1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace PatternMatch; 106 using namespace SwitchCG; 107 108 #define DEBUG_TYPE "isel" 109 110 /// LimitFloatPrecision - Generate low-precision inline sequences for 111 /// some float libcalls (6, 8 or 12 bits). 112 static unsigned LimitFloatPrecision; 113 114 static cl::opt<bool> 115 InsertAssertAlign("insert-assert-align", cl::init(true), 116 cl::desc("Insert the experimental `assertalign` node."), 117 cl::ReallyHidden); 118 119 static cl::opt<unsigned, true> 120 LimitFPPrecision("limit-float-precision", 121 cl::desc("Generate low-precision inline sequences " 122 "for some float libcalls"), 123 cl::location(LimitFloatPrecision), cl::Hidden, 124 cl::init(0)); 125 126 static cl::opt<unsigned> SwitchPeelThreshold( 127 "switch-peel-threshold", cl::Hidden, cl::init(66), 128 cl::desc("Set the case probability threshold for peeling the case from a " 129 "switch statement. A value greater than 100 will void this " 130 "optimization")); 131 132 // Limit the width of DAG chains. This is important in general to prevent 133 // DAG-based analysis from blowing up. For example, alias analysis and 134 // load clustering may not complete in reasonable time. It is difficult to 135 // recognize and avoid this situation within each individual analysis, and 136 // future analyses are likely to have the same behavior. Limiting DAG width is 137 // the safe approach and will be especially important with global DAGs. 138 // 139 // MaxParallelChains default is arbitrarily high to avoid affecting 140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 141 // sequence over this should have been converted to llvm.memcpy by the 142 // frontend. It is easy to induce this behavior with .ll code such as: 143 // %buffer = alloca [4096 x i8] 144 // %data = load [4096 x i8]* %argPtr 145 // store [4096 x i8] %data, [4096 x i8]* %buffer 146 static const unsigned MaxParallelChains = 64; 147 148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 149 const SDValue *Parts, unsigned NumParts, 150 MVT PartVT, EVT ValueVT, const Value *V, 151 Optional<CallingConv::ID> CC); 152 153 /// getCopyFromParts - Create a value that contains the specified legal parts 154 /// combined into the value they represent. If the parts combine to a type 155 /// larger than ValueVT then AssertOp can be used to specify whether the extra 156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 157 /// (ISD::AssertSext). 158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 159 const SDValue *Parts, unsigned NumParts, 160 MVT PartVT, EVT ValueVT, const Value *V, 161 Optional<CallingConv::ID> CC = None, 162 Optional<ISD::NodeType> AssertOp = None) { 163 // Let the target assemble the parts if it wants to 164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 165 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 166 PartVT, ValueVT, CC)) 167 return Val; 168 169 if (ValueVT.isVector()) 170 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 171 CC); 172 173 assert(NumParts > 0 && "No parts to assemble!"); 174 SDValue Val = Parts[0]; 175 176 if (NumParts > 1) { 177 // Assemble the value from multiple parts. 178 if (ValueVT.isInteger()) { 179 unsigned PartBits = PartVT.getSizeInBits(); 180 unsigned ValueBits = ValueVT.getSizeInBits(); 181 182 // Assemble the power of 2 part. 183 unsigned RoundParts = 184 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 185 unsigned RoundBits = PartBits * RoundParts; 186 EVT RoundVT = RoundBits == ValueBits ? 187 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 188 SDValue Lo, Hi; 189 190 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 191 192 if (RoundParts > 2) { 193 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 194 PartVT, HalfVT, V); 195 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 196 RoundParts / 2, PartVT, HalfVT, V); 197 } else { 198 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 199 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 200 } 201 202 if (DAG.getDataLayout().isBigEndian()) 203 std::swap(Lo, Hi); 204 205 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 212 OddVT, V, CC); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (DAG.getDataLayout().isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueSizeInBits(), DL, 222 TLI.getShiftAmountTy( 223 TotalVT, DAG.getDataLayout()))); 224 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 225 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 226 } 227 } else if (PartVT.isFloatingPoint()) { 228 // FP split into multiple FP parts (for ppcf128) 229 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 230 "Unexpected split"); 231 SDValue Lo, Hi; 232 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 234 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 235 std::swap(Lo, Hi); 236 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 237 } else { 238 // FP split into integer parts (soft fp) 239 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 240 !PartVT.isVector() && "Unexpected split"); 241 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 242 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 243 } 244 } 245 246 // There is now one part, held in Val. Correct it to match ValueVT. 247 // PartEVT is the type of the register class that holds the value. 248 // ValueVT is the type of the inline asm operation. 249 EVT PartEVT = Val.getValueType(); 250 251 if (PartEVT == ValueVT) 252 return Val; 253 254 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 255 ValueVT.bitsLT(PartEVT)) { 256 // For an FP value in an integer part, we need to truncate to the right 257 // width first. 258 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 259 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 260 } 261 262 // Handle types that have the same size. 263 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 264 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 265 266 // Handle types with different sizes. 267 if (PartEVT.isInteger() && ValueVT.isInteger()) { 268 if (ValueVT.bitsLT(PartEVT)) { 269 // For a truncate, see if we have any information to 270 // indicate whether the truncated bits will always be 271 // zero or sign-extension. 272 if (AssertOp) 273 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 274 DAG.getValueType(ValueVT)); 275 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 276 } 277 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 278 } 279 280 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 281 // FP_ROUND's are always exact here. 282 if (ValueVT.bitsLT(Val.getValueType())) 283 return DAG.getNode( 284 ISD::FP_ROUND, DL, ValueVT, Val, 285 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 286 287 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 288 } 289 290 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 291 // then truncating. 292 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 293 ValueVT.bitsLT(PartEVT)) { 294 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 295 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 296 } 297 298 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 299 } 300 301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 302 const Twine &ErrMsg) { 303 const Instruction *I = dyn_cast_or_null<Instruction>(V); 304 if (!V) 305 return Ctx.emitError(ErrMsg); 306 307 const char *AsmError = ", possible invalid constraint for vector type"; 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) 309 if (CI->isInlineAsm()) 310 return Ctx.emitError(I, ErrMsg + AsmError); 311 312 return Ctx.emitError(I, ErrMsg); 313 } 314 315 /// getCopyFromPartsVector - Create a value that contains the specified legal 316 /// parts combined into the value they represent. If the parts combine to a 317 /// type larger than ValueVT then AssertOp can be used to specify whether the 318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 319 /// ValueVT (ISD::AssertSext). 320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 321 const SDValue *Parts, unsigned NumParts, 322 MVT PartVT, EVT ValueVT, const Value *V, 323 Optional<CallingConv::ID> CallConv) { 324 assert(ValueVT.isVector() && "Not a vector value"); 325 assert(NumParts > 0 && "No parts to assemble!"); 326 const bool IsABIRegCopy = CallConv.has_value(); 327 328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 329 SDValue Val = Parts[0]; 330 331 // Handle a multi-element vector. 332 if (NumParts > 1) { 333 EVT IntermediateVT; 334 MVT RegisterVT; 335 unsigned NumIntermediates; 336 unsigned NumRegs; 337 338 if (IsABIRegCopy) { 339 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 340 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 341 NumIntermediates, RegisterVT); 342 } else { 343 NumRegs = 344 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } 347 348 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 349 NumParts = NumRegs; // Silence a compiler warning. 350 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 351 assert(RegisterVT.getSizeInBits() == 352 Parts[0].getSimpleValueType().getSizeInBits() && 353 "Part type sizes don't match!"); 354 355 // Assemble the parts into intermediate operands. 356 SmallVector<SDValue, 8> Ops(NumIntermediates); 357 if (NumIntermediates == NumParts) { 358 // If the register was not expanded, truncate or copy the value, 359 // as appropriate. 360 for (unsigned i = 0; i != NumParts; ++i) 361 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 362 PartVT, IntermediateVT, V, CallConv); 363 } else if (NumParts > 0) { 364 // If the intermediate type was expanded, build the intermediate 365 // operands from the parts. 366 assert(NumParts % NumIntermediates == 0 && 367 "Must expand into a divisible number of parts!"); 368 unsigned Factor = NumParts / NumIntermediates; 369 for (unsigned i = 0; i != NumIntermediates; ++i) 370 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 371 PartVT, IntermediateVT, V, CallConv); 372 } 373 374 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 375 // intermediate operands. 376 EVT BuiltVectorTy = 377 IntermediateVT.isVector() 378 ? EVT::getVectorVT( 379 *DAG.getContext(), IntermediateVT.getScalarType(), 380 IntermediateVT.getVectorElementCount() * NumParts) 381 : EVT::getVectorVT(*DAG.getContext(), 382 IntermediateVT.getScalarType(), 383 NumIntermediates); 384 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 385 : ISD::BUILD_VECTOR, 386 DL, BuiltVectorTy, Ops); 387 } 388 389 // There is now one part, held in Val. Correct it to match ValueVT. 390 EVT PartEVT = Val.getValueType(); 391 392 if (PartEVT == ValueVT) 393 return Val; 394 395 if (PartEVT.isVector()) { 396 // Vector/Vector bitcast. 397 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 398 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 399 400 // If the element type of the source/dest vectors are the same, but the 401 // parts vector has more elements than the value vector, then we have a 402 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 403 // elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 } 418 419 // Promoted vector extract 420 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 421 } 422 423 // Trivial bitcast if the types are the same size and the destination 424 // vector type is legal. 425 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 426 TLI.isTypeLegal(ValueVT)) 427 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 428 429 if (ValueVT.getVectorNumElements() != 1) { 430 // Certain ABIs require that vectors are passed as integers. For vectors 431 // are the same size, this is an obvious bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 } else if (ValueVT.bitsLT(PartEVT)) { 435 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 436 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 437 // Drop the extra bits. 438 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 439 return DAG.getBitcast(ValueVT, Val); 440 } 441 442 diagnosePossiblyInvalidConstraint( 443 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 444 return DAG.getUNDEF(ValueVT); 445 } 446 447 // Handle cases such as i8 -> <1 x i1> 448 EVT ValueSVT = ValueVT.getVectorElementType(); 449 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 450 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 451 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 452 else 453 Val = ValueVT.isFloatingPoint() 454 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 455 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 456 } 457 458 return DAG.getBuildVector(ValueVT, DL, Val); 459 } 460 461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 462 SDValue Val, SDValue *Parts, unsigned NumParts, 463 MVT PartVT, const Value *V, 464 Optional<CallingConv::ID> CallConv); 465 466 /// getCopyToParts - Create a series of nodes that contain the specified value 467 /// split into legal parts. If the parts contain more bits than Val, then, for 468 /// integers, ExtendKind can be used to specify how to generate the extra bits. 469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 470 SDValue *Parts, unsigned NumParts, MVT PartVT, 471 const Value *V, 472 Optional<CallingConv::ID> CallConv = None, 473 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 474 // Let the target split the parts if it wants to 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 477 CallConv)) 478 return; 479 EVT ValueVT = Val.getValueType(); 480 481 // Handle the vector case separately. 482 if (ValueVT.isVector()) 483 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 484 CallConv); 485 486 unsigned PartBits = PartVT.getSizeInBits(); 487 unsigned OrigNumParts = NumParts; 488 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 489 "Copying to an illegal type!"); 490 491 if (NumParts == 0) 492 return; 493 494 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 495 EVT PartEVT = PartVT; 496 if (PartEVT == ValueVT) { 497 assert(NumParts == 1 && "No-op copy with multiple parts!"); 498 Parts[0] = Val; 499 return; 500 } 501 502 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 503 // If the parts cover more bits than the value has, promote the value. 504 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 505 assert(NumParts == 1 && "Do not know what to promote to!"); 506 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 507 } else { 508 if (ValueVT.isFloatingPoint()) { 509 // FP values need to be bitcast, then extended if they are being put 510 // into a larger container. 511 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 512 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 513 } 514 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 515 ValueVT.isInteger() && 516 "Unknown mismatch!"); 517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 518 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 519 if (PartVT == MVT::x86mmx) 520 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 521 } 522 } else if (PartBits == ValueVT.getSizeInBits()) { 523 // Different types of the same size. 524 assert(NumParts == 1 && PartEVT != ValueVT); 525 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 526 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 527 // If the parts cover less bits than value has, truncate the value. 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 537 // The value may have changed - recompute ValueVT. 538 ValueVT = Val.getValueType(); 539 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 540 "Failed to tile the value with PartVT!"); 541 542 if (NumParts == 1) { 543 if (PartEVT != ValueVT) { 544 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 545 "scalar-to-vector conversion failed"); 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 Parts[0] = Val; 550 return; 551 } 552 553 // Expand the value into multiple parts. 554 if (NumParts & (NumParts - 1)) { 555 // The number of parts is not a power of 2. Split off and copy the tail. 556 assert(PartVT.isInteger() && ValueVT.isInteger() && 557 "Do not know what to expand to!"); 558 unsigned RoundParts = 1 << Log2_32(NumParts); 559 unsigned RoundBits = RoundParts * PartBits; 560 unsigned OddParts = NumParts - RoundParts; 561 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 562 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 563 564 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 565 CallConv); 566 567 if (DAG.getDataLayout().isBigEndian()) 568 // The odd parts were reversed by getCopyToParts - unreverse them. 569 std::reverse(Parts + RoundParts, Parts + NumParts); 570 571 NumParts = RoundParts; 572 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 573 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 574 } 575 576 // The number of parts is a power of 2. Repeatedly bisect the value using 577 // EXTRACT_ELEMENT. 578 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 579 EVT::getIntegerVT(*DAG.getContext(), 580 ValueVT.getSizeInBits()), 581 Val); 582 583 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 584 for (unsigned i = 0; i < NumParts; i += StepSize) { 585 unsigned ThisBits = StepSize * PartBits / 2; 586 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 587 SDValue &Part0 = Parts[i]; 588 SDValue &Part1 = Parts[i+StepSize/2]; 589 590 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 591 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 592 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 594 595 if (ThisBits == PartBits && ThisVT != PartVT) { 596 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 597 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 598 } 599 } 600 } 601 602 if (DAG.getDataLayout().isBigEndian()) 603 std::reverse(Parts, Parts + OrigNumParts); 604 } 605 606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 607 const SDLoc &DL, EVT PartVT) { 608 if (!PartVT.isVector()) 609 return SDValue(); 610 611 EVT ValueVT = Val.getValueType(); 612 ElementCount PartNumElts = PartVT.getVectorElementCount(); 613 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 614 615 // We only support widening vectors with equivalent element types and 616 // fixed/scalable properties. If a target needs to widen a fixed-length type 617 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 618 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 619 PartNumElts.isScalable() != ValueNumElts.isScalable() || 620 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 621 return SDValue(); 622 623 // Widening a scalable vector to another scalable vector is done by inserting 624 // the vector into a larger undef one. 625 if (PartNumElts.isScalable()) 626 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 627 Val, DAG.getVectorIdxConstant(0, DL)); 628 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 /// getCopyToPartsVector - Create a series of nodes that contain the specified 642 /// value split into legal parts. 643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 644 SDValue Val, SDValue *Parts, unsigned NumParts, 645 MVT PartVT, const Value *V, 646 Optional<CallingConv::ID> CallConv) { 647 EVT ValueVT = Val.getValueType(); 648 assert(ValueVT.isVector() && "Not a vector"); 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 const bool IsABIRegCopy = CallConv.has_value(); 651 652 if (NumParts == 1) { 653 EVT PartEVT = PartVT; 654 if (PartEVT == ValueVT) { 655 // Nothing to do. 656 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 657 // Bitconvert vector->vector case. 658 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 659 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 660 Val = Widened; 661 } else if (PartVT.isVector() && 662 PartEVT.getVectorElementType().bitsGE( 663 ValueVT.getVectorElementType()) && 664 PartEVT.getVectorElementCount() == 665 ValueVT.getVectorElementCount()) { 666 667 // Promoted vector extract 668 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 669 } else if (PartEVT.isVector() && 670 PartEVT.getVectorElementType() != 671 ValueVT.getVectorElementType() && 672 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 673 TargetLowering::TypeWidenVector) { 674 // Combination of widening and promotion. 675 EVT WidenVT = 676 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 677 PartVT.getVectorElementCount()); 678 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 679 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 680 } else { 681 if (ValueVT.getVectorElementCount().isScalar()) { 682 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 683 DAG.getVectorIdxConstant(0, DL)); 684 } else { 685 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 686 assert(PartVT.getFixedSizeInBits() > ValueSize && 687 "lossy conversion of vector to scalar type"); 688 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 689 Val = DAG.getBitcast(IntermediateType, Val); 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } 692 } 693 694 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 695 Parts[0] = Val; 696 return; 697 } 698 699 // Handle a multi-element vector. 700 EVT IntermediateVT; 701 MVT RegisterVT; 702 unsigned NumIntermediates; 703 unsigned NumRegs; 704 if (IsABIRegCopy) { 705 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 706 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 707 NumIntermediates, RegisterVT); 708 } else { 709 NumRegs = 710 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } 713 714 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 715 NumParts = NumRegs; // Silence a compiler warning. 716 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 717 718 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 719 "Mixing scalable and fixed vectors when copying in parts"); 720 721 Optional<ElementCount> DestEltCnt; 722 723 if (IntermediateVT.isVector()) 724 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 725 else 726 DestEltCnt = ElementCount::getFixed(NumIntermediates); 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 730 731 if (ValueVT == BuiltVectorTy) { 732 // Nothing to do. 733 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 734 // Bitconvert vector->vector case. 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } else { 737 if (BuiltVectorTy.getVectorElementType().bitsGT( 738 ValueVT.getVectorElementType())) { 739 // Integer promotion. 740 ValueVT = EVT::getVectorVT(*DAG.getContext(), 741 BuiltVectorTy.getVectorElementType(), 742 ValueVT.getVectorElementCount()); 743 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 744 } 745 746 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 747 Val = Widened; 748 } 749 } 750 751 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 752 753 // Split the vector into intermediate operands. 754 SmallVector<SDValue, 8> Ops(NumIntermediates); 755 for (unsigned i = 0; i != NumIntermediates; ++i) { 756 if (IntermediateVT.isVector()) { 757 // This does something sensible for scalable vectors - see the 758 // definition of EXTRACT_SUBVECTOR for further details. 759 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 760 Ops[i] = 761 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 762 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 763 } else { 764 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 765 DAG.getVectorIdxConstant(i, DL)); 766 } 767 } 768 769 // Split the intermediate operands into legal parts. 770 if (NumParts == NumIntermediates) { 771 // If the register was not expanded, promote or copy the value, 772 // as appropriate. 773 for (unsigned i = 0; i != NumParts; ++i) 774 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 775 } else if (NumParts > 0) { 776 // If the intermediate type was expanded, split each the value into 777 // legal parts. 778 assert(NumIntermediates != 0 && "division by zero"); 779 assert(NumParts % NumIntermediates == 0 && 780 "Must expand into a divisible number of parts!"); 781 unsigned Factor = NumParts / NumIntermediates; 782 for (unsigned i = 0; i != NumIntermediates; ++i) 783 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 784 CallConv); 785 } 786 } 787 788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 789 EVT valuevt, Optional<CallingConv::ID> CC) 790 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 791 RegCount(1, regs.size()), CallConv(CC) {} 792 793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 794 const DataLayout &DL, unsigned Reg, Type *Ty, 795 Optional<CallingConv::ID> CC) { 796 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 797 798 CallConv = CC; 799 800 for (EVT ValueVT : ValueVTs) { 801 unsigned NumRegs = 802 isABIMangled() 803 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 804 : TLI.getNumRegisters(Context, ValueVT); 805 MVT RegisterVT = 806 isABIMangled() 807 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 808 : TLI.getRegisterType(Context, ValueVT); 809 for (unsigned i = 0; i != NumRegs; ++i) 810 Regs.push_back(Reg + i); 811 RegVTs.push_back(RegisterVT); 812 RegCount.push_back(NumRegs); 813 Reg += NumRegs; 814 } 815 } 816 817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 818 FunctionLoweringInfo &FuncInfo, 819 const SDLoc &dl, SDValue &Chain, 820 SDValue *Flag, const Value *V) const { 821 // A Value with type {} or [0 x %t] needs no registers. 822 if (ValueVTs.empty()) 823 return SDValue(); 824 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 // Assemble the legal parts into the final values. 828 SmallVector<SDValue, 4> Values(ValueVTs.size()); 829 SmallVector<SDValue, 8> Parts; 830 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 831 // Copy the legal parts from the registers. 832 EVT ValueVT = ValueVTs[Value]; 833 unsigned NumRegs = RegCount[Value]; 834 MVT RegisterVT = 835 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 836 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 837 : RegVTs[Value]; 838 839 Parts.resize(NumRegs); 840 for (unsigned i = 0; i != NumRegs; ++i) { 841 SDValue P; 842 if (!Flag) { 843 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 844 } else { 845 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 846 *Flag = P.getValue(2); 847 } 848 849 Chain = P.getValue(1); 850 Parts[i] = P; 851 852 // If the source register was virtual and if we know something about it, 853 // add an assert node. 854 if (!Register::isVirtualRegister(Regs[Part + i]) || 855 !RegisterVT.isInteger()) 856 continue; 857 858 const FunctionLoweringInfo::LiveOutInfo *LOI = 859 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 860 if (!LOI) 861 continue; 862 863 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 864 unsigned NumSignBits = LOI->NumSignBits; 865 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 866 867 if (NumZeroBits == RegSize) { 868 // The current value is a zero. 869 // Explicitly express that as it would be easier for 870 // optimizations to kick in. 871 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 872 continue; 873 } 874 875 // FIXME: We capture more information than the dag can represent. For 876 // now, just use the tightest assertzext/assertsext possible. 877 bool isSExt; 878 EVT FromVT(MVT::Other); 879 if (NumZeroBits) { 880 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 881 isSExt = false; 882 } else if (NumSignBits > 1) { 883 FromVT = 884 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 885 isSExt = true; 886 } else { 887 continue; 888 } 889 // Add an assertion node. 890 assert(FromVT != MVT::Other); 891 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 892 RegisterVT, P, DAG.getValueType(FromVT)); 893 } 894 895 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 896 RegisterVT, ValueVT, V, CallConv); 897 Part += NumRegs; 898 Parts.clear(); 899 } 900 901 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 902 } 903 904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 905 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 906 const Value *V, 907 ISD::NodeType PreferredExtendType) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 ISD::NodeType ExtendKind = PreferredExtendType; 910 911 // Get the list of the values's legal parts. 912 unsigned NumRegs = Regs.size(); 913 SmallVector<SDValue, 8> Parts(NumRegs); 914 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 915 unsigned NumParts = RegCount[Value]; 916 917 MVT RegisterVT = 918 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 919 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 920 : RegVTs[Value]; 921 922 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 923 ExtendKind = ISD::ZERO_EXTEND; 924 925 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 926 NumParts, RegisterVT, V, CallConv, ExtendKind); 927 Part += NumParts; 928 } 929 930 // Copy the parts into the registers. 931 SmallVector<SDValue, 8> Chains(NumRegs); 932 for (unsigned i = 0; i != NumRegs; ++i) { 933 SDValue Part; 934 if (!Flag) { 935 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 936 } else { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 938 *Flag = Part.getValue(1); 939 } 940 941 Chains[i] = Part.getValue(0); 942 } 943 944 if (NumRegs == 1 || Flag) 945 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 946 // flagged to it. That is the CopyToReg nodes and the user are considered 947 // a single scheduling unit. If we create a TokenFactor and return it as 948 // chain, then the TokenFactor is both a predecessor (operand) of the 949 // user as well as a successor (the TF operands are flagged to the user). 950 // c1, f1 = CopyToReg 951 // c2, f2 = CopyToReg 952 // c3 = TokenFactor c1, c2 953 // ... 954 // = op c3, ..., f2 955 Chain = Chains[NumRegs-1]; 956 else 957 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 958 } 959 960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 961 unsigned MatchingIdx, const SDLoc &dl, 962 SelectionDAG &DAG, 963 std::vector<SDValue> &Ops) const { 964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 965 966 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 967 if (HasMatching) 968 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 969 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 970 // Put the register class of the virtual registers in the flag word. That 971 // way, later passes can recompute register class constraints for inline 972 // assembly as well as normal instructions. 973 // Don't do this for tied operands that can use the regclass information 974 // from the def. 975 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 976 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 977 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 978 } 979 980 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 981 Ops.push_back(Res); 982 983 if (Code == InlineAsm::Kind_Clobber) { 984 // Clobbers should always have a 1:1 mapping with registers, and may 985 // reference registers that have illegal (e.g. vector) types. Hence, we 986 // shouldn't try to apply any sort of splitting logic to them. 987 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 988 "No 1:1 mapping from clobbers to regs?"); 989 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 990 (void)SP; 991 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 992 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 993 assert( 994 (Regs[I] != SP || 995 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 996 "If we clobbered the stack pointer, MFI should know about it."); 997 } 998 return; 999 } 1000 1001 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1002 MVT RegisterVT = RegVTs[Value]; 1003 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1004 RegisterVT); 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1007 unsigned TheReg = Regs[Reg++]; 1008 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1009 } 1010 } 1011 } 1012 1013 SmallVector<std::pair<unsigned, TypeSize>, 4> 1014 RegsForValue::getRegsAndSizes() const { 1015 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1016 unsigned I = 0; 1017 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1018 unsigned RegCount = std::get<0>(CountAndVT); 1019 MVT RegisterVT = std::get<1>(CountAndVT); 1020 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1021 for (unsigned E = I + RegCount; I != E; ++I) 1022 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1023 } 1024 return OutVec; 1025 } 1026 1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1028 const TargetLibraryInfo *li) { 1029 AA = aa; 1030 GFI = gfi; 1031 LibInfo = li; 1032 Context = DAG.getContext(); 1033 LPadToCallSiteMap.clear(); 1034 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1035 } 1036 1037 void SelectionDAGBuilder::clear() { 1038 NodeMap.clear(); 1039 UnusedArgNodeMap.clear(); 1040 PendingLoads.clear(); 1041 PendingExports.clear(); 1042 PendingConstrainedFP.clear(); 1043 PendingConstrainedFPStrict.clear(); 1044 CurInst = nullptr; 1045 HasTailCall = false; 1046 SDNodeOrder = LowestSDNodeOrder; 1047 StatepointLowering.clear(); 1048 } 1049 1050 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1051 DanglingDebugInfoMap.clear(); 1052 } 1053 1054 // Update DAG root to include dependencies on Pending chains. 1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1056 SDValue Root = DAG.getRoot(); 1057 1058 if (Pending.empty()) 1059 return Root; 1060 1061 // Add current root to PendingChains, unless we already indirectly 1062 // depend on it. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = Pending.size(); 1065 for (; i != e; ++i) { 1066 assert(Pending[i].getNode()->getNumOperands() > 1); 1067 if (Pending[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 Pending.push_back(Root); 1073 } 1074 1075 if (Pending.size() == 1) 1076 Root = Pending[0]; 1077 else 1078 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1079 1080 DAG.setRoot(Root); 1081 Pending.clear(); 1082 return Root; 1083 } 1084 1085 SDValue SelectionDAGBuilder::getMemoryRoot() { 1086 return updateRoot(PendingLoads); 1087 } 1088 1089 SDValue SelectionDAGBuilder::getRoot() { 1090 // Chain up all pending constrained intrinsics together with all 1091 // pending loads, by simply appending them to PendingLoads and 1092 // then calling getMemoryRoot(). 1093 PendingLoads.reserve(PendingLoads.size() + 1094 PendingConstrainedFP.size() + 1095 PendingConstrainedFPStrict.size()); 1096 PendingLoads.append(PendingConstrainedFP.begin(), 1097 PendingConstrainedFP.end()); 1098 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFP.clear(); 1101 PendingConstrainedFPStrict.clear(); 1102 return getMemoryRoot(); 1103 } 1104 1105 SDValue SelectionDAGBuilder::getControlRoot() { 1106 // We need to emit pending fpexcept.strict constrained intrinsics, 1107 // so append them to the PendingExports list. 1108 PendingExports.append(PendingConstrainedFPStrict.begin(), 1109 PendingConstrainedFPStrict.end()); 1110 PendingConstrainedFPStrict.clear(); 1111 return updateRoot(PendingExports); 1112 } 1113 1114 void SelectionDAGBuilder::visit(const Instruction &I) { 1115 // Set up outgoing PHI node register values before emitting the terminator. 1116 if (I.isTerminator()) { 1117 HandlePHINodesInSuccessorBlocks(I.getParent()); 1118 } 1119 1120 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1121 if (!isa<DbgInfoIntrinsic>(I)) 1122 ++SDNodeOrder; 1123 1124 CurInst = &I; 1125 1126 visit(I.getOpcode(), I); 1127 1128 if (!I.isTerminator() && !HasTailCall && 1129 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1130 CopyToExportRegsIfNeeded(&I); 1131 1132 CurInst = nullptr; 1133 } 1134 1135 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1136 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1137 } 1138 1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1140 // Note: this doesn't use InstVisitor, because it has to work with 1141 // ConstantExpr's in addition to instructions. 1142 switch (Opcode) { 1143 default: llvm_unreachable("Unknown instruction type encountered!"); 1144 // Build the switch statement using the Instruction.def file. 1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1146 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1147 #include "llvm/IR/Instruction.def" 1148 } 1149 } 1150 1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1152 DebugLoc DL, unsigned Order) { 1153 // We treat variadic dbg_values differently at this stage. 1154 if (DI->hasArgList()) { 1155 // For variadic dbg_values we will now insert an undef. 