParts > 0) { 569 // If the intermediate type was expanded, split each the value into 570 // legal parts. 571 assert(NumIntermediates != 0 && "division by zero"); 572 assert(NumParts % NumIntermediates == 0 && 573 "Must expand into a divisible number of parts!"); 574 unsigned Factor = NumParts / NumIntermediates; 575 for (unsigned i = 0; i != NumIntermediates; ++i) 576 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 577 } 578 } 579 580 namespace { 581 /// RegsForValue - This struct represents the registers (physical or virtual) 582 /// that a particular set of values is assigned, and the type information 583 /// about the value. The most common situation is to represent one value at a 584 /// time, but struct or array values are handled element-wise as multiple 585 /// values. The splitting of aggregates is performed recursively, so that we 586 /// never have aggregate-typed registers. The values at this point do not 587 /// necessarily have legal types, so each value may require one or more 588 /// registers of some legal type. 589 /// 590 struct RegsForValue { 591 /// ValueVTs - The value types of the values, which may not be legal, and 592 /// may need be promoted or synthesized from one or more registers. 593 /// 594 SmallVector<EVT, 4> ValueVTs; 595 596 /// RegVTs - The value types of the registers. This is the same size as 597 /// ValueVTs and it records, for each value, what the type of the assigned 598 /// register or registers are. (Individual values are never synthesized 599 /// from more than one type of register.) 600 /// 601 /// With virtual registers, the contents of RegVTs is redundant with TLI's 602 /// getRegisterType member function, however when with physical registers 603 /// it is necessary to have a separate record of the types. 604 /// 605 SmallVector<MVT, 4> RegVTs; 606 607 /// Regs - This list holds the registers assigned to the values. 608 /// Each legal or promoted value requires one register, and each 609 /// expanded value requires multiple registers. 610 /// 611 SmallVector<unsigned, 4> Regs; 612 613 RegsForValue() {} 614 615 RegsForValue(const SmallVector<unsigned, 4> ®s, 616 MVT regvt, EVT valuevt) 617 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 618 619 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 620 unsigned Reg, Type *Ty) { 621 ComputeValueVTs(tli, Ty, ValueVTs); 622 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT ValueVT = ValueVTs[Value]; 625 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// append - Add the specified values to this one. 635 void append(const RegsForValue &RHS) { 636 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 637 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 638 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 639 } 640 641 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 642 /// this value and returns the result as a ValueVTs value. This uses 643 /// Chain/Flag as the input and updates them for the output Chain/Flag. 644 /// If the Flag pointer is NULL, no flag is used. 645 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 646 SDLoc dl, 647 SDValue &Chain, SDValue *Flag, 648 const Value *V = nullptr) const; 649 650 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 651 /// specified value into the registers specified by this object. This uses 652 /// Chain/Flag as the input and updates them for the output Chain/Flag. 653 /// If the Flag pointer is NULL, no flag is used. 654 void 655 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 656 SDValue *Flag, const Value *V, 657 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 658 659 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 660 /// operand list. This adds the code marker, matching input operand index 661 /// (if applicable), and includes the number of values added into it. 662 void AddInlineAsmOperands(unsigned Kind, 663 bool HasMatching, unsigned MatchingIdx, 664 SelectionDAG &DAG, 665 std::vector<SDValue> &Ops) const; 666 }; 667 } 668 669 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 670 /// this value and returns the result as a ValueVT value. This uses 671 /// Chain/Flag as the input and updates them for the output Chain/Flag. 672 /// If the Flag pointer is NULL, no flag is used. 673 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 674 FunctionLoweringInfo &FuncInfo, 675 SDLoc dl, 676 SDValue &Chain, SDValue *Flag, 677 const Value *V) const { 678 // A Value with type {} or [0 x %t] needs no registers. 679 if (ValueVTs.empty()) 680 return SDValue(); 681 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Assemble the legal parts into the final values. 685 SmallVector<SDValue, 4> Values(ValueVTs.size()); 686 SmallVector<SDValue, 8> Parts; 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 // Copy the legal parts from the registers. 689 EVT ValueVT = ValueVTs[Value]; 690 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 691 MVT RegisterVT = RegVTs[Value]; 692 693 Parts.resize(NumRegs); 694 for (unsigned i = 0; i != NumRegs; ++i) { 695 SDValue P; 696 if (!Flag) { 697 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 698 } else { 699 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 700 *Flag = P.getValue(2); 701 } 702 703 Chain = P.getValue(1); 704 Parts[i] = P; 705 706 // If the source register was virtual and if we know something about it, 707 // add an assert node. 708 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 709 !RegisterVT.isInteger() || RegisterVT.isVector()) 710 continue; 711 712 const FunctionLoweringInfo::LiveOutInfo *LOI = 713 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 714 if (!LOI) 715 continue; 716 717 unsigned RegSize = RegisterVT.getSizeInBits(); 718 unsigned NumSignBits = LOI->NumSignBits; 719 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 720 721 if (NumZeroBits == RegSize) { 722 // The current value is a zero. 723 // Explicitly express that as it would be easier for 724 // optimizations to kick in. 725 Parts[i] = DAG.getConstant(0, RegisterVT); 726 continue; 727 } 728 729 // FIXME: We capture more information than the dag can represent. For 730 // now, just use the tightest assertzext/assertsext possible. 731 bool isSExt = true; 732 EVT FromVT(MVT::Other); 733 if (NumSignBits == RegSize) 734 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 735 else if (NumZeroBits >= RegSize-1) 736 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 737 else if (NumSignBits > RegSize-8) 738 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 739 else if (NumZeroBits >= RegSize-8) 740 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 741 else if (NumSignBits > RegSize-16) 742 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 743 else if (NumZeroBits >= RegSize-16) 744 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 745 else if (NumSignBits > RegSize-32) 746 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 747 else if (NumZeroBits >= RegSize-32) 748 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 749 else 750 continue; 751 752 // Add an assertion node. 753 assert(FromVT != MVT::Other); 754 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 755 RegisterVT, P, DAG.getValueType(FromVT)); 756 } 757 758 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 759 NumRegs, RegisterVT, ValueVT, V); 760 Part += NumRegs; 761 Parts.clear(); 762 } 763 764 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 765 } 766 767 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 768 /// specified value into the registers specified by this object. This uses 769 /// Chain/Flag as the input and updates them for the output Chain/Flag. 770 /// If the Flag pointer is NULL, no flag is used. 771 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 772 SDValue &Chain, SDValue *Flag, const Value *V, 773 ISD::NodeType PreferredExtendType) const { 774 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 775 ISD::NodeType ExtendKind = PreferredExtendType; 776 777 // Get the list of the values's legal parts. 778 unsigned NumRegs = Regs.size(); 779 SmallVector<SDValue, 8> Parts(NumRegs); 780 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 781 EVT ValueVT = ValueVTs[Value]; 782 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 783 MVT RegisterVT = RegVTs[Value]; 784 785 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 786 ExtendKind = ISD::ZERO_EXTEND; 787 788 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 789 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 790 Part += NumParts; 791 } 792 793 // Copy the parts into the registers. 794 SmallVector<SDValue, 8> Chains(NumRegs); 795 for (unsigned i = 0; i != NumRegs; ++i) { 796 SDValue Part; 797 if (!Flag) { 798 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 799 } else { 800 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 801 *Flag = Part.getValue(1); 802 } 803 804 Chains[i] = Part.getValue(0); 805 } 806 807 if (NumRegs == 1 || Flag) 808 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 809 // flagged to it. That is the CopyToReg nodes and the user are considered 810 // a single scheduling unit. If we create a TokenFactor and return it as 811 // chain, then the TokenFactor is both a predecessor (operand) of the 812 // user as well as a successor (the TF operands are flagged to the user). 813 // c1, f1 = CopyToReg 814 // c2, f2 = CopyToReg 815 // c3 = TokenFactor c1, c2 816 // ... 817 // = op c3, ..., f2 818 Chain = Chains[NumRegs-1]; 819 else 820 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 821 } 822 823 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 824 /// operand list. This adds the code marker and includes the number of 825 /// values added into it. 826 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 827 unsigned MatchingIdx, 828 SelectionDAG &DAG, 829 std::vector<SDValue> &Ops) const { 830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 831 832 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 833 if (HasMatching) 834 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 835 else if (!Regs.empty() && 836 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 837 // Put the register class of the virtual registers in the flag word. That 838 // way, later passes can recompute register class constraints for inline 839 // assembly as well as normal instructions. 840 // Don't do this for tied operands that can use the regclass information 841 // from the def. 842 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 843 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 844 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 845 } 846 847 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 848 Ops.push_back(Res); 849 850 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 851 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 852 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 853 MVT RegisterVT = RegVTs[Value]; 854 for (unsigned i = 0; i != NumRegs; ++i) { 855 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 856 unsigned TheReg = Regs[Reg++]; 857 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 858 859 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 860 // If we clobbered the stack pointer, MFI should know about it. 861 assert(DAG.getMachineFunction().getFrameInfo()-> 862 hasInlineAsmWithSPAdjust()); 863 } 864 } 865 } 866 } 867 868 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 869 const TargetLibraryInfo *li) { 870 AA = &aa; 871 GFI = gfi; 872 LibInfo = li; 873 DL = DAG.getTarget().getDataLayout(); 874 Context = DAG.getContext(); 875 LPadToCallSiteMap.clear(); 876 } 877 878 /// clear - Clear out the current SelectionDAG and the associated 879 /// state and prepare this SelectionDAGBuilder object to be used 880 /// for a new block. This doesn't clear out information about 881 /// additional blocks that are needed to complete switch lowering 882 /// or PHI node updating; that information is cleared out as it is 883 /// consumed. 884 void SelectionDAGBuilder::clear() { 885 NodeMap.clear(); 886 UnusedArgNodeMap.clear(); 887 PendingLoads.clear(); 888 PendingExports.clear(); 889 CurInst = nullptr; 890 HasTailCall = false; 891 SDNodeOrder = LowestSDNodeOrder; 892 StatepointLowering.clear(); 893 } 894 895 /// clearDanglingDebugInfo - Clear the dangling debug information 896 /// map. This function is separated from the clear so that debug 897 /// information that is dangling in a basic block can be properly 898 /// resolved in a different basic block. This allows the 899 /// SelectionDAG to resolve dangling debug information attached 900 /// to PHI nodes. 901 void SelectionDAGBuilder::clearDanglingDebugInfo() { 902 DanglingDebugInfoMap.clear(); 903 } 904 905 /// getRoot - Return the current virtual root of the Selection DAG, 906 /// flushing any PendingLoad items. This must be done before emitting 907 /// a store or any other node that may need to be ordered after any 908 /// prior load instructions. 909 /// 910 SDValue SelectionDAGBuilder::getRoot() { 911 if (PendingLoads.empty()) 912 return DAG.getRoot(); 913 914 if (PendingLoads.size() == 1) { 915 SDValue Root = PendingLoads[0]; 916 DAG.setRoot(Root); 917 PendingLoads.clear(); 918 return Root; 919 } 920 921 // Otherwise, we have to make a token factor node. 922 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 923 PendingLoads); 924 PendingLoads.clear(); 925 DAG.setRoot(Root); 926 return Root; 927 } 928 929 /// getControlRoot - Similar to getRoot, but instead of flushing all the 930 /// PendingLoad items, flush all the PendingExports items. It is necessary 931 /// to do this before emitting a terminator instruction. 932 /// 933 SDValue SelectionDAGBuilder::getControlRoot() { 934 SDValue Root = DAG.getRoot(); 935 936 if (PendingExports.empty()) 937 return Root; 938 939 // Turn all of the CopyToReg chains into one factored node. 940 if (Root.getOpcode() != ISD::EntryToken) { 941 unsigned i = 0, e = PendingExports.size(); 942 for (; i != e; ++i) { 943 assert(PendingExports[i].getNode()->getNumOperands() > 1); 944 if (PendingExports[i].getNode()->getOperand(0) == Root) 945 break; // Don't add the root if we already indirectly depend on it. 946 } 947 948 if (i == e) 949 PendingExports.push_back(Root); 950 } 951 952 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 953 PendingExports); 954 PendingExports.clear(); 955 DAG.setRoot(Root); 956 return Root; 957 } 958 959 void SelectionDAGBuilder::visit(const Instruction &I) { 960 // Set up outgoing PHI node register values before emitting the terminator. 961 if (isa<TerminatorInst>(&I)) 962 HandlePHINodesInSuccessorBlocks(I.getParent()); 963 964 ++SDNodeOrder; 965 966 CurInst = &I; 967 968 visit(I.getOpcode(), I); 969 970 if (!isa<TerminatorInst>(&I) && !HasTailCall) 971 CopyToExportRegsIfNeeded(&I); 972 973 CurInst = nullptr; 974 } 975 976 void SelectionDAGBuilder::visitPHI(const PHINode &) { 977 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 978 } 979 980 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 981 // Note: this doesn't use InstVisitor, because it has to work with 982 // ConstantExpr's in addition to instructions. 983 switch (Opcode) { 984 default: llvm_unreachable("Unknown instruction type encountered!"); 985 // Build the switch statement using the Instruction.def file. 986 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 987 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 988 #include "llvm/IR/Instruction.def" 989 } 990 } 991 992 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 993 // generate the debug data structures now that we've seen its definition. 994 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 995 SDValue Val) { 996 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 997 if (DDI.getDI()) { 998 const DbgValueInst *DI = DDI.getDI(); 999 DebugLoc dl = DDI.getdl(); 1000 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1001 MDLocalVariable *Variable = DI->getVariable(); 1002 MDExpression *Expr = DI->getExpression(); 1003 assert(Variable->isValidLocationForIntrinsic(dl) && 1004 "Expected inlined-at fields to agree"); 1005 uint64_t Offset = DI->getOffset(); 1006 // A dbg.value for an alloca is always indirect. 1007 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1008 SDDbgValue *SDV; 1009 if (Val.getNode()) { 1010 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1011 Val)) { 1012 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1013 IsIndirect, Offset, dl, DbgSDNodeOrder); 1014 DAG.AddDbgValue(SDV, Val.getNode(), false); 1015 } 1016 } else 1017 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1018 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1019 } 1020 } 1021 1022 /// getCopyFromRegs - If there was virtual register allocated for the value V 1023 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1024 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1025 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1026 SDValue res; 1027 1028 if (It != FuncInfo.ValueMap.end()) { 1029 unsigned InReg = It->second; 1030 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1031 Ty); 1032 SDValue Chain = DAG.getEntryNode(); 1033 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1034 resolveDanglingDebugInfo(V, res); 1035 } 1036 1037 return res; 1038 } 1039 1040 /// getValue - Return an SDValue for the given Value. 1041 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1042 // If we already have an SDValue for this value, use it. It's important 1043 // to do this first, so that we don't create a CopyFromReg if we already 1044 // have a regular SDValue. 1045 SDValue &N = NodeMap[V]; 1046 if (N.getNode()) return N; 1047 1048 // If there's a virtual register allocated and initialized for this 1049 // value, use it. 1050 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1051 if (copyFromReg.getNode()) { 1052 return copyFromReg; 1053 } 1054 1055 // Otherwise create a new SDValue and remember it. 1056 SDValue Val = getValueImpl(V); 1057 NodeMap[V] = Val; 1058 resolveDanglingDebugInfo(V, Val); 1059 return Val; 1060 } 1061 1062 /// getNonRegisterValue - Return an SDValue for the given Value, but 1063 /// don't look in FuncInfo.ValueMap for a virtual register. 1064 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1065 // If we already have an SDValue for this value, use it. 1066 SDValue &N = NodeMap[V]; 1067 if (N.getNode()) return N; 1068 1069 // Otherwise create a new SDValue and remember it. 1070 SDValue Val = getValueImpl(V); 1071 NodeMap[V] = Val; 1072 resolveDanglingDebugInfo(V, Val); 1073 return Val; 1074 } 1075 1076 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1077 /// Create an SDValue for the given value. 1078 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1080 1081 if (const Constant *C = dyn_cast<Constant>(V)) { 1082 EVT VT = TLI.getValueType(V->getType(), true); 1083 1084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1085 return DAG.getConstant(*CI, VT); 1086 1087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1088 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1089 1090 if (isa<ConstantPointerNull>(C)) { 1091 unsigned AS = V->getType()->getPointerAddressSpace(); 1092 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1093 } 1094 1095 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1096 return DAG.getConstantFP(*CFP, VT); 1097 1098 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1099 return DAG.getUNDEF(VT); 1100 1101 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1102 visit(CE->getOpcode(), *CE); 1103 SDValue N1 = NodeMap[V]; 1104 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1105 return N1; 1106 } 1107 1108 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1109 SmallVector<SDValue, 4> Constants; 1110 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1111 OI != OE; ++OI) { 1112 SDNode *Val = getValue(*OI).getNode(); 1113 // If the operand is an empty aggregate, there are no values. 1114 if (!Val) continue; 1115 // Add each leaf value from the operand to the Constants list 1116 // to form a flattened list of all the values. 1117 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1118 Constants.push_back(SDValue(Val, i)); 1119 } 1120 1121 return DAG.getMergeValues(Constants, getCurSDLoc()); 1122 } 1123 1124 if (const ConstantDataSequential *CDS = 1125 dyn_cast<ConstantDataSequential>(C)) { 1126 SmallVector<SDValue, 4> Ops; 1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1128 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1129 // Add each leaf value from the operand to the Constants list 1130 // to form a flattened list of all the values. 1131 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1132 Ops.push_back(SDValue(Val, i)); 1133 } 1134 1135 if (isa<ArrayType>(CDS->getType())) 1136 return DAG.getMergeValues(Ops, getCurSDLoc()); 1137 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1138 VT, Ops); 1139 } 1140 1141 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1142 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1143 "Unknown struct or array constant!"); 1144 1145 SmallVector<EVT, 4> ValueVTs; 1146 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1147 unsigned NumElts = ValueVTs.size(); 1148 if (NumElts == 0) 1149 return SDValue(); // empty struct 1150 SmallVector<SDValue, 4> Constants(NumElts); 1151 for (unsigned i = 0; i != NumElts; ++i) { 1152 EVT EltVT = ValueVTs[i]; 1153 if (isa<UndefValue>(C)) 1154 Constants[i] = DAG.getUNDEF(EltVT); 1155 else if (EltVT.isFloatingPoint()) 1156 Constants[i] = DAG.getConstantFP(0, EltVT); 1157 else 1158 Constants[i] = DAG.getConstant(0, EltVT); 1159 } 1160 1161 return DAG.getMergeValues(Constants, getCurSDLoc()); 1162 } 1163 1164 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1165 return DAG.getBlockAddress(BA, VT); 1166 1167 VectorType *VecTy = cast<VectorType>(V->getType()); 1168 unsigned NumElements = VecTy->getNumElements(); 1169 1170 // Now that we know the number and type of the elements, get that number of 1171 // elements into the Ops array based on what kind of constant it is. 1172 SmallVector<SDValue, 16> Ops; 1173 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1174 for (unsigned i = 0; i != NumElements; ++i) 1175 Ops.push_back(getValue(CV->getOperand(i))); 1176 } else { 1177 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1178 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1179 1180 SDValue Op; 1181 if (EltVT.isFloatingPoint()) 1182 Op = DAG.getConstantFP(0, EltVT); 1183 else 1184 Op = DAG.getConstant(0, EltVT); 1185 Ops.assign(NumElements, Op); 1186 } 1187 1188 // Create a BUILD_VECTOR node. 1189 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1190 } 1191 1192 // If this is a static alloca, generate it as the frameindex instead of 1193 // computation. 1194 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1195 DenseMap<const AllocaInst*, int>::iterator SI = 1196 FuncInfo.StaticAllocaMap.find(AI); 1197 if (SI != FuncInfo.StaticAllocaMap.end()) 1198 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1199 } 1200 1201 // If this is an instruction which fast-isel has deferred, select it now. 1202 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1203 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1204 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1205 SDValue Chain = DAG.getEntryNode(); 1206 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1207 } 1208 1209 llvm_unreachable("Can't get register for value!"); 1210 } 1211 1212 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1214 SDValue Chain = getControlRoot(); 1215 SmallVector<ISD::OutputArg, 8> Outs; 1216 SmallVector<SDValue, 8> OutVals; 1217 1218 if (!FuncInfo.CanLowerReturn) { 1219 unsigned DemoteReg = FuncInfo.DemoteRegister; 1220 const Function *F = I.getParent()->getParent(); 1221 1222 // Emit a store of the return value through the virtual register. 1223 // Leave Outs empty so that LowerReturn won't try to load return 1224 // registers the usual way. 1225 SmallVector<EVT, 1> PtrValueVTs; 1226 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1227 PtrValueVTs); 1228 1229 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 1232 SmallVector<EVT, 4> ValueVTs; 1233 SmallVector<uint64_t, 4> Offsets; 1234 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1235 unsigned NumValues = ValueVTs.size(); 1236 1237 SmallVector<SDValue, 4> Chains(NumValues); 1238 for (unsigned i = 0; i != NumValues; ++i) { 1239 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1240 RetPtr.getValueType(), RetPtr, 1241 DAG.getIntPtrConstant(Offsets[i])); 1242 Chains[i] = 1243 DAG.getStore(Chain, getCurSDLoc(), 1244 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1245 // FIXME: better loc info would be nice. 1246 Add, MachinePointerInfo(), false, false, 0); 1247 } 1248 1249 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1250 MVT::Other, Chains); 1251 } else if (I.getNumOperands() != 0) { 1252 SmallVector<EVT, 4> ValueVTs; 1253 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1254 unsigned NumValues = ValueVTs.size(); 1255 if (NumValues) { 1256 SDValue RetOp = getValue(I.getOperand(0)); 1257 1258 const Function *F = I.getParent()->getParent(); 1259 1260 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1261 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1262 Attribute::SExt)) 1263 ExtendKind = ISD::SIGN_EXTEND; 1264 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1265 Attribute::ZExt)) 1266 ExtendKind = ISD::ZERO_EXTEND; 1267 1268 LLVMContext &Context = F->getContext(); 1269 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1270 Attribute::InReg); 1271 1272 for (unsigned j = 0; j != NumValues; ++j) { 1273 EVT VT = ValueVTs[j]; 1274 1275 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1276 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1277 1278 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1279 MVT PartVT = TLI.getRegisterType(Context, VT); 1280 SmallVector<SDValue, 4> Parts(NumParts); 1281 getCopyToParts(DAG, getCurSDLoc(), 1282 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1283 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1284 1285 // 'inreg' on function refers to return value 1286 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1287 if (RetInReg) 1288 Flags.setInReg(); 1289 1290 // Propagate extension type if any 1291 if (ExtendKind == ISD::SIGN_EXTEND) 1292 Flags.setSExt(); 1293 else if (ExtendKind == ISD::ZERO_EXTEND) 1294 Flags.setZExt(); 1295 1296 for (unsigned i = 0; i < NumParts; ++i) { 1297 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1298 VT, /*isfixed=*/true, 0, 0)); 1299 OutVals.push_back(Parts[i]); 1300 } 1301 } 1302 } 1303 } 1304 1305 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1306 CallingConv::ID CallConv = 1307 DAG.getMachineFunction().getFunction()->getCallingConv(); 1308 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1309 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1310 1311 // Verify that the target's LowerReturn behaved as expected. 1312 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1313 "LowerReturn didn't return a valid chain!"); 1314 1315 // Update the DAG with the new chain value resulting from return lowering. 1316 DAG.setRoot(Chain); 1317 } 1318 1319 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1320 /// created for it, emit nodes to copy the value into the virtual 1321 /// registers. 1322 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1323 // Skip empty types 1324 if (V->getType()->isEmptyTy()) 1325 return; 1326 1327 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1328 if (VMI != FuncInfo.ValueMap.end()) { 1329 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1330 CopyValueToVirtualRegister(V, VMI->second); 1331 } 1332 } 1333 1334 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1335 /// the current basic block, add it to ValueMap now so that we'll get a 1336 /// CopyTo/FromReg. 1337 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1338 // No need to export constants. 1339 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1340 1341 // Already exported? 1342 if (FuncInfo.isExportedInst(V)) return; 1343 1344 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1345 CopyValueToVirtualRegister(V, Reg); 1346 } 1347 1348 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1349 const BasicBlock *FromBB) { 1350 // The operands of the setcc have to be in this block. We don't know 1351 // how to export them from some other block. 1352 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1353 // Can export from current BB. 1354 if (VI->getParent() == FromBB) 1355 return true; 1356 1357 // Is already exported, noop. 1358 return FuncInfo.isExportedInst(V); 1359 } 1360 1361 // If this is an argument, we can export it if the BB is the entry block or 1362 // if it is already exported. 1363 if (isa<Argument>(V)) { 1364 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1365 return true; 1366 1367 // Otherwise, can only export this if it is already exported. 1368 return FuncInfo.isExportedInst(V); 1369 } 1370 1371 // Otherwise, constants can always be exported. 1372 return true; 1373 } 1374 1375 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1376 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1377 const MachineBasicBlock *Dst) const { 1378 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1379 if (!BPI) 1380 return 0; 1381 const BasicBlock *SrcBB = Src->getBasicBlock(); 1382 const BasicBlock *DstBB = Dst->getBasicBlock(); 1383 return BPI->getEdgeWeight(SrcBB, DstBB); 1384 } 1385 1386 void SelectionDAGBuilder:: 1387 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1388 uint32_t Weight /* = 0 */) { 1389 if (!Weight) 1390 Weight = getEdgeWeight(Src, Dst); 1391 Src->addSuccessor(Dst, Weight); 1392 } 1393 1394 1395 static bool InBlock(const Value *V, const BasicBlock *BB) { 1396 if (const Instruction *I = dyn_cast<Instruction>(V)) 1397 return I->getParent() == BB; 1398 return true; 1399 } 1400 1401 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1402 /// This function emits a branch and is used at the leaves of an OR or an 1403 /// AND operator tree. 1404 /// 1405 void 1406 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1407 MachineBasicBlock *TBB, 1408 MachineBasicBlock *FBB, 1409 MachineBasicBlock *CurBB, 1410 MachineBasicBlock *SwitchBB, 1411 uint32_t TWeight, 1412 uint32_t FWeight) { 1413 const BasicBlock *BB = CurBB->getBasicBlock(); 1414 1415 // If the leaf of the tree is a comparison, merge the condition into 1416 // the caseblock. 1417 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1418 // The operands of the cmp have to be in this block. We don't know 1419 // how to export them from some other block. If this is the first block 1420 // of the sequence, no exporting is needed. 1421 if (CurBB == SwitchBB || 1422 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1423 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1424 ISD::CondCode Condition; 1425 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1426 Condition = getICmpCondCode(IC->getPredicate()); 1427 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1428 Condition = getFCmpCondCode(FC->getPredicate()); 1429 if (TM.Options.NoNaNsFPMath) 1430 Condition = getFCmpCodeWithoutNaN(Condition); 1431 } else { 1432 (void)Condition; // silence warning. 1433 llvm_unreachable("Unknown compare instruction"); 1434 } 1435 1436 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1437 TBB, FBB, CurBB, TWeight, FWeight); 1438 SwitchCases.push_back(CB); 1439 return; 1440 } 1441 } 1442 1443 // Create a CaseBlock record representing this branch. 1444 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1445 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 } 1448 1449 /// Scale down both weights to fit into uint32_t. 1450 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1451 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1452 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1453 NewTrue = NewTrue / Scale; 1454 NewFalse = NewFalse / Scale; 1455 } 1456 1457 /// FindMergedConditions - If Cond is an expression like 1458 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1459 MachineBasicBlock *TBB, 1460 MachineBasicBlock *FBB, 1461 MachineBasicBlock *CurBB, 1462 MachineBasicBlock *SwitchBB, 1463 unsigned Opc, uint32_t TWeight, 1464 uint32_t FWeight) { 1465 // If this node is not part of the or/and tree, emit it as a branch. 1466 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1467 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1468 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1469 BOp->getParent() != CurBB->getBasicBlock() || 1470 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1471 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1472 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1473 TWeight, FWeight); 1474 return; 1475 } 1476 1477 // Create TmpBB after CurBB. 1478 MachineFunction::iterator BBI = CurBB; 1479 MachineFunction &MF = DAG.getMachineFunction(); 1480 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1481 CurBB->getParent()->insert(++BBI, TmpBB); 1482 1483 if (Opc == Instruction::Or) { 1484 // Codegen X | Y as: 1485 // BB1: 1486 // jmp_if_X TBB 1487 // jmp TmpBB 1488 // TmpBB: 1489 // jmp_if_Y TBB 1490 // jmp FBB 1491 // 1492 1493 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1494 // The requirement is that 1495 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1496 // = TrueProb for orignal BB. 1497 // Assuming the orignal weights are A and B, one choice is to set BB1's 1498 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1499 // assumes that 1500 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1501 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1502 // TmpBB, but the math is more complicated. 