1156 // FIXME: We can potentially recover these! 1157 SmallVector<SDDbgOperand, 2> Locs; 1158 for (const Value *V : DI->getValues()) { 1159 auto Undef = UndefValue::get(V->getType()); 1160 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1161 } 1162 SDDbgValue *SDV = DAG.getDbgValueList( 1163 DI->getVariable(), DI->getExpression(), Locs, {}, 1164 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1165 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1166 } else { 1167 // TODO: Dangling debug info will eventually either be resolved or produce 1168 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1169 // between the original dbg.value location and its resolved DBG_VALUE, 1170 // which we should ideally fill with an extra Undef DBG_VALUE. 1171 assert(DI->getNumVariableLocationOps() == 1 && 1172 "DbgValueInst without an ArgList should have a single location " 1173 "operand."); 1174 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1175 } 1176 } 1177 1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1179 const DIExpression *Expr) { 1180 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1181 const DbgValueInst *DI = DDI.getDI(); 1182 DIVariable *DanglingVariable = DI->getVariable(); 1183 DIExpression *DanglingExpr = DI->getExpression(); 1184 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1185 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1186 return true; 1187 } 1188 return false; 1189 }; 1190 1191 for (auto &DDIMI : DanglingDebugInfoMap) { 1192 DanglingDebugInfoVector &DDIV = DDIMI.second; 1193 1194 // If debug info is to be dropped, run it through final checks to see 1195 // whether it can be salvaged. 1196 for (auto &DDI : DDIV) 1197 if (isMatchingDbgValue(DDI)) 1198 salvageUnresolvedDbgValue(DDI); 1199 1200 erase_if(DDIV, isMatchingDbgValue); 1201 } 1202 } 1203 1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1205 // generate the debug data structures now that we've seen its definition. 1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1207 SDValue Val) { 1208 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1209 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1210 return; 1211 1212 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1213 for (auto &DDI : DDIV) { 1214 const DbgValueInst *DI = DDI.getDI(); 1215 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1216 assert(DI && "Ill-formed DanglingDebugInfo"); 1217 DebugLoc dl = DDI.getdl(); 1218 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1219 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1220 DILocalVariable *Variable = DI->getVariable(); 1221 DIExpression *Expr = DI->getExpression(); 1222 assert(Variable->isValidLocationForIntrinsic(dl) && 1223 "Expected inlined-at fields to agree"); 1224 SDDbgValue *SDV; 1225 if (Val.getNode()) { 1226 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1227 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1228 // we couldn't resolve it directly when examining the DbgValue intrinsic 1229 // in the first place we should not be more successful here). Unless we 1230 // have some test case that prove this to be correct we should avoid 1231 // calling EmitFuncArgumentDbgValue here. 1232 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1233 FuncArgumentDbgValueKind::Value, Val)) { 1234 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1235 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1236 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1237 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1238 // inserted after the definition of Val when emitting the instructions 1239 // after ISel. An alternative could be to teach 1240 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1241 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1242 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1243 << ValSDNodeOrder << "\n"); 1244 SDV = getDbgValue(Val, Variable, Expr, dl, 1245 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1246 DAG.AddDbgValue(SDV, false); 1247 } else 1248 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1249 << "in EmitFuncArgumentDbgValue\n"); 1250 } else { 1251 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1252 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1253 auto SDV = 1254 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1255 DAG.AddDbgValue(SDV, false); 1256 } 1257 } 1258 DDIV.clear(); 1259 } 1260 1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1262 // TODO: For the variadic implementation, instead of only checking the fail 1263 // state of `handleDebugValue`, we need know specifically which values were 1264 // invalid, so that we attempt to salvage only those values when processing 1265 // a DIArgList. 1266 assert(!DDI.getDI()->hasArgList() && 1267 "Not implemented for variadic dbg_values"); 1268 Value *V = DDI.getDI()->getValue(0); 1269 DILocalVariable *Var = DDI.getDI()->getVariable(); 1270 DIExpression *Expr = DDI.getDI()->getExpression(); 1271 DebugLoc DL = DDI.getdl(); 1272 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1273 unsigned SDOrder = DDI.getSDNodeOrder(); 1274 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1275 // that DW_OP_stack_value is desired. 1276 assert(isa<DbgValueInst>(DDI.getDI())); 1277 bool StackValue = true; 1278 1279 // Can this Value can be encoded without any further work? 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1281 return; 1282 1283 // Attempt to salvage back through as many instructions as possible. Bail if 1284 // a non-instruction is seen, such as a constant expression or global 1285 // variable. FIXME: Further work could recover those too. 1286 while (isa<Instruction>(V)) { 1287 Instruction &VAsInst = *cast<Instruction>(V); 1288 // Temporary "0", awaiting real implementation. 1289 SmallVector<uint64_t, 16> Ops; 1290 SmallVector<Value *, 4> AdditionalValues; 1291 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1292 AdditionalValues); 1293 // If we cannot salvage any further, and haven't yet found a suitable debug 1294 // expression, bail out. 1295 if (!V) 1296 break; 1297 1298 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1299 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1300 // here for variadic dbg_values, remove that condition. 1301 if (!AdditionalValues.empty()) 1302 break; 1303 1304 // New value and expr now represent this debuginfo. 1305 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1306 1307 // Some kind of simplification occurred: check whether the operand of the 1308 // salvaged debug expression can be encoded in this DAG. 1309 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1310 /*IsVariadic=*/false)) { 1311 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1312 << *DDI.getDI() << "\nBy stripping back to:\n " << *V); 1313 return; 1314 } 1315 } 1316 1317 // This was the final opportunity to salvage this debug information, and it 1318 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1319 // any earlier variable location. 1320 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1321 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1322 DAG.AddDbgValue(SDV, false); 1323 1324 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() 1325 << "\n"); 1326 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1327 << "\n"); 1328 } 1329 1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1331 DILocalVariable *Var, 1332 DIExpression *Expr, DebugLoc dl, 1333 DebugLoc InstDL, unsigned Order, 1334 bool IsVariadic) { 1335 if (Values.empty()) 1336 return true; 1337 SmallVector<SDDbgOperand> LocationOps; 1338 SmallVector<SDNode *> Dependencies; 1339 for (const Value *V : Values) { 1340 // Constant value. 1341 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1342 isa<ConstantPointerNull>(V)) { 1343 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1344 continue; 1345 } 1346 1347 // Look through IntToPtr constants. 1348 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1349 if (CE->getOpcode() == Instruction::IntToPtr) { 1350 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1351 continue; 1352 } 1353 1354 // If the Value is a frame index, we can create a FrameIndex debug value 1355 // without relying on the DAG at all. 1356 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1357 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1358 if (SI != FuncInfo.StaticAllocaMap.end()) { 1359 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1360 continue; 1361 } 1362 } 1363 1364 // Do not use getValue() in here; we don't want to generate code at 1365 // this point if it hasn't been done yet. 1366 SDValue N = NodeMap[V]; 1367 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1368 N = UnusedArgNodeMap[V]; 1369 if (N.getNode()) { 1370 // Only emit func arg dbg value for non-variadic dbg.values for now. 1371 if (!IsVariadic && 1372 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1373 FuncArgumentDbgValueKind::Value, N)) 1374 return true; 1375 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1376 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1377 // describe stack slot locations. 1378 // 1379 // Consider "int x = 0; int *px = &x;". There are two kinds of 1380 // interesting debug values here after optimization: 1381 // 1382 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1383 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1384 // 1385 // Both describe the direct values of their associated variables. 1386 Dependencies.push_back(N.getNode()); 1387 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1388 continue; 1389 } 1390 LocationOps.emplace_back( 1391 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1392 continue; 1393 } 1394 1395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1396 // Special rules apply for the first dbg.values of parameter variables in a 1397 // function. Identify them by the fact they reference Argument Values, that 1398 // they're parameters, and they are parameters of the current function. We 1399 // need to let them dangle until they get an SDNode. 1400 bool IsParamOfFunc = 1401 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1402 if (IsParamOfFunc) 1403 return false; 1404 1405 // The value is not used in this block yet (or it would have an SDNode). 1406 // We still want the value to appear for the user if possible -- if it has 1407 // an associated VReg, we can refer to that instead. 1408 auto VMI = FuncInfo.ValueMap.find(V); 1409 if (VMI != FuncInfo.ValueMap.end()) { 1410 unsigned Reg = VMI->second; 1411 // If this is a PHI node, it may be split up into several MI PHI nodes 1412 // (in FunctionLoweringInfo::set). 1413 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1414 V->getType(), None); 1415 if (RFV.occupiesMultipleRegs()) { 1416 // FIXME: We could potentially support variadic dbg_values here. 1417 if (IsVariadic) 1418 return false; 1419 unsigned Offset = 0; 1420 unsigned BitsToDescribe = 0; 1421 if (auto VarSize = Var->getSizeInBits()) 1422 BitsToDescribe = *VarSize; 1423 if (auto Fragment = Expr->getFragmentInfo()) 1424 BitsToDescribe = Fragment->SizeInBits; 1425 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1426 // Bail out if all bits are described already. 1427 if (Offset >= BitsToDescribe) 1428 break; 1429 // TODO: handle scalable vectors. 1430 unsigned RegisterSize = RegAndSize.second; 1431 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1432 ? BitsToDescribe - Offset 1433 : RegisterSize; 1434 auto FragmentExpr = DIExpression::createFragmentExpression( 1435 Expr, Offset, FragmentSize); 1436 if (!FragmentExpr) 1437 continue; 1438 SDDbgValue *SDV = DAG.getVRegDbgValue( 1439 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1440 DAG.AddDbgValue(SDV, false); 1441 Offset += RegisterSize; 1442 } 1443 return true; 1444 } 1445 // We can use simple vreg locations for variadic dbg_values as well. 1446 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1447 continue; 1448 } 1449 // We failed to create a SDDbgOperand for V. 1450 return false; 1451 } 1452 1453 // We have created a SDDbgOperand for each Value in Values. 1454 // Should use Order instead of SDNodeOrder? 1455 assert(!LocationOps.empty()); 1456 SDDbgValue *SDV = 1457 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1458 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1459 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1460 return true; 1461 } 1462 1463 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1464 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1465 for (auto &Pair : DanglingDebugInfoMap) 1466 for (auto &DDI : Pair.second) 1467 salvageUnresolvedDbgValue(DDI); 1468 clearDanglingDebugInfo(); 1469 } 1470 1471 /// getCopyFromRegs - If there was virtual register allocated for the value V 1472 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1473 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1474 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1475 SDValue Result; 1476 1477 if (It != FuncInfo.ValueMap.end()) { 1478 Register InReg = It->second; 1479 1480 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1481 DAG.getDataLayout(), InReg, Ty, 1482 None); // This is not an ABI copy. 1483 SDValue Chain = DAG.getEntryNode(); 1484 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1485 V); 1486 resolveDanglingDebugInfo(V, Result); 1487 } 1488 1489 return Result; 1490 } 1491 1492 /// getValue - Return an SDValue for the given Value. 1493 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1494 // If we already have an SDValue for this value, use it. It's important 1495 // to do this first, so that we don't create a CopyFromReg if we already 1496 // have a regular SDValue. 1497 SDValue &N = NodeMap[V]; 1498 if (N.getNode()) return N; 1499 1500 // If there's a virtual register allocated and initialized for this 1501 // value, use it. 1502 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1503 return copyFromReg; 1504 1505 // Otherwise create a new SDValue and remember it. 1506 SDValue Val = getValueImpl(V); 1507 NodeMap[V] = Val; 1508 resolveDanglingDebugInfo(V, Val); 1509 return Val; 1510 } 1511 1512 /// getNonRegisterValue - Return an SDValue for the given Value, but 1513 /// don't look in FuncInfo.ValueMap for a virtual register. 1514 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1515 // If we already have an SDValue for this value, use it. 1516 SDValue &N = NodeMap[V]; 1517 if (N.getNode()) { 1518 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1519 // Remove the debug location from the node as the node is about to be used 1520 // in a location which may differ from the original debug location. This 1521 // is relevant to Constant and ConstantFP nodes because they can appear 1522 // as constant expressions inside PHI nodes. 1523 N->setDebugLoc(DebugLoc()); 1524 } 1525 return N; 1526 } 1527 1528 // Otherwise create a new SDValue and remember it. 1529 SDValue Val = getValueImpl(V); 1530 NodeMap[V] = Val; 1531 resolveDanglingDebugInfo(V, Val); 1532 return Val; 1533 } 1534 1535 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1536 /// Create an SDValue for the given value. 1537 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1539 1540 if (const Constant *C = dyn_cast<Constant>(V)) { 1541 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1542 1543 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1544 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1545 1546 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1547 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1548 1549 if (isa<ConstantPointerNull>(C)) { 1550 unsigned AS = V->getType()->getPointerAddressSpace(); 1551 return DAG.getConstant(0, getCurSDLoc(), 1552 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1553 } 1554 1555 if (match(C, m_VScale(DAG.getDataLayout()))) 1556 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1557 1558 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1559 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1560 1561 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1562 return DAG.getUNDEF(VT); 1563 1564 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1565 visit(CE->getOpcode(), *CE); 1566 SDValue N1 = NodeMap[V]; 1567 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1568 return N1; 1569 } 1570 1571 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1572 SmallVector<SDValue, 4> Constants; 1573 for (const Use &U : C->operands()) { 1574 SDNode *Val = getValue(U).getNode(); 1575 // If the operand is an empty aggregate, there are no values. 1576 if (!Val) continue; 1577 // Add each leaf value from the operand to the Constants list 1578 // to form a flattened list of all the values. 1579 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1580 Constants.push_back(SDValue(Val, i)); 1581 } 1582 1583 return DAG.getMergeValues(Constants, getCurSDLoc()); 1584 } 1585 1586 if (const ConstantDataSequential *CDS = 1587 dyn_cast<ConstantDataSequential>(C)) { 1588 SmallVector<SDValue, 4> Ops; 1589 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1590 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1591 // Add each leaf value from the operand to the Constants list 1592 // to form a flattened list of all the values. 1593 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1594 Ops.push_back(SDValue(Val, i)); 1595 } 1596 1597 if (isa<ArrayType>(CDS->getType())) 1598 return DAG.getMergeValues(Ops, getCurSDLoc()); 1599 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1600 } 1601 1602 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1603 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1604 "Unknown struct or array constant!"); 1605 1606 SmallVector<EVT, 4> ValueVTs; 1607 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1608 unsigned NumElts = ValueVTs.size(); 1609 if (NumElts == 0) 1610 return SDValue(); // empty struct 1611 SmallVector<SDValue, 4> Constants(NumElts); 1612 for (unsigned i = 0; i != NumElts; ++i) { 1613 EVT EltVT = ValueVTs[i]; 1614 if (isa<UndefValue>(C)) 1615 Constants[i] = DAG.getUNDEF(EltVT); 1616 else if (EltVT.isFloatingPoint()) 1617 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1618 else 1619 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1620 } 1621 1622 return DAG.getMergeValues(Constants, getCurSDLoc()); 1623 } 1624 1625 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1626 return DAG.getBlockAddress(BA, VT); 1627 1628 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1629 return getValue(Equiv->getGlobalValue()); 1630 1631 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1632 return getValue(NC->getGlobalValue()); 1633 1634 VectorType *VecTy = cast<VectorType>(V->getType()); 1635 1636 // Now that we know the number and type of the elements, get that number of 1637 // elements into the Ops array based on what kind of constant it is. 1638 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1639 SmallVector<SDValue, 16> Ops; 1640 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1641 for (unsigned i = 0; i != NumElements; ++i) 1642 Ops.push_back(getValue(CV->getOperand(i))); 1643 1644 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1645 } 1646 1647 if (isa<ConstantAggregateZero>(C)) { 1648 EVT EltVT = 1649 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1650 1651 SDValue Op; 1652 if (EltVT.isFloatingPoint()) 1653 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1654 else 1655 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1656 1657 if (isa<ScalableVectorType>(VecTy)) 1658 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1659 1660 SmallVector<SDValue, 16> Ops; 1661 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1662 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1663 } 1664 1665 llvm_unreachable("Unknown vector constant"); 1666 } 1667 1668 // If this is a static alloca, generate it as the frameindex instead of 1669 // computation. 1670 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1671 DenseMap<const AllocaInst*, int>::iterator SI = 1672 FuncInfo.StaticAllocaMap.find(AI); 1673 if (SI != FuncInfo.StaticAllocaMap.end()) 1674 return DAG.getFrameIndex(SI->second, 1675 TLI.getFrameIndexTy(DAG.getDataLayout())); 1676 } 1677 1678 // If this is an instruction which fast-isel has deferred, select it now. 1679 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1680 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1681 1682 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1683 Inst->getType(), None); 1684 SDValue Chain = DAG.getEntryNode(); 1685 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1686 } 1687 1688 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1689 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1690 1691 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1692 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1693 1694 llvm_unreachable("Can't get register for value!"); 1695 } 1696 1697 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1698 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1699 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1700 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1701 bool IsSEH = isAsynchronousEHPersonality(Pers); 1702 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1703 if (!IsSEH) 1704 CatchPadMBB->setIsEHScopeEntry(); 1705 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1706 if (IsMSVCCXX || IsCoreCLR) 1707 CatchPadMBB->setIsEHFuncletEntry(); 1708 } 1709 1710 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1711 // Update machine-CFG edge. 1712 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1713 FuncInfo.MBB->addSuccessor(TargetMBB); 1714 TargetMBB->setIsEHCatchretTarget(true); 1715 DAG.getMachineFunction().setHasEHCatchret(true); 1716 1717 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1718 bool IsSEH = isAsynchronousEHPersonality(Pers); 1719 if (IsSEH) { 1720 // If this is not a fall-through branch or optimizations are switched off, 1721 // emit the branch. 1722 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1723 TM.getOptLevel() == CodeGenOpt::None) 1724 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1725 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1726 return; 1727 } 1728 1729 // Figure out the funclet membership for the catchret's successor. 1730 // This will be used by the FuncletLayout pass to determine how to order the 1731 // BB's. 1732 // A 'catchret' returns to the outer scope's color. 1733 Value *ParentPad = I.getCatchSwitchParentPad(); 1734 const BasicBlock *SuccessorColor; 1735 if (isa<ConstantTokenNone>(ParentPad)) 1736 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1737 else 1738 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1739 assert(SuccessorColor && "No parent funclet for catchret!"); 1740 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1741 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1742 1743 // Create the terminator node. 1744 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1745 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1746 DAG.getBasicBlock(SuccessorColorMBB)); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1751 // Don't emit any special code for the cleanuppad instruction. It just marks 1752 // the start of an EH scope/funclet. 1753 FuncInfo.MBB->setIsEHScopeEntry(); 1754 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1755 if (Pers != EHPersonality::Wasm_CXX) { 1756 FuncInfo.MBB->setIsEHFuncletEntry(); 1757 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1758 } 1759 } 1760 1761 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1762 // not match, it is OK to add only the first unwind destination catchpad to the 1763 // successors, because there will be at least one invoke instruction within the 1764 // catch scope that points to the next unwind destination, if one exists, so 1765 // CFGSort cannot mess up with BB sorting order. 1766 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1767 // call within them, and catchpads only consisting of 'catch (...)' have a 1768 // '__cxa_end_catch' call within them, both of which generate invokes in case 1769 // the next unwind destination exists, i.e., the next unwind destination is not 1770 // the caller.) 1771 // 1772 // Having at most one EH pad successor is also simpler and helps later 1773 // transformations. 1774 // 1775 // For example, 1776 // current: 1777 // invoke void @foo to ... unwind label %catch.dispatch 1778 // catch.dispatch: 1779 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1780 // catch.start: 1781 // ... 1782 // ... in this BB or some other child BB dominated by this BB there will be an 1783 // invoke that points to 'next' BB as an unwind destination 1784 // 1785 // next: ; We don't need to add this to 'current' BB's successor 1786 // ... 1787 static void findWasmUnwindDestinations( 1788 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1789 BranchProbability Prob, 1790 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1791 &UnwindDests) { 1792 while (EHPadBB) { 1793 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1794 if (isa<CleanupPadInst>(Pad)) { 1795 // Stop on cleanup pads. 1796 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1797 UnwindDests.back().first->setIsEHScopeEntry(); 1798 break; 1799 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1800 // Add the catchpad handlers to the possible destinations. We don't 1801 // continue to the unwind destination of the catchswitch for wasm. 1802 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1803 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1804 UnwindDests.back().first->setIsEHScopeEntry(); 1805 } 1806 break; 1807 } else { 1808 continue; 1809 } 1810 } 1811 } 1812 1813 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1814 /// many places it could ultimately go. In the IR, we have a single unwind 1815 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1816 /// This function skips over imaginary basic blocks that hold catchswitch 1817 /// instructions, and finds all the "real" machine 1818 /// basic block destinations. As those destinations may not be successors of 1819 /// EHPadBB, here we also calculate the edge probability to those destinations. 1820 /// The passed-in Prob is the edge probability to EHPadBB. 1821 static void findUnwindDestinations( 1822 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1823 BranchProbability Prob, 1824 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1825 &UnwindDests) { 1826 EHPersonality Personality = 1827 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1828 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1829 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1830 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1831 bool IsSEH = isAsynchronousEHPersonality(Personality); 1832 1833 if (IsWasmCXX) { 1834 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1835 assert(UnwindDests.size() <= 1 && 1836 "There should be at most one unwind destination for wasm"); 1837 return; 1838 } 1839 1840 while (EHPadBB) { 1841 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1842 BasicBlock *NewEHPadBB = nullptr; 1843 if (isa<LandingPadInst>(Pad)) { 1844 // Stop on landingpads. They are not funclets. 1845 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1846 break; 1847 } else if (isa<CleanupPadInst>(Pad)) { 1848 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1849 // personalities. 1850 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1851 UnwindDests.back().first->setIsEHScopeEntry(); 1852 UnwindDests.back().first->setIsEHFuncletEntry(); 1853 break; 1854 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1855 // Add the catchpad handlers to the possible destinations. 1856 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1857 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1858 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1859 if (IsMSVCCXX || IsCoreCLR) 1860 UnwindDests.back().first->setIsEHFuncletEntry(); 1861 if (!IsSEH) 1862 UnwindDests.back().first->setIsEHScopeEntry(); 1863 } 1864 NewEHPadBB = CatchSwitch->getUnwindDest(); 1865 } else { 1866 continue; 1867 } 1868 1869 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1870 if (BPI && NewEHPadBB) 1871 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1872 EHPadBB = NewEHPadBB; 1873 } 1874 } 1875 1876 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1877 // Update successor info. 1878 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1879 auto UnwindDest = I.getUnwindDest(); 1880 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1881 BranchProbability UnwindDestProb = 1882 (BPI && UnwindDest) 1883 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1884 : BranchProbability::getZero(); 1885 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1886 for (auto &UnwindDest : UnwindDests) { 1887 UnwindDest.first->setIsEHPad(); 1888 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1889 } 1890 FuncInfo.MBB->normalizeSuccProbs(); 1891 1892 // Create the terminator node. 1893 SDValue Ret = 1894 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1895 DAG.setRoot(Ret); 1896 } 1897 1898 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1899 report_fatal_error("visitCatchSwitch not yet implemented!"); 1900 } 1901 1902 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1903 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1904 auto &DL = DAG.getDataLayout(); 1905 SDValue Chain = getControlRoot(); 1906 SmallVector<ISD::OutputArg, 8> Outs; 1907 SmallVector<SDValue, 8> OutVals; 1908 1909 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1910 // lower 1911 // 1912 // %val = call <ty> @llvm.experimental.deoptimize() 1913 // ret <ty> %val 1914 // 1915 // differently. 1916 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1917 LowerDeoptimizingReturn(); 1918 return; 1919 } 1920 1921 if (!FuncInfo.CanLowerReturn) { 1922 unsigned DemoteReg = FuncInfo.DemoteRegister; 1923 const Function *F = I.getParent()->getParent(); 1924 1925 // Emit a store of the return value through the virtual register. 1926 // Leave Outs empty so that LowerReturn won't try to load return 1927 // registers the usual way. 1928 SmallVector<EVT, 1> PtrValueVTs; 1929 ComputeValueVTs(TLI, DL, 1930 F->getReturnType()->getPointerTo( 1931 DAG.getDataLayout().getAllocaAddrSpace()), 1932 PtrValueVTs); 1933 1934 SDValue RetPtr = 1935 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1936 SDValue RetOp = getValue(I.getOperand(0)); 1937 1938 SmallVector<EVT, 4> ValueVTs, MemVTs; 1939 SmallVector<uint64_t, 4> Offsets; 1940 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1941 &Offsets); 1942 unsigned NumValues = ValueVTs.size(); 1943 1944 SmallVector<SDValue, 4> Chains(NumValues); 1945 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1946 for (unsigned i = 0; i != NumValues; ++i) { 1947 // An aggregate return value cannot wrap around the address space, so 1948 // offsets to its parts don't wrap either. 1949 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1950 TypeSize::Fixed(Offsets[i])); 1951 1952 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1953 if (MemVTs[i] != ValueVTs[i]) 1954 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1955 Chains[i] = DAG.getStore( 1956 Chain, getCurSDLoc(), Val, 1957 // FIXME: better loc info would be nice. 1958 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1959 commonAlignment(BaseAlign, Offsets[i])); 1960 } 1961 1962 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1963 MVT::Other, Chains); 1964 } else if (I.getNumOperands() != 0) { 1965 SmallVector<EVT, 4> ValueVTs; 1966 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1967 unsigned NumValues = ValueVTs.size(); 1968 if (NumValues) { 1969 SDValue RetOp = getValue(I.getOperand(0)); 1970 1971 const Function *F = I.getParent()->getParent(); 1972 1973 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1974 I.getOperand(0)->getType(), F->getCallingConv(), 1975 /*IsVarArg*/ false, DL); 1976 1977 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1978 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1979 ExtendKind = ISD::SIGN_EXTEND; 1980 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1981 ExtendKind = ISD::ZERO_EXTEND; 1982 1983 LLVMContext &Context = F->getContext(); 1984 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1985 1986 for (unsigned j = 0; j != NumValues; ++j) { 1987 EVT VT = ValueVTs[j]; 1988 1989 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1990 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1991 1992 CallingConv::ID CC = F->getCallingConv(); 1993 1994 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1995 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1996 SmallVector<SDValue, 4> Parts(NumParts); 1997 getCopyToParts(DAG, getCurSDLoc(), 1998 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1999 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2000 2001 // 'inreg' on function refers to return value 2002 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2003 if (RetInReg) 2004 Flags.setInReg(); 2005 2006 if (I.getOperand(0)->getType()->isPointerTy()) { 2007 Flags.setPointer(); 2008 Flags.setPointerAddrSpace( 2009 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2010 } 2011 2012 if (NeedsRegBlock) { 2013 Flags.setInConsecutiveRegs(); 2014 if (j == NumValues - 1) 2015 Flags.setInConsecutiveRegsLast(); 2016 } 2017 2018 // Propagate extension type if any 2019 if (ExtendKind == ISD::SIGN_EXTEND) 2020 Flags.setSExt(); 2021 else if (ExtendKind == ISD::ZERO_EXTEND) 2022 Flags.setZExt(); 2023 2024 for (unsigned i = 0; i < NumParts; ++i) { 2025 Outs.push_back(ISD::OutputArg(Flags, 2026 Parts[i].getValueType().getSimpleVT(), 2027 VT, /*isfixed=*/true, 0, 0)); 2028 OutVals.push_back(Parts[i]); 2029 } 2030 } 2031 } 2032 } 2033 2034 // Push in swifterror virtual register as the last element of Outs. This makes 2035 // sure swifterror virtual register will be returned in the swifterror 2036 // physical register. 2037 const Function *F = I.getParent()->getParent(); 2038 if (TLI.supportSwiftError() && 2039 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2040 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2041 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2042 Flags.setSwiftError(); 2043 Outs.push_back(ISD::OutputArg( 2044 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2045 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2046 // Create SDNode for the swifterror virtual register. 2047 OutVals.push_back( 2048 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2049 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2050 EVT(TLI.getPointerTy(DL)))); 2051 } 2052 2053 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2054 CallingConv::ID CallConv = 2055 DAG.getMachineFunction().getFunction().getCallingConv(); 2056 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2057 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2058 2059 // Verify that the target's LowerReturn behaved as expected. 2060 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2061 "LowerReturn didn't return a valid chain!"); 2062 2063 // Update the DAG with the new chain value resulting from return lowering. 2064 DAG.setRoot(Chain); 2065 } 2066 2067 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2068 /// created for it, emit nodes to copy the value into the virtual 2069 /// registers. 2070 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2071 // Skip empty types 2072 if (V->getType()->isEmptyTy()) 2073 return; 2074 2075 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2076 if (VMI != FuncInfo.ValueMap.end()) { 2077 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2078 CopyValueToVirtualRegister(V, VMI->second); 2079 } 2080 } 2081 2082 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2083 /// the current basic block, add it to ValueMap now so that we'll get a 2084 /// CopyTo/FromReg. 2085 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2086 // No need to export constants. 2087 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2088 2089 // Already exported? 