1503 1504 uint64_t NewTrueWeight = TWeight; 1505 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1506 ScaleWeights(NewTrueWeight, NewFalseWeight); 1507 // Emit the LHS condition. 1508 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1509 NewTrueWeight, NewFalseWeight); 1510 1511 NewTrueWeight = TWeight; 1512 NewFalseWeight = 2 * (uint64_t)FWeight; 1513 ScaleWeights(NewTrueWeight, NewFalseWeight); 1514 // Emit the RHS condition into TmpBB. 1515 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1516 NewTrueWeight, NewFalseWeight); 1517 } else { 1518 assert(Opc == Instruction::And && "Unknown merge op!"); 1519 // Codegen X & Y as: 1520 // BB1: 1521 // jmp_if_X TmpBB 1522 // jmp FBB 1523 // TmpBB: 1524 // jmp_if_Y TBB 1525 // jmp FBB 1526 // 1527 // This requires creation of TmpBB after CurBB. 1528 1529 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1530 // The requirement is that 1531 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1532 // = FalseProb for orignal BB. 1533 // Assuming the orignal weights are A and B, one choice is to set BB1's 1534 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1535 // assumes that 1536 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1537 1538 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1539 uint64_t NewFalseWeight = FWeight; 1540 ScaleWeights(NewTrueWeight, NewFalseWeight); 1541 // Emit the LHS condition. 1542 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1543 NewTrueWeight, NewFalseWeight); 1544 1545 NewTrueWeight = 2 * (uint64_t)TWeight; 1546 NewFalseWeight = FWeight; 1547 ScaleWeights(NewTrueWeight, NewFalseWeight); 1548 // Emit the RHS condition into TmpBB. 1549 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1550 NewTrueWeight, NewFalseWeight); 1551 } 1552 } 1553 1554 /// If the set of cases should be emitted as a series of branches, return true. 1555 /// If we should emit this as a bunch of and/or'd together conditions, return 1556 /// false. 1557 bool 1558 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1559 if (Cases.size() != 2) return true; 1560 1561 // If this is two comparisons of the same values or'd or and'd together, they 1562 // will get folded into a single comparison, so don't emit two blocks. 1563 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1564 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1565 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1566 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1567 return false; 1568 } 1569 1570 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1571 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1572 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1573 Cases[0].CC == Cases[1].CC && 1574 isa<Constant>(Cases[0].CmpRHS) && 1575 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1576 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1577 return false; 1578 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1579 return false; 1580 } 1581 1582 return true; 1583 } 1584 1585 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1586 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1587 1588 // Update machine-CFG edges. 1589 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1590 1591 if (I.isUnconditional()) { 1592 // Update machine-CFG edges. 1593 BrMBB->addSuccessor(Succ0MBB); 1594 1595 // If this is not a fall-through branch or optimizations are switched off, 1596 // emit the branch. 1597 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1599 MVT::Other, getControlRoot(), 1600 DAG.getBasicBlock(Succ0MBB))); 1601 1602 return; 1603 } 1604 1605 // If this condition is one of the special cases we handle, do special stuff 1606 // now. 1607 const Value *CondVal = I.getCondition(); 1608 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1609 1610 // If this is a series of conditions that are or'd or and'd together, emit 1611 // this as a sequence of branches instead of setcc's with and/or operations. 1612 // As long as jumps are not expensive, this should improve performance. 1613 // For example, instead of something like: 1614 // cmp A, B 1615 // C = seteq 1616 // cmp D, E 1617 // F = setle 1618 // or C, F 1619 // jnz foo 1620 // Emit: 1621 // cmp A, B 1622 // je foo 1623 // cmp D, E 1624 // jle foo 1625 // 1626 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1627 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1628 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1629 BOp->getOpcode() == Instruction::Or)) { 1630 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1631 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1632 getEdgeWeight(BrMBB, Succ1MBB)); 1633 // If the compares in later blocks need to use values not currently 1634 // exported from this block, export them now. This block should always 1635 // be the first entry. 1636 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1637 1638 // Allow some cases to be rejected. 1639 if (ShouldEmitAsBranches(SwitchCases)) { 1640 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1641 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1642 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1643 } 1644 1645 // Emit the branch for this block. 1646 visitSwitchCase(SwitchCases[0], BrMBB); 1647 SwitchCases.erase(SwitchCases.begin()); 1648 return; 1649 } 1650 1651 // Okay, we decided not to do this, remove any inserted MBB's and clear 1652 // SwitchCases. 1653 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1654 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1655 1656 SwitchCases.clear(); 1657 } 1658 } 1659 1660 // Create a CaseBlock record representing this branch. 1661 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1662 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1663 1664 // Use visitSwitchCase to actually insert the fast branch sequence for this 1665 // cond branch. 1666 visitSwitchCase(CB, BrMBB); 1667 } 1668 1669 /// visitSwitchCase - Emits the necessary code to represent a single node in 1670 /// the binary search tree resulting from lowering a switch instruction. 1671 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1672 MachineBasicBlock *SwitchBB) { 1673 SDValue Cond; 1674 SDValue CondLHS = getValue(CB.CmpLHS); 1675 SDLoc dl = getCurSDLoc(); 1676 1677 // Build the setcc now. 1678 if (!CB.CmpMHS) { 1679 // Fold "(X == true)" to X and "(X == false)" to !X to 1680 // handle common cases produced by branch lowering. 1681 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1682 CB.CC == ISD::SETEQ) 1683 Cond = CondLHS; 1684 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1685 CB.CC == ISD::SETEQ) { 1686 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1687 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1688 } else 1689 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1690 } else { 1691 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1692 1693 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1694 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1695 1696 SDValue CmpOp = getValue(CB.CmpMHS); 1697 EVT VT = CmpOp.getValueType(); 1698 1699 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1700 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1701 ISD::SETLE); 1702 } else { 1703 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1704 VT, CmpOp, DAG.getConstant(Low, VT)); 1705 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1706 DAG.getConstant(High-Low, VT), ISD::SETULE); 1707 } 1708 } 1709 1710 // Update successor info 1711 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1712 // TrueBB and FalseBB are always different unless the incoming IR is 1713 // degenerate. This only happens when running llc on weird IR. 1714 if (CB.TrueBB != CB.FalseBB) 1715 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1716 1717 // If the lhs block is the next block, invert the condition so that we can 1718 // fall through to the lhs instead of the rhs block. 1719 if (CB.TrueBB == NextBlock(SwitchBB)) { 1720 std::swap(CB.TrueBB, CB.FalseBB); 1721 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1722 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1723 } 1724 1725 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1726 MVT::Other, getControlRoot(), Cond, 1727 DAG.getBasicBlock(CB.TrueBB)); 1728 1729 // Insert the false branch. Do this even if it's a fall through branch, 1730 // this makes it easier to do DAG optimizations which require inverting 1731 // the branch condition. 1732 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1733 DAG.getBasicBlock(CB.FalseBB)); 1734 1735 DAG.setRoot(BrCond); 1736 } 1737 1738 /// visitJumpTable - Emit JumpTable node in the current MBB 1739 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1740 // Emit the code for the jump table 1741 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1742 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1743 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1744 JT.Reg, PTy); 1745 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1746 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1747 MVT::Other, Index.getValue(1), 1748 Table, Index); 1749 DAG.setRoot(BrJumpTable); 1750 } 1751 1752 /// visitJumpTableHeader - This function emits necessary code to produce index 1753 /// in the JumpTable from switch case. 1754 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1755 JumpTableHeader &JTH, 1756 MachineBasicBlock *SwitchBB) { 1757 // Subtract the lowest switch case value from the value being switched on and 1758 // conditional branch to default mbb if the result is greater than the 1759 // difference between smallest and largest cases. 1760 SDValue SwitchOp = getValue(JTH.SValue); 1761 EVT VT = SwitchOp.getValueType(); 1762 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1763 DAG.getConstant(JTH.First, VT)); 1764 1765 // The SDNode we just created, which holds the value being switched on minus 1766 // the smallest case value, needs to be copied to a virtual register so it 1767 // can be used as an index into the jump table in a subsequent basic block. 1768 // This value may be smaller or larger than the target's pointer type, and 1769 // therefore require extension or truncating. 1770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1771 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1772 1773 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1774 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1775 JumpTableReg, SwitchOp); 1776 JT.Reg = JumpTableReg; 1777 1778 // Emit the range check for the jump table, and branch to the default block 1779 // for the switch statement if the value being switched on exceeds the largest 1780 // case in the switch. 1781 SDValue CMP = 1782 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1783 Sub.getValueType()), 1784 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1785 1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1787 MVT::Other, CopyTo, CMP, 1788 DAG.getBasicBlock(JT.Default)); 1789 1790 // Avoid emitting unnecessary branches to the next block. 1791 if (JT.MBB != NextBlock(SwitchBB)) 1792 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1793 DAG.getBasicBlock(JT.MBB)); 1794 1795 DAG.setRoot(BrCond); 1796 } 1797 1798 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1799 /// tail spliced into a stack protector check success bb. 1800 /// 1801 /// For a high level explanation of how this fits into the stack protector 1802 /// generation see the comment on the declaration of class 1803 /// StackProtectorDescriptor. 1804 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1805 MachineBasicBlock *ParentBB) { 1806 1807 // First create the loads to the guard/stack slot for the comparison. 1808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1809 EVT PtrTy = TLI.getPointerTy(); 1810 1811 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1812 int FI = MFI->getStackProtectorIndex(); 1813 1814 const Value *IRGuard = SPD.getGuard(); 1815 SDValue GuardPtr = getValue(IRGuard); 1816 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1817 1818 unsigned Align = 1819 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1820 1821 SDValue Guard; 1822 1823 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1824 // guard value from the virtual register holding the value. Otherwise, emit a 1825 // volatile load to retrieve the stack guard value. 1826 unsigned GuardReg = SPD.getGuardReg(); 1827 1828 if (GuardReg && TLI.useLoadStackGuardNode()) 1829 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1830 PtrTy); 1831 else 1832 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 GuardPtr, MachinePointerInfo(IRGuard, 0), 1834 true, false, false, Align); 1835 1836 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1837 StackSlotPtr, 1838 MachinePointerInfo::getFixedStack(FI), 1839 true, false, false, Align); 1840 1841 // Perform the comparison via a subtract/getsetcc. 1842 EVT VT = Guard.getValueType(); 1843 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1844 1845 SDValue Cmp = 1846 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1847 Sub.getValueType()), 1848 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1849 1850 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1851 // branch to failure MBB. 1852 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1853 MVT::Other, StackSlot.getOperand(0), 1854 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1855 // Otherwise branch to success MBB. 1856 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1857 MVT::Other, BrCond, 1858 DAG.getBasicBlock(SPD.getSuccessMBB())); 1859 1860 DAG.setRoot(Br); 1861 } 1862 1863 /// Codegen the failure basic block for a stack protector check. 1864 /// 1865 /// A failure stack protector machine basic block consists simply of a call to 1866 /// __stack_chk_fail(). 1867 /// 1868 /// For a high level explanation of how this fits into the stack protector 1869 /// generation see the comment on the declaration of class 1870 /// StackProtectorDescriptor. 1871 void 1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1874 SDValue Chain = 1875 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1876 nullptr, 0, false, getCurSDLoc(), false, false).second; 1877 DAG.setRoot(Chain); 1878 } 1879 1880 /// visitBitTestHeader - This function emits necessary code to produce value 1881 /// suitable for "bit tests" 1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1883 MachineBasicBlock *SwitchBB) { 1884 // Subtract the minimum value 1885 SDValue SwitchOp = getValue(B.SValue); 1886 EVT VT = SwitchOp.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1888 DAG.getConstant(B.First, VT)); 1889 1890 // Check range 1891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1892 SDValue RangeCmp = 1893 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1896 1897 // Determine the type of the test operands. 1898 bool UsePtrType = false; 1899 if (!TLI.isTypeLegal(VT)) 1900 UsePtrType = true; 1901 else { 1902 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1903 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1904 // Switch table case range are encoded into series of masks. 1905 // Just use pointer type, it's guaranteed to fit. 1906 UsePtrType = true; 1907 break; 1908 } 1909 } 1910 if (UsePtrType) { 1911 VT = TLI.getPointerTy(); 1912 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1913 } 1914 1915 B.RegVT = VT.getSimpleVT(); 1916 B.Reg = FuncInfo.CreateReg(B.RegVT); 1917 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1918 B.Reg, Sub); 1919 1920 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1921 1922 addSuccessorWithWeight(SwitchBB, B.Default); 1923 addSuccessorWithWeight(SwitchBB, MBB); 1924 1925 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1926 MVT::Other, CopyTo, RangeCmp, 1927 DAG.getBasicBlock(B.Default)); 1928 1929 // Avoid emitting unnecessary branches to the next block. 1930 if (MBB != NextBlock(SwitchBB)) 1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrRange, 1932 DAG.getBasicBlock(MBB)); 1933 1934 DAG.setRoot(BrRange); 1935 } 1936 1937 /// visitBitTestCase - this function produces one "bit test" 1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1939 MachineBasicBlock* NextMBB, 1940 uint32_t BranchWeightToNext, 1941 unsigned Reg, 1942 BitTestCase &B, 1943 MachineBasicBlock *SwitchBB) { 1944 MVT VT = BB.RegVT; 1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 Reg, VT); 1947 SDValue Cmp; 1948 unsigned PopCount = countPopulation(B.Mask); 1949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1950 if (PopCount == 1) { 1951 // Testing for a single bit; just compare the shift count with what it 1952 // would need to be to shift a 1 bit in that position. 1953 Cmp = DAG.getSetCC( 1954 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1955 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1956 } else if (PopCount == BB.Range) { 1957 // There is only one zero bit in the range, test for it directly. 1958 Cmp = DAG.getSetCC( 1959 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1960 DAG.getConstant(countTrailingOnes(B.Mask), VT), ISD::SETNE); 1961 } else { 1962 // Make desired shift 1963 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1964 DAG.getConstant(1, VT), ShiftOp); 1965 1966 // Emit bit tests and jumps 1967 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1968 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1969 Cmp = DAG.getSetCC(getCurSDLoc(), 1970 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1971 DAG.getConstant(0, VT), ISD::SETNE); 1972 } 1973 1974 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1975 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1976 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1977 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1978 1979 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1980 MVT::Other, getControlRoot(), 1981 Cmp, DAG.getBasicBlock(B.TargetBB)); 1982 1983 // Avoid emitting unnecessary branches to the next block. 1984 if (NextMBB != NextBlock(SwitchBB)) 1985 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1986 DAG.getBasicBlock(NextMBB)); 1987 1988 DAG.setRoot(BrAnd); 1989 } 1990 1991 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1992 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1993 1994 // Retrieve successors. 1995 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1996 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1997 1998 const Value *Callee(I.getCalledValue()); 1999 const Function *Fn = dyn_cast<Function>(Callee); 2000 if (isa<InlineAsm>(Callee)) 2001 visitInlineAsm(&I); 2002 else if (Fn && Fn->isIntrinsic()) { 2003 switch (Fn->getIntrinsicID()) { 2004 default: 2005 llvm_unreachable("Cannot invoke this intrinsic"); 2006 case Intrinsic::donothing: 2007 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2008 break; 2009 case Intrinsic::experimental_patchpoint_void: 2010 case Intrinsic::experimental_patchpoint_i64: 2011 visitPatchpoint(&I, LandingPad); 2012 break; 2013 case Intrinsic::experimental_gc_statepoint: 2014 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2015 break; 2016 } 2017 } else 2018 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2019 2020 // If the value of the invoke is used outside of its defining block, make it 2021 // available as a virtual register. 2022 // We already took care of the exported value for the statepoint instruction 2023 // during call to the LowerStatepoint. 2024 if (!isStatepoint(I)) { 2025 CopyToExportRegsIfNeeded(&I); 2026 } 2027 2028 // Update successor info 2029 addSuccessorWithWeight(InvokeMBB, Return); 2030 addSuccessorWithWeight(InvokeMBB, LandingPad); 2031 2032 // Drop into normal successor. 2033 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2034 MVT::Other, getControlRoot(), 2035 DAG.getBasicBlock(Return))); 2036 } 2037 2038 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2039 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2040 } 2041 2042 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2043 assert(FuncInfo.MBB->isLandingPad() && 2044 "Call to landingpad not in landing pad!"); 2045 2046 MachineBasicBlock *MBB = FuncInfo.MBB; 2047 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2048 AddLandingPadInfo(LP, MMI, MBB); 2049 2050 // If there aren't registers to copy the values into (e.g., during SjLj 2051 // exceptions), then don't bother to create these DAG nodes. 2052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2053 if (TLI.getExceptionPointerRegister() == 0 && 2054 TLI.getExceptionSelectorRegister() == 0) 2055 return; 2056 2057 SmallVector<EVT, 2> ValueVTs; 2058 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2059 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2060 2061 // Get the two live-in registers as SDValues. The physregs have already been 2062 // copied into virtual registers. 2063 SDValue Ops[2]; 2064 if (FuncInfo.ExceptionPointerVirtReg) { 2065 Ops[0] = DAG.getZExtOrTrunc( 2066 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2067 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2068 getCurSDLoc(), ValueVTs[0]); 2069 } else { 2070 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2071 } 2072 Ops[1] = DAG.getZExtOrTrunc( 2073 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2074 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2075 getCurSDLoc(), ValueVTs[1]); 2076 2077 // Merge into one. 2078 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2079 DAG.getVTList(ValueVTs), Ops); 2080 setValue(&LP, Res); 2081 } 2082 2083 unsigned 2084 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2085 MachineBasicBlock *LPadBB) { 2086 SDValue Chain = getControlRoot(); 2087 2088 // Get the typeid that we will dispatch on later. 2089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2090 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2091 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2092 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2093 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2094 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2095 2096 // Branch to the main landing pad block. 2097 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2098 ClauseMBB->addSuccessor(LPadBB); 2099 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2100 DAG.getBasicBlock(LPadBB))); 2101 return VReg; 2102 } 2103 2104 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2105 #ifndef NDEBUG 2106 for (const CaseCluster &CC : Clusters) 2107 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2108 #endif 2109 2110 std::sort(Clusters.begin(), Clusters.end(), 2111 [](const CaseCluster &a, const CaseCluster &b) { 2112 return a.Low->getValue().slt(b.Low->getValue()); 2113 }); 2114 2115 // Merge adjacent clusters with the same destination. 2116 const unsigned N = Clusters.size(); 2117 unsigned DstIndex = 0; 2118 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2119 CaseCluster &CC = Clusters[SrcIndex]; 2120 const ConstantInt *CaseVal = CC.Low; 2121 MachineBasicBlock *Succ = CC.MBB; 2122 2123 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2124 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2125 // If this case has the same successor and is a neighbour, merge it into 2126 // the previous cluster. 2127 Clusters[DstIndex - 1].High = CaseVal; 2128 Clusters[DstIndex - 1].Weight += CC.Weight; 2129 } else { 2130 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2131 sizeof(Clusters[SrcIndex])); 2132 } 2133 } 2134 Clusters.resize(DstIndex); 2135 } 2136 2137 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2138 MachineBasicBlock *Last) { 2139 // Update JTCases. 2140 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2141 if (JTCases[i].first.HeaderBB == First) 2142 JTCases[i].first.HeaderBB = Last; 2143 2144 // Update BitTestCases. 2145 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2146 if (BitTestCases[i].Parent == First) 2147 BitTestCases[i].Parent = Last; 2148 } 2149 2150 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2151 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2152 2153 // Update machine-CFG edges with unique successors. 2154 SmallSet<BasicBlock*, 32> Done; 2155 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2156 BasicBlock *BB = I.getSuccessor(i); 2157 bool Inserted = Done.insert(BB).second; 2158 if (!Inserted) 2159 continue; 2160 2161 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2162 addSuccessorWithWeight(IndirectBrMBB, Succ); 2163 } 2164 2165 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2166 MVT::Other, getControlRoot(), 2167 getValue(I.getAddress()))); 2168 } 2169 2170 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2171 if (DAG.getTarget().Options.TrapUnreachable) 2172 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2173 } 2174 2175 void SelectionDAGBuilder::visitFSub(const User &I) { 2176 // -0.0 - X --> fneg 2177 Type *Ty = I.getType(); 2178 if (isa<Constant>(I.getOperand(0)) && 2179 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2180 SDValue Op2 = getValue(I.getOperand(1)); 2181 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2182 Op2.getValueType(), Op2)); 2183 return; 2184 } 2185 2186 visitBinary(I, ISD::FSUB); 2187 } 2188 2189 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2190 SDValue Op1 = getValue(I.getOperand(0)); 2191 SDValue Op2 = getValue(I.getOperand(1)); 2192 2193 bool nuw = false; 2194 bool nsw = false; 2195 bool exact = false; 2196 if (const OverflowingBinaryOperator *OFBinOp = 2197 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2198 nuw = OFBinOp->hasNoUnsignedWrap(); 2199 nsw = OFBinOp->hasNoSignedWrap(); 2200 } 2201 if (const PossiblyExactOperator *ExactOp = 2202 dyn_cast<const PossiblyExactOperator>(&I)) 2203 exact = ExactOp->isExact(); 2204 2205 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2206 Op1, Op2, nuw, nsw, exact); 2207 setValue(&I, BinNodeValue); 2208 } 2209 2210 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2211 SDValue Op1 = getValue(I.getOperand(0)); 2212 SDValue Op2 = getValue(I.getOperand(1)); 2213 2214 EVT ShiftTy = 2215 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2216 2217 // Coerce the shift amount to the right type if we can. 2218 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2219 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2220 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2221 SDLoc DL = getCurSDLoc(); 2222 2223 // If the operand is smaller than the shift count type, promote it. 2224 if (ShiftSize > Op2Size) 2225 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2226 2227 // If the operand is larger than the shift count type but the shift 2228 // count type has enough bits to represent any shift value, truncate 2229 // it now. This is a common case and it exposes the truncate to 2230 // optimization early. 2231 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2232 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2233 // Otherwise we'll need to temporarily settle for some other convenient 2234 // type. Type legalization will make adjustments once the shiftee is split. 2235 else 2236 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2237 } 2238 2239 bool nuw = false; 2240 bool nsw = false; 2241 bool exact = false; 2242 2243 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2244 2245 if (const OverflowingBinaryOperator *OFBinOp = 2246 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2247 nuw = OFBinOp->hasNoUnsignedWrap(); 2248 nsw = OFBinOp->hasNoSignedWrap(); 2249 } 2250 if (const PossiblyExactOperator *ExactOp = 2251 dyn_cast<const PossiblyExactOperator>(&I)) 2252 exact = ExactOp->isExact(); 2253 } 2254 2255 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2256 nuw, nsw, exact); 2257 setValue(&I, Res); 2258 } 2259 2260 void SelectionDAGBuilder::visitSDiv(const User &I) { 2261 SDValue Op1 = getValue(I.getOperand(0)); 2262 SDValue Op2 = getValue(I.getOperand(1)); 2263 2264 // Turn exact SDivs into multiplications. 2265 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2266 // exact bit. 2267 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2268 !isa<ConstantSDNode>(Op1) && 2269 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2270 setValue(&I, DAG.getTargetLoweringInfo() 2271 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2272 else 2273 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2274 Op1, Op2)); 2275 } 2276 2277 void SelectionDAGBuilder::visitICmp(const User &I) { 2278 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2279 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2280 predicate = IC->getPredicate(); 2281 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2282 predicate = ICmpInst::Predicate(IC->getPredicate()); 2283 SDValue Op1 = getValue(I.getOperand(0)); 2284 SDValue Op2 = getValue(I.getOperand(1)); 2285 ISD::CondCode Opcode = getICmpCondCode(predicate); 2286 2287 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2288 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2289 } 2290 2291 void SelectionDAGBuilder::visitFCmp(const User &I) { 2292 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2293 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2294 predicate = FC->getPredicate(); 2295 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2296 predicate = FCmpInst::Predicate(FC->getPredicate()); 2297 SDValue Op1 = getValue(I.getOperand(0)); 2298 SDValue Op2 = getValue(I.getOperand(1)); 2299 ISD::CondCode Condition = getFCmpCondCode(predicate); 2300 if (TM.Options.NoNaNsFPMath) 2301 Condition = getFCmpCodeWithoutNaN(Condition); 2302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2303 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2304 } 2305 2306 void SelectionDAGBuilder::visitSelect(const User &I) { 2307 SmallVector<EVT, 4> ValueVTs; 2308 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2309 unsigned NumValues = ValueVTs.size(); 2310 if (NumValues == 0) return; 2311 2312 SmallVector<SDValue, 4> Values(NumValues); 2313 SDValue Cond = getValue(I.getOperand(0)); 2314 SDValue TrueVal = getValue(I.getOperand(1)); 2315 SDValue FalseVal = getValue(I.getOperand(2)); 2316 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2317 ISD::VSELECT : ISD::SELECT; 2318 2319 for (unsigned i = 0; i != NumValues; ++i) 2320 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2321 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2322 Cond, 2323 SDValue(TrueVal.getNode(), 2324 TrueVal.getResNo() + i), 2325 SDValue(FalseVal.getNode(), 2326 FalseVal.getResNo() + i)); 2327 2328 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2329 DAG.getVTList(ValueVTs), Values)); 2330 } 2331 2332 void SelectionDAGBuilder::visitTrunc(const User &I) { 2333 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2334 SDValue N = getValue(I.getOperand(0)); 2335 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2336 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2337 } 2338 2339 void SelectionDAGBuilder::visitZExt(const User &I) { 2340 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2341 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2342 SDValue N = getValue(I.getOperand(0)); 2343 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2344 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2345 } 2346 2347 void SelectionDAGBuilder::visitSExt(const User &I) { 2348 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2349 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2350 SDValue N = getValue(I.getOperand(0)); 2351 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2352 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2353 } 2354 2355 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2356 // FPTrunc is never a no-op cast, no need to check 2357 SDValue N = getValue(I.getOperand(0)); 2358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2359 EVT DestVT = TLI.getValueType(I.getType()); 2360 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2361 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2362 } 2363 2364 void SelectionDAGBuilder::visitFPExt(const User &I) { 2365 // FPExt is never a no-op cast, no need to check 2366 SDValue N = getValue(I.getOperand(0)); 2367 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2368 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2369 } 2370 2371 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2372 // FPToUI is never a no-op cast, no need to check 2373 SDValue N = getValue(I.getOperand(0)); 2374 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2375 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2376 } 2377 2378 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2379 // FPToSI is never a no-op cast, no need to check 2380 SDValue N = getValue(I.getOperand(0)); 2381 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2382 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2383 } 2384 2385 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2386 // UIToFP is never a no-op cast, no need to check 2387 SDValue N = getValue(I.getOperand(0)); 2388 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2389 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2390 } 2391 2392 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2393 // SIToFP is never a no-op cast, no need to check 2394 SDValue N = getValue(I.getOperand(0)); 2395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2396 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2397 } 2398 2399 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2400 // What to do depends on the size of the integer and the size of the pointer. 2401 // We can either truncate, zero extend, or no-op, accordingly. 2402 SDValue N = getValue(I.getOperand(0)); 2403 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2404 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2405 } 2406 2407 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2408 // What to do depends on the size of the integer and the size of the pointer. 2409 // We can either truncate, zero extend, or no-op, accordingly. 2410 SDValue N = getValue(I.getOperand(0)); 2411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2412 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2413 } 2414 2415 void SelectionDAGBuilder::visitBitCast(const User &I) { 2416 SDValue N = getValue(I.getOperand(0)); 2417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2418 2419 // BitCast assures us that source and destination are the same size so this is 2420 // either a BITCAST or a no-op. 2421 if (DestVT != N.getValueType()) 2422 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 2423 DestVT, N)); // convert types. 2424 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2425 // might fold any kind of constant expression to an integer constant and that 2426 // is not what we are looking for. Only regcognize a bitcast of a genuine 2427 // constant integer as an opaque constant. 2428 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2429 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 2430 /*isOpaque*/true)); 2431 else 2432 setValue(&I, N); // noop cast. 2433 } 2434 2435 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2437 const Value *SV = I.getOperand(0); 2438 SDValue N = getValue(SV); 2439 EVT DestVT = TLI.getValueType(I.getType()); 2440 2441 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2442 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2443 2444 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2445 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2446 2447 setValue(&I, N); 2448 } 2449 2450 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2452 SDValue InVec = getValue(I.getOperand(0)); 2453 SDValue InVal = getValue(I.getOperand(1)); 2454 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2455 getCurSDLoc(), TLI.getVectorIdxTy()); 2456 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2457 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2458 } 2459 2460 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2461 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2462 SDValue InVec = getValue(I.getOperand(0)); 2463 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2464 getCurSDLoc(), TLI.getVectorIdxTy()); 2465 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2466 TLI.getValueType(I.getType()), InVec, InIdx)); 2467 } 2468 2469 // Utility for visitShuffleVector - Return true if every element in Mask, 2470 // beginning from position Pos and ending in Pos+Size, falls within the 2471 // specified sequential range [L, L+Pos). or is undef. 2472 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2473 unsigned Pos, unsigned Size, int Low) { 2474 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2475 if (Mask[i] >= 0 && Mask[i] != Low) 2476 return false; 2477 return true; 2478 } 2479 2480 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2481 SDValue Src1 = getValue(I.getOperand(0)); 2482 SDValue Src2 = getValue(I.getOperand(1)); 2483 2484 SmallVector<int, 8> Mask; 2485 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2486 unsigned MaskNumElts = Mask.size(); 2487 2488 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2489 EVT VT = TLI.getValueType(I.getType()); 2490 EVT SrcVT = Src1.getValueType(); 2491 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2492 2493 if (SrcNumElts == MaskNumElts) { 2494 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2495 &Mask[0])); 2496 return; 2497 } 2498 2499 // Normalize the shuffle vector since mask and vector length don't match. 2500 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2501 // Mask is longer than the source vectors and is a multiple of the source 2502 // vectors. We can use concatenate vector to make the mask and vectors 2503 // lengths match. 2504 if (SrcNumElts*2 == MaskNumElts) { 2505 // First check for Src1 in low and Src2 in high 2506 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2507 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2508 // The shuffle is concatenating two vectors together. 2509 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2510 VT, Src1, Src2)); 2511 return; 2512 } 2513 // Then check for Src2 in low and Src1 in high 2514 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2515 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2516 // The shuffle is concatenating two vectors together. 2517 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2518 VT, Src2, Src1)); 2519 return; 2520 } 2521 } 2522 2523 // Pad both vectors with undefs to make them the same length as the mask. 2524 unsigned NumConcat = MaskNumElts / SrcNumElts; 2525 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2526 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2527 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2528 2529 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2530 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2531 MOps1[0] = Src1; 2532 MOps2[0] = Src2; 2533 2534 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2535 getCurSDLoc(), VT, MOps1); 2536 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2537 getCurSDLoc(), VT, MOps2); 2538 2539 // Readjust mask for new input vector length. 2540 SmallVector<int, 8> MappedOps; 2541 for (unsigned i = 0; i != MaskNumElts; ++i) { 2542 int Idx = Mask[i]; 2543 if (Idx >= (int)SrcNumElts) 2544 Idx -= SrcNumElts - MaskNumElts; 2545 MappedOps.push_back(Idx); 2546 } 2547 2548 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2549 &MappedOps[0])); 2550 return; 2551 } 2552 2553 if (SrcNumElts > MaskNumElts) { 2554 // Analyze the access pattern of the vector to see if we can extract 2555 // two subvectors and do the shuffle. The analysis is done by calculating 2556 // the range of elements the mask access on both vectors. 2557 int MinRange[2] = { static_cast<int>(SrcNumElts), 2558 static_cast<int>(SrcNumElts)}; 2559 int MaxRange[2] = {-1, -1}; 2560 2561 for (unsigned i = 0; i != MaskNumElts; ++i) { 2562 int Idx = Mask[i]; 2563 unsigned Input = 0; 2564 if (Idx < 0) 2565 continue; 2566 2567 if (Idx >= (int)SrcNumElts) { 2568 Input = 1; 2569 Idx -= SrcNumElts; 2570 } 2571 if (Idx > MaxRange[Input]) 2572 MaxRange[Input] = Idx; 2573 if (Idx < MinRange[Input]) 2574 MinRange[Input] = Idx; 2575 } 2576 2577 // Check if the access is smaller than the vector size and can we find 2578 // a reasonable extract index. 2579 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2580 // Extract. 2581 int StartIdx[2]; // StartIdx to extract from 2582 for (unsigned Input = 0; Input < 2; ++Input) { 2583 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2584 RangeUse[Input] = 0; // Unused 2585 StartIdx[Input] = 0; 2586 continue; 2587 } 2588 2589 // Find a good start index that is a multiple of the mask length. Then 2590 // see if the rest of the elements are in range. 2591 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2592 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2593 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2594 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2595 } 2596 2597 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2598 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2599 return; 2600 } 2601 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2602 // Extract appropriate subvector and generate a vector shuffle 2603 for (unsigned Input = 0; Input < 2; ++Input) { 2604 SDValue &Src = Input == 0 ? Src1 : Src2; 2605 if (RangeUse[Input] == 0) 2606 Src = DAG.getUNDEF(VT); 2607 else 2608 Src = DAG.getNode( 2609 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 2610 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 2611 } 2612 2613 // Calculate new mask. 2614 SmallVector<int, 8> MappedOps; 2615 for (unsigned i = 0; i != MaskNumElts; ++i) { 2616 int Idx = Mask[i]; 2617 if (Idx >= 0) { 2618 if (Idx < (int)SrcNumElts) 2619 Idx -= StartIdx[0]; 2620 else 2621 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2622 } 2623 MappedOps.push_back(Idx); 2624 } 2625 2626 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2627 &MappedOps[0])); 2628 return; 2629 } 2630 } 2631 2632 // We can't use either concat vectors or extract subvectors so fall back to 2633 // replacing the shuffle with extract and build vector. 2634 // to insert and build vector. 2635 EVT EltVT = VT.getVectorElementType(); 2636 EVT IdxVT = TLI.getVectorIdxTy(); 2637 SmallVector<SDValue,8> Ops; 2638 for (unsigned i = 0; i != MaskNumElts; ++i) { 2639 int Idx = Mask[i]; 2640 SDValue Res; 2641 2642 if (Idx < 0) { 2643 Res = DAG.getUNDEF(EltVT); 2644 } else { 2645 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2646 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2647 2648 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2649 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 2650 } 2651 2652 Ops.push_back(Res); 2653 } 2654 2655 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 2656 } 2657 2658 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2659 const Value *Op0 = I.getOperand(0); 2660 const Value *Op1 = I.getOperand(1); 2661 Type *AggTy = I.getType(); 2662 Type *ValTy = Op1->getType(); 2663 bool IntoUndef = isa<UndefValue>(Op0); 2664 bool FromUndef = isa<UndefValue>(Op1); 2665 2666 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2667 2668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2669 SmallVector<EVT, 4> AggValueVTs; 2670 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2671 SmallVector<EVT, 4> ValValueVTs; 2672 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2673 2674 unsigned NumAggValues = AggValueVTs.size(); 2675 unsigned NumValValues = ValValueVTs.size(); 2676 SmallVector<SDValue, 4> Values(NumAggValues); 2677 2678 // Ignore an insertvalue that produces an empty object 2679 if (!NumAggValues) { 2680 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2681 return; 2682 } 2683 2684 SDValue Agg = getValue(Op0); 2685 unsigned i = 0; 2686 // Copy the beginning value(s) from the original aggregate. 2687 for (; i != LinearIndex; ++i) 2688 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2689 SDValue(Agg.getNode(), Agg.getResNo() + i); 2690 // Copy values from the inserted value(s). 2691 if (NumValValues) { 2692 SDValue Val = getValue(Op1); 2693 for (; i != LinearIndex + NumValValues; ++i) 2694 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2695 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2696 } 2697 // Copy remaining value(s) from the original aggregate. 2698 for (; i != NumAggValues; ++i) 2699 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2700 SDValue(Agg.getNode(), Agg.getResNo() + i); 2701 2702 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2703 DAG.getVTList(AggValueVTs), Values)); 2704 } 2705 2706 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2707 const Value *Op0 = I.getOperand(0); 2708 Type *AggTy = Op0->getType(); 2709 Type *ValTy = I.getType(); 2710 bool OutOfUndef = isa<UndefValue>(Op0); 2711 2712 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2713 2714 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2715 SmallVector<EVT, 4> ValValueVTs; 2716 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2717 2718 unsigned NumValValues = ValValueVTs.size(); 2719 2720 // Ignore a extractvalue that produces an empty object 2721 if (!NumValValues) { 2722 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2723 return; 2724 } 2725 2726 SmallVector<SDValue, 4> Values(NumValValues); 2727 2728 SDValue Agg = getValue(Op0); 2729 // Copy out the selected value(s). 2730 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2731 Values[i - LinearIndex] = 2732 OutOfUndef ? 2733 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2734 SDValue(Agg.getNode(), Agg.getResNo() + i); 2735 2736 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2737 DAG.getVTList(ValValueVTs), Values)); 2738 } 2739 2740 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2741 Value *Op0 = I.getOperand(0); 2742 // Note that the pointer operand may be a vector of pointers. Take the scalar 2743 // element which holds a pointer. 2744 Type *Ty = Op0->getType()->getScalarType(); 2745 unsigned AS = Ty->getPointerAddressSpace(); 2746 SDValue N = getValue(Op0); 2747 2748 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2749 OI != E; ++OI) { 2750 const Value *Idx = *OI; 2751 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2752 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2753 if (Field) { 2754 // N = N + Offset 2755 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2756 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 2757 DAG.getConstant(Offset, N.getValueType())); 2758 } 2759 2760 Ty = StTy->getElementType(Field); 2761 } else { 2762 Ty = cast<SequentialType>(Ty)->getElementType(); 2763 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2764 unsigned PtrSize = PtrTy.getSizeInBits(); 2765 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2766 2767 // If this is a constant subscript, handle it quickly. 2768 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2769 if (CI->isZero()) 2770 continue; 2771 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2772 SDValue OffsVal = DAG.getConstant(Offs, PtrTy); 2773 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal); 2774 continue; 2775 } 2776 2777 // N = N + Idx * ElementSize; 2778 SDValue IdxN = getValue(Idx); 2779 2780 // If the index is smaller or larger than intptr_t, truncate or extend 2781 // it. 2782 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 2783 2784 // If this is a multiply by a power of two, turn it into a shl 2785 // immediately. This is a very common case. 2786 if (ElementSize != 1) { 2787 if (ElementSize.isPowerOf2()) { 2788 unsigned Amt = ElementSize.logBase2(); 2789 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 2790 N.getValueType(), IdxN, 2791 DAG.getConstant(Amt, IdxN.getValueType())); 2792 } else { 2793 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 2794 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 2795 N.getValueType(), IdxN, Scale); 2796 } 2797 } 2798 2799 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 2800 N.getValueType(), N, IdxN); 2801 } 2802 } 2803 2804 setValue(&I, N); 2805 } 2806 2807 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2808 // If this is a fixed sized alloca in the entry block of the function, 2809 // allocate it statically on the stack. 2810 if (FuncInfo.StaticAllocaMap.count(&I)) 2811 return; // getValue will auto-populate this. 2812 2813 Type *Ty = I.getAllocatedType(); 2814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2815 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2816 unsigned Align = 2817 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2818 I.getAlignment()); 2819 2820 SDValue AllocSize = getValue(I.getArraySize()); 2821 2822 EVT IntPtr = TLI.getPointerTy(); 2823 if (AllocSize.getValueType() != IntPtr) 2824 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 2825 2826 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 2827 AllocSize, 2828 DAG.getConstant(TySize, IntPtr)); 2829 2830 // Handle alignment. If the requested alignment is less than or equal to 2831 // the stack alignment, ignore it. If the size is greater than or equal to 2832 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2833 unsigned StackAlign = 2834 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2835 if (Align <= StackAlign) 2836 Align = 0; 2837 2838 // Round the size of the allocation up to the stack alignment size 2839 // by add SA-1 to the size. 2840 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 2841 AllocSize.getValueType(), AllocSize, 2842 DAG.getIntPtrConstant(StackAlign-1)); 2843 2844 // Mask out the low bits for alignment purposes. 2845 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 2846 AllocSize.getValueType(), AllocSize, 2847 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2848 2849 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2850 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2851 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 2852 setValue(&I, DSA); 2853 DAG.setRoot(DSA.getValue(1)); 2854 2855 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2856 } 2857 2858 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2859 if (I.isAtomic()) 2860 return visitAtomicLoad(I); 2861 2862 const Value *SV = I.getOperand(0); 2863 SDValue Ptr = getValue(SV); 2864 2865 Type *Ty = I.getType(); 2866 2867 bool isVolatile = I.isVolatile(); 2868 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2869 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2870 unsigned Alignment = I.getAlignment(); 2871 2872 AAMDNodes AAInfo; 2873 I.getAAMetadata(AAInfo); 2874 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2875 2876 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2877 SmallVector<EVT, 4> ValueVTs; 2878 SmallVector<uint64_t, 4> Offsets; 2879 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2880 unsigned NumValues = ValueVTs.size(); 2881 if (NumValues == 0) 2882 return; 2883 2884 SDValue Root; 2885 bool ConstantMemory = false; 2886 if (isVolatile || NumValues > MaxParallelChains) 2887 // Serialize volatile loads with other side effects. 2888 Root = getRoot(); 2889 else if (AA->pointsToConstantMemory( 2890 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2891 // Do not serialize (non-volatile) loads of constant memory with anything. 2892 Root = DAG.getEntryNode(); 2893 ConstantMemory = true; 2894 } else { 2895 // Do not serialize non-volatile loads against each other. 2896 Root = DAG.getRoot(); 2897 } 2898 2899 if (isVolatile) 2900 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 2901 2902 SmallVector<SDValue, 4> Values(NumValues); 2903 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2904 NumValues)); 2905 EVT PtrVT = Ptr.getValueType(); 2906 unsigned ChainI = 0; 2907 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2908 // Serializing loads here may result in excessive register pressure, and 2909 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2910 // could recover a bit by hoisting nodes upward in the chain by recognizing 2911 // they are side-effect free or do not alias. The optimizer should really 2912 // avoid this case by converting large object/array copies to llvm.memcpy 2913 // (MaxParallelChains should always remain as failsafe). 2914 if (ChainI == MaxParallelChains) { 2915 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2916 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2917 makeArrayRef(Chains.data(), ChainI)); 2918 Root = Chain; 2919 ChainI = 0; 2920 } 2921 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 2922 PtrVT, Ptr, 2923 DAG.getConstant(Offsets[i], PtrVT)); 2924 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 2925 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2926 isNonTemporal, isInvariant, Alignment, AAInfo, 2927 Ranges); 2928 2929 Values[i] = L; 2930 Chains[ChainI] = L.getValue(1); 2931 } 2932 2933 if (!ConstantMemory) { 2934 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2935 makeArrayRef(Chains.data(), ChainI)); 2936 if (isVolatile) 2937 DAG.setRoot(Chain); 2938 else 2939 PendingLoads.push_back(Chain); 2940 } 2941 2942 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2943 DAG.getVTList(ValueVTs), Values)); 2944 } 2945 2946 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2947 if (I.isAtomic()) 2948 return visitAtomicStore(I); 2949 2950 const Value *SrcV = I.getOperand(0); 2951 const Value *PtrV = I.getOperand(1); 2952 2953 SmallVector<EVT, 4> ValueVTs; 2954 SmallVector<uint64_t, 4> Offsets; 2955 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2956 ValueVTs, &Offsets); 2957 unsigned NumValues = ValueVTs.size(); 2958 if (NumValues == 0) 2959 return; 2960 2961 // Get the lowered operands. Note that we do this after 2962 // checking if NumResults is zero, because with zero results 2963 // the operands won't have values in the map. 2964 SDValue Src = getValue(SrcV); 2965 SDValue Ptr = getValue(PtrV); 2966 2967 SDValue Root = getRoot(); 2968 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2969 NumValues)); 2970 EVT PtrVT = Ptr.getValueType(); 2971 bool isVolatile = I.isVolatile(); 2972 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2973 unsigned Alignment = I.getAlignment(); 2974 2975 AAMDNodes AAInfo; 2976 I.getAAMetadata(AAInfo); 2977 2978 unsigned ChainI = 0; 2979 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2980 // See visitLoad comments. 2981 if (ChainI == MaxParallelChains) { 2982 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2983 makeArrayRef(Chains.data(), ChainI)); 2984 Root = Chain; 2985 ChainI = 0; 2986 } 2987 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 2988 DAG.getConstant(Offsets[i], PtrVT)); 2989 SDValue St = DAG.getStore(Root, getCurSDLoc(), 2990 SDValue(Src.getNode(), Src.getResNo() + i), 2991 Add, MachinePointerInfo(PtrV, Offsets[i]), 2992 isVolatile, isNonTemporal, Alignment, AAInfo); 2993 Chains[ChainI] = St; 2994 } 2995 2996 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 2997 makeArrayRef(Chains.data(), ChainI)); 2998 DAG.setRoot(StoreNode); 2999 } 3000 3001 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3002 SDLoc sdl = getCurSDLoc(); 3003 3004 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3005 Value *PtrOperand = I.getArgOperand(1); 3006 SDValue Ptr = getValue(PtrOperand); 3007 SDValue Src0 = getValue(I.getArgOperand(0)); 3008 SDValue Mask = getValue(I.getArgOperand(3)); 3009 EVT VT = Src0.getValueType(); 3010 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3011 if (!Alignment) 3012 Alignment = DAG.getEVTAlignment(VT); 3013 3014 AAMDNodes AAInfo; 3015 I.getAAMetadata(AAInfo); 3016 3017 MachineMemOperand *MMO = 3018 DAG.getMachineFunction(). 3019 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3020 MachineMemOperand::MOStore, VT.getStoreSize(), 3021 Alignment, AAInfo); 3022 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3023 MMO, false); 3024 DAG.setRoot(StoreNode); 3025 setValue(&I, StoreNode); 3026 } 3027 3028 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3029 SDLoc sdl = getCurSDLoc(); 3030 3031 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3032 Value *PtrOperand = I.getArgOperand(0); 3033 SDValue Ptr = getValue(PtrOperand); 3034 SDValue Src0 = getValue(I.getArgOperand(3)); 3035 SDValue Mask = getValue(I.getArgOperand(2)); 3036 3037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3038 EVT VT = TLI.getValueType(I.getType()); 3039 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3040 if (!Alignment) 3041 Alignment = DAG.getEVTAlignment(VT); 3042 3043 AAMDNodes AAInfo; 3044 I.getAAMetadata(AAInfo); 3045 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3046 3047 SDValue InChain = DAG.getRoot(); 3048 if (AA->pointsToConstantMemory( 3049 AliasAnalysis::Location(PtrOperand, 3050 AA->getTypeStoreSize(I.getType()), 3051 AAInfo))) { 3052 // Do not serialize (non-volatile) loads of constant memory with anything. 3053 InChain = DAG.getEntryNode(); 3054 } 3055 3056 MachineMemOperand *MMO = 3057 DAG.getMachineFunction(). 3058 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3059 MachineMemOperand::MOLoad, VT.getStoreSize(), 3060 Alignment, AAInfo, Ranges); 3061 3062 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3063 ISD::NON_EXTLOAD); 3064 SDValue OutChain = Load.getValue(1); 3065 DAG.setRoot(OutChain); 3066 setValue(&I, Load); 3067 } 3068 3069 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3070 SDLoc dl = getCurSDLoc(); 3071 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3072 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3073 SynchronizationScope Scope = I.getSynchScope(); 3074 3075 SDValue InChain = getRoot(); 3076 3077 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3078 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3079 SDValue L = DAG.getAtomicCmpSwap( 3080 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3081 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3082 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3083 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3084 3085 SDValue OutChain = L.getValue(2); 3086 3087 setValue(&I, L); 3088 DAG.setRoot(OutChain); 3089 } 3090 3091 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3092 SDLoc dl = getCurSDLoc(); 3093 ISD::NodeType NT; 3094 switch (I.getOperation()) { 3095 default: llvm_unreachable("Unknown atomicrmw operation"); 3096 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3097 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3098 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3099 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3100 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3101 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3102 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3103 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3104 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3105 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3106 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3107 } 3108 AtomicOrdering Order = I.getOrdering(); 3109 SynchronizationScope Scope = I.getSynchScope(); 3110 3111 SDValue InChain = getRoot(); 3112 3113 SDValue L = 3114 DAG.getAtomic(NT, dl, 3115 getValue(I.getValOperand()).getSimpleValueType(), 3116 InChain, 3117 getValue(I.getPointerOperand()), 3118 getValue(I.getValOperand()), 3119 I.getPointerOperand(), 3120 /* Alignment=*/ 0, Order, Scope); 3121 3122 SDValue OutChain = L.getValue(1); 3123 3124 setValue(&I, L); 3125 DAG.setRoot(OutChain); 3126 } 3127 3128 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3129 SDLoc dl = getCurSDLoc(); 3130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3131 SDValue Ops[3]; 3132 Ops[0] = getRoot(); 3133 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3134 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3135 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3136 } 3137 3138 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3139 SDLoc dl = getCurSDLoc(); 3140 AtomicOrdering Order = I.getOrdering(); 3141 SynchronizationScope Scope = I.getSynchScope(); 3142 3143 SDValue InChain = getRoot(); 3144 3145 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3146 EVT VT = TLI.getValueType(I.getType()); 3147 3148 if (I.getAlignment() < VT.getSizeInBits() / 8) 3149 report_fatal_error("Cannot generate unaligned atomic load"); 3150 3151 MachineMemOperand *MMO = 3152 DAG.getMachineFunction(). 3153 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3154 MachineMemOperand::MOVolatile | 3155 MachineMemOperand::MOLoad, 3156 VT.getStoreSize(), 3157 I.getAlignment() ? I.getAlignment() : 3158 DAG.getEVTAlignment(VT)); 3159 3160 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3161 SDValue L = 3162 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3163 getValue(I.getPointerOperand()), MMO, 3164 Order, Scope); 3165 3166 SDValue OutChain = L.getValue(1); 3167 3168 setValue(&I, L); 3169 DAG.setRoot(OutChain); 3170 } 3171 3172 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3173 SDLoc dl = getCurSDLoc(); 3174 3175 AtomicOrdering Order = I.getOrdering(); 3176 SynchronizationScope Scope = I.getSynchScope(); 3177 3178 SDValue InChain = getRoot(); 3179 3180 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3181 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3182 3183 if (I.getAlignment() < VT.getSizeInBits() / 8) 3184 report_fatal_error("Cannot generate unaligned atomic store"); 3185 3186 SDValue OutChain = 3187 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3188 InChain, 3189 getValue(I.getPointerOperand()), 3190 getValue(I.getValueOperand()), 3191 I.getPointerOperand(), I.getAlignment(), 3192 Order, Scope); 3193 3194 DAG.setRoot(OutChain); 3195 } 3196 3197 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3198 /// node. 3199 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3200 unsigned Intrinsic) { 3201 bool HasChain = !I.doesNotAccessMemory(); 3202 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3203 3204 // Build the operand list. 3205 SmallVector<SDValue, 8> Ops; 3206 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3207 if (OnlyLoad) { 3208 // We don't need to serialize loads against other loads. 3209 Ops.push_back(DAG.getRoot()); 3210 } else { 3211 Ops.push_back(getRoot()); 3212 } 3213 } 3214 3215 // Info is set by getTgtMemInstrinsic 3216 TargetLowering::IntrinsicInfo Info; 3217 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3218 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3219 3220 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3221 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3222 Info.opc == ISD::INTRINSIC_W_CHAIN) 3223 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3224 3225 // Add all operands of the call to the operand list. 3226 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3227 SDValue Op = getValue(I.getArgOperand(i)); 3228 Ops.push_back(Op); 3229 } 3230 3231 SmallVector<EVT, 4> ValueVTs; 3232 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3233 3234 if (HasChain) 3235 ValueVTs.push_back(MVT::Other); 3236 3237 SDVTList VTs = DAG.getVTList(ValueVTs); 3238 3239 // Create the node. 3240 SDValue Result; 3241 if (IsTgtIntrinsic) { 3242 // This is target intrinsic that touches memory 3243 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3244 VTs, Ops, Info.memVT, 3245 MachinePointerInfo(Info.ptrVal, Info.offset), 3246 Info.align, Info.vol, 3247 Info.readMem, Info.writeMem, Info.size); 3248 } else if (!HasChain) { 3249 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3250 } else if (!I.getType()->isVoidTy()) { 3251 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3252 } else { 3253 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3254 } 3255 3256 if (HasChain) { 3257 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3258 if (OnlyLoad) 3259 PendingLoads.push_back(Chain); 3260 else 3261 DAG.setRoot(Chain); 3262 } 3263 3264 if (!I.getType()->isVoidTy()) { 3265 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3266 EVT VT = TLI.getValueType(PTy); 3267 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3268 } 3269 3270 setValue(&I, Result); 3271 } 3272 } 3273 3274 /// GetSignificand - Get the significand and build it into a floating-point 3275 /// number with exponent of 1: 3276 /// 3277 /// Op = (Op & 0x007fffff) | 0x3f800000; 3278 /// 3279 /// where Op is the hexadecimal representation of floating point value. 3280 static SDValue 3281 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3282 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3283 DAG.getConstant(0x007fffff, MVT::i32)); 3284 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3285 DAG.getConstant(0x3f800000, MVT::i32)); 3286 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3287 } 3288 3289 /// GetExponent - Get the exponent: 3290 /// 3291 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3292 /// 3293 /// where Op is the hexadecimal representation of floating point value. 3294 static SDValue 3295 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3296 SDLoc dl) { 3297 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3298 DAG.getConstant(0x7f800000, MVT::i32)); 3299 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3300 DAG.getConstant(23, TLI.getPointerTy())); 3301 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3302 DAG.getConstant(127, MVT::i32)); 3303 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3304 } 3305 3306 /// getF32Constant - Get 32-bit floating point constant. 3307 static SDValue 3308 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3309 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3310 MVT::f32); 3311 } 3312 3313 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3314 SelectionDAG &DAG) { 3315 // IntegerPartOfX = ((int32_t)(t0); 3316 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3317 3318 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3319 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3320 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3321 3322 // IntegerPartOfX <<= 23; 3323 IntegerPartOfX = DAG.getNode( 3324 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3325 DAG.getConstant(23, DAG.getTargetLoweringInfo().getPointerTy())); 3326 3327 SDValue TwoToFractionalPartOfX; 3328 if (LimitFloatPrecision <= 6) { 3329 // For floating-point precision of 6: 3330 // 3331 // TwoToFractionalPartOfX = 3332 // 0.997535578f + 3333 // (0.735607626f + 0.252464424f * x) * x; 3334 // 3335 // error 0.0144103317, which is 6 bits 3336 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3337 getF32Constant(DAG, 0x3e814304)); 3338 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3339 getF32Constant(DAG, 0x3f3c50c8)); 3340 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3341 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3342 getF32Constant(DAG, 0x3f7f5e7e)); 3343 } else if (LimitFloatPrecision <= 12) { 3344 // For floating-point precision of 12: 3345 // 3346 // TwoToFractionalPartOfX = 3347 // 0.999892986f + 3348 // (0.696457318f + 3349 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3350 // 3351 // error 0.000107046256, which is 13 to 14 bits 3352 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3353 getF32Constant(DAG, 0x3da235e3)); 3354 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3355 getF32Constant(DAG, 0x3e65b8f3)); 3356 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3357 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3358 getF32Constant(DAG, 0x3f324b07)); 3359 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3360 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3361 getF32Constant(DAG, 0x3f7ff8fd)); 3362 } else { // LimitFloatPrecision <= 18 3363 // For floating-point precision of 18: 3364 // 3365 // TwoToFractionalPartOfX = 3366 // 0.999999982f + 3367 // (0.693148872f + 3368 // (0.240227044f + 3369 // (0.554906021e-1f + 3370 // (0.961591928e-2f + 3371 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3372 // error 2.47208000*10^(-7), which is better than 18 bits 3373 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3374 getF32Constant(DAG, 0x3924b03e)); 3375 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3376 getF32Constant(DAG, 0x3ab24b87)); 3377 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3378 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3379 getF32Constant(DAG, 0x3c1d8c17)); 3380 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3381 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3382 getF32Constant(DAG, 0x3d634a1d)); 3383 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3384 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3385 getF32Constant(DAG, 0x3e75fe14)); 3386 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3387 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3388 getF32Constant(DAG, 0x3f317234)); 3389 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3390 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3391 getF32Constant(DAG, 0x3f800000)); 3392 } 3393 3394 // Add the exponent into the result in integer domain. 