2090 if (FuncInfo.isExportedInst(V)) return; 2091 2092 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2093 CopyValueToVirtualRegister(V, Reg); 2094 } 2095 2096 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2097 const BasicBlock *FromBB) { 2098 // The operands of the setcc have to be in this block. We don't know 2099 // how to export them from some other block. 2100 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2101 // Can export from current BB. 2102 if (VI->getParent() == FromBB) 2103 return true; 2104 2105 // Is already exported, noop. 2106 return FuncInfo.isExportedInst(V); 2107 } 2108 2109 // If this is an argument, we can export it if the BB is the entry block or 2110 // if it is already exported. 2111 if (isa<Argument>(V)) { 2112 if (FromBB->isEntryBlock()) 2113 return true; 2114 2115 // Otherwise, can only export this if it is already exported. 2116 return FuncInfo.isExportedInst(V); 2117 } 2118 2119 // Otherwise, constants can always be exported. 2120 return true; 2121 } 2122 2123 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2124 BranchProbability 2125 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2126 const MachineBasicBlock *Dst) const { 2127 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2128 const BasicBlock *SrcBB = Src->getBasicBlock(); 2129 const BasicBlock *DstBB = Dst->getBasicBlock(); 2130 if (!BPI) { 2131 // If BPI is not available, set the default probability as 1 / N, where N is 2132 // the number of successors. 2133 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2134 return BranchProbability(1, SuccSize); 2135 } 2136 return BPI->getEdgeProbability(SrcBB, DstBB); 2137 } 2138 2139 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2140 MachineBasicBlock *Dst, 2141 BranchProbability Prob) { 2142 if (!FuncInfo.BPI) 2143 Src->addSuccessorWithoutProb(Dst); 2144 else { 2145 if (Prob.isUnknown()) 2146 Prob = getEdgeProbability(Src, Dst); 2147 Src->addSuccessor(Dst, Prob); 2148 } 2149 } 2150 2151 static bool InBlock(const Value *V, const BasicBlock *BB) { 2152 if (const Instruction *I = dyn_cast<Instruction>(V)) 2153 return I->getParent() == BB; 2154 return true; 2155 } 2156 2157 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2158 /// This function emits a branch and is used at the leaves of an OR or an 2159 /// AND operator tree. 2160 void 2161 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2162 MachineBasicBlock *TBB, 2163 MachineBasicBlock *FBB, 2164 MachineBasicBlock *CurBB, 2165 MachineBasicBlock *SwitchBB, 2166 BranchProbability TProb, 2167 BranchProbability FProb, 2168 bool InvertCond) { 2169 const BasicBlock *BB = CurBB->getBasicBlock(); 2170 2171 // If the leaf of the tree is a comparison, merge the condition into 2172 // the caseblock. 2173 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2174 // The operands of the cmp have to be in this block. We don't know 2175 // how to export them from some other block. If this is the first block 2176 // of the sequence, no exporting is needed. 2177 if (CurBB == SwitchBB || 2178 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2179 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2180 ISD::CondCode Condition; 2181 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2182 ICmpInst::Predicate Pred = 2183 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2184 Condition = getICmpCondCode(Pred); 2185 } else { 2186 const FCmpInst *FC = cast<FCmpInst>(Cond); 2187 FCmpInst::Predicate Pred = 2188 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2189 Condition = getFCmpCondCode(Pred); 2190 if (TM.Options.NoNaNsFPMath) 2191 Condition = getFCmpCodeWithoutNaN(Condition); 2192 } 2193 2194 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2195 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2196 SL->SwitchCases.push_back(CB); 2197 return; 2198 } 2199 } 2200 2201 // Create a CaseBlock record representing this branch. 2202 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2203 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2204 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2205 SL->SwitchCases.push_back(CB); 2206 } 2207 2208 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2209 MachineBasicBlock *TBB, 2210 MachineBasicBlock *FBB, 2211 MachineBasicBlock *CurBB, 2212 MachineBasicBlock *SwitchBB, 2213 Instruction::BinaryOps Opc, 2214 BranchProbability TProb, 2215 BranchProbability FProb, 2216 bool InvertCond) { 2217 // Skip over not part of the tree and remember to invert op and operands at 2218 // next level. 2219 Value *NotCond; 2220 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2221 InBlock(NotCond, CurBB->getBasicBlock())) { 2222 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2223 !InvertCond); 2224 return; 2225 } 2226 2227 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2228 const Value *BOpOp0, *BOpOp1; 2229 // Compute the effective opcode for Cond, taking into account whether it needs 2230 // to be inverted, e.g. 2231 // and (not (or A, B)), C 2232 // gets lowered as 2233 // and (and (not A, not B), C) 2234 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2235 if (BOp) { 2236 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2237 ? Instruction::And 2238 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2239 ? Instruction::Or 2240 : (Instruction::BinaryOps)0); 2241 if (InvertCond) { 2242 if (BOpc == Instruction::And) 2243 BOpc = Instruction::Or; 2244 else if (BOpc == Instruction::Or) 2245 BOpc = Instruction::And; 2246 } 2247 } 2248 2249 // If this node is not part of the or/and tree, emit it as a branch. 2250 // Note that all nodes in the tree should have same opcode. 2251 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2252 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2253 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2254 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2255 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2256 TProb, FProb, InvertCond); 2257 return; 2258 } 2259 2260 // Create TmpBB after CurBB. 2261 MachineFunction::iterator BBI(CurBB); 2262 MachineFunction &MF = DAG.getMachineFunction(); 2263 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2264 CurBB->getParent()->insert(++BBI, TmpBB); 2265 2266 if (Opc == Instruction::Or) { 2267 // Codegen X | Y as: 2268 // BB1: 2269 // jmp_if_X TBB 2270 // jmp TmpBB 2271 // TmpBB: 2272 // jmp_if_Y TBB 2273 // jmp FBB 2274 // 2275 2276 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2277 // The requirement is that 2278 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2279 // = TrueProb for original BB. 2280 // Assuming the original probabilities are A and B, one choice is to set 2281 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2282 // A/(1+B) and 2B/(1+B). This choice assumes that 2283 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2284 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2285 // TmpBB, but the math is more complicated. 2286 2287 auto NewTrueProb = TProb / 2; 2288 auto NewFalseProb = TProb / 2 + FProb; 2289 // Emit the LHS condition. 2290 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2291 NewFalseProb, InvertCond); 2292 2293 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2294 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2295 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2296 // Emit the RHS condition into TmpBB. 2297 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2298 Probs[1], InvertCond); 2299 } else { 2300 assert(Opc == Instruction::And && "Unknown merge op!"); 2301 // Codegen X & Y as: 2302 // BB1: 2303 // jmp_if_X TmpBB 2304 // jmp FBB 2305 // TmpBB: 2306 // jmp_if_Y TBB 2307 // jmp FBB 2308 // 2309 // This requires creation of TmpBB after CurBB. 2310 2311 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2312 // The requirement is that 2313 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2314 // = FalseProb for original BB. 2315 // Assuming the original probabilities are A and B, one choice is to set 2316 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2317 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2318 // TrueProb for BB1 * FalseProb for TmpBB. 2319 2320 auto NewTrueProb = TProb + FProb / 2; 2321 auto NewFalseProb = FProb / 2; 2322 // Emit the LHS condition. 2323 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2324 NewFalseProb, InvertCond); 2325 2326 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2327 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2328 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2329 // Emit the RHS condition into TmpBB. 2330 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2331 Probs[1], InvertCond); 2332 } 2333 } 2334 2335 /// If the set of cases should be emitted as a series of branches, return true. 2336 /// If we should emit this as a bunch of and/or'd together conditions, return 2337 /// false. 2338 bool 2339 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2340 if (Cases.size() != 2) return true; 2341 2342 // If this is two comparisons of the same values or'd or and'd together, they 2343 // will get folded into a single comparison, so don't emit two blocks. 2344 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2345 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2346 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2347 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2348 return false; 2349 } 2350 2351 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2352 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2353 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2354 Cases[0].CC == Cases[1].CC && 2355 isa<Constant>(Cases[0].CmpRHS) && 2356 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2357 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2358 return false; 2359 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2360 return false; 2361 } 2362 2363 return true; 2364 } 2365 2366 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2367 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2368 2369 // Update machine-CFG edges. 2370 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2371 2372 if (I.isUnconditional()) { 2373 // Update machine-CFG edges. 2374 BrMBB->addSuccessor(Succ0MBB); 2375 2376 // If this is not a fall-through branch or optimizations are switched off, 2377 // emit the branch. 2378 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2379 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2380 MVT::Other, getControlRoot(), 2381 DAG.getBasicBlock(Succ0MBB))); 2382 2383 return; 2384 } 2385 2386 // If this condition is one of the special cases we handle, do special stuff 2387 // now. 2388 const Value *CondVal = I.getCondition(); 2389 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2390 2391 // If this is a series of conditions that are or'd or and'd together, emit 2392 // this as a sequence of branches instead of setcc's with and/or operations. 2393 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2394 // unpredictable branches, and vector extracts because those jumps are likely 2395 // expensive for any target), this should improve performance. 2396 // For example, instead of something like: 2397 // cmp A, B 2398 // C = seteq 2399 // cmp D, E 2400 // F = setle 2401 // or C, F 2402 // jnz foo 2403 // Emit: 2404 // cmp A, B 2405 // je foo 2406 // cmp D, E 2407 // jle foo 2408 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2409 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2410 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2411 Value *Vec; 2412 const Value *BOp0, *BOp1; 2413 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2414 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2415 Opcode = Instruction::And; 2416 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2417 Opcode = Instruction::Or; 2418 2419 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2420 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2421 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2422 getEdgeProbability(BrMBB, Succ0MBB), 2423 getEdgeProbability(BrMBB, Succ1MBB), 2424 /*InvertCond=*/false); 2425 // If the compares in later blocks need to use values not currently 2426 // exported from this block, export them now. This block should always 2427 // be the first entry. 2428 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2429 2430 // Allow some cases to be rejected. 2431 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2432 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2433 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2434 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2435 } 2436 2437 // Emit the branch for this block. 2438 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2439 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2440 return; 2441 } 2442 2443 // Okay, we decided not to do this, remove any inserted MBB's and clear 2444 // SwitchCases. 2445 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2446 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2447 2448 SL->SwitchCases.clear(); 2449 } 2450 } 2451 2452 // Create a CaseBlock record representing this branch. 2453 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2454 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2455 2456 // Use visitSwitchCase to actually insert the fast branch sequence for this 2457 // cond branch. 2458 visitSwitchCase(CB, BrMBB); 2459 } 2460 2461 /// visitSwitchCase - Emits the necessary code to represent a single node in 2462 /// the binary search tree resulting from lowering a switch instruction. 2463 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2464 MachineBasicBlock *SwitchBB) { 2465 SDValue Cond; 2466 SDValue CondLHS = getValue(CB.CmpLHS); 2467 SDLoc dl = CB.DL; 2468 2469 if (CB.CC == ISD::SETTRUE) { 2470 // Branch or fall through to TrueBB. 2471 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2472 SwitchBB->normalizeSuccProbs(); 2473 if (CB.TrueBB != NextBlock(SwitchBB)) { 2474 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2475 DAG.getBasicBlock(CB.TrueBB))); 2476 } 2477 return; 2478 } 2479 2480 auto &TLI = DAG.getTargetLoweringInfo(); 2481 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2482 2483 // Build the setcc now. 2484 if (!CB.CmpMHS) { 2485 // Fold "(X == true)" to X and "(X == false)" to !X to 2486 // handle common cases produced by branch lowering. 2487 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2488 CB.CC == ISD::SETEQ) 2489 Cond = CondLHS; 2490 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2491 CB.CC == ISD::SETEQ) { 2492 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2493 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2494 } else { 2495 SDValue CondRHS = getValue(CB.CmpRHS); 2496 2497 // If a pointer's DAG type is larger than its memory type then the DAG 2498 // values are zero-extended. This breaks signed comparisons so truncate 2499 // back to the underlying type before doing the compare. 2500 if (CondLHS.getValueType() != MemVT) { 2501 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2502 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2503 } 2504 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2505 } 2506 } else { 2507 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2508 2509 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2510 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2511 2512 SDValue CmpOp = getValue(CB.CmpMHS); 2513 EVT VT = CmpOp.getValueType(); 2514 2515 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2516 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2517 ISD::SETLE); 2518 } else { 2519 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2520 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2521 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2522 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2523 } 2524 } 2525 2526 // Update successor info 2527 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2528 // TrueBB and FalseBB are always different unless the incoming IR is 2529 // degenerate. This only happens when running llc on weird IR. 2530 if (CB.TrueBB != CB.FalseBB) 2531 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2532 SwitchBB->normalizeSuccProbs(); 2533 2534 // If the lhs block is the next block, invert the condition so that we can 2535 // fall through to the lhs instead of the rhs block. 2536 if (CB.TrueBB == NextBlock(SwitchBB)) { 2537 std::swap(CB.TrueBB, CB.FalseBB); 2538 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2539 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2540 } 2541 2542 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2543 MVT::Other, getControlRoot(), Cond, 2544 DAG.getBasicBlock(CB.TrueBB)); 2545 2546 // Insert the false branch. Do this even if it's a fall through branch, 2547 // this makes it easier to do DAG optimizations which require inverting 2548 // the branch condition. 2549 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2550 DAG.getBasicBlock(CB.FalseBB)); 2551 2552 DAG.setRoot(BrCond); 2553 } 2554 2555 /// visitJumpTable - Emit JumpTable node in the current MBB 2556 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2557 // Emit the code for the jump table 2558 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2559 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2560 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2561 JT.Reg, PTy); 2562 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2563 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2564 MVT::Other, Index.getValue(1), 2565 Table, Index); 2566 DAG.setRoot(BrJumpTable); 2567 } 2568 2569 /// visitJumpTableHeader - This function emits necessary code to produce index 2570 /// in the JumpTable from switch case. 2571 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2572 JumpTableHeader &JTH, 2573 MachineBasicBlock *SwitchBB) { 2574 SDLoc dl = getCurSDLoc(); 2575 2576 // Subtract the lowest switch case value from the value being switched on. 2577 SDValue SwitchOp = getValue(JTH.SValue); 2578 EVT VT = SwitchOp.getValueType(); 2579 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2580 DAG.getConstant(JTH.First, dl, VT)); 2581 2582 // The SDNode we just created, which holds the value being switched on minus 2583 // the smallest case value, needs to be copied to a virtual register so it 2584 // can be used as an index into the jump table in a subsequent basic block. 2585 // This value may be smaller or larger than the target's pointer type, and 2586 // therefore require extension or truncating. 2587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2588 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2589 2590 unsigned JumpTableReg = 2591 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2592 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2593 JumpTableReg, SwitchOp); 2594 JT.Reg = JumpTableReg; 2595 2596 if (!JTH.FallthroughUnreachable) { 2597 // Emit the range check for the jump table, and branch to the default block 2598 // for the switch statement if the value being switched on exceeds the 2599 // largest case in the switch. 2600 SDValue CMP = DAG.getSetCC( 2601 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2602 Sub.getValueType()), 2603 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2604 2605 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2606 MVT::Other, CopyTo, CMP, 2607 DAG.getBasicBlock(JT.Default)); 2608 2609 // Avoid emitting unnecessary branches to the next block. 2610 if (JT.MBB != NextBlock(SwitchBB)) 2611 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2612 DAG.getBasicBlock(JT.MBB)); 2613 2614 DAG.setRoot(BrCond); 2615 } else { 2616 // Avoid emitting unnecessary branches to the next block. 2617 if (JT.MBB != NextBlock(SwitchBB)) 2618 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2619 DAG.getBasicBlock(JT.MBB))); 2620 else 2621 DAG.setRoot(CopyTo); 2622 } 2623 } 2624 2625 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2626 /// variable if there exists one. 2627 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2628 SDValue &Chain) { 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2631 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2632 MachineFunction &MF = DAG.getMachineFunction(); 2633 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2634 MachineSDNode *Node = 2635 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2636 if (Global) { 2637 MachinePointerInfo MPInfo(Global); 2638 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2639 MachineMemOperand::MODereferenceable; 2640 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2641 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2642 DAG.setNodeMemRefs(Node, {MemRef}); 2643 } 2644 if (PtrTy != PtrMemTy) 2645 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2646 return SDValue(Node, 0); 2647 } 2648 2649 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2650 /// tail spliced into a stack protector check success bb. 2651 /// 2652 /// For a high level explanation of how this fits into the stack protector 2653 /// generation see the comment on the declaration of class 2654 /// StackProtectorDescriptor. 2655 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2656 MachineBasicBlock *ParentBB) { 2657 2658 // First create the loads to the guard/stack slot for the comparison. 2659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2660 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2661 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2662 2663 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2664 int FI = MFI.getStackProtectorIndex(); 2665 2666 SDValue Guard; 2667 SDLoc dl = getCurSDLoc(); 2668 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2669 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2670 Align Align = 2671 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2672 2673 // Generate code to load the content of the guard slot. 2674 SDValue GuardVal = DAG.getLoad( 2675 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2676 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2677 MachineMemOperand::MOVolatile); 2678 2679 if (TLI.useStackGuardXorFP()) 2680 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2681 2682 // Retrieve guard check function, nullptr if instrumentation is inlined. 2683 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2684 // The target provides a guard check function to validate the guard value. 2685 // Generate a call to that function with the content of the guard slot as 2686 // argument. 2687 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2688 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2689 2690 TargetLowering::ArgListTy Args; 2691 TargetLowering::ArgListEntry Entry; 2692 Entry.Node = GuardVal; 2693 Entry.Ty = FnTy->getParamType(0); 2694 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2695 Entry.IsInReg = true; 2696 Args.push_back(Entry); 2697 2698 TargetLowering::CallLoweringInfo CLI(DAG); 2699 CLI.setDebugLoc(getCurSDLoc()) 2700 .setChain(DAG.getEntryNode()) 2701 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2702 getValue(GuardCheckFn), std::move(Args)); 2703 2704 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2705 DAG.setRoot(Result.second); 2706 return; 2707 } 2708 2709 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2710 // Otherwise, emit a volatile load to retrieve the stack guard value. 2711 SDValue Chain = DAG.getEntryNode(); 2712 if (TLI.useLoadStackGuardNode()) { 2713 Guard = getLoadStackGuard(DAG, dl, Chain); 2714 } else { 2715 const Value *IRGuard = TLI.getSDagStackGuard(M); 2716 SDValue GuardPtr = getValue(IRGuard); 2717 2718 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2719 MachinePointerInfo(IRGuard, 0), Align, 2720 MachineMemOperand::MOVolatile); 2721 } 2722 2723 // Perform the comparison via a getsetcc. 2724 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2725 *DAG.getContext(), 2726 Guard.getValueType()), 2727 Guard, GuardVal, ISD::SETNE); 2728 2729 // If the guard/stackslot do not equal, branch to failure MBB. 2730 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2731 MVT::Other, GuardVal.getOperand(0), 2732 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2733 // Otherwise branch to success MBB. 2734 SDValue Br = DAG.getNode(ISD::BR, dl, 2735 MVT::Other, BrCond, 2736 DAG.getBasicBlock(SPD.getSuccessMBB())); 2737 2738 DAG.setRoot(Br); 2739 } 2740 2741 /// Codegen the failure basic block for a stack protector check. 2742 /// 2743 /// A failure stack protector machine basic block consists simply of a call to 2744 /// __stack_chk_fail(). 2745 /// 2746 /// For a high level explanation of how this fits into the stack protector 2747 /// generation see the comment on the declaration of class 2748 /// StackProtectorDescriptor. 2749 void 2750 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2751 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2752 TargetLowering::MakeLibCallOptions CallOptions; 2753 CallOptions.setDiscardResult(true); 2754 SDValue Chain = 2755 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2756 None, CallOptions, getCurSDLoc()).second; 2757 // On PS4/PS5, the "return address" must still be within the calling 2758 // function, even if it's at the very end, so emit an explicit TRAP here. 2759 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2760 if (TM.getTargetTriple().isPS()) 2761 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2762 // WebAssembly needs an unreachable instruction after a non-returning call, 2763 // because the function return type can be different from __stack_chk_fail's 2764 // return type (void). 2765 if (TM.getTargetTriple().isWasm()) 2766 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2767 2768 DAG.setRoot(Chain); 2769 } 2770 2771 /// visitBitTestHeader - This function emits necessary code to produce value 2772 /// suitable for "bit tests" 2773 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2774 MachineBasicBlock *SwitchBB) { 2775 SDLoc dl = getCurSDLoc(); 2776 2777 // Subtract the minimum value. 2778 SDValue SwitchOp = getValue(B.SValue); 2779 EVT VT = SwitchOp.getValueType(); 2780 SDValue RangeSub = 2781 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2782 2783 // Determine the type of the test operands. 2784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2785 bool UsePtrType = false; 2786 if (!TLI.isTypeLegal(VT)) { 2787 UsePtrType = true; 2788 } else { 2789 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2790 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2791 // Switch table case range are encoded into series of masks. 2792 // Just use pointer type, it's guaranteed to fit. 2793 UsePtrType = true; 2794 break; 2795 } 2796 } 2797 SDValue Sub = RangeSub; 2798 if (UsePtrType) { 2799 VT = TLI.getPointerTy(DAG.getDataLayout()); 2800 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2801 } 2802 2803 B.RegVT = VT.getSimpleVT(); 2804 B.Reg = FuncInfo.CreateReg(B.RegVT); 2805 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2806 2807 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2808 2809 if (!B.FallthroughUnreachable) 2810 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2811 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2812 SwitchBB->normalizeSuccProbs(); 2813 2814 SDValue Root = CopyTo; 2815 if (!B.FallthroughUnreachable) { 2816 // Conditional branch to the default block. 2817 SDValue RangeCmp = DAG.getSetCC(dl, 2818 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2819 RangeSub.getValueType()), 2820 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2821 ISD::SETUGT); 2822 2823 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2824 DAG.getBasicBlock(B.Default)); 2825 } 2826 2827 // Avoid emitting unnecessary branches to the next block. 2828 if (MBB != NextBlock(SwitchBB)) 2829 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2830 2831 DAG.setRoot(Root); 2832 } 2833 2834 /// visitBitTestCase - this function produces one "bit test" 2835 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2836 MachineBasicBlock* NextMBB, 2837 BranchProbability BranchProbToNext, 2838 unsigned Reg, 2839 BitTestCase &B, 2840 MachineBasicBlock *SwitchBB) { 2841 SDLoc dl = getCurSDLoc(); 2842 MVT VT = BB.RegVT; 2843 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2844 SDValue Cmp; 2845 unsigned PopCount = countPopulation(B.Mask); 2846 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2847 if (PopCount == 1) { 2848 // Testing for a single bit; just compare the shift count with what it 2849 // would need to be to shift a 1 bit in that position. 2850 Cmp = DAG.getSetCC( 2851 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2852 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2853 ISD::SETEQ); 2854 } else if (PopCount == BB.Range) { 2855 // There is only one zero bit in the range, test for it directly. 2856 Cmp = DAG.getSetCC( 2857 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2858 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2859 ISD::SETNE); 2860 } else { 2861 // Make desired shift 2862 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2863 DAG.getConstant(1, dl, VT), ShiftOp); 2864 2865 // Emit bit tests and jumps 2866 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2867 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2868 Cmp = DAG.getSetCC( 2869 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2870 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2871 } 2872 2873 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2874 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2875 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2876 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2877 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2878 // one as they are relative probabilities (and thus work more like weights), 2879 // and hence we need to normalize them to let the sum of them become one. 2880 SwitchBB->normalizeSuccProbs(); 2881 2882 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2883 MVT::Other, getControlRoot(), 2884 Cmp, DAG.getBasicBlock(B.TargetBB)); 2885 2886 // Avoid emitting unnecessary branches to the next block. 2887 if (NextMBB != NextBlock(SwitchBB)) 2888 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2889 DAG.getBasicBlock(NextMBB)); 2890 2891 DAG.setRoot(BrAnd); 2892 } 2893 2894 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2895 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2896 2897 // Retrieve successors. Look through artificial IR level blocks like 2898 // catchswitch for successors. 2899 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2900 const BasicBlock *EHPadBB = I.getSuccessor(1); 2901 2902 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2903 // have to do anything here to lower funclet bundles. 2904 assert(!I.hasOperandBundlesOtherThan( 2905 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2906 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2907 LLVMContext::OB_cfguardtarget, 2908 LLVMContext::OB_clang_arc_attachedcall}) && 2909 "Cannot lower invokes with arbitrary operand bundles yet!"); 2910 2911 const Value *Callee(I.getCalledOperand()); 2912 const Function *Fn = dyn_cast<Function>(Callee); 2913 if (isa<InlineAsm>(Callee)) 2914 visitInlineAsm(I, EHPadBB); 2915 else if (Fn && Fn->isIntrinsic()) { 2916 switch (Fn->getIntrinsicID()) { 2917 default: 2918 llvm_unreachable("Cannot invoke this intrinsic"); 2919 case Intrinsic::donothing: 2920 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2921 case Intrinsic::seh_try_begin: 2922 case Intrinsic::seh_scope_begin: 2923 case Intrinsic::seh_try_end: 2924 case Intrinsic::seh_scope_end: 2925 break; 2926 case Intrinsic::experimental_patchpoint_void: 2927 case Intrinsic::experimental_patchpoint_i64: 2928 visitPatchpoint(I, EHPadBB); 2929 break; 2930 case Intrinsic::experimental_gc_statepoint: 2931 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2932 break; 2933 case Intrinsic::wasm_rethrow: { 2934 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2935 // special because it can be invoked, so we manually lower it to a DAG 2936 // node here. 2937 SmallVector<SDValue, 8> Ops; 2938 Ops.push_back(getRoot()); // inchain 2939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2940 Ops.push_back( 2941 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2942 TLI.getPointerTy(DAG.getDataLayout()))); 2943 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2944 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2945 break; 2946 } 2947 } 2948 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2949 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2950 // Eventually we will support lowering the @llvm.experimental.deoptimize 2951 // intrinsic, and right now there are no plans to support other intrinsics 2952 // with deopt state. 2953 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2954 } else { 2955 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2956 } 2957 2958 // If the value of the invoke is used outside of its defining block, make it 2959 // available as a virtual register. 2960 // We already took care of the exported value for the statepoint instruction 2961 // during call to the LowerStatepoint. 2962 if (!isa<GCStatepointInst>(I)) { 2963 CopyToExportRegsIfNeeded(&I); 2964 } 2965 2966 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2967 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2968 BranchProbability EHPadBBProb = 2969 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2970 : BranchProbability::getZero(); 2971 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2972 2973 // Update successor info. 2974 addSuccessorWithProb(InvokeMBB, Return); 2975 for (auto &UnwindDest : UnwindDests) { 2976 UnwindDest.first->setIsEHPad(); 2977 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2978 } 2979 InvokeMBB->normalizeSuccProbs(); 2980 2981 // Drop into normal successor. 2982 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2983 DAG.getBasicBlock(Return))); 2984 } 2985 2986 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2987 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2988 2989 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2990 // have to do anything here to lower funclet bundles. 2991 assert(!I.hasOperandBundlesOtherThan( 2992 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2993 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2994 2995 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2996 visitInlineAsm(I); 2997 CopyToExportRegsIfNeeded(&I); 2998 2999 // Retrieve successors. 3000 SmallPtrSet<BasicBlock *, 8> Dests; 3001 Dests.insert(I.getDefaultDest()); 3002 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3003 3004 // Update successor info. 3005 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3006 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3007 BasicBlock *Dest = I.getIndirectDest(i); 3008 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3009 Target->setIsInlineAsmBrIndirectTarget(); 3010 Target->setMachineBlockAddressTaken(); 3011 Target->setLabelMustBeEmitted(); 3012 // Don't add duplicate machine successors. 3013 if (Dests.insert(Dest).second) 3014 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3015 } 3016 CallBrMBB->normalizeSuccProbs(); 3017 3018 // Drop into default successor. 3019 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3020 MVT::Other, getControlRoot(), 3021 DAG.getBasicBlock(Return))); 3022 } 3023 3024 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3025 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3026 } 3027 3028 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3029 assert(FuncInfo.MBB->isEHPad() && 3030 "Call to landingpad not in landing pad!"); 3031 3032 // If there aren't registers to copy the values into (e.g., during SjLj 3033 // exceptions), then don't bother to create these DAG nodes. 3034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3035 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3036 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3037 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3038 return; 3039 3040 // If landingpad's return type is token type, we don't create DAG nodes 3041 // for its exception pointer and selector value. The extraction of exception 3042 // pointer or selector value from token type landingpads is not currently 3043 // supported. 