3395 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3396 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3397 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3398 } 3399 3400 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3401 /// limited-precision mode. 3402 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3403 const TargetLowering &TLI) { 3404 if (Op.getValueType() == MVT::f32 && 3405 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3406 3407 // Put the exponent in the right bit position for later addition to the 3408 // final result: 3409 // 3410 // #define LOG2OFe 1.4426950f 3411 // t0 = Op * LOG2OFe 3412 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3413 getF32Constant(DAG, 0x3fb8aa3b)); 3414 return getLimitedPrecisionExp2(t0, dl, DAG); 3415 } 3416 3417 // No special expansion. 3418 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3419 } 3420 3421 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3422 /// limited-precision mode. 3423 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3424 const TargetLowering &TLI) { 3425 if (Op.getValueType() == MVT::f32 && 3426 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3427 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3428 3429 // Scale the exponent by log(2) [0.69314718f]. 3430 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3431 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3432 getF32Constant(DAG, 0x3f317218)); 3433 3434 // Get the significand and build it into a floating-point number with 3435 // exponent of 1. 3436 SDValue X = GetSignificand(DAG, Op1, dl); 3437 3438 SDValue LogOfMantissa; 3439 if (LimitFloatPrecision <= 6) { 3440 // For floating-point precision of 6: 3441 // 3442 // LogofMantissa = 3443 // -1.1609546f + 3444 // (1.4034025f - 0.23903021f * x) * x; 3445 // 3446 // error 0.0034276066, which is better than 8 bits 3447 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3448 getF32Constant(DAG, 0xbe74c456)); 3449 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3450 getF32Constant(DAG, 0x3fb3a2b1)); 3451 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3452 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3453 getF32Constant(DAG, 0x3f949a29)); 3454 } else if (LimitFloatPrecision <= 12) { 3455 // For floating-point precision of 12: 3456 // 3457 // LogOfMantissa = 3458 // -1.7417939f + 3459 // (2.8212026f + 3460 // (-1.4699568f + 3461 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3462 // 3463 // error 0.000061011436, which is 14 bits 3464 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3465 getF32Constant(DAG, 0xbd67b6d6)); 3466 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3467 getF32Constant(DAG, 0x3ee4f4b8)); 3468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3469 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3470 getF32Constant(DAG, 0x3fbc278b)); 3471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3473 getF32Constant(DAG, 0x40348e95)); 3474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3475 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3476 getF32Constant(DAG, 0x3fdef31a)); 3477 } else { // LimitFloatPrecision <= 18 3478 // For floating-point precision of 18: 3479 // 3480 // LogOfMantissa = 3481 // -2.1072184f + 3482 // (4.2372794f + 3483 // (-3.7029485f + 3484 // (2.2781945f + 3485 // (-0.87823314f + 3486 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3487 // 3488 // error 0.0000023660568, which is better than 18 bits 3489 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3490 getF32Constant(DAG, 0xbc91e5ac)); 3491 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3492 getF32Constant(DAG, 0x3e4350aa)); 3493 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3494 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3495 getF32Constant(DAG, 0x3f60d3e3)); 3496 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3497 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3498 getF32Constant(DAG, 0x4011cdf0)); 3499 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3500 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3501 getF32Constant(DAG, 0x406cfd1c)); 3502 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3503 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3504 getF32Constant(DAG, 0x408797cb)); 3505 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3506 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3507 getF32Constant(DAG, 0x4006dcab)); 3508 } 3509 3510 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3511 } 3512 3513 // No special expansion. 3514 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3515 } 3516 3517 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3518 /// limited-precision mode. 3519 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3520 const TargetLowering &TLI) { 3521 if (Op.getValueType() == MVT::f32 && 3522 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3523 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3524 3525 // Get the exponent. 3526 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3527 3528 // Get the significand and build it into a floating-point number with 3529 // exponent of 1. 3530 SDValue X = GetSignificand(DAG, Op1, dl); 3531 3532 // Different possible minimax approximations of significand in 3533 // floating-point for various degrees of accuracy over [1,2]. 3534 SDValue Log2ofMantissa; 3535 if (LimitFloatPrecision <= 6) { 3536 // For floating-point precision of 6: 3537 // 3538 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3539 // 3540 // error 0.0049451742, which is more than 7 bits 3541 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3542 getF32Constant(DAG, 0xbeb08fe0)); 3543 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3544 getF32Constant(DAG, 0x40019463)); 3545 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3546 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3547 getF32Constant(DAG, 0x3fd6633d)); 3548 } else if (LimitFloatPrecision <= 12) { 3549 // For floating-point precision of 12: 3550 // 3551 // Log2ofMantissa = 3552 // -2.51285454f + 3553 // (4.07009056f + 3554 // (-2.12067489f + 3555 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3556 // 3557 // error 0.0000876136000, which is better than 13 bits 3558 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3559 getF32Constant(DAG, 0xbda7262e)); 3560 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3561 getF32Constant(DAG, 0x3f25280b)); 3562 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3563 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3564 getF32Constant(DAG, 0x4007b923)); 3565 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3566 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3567 getF32Constant(DAG, 0x40823e2f)); 3568 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3569 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3570 getF32Constant(DAG, 0x4020d29c)); 3571 } else { // LimitFloatPrecision <= 18 3572 // For floating-point precision of 18: 3573 // 3574 // Log2ofMantissa = 3575 // -3.0400495f + 3576 // (6.1129976f + 3577 // (-5.3420409f + 3578 // (3.2865683f + 3579 // (-1.2669343f + 3580 // (0.27515199f - 3581 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3582 // 3583 // error 0.0000018516, which is better than 18 bits 3584 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3585 getF32Constant(DAG, 0xbcd2769e)); 3586 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3587 getF32Constant(DAG, 0x3e8ce0b9)); 3588 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3589 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3590 getF32Constant(DAG, 0x3fa22ae7)); 3591 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3592 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3593 getF32Constant(DAG, 0x40525723)); 3594 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3595 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3596 getF32Constant(DAG, 0x40aaf200)); 3597 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3598 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3599 getF32Constant(DAG, 0x40c39dad)); 3600 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3601 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3602 getF32Constant(DAG, 0x4042902c)); 3603 } 3604 3605 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3606 } 3607 3608 // No special expansion. 3609 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3610 } 3611 3612 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3613 /// limited-precision mode. 3614 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3615 const TargetLowering &TLI) { 3616 if (Op.getValueType() == MVT::f32 && 3617 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3618 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3619 3620 // Scale the exponent by log10(2) [0.30102999f]. 3621 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3622 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3623 getF32Constant(DAG, 0x3e9a209a)); 3624 3625 // Get the significand and build it into a floating-point number with 3626 // exponent of 1. 3627 SDValue X = GetSignificand(DAG, Op1, dl); 3628 3629 SDValue Log10ofMantissa; 3630 if (LimitFloatPrecision <= 6) { 3631 // For floating-point precision of 6: 3632 // 3633 // Log10ofMantissa = 3634 // -0.50419619f + 3635 // (0.60948995f - 0.10380950f * x) * x; 3636 // 3637 // error 0.0014886165, which is 6 bits 3638 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3639 getF32Constant(DAG, 0xbdd49a13)); 3640 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3641 getF32Constant(DAG, 0x3f1c0789)); 3642 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3643 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3644 getF32Constant(DAG, 0x3f011300)); 3645 } else if (LimitFloatPrecision <= 12) { 3646 // For floating-point precision of 12: 3647 // 3648 // Log10ofMantissa = 3649 // -0.64831180f + 3650 // (0.91751397f + 3651 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3652 // 3653 // error 0.00019228036, which is better than 12 bits 3654 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3655 getF32Constant(DAG, 0x3d431f31)); 3656 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3657 getF32Constant(DAG, 0x3ea21fb2)); 3658 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3659 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3660 getF32Constant(DAG, 0x3f6ae232)); 3661 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3662 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3663 getF32Constant(DAG, 0x3f25f7c3)); 3664 } else { // LimitFloatPrecision <= 18 3665 // For floating-point precision of 18: 3666 // 3667 // Log10ofMantissa = 3668 // -0.84299375f + 3669 // (1.5327582f + 3670 // (-1.0688956f + 3671 // (0.49102474f + 3672 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3673 // 3674 // error 0.0000037995730, which is better than 18 bits 3675 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3676 getF32Constant(DAG, 0x3c5d51ce)); 3677 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3678 getF32Constant(DAG, 0x3e00685a)); 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3680 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3681 getF32Constant(DAG, 0x3efb6798)); 3682 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3683 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3684 getF32Constant(DAG, 0x3f88d192)); 3685 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3686 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3687 getF32Constant(DAG, 0x3fc4316c)); 3688 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3689 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3690 getF32Constant(DAG, 0x3f57ce70)); 3691 } 3692 3693 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3694 } 3695 3696 // No special expansion. 3697 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3698 } 3699 3700 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3701 /// limited-precision mode. 3702 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3703 const TargetLowering &TLI) { 3704 if (Op.getValueType() == MVT::f32 && 3705 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3706 return getLimitedPrecisionExp2(Op, dl, DAG); 3707 3708 // No special expansion. 3709 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3710 } 3711 3712 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3713 /// limited-precision mode with x == 10.0f. 3714 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3715 SelectionDAG &DAG, const TargetLowering &TLI) { 3716 bool IsExp10 = false; 3717 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3718 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3719 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3720 APFloat Ten(10.0f); 3721 IsExp10 = LHSC->isExactlyValue(Ten); 3722 } 3723 } 3724 3725 if (IsExp10) { 3726 // Put the exponent in the right bit position for later addition to the 3727 // final result: 3728 // 3729 // #define LOG2OF10 3.3219281f 3730 // t0 = Op * LOG2OF10; 3731 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3732 getF32Constant(DAG, 0x40549a78)); 3733 return getLimitedPrecisionExp2(t0, dl, DAG); 3734 } 3735 3736 // No special expansion. 3737 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3738 } 3739 3740 3741 /// ExpandPowI - Expand a llvm.powi intrinsic. 3742 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3743 SelectionDAG &DAG) { 3744 // If RHS is a constant, we can expand this out to a multiplication tree, 3745 // otherwise we end up lowering to a call to __powidf2 (for example). When 3746 // optimizing for size, we only want to do this if the expansion would produce 3747 // a small number of multiplies, otherwise we do the full expansion. 3748 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3749 // Get the exponent as a positive value. 3750 unsigned Val = RHSC->getSExtValue(); 3751 if ((int)Val < 0) Val = -Val; 3752 3753 // powi(x, 0) -> 1.0 3754 if (Val == 0) 3755 return DAG.getConstantFP(1.0, LHS.getValueType()); 3756 3757 const Function *F = DAG.getMachineFunction().getFunction(); 3758 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3759 // If optimizing for size, don't insert too many multiplies. This 3760 // inserts up to 5 multiplies. 3761 countPopulation(Val) + Log2_32(Val) < 7) { 3762 // We use the simple binary decomposition method to generate the multiply 3763 // sequence. There are more optimal ways to do this (for example, 3764 // powi(x,15) generates one more multiply than it should), but this has 3765 // the benefit of being both really simple and much better than a libcall. 3766 SDValue Res; // Logically starts equal to 1.0 3767 SDValue CurSquare = LHS; 3768 while (Val) { 3769 if (Val & 1) { 3770 if (Res.getNode()) 3771 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3772 else 3773 Res = CurSquare; // 1.0*CurSquare. 3774 } 3775 3776 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3777 CurSquare, CurSquare); 3778 Val >>= 1; 3779 } 3780 3781 // If the original was negative, invert the result, producing 1/(x*x*x). 3782 if (RHSC->getSExtValue() < 0) 3783 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3784 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3785 return Res; 3786 } 3787 } 3788 3789 // Otherwise, expand to a libcall. 3790 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3791 } 3792 3793 // getTruncatedArgReg - Find underlying register used for an truncated 3794 // argument. 3795 static unsigned getTruncatedArgReg(const SDValue &N) { 3796 if (N.getOpcode() != ISD::TRUNCATE) 3797 return 0; 3798 3799 const SDValue &Ext = N.getOperand(0); 3800 if (Ext.getOpcode() == ISD::AssertZext || 3801 Ext.getOpcode() == ISD::AssertSext) { 3802 const SDValue &CFR = Ext.getOperand(0); 3803 if (CFR.getOpcode() == ISD::CopyFromReg) 3804 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3805 if (CFR.getOpcode() == ISD::TRUNCATE) 3806 return getTruncatedArgReg(CFR); 3807 } 3808 return 0; 3809 } 3810 3811 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3812 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3813 /// At the end of instruction selection, they will be inserted to the entry BB. 3814 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3815 const Value *V, MDLocalVariable *Variable, MDExpression *Expr, 3816 MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3817 const Argument *Arg = dyn_cast<Argument>(V); 3818 if (!Arg) 3819 return false; 3820 3821 MachineFunction &MF = DAG.getMachineFunction(); 3822 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3823 3824 // Ignore inlined function arguments here. 3825 // 3826 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3827 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3828 return false; 3829 3830 Optional<MachineOperand> Op; 3831 // Some arguments' frame index is recorded during argument lowering. 3832 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 3833 Op = MachineOperand::CreateFI(FI); 3834 3835 if (!Op && N.getNode()) { 3836 unsigned Reg; 3837 if (N.getOpcode() == ISD::CopyFromReg) 3838 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3839 else 3840 Reg = getTruncatedArgReg(N); 3841 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3842 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3843 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3844 if (PR) 3845 Reg = PR; 3846 } 3847 if (Reg) 3848 Op = MachineOperand::CreateReg(Reg, false); 3849 } 3850 3851 if (!Op) { 3852 // Check if ValueMap has reg number. 3853 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3854 if (VMI != FuncInfo.ValueMap.end()) 3855 Op = MachineOperand::CreateReg(VMI->second, false); 3856 } 3857 3858 if (!Op && N.getNode()) 3859 // Check if frame index is available. 3860 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 3861 if (FrameIndexSDNode *FINode = 3862 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 3863 Op = MachineOperand::CreateFI(FINode->getIndex()); 3864 3865 if (!Op) 3866 return false; 3867 3868 assert(Variable->isValidLocationForIntrinsic(DL) && 3869 "Expected inlined-at fields to agree"); 3870 if (Op->isReg()) 3871 FuncInfo.ArgDbgValues.push_back( 3872 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 3873 Op->getReg(), Offset, Variable, Expr)); 3874 else 3875 FuncInfo.ArgDbgValues.push_back( 3876 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 3877 .addOperand(*Op) 3878 .addImm(Offset) 3879 .addMetadata(Variable) 3880 .addMetadata(Expr)); 3881 3882 return true; 3883 } 3884 3885 // VisualStudio defines setjmp as _setjmp 3886 #if defined(_MSC_VER) && defined(setjmp) && \ 3887 !defined(setjmp_undefined_for_msvc) 3888 # pragma push_macro("setjmp") 3889 # undef setjmp 3890 # define setjmp_undefined_for_msvc 3891 #endif 3892 3893 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3894 /// we want to emit this as a call to a named external function, return the name 3895 /// otherwise lower it and return null. 3896 const char * 3897 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3899 SDLoc sdl = getCurSDLoc(); 3900 DebugLoc dl = getCurDebugLoc(); 3901 SDValue Res; 3902 3903 switch (Intrinsic) { 3904 default: 3905 // By default, turn this into a target intrinsic node. 3906 visitTargetIntrinsic(I, Intrinsic); 3907 return nullptr; 3908 case Intrinsic::vastart: visitVAStart(I); return nullptr; 3909 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 3910 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 3911 case Intrinsic::returnaddress: 3912 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 3913 getValue(I.getArgOperand(0)))); 3914 return nullptr; 3915 case Intrinsic::frameaddress: 3916 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 3917 getValue(I.getArgOperand(0)))); 3918 return nullptr; 3919 case Intrinsic::read_register: { 3920 Value *Reg = I.getArgOperand(0); 3921 SDValue RegName = 3922 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 3923 EVT VT = TLI.getValueType(I.getType()); 3924 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 3925 return nullptr; 3926 } 3927 case Intrinsic::write_register: { 3928 Value *Reg = I.getArgOperand(0); 3929 Value *RegValue = I.getArgOperand(1); 3930 SDValue Chain = getValue(RegValue).getOperand(0); 3931 SDValue RegName = 3932 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 3933 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 3934 RegName, getValue(RegValue))); 3935 return nullptr; 3936 } 3937 case Intrinsic::setjmp: 3938 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 3939 case Intrinsic::longjmp: 3940 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 3941 case Intrinsic::memcpy: { 3942 // FIXME: this definition of "user defined address space" is x86-specific 3943 // Assert for address < 256 since we support only user defined address 3944 // spaces. 3945 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3946 < 256 && 3947 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3948 < 256 && 3949 "Unknown address space"); 3950 SDValue Op1 = getValue(I.getArgOperand(0)); 3951 SDValue Op2 = getValue(I.getArgOperand(1)); 3952 SDValue Op3 = getValue(I.getArgOperand(2)); 3953 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3954 if (!Align) 3955 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 3956 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3957 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 3958 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 3959 false, isTC, 3960 MachinePointerInfo(I.getArgOperand(0)), 3961 MachinePointerInfo(I.getArgOperand(1))); 3962 updateDAGForMaybeTailCall(MC); 3963 return nullptr; 3964 } 3965 case Intrinsic::memset: { 3966 // FIXME: this definition of "user defined address space" is x86-specific 3967 // Assert for address < 256 since we support only user defined address 3968 // spaces. 3969 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3970 < 256 && 3971 "Unknown address space"); 3972 SDValue Op1 = getValue(I.getArgOperand(0)); 3973 SDValue Op2 = getValue(I.getArgOperand(1)); 3974 SDValue Op3 = getValue(I.getArgOperand(2)); 3975 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3976 if (!Align) 3977 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 3978 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 3979 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 3980 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 3981 isTC, MachinePointerInfo(I.getArgOperand(0))); 3982 updateDAGForMaybeTailCall(MS); 3983 return nullptr; 3984 } 3985 case Intrinsic::memmove: { 3986 // FIXME: this definition of "user defined address space" is x86-specific 3987 // Assert for address < 256 since we support only user defined address 3988 // spaces. 3989 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 3990 < 256 && 3991 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 3992 < 256 && 3993 "Unknown address space"); 3994 SDValue Op1 = getValue(I.getArgOperand(0)); 3995 SDValue Op2 = getValue(I.getArgOperand(1)); 3996 SDValue Op3 = getValue(I.getArgOperand(2)); 3997 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 3998 if (!Align) 3999 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4000 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4001 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4002 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4003 isTC, MachinePointerInfo(I.getArgOperand(0)), 4004 MachinePointerInfo(I.getArgOperand(1))); 4005 updateDAGForMaybeTailCall(MM); 4006 return nullptr; 4007 } 4008 case Intrinsic::dbg_declare: { 4009 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4010 MDLocalVariable *Variable = DI.getVariable(); 4011 MDExpression *Expression = DI.getExpression(); 4012 const Value *Address = DI.getAddress(); 4013 assert(Variable && "Missing variable"); 4014 if (!Address) { 4015 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4016 return nullptr; 4017 } 4018 4019 // Check if address has undef value. 4020 if (isa<UndefValue>(Address) || 4021 (Address->use_empty() && !isa<Argument>(Address))) { 4022 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4023 return nullptr; 4024 } 4025 4026 SDValue &N = NodeMap[Address]; 4027 if (!N.getNode() && isa<Argument>(Address)) 4028 // Check unused arguments map. 4029 N = UnusedArgNodeMap[Address]; 4030 SDDbgValue *SDV; 4031 if (N.getNode()) { 4032 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4033 Address = BCI->getOperand(0); 4034 // Parameters are handled specially. 4035 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4036 isa<Argument>(Address); 4037 4038 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4039 4040 if (isParameter && !AI) { 4041 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4042 if (FINode) 4043 // Byval parameter. We have a frame index at this point. 4044 SDV = DAG.getFrameIndexDbgValue( 4045 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4046 else { 4047 // Address is an argument, so try to emit its dbg value using 4048 // virtual register info from the FuncInfo.ValueMap. 4049 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4050 N); 4051 return nullptr; 4052 } 4053 } else if (AI) 4054 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4055 true, 0, dl, SDNodeOrder); 4056 else { 4057 // Can't do anything with other non-AI cases yet. 4058 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4059 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4060 DEBUG(Address->dump()); 4061 return nullptr; 4062 } 4063 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4064 } else { 4065 // If Address is an argument then try to emit its dbg value using 4066 // virtual register info from the FuncInfo.ValueMap. 4067 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4068 N)) { 4069 // If variable is pinned by a alloca in dominating bb then 4070 // use StaticAllocaMap. 4071 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4072 if (AI->getParent() != DI.getParent()) { 4073 DenseMap<const AllocaInst*, int>::iterator SI = 4074 FuncInfo.StaticAllocaMap.find(AI); 4075 if (SI != FuncInfo.StaticAllocaMap.end()) { 4076 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4077 0, dl, SDNodeOrder); 4078 DAG.AddDbgValue(SDV, nullptr, false); 4079 return nullptr; 4080 } 4081 } 4082 } 4083 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4084 } 4085 } 4086 return nullptr; 4087 } 4088 case Intrinsic::dbg_value: { 4089 const DbgValueInst &DI = cast<DbgValueInst>(I); 4090 assert(DI.getVariable() && "Missing variable"); 4091 4092 MDLocalVariable *Variable = DI.getVariable(); 4093 MDExpression *Expression = DI.getExpression(); 4094 uint64_t Offset = DI.getOffset(); 4095 const Value *V = DI.getValue(); 4096 if (!V) 4097 return nullptr; 4098 4099 SDDbgValue *SDV; 4100 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4101 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4102 SDNodeOrder); 4103 DAG.AddDbgValue(SDV, nullptr, false); 4104 } else { 4105 // Do not use getValue() in here; we don't want to generate code at 4106 // this point if it hasn't been done yet. 4107 SDValue N = NodeMap[V]; 4108 if (!N.getNode() && isa<Argument>(V)) 4109 // Check unused arguments map. 4110 N = UnusedArgNodeMap[V]; 4111 if (N.getNode()) { 4112 // A dbg.value for an alloca is always indirect. 4113 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4114 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4115 IsIndirect, N)) { 4116 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4117 IsIndirect, Offset, dl, SDNodeOrder); 4118 DAG.AddDbgValue(SDV, N.getNode(), false); 4119 } 4120 } else if (!V->use_empty() ) { 4121 // Do not call getValue(V) yet, as we don't want to generate code. 4122 // Remember it for later. 4123 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4124 DanglingDebugInfoMap[V] = DDI; 4125 } else { 4126 // We may expand this to cover more cases. One case where we have no 4127 // data available is an unreferenced parameter. 4128 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4129 } 4130 } 4131 4132 // Build a debug info table entry. 4133 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4134 V = BCI->getOperand(0); 4135 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4136 // Don't handle byval struct arguments or VLAs, for example. 4137 if (!AI) { 4138 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4139 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4140 return nullptr; 4141 } 4142 DenseMap<const AllocaInst*, int>::iterator SI = 4143 FuncInfo.StaticAllocaMap.find(AI); 4144 if (SI == FuncInfo.StaticAllocaMap.end()) 4145 return nullptr; // VLAs. 4146 return nullptr; 4147 } 4148 4149 case Intrinsic::eh_typeid_for: { 4150 // Find the type id for the given typeinfo. 4151 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4152 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4153 Res = DAG.getConstant(TypeID, MVT::i32); 4154 setValue(&I, Res); 4155 return nullptr; 4156 } 4157 4158 case Intrinsic::eh_return_i32: 4159 case Intrinsic::eh_return_i64: 4160 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4161 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4162 MVT::Other, 4163 getControlRoot(), 4164 getValue(I.getArgOperand(0)), 4165 getValue(I.getArgOperand(1)))); 4166 return nullptr; 4167 case Intrinsic::eh_unwind_init: 4168 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4169 return nullptr; 4170 case Intrinsic::eh_dwarf_cfa: { 4171 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4172 TLI.getPointerTy()); 4173 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4174 CfaArg.getValueType(), 4175 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4176 CfaArg.getValueType()), 4177 CfaArg); 4178 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4179 DAG.getConstant(0, TLI.getPointerTy())); 4180 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4181 FA, Offset)); 4182 return nullptr; 4183 } 4184 case Intrinsic::eh_sjlj_callsite: { 4185 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4186 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4187 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4188 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4189 4190 MMI.setCurrentCallSite(CI->getZExtValue()); 4191 return nullptr; 4192 } 4193 case Intrinsic::eh_sjlj_functioncontext: { 4194 // Get and store the index of the function context. 