3044 if (LP.getType()->isTokenTy()) 3045 return; 3046 3047 SmallVector<EVT, 2> ValueVTs; 3048 SDLoc dl = getCurSDLoc(); 3049 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3050 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3051 3052 // Get the two live-in registers as SDValues. The physregs have already been 3053 // copied into virtual registers. 3054 SDValue Ops[2]; 3055 if (FuncInfo.ExceptionPointerVirtReg) { 3056 Ops[0] = DAG.getZExtOrTrunc( 3057 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3058 FuncInfo.ExceptionPointerVirtReg, 3059 TLI.getPointerTy(DAG.getDataLayout())), 3060 dl, ValueVTs[0]); 3061 } else { 3062 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3063 } 3064 Ops[1] = DAG.getZExtOrTrunc( 3065 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3066 FuncInfo.ExceptionSelectorVirtReg, 3067 TLI.getPointerTy(DAG.getDataLayout())), 3068 dl, ValueVTs[1]); 3069 3070 // Merge into one. 3071 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3072 DAG.getVTList(ValueVTs), Ops); 3073 setValue(&LP, Res); 3074 } 3075 3076 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3077 MachineBasicBlock *Last) { 3078 // Update JTCases. 3079 for (JumpTableBlock &JTB : SL->JTCases) 3080 if (JTB.first.HeaderBB == First) 3081 JTB.first.HeaderBB = Last; 3082 3083 // Update BitTestCases. 3084 for (BitTestBlock &BTB : SL->BitTestCases) 3085 if (BTB.Parent == First) 3086 BTB.Parent = Last; 3087 } 3088 3089 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3090 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3091 3092 // Update machine-CFG edges with unique successors. 3093 SmallSet<BasicBlock*, 32> Done; 3094 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3095 BasicBlock *BB = I.getSuccessor(i); 3096 bool Inserted = Done.insert(BB).second; 3097 if (!Inserted) 3098 continue; 3099 3100 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3101 addSuccessorWithProb(IndirectBrMBB, Succ); 3102 } 3103 IndirectBrMBB->normalizeSuccProbs(); 3104 3105 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3106 MVT::Other, getControlRoot(), 3107 getValue(I.getAddress()))); 3108 } 3109 3110 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3111 if (!DAG.getTarget().Options.TrapUnreachable) 3112 return; 3113 3114 // We may be able to ignore unreachable behind a noreturn call. 3115 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3116 const BasicBlock &BB = *I.getParent(); 3117 if (&I != &BB.front()) { 3118 BasicBlock::const_iterator PredI = 3119 std::prev(BasicBlock::const_iterator(&I)); 3120 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3121 if (Call->doesNotReturn()) 3122 return; 3123 } 3124 } 3125 } 3126 3127 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3128 } 3129 3130 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3131 SDNodeFlags Flags; 3132 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3133 Flags.copyFMF(*FPOp); 3134 3135 SDValue Op = getValue(I.getOperand(0)); 3136 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3137 Op, Flags); 3138 setValue(&I, UnNodeValue); 3139 } 3140 3141 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3142 SDNodeFlags Flags; 3143 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3144 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3145 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3146 } 3147 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3148 Flags.setExact(ExactOp->isExact()); 3149 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3150 Flags.copyFMF(*FPOp); 3151 3152 SDValue Op1 = getValue(I.getOperand(0)); 3153 SDValue Op2 = getValue(I.getOperand(1)); 3154 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3155 Op1, Op2, Flags); 3156 setValue(&I, BinNodeValue); 3157 } 3158 3159 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3160 SDValue Op1 = getValue(I.getOperand(0)); 3161 SDValue Op2 = getValue(I.getOperand(1)); 3162 3163 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3164 Op1.getValueType(), DAG.getDataLayout()); 3165 3166 // Coerce the shift amount to the right type if we can. This exposes the 3167 // truncate or zext to optimization early. 3168 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3169 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3170 "Unexpected shift type"); 3171 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3172 } 3173 3174 bool nuw = false; 3175 bool nsw = false; 3176 bool exact = false; 3177 3178 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3179 3180 if (const OverflowingBinaryOperator *OFBinOp = 3181 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3182 nuw = OFBinOp->hasNoUnsignedWrap(); 3183 nsw = OFBinOp->hasNoSignedWrap(); 3184 } 3185 if (const PossiblyExactOperator *ExactOp = 3186 dyn_cast<const PossiblyExactOperator>(&I)) 3187 exact = ExactOp->isExact(); 3188 } 3189 SDNodeFlags Flags; 3190 Flags.setExact(exact); 3191 Flags.setNoSignedWrap(nsw); 3192 Flags.setNoUnsignedWrap(nuw); 3193 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3194 Flags); 3195 setValue(&I, Res); 3196 } 3197 3198 void SelectionDAGBuilder::visitSDiv(const User &I) { 3199 SDValue Op1 = getValue(I.getOperand(0)); 3200 SDValue Op2 = getValue(I.getOperand(1)); 3201 3202 SDNodeFlags Flags; 3203 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3204 cast<PossiblyExactOperator>(&I)->isExact()); 3205 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3206 Op2, Flags)); 3207 } 3208 3209 void SelectionDAGBuilder::visitICmp(const User &I) { 3210 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3212 predicate = IC->getPredicate(); 3213 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3214 predicate = ICmpInst::Predicate(IC->getPredicate()); 3215 SDValue Op1 = getValue(I.getOperand(0)); 3216 SDValue Op2 = getValue(I.getOperand(1)); 3217 ISD::CondCode Opcode = getICmpCondCode(predicate); 3218 3219 auto &TLI = DAG.getTargetLoweringInfo(); 3220 EVT MemVT = 3221 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3222 3223 // If a pointer's DAG type is larger than its memory type then the DAG values 3224 // are zero-extended. This breaks signed comparisons so truncate back to the 3225 // underlying type before doing the compare. 3226 if (Op1.getValueType() != MemVT) { 3227 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3228 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3229 } 3230 3231 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3232 I.getType()); 3233 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3234 } 3235 3236 void SelectionDAGBuilder::visitFCmp(const User &I) { 3237 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3238 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3239 predicate = FC->getPredicate(); 3240 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3241 predicate = FCmpInst::Predicate(FC->getPredicate()); 3242 SDValue Op1 = getValue(I.getOperand(0)); 3243 SDValue Op2 = getValue(I.getOperand(1)); 3244 3245 ISD::CondCode Condition = getFCmpCondCode(predicate); 3246 auto *FPMO = cast<FPMathOperator>(&I); 3247 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3248 Condition = getFCmpCodeWithoutNaN(Condition); 3249 3250 SDNodeFlags Flags; 3251 Flags.copyFMF(*FPMO); 3252 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3253 3254 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3255 I.getType()); 3256 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3257 } 3258 3259 // Check if the condition of the select has one use or two users that are both 3260 // selects with the same condition. 3261 static bool hasOnlySelectUsers(const Value *Cond) { 3262 return llvm::all_of(Cond->users(), [](const Value *V) { 3263 return isa<SelectInst>(V); 3264 }); 3265 } 3266 3267 void SelectionDAGBuilder::visitSelect(const User &I) { 3268 SmallVector<EVT, 4> ValueVTs; 3269 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3270 ValueVTs); 3271 unsigned NumValues = ValueVTs.size(); 3272 if (NumValues == 0) return; 3273 3274 SmallVector<SDValue, 4> Values(NumValues); 3275 SDValue Cond = getValue(I.getOperand(0)); 3276 SDValue LHSVal = getValue(I.getOperand(1)); 3277 SDValue RHSVal = getValue(I.getOperand(2)); 3278 SmallVector<SDValue, 1> BaseOps(1, Cond); 3279 ISD::NodeType OpCode = 3280 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3281 3282 bool IsUnaryAbs = false; 3283 bool Negate = false; 3284 3285 SDNodeFlags Flags; 3286 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3287 Flags.copyFMF(*FPOp); 3288 3289 // Min/max matching is only viable if all output VTs are the same. 3290 if (all_equal(ValueVTs)) { 3291 EVT VT = ValueVTs[0]; 3292 LLVMContext &Ctx = *DAG.getContext(); 3293 auto &TLI = DAG.getTargetLoweringInfo(); 3294 3295 // We care about the legality of the operation after it has been type 3296 // legalized. 3297 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3298 VT = TLI.getTypeToTransformTo(Ctx, VT); 3299 3300 // If the vselect is legal, assume we want to leave this as a vector setcc + 3301 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3302 // min/max is legal on the scalar type. 3303 bool UseScalarMinMax = VT.isVector() && 3304 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3305 3306 Value *LHS, *RHS; 3307 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3308 ISD::NodeType Opc = ISD::DELETED_NODE; 3309 switch (SPR.Flavor) { 3310 case SPF_UMAX: Opc = ISD::UMAX; break; 3311 case SPF_UMIN: Opc = ISD::UMIN; break; 3312 case SPF_SMAX: Opc = ISD::SMAX; break; 3313 case SPF_SMIN: Opc = ISD::SMIN; break; 3314 case SPF_FMINNUM: 3315 switch (SPR.NaNBehavior) { 3316 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3317 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3318 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3319 case SPNB_RETURNS_ANY: { 3320 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3321 Opc = ISD::FMINNUM; 3322 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3323 Opc = ISD::FMINIMUM; 3324 else if (UseScalarMinMax) 3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3326 ISD::FMINNUM : ISD::FMINIMUM; 3327 break; 3328 } 3329 } 3330 break; 3331 case SPF_FMAXNUM: 3332 switch (SPR.NaNBehavior) { 3333 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3334 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3335 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3336 case SPNB_RETURNS_ANY: 3337 3338 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3339 Opc = ISD::FMAXNUM; 3340 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3341 Opc = ISD::FMAXIMUM; 3342 else if (UseScalarMinMax) 3343 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3344 ISD::FMAXNUM : ISD::FMAXIMUM; 3345 break; 3346 } 3347 break; 3348 case SPF_NABS: 3349 Negate = true; 3350 [[fallthrough]]; 3351 case SPF_ABS: 3352 IsUnaryAbs = true; 3353 Opc = ISD::ABS; 3354 break; 3355 default: break; 3356 } 3357 3358 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3359 (TLI.isOperationLegalOrCustom(Opc, VT) || 3360 (UseScalarMinMax && 3361 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3362 // If the underlying comparison instruction is used by any other 3363 // instruction, the consumed instructions won't be destroyed, so it is 3364 // not profitable to convert to a min/max. 3365 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3366 OpCode = Opc; 3367 LHSVal = getValue(LHS); 3368 RHSVal = getValue(RHS); 3369 BaseOps.clear(); 3370 } 3371 3372 if (IsUnaryAbs) { 3373 OpCode = Opc; 3374 LHSVal = getValue(LHS); 3375 BaseOps.clear(); 3376 } 3377 } 3378 3379 if (IsUnaryAbs) { 3380 for (unsigned i = 0; i != NumValues; ++i) { 3381 SDLoc dl = getCurSDLoc(); 3382 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3383 Values[i] = 3384 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3385 if (Negate) 3386 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3387 Values[i]); 3388 } 3389 } else { 3390 for (unsigned i = 0; i != NumValues; ++i) { 3391 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3392 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3393 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3394 Values[i] = DAG.getNode( 3395 OpCode, getCurSDLoc(), 3396 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3397 } 3398 } 3399 3400 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3401 DAG.getVTList(ValueVTs), Values)); 3402 } 3403 3404 void SelectionDAGBuilder::visitTrunc(const User &I) { 3405 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3406 SDValue N = getValue(I.getOperand(0)); 3407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3408 I.getType()); 3409 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3410 } 3411 3412 void SelectionDAGBuilder::visitZExt(const User &I) { 3413 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3414 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3415 SDValue N = getValue(I.getOperand(0)); 3416 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3417 I.getType()); 3418 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3419 } 3420 3421 void SelectionDAGBuilder::visitSExt(const User &I) { 3422 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3423 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3424 SDValue N = getValue(I.getOperand(0)); 3425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3426 I.getType()); 3427 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3428 } 3429 3430 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3431 // FPTrunc is never a no-op cast, no need to check 3432 SDValue N = getValue(I.getOperand(0)); 3433 SDLoc dl = getCurSDLoc(); 3434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3435 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3436 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3437 DAG.getTargetConstant( 3438 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3439 } 3440 3441 void SelectionDAGBuilder::visitFPExt(const User &I) { 3442 // FPExt is never a no-op cast, no need to check 3443 SDValue N = getValue(I.getOperand(0)); 3444 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3445 I.getType()); 3446 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3447 } 3448 3449 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3450 // FPToUI is never a no-op cast, no need to check 3451 SDValue N = getValue(I.getOperand(0)); 3452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3453 I.getType()); 3454 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3455 } 3456 3457 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3458 // FPToSI is never a no-op cast, no need to check 3459 SDValue N = getValue(I.getOperand(0)); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3463 } 3464 3465 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3466 // UIToFP is never a no-op cast, no need to check 3467 SDValue N = getValue(I.getOperand(0)); 3468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3469 I.getType()); 3470 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3471 } 3472 3473 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3474 // SIToFP is never a no-op cast, no need to check 3475 SDValue N = getValue(I.getOperand(0)); 3476 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3477 I.getType()); 3478 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3479 } 3480 3481 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3482 // What to do depends on the size of the integer and the size of the pointer. 3483 // We can either truncate, zero extend, or no-op, accordingly. 3484 SDValue N = getValue(I.getOperand(0)); 3485 auto &TLI = DAG.getTargetLoweringInfo(); 3486 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3487 I.getType()); 3488 EVT PtrMemVT = 3489 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3490 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3491 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3492 setValue(&I, N); 3493 } 3494 3495 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3496 // What to do depends on the size of the integer and the size of the pointer. 3497 // We can either truncate, zero extend, or no-op, accordingly. 3498 SDValue N = getValue(I.getOperand(0)); 3499 auto &TLI = DAG.getTargetLoweringInfo(); 3500 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3501 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3502 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3503 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3504 setValue(&I, N); 3505 } 3506 3507 void SelectionDAGBuilder::visitBitCast(const User &I) { 3508 SDValue N = getValue(I.getOperand(0)); 3509 SDLoc dl = getCurSDLoc(); 3510 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3511 I.getType()); 3512 3513 // BitCast assures us that source and destination are the same size so this is 3514 // either a BITCAST or a no-op. 3515 if (DestVT != N.getValueType()) 3516 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3517 DestVT, N)); // convert types. 3518 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3519 // might fold any kind of constant expression to an integer constant and that 3520 // is not what we are looking for. Only recognize a bitcast of a genuine 3521 // constant integer as an opaque constant. 3522 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3523 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3524 /*isOpaque*/true)); 3525 else 3526 setValue(&I, N); // noop cast. 3527 } 3528 3529 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3531 const Value *SV = I.getOperand(0); 3532 SDValue N = getValue(SV); 3533 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3534 3535 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3536 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3537 3538 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3539 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3540 3541 setValue(&I, N); 3542 } 3543 3544 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3546 SDValue InVec = getValue(I.getOperand(0)); 3547 SDValue InVal = getValue(I.getOperand(1)); 3548 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3549 TLI.getVectorIdxTy(DAG.getDataLayout())); 3550 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3551 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3552 InVec, InVal, InIdx)); 3553 } 3554 3555 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3557 SDValue InVec = getValue(I.getOperand(0)); 3558 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3559 TLI.getVectorIdxTy(DAG.getDataLayout())); 3560 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3561 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3562 InVec, InIdx)); 3563 } 3564 3565 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3566 SDValue Src1 = getValue(I.getOperand(0)); 3567 SDValue Src2 = getValue(I.getOperand(1)); 3568 ArrayRef<int> Mask; 3569 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3570 Mask = SVI->getShuffleMask(); 3571 else 3572 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3573 SDLoc DL = getCurSDLoc(); 3574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3575 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3576 EVT SrcVT = Src1.getValueType(); 3577 3578 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3579 VT.isScalableVector()) { 3580 // Canonical splat form of first element of first input vector. 3581 SDValue FirstElt = 3582 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3583 DAG.getVectorIdxConstant(0, DL)); 3584 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3585 return; 3586 } 3587 3588 // For now, we only handle splats for scalable vectors. 3589 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3590 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3591 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3592 3593 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3594 unsigned MaskNumElts = Mask.size(); 3595 3596 if (SrcNumElts == MaskNumElts) { 3597 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3598 return; 3599 } 3600 3601 // Normalize the shuffle vector since mask and vector length don't match. 3602 if (SrcNumElts < MaskNumElts) { 3603 // Mask is longer than the source vectors. We can use concatenate vector to 3604 // make the mask and vectors lengths match. 3605 3606 if (MaskNumElts % SrcNumElts == 0) { 3607 // Mask length is a multiple of the source vector length. 3608 // Check if the shuffle is some kind of concatenation of the input 3609 // vectors. 3610 unsigned NumConcat = MaskNumElts / SrcNumElts; 3611 bool IsConcat = true; 3612 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3613 for (unsigned i = 0; i != MaskNumElts; ++i) { 3614 int Idx = Mask[i]; 3615 if (Idx < 0) 3616 continue; 3617 // Ensure the indices in each SrcVT sized piece are sequential and that 3618 // the same source is used for the whole piece. 3619 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3620 (ConcatSrcs[i / SrcNumElts] >= 0 && 3621 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3622 IsConcat = false; 3623 break; 3624 } 3625 // Remember which source this index came from. 3626 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3627 } 3628 3629 // The shuffle is concatenating multiple vectors together. Just emit 3630 // a CONCAT_VECTORS operation. 3631 if (IsConcat) { 3632 SmallVector<SDValue, 8> ConcatOps; 3633 for (auto Src : ConcatSrcs) { 3634 if (Src < 0) 3635 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3636 else if (Src == 0) 3637 ConcatOps.push_back(Src1); 3638 else 3639 ConcatOps.push_back(Src2); 3640 } 3641 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3642 return; 3643 } 3644 } 3645 3646 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3647 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3648 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3649 PaddedMaskNumElts); 3650 3651 // Pad both vectors with undefs to make them the same length as the mask. 3652 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3653 3654 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3655 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3656 MOps1[0] = Src1; 3657 MOps2[0] = Src2; 3658 3659 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3660 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3661 3662 // Readjust mask for new input vector length. 3663 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3664 for (unsigned i = 0; i != MaskNumElts; ++i) { 3665 int Idx = Mask[i]; 3666 if (Idx >= (int)SrcNumElts) 3667 Idx -= SrcNumElts - PaddedMaskNumElts; 3668 MappedOps[i] = Idx; 3669 } 3670 3671 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3672 3673 // If the concatenated vector was padded, extract a subvector with the 3674 // correct number of elements. 3675 if (MaskNumElts != PaddedMaskNumElts) 3676 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3677 DAG.getVectorIdxConstant(0, DL)); 3678 3679 setValue(&I, Result); 3680 return; 3681 } 3682 3683 if (SrcNumElts > MaskNumElts) { 3684 // Analyze the access pattern of the vector to see if we can extract 3685 // two subvectors and do the shuffle. 3686 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3687 bool CanExtract = true; 3688 for (int Idx : Mask) { 3689 unsigned Input = 0; 3690 if (Idx < 0) 3691 continue; 3692 3693 if (Idx >= (int)SrcNumElts) { 3694 Input = 1; 3695 Idx -= SrcNumElts; 3696 } 3697 3698 // If all the indices come from the same MaskNumElts sized portion of 3699 // the sources we can use extract. Also make sure the extract wouldn't 3700 // extract past the end of the source. 3701 int NewStartIdx = alignDown(Idx, MaskNumElts); 3702 if (NewStartIdx + MaskNumElts > SrcNumElts || 3703 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3704 CanExtract = false; 3705 // Make sure we always update StartIdx as we use it to track if all 3706 // elements are undef. 3707 StartIdx[Input] = NewStartIdx; 3708 } 3709 3710 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3711 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3712 return; 3713 } 3714 if (CanExtract) { 3715 // Extract appropriate subvector and generate a vector shuffle 3716 for (unsigned Input = 0; Input < 2; ++Input) { 3717 SDValue &Src = Input == 0 ? Src1 : Src2; 3718 if (StartIdx[Input] < 0) 3719 Src = DAG.getUNDEF(VT); 3720 else { 3721 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3722 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3723 } 3724 } 3725 3726 // Calculate new mask. 3727 SmallVector<int, 8> MappedOps(Mask); 3728 for (int &Idx : MappedOps) { 3729 if (Idx >= (int)SrcNumElts) 3730 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3731 else if (Idx >= 0) 3732 Idx -= StartIdx[0]; 3733 } 3734 3735 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3736 return; 3737 } 3738 } 3739 3740 // We can't use either concat vectors or extract subvectors so fall back to 3741 // replacing the shuffle with extract and build vector. 3742 // to insert and build vector. 3743 EVT EltVT = VT.getVectorElementType(); 3744 SmallVector<SDValue,8> Ops; 3745 for (int Idx : Mask) { 3746 SDValue Res; 3747 3748 if (Idx < 0) { 3749 Res = DAG.getUNDEF(EltVT); 3750 } else { 3751 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3752 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3753 3754 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3755 DAG.getVectorIdxConstant(Idx, DL)); 3756 } 3757 3758 Ops.push_back(Res); 3759 } 3760 3761 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3762 } 3763 3764 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3765 ArrayRef<unsigned> Indices = I.getIndices(); 3766 const Value *Op0 = I.getOperand(0); 3767 const Value *Op1 = I.getOperand(1); 3768 Type *AggTy = I.getType(); 3769 Type *ValTy = Op1->getType(); 3770 bool IntoUndef = isa<UndefValue>(Op0); 3771 bool FromUndef = isa<UndefValue>(Op1); 3772 3773 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3774 3775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3776 SmallVector<EVT, 4> AggValueVTs; 3777 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3778 SmallVector<EVT, 4> ValValueVTs; 3779 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3780 3781 unsigned NumAggValues = AggValueVTs.size(); 3782 unsigned NumValValues = ValValueVTs.size(); 3783 SmallVector<SDValue, 4> Values(NumAggValues); 3784 3785 // Ignore an insertvalue that produces an empty object 3786 if (!NumAggValues) { 3787 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3788 return; 3789 } 3790 3791 SDValue Agg = getValue(Op0); 3792 unsigned i = 0; 3793 // Copy the beginning value(s) from the original aggregate. 3794 for (; i != LinearIndex; ++i) 3795 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3796 SDValue(Agg.getNode(), Agg.getResNo() + i); 3797 // Copy values from the inserted value(s). 3798 if (NumValValues) { 3799 SDValue Val = getValue(Op1); 3800 for (; i != LinearIndex + NumValValues; ++i) 3801 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3802 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3803 } 3804 // Copy remaining value(s) from the original aggregate. 3805 for (; i != NumAggValues; ++i) 3806 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3807 SDValue(Agg.getNode(), Agg.getResNo() + i); 3808 3809 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3810 DAG.getVTList(AggValueVTs), Values)); 3811 } 3812 3813 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3814 ArrayRef<unsigned> Indices = I.getIndices(); 3815 const Value *Op0 = I.getOperand(0); 3816 Type *AggTy = Op0->getType(); 3817 Type *ValTy = I.getType(); 3818 bool OutOfUndef = isa<UndefValue>(Op0); 3819 3820 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3821 3822 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3823 SmallVector<EVT, 4> ValValueVTs; 3824 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3825 3826 unsigned NumValValues = ValValueVTs.size(); 3827 3828 // Ignore a extractvalue that produces an empty object 3829 if (!NumValValues) { 3830 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3831 return; 3832 } 3833 3834 SmallVector<SDValue, 4> Values(NumValValues); 3835 3836 SDValue Agg = getValue(Op0); 3837 // Copy out the selected value(s). 3838 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3839 Values[i - LinearIndex] = 3840 OutOfUndef ? 3841 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3842 SDValue(Agg.getNode(), Agg.getResNo() + i); 3843 3844 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3845 DAG.getVTList(ValValueVTs), Values)); 3846 } 3847 3848 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3849 Value *Op0 = I.getOperand(0); 3850 // Note that the pointer operand may be a vector of pointers. Take the scalar 3851 // element which holds a pointer. 3852 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3853 SDValue N = getValue(Op0); 3854 SDLoc dl = getCurSDLoc(); 3855 auto &TLI = DAG.getTargetLoweringInfo(); 3856 3857 // Normalize Vector GEP - all scalar operands should be converted to the 3858 // splat vector. 3859 bool IsVectorGEP = I.getType()->isVectorTy(); 3860 ElementCount VectorElementCount = 3861 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3862 : ElementCount::getFixed(0); 3863 3864 if (IsVectorGEP && !N.getValueType().isVector()) { 3865 LLVMContext &Context = *DAG.getContext(); 3866 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3867 if (VectorElementCount.isScalable()) 3868 N = DAG.getSplatVector(VT, dl, N); 3869 else 3870 N = DAG.getSplatBuildVector(VT, dl, N); 3871 } 3872 3873 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3874 GTI != E; ++GTI) { 3875 const Value *Idx = GTI.getOperand(); 3876 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3877 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3878 if (Field) { 3879 // N = N + Offset 3880 uint64_t Offset = 3881 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3882 3883 // In an inbounds GEP with an offset that is nonnegative even when 3884 // interpreted as signed, assume there is no unsigned overflow. 3885 SDNodeFlags Flags; 3886 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3887 Flags.setNoUnsignedWrap(true); 3888 3889 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3890 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3891 } 3892 } else { 3893 // IdxSize is the width of the arithmetic according to IR semantics. 3894 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3895 // (and fix up the result later). 3896 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3897 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3898 TypeSize ElementSize = 3899 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3900 // We intentionally mask away the high bits here; ElementSize may not 3901 // fit in IdxTy. 3902 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3903 bool ElementScalable = ElementSize.isScalable(); 3904 3905 // If this is a scalar constant or a splat vector of constants, 3906 // handle it quickly. 3907 const auto *C = dyn_cast<Constant>(Idx); 3908 if (C && isa<VectorType>(C->getType())) 3909 C = C->getSplatValue(); 3910 3911 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3912 if (CI && CI->isZero()) 3913 continue; 3914 if (CI && !ElementScalable) { 3915 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3916 LLVMContext &Context = *DAG.getContext(); 3917 SDValue OffsVal; 3918 if (IsVectorGEP) 3919 OffsVal = DAG.getConstant( 3920 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3921 else 3922 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3923 3924 // In an inbounds GEP with an offset that is nonnegative even when 3925 // interpreted as signed, assume there is no unsigned overflow. 3926 SDNodeFlags Flags; 3927 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3928 Flags.setNoUnsignedWrap(true); 3929 3930 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3931 3932 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3933 continue; 3934 } 3935 3936 // N = N + Idx * ElementMul; 3937 SDValue IdxN = getValue(Idx); 3938 3939 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3940 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3941 VectorElementCount); 3942 if (VectorElementCount.isScalable()) 3943 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3944 else 3945 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3946 } 3947 3948 // If the index is smaller or larger than intptr_t, truncate or extend 3949 // it. 3950 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3951 3952 if (ElementScalable) { 3953 EVT VScaleTy = N.getValueType().getScalarType(); 3954 SDValue VScale = DAG.getNode( 3955 ISD::VSCALE, dl, VScaleTy, 3956 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3957 if (IsVectorGEP) 3958 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3959 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3960 } else { 3961 // If this is a multiply by a power of two, turn it into a shl 3962 // immediately. This is a very common case. 3963 if (ElementMul != 1) { 3964 if (ElementMul.isPowerOf2()) { 3965 unsigned Amt = ElementMul.logBase2(); 3966 IdxN = DAG.getNode(ISD::SHL, dl, 3967 N.getValueType(), IdxN, 3968 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3969 } else { 3970 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3971 IdxN.getValueType()); 3972 IdxN = DAG.getNode(ISD::MUL, dl, 3973 N.getValueType(), IdxN, Scale); 3974 } 3975 } 3976 } 3977 3978 N = DAG.getNode(ISD::ADD, dl, 3979 N.getValueType(), N, IdxN); 3980 } 3981 } 3982 3983 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3984 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3985 if (IsVectorGEP) { 3986 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3987 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3988 } 3989 3990 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3991 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3992 3993 setValue(&I, N); 3994 } 3995 3996 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3997 // If this is a fixed sized alloca in the entry block of the function, 3998 // allocate it statically on the stack. 3999 if (FuncInfo.StaticAllocaMap.count(&I)) 4000 return; // getValue will auto-populate this. 4001 4002 SDLoc dl = getCurSDLoc(); 4003 Type *Ty = I.getAllocatedType(); 4004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4005 auto &DL = DAG.getDataLayout(); 4006 TypeSize TySize = DL.getTypeAllocSize(Ty); 4007 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4008 4009 SDValue AllocSize = getValue(I.getArraySize()); 4010 4011 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4012 if (AllocSize.getValueType() != IntPtr) 4013 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4014 4015 if (TySize.isScalable()) 4016 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4017 DAG.getVScale(dl, IntPtr, 4018 APInt(IntPtr.getScalarSizeInBits(), 4019 TySize.getKnownMinValue()))); 4020 else 4021 AllocSize = 4022 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4023 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4024 4025 // Handle alignment. If the requested alignment is less than or equal to 4026 // the stack alignment, ignore it. If the size is greater than or equal to 4027 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4028 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4029 if (*Alignment <= StackAlign) 4030 Alignment = None; 4031 4032 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4033 // Round the size of the allocation up to the stack alignment size 4034 // by add SA-1 to the size. This doesn't overflow because we're computing 4035 // an address inside an alloca. 4036 SDNodeFlags Flags; 4037 Flags.setNoUnsignedWrap(true); 4038 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4039 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4040 4041 // Mask out the low bits for alignment purposes. 4042 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4043 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4044 4045 SDValue Ops[] = { 4046 getRoot(), AllocSize, 4047 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4048 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4049 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4050 setValue(&I, DSA); 4051 DAG.setRoot(DSA.getValue(1)); 4052 4053 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4054 } 4055 4056 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4057 if (I.isAtomic()) 4058 return visitAtomicLoad(I); 4059 4060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4061 const Value *SV = I.getOperand(0); 4062 if (TLI.supportSwiftError()) { 4063 // Swifterror values can come from either a function parameter with 4064 // swifterror attribute or an alloca with swifterror attribute. 4065 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4066 if (Arg->hasSwiftErrorAttr()) 4067 return visitLoadFromSwiftError(I); 4068 } 4069 4070 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4071 if (Alloca->isSwiftError()) 4072 return visitLoadFromSwiftError(I); 4073 } 4074 } 4075 4076 SDValue Ptr = getValue(SV); 4077 4078 Type *Ty = I.getType(); 4079 Align Alignment = I.getAlign(); 4080 4081 AAMDNodes AAInfo = I.getAAMetadata(); 4082 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4083 4084 SmallVector<EVT, 4> ValueVTs, MemVTs; 4085 SmallVector<uint64_t, 4> Offsets; 4086 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4087 unsigned NumValues = ValueVTs.size(); 4088 if (NumValues == 0) 4089 return; 4090 4091 bool isVolatile = I.isVolatile(); 4092 MachineMemOperand::Flags MMOFlags = 4093 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4094 4095 SDValue Root; 4096 bool ConstantMemory = false; 4097 if (isVolatile) 4098 // Serialize volatile loads with other side effects. 4099 Root = getRoot(); 4100 else if (NumValues > MaxParallelChains) 4101 Root = getMemoryRoot(); 4102 else if (AA && 4103 AA->pointsToConstantMemory(MemoryLocation( 4104 SV, 4105 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4106 AAInfo))) { 4107 // Do not serialize (non-volatile) loads of constant memory with anything. 4108 Root = DAG.getEntryNode(); 4109 ConstantMemory = true; 4110 MMOFlags |= MachineMemOperand::MOInvariant; 4111 4112 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 4113 // but the previous usage implied it did. Probably should check 4114 // isDereferenceableAndAlignedPointer. 4115 MMOFlags |= MachineMemOperand::MODereferenceable; 4116 } else { 4117 // Do not serialize non-volatile loads against each other. 4118 Root = DAG.getRoot(); 4119 } 4120 4121 SDLoc dl = getCurSDLoc(); 4122 4123 if (isVolatile) 4124 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4125 4126 // An aggregate load cannot wrap around the address space, so offsets to its 4127 // parts don't wrap either. 4128 SDNodeFlags Flags; 4129 Flags.setNoUnsignedWrap(true); 4130 4131 SmallVector<SDValue, 4> Values(NumValues); 4132 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4133 EVT PtrVT = Ptr.getValueType(); 4134 4135 unsigned ChainI = 0; 4136 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4137 // Serializing loads here may result in excessive register pressure, and 4138 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4139 // could recover a bit by hoisting nodes upward in the chain by recognizing 4140 // they are side-effect free or do not alias. The optimizer should really 4141 // avoid this case by converting large object/array copies to llvm.memcpy 4142 // (MaxParallelChains should always remain as failsafe). 4143 if (ChainI == MaxParallelChains) { 4144 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4145 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4146 makeArrayRef(Chains.data(), ChainI)); 4147 Root = Chain; 4148 ChainI = 0; 4149 } 4150 SDValue A = DAG.getNode(ISD::ADD, dl, 4151 PtrVT, Ptr, 4152 DAG.getConstant(Offsets[i], dl, PtrVT), 4153 Flags); 4154 4155 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4156 MachinePointerInfo(SV, Offsets[i]), Alignment, 4157 MMOFlags, AAInfo, Ranges); 4158 Chains[ChainI] = L.getValue(1); 4159 4160 if (MemVTs[i] != ValueVTs[i]) 4161 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4162 4163 Values[i] = L; 4164 } 4165 4166 if (!ConstantMemory) { 4167 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4168 makeArrayRef(Chains.data(), ChainI)); 4169 if (isVolatile) 4170 DAG.setRoot(Chain); 4171 else 4172 PendingLoads.push_back(Chain); 4173 } 4174 4175 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4176 DAG.getVTList(ValueVTs), Values)); 4177 } 4178 4179 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4180 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4181 "call visitStoreToSwiftError when backend supports swifterror"); 4182 4183 SmallVector<EVT, 4> ValueVTs; 4184 SmallVector<uint64_t, 4> Offsets; 4185 const Value *SrcV = I.getOperand(0); 4186 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4187 SrcV->getType(), ValueVTs, &Offsets); 4188 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4189 "expect a single EVT for swifterror"); 4190 4191 SDValue Src = getValue(SrcV); 4192 // Create a virtual register, then update the virtual register. 4193 Register VReg = 4194 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4195 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4196 // Chain can be getRoot or getControlRoot. 4197 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4198 SDValue(Src.getNode(), Src.getResNo())); 4199 DAG.setRoot(CopyNode); 4200 } 4201 4202 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4203 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4204 "call visitLoadFromSwiftError when backend supports swifterror"); 4205 4206 assert(!I.isVolatile() && 4207 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4208 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4209 "Support volatile, non temporal, invariant for load_from_swift_error"); 4210 4211 const Value *SV = I.getOperand(0); 4212 Type *Ty = I.getType(); 4213 assert( 4214 (!AA || 4215 !AA->pointsToConstantMemory(MemoryLocation( 4216 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4217 I.getAAMetadata()))) && 4218 "load_from_swift_error should not be constant memory"); 4219 4220 SmallVector<EVT, 4> ValueVTs; 4221 SmallVector<uint64_t, 4> Offsets; 4222 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4223 ValueVTs, &Offsets); 4224 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4225 "expect a single EVT for swifterror"); 4226 4227 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4228 SDValue L = DAG.getCopyFromReg( 4229 getRoot(), getCurSDLoc(), 4230 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4231 4232 setValue(&I, L); 4233 } 4234 4235 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4236 if (I.isAtomic()) 4237 return visitAtomicStore(I); 4238 4239 const Value *SrcV = I.getOperand(0); 4240 const Value *PtrV = I.getOperand(1); 4241 4242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4243 if (TLI.supportSwiftError()) { 4244 // Swifterror values can come from either a function parameter with 4245 // swifterror attribute or an alloca with swifterror attribute. 4246 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4247 if (Arg->hasSwiftErrorAttr()) 4248 return visitStoreToSwiftError(I); 4249 } 4250 4251 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4252 if (Alloca->isSwiftError()) 4253 return visitStoreToSwiftError(I); 4254 } 4255 } 4256 4257 SmallVector<EVT, 4> ValueVTs, MemVTs; 4258 SmallVector<uint64_t, 4> Offsets; 4259 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4260 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4261 unsigned NumValues = ValueVTs.size(); 4262 if (NumValues == 0) 4263 return; 4264 4265 // Get the lowered operands. Note that we do this after 4266 // checking if NumResults is zero, because with zero results 4267 // the operands won't have values in the map. 4268 SDValue Src = getValue(SrcV); 4269 SDValue Ptr = getValue(PtrV); 4270 4271 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4272 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4273 SDLoc dl = getCurSDLoc(); 4274 Align Alignment = I.getAlign(); 4275 AAMDNodes AAInfo = I.getAAMetadata(); 4276 4277 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4278 4279 // An aggregate load cannot wrap around the address space, so offsets to its 4280 // parts don't wrap either. 4281 SDNodeFlags Flags; 4282 Flags.setNoUnsignedWrap(true); 4283 4284 unsigned ChainI = 0; 4285 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4286 // See visitLoad comments. 4287 if (ChainI == MaxParallelChains) { 4288 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4289 makeArrayRef(Chains.data(), ChainI)); 4290 Root = Chain; 4291 ChainI = 0; 4292 } 4293 SDValue Add = 4294 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4295 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4296 if (MemVTs[i] != ValueVTs[i]) 4297 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4298 SDValue St = 4299 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4300 Alignment, MMOFlags, AAInfo); 4301 Chains[ChainI] = St; 4302 } 4303 4304 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4305 makeArrayRef(Chains.data(), ChainI)); 4306 DAG.setRoot(StoreNode); 4307 } 4308 4309 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4310 bool IsCompressing) { 4311 SDLoc sdl = getCurSDLoc(); 4312 4313 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4314 MaybeAlign &Alignment) { 4315 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4316 Src0 = I.getArgOperand(0); 4317 Ptr = I.getArgOperand(1); 4318 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4319 Mask = I.getArgOperand(3); 4320 }; 4321 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4322 MaybeAlign &Alignment) { 4323 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4324 Src0 = I.getArgOperand(0); 4325 Ptr = I.getArgOperand(1); 4326 Mask = I.getArgOperand(2); 4327 Alignment = None; 4328 }; 4329 4330 Value *PtrOperand, *MaskOperand, *Src0Operand; 4331 MaybeAlign Alignment; 4332 if (IsCompressing) 4333 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4334 else 4335 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4336 4337 SDValue Ptr = getValue(PtrOperand); 4338 SDValue Src0 = getValue(Src0Operand); 4339 SDValue Mask = getValue(MaskOperand); 4340 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4341 4342 EVT VT = Src0.getValueType(); 4343 if (!Alignment) 4344 Alignment = DAG.getEVTAlign(VT); 4345 4346 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4347 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4348 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4349 SDValue StoreNode = 4350 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4351 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4352 DAG.setRoot(StoreNode); 4353 setValue(&I, StoreNode); 4354 } 4355 4356 // Get a uniform base for the Gather/Scatter intrinsic. 4357 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4358 // We try to represent it as a base pointer + vector of indices. 4359 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4360 // The first operand of the GEP may be a single pointer or a vector of pointers 4361 // Example: 4362 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4363 // or 4364 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4365 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4366 // 4367 // When the first GEP operand is a single pointer - it is the uniform base we 4368 // are looking for. If first operand of the GEP is a splat vector - we 4369 // extract the splat value and use it as a uniform base. 4370 // In all other cases the function returns 'false'. 4371 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4372 ISD::MemIndexType &IndexType, SDValue &Scale, 4373 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4374 uint64_t ElemSize) { 4375 SelectionDAG& DAG = SDB->DAG; 4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4377 const DataLayout &DL = DAG.getDataLayout(); 4378 4379 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4380 4381 // Handle splat constant pointer. 4382 if (auto *C = dyn_cast<Constant>(Ptr)) { 4383 C = C->getSplatValue(); 4384 if (!C) 4385 return false; 4386 4387 Base = SDB->getValue(C); 4388 4389 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4390 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4391 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4392 IndexType = ISD::SIGNED_SCALED; 4393 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4394 return true; 4395 } 4396 4397 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4398 if (!GEP || GEP->getParent() != CurBB) 4399 return false; 4400 4401 if (GEP->getNumOperands() != 2) 4402 return false; 4403 4404 const Value *BasePtr = GEP->getPointerOperand(); 4405 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4406 4407 // Make sure the base is scalar and the index is a vector. 4408 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4409 return false; 4410 4411 Base = SDB->getValue(BasePtr); 4412 Index = SDB->getValue(IndexVal); 4413 IndexType = ISD::SIGNED_SCALED; 4414 4415 // MGATHER/MSCATTER are only required to support scaling by one or by the 4416 // element size. Other scales may be produced using target-specific DAG 4417 // combines. 4418 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4419 if (ScaleVal != ElemSize && ScaleVal != 1) 4420 return false; 4421 4422 Scale = 4423 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4424 return true; 4425 } 4426 4427 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4428 SDLoc sdl = getCurSDLoc(); 4429 4430 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4431 const Value *Ptr = I.getArgOperand(1); 4432 SDValue Src0 = getValue(I.getArgOperand(0)); 4433 SDValue Mask = getValue(I.getArgOperand(3)); 4434 EVT VT = Src0.getValueType(); 4435 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4436 ->getMaybeAlignValue() 4437 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4439 4440 SDValue Base; 4441 SDValue Index; 4442 ISD::MemIndexType IndexType; 4443 SDValue Scale; 4444 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4445 I.getParent(), VT.getScalarStoreSize()); 4446 4447 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4448 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4449 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4450 // TODO: Make MachineMemOperands aware of scalable 4451 // vectors. 4452 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4453 if (!UniformBase) { 4454 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4455 Index = getValue(Ptr); 4456 IndexType = ISD::SIGNED_SCALED; 4457 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4458 } 4459 4460 EVT IdxVT = Index.getValueType(); 4461 EVT EltTy = IdxVT.getVectorElementType(); 4462 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4463 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4464 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4465 } 4466 4467 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4468 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4469 Ops, MMO, IndexType, false); 4470 DAG.setRoot(Scatter); 4471 setValue(&I, Scatter); 4472 } 4473 4474 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4475 SDLoc sdl = getCurSDLoc(); 4476 4477 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4478 MaybeAlign &Alignment) { 4479 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4480 Ptr = I.getArgOperand(0); 4481 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4482 Mask = I.getArgOperand(2); 4483 Src0 = I.getArgOperand(3); 4484 }; 4485 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4486 MaybeAlign &Alignment) { 4487 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4488 Ptr = I.getArgOperand(0); 4489 Alignment = None; 4490 Mask = I.getArgOperand(1); 4491 Src0 = I.getArgOperand(2); 4492 }; 4493 4494 Value *PtrOperand, *MaskOperand, *Src0Operand; 4495 MaybeAlign Alignment; 4496 if (IsExpanding) 4497 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4498 else 4499 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4500 4501 SDValue Ptr = getValue(PtrOperand); 4502 SDValue Src0 = getValue(Src0Operand); 4503 SDValue Mask = getValue(MaskOperand); 4504 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4505 4506 EVT VT = Src0.getValueType(); 4507 if (!Alignment) 4508 Alignment = DAG.getEVTAlign(VT); 4509 4510 AAMDNodes AAInfo = I.getAAMetadata(); 4511 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4512 4513 // Do not serialize masked loads of constant memory with anything. 4514 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4515 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4516 4517 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4518 4519 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4520 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4521 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4522 4523 SDValue Load = 4524 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4525 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4526 if (AddToChain) 4527 PendingLoads.push_back(Load.getValue(1)); 4528 setValue(&I, Load); 4529 } 4530 4531 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4532 SDLoc sdl = getCurSDLoc(); 4533 4534 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4535 const Value *Ptr = I.getArgOperand(0); 4536 SDValue Src0 = getValue(I.getArgOperand(3)); 4537 SDValue Mask = getValue(I.getArgOperand(2)); 4538 4539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4540 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4541 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4542 ->getMaybeAlignValue() 4543 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4544 4545 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4546 4547 SDValue Root = DAG.getRoot(); 4548 SDValue Base; 4549 SDValue Index; 4550 ISD::MemIndexType IndexType; 4551 SDValue Scale; 4552 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4553 I.getParent(), VT.getScalarStoreSize()); 4554 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4555 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4556 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4557 // TODO: Make MachineMemOperands aware of scalable 4558 // vectors. 4559 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4560 4561 if (!UniformBase) { 4562 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4563 Index = getValue(Ptr); 4564 IndexType = ISD::SIGNED_SCALED; 4565 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4566 } 4567 4568 EVT IdxVT = Index.getValueType(); 4569 EVT EltTy = IdxVT.getVectorElementType(); 4570 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4571 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4572 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4573 } 4574 4575 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4576 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4577 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4578 4579 PendingLoads.push_back(Gather.getValue(1)); 4580 setValue(&I, Gather); 4581 } 4582 4583 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4584 SDLoc dl = getCurSDLoc(); 4585 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4586 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4587 SyncScope::ID SSID = I.getSyncScopeID(); 4588 4589 SDValue InChain = getRoot(); 4590 4591 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4592 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4593 4594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4595 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4596 4597 MachineFunction &MF = DAG.getMachineFunction(); 4598 MachineMemOperand *MMO = MF.getMachineMemOperand( 4599 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4600 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4601 FailureOrdering); 4602 4603 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4604 dl, MemVT, VTs, InChain, 4605 getValue(I.getPointerOperand()), 4606 getValue(I.getCompareOperand()), 4607 getValue(I.getNewValOperand()), MMO); 4608 4609 SDValue OutChain = L.getValue(2); 4610 4611 setValue(&I, L); 4612 DAG.setRoot(OutChain); 4613 } 4614 4615 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4616 SDLoc dl = getCurSDLoc(); 4617 ISD::NodeType NT; 4618 switch (I.getOperation()) { 4619 default: llvm_unreachable("Unknown atomicrmw operation"); 4620 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4621 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4622 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4623 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4624 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4625 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4626 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4627 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4628 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4629 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4630 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4631 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4632 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4633 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4634 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4635 } 4636 AtomicOrdering Ordering = I.getOrdering(); 4637 SyncScope::ID SSID = I.getSyncScopeID(); 4638 4639 SDValue InChain = getRoot(); 4640 4641 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4643 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4644 4645 MachineFunction &MF = DAG.getMachineFunction(); 4646 MachineMemOperand *MMO = MF.getMachineMemOperand( 4647 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4648 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4649 4650 SDValue L = 4651 DAG.getAtomic(NT, dl, MemVT, InChain, 4652 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4653 MMO); 4654 4655 SDValue OutChain = L.getValue(1); 4656 4657 setValue(&I, L); 4658 DAG.setRoot(OutChain); 4659 } 4660 4661 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4662 SDLoc dl = getCurSDLoc(); 4663 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4664 SDValue Ops[3]; 4665 Ops[0] = getRoot(); 4666 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4667 TLI.getFenceOperandTy(DAG.getDataLayout())); 4668 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4669 TLI.getFenceOperandTy(DAG.getDataLayout())); 4670 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4671 } 4672 4673 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4674 SDLoc dl = getCurSDLoc(); 4675 AtomicOrdering Order = I.getOrdering(); 4676 SyncScope::ID SSID = I.getSyncScopeID(); 4677 4678 SDValue InChain = getRoot(); 4679 4680 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4681 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4682 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4683 4684 if (!TLI.supportsUnalignedAtomics() && 4685 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4686 report_fatal_error("Cannot generate unaligned atomic load"); 4687 4688 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4689 4690 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4691 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4692 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4693 4694 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4695 4696 SDValue Ptr = getValue(I.getPointerOperand()); 4697 4698 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4699 // TODO: Once this is better exercised by tests, it should be merged with 4700 // the normal path for loads to prevent future divergence. 4701 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4702 if (MemVT != VT) 4703 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4704 4705 setValue(&I, L); 4706 SDValue OutChain = L.getValue(1); 4707 if (!I.isUnordered()) 4708 DAG.setRoot(OutChain); 4709 else 4710 PendingLoads.push_back(OutChain); 4711 return; 4712 } 4713 4714 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4715 Ptr, MMO); 4716 4717 SDValue OutChain = L.getValue(1); 4718 if (MemVT != VT) 4719 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4720 4721 setValue(&I, L); 4722 DAG.setRoot(OutChain); 4723 } 4724 4725 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4726 SDLoc dl = getCurSDLoc(); 4727 4728 AtomicOrdering Ordering = I.getOrdering(); 4729 SyncScope::ID SSID = I.getSyncScopeID(); 4730 4731 SDValue InChain = getRoot(); 4732 4733 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4734 EVT MemVT = 4735 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4736 4737 if (!TLI.supportsUnalignedAtomics() && 4738 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4739 report_fatal_error("Cannot generate unaligned atomic store"); 4740 4741 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4742 4743 MachineFunction &MF = DAG.getMachineFunction(); 4744 MachineMemOperand *MMO = MF.getMachineMemOperand( 4745 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4746 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4747 4748 SDValue Val = getValue(I.getValueOperand()); 4749 if (Val.getValueType() != MemVT) 4750 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4751 SDValue Ptr = getValue(I.getPointerOperand()); 4752 4753 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4754 // TODO: Once this is better exercised by tests, it should be merged with 4755 // the normal path for stores to prevent future divergence. 4756 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4757 DAG.setRoot(S); 4758 return; 4759 } 4760 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4761 Ptr, Val, MMO); 4762 4763 4764 DAG.setRoot(OutChain); 4765 } 4766 4767 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4768 /// node. 4769 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4770 unsigned Intrinsic) { 4771 // Ignore the callsite's attributes. A specific call site may be marked with 4772 // readnone, but the lowering code will expect the chain based on the 4773 // definition. 4774 const Function *F = I.getCalledFunction(); 4775 bool HasChain = !F->doesNotAccessMemory(); 4776 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4777 4778 // Build the operand list. 4779 SmallVector<SDValue, 8> Ops; 4780 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4781 if (OnlyLoad) { 4782 // We don't need to serialize loads against other loads. 4783 Ops.push_back(DAG.getRoot()); 4784 } else { 4785 Ops.push_back(getRoot()); 4786 } 4787 } 4788 4789 // Info is set by getTgtMemIntrinsic 4790 TargetLowering::IntrinsicInfo Info; 4791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4792 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4793 DAG.getMachineFunction(), 4794 Intrinsic); 4795 4796 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4797 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4798 Info.opc == ISD::INTRINSIC_W_CHAIN) 4799 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4800 TLI.getPointerTy(DAG.getDataLayout()))); 4801 4802 // Add all operands of the call to the operand list. 4803 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4804 const Value *Arg = I.getArgOperand(i); 4805 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4806 Ops.push_back(getValue(Arg)); 4807 continue; 4808 } 4809 4810 // Use TargetConstant instead of a regular constant for immarg. 4811 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4812 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4813 assert(CI->getBitWidth() <= 64 && 4814 "large intrinsic immediates not handled"); 4815 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4816 } else { 4817 Ops.push_back( 4818 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4819 } 4820 } 4821 4822 SmallVector<EVT, 4> ValueVTs; 4823 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4824 4825 if (HasChain) 4826 ValueVTs.push_back(MVT::Other); 4827 4828 SDVTList VTs = DAG.getVTList(ValueVTs); 4829 4830 // Propagate fast-math-flags from IR to node(s). 4831 SDNodeFlags Flags; 4832 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4833 Flags.copyFMF(*FPMO); 4834 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4835 4836 // Create the node. 4837 SDValue Result; 4838 if (IsTgtIntrinsic) { 4839 // This is target intrinsic that touches memory 4840 Result = 4841 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4842 MachinePointerInfo(Info.ptrVal, Info.offset), 4843 Info.align, Info.flags, Info.size, 4844 I.getAAMetadata()); 4845 } else if (!HasChain) { 4846 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4847 } else if (!I.getType()->isVoidTy()) { 4848 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4849 } else { 4850 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4851 } 4852 4853 if (HasChain) { 4854 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4855 if (OnlyLoad) 4856 PendingLoads.push_back(Chain); 4857 else 4858 DAG.setRoot(Chain); 4859 } 4860 4861 if (!I.getType()->isVoidTy()) { 4862 if (!isa<VectorType>(I.getType())) 4863 Result = lowerRangeToAssertZExt(DAG, I, Result); 4864 4865 MaybeAlign Alignment = I.getRetAlign(); 4866 if (!Alignment) 4867 Alignment = F->getAttributes().getRetAlignment(); 4868 // Insert `assertalign` node if there's an alignment. 4869 if (InsertAssertAlign && Alignment) { 4870 Result = 4871 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4872 } 4873 4874 setValue(&I, Result); 4875 } 4876 } 4877 4878 /// GetSignificand - Get the significand and build it into a floating-point 4879 /// number with exponent of 1: 4880 /// 4881 /// Op = (Op & 0x007fffff) | 0x3f800000; 4882 /// 4883 /// where Op is the hexadecimal representation of floating point value. 4884 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4885 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4886 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4887 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4888 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4889 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4890 } 4891 4892 /// GetExponent - Get the exponent: 4893 /// 4894 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4895 /// 4896 /// where Op is the hexadecimal representation of floating point value. 4897 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4898 const TargetLowering &TLI, const SDLoc &dl) { 4899 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4900 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4901 SDValue t1 = DAG.getNode( 4902 ISD::SRL, dl, MVT::i32, t0, 4903 DAG.getConstant(23, dl, 4904 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4905 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4906 DAG.getConstant(127, dl, MVT::i32)); 4907 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4908 } 4909 4910 /// getF32Constant - Get 32-bit floating point constant. 4911 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4912 const SDLoc &dl) { 4913 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4914 MVT::f32); 4915 } 4916 4917 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4918 SelectionDAG &DAG) { 4919 // TODO: What fast-math-flags should be set on the floating-point nodes? 4920 4921 // IntegerPartOfX = ((int32_t)(t0); 4922 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4923 4924 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4925 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4926 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4927 4928 // IntegerPartOfX <<= 23; 4929 IntegerPartOfX = 4930 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4931 DAG.getConstant(23, dl, 4932 DAG.getTargetLoweringInfo().getShiftAmountTy( 4933 MVT::i32, DAG.getDataLayout()))); 4934 4935 SDValue TwoToFractionalPartOfX; 4936 if (LimitFloatPrecision <= 6) { 4937 // For floating-point precision of 6: 4938 // 4939 // TwoToFractionalPartOfX = 4940 // 0.997535578f + 4941 // (0.735607626f + 0.252464424f * x) * x; 4942 // 4943 // error 0.0144103317, which is 6 bits 4944 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4945 getF32Constant(DAG, 0x3e814304, dl)); 4946 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4947 getF32Constant(DAG, 0x3f3c50c8, dl)); 4948 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4949 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4950 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4951 } else if (LimitFloatPrecision <= 12) { 4952 // For floating-point precision of 12: 4953 // 4954 // TwoToFractionalPartOfX = 4955 // 0.999892986f + 4956 // (0.696457318f + 4957 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4958 // 4959 // error 0.000107046256, which is 13 to 14 bits 4960 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4961 getF32Constant(DAG, 0x3da235e3, dl)); 4962 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4963 getF32Constant(DAG, 0x3e65b8f3, dl)); 4964 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4965 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4966 getF32Constant(DAG, 0x3f324b07, dl)); 4967 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4968 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4969 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4970 } else { // LimitFloatPrecision <= 18 4971 // For floating-point precision of 18: 4972 // 4973 // TwoToFractionalPartOfX = 4974 // 0.999999982f + 4975 // (0.693148872f + 4976 // (0.240227044f + 4977 // (0.554906021e-1f + 4978 // (0.961591928e-2f + 4979 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4980 // error 2.47208000*10^(-7), which is better than 18 bits 4981 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4982 getF32Constant(DAG, 0x3924b03e, dl)); 4983 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4984 getF32Constant(DAG, 0x3ab24b87, dl)); 4985 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4986 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4987 getF32Constant(DAG, 0x3c1d8c17, dl)); 4988 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4989 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4990 getF32Constant(DAG, 0x3d634a1d, dl)); 4991 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4992 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4993 getF32Constant(DAG, 0x3e75fe14, dl)); 4994 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4995 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4996 getF32Constant(DAG, 0x3f317234, dl)); 4997 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4998 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4999 getF32Constant(DAG, 0x3f800000, dl)); 5000 } 5001 5002 // Add the exponent into the result in integer domain. 5003 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5004 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5005 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5006 } 5007 5008 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5009 /// limited-precision mode. 5010 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5011 const TargetLowering &TLI, SDNodeFlags Flags) { 5012 if (Op.getValueType() == MVT::f32 && 5013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5014 5015 // Put the exponent in the right bit position for later addition to the 5016 // final result: 5017 // 5018 // t0 = Op * log2(e) 5019 5020 // TODO: What fast-math-flags should be set here? 5021 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5022 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5023 return getLimitedPrecisionExp2(t0, dl, DAG); 5024 } 5025 5026 // No special expansion. 5027 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5028 } 5029 5030 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5031 /// limited-precision mode. 5032 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5033 const TargetLowering &TLI, SDNodeFlags Flags) { 5034 // TODO: What fast-math-flags should be set on the floating-point nodes? 5035 5036 if (Op.getValueType() == MVT::f32 && 5037 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5038 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5039 5040 // Scale the exponent by log(2). 5041 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5042 SDValue LogOfExponent = 5043 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5044 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5045 5046 // Get the significand and build it into a floating-point number with 5047 // exponent of 1. 