4195 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4196 AllocaInst *FnCtx = 4197 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4198 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4199 MFI->setFunctionContextIndex(FI); 4200 return nullptr; 4201 } 4202 case Intrinsic::eh_sjlj_setjmp: { 4203 SDValue Ops[2]; 4204 Ops[0] = getRoot(); 4205 Ops[1] = getValue(I.getArgOperand(0)); 4206 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4207 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4208 setValue(&I, Op.getValue(0)); 4209 DAG.setRoot(Op.getValue(1)); 4210 return nullptr; 4211 } 4212 case Intrinsic::eh_sjlj_longjmp: { 4213 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4214 getRoot(), getValue(I.getArgOperand(0)))); 4215 return nullptr; 4216 } 4217 4218 case Intrinsic::masked_load: 4219 visitMaskedLoad(I); 4220 return nullptr; 4221 case Intrinsic::masked_store: 4222 visitMaskedStore(I); 4223 return nullptr; 4224 case Intrinsic::x86_mmx_pslli_w: 4225 case Intrinsic::x86_mmx_pslli_d: 4226 case Intrinsic::x86_mmx_pslli_q: 4227 case Intrinsic::x86_mmx_psrli_w: 4228 case Intrinsic::x86_mmx_psrli_d: 4229 case Intrinsic::x86_mmx_psrli_q: 4230 case Intrinsic::x86_mmx_psrai_w: 4231 case Intrinsic::x86_mmx_psrai_d: { 4232 SDValue ShAmt = getValue(I.getArgOperand(1)); 4233 if (isa<ConstantSDNode>(ShAmt)) { 4234 visitTargetIntrinsic(I, Intrinsic); 4235 return nullptr; 4236 } 4237 unsigned NewIntrinsic = 0; 4238 EVT ShAmtVT = MVT::v2i32; 4239 switch (Intrinsic) { 4240 case Intrinsic::x86_mmx_pslli_w: 4241 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4242 break; 4243 case Intrinsic::x86_mmx_pslli_d: 4244 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4245 break; 4246 case Intrinsic::x86_mmx_pslli_q: 4247 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4248 break; 4249 case Intrinsic::x86_mmx_psrli_w: 4250 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4251 break; 4252 case Intrinsic::x86_mmx_psrli_d: 4253 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4254 break; 4255 case Intrinsic::x86_mmx_psrli_q: 4256 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4257 break; 4258 case Intrinsic::x86_mmx_psrai_w: 4259 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4260 break; 4261 case Intrinsic::x86_mmx_psrai_d: 4262 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4263 break; 4264 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4265 } 4266 4267 // The vector shift intrinsics with scalars uses 32b shift amounts but 4268 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4269 // to be zero. 4270 // We must do this early because v2i32 is not a legal type. 4271 SDValue ShOps[2]; 4272 ShOps[0] = ShAmt; 4273 ShOps[1] = DAG.getConstant(0, MVT::i32); 4274 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4275 EVT DestVT = TLI.getValueType(I.getType()); 4276 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4277 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4278 DAG.getConstant(NewIntrinsic, MVT::i32), 4279 getValue(I.getArgOperand(0)), ShAmt); 4280 setValue(&I, Res); 4281 return nullptr; 4282 } 4283 case Intrinsic::convertff: 4284 case Intrinsic::convertfsi: 4285 case Intrinsic::convertfui: 4286 case Intrinsic::convertsif: 4287 case Intrinsic::convertuif: 4288 case Intrinsic::convertss: 4289 case Intrinsic::convertsu: 4290 case Intrinsic::convertus: 4291 case Intrinsic::convertuu: { 4292 ISD::CvtCode Code = ISD::CVT_INVALID; 4293 switch (Intrinsic) { 4294 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4295 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4296 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4297 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4298 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4299 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4300 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4301 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4302 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4303 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4304 } 4305 EVT DestVT = TLI.getValueType(I.getType()); 4306 const Value *Op1 = I.getArgOperand(0); 4307 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4308 DAG.getValueType(DestVT), 4309 DAG.getValueType(getValue(Op1).getValueType()), 4310 getValue(I.getArgOperand(1)), 4311 getValue(I.getArgOperand(2)), 4312 Code); 4313 setValue(&I, Res); 4314 return nullptr; 4315 } 4316 case Intrinsic::powi: 4317 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4318 getValue(I.getArgOperand(1)), DAG)); 4319 return nullptr; 4320 case Intrinsic::log: 4321 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4322 return nullptr; 4323 case Intrinsic::log2: 4324 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4325 return nullptr; 4326 case Intrinsic::log10: 4327 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4328 return nullptr; 4329 case Intrinsic::exp: 4330 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4331 return nullptr; 4332 case Intrinsic::exp2: 4333 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4334 return nullptr; 4335 case Intrinsic::pow: 4336 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4337 getValue(I.getArgOperand(1)), DAG, TLI)); 4338 return nullptr; 4339 case Intrinsic::sqrt: 4340 case Intrinsic::fabs: 4341 case Intrinsic::sin: 4342 case Intrinsic::cos: 4343 case Intrinsic::floor: 4344 case Intrinsic::ceil: 4345 case Intrinsic::trunc: 4346 case Intrinsic::rint: 4347 case Intrinsic::nearbyint: 4348 case Intrinsic::round: { 4349 unsigned Opcode; 4350 switch (Intrinsic) { 4351 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4352 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4353 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4354 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4355 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4356 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4357 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4358 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4359 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4360 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4361 case Intrinsic::round: Opcode = ISD::FROUND; break; 4362 } 4363 4364 setValue(&I, DAG.getNode(Opcode, sdl, 4365 getValue(I.getArgOperand(0)).getValueType(), 4366 getValue(I.getArgOperand(0)))); 4367 return nullptr; 4368 } 4369 case Intrinsic::minnum: 4370 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4371 getValue(I.getArgOperand(0)).getValueType(), 4372 getValue(I.getArgOperand(0)), 4373 getValue(I.getArgOperand(1)))); 4374 return nullptr; 4375 case Intrinsic::maxnum: 4376 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4377 getValue(I.getArgOperand(0)).getValueType(), 4378 getValue(I.getArgOperand(0)), 4379 getValue(I.getArgOperand(1)))); 4380 return nullptr; 4381 case Intrinsic::copysign: 4382 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4383 getValue(I.getArgOperand(0)).getValueType(), 4384 getValue(I.getArgOperand(0)), 4385 getValue(I.getArgOperand(1)))); 4386 return nullptr; 4387 case Intrinsic::fma: 4388 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4389 getValue(I.getArgOperand(0)).getValueType(), 4390 getValue(I.getArgOperand(0)), 4391 getValue(I.getArgOperand(1)), 4392 getValue(I.getArgOperand(2)))); 4393 return nullptr; 4394 case Intrinsic::fmuladd: { 4395 EVT VT = TLI.getValueType(I.getType()); 4396 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4397 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4398 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4399 getValue(I.getArgOperand(0)).getValueType(), 4400 getValue(I.getArgOperand(0)), 4401 getValue(I.getArgOperand(1)), 4402 getValue(I.getArgOperand(2)))); 4403 } else { 4404 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4405 getValue(I.getArgOperand(0)).getValueType(), 4406 getValue(I.getArgOperand(0)), 4407 getValue(I.getArgOperand(1))); 4408 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4409 getValue(I.getArgOperand(0)).getValueType(), 4410 Mul, 4411 getValue(I.getArgOperand(2))); 4412 setValue(&I, Add); 4413 } 4414 return nullptr; 4415 } 4416 case Intrinsic::convert_to_fp16: 4417 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4418 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4419 getValue(I.getArgOperand(0)), 4420 DAG.getTargetConstant(0, MVT::i32)))); 4421 return nullptr; 4422 case Intrinsic::convert_from_fp16: 4423 setValue(&I, 4424 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4425 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4426 getValue(I.getArgOperand(0))))); 4427 return nullptr; 4428 case Intrinsic::pcmarker: { 4429 SDValue Tmp = getValue(I.getArgOperand(0)); 4430 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4431 return nullptr; 4432 } 4433 case Intrinsic::readcyclecounter: { 4434 SDValue Op = getRoot(); 4435 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4436 DAG.getVTList(MVT::i64, MVT::Other), Op); 4437 setValue(&I, Res); 4438 DAG.setRoot(Res.getValue(1)); 4439 return nullptr; 4440 } 4441 case Intrinsic::bswap: 4442 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4443 getValue(I.getArgOperand(0)).getValueType(), 4444 getValue(I.getArgOperand(0)))); 4445 return nullptr; 4446 case Intrinsic::cttz: { 4447 SDValue Arg = getValue(I.getArgOperand(0)); 4448 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4449 EVT Ty = Arg.getValueType(); 4450 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4451 sdl, Ty, Arg)); 4452 return nullptr; 4453 } 4454 case Intrinsic::ctlz: { 4455 SDValue Arg = getValue(I.getArgOperand(0)); 4456 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4457 EVT Ty = Arg.getValueType(); 4458 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4459 sdl, Ty, Arg)); 4460 return nullptr; 4461 } 4462 case Intrinsic::ctpop: { 4463 SDValue Arg = getValue(I.getArgOperand(0)); 4464 EVT Ty = Arg.getValueType(); 4465 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4466 return nullptr; 4467 } 4468 case Intrinsic::stacksave: { 4469 SDValue Op = getRoot(); 4470 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4471 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4472 setValue(&I, Res); 4473 DAG.setRoot(Res.getValue(1)); 4474 return nullptr; 4475 } 4476 case Intrinsic::stackrestore: { 4477 Res = getValue(I.getArgOperand(0)); 4478 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4479 return nullptr; 4480 } 4481 case Intrinsic::stackprotector: { 4482 // Emit code into the DAG to store the stack guard onto the stack. 4483 MachineFunction &MF = DAG.getMachineFunction(); 4484 MachineFrameInfo *MFI = MF.getFrameInfo(); 4485 EVT PtrTy = TLI.getPointerTy(); 4486 SDValue Src, Chain = getRoot(); 4487 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4488 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4489 4490 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4491 // global variable __stack_chk_guard. 4492 if (!GV) 4493 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4494 if (BC->getOpcode() == Instruction::BitCast) 4495 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4496 4497 if (GV && TLI.useLoadStackGuardNode()) { 4498 // Emit a LOAD_STACK_GUARD node. 4499 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4500 sdl, PtrTy, Chain); 4501 MachinePointerInfo MPInfo(GV); 4502 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4503 unsigned Flags = MachineMemOperand::MOLoad | 4504 MachineMemOperand::MOInvariant; 4505 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4506 PtrTy.getSizeInBits() / 8, 4507 DAG.getEVTAlignment(PtrTy)); 4508 Node->setMemRefs(MemRefs, MemRefs + 1); 4509 4510 // Copy the guard value to a virtual register so that it can be 4511 // retrieved in the epilogue. 4512 Src = SDValue(Node, 0); 4513 const TargetRegisterClass *RC = 4514 TLI.getRegClassFor(Src.getSimpleValueType()); 4515 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4516 4517 SPDescriptor.setGuardReg(Reg); 4518 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4519 } else { 4520 Src = getValue(I.getArgOperand(0)); // The guard's value. 4521 } 4522 4523 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4524 4525 int FI = FuncInfo.StaticAllocaMap[Slot]; 4526 MFI->setStackProtectorIndex(FI); 4527 4528 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4529 4530 // Store the stack protector onto the stack. 4531 Res = DAG.getStore(Chain, sdl, Src, FIN, 4532 MachinePointerInfo::getFixedStack(FI), 4533 true, false, 0); 4534 setValue(&I, Res); 4535 DAG.setRoot(Res); 4536 return nullptr; 4537 } 4538 case Intrinsic::objectsize: { 4539 // If we don't know by now, we're never going to know. 4540 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4541 4542 assert(CI && "Non-constant type in __builtin_object_size?"); 4543 4544 SDValue Arg = getValue(I.getCalledValue()); 4545 EVT Ty = Arg.getValueType(); 4546 4547 if (CI->isZero()) 4548 Res = DAG.getConstant(-1ULL, Ty); 4549 else 4550 Res = DAG.getConstant(0, Ty); 4551 4552 setValue(&I, Res); 4553 return nullptr; 4554 } 4555 case Intrinsic::annotation: 4556 case Intrinsic::ptr_annotation: 4557 // Drop the intrinsic, but forward the value 4558 setValue(&I, getValue(I.getOperand(0))); 4559 return nullptr; 4560 case Intrinsic::assume: 4561 case Intrinsic::var_annotation: 4562 // Discard annotate attributes and assumptions 4563 return nullptr; 4564 4565 case Intrinsic::init_trampoline: { 4566 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4567 4568 SDValue Ops[6]; 4569 Ops[0] = getRoot(); 4570 Ops[1] = getValue(I.getArgOperand(0)); 4571 Ops[2] = getValue(I.getArgOperand(1)); 4572 Ops[3] = getValue(I.getArgOperand(2)); 4573 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4574 Ops[5] = DAG.getSrcValue(F); 4575 4576 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4577 4578 DAG.setRoot(Res); 4579 return nullptr; 4580 } 4581 case Intrinsic::adjust_trampoline: { 4582 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4583 TLI.getPointerTy(), 4584 getValue(I.getArgOperand(0)))); 4585 return nullptr; 4586 } 4587 case Intrinsic::gcroot: 4588 if (GFI) { 4589 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4590 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4591 4592 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4593 GFI->addStackRoot(FI->getIndex(), TypeMap); 4594 } 4595 return nullptr; 4596 case Intrinsic::gcread: 4597 case Intrinsic::gcwrite: 4598 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4599 case Intrinsic::flt_rounds: 4600 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4601 return nullptr; 4602 4603 case Intrinsic::expect: { 4604 // Just replace __builtin_expect(exp, c) with EXP. 4605 setValue(&I, getValue(I.getArgOperand(0))); 4606 return nullptr; 4607 } 4608 4609 case Intrinsic::debugtrap: 4610 case Intrinsic::trap: { 4611 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4612 if (TrapFuncName.empty()) { 4613 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4614 ISD::TRAP : ISD::DEBUGTRAP; 4615 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4616 return nullptr; 4617 } 4618 TargetLowering::ArgListTy Args; 4619 4620 TargetLowering::CallLoweringInfo CLI(DAG); 4621 CLI.setDebugLoc(sdl).setChain(getRoot()) 4622 .setCallee(CallingConv::C, I.getType(), 4623 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4624 std::move(Args), 0); 4625 4626 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4627 DAG.setRoot(Result.second); 4628 return nullptr; 4629 } 4630 4631 case Intrinsic::uadd_with_overflow: 4632 case Intrinsic::sadd_with_overflow: 4633 case Intrinsic::usub_with_overflow: 4634 case Intrinsic::ssub_with_overflow: 4635 case Intrinsic::umul_with_overflow: 4636 case Intrinsic::smul_with_overflow: { 4637 ISD::NodeType Op; 4638 switch (Intrinsic) { 4639 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4640 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4641 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4642 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4643 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4644 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4645 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4646 } 4647 SDValue Op1 = getValue(I.getArgOperand(0)); 4648 SDValue Op2 = getValue(I.getArgOperand(1)); 4649 4650 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4651 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4652 return nullptr; 4653 } 4654 case Intrinsic::prefetch: { 4655 SDValue Ops[5]; 4656 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4657 Ops[0] = getRoot(); 4658 Ops[1] = getValue(I.getArgOperand(0)); 4659 Ops[2] = getValue(I.getArgOperand(1)); 4660 Ops[3] = getValue(I.getArgOperand(2)); 4661 Ops[4] = getValue(I.getArgOperand(3)); 4662 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4663 DAG.getVTList(MVT::Other), Ops, 4664 EVT::getIntegerVT(*Context, 8), 4665 MachinePointerInfo(I.getArgOperand(0)), 4666 0, /* align */ 4667 false, /* volatile */ 4668 rw==0, /* read */ 4669 rw==1)); /* write */ 4670 return nullptr; 4671 } 4672 case Intrinsic::lifetime_start: 4673 case Intrinsic::lifetime_end: { 4674 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4675 // Stack coloring is not enabled in O0, discard region information. 4676 if (TM.getOptLevel() == CodeGenOpt::None) 4677 return nullptr; 4678 4679 SmallVector<Value *, 4> Allocas; 4680 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4681 4682 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4683 E = Allocas.end(); Object != E; ++Object) { 4684 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4685 4686 // Could not find an Alloca. 4687 if (!LifetimeObject) 4688 continue; 4689 4690 // First check that the Alloca is static, otherwise it won't have a 4691 // valid frame index. 4692 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4693 if (SI == FuncInfo.StaticAllocaMap.end()) 4694 return nullptr; 4695 4696 int FI = SI->second; 4697 4698 SDValue Ops[2]; 4699 Ops[0] = getRoot(); 4700 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4701 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4702 4703 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4704 DAG.setRoot(Res); 4705 } 4706 return nullptr; 4707 } 4708 case Intrinsic::invariant_start: 4709 // Discard region information. 4710 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4711 return nullptr; 4712 case Intrinsic::invariant_end: 4713 // Discard region information. 4714 return nullptr; 4715 case Intrinsic::stackprotectorcheck: { 4716 // Do not actually emit anything for this basic block. Instead we initialize 4717 // the stack protector descriptor and export the guard variable so we can 4718 // access it in FinishBasicBlock. 4719 const BasicBlock *BB = I.getParent(); 4720 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4721 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4722 4723 // Flush our exports since we are going to process a terminator. 4724 (void)getControlRoot(); 4725 return nullptr; 4726 } 4727 case Intrinsic::clear_cache: 4728 return TLI.getClearCacheBuiltinName(); 4729 case Intrinsic::eh_actions: 4730 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4731 return nullptr; 4732 case Intrinsic::donothing: 4733 // ignore 4734 return nullptr; 4735 case Intrinsic::experimental_stackmap: { 4736 visitStackmap(I); 4737 return nullptr; 4738 } 4739 case Intrinsic::experimental_patchpoint_void: 4740 case Intrinsic::experimental_patchpoint_i64: { 4741 visitPatchpoint(&I); 4742 return nullptr; 4743 } 4744 case Intrinsic::experimental_gc_statepoint: { 4745 visitStatepoint(I); 4746 return nullptr; 4747 } 4748 case Intrinsic::experimental_gc_result_int: 4749 case Intrinsic::experimental_gc_result_float: 4750 case Intrinsic::experimental_gc_result_ptr: 4751 case Intrinsic::experimental_gc_result: { 4752 visitGCResult(I); 4753 return nullptr; 4754 } 4755 case Intrinsic::experimental_gc_relocate: { 4756 visitGCRelocate(I); 4757 return nullptr; 4758 } 4759 case Intrinsic::instrprof_increment: 4760 llvm_unreachable("instrprof failed to lower an increment"); 4761 4762 case Intrinsic::frameescape: { 4763 MachineFunction &MF = DAG.getMachineFunction(); 4764 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4765 4766 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4767 // is the same on all targets. 4768 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4769 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4770 if (isa<ConstantPointerNull>(Arg)) 4771 continue; // Skip null pointers. They represent a hole in index space. 4772 AllocaInst *Slot = cast<AllocaInst>(Arg); 4773 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4774 "can only escape static allocas"); 4775 int FI = FuncInfo.StaticAllocaMap[Slot]; 4776 MCSymbol *FrameAllocSym = 4777 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4778 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4780 TII->get(TargetOpcode::FRAME_ALLOC)) 4781 .addSym(FrameAllocSym) 4782 .addFrameIndex(FI); 4783 } 4784 4785 return nullptr; 4786 } 4787 4788 case Intrinsic::framerecover: { 4789 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4790 MachineFunction &MF = DAG.getMachineFunction(); 4791 MVT PtrVT = TLI.getPointerTy(0); 4792 4793 // Get the symbol that defines the frame offset. 4794 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4795 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4796 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4797 MCSymbol *FrameAllocSym = 4798 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4799 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4800 4801 // Create a TargetExternalSymbol for the label to avoid any target lowering 4802 // that would make this PC relative. 4803 StringRef Name = FrameAllocSym->getName(); 4804 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4805 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4806 SDValue OffsetVal = 4807 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4808 4809 // Add the offset to the FP. 4810 Value *FP = I.getArgOperand(1); 4811 SDValue FPVal = getValue(FP); 4812 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4813 setValue(&I, Add); 4814 4815 return nullptr; 4816 } 4817 case Intrinsic::eh_begincatch: 4818 case Intrinsic::eh_endcatch: 4819 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4820 case Intrinsic::eh_exceptioncode: { 4821 unsigned Reg = TLI.getExceptionPointerRegister(); 4822 assert(Reg && "cannot get exception code on this platform"); 4823 MVT PtrVT = TLI.getPointerTy(); 4824 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4825 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 4826 SDValue N = 4827 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 4828 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 4829 setValue(&I, N); 4830 return nullptr; 4831 } 4832 } 4833 } 4834 4835 std::pair<SDValue, SDValue> 4836 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 4837 MachineBasicBlock *LandingPad) { 4838 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4839 MCSymbol *BeginLabel = nullptr; 4840 4841 if (LandingPad) { 4842 // Insert a label before the invoke call to mark the try range. This can be 4843 // used to detect deletion of the invoke via the MachineModuleInfo. 4844 BeginLabel = MMI.getContext().CreateTempSymbol(); 4845 4846 // For SjLj, keep track of which landing pads go with which invokes 4847 // so as to maintain the ordering of pads in the LSDA. 4848 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4849 if (CallSiteIndex) { 4850 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4851 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 4852 4853 // Now that the call site is handled, stop tracking it. 4854 MMI.setCurrentCallSite(0); 4855 } 4856 4857 // Both PendingLoads and PendingExports must be flushed here; 4858 // this call might not return. 4859 (void)getRoot(); 4860 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 4861 4862 CLI.setChain(getRoot()); 4863 } 4864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4865 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4866 4867 assert((CLI.IsTailCall || Result.second.getNode()) && 4868 "Non-null chain expected with non-tail call!"); 4869 assert((Result.second.getNode() || !Result.first.getNode()) && 4870 "Null value expected with tail call!"); 4871 4872 if (!Result.second.getNode()) { 4873 // As a special case, a null chain means that a tail call has been emitted 4874 // and the DAG root is already updated. 4875 HasTailCall = true; 4876 4877 // Since there's no actual continuation from this block, nothing can be 4878 // relying on us setting vregs for them. 4879 PendingExports.clear(); 4880 } else { 4881 DAG.setRoot(Result.second); 4882 } 4883 4884 if (LandingPad) { 4885 // Insert a label at the end of the invoke call to mark the try range. This 4886 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4887 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4888 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 4889 4890 // Inform MachineModuleInfo of range. 4891 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4892 } 4893 4894 return Result; 4895 } 4896 4897 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4898 bool isTailCall, 4899 MachineBasicBlock *LandingPad) { 4900 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4901 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4902 Type *RetTy = FTy->getReturnType(); 4903 4904 TargetLowering::ArgListTy Args; 4905 TargetLowering::ArgListEntry Entry; 4906 Args.reserve(CS.arg_size()); 4907 4908 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4909 i != e; ++i) { 4910 const Value *V = *i; 4911 4912 // Skip empty types 4913 if (V->getType()->isEmptyTy()) 4914 continue; 4915 4916 SDValue ArgNode = getValue(V); 4917 Entry.Node = ArgNode; Entry.Ty = V->getType(); 4918 4919 // Skip the first return-type Attribute to get to params. 4920 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 4921 Args.push_back(Entry); 4922 4923 // If we have an explicit sret argument that is an Instruction, (i.e., it 4924 // might point to function-local memory), we can't meaningfully tail-call. 4925 if (Entry.isSRet && isa<Instruction>(V)) 4926 isTailCall = false; 4927 } 4928 4929 // Check if target-independent constraints permit a tail call here. 4930 // Target-dependent constraints are checked within TLI->LowerCallTo. 4931 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 4932 isTailCall = false; 4933 4934 TargetLowering::CallLoweringInfo CLI(DAG); 4935 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 4936 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 4937 .setTailCall(isTailCall); 4938 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 4939 4940 if (Result.first.getNode()) 4941 setValue(CS.getInstruction(), Result.first); 4942 } 4943 4944 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4945 /// value is equal or not-equal to zero. 4946 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4947 for (const User *U : V->users()) { 4948 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 4949 if (IC->isEquality()) 4950 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4951 if (C->isNullValue()) 4952 continue; 4953 // Unknown instruction. 4954 return false; 4955 } 4956 return true; 4957 } 4958 4959 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4960 Type *LoadTy, 4961 SelectionDAGBuilder &Builder) { 4962 4963 // Check to see if this load can be trivially constant folded, e.g. if the 4964 // input is from a string literal. 4965 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4966 // Cast pointer to the type we really want to load. 4967 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4968 PointerType::getUnqual(LoadTy)); 4969 4970 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 4971 const_cast<Constant *>(LoadInput), *Builder.DL)) 4972 return Builder.getValue(LoadCst); 4973 } 4974 4975 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4976 // still constant memory, the input chain can be the entry node. 4977 SDValue Root; 4978 bool ConstantMemory = false; 4979 4980 // Do not serialize (non-volatile) loads of constant memory with anything. 4981 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4982 Root = Builder.DAG.getEntryNode(); 4983 ConstantMemory = true; 4984 } else { 4985 // Do not serialize non-volatile loads against each other. 4986 Root = Builder.DAG.getRoot(); 4987 } 4988 4989 SDValue Ptr = Builder.getValue(PtrVal); 4990 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 4991 Ptr, MachinePointerInfo(PtrVal), 4992 false /*volatile*/, 4993 false /*nontemporal*/, 4994 false /*isinvariant*/, 1 /* align=1 */); 4995 4996 if (!ConstantMemory) 4997 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4998 return LoadVal; 4999 } 5000 5001 /// processIntegerCallValue - Record the value for an instruction that 5002 /// produces an integer result, converting the type where necessary. 5003 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5004 SDValue Value, 5005 bool IsSigned) { 5006 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5007 if (IsSigned) 5008 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5009 else 5010 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5011 setValue(&I, Value); 5012 } 5013 5014 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5015 /// If so, return true and lower it, otherwise return false and it will be 5016 /// lowered like a normal call. 5017 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5018 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5019 if (I.getNumArgOperands() != 3) 5020 return false; 5021 5022 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5023 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5024 !I.getArgOperand(2)->getType()->isIntegerTy() || 5025 !I.getType()->isIntegerTy()) 5026 return false; 5027 5028 const Value *Size = I.getArgOperand(2); 5029 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5030 if (CSize && CSize->getZExtValue() == 0) { 5031 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5032 setValue(&I, DAG.getConstant(0, CallVT)); 5033 return true; 5034 } 5035 5036 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5037 std::pair<SDValue, SDValue> Res = 5038 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5039 getValue(LHS), getValue(RHS), getValue(Size), 5040 MachinePointerInfo(LHS), 5041 MachinePointerInfo(RHS)); 5042 if (Res.first.getNode()) { 5043 processIntegerCallValue(I, Res.first, true); 5044 PendingLoads.push_back(Res.second); 5045 return true; 5046 } 5047 5048 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5049 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5050 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5051 bool ActuallyDoIt = true; 5052 MVT LoadVT; 5053 Type *LoadTy; 5054 switch (CSize->getZExtValue()) { 5055 default: 5056 LoadVT = MVT::Other; 5057 LoadTy = nullptr; 5058 ActuallyDoIt = false; 5059 break; 5060 case 2: 5061 LoadVT = MVT::i16; 5062 LoadTy = Type::getInt16Ty(CSize->getContext()); 5063 break; 5064 case 4: 5065 LoadVT = MVT::i32; 5066 LoadTy = Type::getInt32Ty(CSize->getContext()); 5067 break; 5068 case 8: 5069 LoadVT = MVT::i64; 5070 LoadTy = Type::getInt64Ty(CSize->getContext()); 5071 break; 5072 /* 5073 case 16: 5074 LoadVT = MVT::v4i32; 5075 LoadTy = Type::getInt32Ty(CSize->getContext()); 5076 LoadTy = VectorType::get(LoadTy, 4); 5077 break; 5078 */ 5079 } 5080 5081 // This turns into unaligned loads. We only do this if the target natively 5082 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5083 // we'll only produce a small number of byte loads. 5084 5085 // Require that we can find a legal MVT, and only do this if the target 5086 // supports unaligned loads of that type. Expanding into byte loads would 5087 // bloat the code. 5088 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5089 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5090 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5091 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5092 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5093 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5094 // TODO: Check alignment of src and dest ptrs. 5095 if (!TLI.isTypeLegal(LoadVT) || 5096 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5097 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5098 ActuallyDoIt = false; 5099 } 5100 5101 if (ActuallyDoIt) { 5102 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5103 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5104 5105 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5106 ISD::SETNE); 5107 processIntegerCallValue(I, Res, false); 5108 return true; 5109 } 5110 } 5111 5112 5113 return false; 5114 } 5115 5116 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5117 /// form. If so, return true and lower it, otherwise return false and it 5118 /// will be lowered like a normal call. 5119 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5120 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5121 if (I.getNumArgOperands() != 3) 5122 return false; 5123 5124 const Value *Src = I.getArgOperand(0); 5125 const Value *Char = I.getArgOperand(1); 5126 const Value *Length = I.getArgOperand(2); 5127 if (!Src->getType()->isPointerTy() || 5128 !Char->getType()->isIntegerTy() || 5129 !Length->getType()->isIntegerTy() || 5130 !I.getType()->isPointerTy()) 5131 return false; 5132 5133 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5134 std::pair<SDValue, SDValue> Res = 5135 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5136 getValue(Src), getValue(Char), getValue(Length), 5137 MachinePointerInfo(Src)); 5138 if (Res.first.getNode()) { 5139 setValue(&I, Res.first); 5140 PendingLoads.push_back(Res.second); 5141 return true; 5142 } 5143 5144 return false; 5145 } 5146 5147 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5148 /// optimized form. If so, return true and lower it, otherwise return false 5149 /// and it will be lowered like a normal call. 5150 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5151 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5152 if (I.getNumArgOperands() != 2) 5153 return false; 5154 5155 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5156 if (!Arg0->getType()->isPointerTy() || 5157 !Arg1->getType()->isPointerTy() || 5158 !I.getType()->isPointerTy()) 5159 return false; 5160 5161 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5162 std::pair<SDValue, SDValue> Res = 5163 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5164 getValue(Arg0), getValue(Arg1), 5165 MachinePointerInfo(Arg0), 5166 MachinePointerInfo(Arg1), isStpcpy); 5167 if (Res.first.getNode()) { 5168 setValue(&I, Res.first); 5169 DAG.setRoot(Res.second); 5170 return true; 5171 } 5172 5173 return false; 5174 } 5175 5176 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5177 /// If so, return true and lower it, otherwise return false and it will be 5178 /// lowered like a normal call. 5179 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5180 // Verify that the prototype makes sense. int strcmp(void*,void*) 5181 if (I.getNumArgOperands() != 2) 5182 return false; 5183 5184 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5185 if (!Arg0->getType()->isPointerTy() || 5186 !Arg1->getType()->isPointerTy() || 5187 !I.getType()->isIntegerTy()) 5188 return false; 5189 5190 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5191 std::pair<SDValue, SDValue> Res = 5192 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5193 getValue(Arg0), getValue(Arg1), 5194 MachinePointerInfo(Arg0), 5195 MachinePointerInfo(Arg1)); 5196 if (Res.first.getNode()) { 5197 processIntegerCallValue(I, Res.first, true); 5198 PendingLoads.push_back(Res.second); 5199 return true; 5200 } 5201 5202 return false; 5203 } 5204 5205 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5206 /// form. If so, return true and lower it, otherwise return false and it 5207 /// will be lowered like a normal call. 5208 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5209 // Verify that the prototype makes sense. size_t strlen(char *) 5210 if (I.getNumArgOperands() != 1) 5211 return false; 5212 5213 const Value *Arg0 = I.getArgOperand(0); 5214 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5215 return false; 5216 5217 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5218 std::pair<SDValue, SDValue> Res = 5219 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5220 getValue(Arg0), MachinePointerInfo(Arg0)); 5221 if (Res.first.getNode()) { 5222 processIntegerCallValue(I, Res.first, false); 5223 PendingLoads.push_back(Res.second); 5224 return true; 5225 } 5226 5227 return false; 5228 } 5229 5230 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5231 /// form. If so, return true and lower it, otherwise return false and it 5232 /// will be lowered like a normal call. 5233 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5234 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5235 if (I.getNumArgOperands() != 2) 5236 return false; 5237 5238 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5239 if (!Arg0->getType()->isPointerTy() || 5240 !Arg1->getType()->isIntegerTy() || 5241 !I.getType()->isIntegerTy()) 5242 return false; 5243 5244 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5245 std::pair<SDValue, SDValue> Res = 5246 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5247 getValue(Arg0), getValue(Arg1), 5248 MachinePointerInfo(Arg0)); 5249 if (Res.first.getNode()) { 5250 processIntegerCallValue(I, Res.first, false); 5251 PendingLoads.push_back(Res.second); 5252 return true; 5253 } 5254 5255 return false; 5256 } 5257 5258 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5259 /// operation (as expected), translate it to an SDNode with the specified opcode 5260 /// and return true. 5261 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5262 unsigned Opcode) { 5263 // Sanity check that it really is a unary floating-point call. 5264 if (I.getNumArgOperands() != 1 || 5265 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5266 I.getType() != I.getArgOperand(0)->getType() || 5267 !I.onlyReadsMemory()) 5268 return false; 5269 5270 SDValue Tmp = getValue(I.getArgOperand(0)); 5271 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5272 return true; 5273 } 5274 5275 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5276 /// operation (as expected), translate it to an SDNode with the specified opcode 5277 /// and return true. 5278 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5279 unsigned Opcode) { 5280 // Sanity check that it really is a binary floating-point call. 5281 if (I.getNumArgOperands() != 2 || 5282 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5283 I.getType() != I.getArgOperand(0)->getType() || 5284 I.getType() != I.getArgOperand(1)->getType() || 5285 !I.onlyReadsMemory()) 5286 return false; 5287 5288 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5289 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5290 EVT VT = Tmp0.getValueType(); 5291 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5292 return true; 5293 } 5294 5295 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5296 // Handle inline assembly differently. 