5048 SDValue X = GetSignificand(DAG, Op1, dl); 5049 5050 SDValue LogOfMantissa; 5051 if (LimitFloatPrecision <= 6) { 5052 // For floating-point precision of 6: 5053 // 5054 // LogofMantissa = 5055 // -1.1609546f + 5056 // (1.4034025f - 0.23903021f * x) * x; 5057 // 5058 // error 0.0034276066, which is better than 8 bits 5059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5060 getF32Constant(DAG, 0xbe74c456, dl)); 5061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5062 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5064 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5065 getF32Constant(DAG, 0x3f949a29, dl)); 5066 } else if (LimitFloatPrecision <= 12) { 5067 // For floating-point precision of 12: 5068 // 5069 // LogOfMantissa = 5070 // -1.7417939f + 5071 // (2.8212026f + 5072 // (-1.4699568f + 5073 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5074 // 5075 // error 0.000061011436, which is 14 bits 5076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5077 getF32Constant(DAG, 0xbd67b6d6, dl)); 5078 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5079 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5081 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5082 getF32Constant(DAG, 0x3fbc278b, dl)); 5083 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5084 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5085 getF32Constant(DAG, 0x40348e95, dl)); 5086 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5087 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5088 getF32Constant(DAG, 0x3fdef31a, dl)); 5089 } else { // LimitFloatPrecision <= 18 5090 // For floating-point precision of 18: 5091 // 5092 // LogOfMantissa = 5093 // -2.1072184f + 5094 // (4.2372794f + 5095 // (-3.7029485f + 5096 // (2.2781945f + 5097 // (-0.87823314f + 5098 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5099 // 5100 // error 0.0000023660568, which is better than 18 bits 5101 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5102 getF32Constant(DAG, 0xbc91e5ac, dl)); 5103 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5104 getF32Constant(DAG, 0x3e4350aa, dl)); 5105 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5106 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5107 getF32Constant(DAG, 0x3f60d3e3, dl)); 5108 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5109 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5110 getF32Constant(DAG, 0x4011cdf0, dl)); 5111 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5112 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5113 getF32Constant(DAG, 0x406cfd1c, dl)); 5114 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5115 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5116 getF32Constant(DAG, 0x408797cb, dl)); 5117 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5118 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5119 getF32Constant(DAG, 0x4006dcab, dl)); 5120 } 5121 5122 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5123 } 5124 5125 // No special expansion. 5126 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5127 } 5128 5129 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5130 /// limited-precision mode. 5131 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5132 const TargetLowering &TLI, SDNodeFlags Flags) { 5133 // TODO: What fast-math-flags should be set on the floating-point nodes? 5134 5135 if (Op.getValueType() == MVT::f32 && 5136 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5137 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5138 5139 // Get the exponent. 5140 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5141 5142 // Get the significand and build it into a floating-point number with 5143 // exponent of 1. 5144 SDValue X = GetSignificand(DAG, Op1, dl); 5145 5146 // Different possible minimax approximations of significand in 5147 // floating-point for various degrees of accuracy over [1,2]. 5148 SDValue Log2ofMantissa; 5149 if (LimitFloatPrecision <= 6) { 5150 // For floating-point precision of 6: 5151 // 5152 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5153 // 5154 // error 0.0049451742, which is more than 7 bits 5155 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5156 getF32Constant(DAG, 0xbeb08fe0, dl)); 5157 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5158 getF32Constant(DAG, 0x40019463, dl)); 5159 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5160 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5161 getF32Constant(DAG, 0x3fd6633d, dl)); 5162 } else if (LimitFloatPrecision <= 12) { 5163 // For floating-point precision of 12: 5164 // 5165 // Log2ofMantissa = 5166 // -2.51285454f + 5167 // (4.07009056f + 5168 // (-2.12067489f + 5169 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5170 // 5171 // error 0.0000876136000, which is better than 13 bits 5172 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5173 getF32Constant(DAG, 0xbda7262e, dl)); 5174 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5175 getF32Constant(DAG, 0x3f25280b, dl)); 5176 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5177 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5178 getF32Constant(DAG, 0x4007b923, dl)); 5179 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5180 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5181 getF32Constant(DAG, 0x40823e2f, dl)); 5182 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5183 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5184 getF32Constant(DAG, 0x4020d29c, dl)); 5185 } else { // LimitFloatPrecision <= 18 5186 // For floating-point precision of 18: 5187 // 5188 // Log2ofMantissa = 5189 // -3.0400495f + 5190 // (6.1129976f + 5191 // (-5.3420409f + 5192 // (3.2865683f + 5193 // (-1.2669343f + 5194 // (0.27515199f - 5195 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5196 // 5197 // error 0.0000018516, which is better than 18 bits 5198 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5199 getF32Constant(DAG, 0xbcd2769e, dl)); 5200 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5201 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5202 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5203 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5204 getF32Constant(DAG, 0x3fa22ae7, dl)); 5205 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5206 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5207 getF32Constant(DAG, 0x40525723, dl)); 5208 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5209 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5210 getF32Constant(DAG, 0x40aaf200, dl)); 5211 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5212 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5213 getF32Constant(DAG, 0x40c39dad, dl)); 5214 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5215 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5216 getF32Constant(DAG, 0x4042902c, dl)); 5217 } 5218 5219 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5220 } 5221 5222 // No special expansion. 5223 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5224 } 5225 5226 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5227 /// limited-precision mode. 5228 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5229 const TargetLowering &TLI, SDNodeFlags Flags) { 5230 // TODO: What fast-math-flags should be set on the floating-point nodes? 5231 5232 if (Op.getValueType() == MVT::f32 && 5233 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5234 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5235 5236 // Scale the exponent by log10(2) [0.30102999f]. 5237 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5238 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5239 getF32Constant(DAG, 0x3e9a209a, dl)); 5240 5241 // Get the significand and build it into a floating-point number with 5242 // exponent of 1. 5243 SDValue X = GetSignificand(DAG, Op1, dl); 5244 5245 SDValue Log10ofMantissa; 5246 if (LimitFloatPrecision <= 6) { 5247 // For floating-point precision of 6: 5248 // 5249 // Log10ofMantissa = 5250 // -0.50419619f + 5251 // (0.60948995f - 0.10380950f * x) * x; 5252 // 5253 // error 0.0014886165, which is 6 bits 5254 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5255 getF32Constant(DAG, 0xbdd49a13, dl)); 5256 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5257 getF32Constant(DAG, 0x3f1c0789, dl)); 5258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5259 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5260 getF32Constant(DAG, 0x3f011300, dl)); 5261 } else if (LimitFloatPrecision <= 12) { 5262 // For floating-point precision of 12: 5263 // 5264 // Log10ofMantissa = 5265 // -0.64831180f + 5266 // (0.91751397f + 5267 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5268 // 5269 // error 0.00019228036, which is better than 12 bits 5270 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5271 getF32Constant(DAG, 0x3d431f31, dl)); 5272 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5273 getF32Constant(DAG, 0x3ea21fb2, dl)); 5274 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5275 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5276 getF32Constant(DAG, 0x3f6ae232, dl)); 5277 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5278 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5279 getF32Constant(DAG, 0x3f25f7c3, dl)); 5280 } else { // LimitFloatPrecision <= 18 5281 // For floating-point precision of 18: 5282 // 5283 // Log10ofMantissa = 5284 // -0.84299375f + 5285 // (1.5327582f + 5286 // (-1.0688956f + 5287 // (0.49102474f + 5288 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5289 // 5290 // error 0.0000037995730, which is better than 18 bits 5291 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5292 getF32Constant(DAG, 0x3c5d51ce, dl)); 5293 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5294 getF32Constant(DAG, 0x3e00685a, dl)); 5295 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5296 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5297 getF32Constant(DAG, 0x3efb6798, dl)); 5298 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5299 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5300 getF32Constant(DAG, 0x3f88d192, dl)); 5301 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5302 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5303 getF32Constant(DAG, 0x3fc4316c, dl)); 5304 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5305 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5306 getF32Constant(DAG, 0x3f57ce70, dl)); 5307 } 5308 5309 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5310 } 5311 5312 // No special expansion. 5313 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5314 } 5315 5316 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5317 /// limited-precision mode. 5318 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5319 const TargetLowering &TLI, SDNodeFlags Flags) { 5320 if (Op.getValueType() == MVT::f32 && 5321 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5322 return getLimitedPrecisionExp2(Op, dl, DAG); 5323 5324 // No special expansion. 5325 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5326 } 5327 5328 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5329 /// limited-precision mode with x == 10.0f. 5330 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5331 SelectionDAG &DAG, const TargetLowering &TLI, 5332 SDNodeFlags Flags) { 5333 bool IsExp10 = false; 5334 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5335 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5336 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5337 APFloat Ten(10.0f); 5338 IsExp10 = LHSC->isExactlyValue(Ten); 5339 } 5340 } 5341 5342 // TODO: What fast-math-flags should be set on the FMUL node? 5343 if (IsExp10) { 5344 // Put the exponent in the right bit position for later addition to the 5345 // final result: 5346 // 5347 // #define LOG2OF10 3.3219281f 5348 // t0 = Op * LOG2OF10; 5349 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5350 getF32Constant(DAG, 0x40549a78, dl)); 5351 return getLimitedPrecisionExp2(t0, dl, DAG); 5352 } 5353 5354 // No special expansion. 5355 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5356 } 5357 5358 /// ExpandPowI - Expand a llvm.powi intrinsic. 5359 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5360 SelectionDAG &DAG) { 5361 // If RHS is a constant, we can expand this out to a multiplication tree if 5362 // it's beneficial on the target, otherwise we end up lowering to a call to 5363 // __powidf2 (for example). 5364 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5365 unsigned Val = RHSC->getSExtValue(); 5366 5367 // powi(x, 0) -> 1.0 5368 if (Val == 0) 5369 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5370 5371 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5372 Val, DAG.shouldOptForSize())) { 5373 // Get the exponent as a positive value. 5374 if ((int)Val < 0) 5375 Val = -Val; 5376 // We use the simple binary decomposition method to generate the multiply 5377 // sequence. There are more optimal ways to do this (for example, 5378 // powi(x,15) generates one more multiply than it should), but this has 5379 // the benefit of being both really simple and much better than a libcall. 5380 SDValue Res; // Logically starts equal to 1.0 5381 SDValue CurSquare = LHS; 5382 // TODO: Intrinsics should have fast-math-flags that propagate to these 5383 // nodes. 5384 while (Val) { 5385 if (Val & 1) { 5386 if (Res.getNode()) 5387 Res = 5388 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5389 else 5390 Res = CurSquare; // 1.0*CurSquare. 5391 } 5392 5393 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5394 CurSquare, CurSquare); 5395 Val >>= 1; 5396 } 5397 5398 // If the original was negative, invert the result, producing 1/(x*x*x). 5399 if (RHSC->getSExtValue() < 0) 5400 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5401 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5402 return Res; 5403 } 5404 } 5405 5406 // Otherwise, expand to a libcall. 5407 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5408 } 5409 5410 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5411 SDValue LHS, SDValue RHS, SDValue Scale, 5412 SelectionDAG &DAG, const TargetLowering &TLI) { 5413 EVT VT = LHS.getValueType(); 5414 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5415 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5416 LLVMContext &Ctx = *DAG.getContext(); 5417 5418 // If the type is legal but the operation isn't, this node might survive all 5419 // the way to operation legalization. If we end up there and we do not have 5420 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5421 // node. 5422 5423 // Coax the legalizer into expanding the node during type legalization instead 5424 // by bumping the size by one bit. This will force it to Promote, enabling the 5425 // early expansion and avoiding the need to expand later. 5426 5427 // We don't have to do this if Scale is 0; that can always be expanded, unless 5428 // it's a saturating signed operation. Those can experience true integer 5429 // division overflow, a case which we must avoid. 5430 5431 // FIXME: We wouldn't have to do this (or any of the early 5432 // expansion/promotion) if it was possible to expand a libcall of an 5433 // illegal type during operation legalization. But it's not, so things 5434 // get a bit hacky. 5435 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5436 if ((ScaleInt > 0 || (Saturating && Signed)) && 5437 (TLI.isTypeLegal(VT) || 5438 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5439 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5440 Opcode, VT, ScaleInt); 5441 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5442 EVT PromVT; 5443 if (VT.isScalarInteger()) 5444 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5445 else if (VT.isVector()) { 5446 PromVT = VT.getVectorElementType(); 5447 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5448 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5449 } else 5450 llvm_unreachable("Wrong VT for DIVFIX?"); 5451 if (Signed) { 5452 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5453 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5454 } else { 5455 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5456 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5457 } 5458 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5459 // For saturating operations, we need to shift up the LHS to get the 5460 // proper saturation width, and then shift down again afterwards. 5461 if (Saturating) 5462 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5463 DAG.getConstant(1, DL, ShiftTy)); 5464 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5465 if (Saturating) 5466 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5467 DAG.getConstant(1, DL, ShiftTy)); 5468 return DAG.getZExtOrTrunc(Res, DL, VT); 5469 } 5470 } 5471 5472 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5473 } 5474 5475 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5476 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5477 static void 5478 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5479 const SDValue &N) { 5480 switch (N.getOpcode()) { 5481 case ISD::CopyFromReg: { 5482 SDValue Op = N.getOperand(1); 5483 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5484 Op.getValueType().getSizeInBits()); 5485 return; 5486 } 5487 case ISD::BITCAST: 5488 case ISD::AssertZext: 5489 case ISD::AssertSext: 5490 case ISD::TRUNCATE: 5491 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5492 return; 5493 case ISD::BUILD_PAIR: 5494 case ISD::BUILD_VECTOR: 5495 case ISD::CONCAT_VECTORS: 5496 for (SDValue Op : N->op_values()) 5497 getUnderlyingArgRegs(Regs, Op); 5498 return; 5499 default: 5500 return; 5501 } 5502 } 5503 5504 /// If the DbgValueInst is a dbg_value of a function argument, create the 5505 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5506 /// instruction selection, they will be inserted to the entry BB. 5507 /// We don't currently support this for variadic dbg_values, as they shouldn't 5508 /// appear for function arguments or in the prologue. 5509 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5510 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5511 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5512 const Argument *Arg = dyn_cast<Argument>(V); 5513 if (!Arg) 5514 return false; 5515 5516 MachineFunction &MF = DAG.getMachineFunction(); 5517 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5518 5519 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5520 // we've been asked to pursue. 5521 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5522 bool Indirect) { 5523 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5524 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5525 // pointing at the VReg, which will be patched up later. 5526 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5527 auto MIB = BuildMI(MF, DL, Inst); 5528 MIB.addReg(Reg); 5529 MIB.addImm(0); 5530 MIB.addMetadata(Variable); 5531 auto *NewDIExpr = FragExpr; 5532 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5533 // the DIExpression. 5534 if (Indirect) 5535 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5536 MIB.addMetadata(NewDIExpr); 5537 return MIB; 5538 } else { 5539 // Create a completely standard DBG_VALUE. 5540 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5541 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5542 } 5543 }; 5544 5545 if (Kind == FuncArgumentDbgValueKind::Value) { 5546 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5547 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5548 // the entry block. 5549 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5550 if (!IsInEntryBlock) 5551 return false; 5552 5553 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5554 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5555 // variable that also is a param. 5556 // 5557 // Although, if we are at the top of the entry block already, we can still 5558 // emit using ArgDbgValue. This might catch some situations when the 5559 // dbg.value refers to an argument that isn't used in the entry block, so 5560 // any CopyToReg node would be optimized out and the only way to express 5561 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5562 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5563 // we should only emit as ArgDbgValue if the Variable is an argument to the 5564 // current function, and the dbg.value intrinsic is found in the entry 5565 // block. 5566 bool VariableIsFunctionInputArg = Variable->isParameter() && 5567 !DL->getInlinedAt(); 5568 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5569 if (!IsInPrologue && !VariableIsFunctionInputArg) 5570 return false; 5571 5572 // Here we assume that a function argument on IR level only can be used to 5573 // describe one input parameter on source level. If we for example have 5574 // source code like this 5575 // 5576 // struct A { long x, y; }; 5577 // void foo(struct A a, long b) { 5578 // ... 5579 // b = a.x; 5580 // ... 5581 // } 5582 // 5583 // and IR like this 5584 // 5585 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5586 // entry: 5587 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5588 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5589 // call void @llvm.dbg.value(metadata i32 %b, "b", 5590 // ... 5591 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5592 // ... 5593 // 5594 // then the last dbg.value is describing a parameter "b" using a value that 5595 // is an argument. But since we already has used %a1 to describe a parameter 5596 // we should not handle that last dbg.value here (that would result in an 5597 // incorrect hoisting of the DBG_VALUE to the function entry). 5598 // Notice that we allow one dbg.value per IR level argument, to accommodate 5599 // for the situation with fragments above. 5600 if (VariableIsFunctionInputArg) { 5601 unsigned ArgNo = Arg->getArgNo(); 5602 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5603 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5604 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5605 return false; 5606 FuncInfo.DescribedArgs.set(ArgNo); 5607 } 5608 } 5609 5610 bool IsIndirect = false; 5611 Optional<MachineOperand> Op; 5612 // Some arguments' frame index is recorded during argument lowering. 5613 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5614 if (FI != std::numeric_limits<int>::max()) 5615 Op = MachineOperand::CreateFI(FI); 5616 5617 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5618 if (!Op && N.getNode()) { 5619 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5620 Register Reg; 5621 if (ArgRegsAndSizes.size() == 1) 5622 Reg = ArgRegsAndSizes.front().first; 5623 5624 if (Reg && Reg.isVirtual()) { 5625 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5626 Register PR = RegInfo.getLiveInPhysReg(Reg); 5627 if (PR) 5628 Reg = PR; 5629 } 5630 if (Reg) { 5631 Op = MachineOperand::CreateReg(Reg, false); 5632 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5633 } 5634 } 5635 5636 if (!Op && N.getNode()) { 5637 // Check if frame index is available. 5638 SDValue LCandidate = peekThroughBitcasts(N); 5639 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5640 if (FrameIndexSDNode *FINode = 5641 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5642 Op = MachineOperand::CreateFI(FINode->getIndex()); 5643 } 5644 5645 if (!Op) { 5646 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5647 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5648 SplitRegs) { 5649 unsigned Offset = 0; 5650 for (const auto &RegAndSize : SplitRegs) { 5651 // If the expression is already a fragment, the current register 5652 // offset+size might extend beyond the fragment. In this case, only 5653 // the register bits that are inside the fragment are relevant. 5654 int RegFragmentSizeInBits = RegAndSize.second; 5655 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5656 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5657 // The register is entirely outside the expression fragment, 5658 // so is irrelevant for debug info. 5659 if (Offset >= ExprFragmentSizeInBits) 5660 break; 5661 // The register is partially outside the expression fragment, only 5662 // the low bits within the fragment are relevant for debug info. 5663 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5664 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5665 } 5666 } 5667 5668 auto FragmentExpr = DIExpression::createFragmentExpression( 5669 Expr, Offset, RegFragmentSizeInBits); 5670 Offset += RegAndSize.second; 5671 // If a valid fragment expression cannot be created, the variable's 5672 // correct value cannot be determined and so it is set as Undef. 5673 if (!FragmentExpr) { 5674 SDDbgValue *SDV = DAG.getConstantDbgValue( 5675 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5676 DAG.AddDbgValue(SDV, false); 5677 continue; 5678 } 5679 MachineInstr *NewMI = 5680 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5681 Kind != FuncArgumentDbgValueKind::Value); 5682 FuncInfo.ArgDbgValues.push_back(NewMI); 5683 } 5684 }; 5685 5686 // Check if ValueMap has reg number. 5687 DenseMap<const Value *, Register>::const_iterator 5688 VMI = FuncInfo.ValueMap.find(V); 5689 if (VMI != FuncInfo.ValueMap.end()) { 5690 const auto &TLI = DAG.getTargetLoweringInfo(); 5691 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5692 V->getType(), None); 5693 if (RFV.occupiesMultipleRegs()) { 5694 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5695 return true; 5696 } 5697 5698 Op = MachineOperand::CreateReg(VMI->second, false); 5699 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5700 } else if (ArgRegsAndSizes.size() > 1) { 5701 // This was split due to the calling convention, and no virtual register 5702 // mapping exists for the value. 5703 splitMultiRegDbgValue(ArgRegsAndSizes); 5704 return true; 5705 } 5706 } 5707 5708 if (!Op) 5709 return false; 5710 5711 assert(Variable->isValidLocationForIntrinsic(DL) && 5712 "Expected inlined-at fields to agree"); 5713 MachineInstr *NewMI = nullptr; 5714 5715 if (Op->isReg()) 5716 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5717 else 5718 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5719 Variable, Expr); 5720 5721 // Otherwise, use ArgDbgValues. 5722 FuncInfo.ArgDbgValues.push_back(NewMI); 5723 return true; 5724 } 5725 5726 /// Return the appropriate SDDbgValue based on N. 5727 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5728 DILocalVariable *Variable, 5729 DIExpression *Expr, 5730 const DebugLoc &dl, 5731 unsigned DbgSDNodeOrder) { 5732 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5733 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5734 // stack slot locations. 5735 // 5736 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5737 // debug values here after optimization: 5738 // 5739 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5740 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5741 // 5742 // Both describe the direct values of their associated variables. 5743 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5744 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5745 } 5746 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5747 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5748 } 5749 5750 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5751 switch (Intrinsic) { 5752 case Intrinsic::smul_fix: 5753 return ISD::SMULFIX; 5754 case Intrinsic::umul_fix: 5755 return ISD::UMULFIX; 5756 case Intrinsic::smul_fix_sat: 5757 return ISD::SMULFIXSAT; 5758 case Intrinsic::umul_fix_sat: 5759 return ISD::UMULFIXSAT; 5760 case Intrinsic::sdiv_fix: 5761 return ISD::SDIVFIX; 5762 case Intrinsic::udiv_fix: 5763 return ISD::UDIVFIX; 5764 case Intrinsic::sdiv_fix_sat: 5765 return ISD::SDIVFIXSAT; 5766 case Intrinsic::udiv_fix_sat: 5767 return ISD::UDIVFIXSAT; 5768 default: 5769 llvm_unreachable("Unhandled fixed point intrinsic"); 5770 } 5771 } 5772 5773 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5774 const char *FunctionName) { 5775 assert(FunctionName && "FunctionName must not be nullptr"); 5776 SDValue Callee = DAG.getExternalSymbol( 5777 FunctionName, 5778 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5779 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5780 } 5781 5782 /// Given a @llvm.call.preallocated.setup, return the corresponding 5783 /// preallocated call. 5784 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5785 assert(cast<CallBase>(PreallocatedSetup) 5786 ->getCalledFunction() 5787 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5788 "expected call_preallocated_setup Value"); 5789 for (const auto *U : PreallocatedSetup->users()) { 5790 auto *UseCall = cast<CallBase>(U); 5791 const Function *Fn = UseCall->getCalledFunction(); 5792 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5793 return UseCall; 5794 } 5795 } 5796 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5797 } 5798 5799 /// Lower the call to the specified intrinsic function. 5800 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5801 unsigned Intrinsic) { 5802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5803 SDLoc sdl = getCurSDLoc(); 5804 DebugLoc dl = getCurDebugLoc(); 5805 SDValue Res; 5806 5807 SDNodeFlags Flags; 5808 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5809 Flags.copyFMF(*FPOp); 5810 5811 switch (Intrinsic) { 5812 default: 5813 // By default, turn this into a target intrinsic node. 5814 visitTargetIntrinsic(I, Intrinsic); 5815 return; 5816 case Intrinsic::vscale: { 5817 match(&I, m_VScale(DAG.getDataLayout())); 5818 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5819 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5820 return; 5821 } 5822 case Intrinsic::vastart: visitVAStart(I); return; 5823 case Intrinsic::vaend: visitVAEnd(I); return; 5824 case Intrinsic::vacopy: visitVACopy(I); return; 5825 case Intrinsic::returnaddress: 5826 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5827 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5828 getValue(I.getArgOperand(0)))); 5829 return; 5830 case Intrinsic::addressofreturnaddress: 5831 setValue(&I, 5832 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5833 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5834 return; 5835 case Intrinsic::sponentry: 5836 setValue(&I, 5837 DAG.getNode(ISD::SPONENTRY, sdl, 5838 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5839 return; 5840 case Intrinsic::frameaddress: 5841 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5842 TLI.getFrameIndexTy(DAG.getDataLayout()), 5843 getValue(I.getArgOperand(0)))); 5844 return; 5845 case Intrinsic::read_volatile_register: 5846 case Intrinsic::read_register: { 5847 Value *Reg = I.getArgOperand(0); 5848 SDValue Chain = getRoot(); 5849 SDValue RegName = 5850 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5851 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5852 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5853 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5854 setValue(&I, Res); 5855 DAG.setRoot(Res.getValue(1)); 5856 return; 5857 } 5858 case Intrinsic::write_register: { 5859 Value *Reg = I.getArgOperand(0); 5860 Value *RegValue = I.getArgOperand(1); 5861 SDValue Chain = getRoot(); 5862 SDValue RegName = 5863 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5864 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5865 RegName, getValue(RegValue))); 5866 return; 5867 } 5868 case Intrinsic::memcpy: { 5869 const auto &MCI = cast<MemCpyInst>(I); 5870 SDValue Op1 = getValue(I.getArgOperand(0)); 5871 SDValue Op2 = getValue(I.getArgOperand(1)); 5872 SDValue Op3 = getValue(I.getArgOperand(2)); 5873 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5874 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5875 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5876 Align Alignment = std::min(DstAlign, SrcAlign); 5877 bool isVol = MCI.isVolatile(); 5878 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5879 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5880 // node. 5881 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5882 SDValue MC = DAG.getMemcpy( 5883 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5884 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5885 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5886 updateDAGForMaybeTailCall(MC); 5887 return; 5888 } 5889 case Intrinsic::memcpy_inline: { 5890 const auto &MCI = cast<MemCpyInlineInst>(I); 5891 SDValue Dst = getValue(I.getArgOperand(0)); 5892 SDValue Src = getValue(I.getArgOperand(1)); 5893 SDValue Size = getValue(I.getArgOperand(2)); 5894 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5895 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5896 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5897 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5898 Align Alignment = std::min(DstAlign, SrcAlign); 5899 bool isVol = MCI.isVolatile(); 5900 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5901 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5902 // node. 5903 SDValue MC = DAG.getMemcpy( 5904 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5905 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5906 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5907 updateDAGForMaybeTailCall(MC); 5908 return; 5909 } 5910 case Intrinsic::memset: { 5911 const auto &MSI = cast<MemSetInst>(I); 5912 SDValue Op1 = getValue(I.getArgOperand(0)); 5913 SDValue Op2 = getValue(I.getArgOperand(1)); 5914 SDValue Op3 = getValue(I.getArgOperand(2)); 5915 // @llvm.memset defines 0 and 1 to both mean no alignment. 5916 Align Alignment = MSI.getDestAlign().valueOrOne(); 5917 bool isVol = MSI.isVolatile(); 5918 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5919 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5920 SDValue MS = DAG.getMemset( 5921 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5922 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5923 updateDAGForMaybeTailCall(MS); 5924 return; 5925 } 5926 case Intrinsic::memset_inline: { 5927 const auto &MSII = cast<MemSetInlineInst>(I); 5928 SDValue Dst = getValue(I.getArgOperand(0)); 5929 SDValue Value = getValue(I.getArgOperand(1)); 5930 SDValue Size = getValue(I.getArgOperand(2)); 5931 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5932 // @llvm.memset defines 0 and 1 to both mean no alignment. 5933 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5934 bool isVol = MSII.isVolatile(); 5935 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5936 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5937 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5938 /* AlwaysInline */ true, isTC, 5939 MachinePointerInfo(I.getArgOperand(0)), 5940 I.getAAMetadata()); 5941 updateDAGForMaybeTailCall(MC); 5942 return; 5943 } 5944 case Intrinsic::memmove: { 5945 const auto &MMI = cast<MemMoveInst>(I); 5946 SDValue Op1 = getValue(I.getArgOperand(0)); 5947 SDValue Op2 = getValue(I.getArgOperand(1)); 5948 SDValue Op3 = getValue(I.getArgOperand(2)); 5949 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5950 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5951 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5952 Align Alignment = std::min(DstAlign, SrcAlign); 5953 bool isVol = MMI.isVolatile(); 5954 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5955 // FIXME: Support passing different dest/src alignments to the memmove DAG 5956 // node. 5957 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5958 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5959 isTC, MachinePointerInfo(I.getArgOperand(0)), 5960 MachinePointerInfo(I.getArgOperand(1)), 5961 I.getAAMetadata(), AA); 5962 updateDAGForMaybeTailCall(MM); 5963 return; 5964 } 5965 case Intrinsic::memcpy_element_unordered_atomic: { 5966 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5967 SDValue Dst = getValue(MI.getRawDest()); 5968 SDValue Src = getValue(MI.getRawSource()); 5969 SDValue Length = getValue(MI.getLength()); 5970 5971 Type *LengthTy = MI.getLength()->getType(); 5972 unsigned ElemSz = MI.getElementSizeInBytes(); 5973 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5974 SDValue MC = 5975 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5976 isTC, MachinePointerInfo(MI.getRawDest()), 5977 MachinePointerInfo(MI.getRawSource())); 5978 updateDAGForMaybeTailCall(MC); 5979 return; 5980 } 5981 case Intrinsic::memmove_element_unordered_atomic: { 5982 auto &MI = cast<AtomicMemMoveInst>(I); 5983 SDValue Dst = getValue(MI.getRawDest()); 5984 SDValue Src = getValue(MI.getRawSource()); 5985 SDValue Length = getValue(MI.getLength()); 5986 5987 Type *LengthTy = MI.getLength()->getType(); 5988 unsigned ElemSz = MI.getElementSizeInBytes(); 5989 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5990 SDValue MC = 5991 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5992 isTC, MachinePointerInfo(MI.getRawDest()), 5993 MachinePointerInfo(MI.getRawSource())); 5994 updateDAGForMaybeTailCall(MC); 5995 return; 5996 } 5997 case Intrinsic::memset_element_unordered_atomic: { 5998 auto &MI = cast<AtomicMemSetInst>(I); 5999 SDValue Dst = getValue(MI.getRawDest()); 6000 SDValue Val = getValue(MI.getValue()); 6001 SDValue Length = getValue(MI.getLength()); 6002 6003 Type *LengthTy = MI.getLength()->getType(); 6004 unsigned ElemSz = MI.getElementSizeInBytes(); 6005 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6006 SDValue MC = 6007 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6008 isTC, MachinePointerInfo(MI.getRawDest())); 6009 updateDAGForMaybeTailCall(MC); 6010 return; 6011 } 6012 case Intrinsic::call_preallocated_setup: { 6013 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6014 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6015 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6016 getRoot(), SrcValue); 6017 setValue(&I, Res); 6018 DAG.setRoot(Res); 6019 return; 6020 } 6021 case Intrinsic::call_preallocated_arg: { 6022 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6023 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6024 SDValue Ops[3]; 6025 Ops[0] = getRoot(); 6026 Ops[1] = SrcValue; 6027 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6028 MVT::i32); // arg index 6029 SDValue Res = DAG.getNode( 6030 ISD::PREALLOCATED_ARG, sdl, 6031 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6032 setValue(&I, Res); 6033 DAG.setRoot(Res.getValue(1)); 6034 return; 6035 } 6036 case Intrinsic::dbg_addr: 6037 case Intrinsic::dbg_declare: { 6038 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6039 // they are non-variadic. 6040 const auto &DI = cast<DbgVariableIntrinsic>(I); 6041 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6042 DILocalVariable *Variable = DI.getVariable(); 6043 DIExpression *Expression = DI.getExpression(); 6044 dropDanglingDebugInfo(Variable, Expression); 6045 assert(Variable && "Missing variable"); 6046 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6047 << "\n"); 6048 // Check if address has undef value. 6049 const Value *Address = DI.getVariableLocationOp(0); 6050 if (!Address || isa<UndefValue>(Address) || 6051 (Address->use_empty() && !isa<Argument>(Address))) { 6052 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6053 << " (bad/undef/unused-arg address)\n"); 6054 return; 6055 } 6056 6057 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6058 6059 // Check if this variable can be described by a frame index, typically 6060 // either as a static alloca or a byval parameter. 6061 int FI = std::numeric_limits<int>::max(); 6062 if (const auto *AI = 6063 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6064 if (AI->isStaticAlloca()) { 6065 auto I = FuncInfo.StaticAllocaMap.find(AI); 6066 if (I != FuncInfo.StaticAllocaMap.end()) 6067 FI = I->second; 6068 } 6069 } else if (const auto *Arg = dyn_cast<Argument>( 6070 Address->stripInBoundsConstantOffsets())) { 6071 FI = FuncInfo.getArgumentFrameIndex(Arg); 6072 } 6073 6074 // llvm.dbg.addr is control dependent and always generates indirect 6075 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6076 // the MachineFunction variable table. 6077 if (FI != std::numeric_limits<int>::max()) { 6078 if (Intrinsic == Intrinsic::dbg_addr) { 6079 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6080 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6081 dl, SDNodeOrder); 6082 DAG.AddDbgValue(SDV, isParameter); 6083 } else { 6084 LLVM_DEBUG(dbgs() << "Skipping " << DI 6085 << " (variable info stashed in MF side table)\n"); 6086 } 6087 return; 6088 } 6089 6090 SDValue &N = NodeMap[Address]; 6091 if (!N.getNode() && isa<Argument>(Address)) 6092 // Check unused arguments map. 6093 N = UnusedArgNodeMap[Address]; 6094 SDDbgValue *SDV; 6095 if (N.getNode()) { 6096 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6097 Address = BCI->getOperand(0); 6098 // Parameters are handled specially. 6099 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6100 if (isParameter && FINode) { 6101 // Byval parameter. We have a frame index at this point. 6102 SDV = 6103 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6104 /*IsIndirect*/ true, dl, SDNodeOrder); 6105 } else if (isa<Argument>(Address)) { 6106 // Address is an argument, so try to emit its dbg value using 6107 // virtual register info from the FuncInfo.ValueMap. 6108 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6109 FuncArgumentDbgValueKind::Declare, N); 6110 return; 6111 } else { 6112 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6113 true, dl, SDNodeOrder); 6114 } 6115 DAG.AddDbgValue(SDV, isParameter); 6116 } else { 6117 // If Address is an argument then try to emit its dbg value using 6118 // virtual register info from the FuncInfo.ValueMap. 6119 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6120 FuncArgumentDbgValueKind::Declare, N)) { 6121 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6122 << " (could not emit func-arg dbg_value)\n"); 6123 } 6124 } 6125 return; 6126 } 6127 case Intrinsic::dbg_label: { 6128 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6129 DILabel *Label = DI.getLabel(); 6130 assert(Label && "Missing label"); 6131 6132 SDDbgLabel *SDV; 6133 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6134 DAG.AddDbgLabel(SDV); 6135 return; 6136 } 6137 case Intrinsic::dbg_value: { 6138 const DbgValueInst &DI = cast<DbgValueInst>(I); 6139 assert(DI.getVariable() && "Missing variable"); 6140 6141 DILocalVariable *Variable = DI.getVariable(); 6142 DIExpression *Expression = DI.getExpression(); 6143 dropDanglingDebugInfo(Variable, Expression); 6144 SmallVector<Value *, 4> Values(DI.getValues()); 6145 if (Values.empty()) 6146 return; 6147 6148 if (llvm::is_contained(Values, nullptr)) 6149 return; 6150 6151 bool IsVariadic = DI.hasArgList(); 6152 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6153 SDNodeOrder, IsVariadic)) 6154 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6155 return; 6156 } 6157 6158 case Intrinsic::eh_typeid_for: { 6159 // Find the type id for the given typeinfo. 6160 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6161 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6162 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6163 setValue(&I, Res); 6164 return; 6165 } 6166 6167 case Intrinsic::eh_return_i32: 6168 case Intrinsic::eh_return_i64: 6169 DAG.getMachineFunction().setCallsEHReturn(true); 6170 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6171 MVT::Other, 6172 getControlRoot(), 6173 getValue(I.getArgOperand(0)), 6174 getValue(I.getArgOperand(1)))); 6175 return; 6176 case Intrinsic::eh_unwind_init: 6177 DAG.getMachineFunction().setCallsUnwindInit(true); 6178 return; 6179 case Intrinsic::eh_dwarf_cfa: 6180 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6181 TLI.getPointerTy(DAG.getDataLayout()), 6182 getValue(I.getArgOperand(0)))); 6183 return; 6184 case Intrinsic::eh_sjlj_callsite: { 6185 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6186 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6187 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6188 6189 MMI.setCurrentCallSite(CI->getZExtValue()); 6190 return; 6191 } 6192 case Intrinsic::eh_sjlj_functioncontext: { 6193 // Get and store the index of the function context. 6194 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6195 AllocaInst *FnCtx = 6196 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6197 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6198 MFI.setFunctionContextIndex(FI); 6199 return; 6200 } 6201 case Intrinsic::eh_sjlj_setjmp: { 6202 SDValue Ops[2]; 6203 Ops[0] = getRoot(); 6204 Ops[1] = getValue(I.getArgOperand(0)); 6205 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6206 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6207 setValue(&I, Op.getValue(0)); 6208 DAG.setRoot(Op.getValue(1)); 6209 return; 6210 } 6211 case Intrinsic::eh_sjlj_longjmp: 6212 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6213 getRoot(), getValue(I.getArgOperand(0)))); 6214 return; 6215 case Intrinsic::eh_sjlj_setup_dispatch: 6216 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6217 getRoot())); 6218 return; 6219 case Intrinsic::masked_gather: 6220 visitMaskedGather(I); 6221 return; 6222 case Intrinsic::masked_load: 6223 visitMaskedLoad(I); 6224 return; 6225 case Intrinsic::masked_scatter: 6226 visitMaskedScatter(I); 6227 return; 6228 case Intrinsic::masked_store: 6229 visitMaskedStore(I); 6230 return; 6231 case Intrinsic::masked_expandload: 6232 visitMaskedLoad(I, true /* IsExpanding */); 6233 return; 6234 case Intrinsic::masked_compressstore: 6235 visitMaskedStore(I, true /* IsCompressing */); 6236 return; 6237 case Intrinsic::powi: 6238 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6239 getValue(I.getArgOperand(1)), DAG)); 6240 return; 6241 case Intrinsic::log: 6242 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6243 return; 6244 case Intrinsic::log2: 6245 setValue(&I, 6246 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6247 return; 6248 case Intrinsic::log10: 6249 setValue(&I, 6250 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6251 return; 6252 case Intrinsic::exp: 6253 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6254 return; 6255 case Intrinsic::exp2: 6256 setValue(&I, 6257 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6258 return; 6259 case Intrinsic::pow: 6260 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6261 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6262 return; 6263 case Intrinsic::sqrt: 6264 case Intrinsic::fabs: 6265 case Intrinsic::sin: 6266 case Intrinsic::cos: 6267 case Intrinsic::floor: 6268 case Intrinsic::ceil: 6269 case Intrinsic::trunc: 6270 case Intrinsic::rint: 6271 case Intrinsic::nearbyint: 6272 case Intrinsic::round: 6273 case Intrinsic::roundeven: 6274 case Intrinsic::canonicalize: { 6275 unsigned Opcode; 6276 switch (Intrinsic) { 6277 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6278 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6279 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6280 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6281 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6282 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6283 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6284 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6285 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6286 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6287 case Intrinsic::round: Opcode = ISD::FROUND; break; 6288 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6289 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6290 } 6291 6292 setValue(&I, DAG.getNode(Opcode, sdl, 6293 getValue(I.getArgOperand(0)).getValueType(), 6294 getValue(I.getArgOperand(0)), Flags)); 6295 return; 6296 } 6297 case Intrinsic::lround: 6298 case Intrinsic::llround: 6299 case Intrinsic::lrint: 6300 case Intrinsic::llrint: { 6301 unsigned Opcode; 6302 switch (Intrinsic) { 6303 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6304 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6305 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6306 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6307 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6308 } 6309 6310 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6311 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6312 getValue(I.getArgOperand(0)))); 6313 return; 6314 } 6315 case Intrinsic::minnum: 6316 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6317 getValue(I.getArgOperand(0)).getValueType(), 6318 getValue(I.getArgOperand(0)), 6319 getValue(I.getArgOperand(1)), Flags)); 6320 return; 6321 case Intrinsic::maxnum: 6322 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6323 getValue(I.getArgOperand(0)).getValueType(), 6324 getValue(I.getArgOperand(0)), 6325 getValue(I.getArgOperand(1)), Flags)); 6326 return; 6327 case Intrinsic::minimum: 6328 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6329 getValue(I.getArgOperand(0)).getValueType(), 6330 getValue(I.getArgOperand(0)), 6331 getValue(I.getArgOperand(1)), Flags)); 6332 return; 6333 case Intrinsic::maximum: 6334 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6335 getValue(I.getArgOperand(0)).getValueType(), 6336 getValue(I.getArgOperand(0)), 6337 getValue(I.getArgOperand(1)), Flags)); 6338 return; 6339 case Intrinsic::copysign: 6340 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6341 getValue(I.getArgOperand(0)).getValueType(), 6342 getValue(I.getArgOperand(0)), 6343 getValue(I.getArgOperand(1)), Flags)); 6344 return; 6345 case Intrinsic::arithmetic_fence: { 6346 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6347 getValue(I.getArgOperand(0)).getValueType(), 6348 getValue(I.getArgOperand(0)), Flags)); 6349 return; 6350 } 6351 case Intrinsic::fma: 6352 setValue(&I, DAG.getNode( 6353 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6354 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6355 getValue(I.getArgOperand(2)), Flags)); 6356 return; 6357 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6358 case Intrinsic::INTRINSIC: 6359 #include "llvm/IR/ConstrainedOps.def" 6360 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6361 return; 6362 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6363 #include "llvm/IR/VPIntrinsics.def" 6364 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6365 return; 6366 case Intrinsic::fptrunc_round: { 6367 // Get the last argument, the metadata and convert it to an integer in the 6368 // call 6369 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6370 Optional<RoundingMode> RoundMode = 6371 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6372 6373 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6374 6375 // Propagate fast-math-flags from IR to node(s). 6376 SDNodeFlags Flags; 6377 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6378 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6379 6380 SDValue Result; 6381 Result = DAG.getNode( 6382 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6383 DAG.getTargetConstant((int)*RoundMode, sdl, 6384 TLI.getPointerTy(DAG.getDataLayout()))); 6385 setValue(&I, Result); 6386 6387 return; 6388 } 6389 case Intrinsic::fmuladd: { 6390 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6391 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6392 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6393 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6394 getValue(I.getArgOperand(0)).getValueType(), 6395 getValue(I.getArgOperand(0)), 6396 getValue(I.getArgOperand(1)), 6397 getValue(I.getArgOperand(2)), Flags)); 6398 } else { 6399 // TODO: Intrinsic calls should have fast-math-flags. 6400 SDValue Mul = DAG.getNode( 6401 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6402 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6403 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6404 getValue(I.getArgOperand(0)).getValueType(), 6405 Mul, getValue(I.getArgOperand(2)), Flags); 6406 setValue(&I, Add); 6407 } 6408 return; 6409 } 6410 case Intrinsic::convert_to_fp16: 6411 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6412 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6413 getValue(I.getArgOperand(0)), 6414 DAG.getTargetConstant(0, sdl, 6415 MVT::i32)))); 6416 return; 6417 case Intrinsic::convert_from_fp16: 6418 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6419 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6420 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6421 getValue(I.getArgOperand(0))))); 6422 return; 6423 case Intrinsic::fptosi_sat: { 6424 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6425 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6426 getValue(I.getArgOperand(0)), 6427 DAG.getValueType(VT.getScalarType()))); 6428 return; 6429 } 6430 case Intrinsic::fptoui_sat: { 6431 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6432 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6433 getValue(I.getArgOperand(0)), 6434 DAG.getValueType(VT.getScalarType()))); 6435 return; 6436 } 6437 case Intrinsic::set_rounding: 6438 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6439 {getRoot(), getValue(I.getArgOperand(0))}); 6440 setValue(&I, Res); 6441 DAG.setRoot(Res.getValue(0)); 6442 return; 6443 case Intrinsic::is_fpclass: { 6444 const DataLayout DLayout = DAG.getDataLayout(); 6445 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6446 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6447 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6448 MachineFunction &MF = DAG.getMachineFunction(); 6449 const Function &F = MF.getFunction(); 6450 SDValue Op = getValue(I.getArgOperand(0)); 6451 SDNodeFlags Flags; 6452 Flags.setNoFPExcept( 6453 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6454 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6455 // expansion can use illegal types. Making expansion early allows 6456 // legalizing these types prior to selection. 6457 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6458 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6459 setValue(&I, Result); 6460 return; 6461 } 6462 6463 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6464 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6465 setValue(&I, V); 6466 return; 6467 } 6468 case Intrinsic::pcmarker: { 6469 SDValue Tmp = getValue(I.getArgOperand(0)); 6470 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6471 return; 6472 } 6473 case Intrinsic::readcyclecounter: { 6474 SDValue Op = getRoot(); 6475 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6476 DAG.getVTList(MVT::i64, MVT::Other), Op); 6477 setValue(&I, Res); 6478 DAG.setRoot(Res.getValue(1)); 6479 return; 6480 } 6481 case Intrinsic::bitreverse: 6482 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6483 getValue(I.getArgOperand(0)).getValueType(), 6484 getValue(I.getArgOperand(0)))); 6485 return; 6486 case Intrinsic::bswap: 6487 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6488 getValue(I.getArgOperand(0)).getValueType(), 6489 getValue(I.getArgOperand(0)))); 6490 return; 6491 case Intrinsic::cttz: { 6492 SDValue Arg = getValue(I.getArgOperand(0)); 6493 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6494 EVT Ty = Arg.getValueType(); 6495 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6496 sdl, Ty, Arg)); 6497 return; 6498 } 6499 case Intrinsic::ctlz: { 6500 SDValue Arg = getValue(I.getArgOperand(0)); 6501 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6502 EVT Ty = Arg.getValueType(); 6503 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6504 sdl, Ty, Arg)); 6505 return; 6506 } 6507 case Intrinsic::ctpop: { 6508 SDValue Arg = getValue(I.getArgOperand(0)); 6509 EVT Ty = Arg.getValueType(); 6510 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6511 return; 6512 } 6513 case Intrinsic::fshl: 6514 case Intrinsic::fshr: { 6515 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6516 SDValue X = getValue(I.getArgOperand(0)); 6517 SDValue Y = getValue(I.getArgOperand(1)); 6518 SDValue Z = getValue(I.getArgOperand(2)); 6519 EVT VT = X.getValueType(); 6520 6521 if (X == Y) { 6522 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6523 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6524 } else { 6525 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6526 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6527 } 6528 return; 6529 } 6530 case Intrinsic::sadd_sat: { 6531 SDValue Op1 = getValue(I.getArgOperand(0)); 6532 SDValue Op2 = getValue(I.getArgOperand(1)); 6533 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6534 return; 6535 } 6536 case Intrinsic::uadd_sat: { 6537 SDValue Op1 = getValue(I.getArgOperand(0)); 6538 SDValue Op2 = getValue(I.getArgOperand(1)); 6539 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6540 return; 6541 } 6542 case Intrinsic::ssub_sat: { 6543 SDValue Op1 = getValue(I.getArgOperand(0)); 6544 SDValue Op2 = getValue(I.getArgOperand(1)); 6545 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6546 return; 6547 } 6548 case Intrinsic::usub_sat: { 6549 SDValue Op1 = getValue(I.getArgOperand(0)); 6550 SDValue Op2 = getValue(I.getArgOperand(1)); 6551 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6552 return; 6553 } 6554 case Intrinsic::sshl_sat: { 6555 SDValue Op1 = getValue(I.getArgOperand(0)); 6556 SDValue Op2 = getValue(I.getArgOperand(1)); 6557 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6558 return; 6559 } 6560 case Intrinsic::ushl_sat: { 6561 SDValue Op1 = getValue(I.getArgOperand(0)); 6562 SDValue Op2 = getValue(I.getArgOperand(1)); 6563 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6564 return; 6565 } 6566 case Intrinsic::smul_fix: 6567 case Intrinsic::umul_fix: 6568 case Intrinsic::smul_fix_sat: 6569 case Intrinsic::umul_fix_sat: { 6570 SDValue Op1 = getValue(I.getArgOperand(0)); 6571 SDValue Op2 = getValue(I.getArgOperand(1)); 6572 SDValue Op3 = getValue(I.getArgOperand(2)); 6573 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6574 Op1.getValueType(), Op1, Op2, Op3)); 6575 return; 6576 } 6577 case Intrinsic::sdiv_fix: 6578 case Intrinsic::udiv_fix: 6579 case Intrinsic::sdiv_fix_sat: 6580 case Intrinsic::udiv_fix_sat: { 6581 SDValue Op1 = getValue(I.getArgOperand(0)); 6582 SDValue Op2 = getValue(I.getArgOperand(1)); 6583 SDValue Op3 = getValue(I.getArgOperand(2)); 6584 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6585 Op1, Op2, Op3, DAG, TLI)); 6586 return; 6587 } 6588 case Intrinsic::smax: { 6589 SDValue Op1 = getValue(I.getArgOperand(0)); 6590 SDValue Op2 = getValue(I.getArgOperand(1)); 6591 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6592 return; 6593 } 6594 case Intrinsic::smin: { 6595 SDValue Op1 = getValue(I.getArgOperand(0)); 6596 SDValue Op2 = getValue(I.getArgOperand(1)); 6597 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6598 return; 6599 } 6600 case Intrinsic::umax: { 6601 SDValue Op1 = getValue(I.getArgOperand(0)); 6602 SDValue Op2 = getValue(I.getArgOperand(1)); 6603 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6604 return; 6605 } 6606 case Intrinsic::umin: { 6607 SDValue Op1 = getValue(I.getArgOperand(0)); 6608 SDValue Op2 = getValue(I.getArgOperand(1)); 6609 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6610 return; 6611 } 6612 case Intrinsic::abs: { 6613 // TODO: Preserve "int min is poison" arg in SDAG? 6614 SDValue Op1 = getValue(I.getArgOperand(0)); 6615 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6616 return; 6617 } 6618 case Intrinsic::stacksave: { 6619 SDValue Op = getRoot(); 6620 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6621 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6622 setValue(&I, Res); 6623 DAG.setRoot(Res.getValue(1)); 6624 return; 6625 } 6626 case Intrinsic::stackrestore: 6627 Res = getValue(I.getArgOperand(0)); 6628 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6629 return; 6630 case Intrinsic::get_dynamic_area_offset: { 6631 SDValue Op = getRoot(); 6632 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6633 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6634 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6635 // target. 6636 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6637 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6638 " intrinsic!"); 6639 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6640 Op); 6641 DAG.setRoot(Op); 6642 setValue(&I, Res); 6643 return; 6644 } 6645 case Intrinsic::stackguard: { 6646 MachineFunction &MF = DAG.getMachineFunction(); 6647 const Module &M = *MF.getFunction().getParent(); 6648 SDValue Chain = getRoot(); 6649 if (TLI.useLoadStackGuardNode()) { 6650 Res = getLoadStackGuard(DAG, sdl, Chain); 6651 } else { 6652 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6653 const Value *Global = TLI.getSDagStackGuard(M); 6654 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6655 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6656 MachinePointerInfo(Global, 0), Align, 6657 MachineMemOperand::MOVolatile); 6658 } 6659 if (TLI.useStackGuardXorFP()) 6660 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6661 DAG.setRoot(Chain); 6662 setValue(&I, Res); 6663 return; 6664 } 6665 case Intrinsic::stackprotector: { 6666 // Emit code into the DAG to store the stack guard onto the stack. 6667 MachineFunction &MF = DAG.getMachineFunction(); 6668 MachineFrameInfo &MFI = MF.getFrameInfo(); 6669 SDValue Src, Chain = getRoot(); 6670 6671 if (TLI.useLoadStackGuardNode()) 6672 Src = getLoadStackGuard(DAG, sdl, Chain); 6673 else 6674 Src = getValue(I.getArgOperand(0)); // The guard's value. 6675 6676 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6677 6678 int FI = FuncInfo.StaticAllocaMap[Slot]; 6679 MFI.setStackProtectorIndex(FI); 6680 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6681 6682 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6683 6684 // Store the stack protector onto the stack. 6685 Res = DAG.getStore( 6686 Chain, sdl, Src, FIN, 6687 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6688 MaybeAlign(), MachineMemOperand::MOVolatile); 6689 setValue(&I, Res); 6690 DAG.setRoot(Res); 6691 return; 6692 } 6693 case Intrinsic::objectsize: 6694 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6695 6696 case Intrinsic::is_constant: 6697 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6698 6699 case Intrinsic::annotation: 6700 case Intrinsic::ptr_annotation: 6701 case Intrinsic::launder_invariant_group: 6702 case Intrinsic::strip_invariant_group: 6703 // Drop the intrinsic, but forward the value 6704 setValue(&I, getValue(I.getOperand(0))); 6705 return; 6706 6707 case Intrinsic::assume: 6708 case Intrinsic::experimental_noalias_scope_decl: 6709 case Intrinsic::var_annotation: 6710 case Intrinsic::sideeffect: 6711 // Discard annotate attributes, noalias scope declarations, assumptions, and 6712 // artificial side-effects. 6713 return; 6714 6715 case Intrinsic::codeview_annotation: { 6716 // Emit a label associated with this metadata. 6717 MachineFunction &MF = DAG.getMachineFunction(); 6718 MCSymbol *Label = 6719 MF.getMMI().getContext().createTempSymbol("annotation", true); 6720 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6721 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6722 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6723 DAG.setRoot(Res); 6724 return; 6725 } 6726 6727 case Intrinsic::init_trampoline: { 6728 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6729 6730 SDValue Ops[6]; 6731 Ops[0] = getRoot(); 6732 Ops[1] = getValue(I.getArgOperand(0)); 6733 Ops[2] = getValue(I.getArgOperand(1)); 6734 Ops[3] = getValue(I.getArgOperand(2)); 6735 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6736 Ops[5] = DAG.getSrcValue(F); 6737 6738 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6739 6740 DAG.setRoot(Res); 6741 return; 6742 } 6743 case Intrinsic::adjust_trampoline: 6744 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6745 TLI.getPointerTy(DAG.getDataLayout()), 6746 getValue(I.getArgOperand(0)))); 6747 return; 6748 case Intrinsic::gcroot: { 6749 assert(DAG.getMachineFunction().getFunction().hasGC() && 6750 "only valid in functions with gc specified, enforced by Verifier"); 6751 assert(GFI && "implied by previous"); 6752 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6753 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6754 6755 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6756 GFI->addStackRoot(FI->getIndex(), TypeMap); 6757 return; 6758 } 6759 case Intrinsic::gcread: 6760 case Intrinsic::gcwrite: 6761 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6762 case Intrinsic::flt_rounds: 6763 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6764 setValue(&I, Res); 6765 DAG.setRoot(Res.getValue(1)); 6766 return; 6767 6768 case Intrinsic::expect: 6769 // Just replace __builtin_expect(exp, c) with EXP. 6770 setValue(&I, getValue(I.getArgOperand(0))); 6771 return; 6772 6773 case Intrinsic::ubsantrap: 6774 case Intrinsic::debugtrap: 6775 case Intrinsic::trap: { 6776 StringRef TrapFuncName = 6777 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6778 if (TrapFuncName.empty()) { 6779 switch (Intrinsic) { 6780 case Intrinsic::trap: 6781 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6782 break; 6783 case Intrinsic::debugtrap: 6784 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6785 break; 6786 case Intrinsic::ubsantrap: 6787 DAG.setRoot(DAG.getNode( 6788 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6789 DAG.getTargetConstant( 6790 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6791 MVT::i32))); 6792 break; 6793 default: llvm_unreachable("unknown trap intrinsic"); 6794 } 6795 return; 6796 } 6797 TargetLowering::ArgListTy Args; 6798 if (Intrinsic == Intrinsic::ubsantrap) { 6799 Args.push_back(TargetLoweringBase::ArgListEntry()); 6800 Args[0].Val = I.getArgOperand(0); 6801 Args[0].Node = getValue(Args[0].Val); 6802 Args[0].Ty = Args[0].Val->getType(); 6803 } 6804 6805 TargetLowering::CallLoweringInfo CLI(DAG); 6806 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6807 CallingConv::C, I.getType(), 6808 DAG.getExternalSymbol(TrapFuncName.data(), 6809 TLI.getPointerTy(DAG.getDataLayout())), 6810 std::move(Args)); 6811 6812 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6813 DAG.setRoot(Result.second); 6814 return; 6815 } 6816 6817 case Intrinsic::uadd_with_overflow: 6818 case Intrinsic::sadd_with_overflow: 6819 case Intrinsic::usub_with_overflow: 6820 case Intrinsic::ssub_with_overflow: 6821 case Intrinsic::umul_with_overflow: 6822 case Intrinsic::smul_with_overflow: { 6823 ISD::NodeType Op; 6824 switch (Intrinsic) { 6825 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6826 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6827 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6828 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6829 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6830 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6831 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6832 } 6833 SDValue Op1 = getValue(I.getArgOperand(0)); 6834 SDValue Op2 = getValue(I.getArgOperand(1)); 6835 6836 EVT ResultVT = Op1.getValueType(); 6837 EVT OverflowVT = MVT::i1; 6838 if (ResultVT.isVector()) 6839 OverflowVT = EVT::getVectorVT( 6840 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6841 6842 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6843 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6844 return; 6845 } 6846 case Intrinsic::prefetch: { 6847 SDValue Ops[5]; 6848 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6849 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6850 Ops[0] = DAG.getRoot(); 6851 Ops[1] = getValue(I.getArgOperand(0)); 6852 Ops[2] = getValue(I.getArgOperand(1)); 6853 Ops[3] = getValue(I.getArgOperand(2)); 6854 Ops[4] = getValue(I.getArgOperand(3)); 6855 SDValue Result = DAG.getMemIntrinsicNode( 6856 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6857 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6858 /* align */ None, Flags); 6859 6860 // Chain the prefetch in parallell with any pending loads, to stay out of 6861 // the way of later optimizations. 6862 PendingLoads.push_back(Result); 6863 Result = getRoot(); 6864 DAG.setRoot(Result); 6865 return; 6866 } 6867 case Intrinsic::lifetime_start: 6868 case Intrinsic::lifetime_end: { 6869 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6870 // Stack coloring is not enabled in O0, discard region information. 6871 if (TM.getOptLevel() == CodeGenOpt::None) 6872 return; 6873 6874 const int64_t ObjectSize = 6875 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6876 Value *const ObjectPtr = I.getArgOperand(1); 6877 SmallVector<const Value *, 4> Allocas; 6878 getUnderlyingObjects(ObjectPtr, Allocas); 6879 6880 for (const Value *Alloca : Allocas) { 6881 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6882 6883 // Could not find an Alloca. 6884 if (!LifetimeObject) 6885 continue; 6886 6887 // First check that the Alloca is static, otherwise it won't have a 6888 // valid frame index. 6889 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6890 if (SI == FuncInfo.StaticAllocaMap.end()) 6891 return; 6892 6893 const int FrameIndex = SI->second; 6894 int64_t Offset; 6895 if (GetPointerBaseWithConstantOffset( 6896 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6897 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6898 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6899 Offset); 6900 DAG.setRoot(Res); 6901 } 6902 return; 6903 } 6904 case Intrinsic::pseudoprobe: { 6905 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6906 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6907 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6908 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6909 DAG.setRoot(Res); 6910 return; 6911 } 6912 case Intrinsic::invariant_start: 6913 // Discard region information. 6914 setValue(&I, 6915 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6916 return; 6917 case Intrinsic::invariant_end: 6918 // Discard region information. 6919 return; 6920 case Intrinsic::clear_cache: 6921 /// FunctionName may be null. 6922 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6923 lowerCallToExternalSymbol(I, FunctionName); 6924 return; 6925 case Intrinsic::donothing: 6926 case Intrinsic::seh_try_begin: 6927 case Intrinsic::seh_scope_begin: 6928 case Intrinsic::seh_try_end: 6929 case Intrinsic::seh_scope_end: 6930 // ignore 6931 return; 6932 case Intrinsic::experimental_stackmap: 6933 visitStackmap(I); 6934 return; 6935 case Intrinsic::experimental_patchpoint_void: 6936 case Intrinsic::experimental_patchpoint_i64: 6937 visitPatchpoint(I); 6938 return; 6939 case Intrinsic::experimental_gc_statepoint: 6940 LowerStatepoint(cast<GCStatepointInst>(I)); 6941 return; 6942 case Intrinsic::experimental_gc_result: 6943 visitGCResult(cast<GCResultInst>(I)); 6944 return; 6945 case Intrinsic::experimental_gc_relocate: 6946 visitGCRelocate(cast<GCRelocateInst>(I)); 6947 return; 6948 case Intrinsic::instrprof_cover: 6949 llvm_unreachable("instrprof failed to lower a cover"); 6950 case Intrinsic::instrprof_increment: 6951 llvm_unreachable("instrprof failed to lower an increment"); 6952 case Intrinsic::instrprof_value_profile: 6953 llvm_unreachable("instrprof failed to lower a value profiling call"); 6954 case Intrinsic::localescape: { 6955 MachineFunction &MF = DAG.getMachineFunction(); 6956 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6957 6958 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6959 // is the same on all targets. 6960 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6961 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6962 if (isa<ConstantPointerNull>(Arg)) 6963 continue; // Skip null pointers. They represent a hole in index space. 6964 AllocaInst *Slot = cast<AllocaInst>(Arg); 6965 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6966 "can only escape static allocas"); 6967 int FI = FuncInfo.StaticAllocaMap[Slot]; 6968 MCSymbol *FrameAllocSym = 6969 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6970 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6971 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6972 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6973 .addSym(FrameAllocSym) 6974 .addFrameIndex(FI); 6975 } 6976 6977 return; 6978 } 6979 6980 case Intrinsic::localrecover: { 6981 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6982 MachineFunction &MF = DAG.getMachineFunction(); 6983 6984 // Get the symbol that defines the frame offset. 