5297 if (isa<InlineAsm>(I.getCalledValue())) { 5298 visitInlineAsm(&I); 5299 return; 5300 } 5301 5302 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5303 ComputeUsesVAFloatArgument(I, &MMI); 5304 5305 const char *RenameFn = nullptr; 5306 if (Function *F = I.getCalledFunction()) { 5307 if (F->isDeclaration()) { 5308 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5309 if (unsigned IID = II->getIntrinsicID(F)) { 5310 RenameFn = visitIntrinsicCall(I, IID); 5311 if (!RenameFn) 5312 return; 5313 } 5314 } 5315 if (unsigned IID = F->getIntrinsicID()) { 5316 RenameFn = visitIntrinsicCall(I, IID); 5317 if (!RenameFn) 5318 return; 5319 } 5320 } 5321 5322 // Check for well-known libc/libm calls. If the function is internal, it 5323 // can't be a library call. 5324 LibFunc::Func Func; 5325 if (!F->hasLocalLinkage() && F->hasName() && 5326 LibInfo->getLibFunc(F->getName(), Func) && 5327 LibInfo->hasOptimizedCodeGen(Func)) { 5328 switch (Func) { 5329 default: break; 5330 case LibFunc::copysign: 5331 case LibFunc::copysignf: 5332 case LibFunc::copysignl: 5333 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5334 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5335 I.getType() == I.getArgOperand(0)->getType() && 5336 I.getType() == I.getArgOperand(1)->getType() && 5337 I.onlyReadsMemory()) { 5338 SDValue LHS = getValue(I.getArgOperand(0)); 5339 SDValue RHS = getValue(I.getArgOperand(1)); 5340 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5341 LHS.getValueType(), LHS, RHS)); 5342 return; 5343 } 5344 break; 5345 case LibFunc::fabs: 5346 case LibFunc::fabsf: 5347 case LibFunc::fabsl: 5348 if (visitUnaryFloatCall(I, ISD::FABS)) 5349 return; 5350 break; 5351 case LibFunc::fmin: 5352 case LibFunc::fminf: 5353 case LibFunc::fminl: 5354 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5355 return; 5356 break; 5357 case LibFunc::fmax: 5358 case LibFunc::fmaxf: 5359 case LibFunc::fmaxl: 5360 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5361 return; 5362 break; 5363 case LibFunc::sin: 5364 case LibFunc::sinf: 5365 case LibFunc::sinl: 5366 if (visitUnaryFloatCall(I, ISD::FSIN)) 5367 return; 5368 break; 5369 case LibFunc::cos: 5370 case LibFunc::cosf: 5371 case LibFunc::cosl: 5372 if (visitUnaryFloatCall(I, ISD::FCOS)) 5373 return; 5374 break; 5375 case LibFunc::sqrt: 5376 case LibFunc::sqrtf: 5377 case LibFunc::sqrtl: 5378 case LibFunc::sqrt_finite: 5379 case LibFunc::sqrtf_finite: 5380 case LibFunc::sqrtl_finite: 5381 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5382 return; 5383 break; 5384 case LibFunc::floor: 5385 case LibFunc::floorf: 5386 case LibFunc::floorl: 5387 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5388 return; 5389 break; 5390 case LibFunc::nearbyint: 5391 case LibFunc::nearbyintf: 5392 case LibFunc::nearbyintl: 5393 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5394 return; 5395 break; 5396 case LibFunc::ceil: 5397 case LibFunc::ceilf: 5398 case LibFunc::ceill: 5399 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5400 return; 5401 break; 5402 case LibFunc::rint: 5403 case LibFunc::rintf: 5404 case LibFunc::rintl: 5405 if (visitUnaryFloatCall(I, ISD::FRINT)) 5406 return; 5407 break; 5408 case LibFunc::round: 5409 case LibFunc::roundf: 5410 case LibFunc::roundl: 5411 if (visitUnaryFloatCall(I, ISD::FROUND)) 5412 return; 5413 break; 5414 case LibFunc::trunc: 5415 case LibFunc::truncf: 5416 case LibFunc::truncl: 5417 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5418 return; 5419 break; 5420 case LibFunc::log2: 5421 case LibFunc::log2f: 5422 case LibFunc::log2l: 5423 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5424 return; 5425 break; 5426 case LibFunc::exp2: 5427 case LibFunc::exp2f: 5428 case LibFunc::exp2l: 5429 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5430 return; 5431 break; 5432 case LibFunc::memcmp: 5433 if (visitMemCmpCall(I)) 5434 return; 5435 break; 5436 case LibFunc::memchr: 5437 if (visitMemChrCall(I)) 5438 return; 5439 break; 5440 case LibFunc::strcpy: 5441 if (visitStrCpyCall(I, false)) 5442 return; 5443 break; 5444 case LibFunc::stpcpy: 5445 if (visitStrCpyCall(I, true)) 5446 return; 5447 break; 5448 case LibFunc::strcmp: 5449 if (visitStrCmpCall(I)) 5450 return; 5451 break; 5452 case LibFunc::strlen: 5453 if (visitStrLenCall(I)) 5454 return; 5455 break; 5456 case LibFunc::strnlen: 5457 if (visitStrNLenCall(I)) 5458 return; 5459 break; 5460 } 5461 } 5462 } 5463 5464 SDValue Callee; 5465 if (!RenameFn) 5466 Callee = getValue(I.getCalledValue()); 5467 else 5468 Callee = DAG.getExternalSymbol(RenameFn, 5469 DAG.getTargetLoweringInfo().getPointerTy()); 5470 5471 // Check if we can potentially perform a tail call. More detailed checking is 5472 // be done within LowerCallTo, after more information about the call is known. 5473 LowerCallTo(&I, Callee, I.isTailCall()); 5474 } 5475 5476 namespace { 5477 5478 /// AsmOperandInfo - This contains information for each constraint that we are 5479 /// lowering. 5480 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5481 public: 5482 /// CallOperand - If this is the result output operand or a clobber 5483 /// this is null, otherwise it is the incoming operand to the CallInst. 5484 /// This gets modified as the asm is processed. 5485 SDValue CallOperand; 5486 5487 /// AssignedRegs - If this is a register or register class operand, this 5488 /// contains the set of register corresponding to the operand. 5489 RegsForValue AssignedRegs; 5490 5491 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5492 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5493 } 5494 5495 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5496 /// corresponds to. If there is no Value* for this operand, it returns 5497 /// MVT::Other. 5498 EVT getCallOperandValEVT(LLVMContext &Context, 5499 const TargetLowering &TLI, 5500 const DataLayout *DL) const { 5501 if (!CallOperandVal) return MVT::Other; 5502 5503 if (isa<BasicBlock>(CallOperandVal)) 5504 return TLI.getPointerTy(); 5505 5506 llvm::Type *OpTy = CallOperandVal->getType(); 5507 5508 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5509 // If this is an indirect operand, the operand is a pointer to the 5510 // accessed type. 5511 if (isIndirect) { 5512 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5513 if (!PtrTy) 5514 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5515 OpTy = PtrTy->getElementType(); 5516 } 5517 5518 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5519 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5520 if (STy->getNumElements() == 1) 5521 OpTy = STy->getElementType(0); 5522 5523 // If OpTy is not a single value, it may be a struct/union that we 5524 // can tile with integers. 5525 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5526 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5527 switch (BitSize) { 5528 default: break; 5529 case 1: 5530 case 8: 5531 case 16: 5532 case 32: 5533 case 64: 5534 case 128: 5535 OpTy = IntegerType::get(Context, BitSize); 5536 break; 5537 } 5538 } 5539 5540 return TLI.getValueType(OpTy, true); 5541 } 5542 }; 5543 5544 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5545 5546 } // end anonymous namespace 5547 5548 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5549 /// specified operand. We prefer to assign virtual registers, to allow the 5550 /// register allocator to handle the assignment process. However, if the asm 5551 /// uses features that we can't model on machineinstrs, we have SDISel do the 5552 /// allocation. This produces generally horrible, but correct, code. 5553 /// 5554 /// OpInfo describes the operand. 5555 /// 5556 static void GetRegistersForValue(SelectionDAG &DAG, 5557 const TargetLowering &TLI, 5558 SDLoc DL, 5559 SDISelAsmOperandInfo &OpInfo) { 5560 LLVMContext &Context = *DAG.getContext(); 5561 5562 MachineFunction &MF = DAG.getMachineFunction(); 5563 SmallVector<unsigned, 4> Regs; 5564 5565 // If this is a constraint for a single physreg, or a constraint for a 5566 // register class, find it. 5567 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5568 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5569 OpInfo.ConstraintCode, 5570 OpInfo.ConstraintVT); 5571 5572 unsigned NumRegs = 1; 5573 if (OpInfo.ConstraintVT != MVT::Other) { 5574 // If this is a FP input in an integer register (or visa versa) insert a bit 5575 // cast of the input value. More generally, handle any case where the input 5576 // value disagrees with the register class we plan to stick this in. 5577 if (OpInfo.Type == InlineAsm::isInput && 5578 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5579 // Try to convert to the first EVT that the reg class contains. If the 5580 // types are identical size, use a bitcast to convert (e.g. two differing 5581 // vector types). 5582 MVT RegVT = *PhysReg.second->vt_begin(); 5583 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5584 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5585 RegVT, OpInfo.CallOperand); 5586 OpInfo.ConstraintVT = RegVT; 5587 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5588 // If the input is a FP value and we want it in FP registers, do a 5589 // bitcast to the corresponding integer type. This turns an f64 value 5590 // into i64, which can be passed with two i32 values on a 32-bit 5591 // machine. 5592 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5593 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5594 RegVT, OpInfo.CallOperand); 5595 OpInfo.ConstraintVT = RegVT; 5596 } 5597 } 5598 5599 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5600 } 5601 5602 MVT RegVT; 5603 EVT ValueVT = OpInfo.ConstraintVT; 5604 5605 // If this is a constraint for a specific physical register, like {r17}, 5606 // assign it now. 5607 if (unsigned AssignedReg = PhysReg.first) { 5608 const TargetRegisterClass *RC = PhysReg.second; 5609 if (OpInfo.ConstraintVT == MVT::Other) 5610 ValueVT = *RC->vt_begin(); 5611 5612 // Get the actual register value type. This is important, because the user 5613 // may have asked for (e.g.) the AX register in i32 type. We need to 5614 // remember that AX is actually i16 to get the right extension. 5615 RegVT = *RC->vt_begin(); 5616 5617 // This is a explicit reference to a physical register. 5618 Regs.push_back(AssignedReg); 5619 5620 // If this is an expanded reference, add the rest of the regs to Regs. 5621 if (NumRegs != 1) { 5622 TargetRegisterClass::iterator I = RC->begin(); 5623 for (; *I != AssignedReg; ++I) 5624 assert(I != RC->end() && "Didn't find reg!"); 5625 5626 // Already added the first reg. 5627 --NumRegs; ++I; 5628 for (; NumRegs; --NumRegs, ++I) { 5629 assert(I != RC->end() && "Ran out of registers to allocate!"); 5630 Regs.push_back(*I); 5631 } 5632 } 5633 5634 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5635 return; 5636 } 5637 5638 // Otherwise, if this was a reference to an LLVM register class, create vregs 5639 // for this reference. 5640 if (const TargetRegisterClass *RC = PhysReg.second) { 5641 RegVT = *RC->vt_begin(); 5642 if (OpInfo.ConstraintVT == MVT::Other) 5643 ValueVT = RegVT; 5644 5645 // Create the appropriate number of virtual registers. 5646 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5647 for (; NumRegs; --NumRegs) 5648 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5649 5650 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5651 return; 5652 } 5653 5654 // Otherwise, we couldn't allocate enough registers for this. 5655 } 5656 5657 /// visitInlineAsm - Handle a call to an InlineAsm object. 5658 /// 5659 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5660 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5661 5662 /// ConstraintOperands - Information about all of the constraints. 5663 SDISelAsmOperandInfoVector ConstraintOperands; 5664 5665 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5666 TargetLowering::AsmOperandInfoVector TargetConstraints = 5667 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5668 5669 bool hasMemory = false; 5670 5671 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5672 unsigned ResNo = 0; // ResNo - The result number of the next output. 5673 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5674 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5675 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5676 5677 MVT OpVT = MVT::Other; 5678 5679 // Compute the value type for each operand. 5680 switch (OpInfo.Type) { 5681 case InlineAsm::isOutput: 5682 // Indirect outputs just consume an argument. 5683 if (OpInfo.isIndirect) { 5684 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5685 break; 5686 } 5687 5688 // The return value of the call is this value. As such, there is no 5689 // corresponding argument. 5690 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5691 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5692 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5693 } else { 5694 assert(ResNo == 0 && "Asm only has one result!"); 5695 OpVT = TLI.getSimpleValueType(CS.getType()); 5696 } 5697 ++ResNo; 5698 break; 5699 case InlineAsm::isInput: 5700 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5701 break; 5702 case InlineAsm::isClobber: 5703 // Nothing to do. 5704 break; 5705 } 5706 5707 // If this is an input or an indirect output, process the call argument. 5708 // BasicBlocks are labels, currently appearing only in asm's. 5709 if (OpInfo.CallOperandVal) { 5710 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5711 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5712 } else { 5713 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5714 } 5715 5716 OpVT = 5717 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5718 } 5719 5720 OpInfo.ConstraintVT = OpVT; 5721 5722 // Indirect operand accesses access memory. 5723 if (OpInfo.isIndirect) 5724 hasMemory = true; 5725 else { 5726 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5727 TargetLowering::ConstraintType 5728 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5729 if (CType == TargetLowering::C_Memory) { 5730 hasMemory = true; 5731 break; 5732 } 5733 } 5734 } 5735 } 5736 5737 SDValue Chain, Flag; 5738 5739 // We won't need to flush pending loads if this asm doesn't touch 5740 // memory and is nonvolatile. 5741 if (hasMemory || IA->hasSideEffects()) 5742 Chain = getRoot(); 5743 else 5744 Chain = DAG.getRoot(); 5745 5746 // Second pass over the constraints: compute which constraint option to use 5747 // and assign registers to constraints that want a specific physreg. 5748 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5749 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5750 5751 // If this is an output operand with a matching input operand, look up the 5752 // matching input. If their types mismatch, e.g. one is an integer, the 5753 // other is floating point, or their sizes are different, flag it as an 5754 // error. 5755 if (OpInfo.hasMatchingInput()) { 5756 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5757 5758 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5759 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5760 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5761 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5762 OpInfo.ConstraintVT); 5763 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5764 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5765 Input.ConstraintVT); 5766 if ((OpInfo.ConstraintVT.isInteger() != 5767 Input.ConstraintVT.isInteger()) || 5768 (MatchRC.second != InputRC.second)) { 5769 report_fatal_error("Unsupported asm: input constraint" 5770 " with a matching output constraint of" 5771 " incompatible type!"); 5772 } 5773 Input.ConstraintVT = OpInfo.ConstraintVT; 5774 } 5775 } 5776 5777 // Compute the constraint code and ConstraintType to use. 5778 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5779 5780 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5781 OpInfo.Type == InlineAsm::isClobber) 5782 continue; 5783 5784 // If this is a memory input, and if the operand is not indirect, do what we 5785 // need to to provide an address for the memory input. 5786 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5787 !OpInfo.isIndirect) { 5788 assert((OpInfo.isMultipleAlternative || 5789 (OpInfo.Type == InlineAsm::isInput)) && 5790 "Can only indirectify direct input operands!"); 5791 5792 // Memory operands really want the address of the value. If we don't have 5793 // an indirect input, put it in the constpool if we can, otherwise spill 5794 // it to a stack slot. 5795 // TODO: This isn't quite right. We need to handle these according to 5796 // the addressing mode that the constraint wants. Also, this may take 5797 // an additional register for the computation and we don't want that 5798 // either. 5799 5800 // If the operand is a float, integer, or vector constant, spill to a 5801 // constant pool entry to get its address. 5802 const Value *OpVal = OpInfo.CallOperandVal; 5803 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5804 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5805 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5806 TLI.getPointerTy()); 5807 } else { 5808 // Otherwise, create a stack slot and emit a store to it before the 5809 // asm. 5810 Type *Ty = OpVal->getType(); 5811 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5812 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5813 MachineFunction &MF = DAG.getMachineFunction(); 5814 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5815 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5816 Chain = DAG.getStore(Chain, getCurSDLoc(), 5817 OpInfo.CallOperand, StackSlot, 5818 MachinePointerInfo::getFixedStack(SSFI), 5819 false, false, 0); 5820 OpInfo.CallOperand = StackSlot; 5821 } 5822 5823 // There is no longer a Value* corresponding to this operand. 5824 OpInfo.CallOperandVal = nullptr; 5825 5826 // It is now an indirect operand. 5827 OpInfo.isIndirect = true; 5828 } 5829 5830 // If this constraint is for a specific register, allocate it before 5831 // anything else. 5832 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5833 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5834 } 5835 5836 // Second pass - Loop over all of the operands, assigning virtual or physregs 5837 // to register class operands. 5838 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5839 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5840 5841 // C_Register operands have already been allocated, Other/Memory don't need 5842 // to be. 5843 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5844 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 5845 } 5846 5847 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5848 std::vector<SDValue> AsmNodeOperands; 5849 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5850 AsmNodeOperands.push_back( 5851 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5852 TLI.getPointerTy())); 5853 5854 // If we have a !srcloc metadata node associated with it, we want to attach 5855 // this to the ultimately generated inline asm machineinstr. To do this, we 5856 // pass in the third operand as this (potentially null) inline asm MDNode. 5857 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5858 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5859 5860 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 5861 // bits as operand 3. 5862 unsigned ExtraInfo = 0; 5863 if (IA->hasSideEffects()) 5864 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 5865 if (IA->isAlignStack()) 5866 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 5867 // Set the asm dialect. 5868 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 5869 5870 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 5871 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5872 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5873 5874 // Compute the constraint code and ConstraintType to use. 5875 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5876 5877 // Ideally, we would only check against memory constraints. However, the 5878 // meaning of an other constraint can be target-specific and we can't easily 5879 // reason about it. Therefore, be conservative and set MayLoad/MayStore 5880 // for other constriants as well. 5881 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 5882 OpInfo.ConstraintType == TargetLowering::C_Other) { 5883 if (OpInfo.Type == InlineAsm::isInput) 5884 ExtraInfo |= InlineAsm::Extra_MayLoad; 5885 else if (OpInfo.Type == InlineAsm::isOutput) 5886 ExtraInfo |= InlineAsm::Extra_MayStore; 5887 else if (OpInfo.Type == InlineAsm::isClobber) 5888 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 5889 } 5890 } 5891 5892 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 5893 TLI.getPointerTy())); 5894 5895 // Loop over all of the inputs, copying the operand values into the 5896 // appropriate registers and processing the output regs. 5897 RegsForValue RetValRegs; 5898 5899 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5900 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5901 5902 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5903 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5904 5905 switch (OpInfo.Type) { 5906 case InlineAsm::isOutput: { 5907 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5908 OpInfo.ConstraintType != TargetLowering::C_Register) { 5909 // Memory output, or 'other' output (e.g. 'X' constraint). 5910 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5911 5912 unsigned ConstraintID = 5913 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 5914 assert(ConstraintID != InlineAsm::Constraint_Unknown && 5915 "Failed to convert memory constraint code to constraint id."); 5916 5917 // Add information to the INLINEASM node to know about this output. 5918 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5919 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 5920 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, MVT::i32)); 5921 AsmNodeOperands.push_back(OpInfo.CallOperand); 5922 break; 5923 } 5924 5925 // Otherwise, this is a register or register class output. 5926 5927 // Copy the output from the appropriate register. Find a register that 5928 // we can use. 5929 if (OpInfo.AssignedRegs.Regs.empty()) { 5930 LLVMContext &Ctx = *DAG.getContext(); 5931 Ctx.emitError(CS.getInstruction(), 5932 "couldn't allocate output register for constraint '" + 5933 Twine(OpInfo.ConstraintCode) + "'"); 5934 return; 5935 } 5936 5937 // If this is an indirect operand, store through the pointer after the 5938 // asm. 5939 if (OpInfo.isIndirect) { 5940 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5941 OpInfo.CallOperandVal)); 5942 } else { 5943 // This is the result value of the call. 5944 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5945 // Concatenate this output onto the outputs list. 5946 RetValRegs.append(OpInfo.AssignedRegs); 5947 } 5948 5949 // Add information to the INLINEASM node to know that this register is 5950 // set. 5951 OpInfo.AssignedRegs 5952 .AddInlineAsmOperands(OpInfo.isEarlyClobber 5953 ? InlineAsm::Kind_RegDefEarlyClobber 5954 : InlineAsm::Kind_RegDef, 5955 false, 0, DAG, AsmNodeOperands); 5956 break; 5957 } 5958 case InlineAsm::isInput: { 5959 SDValue InOperandVal = OpInfo.CallOperand; 5960 5961 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5962 // If this is required to match an output register we have already set, 5963 // just use its register. 5964 unsigned OperandNo = OpInfo.getMatchedOperand(); 5965 5966 // Scan until we find the definition we already emitted of this operand. 5967 // When we find it, create a RegsForValue operand. 5968 unsigned CurOp = InlineAsm::Op_FirstOperand; 5969 for (; OperandNo; --OperandNo) { 5970 // Advance to the next operand. 5971 unsigned OpFlag = 5972 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5973 assert((InlineAsm::isRegDefKind(OpFlag) || 5974 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5975 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5976 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5977 } 5978 5979 unsigned OpFlag = 5980 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5981 if (InlineAsm::isRegDefKind(OpFlag) || 5982 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5983 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5984 if (OpInfo.isIndirect) { 5985 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5986 LLVMContext &Ctx = *DAG.getContext(); 5987 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5988 " don't know how to handle tied " 5989 "indirect register inputs"); 5990 return; 5991 } 5992 5993 RegsForValue MatchedRegs; 5994 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5995 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 5996 MatchedRegs.RegVTs.push_back(RegVT); 5997 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5998 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5999 i != e; ++i) { 6000 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6001 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6002 else { 6003 LLVMContext &Ctx = *DAG.getContext(); 6004 Ctx.emitError(CS.getInstruction(), 6005 "inline asm error: This value" 6006 " type register class is not natively supported!"); 6007 return; 6008 } 6009 } 6010 // Use the produced MatchedRegs object to 6011 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6012 Chain, &Flag, CS.getInstruction()); 6013 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6014 true, OpInfo.getMatchedOperand(), 6015 DAG, AsmNodeOperands); 6016 break; 6017 } 6018 6019 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6020 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6021 "Unexpected number of operands"); 6022 // Add information to the INLINEASM node to know about this input. 6023 // See InlineAsm.h isUseOperandTiedToDef. 6024 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6025 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6026 OpInfo.getMatchedOperand()); 6027 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6028 TLI.getPointerTy())); 6029 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6030 break; 6031 } 6032 6033 // Treat indirect 'X' constraint as memory. 6034 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6035 OpInfo.isIndirect) 6036 OpInfo.ConstraintType = TargetLowering::C_Memory; 6037 6038 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6039 std::vector<SDValue> Ops; 6040 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6041 Ops, DAG); 6042 if (Ops.empty()) { 6043 LLVMContext &Ctx = *DAG.getContext(); 6044 Ctx.emitError(CS.getInstruction(), 6045 "invalid operand for inline asm constraint '" + 6046 Twine(OpInfo.ConstraintCode) + "'"); 6047 return; 6048 } 6049 6050 // Add information to the INLINEASM node to know about this input. 6051 unsigned ResOpType = 6052 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6053 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6054 TLI.getPointerTy())); 6055 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6056 break; 6057 } 6058 6059 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6060 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6061 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6062 "Memory operands expect pointer values"); 6063 6064 unsigned ConstraintID = 6065 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6066 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6067 "Failed to convert memory constraint code to constraint id."); 6068 6069 // Add information to the INLINEASM node to know about this input. 6070 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6071 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6072 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, MVT::i32)); 6073 AsmNodeOperands.push_back(InOperandVal); 6074 break; 6075 } 6076 6077 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6078 OpInfo.ConstraintType == TargetLowering::C_Register) && 6079 "Unknown constraint type!"); 6080 6081 // TODO: Support this. 6082 if (OpInfo.isIndirect) { 6083 LLVMContext &Ctx = *DAG.getContext(); 6084 Ctx.emitError(CS.getInstruction(), 6085 "Don't know how to handle indirect register inputs yet " 6086 "for constraint '" + 6087 Twine(OpInfo.ConstraintCode) + "'"); 6088 return; 6089 } 6090 6091 // Copy the input into the appropriate registers. 6092 if (OpInfo.AssignedRegs.Regs.empty()) { 6093 LLVMContext &Ctx = *DAG.getContext(); 6094 Ctx.emitError(CS.getInstruction(), 6095 "couldn't allocate input reg for constraint '" + 6096 Twine(OpInfo.ConstraintCode) + "'"); 6097 return; 6098 } 6099 6100 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6101 Chain, &Flag, CS.getInstruction()); 6102 6103 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6104 DAG, AsmNodeOperands); 6105 break; 6106 } 6107 case InlineAsm::isClobber: { 6108 // Add the clobbered value to the operand list, so that the register 6109 // allocator is aware that the physreg got clobbered. 6110 if (!OpInfo.AssignedRegs.Regs.empty()) 6111 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6112 false, 0, DAG, 6113 AsmNodeOperands); 6114 break; 6115 } 6116 } 6117 } 6118 6119 // Finish up input operands. Set the input chain and add the flag last. 6120 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6121 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6122 6123 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6124 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6125 Flag = Chain.getValue(1); 6126 6127 // If this asm returns a register value, copy the result from that register 6128 // and set it as the value of the call. 6129 if (!RetValRegs.Regs.empty()) { 6130 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6131 Chain, &Flag, CS.getInstruction()); 6132 6133 // FIXME: Why don't we do this for inline asms with MRVs? 6134 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6135 EVT ResultType = TLI.getValueType(CS.getType()); 6136 6137 // If any of the results of the inline asm is a vector, it may have the 6138 // wrong width/num elts. This can happen for register classes that can 6139 // contain multiple different value types. The preg or vreg allocated may 6140 // not have the same VT as was expected. Convert it to the right type 6141 // with bit_convert. 6142 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6143 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6144 ResultType, Val); 6145 6146 } else if (ResultType != Val.getValueType() && 6147 ResultType.isInteger() && Val.getValueType().isInteger()) { 6148 // If a result value was tied to an input value, the computed result may 6149 // have a wider width than the expected result. Extract the relevant 6150 // portion. 6151 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6152 } 6153 6154 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6155 } 6156 6157 setValue(CS.getInstruction(), Val); 6158 // Don't need to use this as a chain in this case. 6159 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6160 return; 6161 } 6162 6163 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6164 6165 // Process indirect outputs, first output all of the flagged copies out of 6166 // physregs. 6167 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6168 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6169 const Value *Ptr = IndirectStoresToEmit[i].second; 6170 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6171 Chain, &Flag, IA); 6172 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6173 } 6174 6175 // Emit the non-flagged stores from the physregs. 6176 SmallVector<SDValue, 8> OutChains; 6177 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6178 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6179 StoresToEmit[i].first, 6180 getValue(StoresToEmit[i].second), 6181 MachinePointerInfo(StoresToEmit[i].second), 6182 false, false, 0); 6183 OutChains.push_back(Val); 6184 } 6185 6186 if (!OutChains.empty()) 6187 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6188 6189 DAG.setRoot(Chain); 6190 } 6191 6192 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6193 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6194 MVT::Other, getRoot(), 6195 getValue(I.getArgOperand(0)), 6196 DAG.getSrcValue(I.getArgOperand(0)))); 6197 } 6198 6199 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6200 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6201 const DataLayout &DL = *TLI.getDataLayout(); 6202 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6203 getRoot(), getValue(I.getOperand(0)), 6204 DAG.getSrcValue(I.getOperand(0)), 6205 DL.getABITypeAlignment(I.getType())); 6206 setValue(&I, V); 6207 DAG.setRoot(V.getValue(1)); 6208 } 6209 6210 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6211 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6212 MVT::Other, getRoot(), 6213 getValue(I.getArgOperand(0)), 6214 DAG.getSrcValue(I.getArgOperand(0)))); 6215 } 6216 6217 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6218 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6219 MVT::Other, getRoot(), 6220 getValue(I.getArgOperand(0)), 6221 getValue(I.getArgOperand(1)), 6222 DAG.getSrcValue(I.getArgOperand(0)), 6223 DAG.getSrcValue(I.getArgOperand(1)))); 6224 } 6225 6226 /// \brief Lower an argument list according to the target calling convention. 6227 /// 6228 /// \return A tuple of <return-value, token-chain> 6229 /// 6230 /// This is a helper for lowering intrinsics that follow a target calling 6231 /// convention or require stack pointer adjustment. Only a subset of the 6232 /// intrinsic's operands need to participate in the calling convention. 6233 std::pair<SDValue, SDValue> 6234 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6235 unsigned NumArgs, SDValue Callee, 6236 bool UseVoidTy, 6237 MachineBasicBlock *LandingPad, 6238 bool IsPatchPoint) { 6239 TargetLowering::ArgListTy Args; 6240 Args.reserve(NumArgs); 6241 6242 // Populate the argument list. 6243 // Attributes for args start at offset 1, after the return attribute. 6244 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6245 ArgI != ArgE; ++ArgI) { 6246 const Value *V = CS->getOperand(ArgI); 6247 6248 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6249 6250 TargetLowering::ArgListEntry Entry; 6251 Entry.Node = getValue(V); 6252 Entry.Ty = V->getType(); 6253 Entry.setAttributes(&CS, AttrI); 6254 Args.push_back(Entry); 6255 } 6256 6257 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6258 TargetLowering::CallLoweringInfo CLI(DAG); 6259 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6260 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6261 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6262 6263 return lowerInvokable(CLI, LandingPad); 6264 } 6265 6266 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6267 /// or patchpoint target node's operand list. 6268 /// 6269 /// Constants are converted to TargetConstants purely as an optimization to 6270 /// avoid constant materialization and register allocation. 6271 /// 6272 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6273 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6274 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6275 /// address materialization and register allocation, but may also be required 6276 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6277 /// alloca in the entry block, then the runtime may assume that the alloca's 6278 /// StackMap location can be read immediately after compilation and that the 6279 /// location is valid at any point during execution (this is similar to the 6280 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6281 /// only available in a register, then the runtime would need to trap when 6282 /// execution reaches the StackMap in order to read the alloca's location. 6283 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6284 SmallVectorImpl<SDValue> &Ops, 6285 SelectionDAGBuilder &Builder) { 6286 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6287 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6289 Ops.push_back( 6290 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6291 Ops.push_back( 6292 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6293 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6294 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6295 Ops.push_back( 6296 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6297 } else 6298 Ops.push_back(OpVal); 6299 } 6300 } 6301 6302 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6303 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6304 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6305 // [live variables...]) 6306 6307 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6308 6309 SDValue Chain, InFlag, Callee, NullPtr; 6310 SmallVector<SDValue, 32> Ops; 6311 6312 SDLoc DL = getCurSDLoc(); 6313 Callee = getValue(CI.getCalledValue()); 6314 NullPtr = DAG.getIntPtrConstant(0, true); 6315 6316 // The stackmap intrinsic only records the live variables (the arguemnts 6317 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6318 // intrinsic, this won't be lowered to a function call. This means we don't 6319 // have to worry about calling conventions and target specific lowering code. 6320 // Instead we perform the call lowering right here. 6321 // 6322 // chain, flag = CALLSEQ_START(chain, 0) 6323 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6324 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6325 // 6326 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6327 InFlag = Chain.getValue(1); 6328 6329 // Add the <id> and <numBytes> constants. 6330 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6331 Ops.push_back(DAG.getTargetConstant( 6332 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6333 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6334 Ops.push_back(DAG.getTargetConstant( 6335 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6336 6337 // Push live variables for the stack map. 6338 addStackMapLiveVars(&CI, 2, Ops, *this); 6339 6340 // We are not pushing any register mask info here on the operands list, 6341 // because the stackmap doesn't clobber anything. 6342 6343 // Push the chain and the glue flag. 6344 Ops.push_back(Chain); 6345 Ops.push_back(InFlag); 6346 6347 // Create the STACKMAP node. 6348 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6349 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6350 Chain = SDValue(SM, 0); 6351 InFlag = Chain.getValue(1); 6352 6353 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6354 6355 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6356 6357 // Set the root to the target-lowered call chain. 6358 DAG.setRoot(Chain); 6359 6360 // Inform the Frame Information that we have a stackmap in this function. 6361 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6362 } 6363 6364 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6365 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6366 MachineBasicBlock *LandingPad) { 6367 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6368 // i32 <numBytes>, 6369 // i8* <target>, 6370 // i32 <numArgs>, 6371 // [Args...], 6372 // [live variables...]) 6373 6374 CallingConv::ID CC = CS.getCallingConv(); 6375 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6376 bool HasDef = !CS->getType()->isVoidTy(); 6377 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6378 6379 // Handle immediate and symbolic callees. 6380 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6381 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), 6382 /*isTarget=*/true); 6383 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6384 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6385 SDLoc(SymbolicCallee), 6386 SymbolicCallee->getValueType(0)); 6387 6388 // Get the real number of arguments participating in the call <numArgs> 6389 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6390 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6391 6392 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6393 // Intrinsics include all meta-operands up to but not including CC. 6394 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6395 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6396 "Not enough arguments provided to the patchpoint intrinsic"); 6397 6398 // For AnyRegCC the arguments are lowered later on manually. 6399 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6400 std::pair<SDValue, SDValue> Result = 6401 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6402 LandingPad, true); 6403 6404 SDNode *CallEnd = Result.second.getNode(); 6405 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6406 CallEnd = CallEnd->getOperand(0).getNode(); 6407 6408 /// Get a call instruction from the call sequence chain. 6409 /// Tail calls are not allowed. 6410 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6411 "Expected a callseq node."); 6412 SDNode *Call = CallEnd->getOperand(0).getNode(); 6413 bool HasGlue = Call->getGluedNode(); 6414 6415 // Replace the target specific call node with the patchable intrinsic. 6416 SmallVector<SDValue, 8> Ops; 6417 6418 // Add the <id> and <numBytes> constants. 6419 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6420 Ops.push_back(DAG.getTargetConstant( 6421 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6422 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6423 Ops.push_back(DAG.getTargetConstant( 6424 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6425 6426 // Add the callee. 6427 Ops.push_back(Callee); 6428 6429 // Adjust <numArgs> to account for any arguments that have been passed on the 6430 // stack instead. 6431 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6432 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6433 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6434 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6435 6436 // Add the calling convention 6437 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6438 6439 // Add the arguments we omitted previously. The register allocator should 6440 // place these in any free register. 6441 if (IsAnyRegCC) 6442 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6443 Ops.push_back(getValue(CS.getArgument(i))); 6444 6445 // Push the arguments from the call instruction up to the register mask. 6446 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6447 Ops.append(Call->op_begin() + 2, e); 6448 6449 // Push live variables for the stack map. 6450 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 6451 6452 // Push the register mask info. 6453 if (HasGlue) 6454 Ops.push_back(*(Call->op_end()-2)); 6455 else 6456 Ops.push_back(*(Call->op_end()-1)); 6457 6458 // Push the chain (this is originally the first operand of the call, but 6459 // becomes now the last or second to last operand). 6460 Ops.push_back(*(Call->op_begin())); 6461 6462 // Push the glue flag (last operand). 6463 if (HasGlue) 6464 Ops.push_back(*(Call->op_end()-1)); 6465 6466 SDVTList NodeTys; 6467 if (IsAnyRegCC && HasDef) { 6468 // Create the return types based on the intrinsic definition 6469 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6470 SmallVector<EVT, 3> ValueVTs; 6471 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6472 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6473 6474 // There is always a chain and a glue type at the end 6475 ValueVTs.push_back(MVT::Other); 6476 ValueVTs.push_back(MVT::Glue); 6477 NodeTys = DAG.getVTList(ValueVTs); 6478 } else 6479 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6480 6481 // Replace the target specific call node with a PATCHPOINT node. 6482 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6483 getCurSDLoc(), NodeTys, Ops); 6484 6485 // Update the NodeMap. 6486 if (HasDef) { 6487 if (IsAnyRegCC) 6488 setValue(CS.getInstruction(), SDValue(MN, 0)); 6489 else 6490 setValue(CS.getInstruction(), Result.first); 6491 } 6492 6493 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6494 // call sequence. Furthermore the location of the chain and glue can change 6495 // when the AnyReg calling convention is used and the intrinsic returns a 6496 // value. 6497 if (IsAnyRegCC && HasDef) { 6498 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6499 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6500 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6501 } else 6502 DAG.ReplaceAllUsesWith(Call, MN); 6503 DAG.DeleteNode(Call); 6504 6505 // Inform the Frame Information that we have a patchpoint in this function. 6506 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6507 } 6508 6509 /// Returns an AttributeSet representing the attributes applied to the return 6510 /// value of the given call. 6511 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6512 SmallVector<Attribute::AttrKind, 2> Attrs; 6513 if (CLI.RetSExt) 6514 Attrs.push_back(Attribute::SExt); 6515 if (CLI.RetZExt) 6516 Attrs.push_back(Attribute::ZExt); 6517 if (CLI.IsInReg) 6518 Attrs.push_back(Attribute::InReg); 6519 6520 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6521 Attrs); 6522 } 6523 6524 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6525 /// implementation, which just calls LowerCall. 6526 /// FIXME: When all targets are 6527 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6528 std::pair<SDValue, SDValue> 6529 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6530 // Handle the incoming return values from the call. 6531 CLI.Ins.clear(); 6532 Type *OrigRetTy = CLI.RetTy; 6533 SmallVector<EVT, 4> RetTys; 6534 SmallVector<uint64_t, 4> Offsets; 6535 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6536 6537 SmallVector<ISD::OutputArg, 4> Outs; 6538 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6539 6540 bool CanLowerReturn = 6541 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6542 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6543 6544 SDValue DemoteStackSlot; 6545 int DemoteStackIdx = -100; 6546 if (!CanLowerReturn) { 6547 // FIXME: equivalent assert? 6548 // assert(!CS.hasInAllocaArgument() && 6549 // "sret demotion is incompatible with inalloca"); 6550 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6551 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6552 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6553 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6554 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6555 6556 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6557 ArgListEntry Entry; 6558 Entry.Node = DemoteStackSlot; 6559 Entry.Ty = StackSlotPtrType; 6560 Entry.isSExt = false; 6561 Entry.isZExt = false; 6562 Entry.isInReg = false; 6563 Entry.isSRet = true; 6564 Entry.isNest = false; 6565 Entry.isByVal = false; 6566 Entry.isReturned = false; 6567 Entry.Alignment = Align; 6568 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6569 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6570 6571 // sret demotion isn't compatible with tail-calls, since the sret argument 6572 // points into the callers stack frame. 6573 CLI.IsTailCall = false; 6574 } else { 6575 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6576 EVT VT = RetTys[I]; 6577 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6578 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6579 for (unsigned i = 0; i != NumRegs; ++i) { 6580 ISD::InputArg MyFlags; 6581 MyFlags.VT = RegisterVT; 6582 MyFlags.ArgVT = VT; 6583 MyFlags.Used = CLI.IsReturnValueUsed; 6584 if (CLI.RetSExt) 6585 MyFlags.Flags.setSExt(); 6586 if (CLI.RetZExt) 6587 MyFlags.Flags.setZExt(); 6588 if (CLI.IsInReg) 6589 MyFlags.Flags.setInReg(); 6590 CLI.Ins.push_back(MyFlags); 6591 } 6592 } 6593 } 6594 6595 // Handle all of the outgoing arguments. 6596 CLI.Outs.clear(); 6597 CLI.OutVals.clear(); 6598 ArgListTy &Args = CLI.getArgs(); 6599 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6600 SmallVector<EVT, 4> ValueVTs; 6601 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6602 Type *FinalType = Args[i].Ty; 6603 if (Args[i].isByVal) 6604 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6605 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6606 FinalType, CLI.CallConv, CLI.IsVarArg); 6607 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6608 ++Value) { 6609 EVT VT = ValueVTs[Value]; 6610 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6611 SDValue Op = SDValue(Args[i].Node.getNode(), 6612 Args[i].Node.getResNo() + Value); 6613 ISD::ArgFlagsTy Flags; 6614 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6615 6616 if (Args[i].isZExt) 6617 Flags.setZExt(); 6618 if (Args[i].isSExt) 6619 Flags.setSExt(); 6620 if (Args[i].isInReg) 6621 Flags.setInReg(); 6622 if (Args[i].isSRet) 6623 Flags.setSRet(); 6624 if (Args[i].isByVal) 6625 Flags.setByVal(); 6626 if (Args[i].isInAlloca) { 6627 Flags.setInAlloca(); 6628 // Set the byval flag for CCAssignFn callbacks that don't know about 6629 // inalloca. This way we can know how many bytes we should've allocated 6630 // and how many bytes a callee cleanup function will pop. If we port 6631 // inalloca to more targets, we'll have to add custom inalloca handling 6632 // in the various CC lowering callbacks. 6633 Flags.setByVal(); 6634 } 6635 if (Args[i].isByVal || Args[i].isInAlloca) { 6636 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6637 Type *ElementTy = Ty->getElementType(); 6638 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6639 // For ByVal, alignment should come from FE. BE will guess if this 6640 // info is not there but there are cases it cannot get right. 6641 unsigned FrameAlign; 6642 if (Args[i].Alignment) 6643 FrameAlign = Args[i].Alignment; 6644 else 6645 FrameAlign = getByValTypeAlignment(ElementTy); 6646 Flags.setByValAlign(FrameAlign); 6647 } 6648 if (Args[i].isNest) 6649 Flags.setNest(); 6650 if (NeedsRegBlock) 6651 Flags.setInConsecutiveRegs(); 6652 Flags.setOrigAlign(OriginalAlignment); 6653 6654 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6655 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6656 SmallVector<SDValue, 4> Parts(NumParts); 6657 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6658 6659 if (Args[i].isSExt) 6660 ExtendKind = ISD::SIGN_EXTEND; 6661 else if (Args[i].isZExt) 6662 ExtendKind = ISD::ZERO_EXTEND; 6663 6664 // Conservatively only handle 'returned' on non-vectors for now 6665 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6666 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6667 "unexpected use of 'returned'"); 6668 // Before passing 'returned' to the target lowering code, ensure that 6669 // either the register MVT and the actual EVT are the same size or that 6670 // the return value and argument are extended in the same way; in these 6671 // cases it's safe to pass the argument register value unchanged as the 6672 // return register value (although it's at the target's option whether 6673 // to do so) 6674 // TODO: allow code generation to take advantage of partially preserved 6675 // registers rather than clobbering the entire register when the 6676 // parameter extension method is not compatible with the return 6677 // extension method 6678 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6679 (ExtendKind != ISD::ANY_EXTEND && 6680 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6681 Flags.setReturned(); 6682 } 6683 6684 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6685 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6686 6687 for (unsigned j = 0; j != NumParts; ++j) { 6688 // if it isn't first piece, alignment must be 1 6689 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6690 i < CLI.NumFixedArgs, 6691 i, j*Parts[j].getValueType().getStoreSize()); 6692 if (NumParts > 1 && j == 0) 6693 MyFlags.Flags.setSplit(); 6694 else if (j != 0) 6695 MyFlags.Flags.setOrigAlign(1); 6696 6697 CLI.Outs.push_back(MyFlags); 6698 CLI.OutVals.push_back(Parts[j]); 6699 } 6700 6701 if (NeedsRegBlock && Value == NumValues - 1) 6702 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6703 } 6704 } 6705 6706 SmallVector<SDValue, 4> InVals; 6707 CLI.Chain = LowerCall(CLI, InVals); 6708 6709 // Verify that the target's LowerCall behaved as expected. 6710 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6711 "LowerCall didn't return a valid chain!"); 6712 assert((!CLI.IsTailCall || InVals.empty()) && 6713 "LowerCall emitted a return value for a tail call!"); 6714 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6715 "LowerCall didn't emit the correct number of values!"); 6716 6717 // For a tail call, the return value is merely live-out and there aren't 6718 // any nodes in the DAG representing it. Return a special value to 6719 // indicate that a tail call has been emitted and no more Instructions 6720 // should be processed in the current block. 6721 if (CLI.IsTailCall) { 6722 CLI.DAG.setRoot(CLI.Chain); 6723 return std::make_pair(SDValue(), SDValue()); 6724 } 6725 6726 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6727 assert(InVals[i].getNode() && 6728 "LowerCall emitted a null value!"); 6729 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6730 "LowerCall emitted a value with the wrong type!"); 6731 }); 6732 6733 SmallVector<SDValue, 4> ReturnValues; 6734 if (!CanLowerReturn) { 6735 // The instruction result is the result of loading from the 6736 // hidden sret parameter. 6737 SmallVector<EVT, 1> PVTs; 6738 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6739 6740 ComputeValueVTs(*this, PtrRetTy, PVTs); 6741 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6742 EVT PtrVT = PVTs[0]; 6743 6744 unsigned NumValues = RetTys.size(); 6745 ReturnValues.resize(NumValues); 6746 SmallVector<SDValue, 4> Chains(NumValues); 6747 6748 for (unsigned i = 0; i < NumValues; ++i) { 6749 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6750 CLI.DAG.getConstant(Offsets[i], PtrVT)); 6751 SDValue L = CLI.DAG.getLoad( 6752 RetTys[i], CLI.DL, CLI.Chain, Add, 6753 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6754 false, false, 1); 6755 ReturnValues[i] = L; 6756 Chains[i] = L.getValue(1); 6757 } 6758 6759 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6760 } else { 6761 // Collect the legal value parts into potentially illegal values 6762 // that correspond to the original function's return values. 6763 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6764 if (CLI.RetSExt) 6765 AssertOp = ISD::AssertSext; 6766 else if (CLI.RetZExt) 6767 AssertOp = ISD::AssertZext; 6768 unsigned CurReg = 0; 6769 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6770 EVT VT = RetTys[I]; 6771 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6772 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6773 6774 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6775 NumRegs, RegisterVT, VT, nullptr, 6776 AssertOp)); 6777 CurReg += NumRegs; 6778 } 6779 6780 // For a function returning void, there is no return value. We can't create 6781 // such a node, so we just return a null return value in that case. In 6782 // that case, nothing will actually look at the value. 6783 if (ReturnValues.empty()) 6784 return std::make_pair(SDValue(), CLI.Chain); 6785 } 6786 6787 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6788 CLI.DAG.getVTList(RetTys), ReturnValues); 6789 return std::make_pair(Res, CLI.Chain); 6790 } 6791 6792 void TargetLowering::LowerOperationWrapper(SDNode *N, 6793 SmallVectorImpl<SDValue> &Results, 6794 SelectionDAG &DAG) const { 6795 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6796 if (Res.getNode()) 6797 Results.push_back(Res); 6798 } 6799 6800 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6801 llvm_unreachable("LowerOperation not implemented for this target!"); 6802 } 6803 6804 void 6805 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6806 SDValue Op = getNonRegisterValue(V); 6807 assert((Op.getOpcode() != ISD::CopyFromReg || 6808 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6809 "Copy from a reg to the same reg!"); 6810 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6811 6812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6813 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6814 SDValue Chain = DAG.getEntryNode(); 6815 6816 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 6817 FuncInfo.PreferredExtendType.end()) 6818 ? ISD::ANY_EXTEND 6819 : FuncInfo.PreferredExtendType[V]; 6820 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 6821 PendingExports.push_back(Chain); 6822 } 6823 6824 #include "llvm/CodeGen/SelectionDAGISel.h" 6825 6826 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6827 /// entry block, return true. This includes arguments used by switches, since 6828 /// the switch may expand into multiple basic blocks. 6829 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6830 // With FastISel active, we may be splitting blocks, so force creation 6831 // of virtual registers for all non-dead arguments. 6832 if (FastISel) 6833 return A->use_empty(); 6834 6835 const BasicBlock *Entry = A->getParent()->begin(); 6836 for (const User *U : A->users()) 6837 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6838 return false; // Use not in entry block. 6839 6840 return true; 6841 } 6842 6843 void SelectionDAGISel::LowerArguments(const Function &F) { 6844 SelectionDAG &DAG = SDB->DAG; 6845 SDLoc dl = SDB->getCurSDLoc(); 6846 const DataLayout *DL = TLI->getDataLayout(); 6847 SmallVector<ISD::InputArg, 16> Ins; 6848 6849 if (!FuncInfo->CanLowerReturn) { 6850 // Put in an sret pointer parameter before all the other parameters. 6851 SmallVector<EVT, 1> ValueVTs; 6852 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6853 6854 // NOTE: Assuming that a pointer will never break down to more than one VT 6855 // or one register. 6856 ISD::ArgFlagsTy Flags; 6857 Flags.setSRet(); 6858 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 6859 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 6860 ISD::InputArg::NoArgIndex, 0); 6861 Ins.push_back(RetArg); 6862 } 6863 6864 // Set up the incoming argument description vector. 6865 unsigned Idx = 1; 6866 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6867 I != E; ++I, ++Idx) { 6868 SmallVector<EVT, 4> ValueVTs; 6869 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6870 bool isArgValueUsed = !I->use_empty(); 6871 unsigned PartBase = 0; 6872 Type *FinalType = I->getType(); 6873 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 6874 FinalType = cast<PointerType>(FinalType)->getElementType(); 6875 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 6876 FinalType, F.getCallingConv(), F.isVarArg()); 6877 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6878 Value != NumValues; ++Value) { 6879 EVT VT = ValueVTs[Value]; 6880 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6881 ISD::ArgFlagsTy Flags; 6882 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 6883 6884 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 6885 Flags.setZExt(); 6886 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 6887 Flags.setSExt(); 6888 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 6889 Flags.setInReg(); 6890 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 6891 Flags.setSRet(); 6892 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 6893 Flags.setByVal(); 6894 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 6895 Flags.setInAlloca(); 6896 // Set the byval flag for CCAssignFn callbacks that don't know about 6897 // inalloca. This way we can know how many bytes we should've allocated 6898 // and how many bytes a callee cleanup function will pop. If we port 6899 // inalloca to more targets, we'll have to add custom inalloca handling 6900 // in the various CC lowering callbacks. 6901 Flags.setByVal(); 6902 } 6903 if (Flags.isByVal() || Flags.isInAlloca()) { 6904 PointerType *Ty = cast<PointerType>(I->getType()); 6905 Type *ElementTy = Ty->getElementType(); 6906 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 6907 // For ByVal, alignment should be passed from FE. BE will guess if 6908 // this info is not there but there are cases it cannot get right. 6909 unsigned FrameAlign; 6910 if (F.getParamAlignment(Idx)) 6911 FrameAlign = F.getParamAlignment(Idx); 6912 else 6913 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 6914 Flags.setByValAlign(FrameAlign); 6915 } 6916 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 6917 Flags.setNest(); 6918 if (NeedsRegBlock) 6919 Flags.setInConsecutiveRegs(); 6920 Flags.setOrigAlign(OriginalAlignment); 6921 6922 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6923 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 6924 for (unsigned i = 0; i != NumRegs; ++i) { 6925 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 6926 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 6927 if (NumRegs > 1 && i == 0) 6928 MyFlags.Flags.setSplit(); 6929 // if it isn't first piece, alignment must be 1 6930 else if (i > 0) 6931 MyFlags.Flags.setOrigAlign(1); 6932 Ins.push_back(MyFlags); 6933 } 6934 if (NeedsRegBlock && Value == NumValues - 1) 6935 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 6936 PartBase += VT.getStoreSize(); 6937 } 6938 } 6939 6940 // Call the target to set up the argument values. 6941 SmallVector<SDValue, 8> InVals; 6942 SDValue NewRoot = TLI->LowerFormalArguments( 6943 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 6944 6945 // Verify that the target's LowerFormalArguments behaved as expected. 6946 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6947 "LowerFormalArguments didn't return a valid chain!"); 6948 assert(InVals.size() == Ins.size() && 6949 "LowerFormalArguments didn't emit the correct number of values!"); 6950 DEBUG({ 6951 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6952 assert(InVals[i].getNode() && 6953 "LowerFormalArguments emitted a null value!"); 6954 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6955 "LowerFormalArguments emitted a value with the wrong type!"); 6956 } 6957 }); 6958 6959 // Update the DAG with the new chain value resulting from argument lowering. 6960 DAG.setRoot(NewRoot); 6961 6962 // Set up the argument values. 6963 unsigned i = 0; 6964 Idx = 1; 6965 if (!FuncInfo->CanLowerReturn) { 6966 // Create a virtual register for the sret pointer, and put in a copy 6967 // from the sret argument into it. 6968 SmallVector<EVT, 1> ValueVTs; 6969 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6970 MVT VT = ValueVTs[0].getSimpleVT(); 6971 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 6972 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6973 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6974 RegVT, VT, nullptr, AssertOp); 6975 6976 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6977 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6978 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 6979 FuncInfo->DemoteRegister = SRetReg; 6980 NewRoot = 6981 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 6982 DAG.setRoot(NewRoot); 6983 6984 // i indexes lowered arguments. Bump it past the hidden sret argument. 6985 // Idx indexes LLVM arguments. Don't touch it. 6986 ++i; 6987 } 6988 6989 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6990 ++I, ++Idx) { 6991 SmallVector<SDValue, 4> ArgValues; 6992 SmallVector<EVT, 4> ValueVTs; 6993 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 6994 unsigned NumValues = ValueVTs.size(); 6995 6996 // If this argument is unused then remember its value. It is used to generate 6997 // debugging information. 6998 if (I->use_empty() && NumValues) { 6999 SDB->setUnusedArgValue(I, InVals[i]); 7000 7001 // Also remember any frame index for use in FastISel. 7002 if (FrameIndexSDNode *FI = 7003 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7004 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7005 } 7006 7007 for (unsigned Val = 0; Val != NumValues; ++Val) { 7008 EVT VT = ValueVTs[Val]; 7009 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7010 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7011 7012 if (!I->use_empty()) { 7013 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7014 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7015 AssertOp = ISD::AssertSext; 7016 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7017 AssertOp = ISD::AssertZext; 7018 7019 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7020 NumParts, PartVT, VT, 7021 nullptr, AssertOp)); 7022 } 7023 7024 i += NumParts; 7025 } 7026 7027 // We don't need to do anything else for unused arguments. 7028 if (ArgValues.empty()) 7029 continue; 7030 7031 // Note down frame index. 7032 if (FrameIndexSDNode *FI = 7033 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7034 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7035 7036 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7037 SDB->getCurSDLoc()); 7038 7039 SDB->setValue(I, Res); 7040 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7041 if (LoadSDNode *LNode = 7042 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7043 if (FrameIndexSDNode *FI = 7044 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7045 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7046 } 7047 7048 // If this argument is live outside of the entry block, insert a copy from 7049 // wherever we got it to the vreg that other BB's will reference it as. 7050 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7051 // If we can, though, try to skip creating an unnecessary vreg. 7052 // FIXME: This isn't very clean... it would be nice to make this more 7053 // general. It's also subtly incompatible with the hacks FastISel 7054 // uses with vregs. 7055 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7056 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7057 FuncInfo->ValueMap[I] = Reg; 7058 continue; 7059 } 7060 } 7061 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7062 FuncInfo->InitializeRegForValue(I); 7063 SDB->CopyToExportRegsIfNeeded(I); 7064 } 7065 } 7066 7067 assert(i == InVals.size() && "Argument register count mismatch!"); 7068 7069 // Finally, if the target has anything special to do, allow it to do so. 7070 EmitFunctionEntryCode(); 7071 } 7072 7073 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7074 /// ensure constants are generated when needed. Remember the virtual registers 7075 /// that need to be added to the Machine PHI nodes as input. We cannot just 7076 /// directly add them, because expansion might result in multiple MBB's for one 7077 /// BB. As such, the start of the BB might correspond to a different MBB than 7078 /// the end. 7079 /// 7080 void 7081 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7082 const TerminatorInst *TI = LLVMBB->getTerminator(); 7083 7084 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7085 7086 // Check PHI nodes in successors that expect a value to be available from this 7087 // block. 7088 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7089 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7090 if (!isa<PHINode>(SuccBB->begin())) continue; 7091 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7092 7093 // If this terminator has multiple identical successors (common for 7094 // switches), only handle each succ once. 7095 if (!SuccsHandled.insert(SuccMBB).second) 7096 continue; 7097 7098 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7099 7100 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7101 // nodes and Machine PHI nodes, but the incoming operands have not been 7102 // emitted yet. 7103 for (BasicBlock::const_iterator I = SuccBB->begin(); 7104 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7105 // Ignore dead phi's. 7106 if (PN->use_empty()) continue; 7107 7108 // Skip empty types 7109 if (PN->getType()->isEmptyTy()) 7110 continue; 7111 7112 unsigned Reg; 7113 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7114 7115 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7116 unsigned &RegOut = ConstantsOut[C]; 7117 if (RegOut == 0) { 7118 RegOut = FuncInfo.CreateRegs(C->getType()); 7119 CopyValueToVirtualRegister(C, RegOut); 7120 } 7121 Reg = RegOut; 7122 } else { 7123 DenseMap<const Value *, unsigned>::iterator I = 7124 FuncInfo.ValueMap.find(PHIOp); 7125 if (I != FuncInfo.ValueMap.end()) 7126 Reg = I->second; 7127 else { 7128 assert(isa<AllocaInst>(PHIOp) && 7129 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7130 "Didn't codegen value into a register!??"); 7131 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7132 CopyValueToVirtualRegister(PHIOp, Reg); 7133 } 7134 } 7135 7136 // Remember that this register needs to added to the machine PHI node as 7137 // the input for this MBB. 7138 SmallVector<EVT, 4> ValueVTs; 7139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7140 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7141 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7142 EVT VT = ValueVTs[vti]; 7143 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7144 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7145 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7146 Reg += NumRegisters; 7147 } 7148 } 7149 } 7150 7151 ConstantsOut.clear(); 7152 } 7153 7154 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7155 /// is 0. 7156 MachineBasicBlock * 7157 SelectionDAGBuilder::StackProtectorDescriptor:: 7158 AddSuccessorMBB(const BasicBlock *BB, 7159 MachineBasicBlock *ParentMBB, 7160 bool IsLikely, 7161 MachineBasicBlock *SuccMBB) { 7162 // If SuccBB has not been created yet, create it. 7163 if (!SuccMBB) { 7164 MachineFunction *MF = ParentMBB->getParent(); 7165 MachineFunction::iterator BBI = ParentMBB; 7166 SuccMBB = MF->CreateMachineBasicBlock(BB); 7167 MF->insert(++BBI, SuccMBB); 7168 } 7169 // Add it as a successor of ParentMBB. 7170 ParentMBB->addSuccessor( 7171 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7172 return SuccMBB; 7173 } 7174 7175 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7176 MachineFunction::iterator I = MBB; 7177 if (++I == FuncInfo.MF->end()) 7178 return nullptr; 7179 return I; 7180 } 7181 7182 /// During lowering new call nodes can be created (such as memset, etc.). 7183 /// Those will become new roots of the current DAG, but complications arise 7184 /// when they are tail calls. In such cases, the call lowering will update 7185 /// the root, but the builder still needs to know that a tail call has been 7186 /// lowered in order to avoid generating an additional return. 7187 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7188 // If the node is null, we do have a tail call. 7189 if (MaybeTC.getNode() != nullptr) 7190 DAG.setRoot(MaybeTC); 7191 else 7192 HasTailCall = true; 7193 } 7194 7195 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7196 unsigned *TotalCases, unsigned First, 7197 unsigned Last) { 7198 assert(Last >= First); 7199 assert(TotalCases[Last] >= TotalCases[First]); 7200 7201 APInt LowCase = Clusters[First].Low->getValue(); 7202 APInt HighCase = Clusters[Last].High->getValue(); 7203 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7204 7205 // FIXME: A range of consecutive cases has 100% density, but only requires one 7206 // comparison to lower. We should discriminate against such consecutive ranges 7207 // in jump tables. 7208 7209 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7210 uint64_t Range = Diff + 1; 7211 7212 uint64_t NumCases = 7213 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7214 7215 assert(NumCases < UINT64_MAX / 100); 7216 assert(Range >= NumCases); 7217 7218 return NumCases * 100 >= Range * MinJumpTableDensity; 7219 } 7220 7221 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7222 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7223 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7224 } 7225 7226 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7227 unsigned First, unsigned Last, 7228 const SwitchInst *SI, 7229 MachineBasicBlock *DefaultMBB, 7230 CaseCluster &JTCluster) { 7231 assert(First <= Last); 7232 7233 uint64_t Weight = 0; 7234 unsigned NumCmps = 0; 7235 std::vector<MachineBasicBlock*> Table; 7236 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7237 for (unsigned I = First; I <= Last; ++I) { 7238 assert(Clusters[I].Kind == CC_Range); 7239 Weight += Clusters[I].Weight; 7240 APInt Low = Clusters[I].Low->getValue(); 7241 APInt High = Clusters[I].High->getValue(); 7242 NumCmps += (Low == High) ? 1 : 2; 7243 if (I != First) { 7244 // Fill the gap between this and the previous cluster. 7245 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7246 assert(PreviousHigh.slt(Low)); 7247 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7248 for (uint64_t J = 0; J < Gap; J++) 7249 Table.push_back(DefaultMBB); 7250 } 7251 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7252 for (uint64_t J = 0; J < ClusterSize; ++J) 7253 Table.push_back(Clusters[I].MBB); 7254 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7255 } 7256 7257 unsigned NumDests = JTWeights.size(); 7258 if (isSuitableForBitTests(NumDests, NumCmps, 7259 Clusters[First].Low->getValue(), 7260 Clusters[Last].High->getValue())) { 7261 // Clusters[First..Last] should be lowered as bit tests instead. 7262 return false; 7263 } 7264 7265 // Create the MBB that will load from and jump through the table. 7266 // Note: We create it here, but it's not inserted into the function yet. 7267 MachineFunction *CurMF = FuncInfo.MF; 7268 MachineBasicBlock *JumpTableMBB = 7269 CurMF->CreateMachineBasicBlock(SI->getParent()); 7270 7271 // Add successors. Note: use table order for determinism. 7272 SmallPtrSet<MachineBasicBlock *, 8> Done; 7273 for (MachineBasicBlock *Succ : Table) { 7274 if (Done.count(Succ)) 7275 continue; 7276 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7277 Done.insert(Succ); 7278 } 7279 7280 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7281 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7282 ->createJumpTableIndex(Table); 7283 7284 // Set up the jump table info. 7285 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7286 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7287 Clusters[Last].High->getValue(), SI->getCondition(), 7288 nullptr, false); 7289 JTCases.push_back(JumpTableBlock(JTH, JT)); 7290 7291 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7292 JTCases.size() - 1, Weight); 7293 return true; 7294 } 7295 7296 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7297 const SwitchInst *SI, 7298 MachineBasicBlock *DefaultMBB) { 7299 #ifndef NDEBUG 7300 // Clusters must be non-empty, sorted, and only contain Range clusters. 7301 assert(!Clusters.empty()); 7302 for (CaseCluster &C : Clusters) 7303 assert(C.Kind == CC_Range); 7304 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7305 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7306 #endif 7307 7308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7309 if (!areJTsAllowed(TLI)) 7310 return; 7311 7312 const int64_t N = Clusters.size(); 7313 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7314 7315 // Split Clusters into minimum number of dense partitions. The algorithm uses 7316 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7317 // for the Case Statement'" (1994), but builds the MinPartitions array in 7318 // reverse order to make it easier to reconstruct the partitions in ascending 7319 // order. In the choice between two optimal partitionings, it picks the one 7320 // which yields more jump tables. 7321 7322 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7323 SmallVector<unsigned, 8> MinPartitions(N); 7324 // LastElement[i] is the last element of the partition starting at i. 7325 SmallVector<unsigned, 8> LastElement(N); 7326 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7327 SmallVector<unsigned, 8> NumTables(N); 7328 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7329 SmallVector<unsigned, 8> TotalCases(N); 7330 7331 for (unsigned i = 0; i < N; ++i) { 7332 APInt Hi = Clusters[i].High->getValue(); 7333 APInt Lo = Clusters[i].Low->getValue(); 7334 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7335 if (i != 0) 7336 TotalCases[i] += TotalCases[i - 1]; 7337 } 7338 7339 // Base case: There is only one way to partition Clusters[N-1]. 7340 MinPartitions[N - 1] = 1; 7341 LastElement[N - 1] = N - 1; 7342 assert(MinJumpTableSize > 1); 7343 NumTables[N - 1] = 0; 7344 7345 // Note: loop indexes are signed to avoid underflow. 7346 for (int64_t i = N - 2; i >= 0; i--) { 7347 // Find optimal partitioning of Clusters[i..N-1]. 7348 // Baseline: Put Clusters[i] into a partition on its own. 7349 MinPartitions[i] = MinPartitions[i + 1] + 1; 7350 LastElement[i] = i; 7351 NumTables[i] = NumTables[i + 1]; 7352 7353 // Search for a solution that results in fewer partitions. 7354 for (int64_t j = N - 1; j > i; j--) { 7355 // Try building a partition from Clusters[i..j]. 7356 if (isDense(Clusters, &TotalCases[0], i, j)) { 7357 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7358 bool IsTable = j - i + 1 >= MinJumpTableSize; 7359 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7360 7361 // If this j leads to fewer partitions, or same number of partitions 7362 // with more lookup tables, it is a better partitioning. 7363 if (NumPartitions < MinPartitions[i] || 7364 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7365 MinPartitions[i] = NumPartitions; 7366 LastElement[i] = j; 7367 NumTables[i] = Tables; 7368 } 7369 } 7370 } 7371 } 7372 7373 // Iterate over the partitions, replacing some with jump tables in-place. 7374 unsigned DstIndex = 0; 7375 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7376 Last = LastElement[First]; 7377 assert(Last >= First); 7378 assert(DstIndex <= First); 7379 unsigned NumClusters = Last - First + 1; 7380 7381 CaseCluster JTCluster; 7382 if (NumClusters >= MinJumpTableSize && 7383 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7384 Clusters[DstIndex++] = JTCluster; 7385 } else { 7386 for (unsigned I = First; I <= Last; ++I) 7387 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7388 } 7389 } 7390 Clusters.resize(DstIndex); 7391 } 7392 7393 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7394 // FIXME: Using the pointer type doesn't seem ideal. 7395 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7396 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7397 return Range <= BW; 7398 } 7399 7400 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7401 unsigned NumCmps, 7402 const APInt &Low, 7403 const APInt &High) { 7404 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7405 // range of cases both require only one branch to lower. Just looking at the 7406 // number of clusters and destinations should be enough to decide whether to 7407 // build bit tests. 7408 7409 // To lower a range with bit tests, the range must fit the bitwidth of a 7410 // machine word. 7411 if (!rangeFitsInWord(Low, High)) 7412 return false; 7413 7414 // Decide whether it's profitable to lower this range with bit tests. Each 7415 // destination requires a bit test and branch, and there is an overall range 7416 // check branch. For a small number of clusters, separate comparisons might be 7417 // cheaper, and for many destinations, splitting the range might be better. 7418 return (NumDests == 1 && NumCmps >= 3) || 7419 (NumDests == 2 && NumCmps >= 5) || 7420 (NumDests == 3 && NumCmps >= 6); 7421 } 7422 7423 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7424 unsigned First, unsigned Last, 7425 const SwitchInst *SI, 7426 CaseCluster &BTCluster) { 7427 assert(First <= Last); 7428 if (First == Last) 7429 return false; 7430 7431 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7432 unsigned NumCmps = 0; 7433 for (int64_t I = First; I <= Last; ++I) { 7434 assert(Clusters[I].Kind == CC_Range); 7435 Dests.set(Clusters[I].MBB->getNumber()); 7436 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7437 } 7438 unsigned NumDests = Dests.count(); 7439 7440 APInt Low = Clusters[First].Low->getValue(); 7441 APInt High = Clusters[Last].High->getValue(); 7442 assert(Low.slt(High)); 7443 7444 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7445 return false; 7446 7447 APInt LowBound; 7448 APInt CmpRange; 7449 7450 const int BitWidth = 7451 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7452 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7453 7454 if (Low.isNonNegative() && High.slt(BitWidth)) { 7455 // Optimize the case where all the case values fit in a 7456 // word without having to subtract minValue. In this case, 7457 // we can optimize away the subtraction. 7458 LowBound = APInt::getNullValue(Low.getBitWidth()); 7459 CmpRange = High; 7460 } else { 7461 LowBound = Low; 7462 CmpRange = High - Low; 7463 } 7464 7465 CaseBitsVector CBV; 7466 uint64_t TotalWeight = 0; 7467 for (unsigned i = First; i <= Last; ++i) { 7468 // Find the CaseBits for this destination. 7469 unsigned j; 7470 for (j = 0; j < CBV.size(); ++j) 7471 if (CBV[j].BB == Clusters[i].MBB) 7472 break; 7473 if (j == CBV.size()) 7474 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7475 CaseBits *CB = &CBV[j]; 7476 7477 // Update Mask, Bits and ExtraWeight. 7478 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7479 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7480 for (uint64_t j = Lo; j <= Hi; ++j) { 7481 CB->Mask |= 1ULL << j; 7482 CB->Bits++; 7483 } 7484 CB->ExtraWeight += Clusters[i].Weight; 7485 assert(CB->ExtraWeight >= Clusters[i].Weight && "Weight sum overflowed!"); 7486 TotalWeight += Clusters[i].Weight; 7487 } 7488 7489 BitTestInfo BTI; 7490 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7491 // Sort by weight first, number of bits second. 7492 if (a.ExtraWeight != b.ExtraWeight) 7493 return a.ExtraWeight > b.ExtraWeight; 7494 return a.Bits > b.Bits; 7495 }); 7496 7497 for (auto &CB : CBV) { 7498 MachineBasicBlock *BitTestBB = 7499 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7500 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7501 } 7502 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7503 -1U, MVT::Other, false, nullptr, 7504 nullptr, std::move(BTI))); 7505 7506 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7507 BitTestCases.size() - 1, TotalWeight); 7508 return true; 7509 } 7510 7511 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7512 const SwitchInst *SI) { 7513 // Partition Clusters into as few subsets as possible, where each subset has a 7514 // range that fits in a machine word and has <= 3 unique destinations. 7515 7516 #ifndef NDEBUG 7517 // Clusters must be sorted and contain Range or JumpTable clusters. 7518 assert(!Clusters.empty()); 7519 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7520 for (const CaseCluster &C : Clusters) 7521 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7522 for (unsigned i = 1; i < Clusters.size(); ++i) 7523 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7524 #endif 7525 7526 // If target does not have legal shift left, do not emit bit tests at all. 7527 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7528 EVT PTy = TLI.getPointerTy(); 7529 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7530 return; 7531 7532 int BitWidth = PTy.getSizeInBits(); 7533 const int64_t N = Clusters.size(); 7534 7535 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7536 SmallVector<unsigned, 8> MinPartitions(N); 7537 // LastElement[i] is the last element of the partition starting at i. 7538 SmallVector<unsigned, 8> LastElement(N); 7539 7540 // FIXME: This might not be the best algorithm for finding bit test clusters. 7541 7542 // Base case: There is only one way to partition Clusters[N-1]. 7543 MinPartitions[N - 1] = 1; 7544 LastElement[N - 1] = N - 1; 7545 7546 // Note: loop indexes are signed to avoid underflow. 7547 for (int64_t i = N - 2; i >= 0; --i) { 7548 // Find optimal partitioning of Clusters[i..N-1]. 7549 // Baseline: Put Clusters[i] into a partition on its own. 7550 MinPartitions[i] = MinPartitions[i + 1] + 1; 7551 LastElement[i] = i; 7552 7553 // Search for a solution that results in fewer partitions. 7554 // Note: the search is limited by BitWidth, reducing time complexity. 7555 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7556 // Try building a partition from Clusters[i..j]. 7557 7558 // Check the range. 7559 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7560 Clusters[j].High->getValue())) 7561 continue; 7562 7563 // Check nbr of destinations and cluster types. 7564 // FIXME: This works, but doesn't seem very efficient. 7565 bool RangesOnly = true; 7566 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7567 for (int64_t k = i; k <= j; k++) { 7568 if (Clusters[k].Kind != CC_Range) { 7569 RangesOnly = false; 7570 break; 7571 } 7572 Dests.set(Clusters[k].MBB->getNumber()); 7573 } 7574 if (!RangesOnly || Dests.count() > 3) 7575 break; 7576 7577 // Check if it's a better partition. 7578 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7579 if (NumPartitions < MinPartitions[i]) { 7580 // Found a better partition. 7581 MinPartitions[i] = NumPartitions; 7582 LastElement[i] = j; 7583 } 7584 } 7585 } 7586 7587 // Iterate over the partitions, replacing with bit-test clusters in-place. 7588 unsigned DstIndex = 0; 7589 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7590 Last = LastElement[First]; 7591 assert(First <= Last); 7592 assert(DstIndex <= First); 7593 7594 CaseCluster BitTestCluster; 7595 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7596 Clusters[DstIndex++] = BitTestCluster; 7597 } else { 7598 for (unsigned I = First; I <= Last; ++I) 7599 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7600 } 7601 } 7602 Clusters.resize(DstIndex); 7603 } 7604 7605 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7606 MachineBasicBlock *SwitchMBB, 7607 MachineBasicBlock *DefaultMBB) { 7608 MachineFunction *CurMF = FuncInfo.MF; 7609 MachineBasicBlock *NextMBB = nullptr; 7610 MachineFunction::iterator BBI = W.MBB; 7611 if (++BBI != FuncInfo.MF->end()) 7612 NextMBB = BBI; 7613 7614 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7615 7616 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7617 7618 if (Size == 2 && W.MBB == SwitchMBB) { 7619 // If any two of the cases has the same destination, and if one value 7620 // is the same as the other, but has one bit unset that the other has set, 7621 // use bit manipulation to do two compares at once. For example: 7622 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7623 // TODO: This could be extended to merge any 2 cases in switches with 3 7624 // cases. 7625 // TODO: Handle cases where W.CaseBB != SwitchBB. 7626 CaseCluster &Small = *W.FirstCluster; 7627 CaseCluster &Big = *W.LastCluster; 7628 7629 if (Small.Low == Small.High && Big.Low == Big.High && 7630 Small.MBB == Big.MBB) { 7631 const APInt &SmallValue = Small.Low->getValue(); 7632 const APInt &BigValue = Big.Low->getValue(); 7633 7634 // Check that there is only one bit different. 7635 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7636 (SmallValue | BigValue) == BigValue) { 7637 // Isolate the common bit. 7638 APInt CommonBit = BigValue & ~SmallValue; 7639 assert((SmallValue | CommonBit) == BigValue && 7640 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7641 7642 SDValue CondLHS = getValue(Cond); 7643 EVT VT = CondLHS.getValueType(); 7644 SDLoc DL = getCurSDLoc(); 7645 7646 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7647 DAG.getConstant(CommonBit, VT)); 7648 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7649 DAG.getConstant(BigValue, VT), ISD::SETEQ); 7650 7651 // Update successor info. 7652 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7653 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7654 addSuccessorWithWeight( 7655 SwitchMBB, DefaultMBB, 7656 // The default destination is the first successor in IR. 7657 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7658 : 0); 7659 7660 // Insert the true branch. 7661 SDValue BrCond = 7662 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7663 DAG.getBasicBlock(Small.MBB)); 7664 // Insert the false branch. 7665 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7666 DAG.getBasicBlock(DefaultMBB)); 7667 7668 DAG.setRoot(BrCond); 7669 return; 7670 } 7671 } 7672 } 7673 7674 if (TM.getOptLevel() != CodeGenOpt::None) { 7675 // Order cases by weight so the most likely case will be checked first. 7676 std::sort(W.FirstCluster, W.LastCluster + 1, 7677 [](const CaseCluster &a, const CaseCluster &b) { 7678 return a.Weight > b.Weight; 7679 }); 7680 7681 // Rearrange the case blocks so that the last one falls through if possible 7682 // without without changing the order of weights. 7683 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7684 --I; 7685 if (I->Weight > W.LastCluster->Weight) 7686 break; 7687 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7688 std::swap(*I, *W.LastCluster); 7689 break; 7690 } 7691 } 7692 } 7693 7694 // Compute total weight. 7695 uint32_t UnhandledWeights = 0; 7696 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 7697 UnhandledWeights += I->Weight; 7698 7699 MachineBasicBlock *CurMBB = W.MBB; 7700 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7701 MachineBasicBlock *Fallthrough; 7702 if (I == W.LastCluster) { 7703 // For the last cluster, fall through to the default destination. 7704 Fallthrough = DefaultMBB; 7705 } else { 7706 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7707 CurMF->insert(BBI, Fallthrough); 7708 // Put Cond in a virtual register to make it available from the new blocks. 7709 ExportFromCurrentBlock(Cond); 7710 } 7711 7712 switch (I->Kind) { 7713 case CC_JumpTable: { 7714 // FIXME: Optimize away range check based on pivot comparisons. 7715 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7716 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7717 7718 // The jump block hasn't been inserted yet; insert it here. 7719 MachineBasicBlock *JumpMBB = JT->MBB; 7720 CurMF->insert(BBI, JumpMBB); 7721 addSuccessorWithWeight(CurMBB, Fallthrough); 7722 addSuccessorWithWeight(CurMBB, JumpMBB); 7723 7724 // The jump table header will be inserted in our current block, do the 7725 // range check, and fall through to our fallthrough block. 7726 JTH->HeaderBB = CurMBB; 7727 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7728 7729 // If we're in the right place, emit the jump table header right now. 7730 if (CurMBB == SwitchMBB) { 7731 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7732 JTH->Emitted = true; 7733 } 7734 break; 7735 } 7736 case CC_BitTests: { 7737 // FIXME: Optimize away range check based on pivot comparisons. 7738 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7739 7740 // The bit test blocks haven't been inserted yet; insert them here. 7741 for (BitTestCase &BTC : BTB->Cases) 7742 CurMF->insert(BBI, BTC.ThisBB); 7743 7744 // Fill in fields of the BitTestBlock. 7745 BTB->Parent = CurMBB; 7746 BTB->Default = Fallthrough; 7747 7748 // If we're in the right place, emit the bit test header header right now. 7749 if (CurMBB ==SwitchMBB) { 7750 visitBitTestHeader(*BTB, SwitchMBB); 7751 BTB->Emitted = true; 7752 } 7753 break; 7754 } 7755 case CC_Range: { 7756 const Value *RHS, *LHS, *MHS; 7757 ISD::CondCode CC; 7758 if (I->Low == I->High) { 7759 // Check Cond == I->Low. 7760 CC = ISD::SETEQ; 7761 LHS = Cond; 7762 RHS=I->Low; 7763 MHS = nullptr; 7764 } else { 7765 // Check I->Low <= Cond <= I->High. 7766 CC = ISD::SETLE; 7767 LHS = I->Low; 7768 MHS = Cond; 7769 RHS = I->High; 7770 } 7771 7772 // The false weight is the sum of all unhandled cases. 7773 UnhandledWeights -= I->Weight; 7774 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7775 UnhandledWeights); 7776 7777 if (CurMBB == SwitchMBB) 7778 visitSwitchCase(CB, SwitchMBB); 7779 else 7780 SwitchCases.push_back(CB); 7781 7782 break; 7783 } 7784 } 7785 CurMBB = Fallthrough; 7786 } 7787 } 7788 7789 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7790 const SwitchWorkListItem &W, 7791 Value *Cond, 7792 MachineBasicBlock *SwitchMBB) { 7793 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7794 "Clusters not sorted?"); 7795 7796 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7797 assert(NumClusters >= 2 && "Too small to split!"); 7798 7799 // FIXME: When we have profile info, we might want to balance the tree based 7800 // on weights instead of node count. 7801 7802 CaseClusterIt PivotCluster = W.FirstCluster + NumClusters / 2; 7803 CaseClusterIt FirstLeft = W.FirstCluster; 7804 CaseClusterIt LastLeft = PivotCluster - 1; 7805 CaseClusterIt FirstRight = PivotCluster; 7806 CaseClusterIt LastRight = W.LastCluster; 7807 const ConstantInt *Pivot = PivotCluster->Low; 7808 7809 // New blocks will be inserted immediately after the current one. 7810 MachineFunction::iterator BBI = W.MBB; 7811 ++BBI; 7812 7813 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 7814 // we can branch to its destination directly if it's squeezed exactly in 7815 // between the known lower bound and Pivot - 1. 7816 MachineBasicBlock *LeftMBB; 7817 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 7818 FirstLeft->Low == W.GE && 7819 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 7820 LeftMBB = FirstLeft->MBB; 7821 } else { 7822 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7823 FuncInfo.MF->insert(BBI, LeftMBB); 7824 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 7825 // Put Cond in a virtual register to make it available from the new blocks. 7826 ExportFromCurrentBlock(Cond); 7827 } 7828 7829 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 7830 // single cluster, RHS.Low == Pivot, and we can branch to its destination 7831 // directly if RHS.High equals the current upper bound. 7832 MachineBasicBlock *RightMBB; 7833 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 7834 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 7835 RightMBB = FirstRight->MBB; 7836 } else { 7837 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 7838 FuncInfo.MF->insert(BBI, RightMBB); 7839 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 7840 // Put Cond in a virtual register to make it available from the new blocks. 7841 ExportFromCurrentBlock(Cond); 7842 } 7843 7844 // Create the CaseBlock record that will be used to lower the branch. 7845 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB); 7846 7847 if (W.MBB == SwitchMBB) 7848 visitSwitchCase(CB, SwitchMBB); 7849 else 7850 SwitchCases.push_back(CB); 7851 } 7852 7853 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 7854 // Extract cases from the switch. 7855 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7856 CaseClusterVector Clusters; 7857 Clusters.reserve(SI.getNumCases()); 7858 for (auto I : SI.cases()) { 7859 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 7860 const ConstantInt *CaseVal = I.getCaseValue(); 7861 uint32_t Weight = 0; // FIXME: Use 1 instead? 7862 if (BPI) 7863 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 7864 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 7865 } 7866 7867 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 7868 7869 if (TM.getOptLevel() != CodeGenOpt::None) { 7870 // Cluster adjacent cases with the same destination. 7871 sortAndRangeify(Clusters); 7872 7873 // Replace an unreachable default with the most popular destination. 7874 // FIXME: Exploit unreachable default more aggressively. 7875 bool UnreachableDefault = 7876 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 7877 if (UnreachableDefault && !Clusters.empty()) { 7878 DenseMap<const BasicBlock *, unsigned> Popularity; 7879 unsigned MaxPop = 0; 7880 const BasicBlock *MaxBB = nullptr; 7881 for (auto I : SI.cases()) { 7882 const BasicBlock *BB = I.getCaseSuccessor(); 7883 if (++Popularity[BB] > MaxPop) { 7884 MaxPop = Popularity[BB]; 7885 MaxBB = BB; 7886 } 7887 } 7888 // Set new default. 7889 assert(MaxPop > 0 && MaxBB); 7890 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 7891 7892 // Remove cases that were pointing to the destination that is now the 7893 // default. 7894 CaseClusterVector New; 7895 New.reserve(Clusters.size()); 7896 for (CaseCluster &CC : Clusters) { 7897 if (CC.MBB != DefaultMBB) 7898 New.push_back(CC); 7899 } 7900 Clusters = std::move(New); 7901 } 7902 } 7903 7904 // If there is only the default destination, jump there directly. 7905 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 7906 if (Clusters.empty()) { 7907 SwitchMBB->addSuccessor(DefaultMBB); 7908 if (DefaultMBB != NextBlock(SwitchMBB)) { 7909 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 7910 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 7911 } 7912 return; 7913 } 7914 7915 if (TM.getOptLevel() != CodeGenOpt::None) { 7916 findJumpTables(Clusters, &SI, DefaultMBB); 7917 findBitTestClusters(Clusters, &SI); 7918 } 7919 7920 7921 DEBUG({ 7922 dbgs() << "Case clusters: "; 7923 for (const CaseCluster &C : Clusters) { 7924 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 7925 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 7926 7927 C.Low->getValue().print(dbgs(), true); 7928 if (C.Low != C.High) { 7929 dbgs() << '-'; 7930 C.High->getValue().print(dbgs(), true); 7931 } 7932 dbgs() << ' '; 7933 } 7934 dbgs() << '\n'; 7935 }); 7936 7937 assert(!Clusters.empty()); 7938 SwitchWorkList WorkList; 7939 CaseClusterIt First = Clusters.begin(); 7940 CaseClusterIt Last = Clusters.end() - 1; 7941 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 7942 7943 while (!WorkList.empty()) { 7944 SwitchWorkListItem W = WorkList.back(); 7945 WorkList.pop_back(); 7946 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7947 7948 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 7949 // For optimized builds, lower large range as a balanced binary tree. 7950 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 7951 continue; 7952 } 7953 7954 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 7955 } 7956 } 7957