6985 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6986 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6987 unsigned IdxVal = 6988 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6989 MCSymbol *FrameAllocSym = 6990 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6991 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6992 6993 Value *FP = I.getArgOperand(1); 6994 SDValue FPVal = getValue(FP); 6995 EVT PtrVT = FPVal.getValueType(); 6996 6997 // Create a MCSymbol for the label to avoid any target lowering 6998 // that would make this PC relative. 6999 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7000 SDValue OffsetVal = 7001 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7002 7003 // Add the offset to the FP. 7004 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7005 setValue(&I, Add); 7006 7007 return; 7008 } 7009 7010 case Intrinsic::eh_exceptionpointer: 7011 case Intrinsic::eh_exceptioncode: { 7012 // Get the exception pointer vreg, copy from it, and resize it to fit. 7013 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7014 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7015 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7016 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7017 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7018 if (Intrinsic == Intrinsic::eh_exceptioncode) 7019 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7020 setValue(&I, N); 7021 return; 7022 } 7023 case Intrinsic::xray_customevent: { 7024 // Here we want to make sure that the intrinsic behaves as if it has a 7025 // specific calling convention, and only for x86_64. 7026 // FIXME: Support other platforms later. 7027 const auto &Triple = DAG.getTarget().getTargetTriple(); 7028 if (Triple.getArch() != Triple::x86_64) 7029 return; 7030 7031 SmallVector<SDValue, 8> Ops; 7032 7033 // We want to say that we always want the arguments in registers. 7034 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7035 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7036 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7037 SDValue Chain = getRoot(); 7038 Ops.push_back(LogEntryVal); 7039 Ops.push_back(StrSizeVal); 7040 Ops.push_back(Chain); 7041 7042 // We need to enforce the calling convention for the callsite, so that 7043 // argument ordering is enforced correctly, and that register allocation can 7044 // see that some registers may be assumed clobbered and have to preserve 7045 // them across calls to the intrinsic. 7046 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7047 sdl, NodeTys, Ops); 7048 SDValue patchableNode = SDValue(MN, 0); 7049 DAG.setRoot(patchableNode); 7050 setValue(&I, patchableNode); 7051 return; 7052 } 7053 case Intrinsic::xray_typedevent: { 7054 // Here we want to make sure that the intrinsic behaves as if it has a 7055 // specific calling convention, and only for x86_64. 7056 // FIXME: Support other platforms later. 7057 const auto &Triple = DAG.getTarget().getTargetTriple(); 7058 if (Triple.getArch() != Triple::x86_64) 7059 return; 7060 7061 SmallVector<SDValue, 8> Ops; 7062 7063 // We want to say that we always want the arguments in registers. 7064 // It's unclear to me how manipulating the selection DAG here forces callers 7065 // to provide arguments in registers instead of on the stack. 7066 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7067 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7068 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7069 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7070 SDValue Chain = getRoot(); 7071 Ops.push_back(LogTypeId); 7072 Ops.push_back(LogEntryVal); 7073 Ops.push_back(StrSizeVal); 7074 Ops.push_back(Chain); 7075 7076 // We need to enforce the calling convention for the callsite, so that 7077 // argument ordering is enforced correctly, and that register allocation can 7078 // see that some registers may be assumed clobbered and have to preserve 7079 // them across calls to the intrinsic. 7080 MachineSDNode *MN = DAG.getMachineNode( 7081 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7082 SDValue patchableNode = SDValue(MN, 0); 7083 DAG.setRoot(patchableNode); 7084 setValue(&I, patchableNode); 7085 return; 7086 } 7087 case Intrinsic::experimental_deoptimize: 7088 LowerDeoptimizeCall(&I); 7089 return; 7090 case Intrinsic::experimental_stepvector: 7091 visitStepVector(I); 7092 return; 7093 case Intrinsic::vector_reduce_fadd: 7094 case Intrinsic::vector_reduce_fmul: 7095 case Intrinsic::vector_reduce_add: 7096 case Intrinsic::vector_reduce_mul: 7097 case Intrinsic::vector_reduce_and: 7098 case Intrinsic::vector_reduce_or: 7099 case Intrinsic::vector_reduce_xor: 7100 case Intrinsic::vector_reduce_smax: 7101 case Intrinsic::vector_reduce_smin: 7102 case Intrinsic::vector_reduce_umax: 7103 case Intrinsic::vector_reduce_umin: 7104 case Intrinsic::vector_reduce_fmax: 7105 case Intrinsic::vector_reduce_fmin: 7106 visitVectorReduce(I, Intrinsic); 7107 return; 7108 7109 case Intrinsic::icall_branch_funnel: { 7110 SmallVector<SDValue, 16> Ops; 7111 Ops.push_back(getValue(I.getArgOperand(0))); 7112 7113 int64_t Offset; 7114 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7115 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7116 if (!Base) 7117 report_fatal_error( 7118 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7119 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7120 7121 struct BranchFunnelTarget { 7122 int64_t Offset; 7123 SDValue Target; 7124 }; 7125 SmallVector<BranchFunnelTarget, 8> Targets; 7126 7127 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7128 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7129 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7130 if (ElemBase != Base) 7131 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7132 "to the same GlobalValue"); 7133 7134 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7135 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7136 if (!GA) 7137 report_fatal_error( 7138 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7139 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7140 GA->getGlobal(), sdl, Val.getValueType(), 7141 GA->getOffset())}); 7142 } 7143 llvm::sort(Targets, 7144 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7145 return T1.Offset < T2.Offset; 7146 }); 7147 7148 for (auto &T : Targets) { 7149 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7150 Ops.push_back(T.Target); 7151 } 7152 7153 Ops.push_back(DAG.getRoot()); // Chain 7154 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7155 MVT::Other, Ops), 7156 0); 7157 DAG.setRoot(N); 7158 setValue(&I, N); 7159 HasTailCall = true; 7160 return; 7161 } 7162 7163 case Intrinsic::wasm_landingpad_index: 7164 // Information this intrinsic contained has been transferred to 7165 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7166 // delete it now. 7167 return; 7168 7169 case Intrinsic::aarch64_settag: 7170 case Intrinsic::aarch64_settag_zero: { 7171 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7172 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7173 SDValue Val = TSI.EmitTargetCodeForSetTag( 7174 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7175 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7176 ZeroMemory); 7177 DAG.setRoot(Val); 7178 setValue(&I, Val); 7179 return; 7180 } 7181 case Intrinsic::ptrmask: { 7182 SDValue Ptr = getValue(I.getOperand(0)); 7183 SDValue Const = getValue(I.getOperand(1)); 7184 7185 EVT PtrVT = Ptr.getValueType(); 7186 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7187 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7188 return; 7189 } 7190 case Intrinsic::threadlocal_address: { 7191 setValue(&I, getValue(I.getOperand(0))); 7192 return; 7193 } 7194 case Intrinsic::get_active_lane_mask: { 7195 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7196 SDValue Index = getValue(I.getOperand(0)); 7197 EVT ElementVT = Index.getValueType(); 7198 7199 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7200 visitTargetIntrinsic(I, Intrinsic); 7201 return; 7202 } 7203 7204 SDValue TripCount = getValue(I.getOperand(1)); 7205 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7206 7207 SDValue VectorIndex, VectorTripCount; 7208 if (VecTy.isScalableVector()) { 7209 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7210 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7211 } else { 7212 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7213 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7214 } 7215 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7216 SDValue VectorInduction = DAG.getNode( 7217 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7218 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7219 VectorTripCount, ISD::CondCode::SETULT); 7220 setValue(&I, SetCC); 7221 return; 7222 } 7223 case Intrinsic::vector_insert: { 7224 SDValue Vec = getValue(I.getOperand(0)); 7225 SDValue SubVec = getValue(I.getOperand(1)); 7226 SDValue Index = getValue(I.getOperand(2)); 7227 7228 // The intrinsic's index type is i64, but the SDNode requires an index type 7229 // suitable for the target. Convert the index as required. 7230 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7231 if (Index.getValueType() != VectorIdxTy) 7232 Index = DAG.getVectorIdxConstant( 7233 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7234 7235 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7236 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7237 Index)); 7238 return; 7239 } 7240 case Intrinsic::vector_extract: { 7241 SDValue Vec = getValue(I.getOperand(0)); 7242 SDValue Index = getValue(I.getOperand(1)); 7243 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7244 7245 // The intrinsic's index type is i64, but the SDNode requires an index type 7246 // suitable for the target. Convert the index as required. 7247 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7248 if (Index.getValueType() != VectorIdxTy) 7249 Index = DAG.getVectorIdxConstant( 7250 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7251 7252 setValue(&I, 7253 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7254 return; 7255 } 7256 case Intrinsic::experimental_vector_reverse: 7257 visitVectorReverse(I); 7258 return; 7259 case Intrinsic::experimental_vector_splice: 7260 visitVectorSplice(I); 7261 return; 7262 } 7263 } 7264 7265 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7266 const ConstrainedFPIntrinsic &FPI) { 7267 SDLoc sdl = getCurSDLoc(); 7268 7269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7270 SmallVector<EVT, 4> ValueVTs; 7271 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7272 ValueVTs.push_back(MVT::Other); // Out chain 7273 7274 // We do not need to serialize constrained FP intrinsics against 7275 // each other or against (nonvolatile) loads, so they can be 7276 // chained like loads. 7277 SDValue Chain = DAG.getRoot(); 7278 SmallVector<SDValue, 4> Opers; 7279 Opers.push_back(Chain); 7280 if (FPI.isUnaryOp()) { 7281 Opers.push_back(getValue(FPI.getArgOperand(0))); 7282 } else if (FPI.isTernaryOp()) { 7283 Opers.push_back(getValue(FPI.getArgOperand(0))); 7284 Opers.push_back(getValue(FPI.getArgOperand(1))); 7285 Opers.push_back(getValue(FPI.getArgOperand(2))); 7286 } else { 7287 Opers.push_back(getValue(FPI.getArgOperand(0))); 7288 Opers.push_back(getValue(FPI.getArgOperand(1))); 7289 } 7290 7291 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7292 assert(Result.getNode()->getNumValues() == 2); 7293 7294 // Push node to the appropriate list so that future instructions can be 7295 // chained up correctly. 7296 SDValue OutChain = Result.getValue(1); 7297 switch (EB) { 7298 case fp::ExceptionBehavior::ebIgnore: 7299 // The only reason why ebIgnore nodes still need to be chained is that 7300 // they might depend on the current rounding mode, and therefore must 7301 // not be moved across instruction that may change that mode. 7302 [[fallthrough]]; 7303 case fp::ExceptionBehavior::ebMayTrap: 7304 // These must not be moved across calls or instructions that may change 7305 // floating-point exception masks. 7306 PendingConstrainedFP.push_back(OutChain); 7307 break; 7308 case fp::ExceptionBehavior::ebStrict: 7309 // These must not be moved across calls or instructions that may change 7310 // floating-point exception masks or read floating-point exception flags. 7311 // In addition, they cannot be optimized out even if unused. 7312 PendingConstrainedFPStrict.push_back(OutChain); 7313 break; 7314 } 7315 }; 7316 7317 SDVTList VTs = DAG.getVTList(ValueVTs); 7318 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7319 7320 SDNodeFlags Flags; 7321 if (EB == fp::ExceptionBehavior::ebIgnore) 7322 Flags.setNoFPExcept(true); 7323 7324 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7325 Flags.copyFMF(*FPOp); 7326 7327 unsigned Opcode; 7328 switch (FPI.getIntrinsicID()) { 7329 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7330 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7331 case Intrinsic::INTRINSIC: \ 7332 Opcode = ISD::STRICT_##DAGN; \ 7333 break; 7334 #include "llvm/IR/ConstrainedOps.def" 7335 case Intrinsic::experimental_constrained_fmuladd: { 7336 Opcode = ISD::STRICT_FMA; 7337 // Break fmuladd into fmul and fadd. 7338 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7339 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7340 ValueVTs[0])) { 7341 Opers.pop_back(); 7342 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7343 pushOutChain(Mul, EB); 7344 Opcode = ISD::STRICT_FADD; 7345 Opers.clear(); 7346 Opers.push_back(Mul.getValue(1)); 7347 Opers.push_back(Mul.getValue(0)); 7348 Opers.push_back(getValue(FPI.getArgOperand(2))); 7349 } 7350 break; 7351 } 7352 } 7353 7354 // A few strict DAG nodes carry additional operands that are not 7355 // set up by the default code above. 7356 switch (Opcode) { 7357 default: break; 7358 case ISD::STRICT_FP_ROUND: 7359 Opers.push_back( 7360 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7361 break; 7362 case ISD::STRICT_FSETCC: 7363 case ISD::STRICT_FSETCCS: { 7364 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7365 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7366 if (TM.Options.NoNaNsFPMath) 7367 Condition = getFCmpCodeWithoutNaN(Condition); 7368 Opers.push_back(DAG.getCondCode(Condition)); 7369 break; 7370 } 7371 } 7372 7373 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7374 pushOutChain(Result, EB); 7375 7376 SDValue FPResult = Result.getValue(0); 7377 setValue(&FPI, FPResult); 7378 } 7379 7380 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7381 Optional<unsigned> ResOPC; 7382 switch (VPIntrin.getIntrinsicID()) { 7383 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7384 case Intrinsic::VPID: \ 7385 ResOPC = ISD::VPSD; \ 7386 break; 7387 #include "llvm/IR/VPIntrinsics.def" 7388 } 7389 7390 if (!ResOPC) 7391 llvm_unreachable( 7392 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7393 7394 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7395 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7396 if (VPIntrin.getFastMathFlags().allowReassoc()) 7397 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7398 : ISD::VP_REDUCE_FMUL; 7399 } 7400 7401 return *ResOPC; 7402 } 7403 7404 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7405 SmallVector<SDValue, 7> &OpValues, 7406 bool IsGather) { 7407 SDLoc DL = getCurSDLoc(); 7408 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7409 Value *PtrOperand = VPIntrin.getArgOperand(0); 7410 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7411 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7412 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7413 SDValue LD; 7414 bool AddToChain = true; 7415 if (!IsGather) { 7416 // Do not serialize variable-length loads of constant memory with 7417 // anything. 7418 if (!Alignment) 7419 Alignment = DAG.getEVTAlign(VT); 7420 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7421 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7422 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7423 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7424 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7425 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7426 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7427 MMO, false /*IsExpanding */); 7428 } else { 7429 if (!Alignment) 7430 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7431 unsigned AS = 7432 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7433 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7434 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7435 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7436 SDValue Base, Index, Scale; 7437 ISD::MemIndexType IndexType; 7438 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7439 this, VPIntrin.getParent(), 7440 VT.getScalarStoreSize()); 7441 if (!UniformBase) { 7442 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7443 Index = getValue(PtrOperand); 7444 IndexType = ISD::SIGNED_SCALED; 7445 Scale = 7446 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7447 } 7448 EVT IdxVT = Index.getValueType(); 7449 EVT EltTy = IdxVT.getVectorElementType(); 7450 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7451 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7452 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7453 } 7454 LD = DAG.getGatherVP( 7455 DAG.getVTList(VT, MVT::Other), VT, DL, 7456 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7457 IndexType); 7458 } 7459 if (AddToChain) 7460 PendingLoads.push_back(LD.getValue(1)); 7461 setValue(&VPIntrin, LD); 7462 } 7463 7464 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7465 SmallVector<SDValue, 7> &OpValues, 7466 bool IsScatter) { 7467 SDLoc DL = getCurSDLoc(); 7468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7469 Value *PtrOperand = VPIntrin.getArgOperand(1); 7470 EVT VT = OpValues[0].getValueType(); 7471 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7472 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7473 SDValue ST; 7474 if (!IsScatter) { 7475 if (!Alignment) 7476 Alignment = DAG.getEVTAlign(VT); 7477 SDValue Ptr = OpValues[1]; 7478 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7479 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7480 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7481 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7482 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7483 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7484 /* IsTruncating */ false, /*IsCompressing*/ false); 7485 } else { 7486 if (!Alignment) 7487 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7488 unsigned AS = 7489 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7490 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7491 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7492 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7493 SDValue Base, Index, Scale; 7494 ISD::MemIndexType IndexType; 7495 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7496 this, VPIntrin.getParent(), 7497 VT.getScalarStoreSize()); 7498 if (!UniformBase) { 7499 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7500 Index = getValue(PtrOperand); 7501 IndexType = ISD::SIGNED_SCALED; 7502 Scale = 7503 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7504 } 7505 EVT IdxVT = Index.getValueType(); 7506 EVT EltTy = IdxVT.getVectorElementType(); 7507 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7508 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7509 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7510 } 7511 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7512 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7513 OpValues[2], OpValues[3]}, 7514 MMO, IndexType); 7515 } 7516 DAG.setRoot(ST); 7517 setValue(&VPIntrin, ST); 7518 } 7519 7520 void SelectionDAGBuilder::visitVPStridedLoad( 7521 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7522 SDLoc DL = getCurSDLoc(); 7523 Value *PtrOperand = VPIntrin.getArgOperand(0); 7524 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7525 if (!Alignment) 7526 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7527 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7528 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7529 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7530 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7531 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7532 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7533 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7534 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7535 7536 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7537 OpValues[2], OpValues[3], MMO, 7538 false /*IsExpanding*/); 7539 7540 if (AddToChain) 7541 PendingLoads.push_back(LD.getValue(1)); 7542 setValue(&VPIntrin, LD); 7543 } 7544 7545 void SelectionDAGBuilder::visitVPStridedStore( 7546 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7547 SDLoc DL = getCurSDLoc(); 7548 Value *PtrOperand = VPIntrin.getArgOperand(1); 7549 EVT VT = OpValues[0].getValueType(); 7550 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7551 if (!Alignment) 7552 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7553 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7554 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7555 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7556 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7557 7558 SDValue ST = DAG.getStridedStoreVP( 7559 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7560 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7561 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7562 /*IsCompressing*/ false); 7563 7564 DAG.setRoot(ST); 7565 setValue(&VPIntrin, ST); 7566 } 7567 7568 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7570 SDLoc DL = getCurSDLoc(); 7571 7572 ISD::CondCode Condition; 7573 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7574 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7575 if (IsFP) { 7576 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7577 // flags, but calls that don't return floating-point types can't be 7578 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7579 Condition = getFCmpCondCode(CondCode); 7580 if (TM.Options.NoNaNsFPMath) 7581 Condition = getFCmpCodeWithoutNaN(Condition); 7582 } else { 7583 Condition = getICmpCondCode(CondCode); 7584 } 7585 7586 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7587 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7588 // #2 is the condition code 7589 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7590 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7591 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7592 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7593 "Unexpected target EVL type"); 7594 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7595 7596 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7597 VPIntrin.getType()); 7598 setValue(&VPIntrin, 7599 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7600 } 7601 7602 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7603 const VPIntrinsic &VPIntrin) { 7604 SDLoc DL = getCurSDLoc(); 7605 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7606 7607 auto IID = VPIntrin.getIntrinsicID(); 7608 7609 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7610 return visitVPCmp(*CmpI); 7611 7612 SmallVector<EVT, 4> ValueVTs; 7613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7614 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7615 SDVTList VTs = DAG.getVTList(ValueVTs); 7616 7617 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7618 7619 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7620 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7621 "Unexpected target EVL type"); 7622 7623 // Request operands. 7624 SmallVector<SDValue, 7> OpValues; 7625 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7626 auto Op = getValue(VPIntrin.getArgOperand(I)); 7627 if (I == EVLParamPos) 7628 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7629 OpValues.push_back(Op); 7630 } 7631 7632 switch (Opcode) { 7633 default: { 7634 SDNodeFlags SDFlags; 7635 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7636 SDFlags.copyFMF(*FPMO); 7637 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7638 setValue(&VPIntrin, Result); 7639 break; 7640 } 7641 case ISD::VP_LOAD: 7642 case ISD::VP_GATHER: 7643 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7644 Opcode == ISD::VP_GATHER); 7645 break; 7646 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7647 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7648 break; 7649 case ISD::VP_STORE: 7650 case ISD::VP_SCATTER: 7651 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7652 break; 7653 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7654 visitVPStridedStore(VPIntrin, OpValues); 7655 break; 7656 } 7657 } 7658 7659 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7660 const BasicBlock *EHPadBB, 7661 MCSymbol *&BeginLabel) { 7662 MachineFunction &MF = DAG.getMachineFunction(); 7663 MachineModuleInfo &MMI = MF.getMMI(); 7664 7665 // Insert a label before the invoke call to mark the try range. This can be 7666 // used to detect deletion of the invoke via the MachineModuleInfo. 7667 BeginLabel = MMI.getContext().createTempSymbol(); 7668 7669 // For SjLj, keep track of which landing pads go with which invokes 7670 // so as to maintain the ordering of pads in the LSDA. 7671 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7672 if (CallSiteIndex) { 7673 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7674 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7675 7676 // Now that the call site is handled, stop tracking it. 7677 MMI.setCurrentCallSite(0); 7678 } 7679 7680 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7681 } 7682 7683 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7684 const BasicBlock *EHPadBB, 7685 MCSymbol *BeginLabel) { 7686 assert(BeginLabel && "BeginLabel should've been set"); 7687 7688 MachineFunction &MF = DAG.getMachineFunction(); 7689 MachineModuleInfo &MMI = MF.getMMI(); 7690 7691 // Insert a label at the end of the invoke call to mark the try range. This 7692 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7693 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7694 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7695 7696 // Inform MachineModuleInfo of range. 7697 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7698 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7699 // actually use outlined funclets and their LSDA info style. 7700 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7701 assert(II && "II should've been set"); 7702 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7703 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7704 } else if (!isScopedEHPersonality(Pers)) { 7705 assert(EHPadBB); 7706 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7707 } 7708 7709 return Chain; 7710 } 7711 7712 std::pair<SDValue, SDValue> 7713 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7714 const BasicBlock *EHPadBB) { 7715 MCSymbol *BeginLabel = nullptr; 7716 7717 if (EHPadBB) { 7718 // Both PendingLoads and PendingExports must be flushed here; 7719 // this call might not return. 7720 (void)getRoot(); 7721 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7722 CLI.setChain(getRoot()); 7723 } 7724 7725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7726 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7727 7728 assert((CLI.IsTailCall || Result.second.getNode()) && 7729 "Non-null chain expected with non-tail call!"); 7730 assert((Result.second.getNode() || !Result.first.getNode()) && 7731 "Null value expected with tail call!"); 7732 7733 if (!Result.second.getNode()) { 7734 // As a special case, a null chain means that a tail call has been emitted 7735 // and the DAG root is already updated. 7736 HasTailCall = true; 7737 7738 // Since there's no actual continuation from this block, nothing can be 7739 // relying on us setting vregs for them. 7740 PendingExports.clear(); 7741 } else { 7742 DAG.setRoot(Result.second); 7743 } 7744 7745 if (EHPadBB) { 7746 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7747 BeginLabel)); 7748 } 7749 7750 return Result; 7751 } 7752 7753 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7754 bool isTailCall, 7755 bool isMustTailCall, 7756 const BasicBlock *EHPadBB) { 7757 auto &DL = DAG.getDataLayout(); 7758 FunctionType *FTy = CB.getFunctionType(); 7759 Type *RetTy = CB.getType(); 7760 7761 TargetLowering::ArgListTy Args; 7762 Args.reserve(CB.arg_size()); 7763 7764 const Value *SwiftErrorVal = nullptr; 7765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7766 7767 if (isTailCall) { 7768 // Avoid emitting tail calls in functions with the disable-tail-calls 7769 // attribute. 7770 auto *Caller = CB.getParent()->getParent(); 7771 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7772 "true" && !isMustTailCall) 7773 isTailCall = false; 7774 7775 // We can't tail call inside a function with a swifterror argument. Lowering 7776 // does not support this yet. It would have to move into the swifterror 7777 // register before the call. 7778 if (TLI.supportSwiftError() && 7779 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7780 isTailCall = false; 7781 } 7782 7783 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7784 TargetLowering::ArgListEntry Entry; 7785 const Value *V = *I; 7786 7787 // Skip empty types 7788 if (V->getType()->isEmptyTy()) 7789 continue; 7790 7791 SDValue ArgNode = getValue(V); 7792 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7793 7794 Entry.setAttributes(&CB, I - CB.arg_begin()); 7795 7796 // Use swifterror virtual register as input to the call. 7797 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7798 SwiftErrorVal = V; 7799 // We find the virtual register for the actual swifterror argument. 7800 // Instead of using the Value, we use the virtual register instead. 7801 Entry.Node = 7802 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7803 EVT(TLI.getPointerTy(DL))); 7804 } 7805 7806 Args.push_back(Entry); 7807 7808 // If we have an explicit sret argument that is an Instruction, (i.e., it 7809 // might point to function-local memory), we can't meaningfully tail-call. 7810 if (Entry.IsSRet && isa<Instruction>(V)) 7811 isTailCall = false; 7812 } 7813 7814 // If call site has a cfguardtarget operand bundle, create and add an 7815 // additional ArgListEntry. 7816 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7817 TargetLowering::ArgListEntry Entry; 7818 Value *V = Bundle->Inputs[0]; 7819 SDValue ArgNode = getValue(V); 7820 Entry.Node = ArgNode; 7821 Entry.Ty = V->getType(); 7822 Entry.IsCFGuardTarget = true; 7823 Args.push_back(Entry); 7824 } 7825 7826 // Check if target-independent constraints permit a tail call here. 7827 // Target-dependent constraints are checked within TLI->LowerCallTo. 7828 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7829 isTailCall = false; 7830 7831 // Disable tail calls if there is an swifterror argument. Targets have not 7832 // been updated to support tail calls. 7833 if (TLI.supportSwiftError() && SwiftErrorVal) 7834 isTailCall = false; 7835 7836 ConstantInt *CFIType = nullptr; 7837 if (CB.isIndirectCall()) { 7838 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 7839 if (!TLI.supportKCFIBundles()) 7840 report_fatal_error( 7841 "Target doesn't support calls with kcfi operand bundles."); 7842 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 7843 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 7844 } 7845 } 7846 7847 TargetLowering::CallLoweringInfo CLI(DAG); 7848 CLI.setDebugLoc(getCurSDLoc()) 7849 .setChain(getRoot()) 7850 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7851 .setTailCall(isTailCall) 7852 .setConvergent(CB.isConvergent()) 7853 .setIsPreallocated( 7854 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 7855 .setCFIType(CFIType); 7856 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7857 7858 if (Result.first.getNode()) { 7859 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7860 setValue(&CB, Result.first); 7861 } 7862 7863 // The last element of CLI.InVals has the SDValue for swifterror return. 7864 // Here we copy it to a virtual register and update SwiftErrorMap for 7865 // book-keeping. 7866 if (SwiftErrorVal && TLI.supportSwiftError()) { 7867 // Get the last element of InVals. 7868 SDValue Src = CLI.InVals.back(); 7869 Register VReg = 7870 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7871 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7872 DAG.setRoot(CopyNode); 7873 } 7874 } 7875 7876 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7877 SelectionDAGBuilder &Builder) { 7878 // Check to see if this load can be trivially constant folded, e.g. if the 7879 // input is from a string literal. 7880 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7881 // Cast pointer to the type we really want to load. 7882 Type *LoadTy = 7883 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7884 if (LoadVT.isVector()) 7885 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7886 7887 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7888 PointerType::getUnqual(LoadTy)); 7889 7890 if (const Constant *LoadCst = 7891 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7892 LoadTy, Builder.DAG.getDataLayout())) 7893 return Builder.getValue(LoadCst); 7894 } 7895 7896 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7897 // still constant memory, the input chain can be the entry node. 7898 SDValue Root; 7899 bool ConstantMemory = false; 7900 7901 // Do not serialize (non-volatile) loads of constant memory with anything. 7902 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7903 Root = Builder.DAG.getEntryNode(); 7904 ConstantMemory = true; 7905 } else { 7906 // Do not serialize non-volatile loads against each other. 7907 Root = Builder.DAG.getRoot(); 7908 } 7909 7910 SDValue Ptr = Builder.getValue(PtrVal); 7911 SDValue LoadVal = 7912 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7913 MachinePointerInfo(PtrVal), Align(1)); 7914 7915 if (!ConstantMemory) 7916 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7917 return LoadVal; 7918 } 7919 7920 /// Record the value for an instruction that produces an integer result, 7921 /// converting the type where necessary. 7922 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7923 SDValue Value, 7924 bool IsSigned) { 7925 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7926 I.getType(), true); 7927 if (IsSigned) 7928 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7929 else 7930 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7931 setValue(&I, Value); 7932 } 7933 7934 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7935 /// true and lower it. Otherwise return false, and it will be lowered like a 7936 /// normal call. 7937 /// The caller already checked that \p I calls the appropriate LibFunc with a 7938 /// correct prototype. 7939 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7940 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7941 const Value *Size = I.getArgOperand(2); 7942 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7943 if (CSize && CSize->getZExtValue() == 0) { 7944 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7945 I.getType(), true); 7946 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7947 return true; 7948 } 7949 7950 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7951 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7952 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7953 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7954 if (Res.first.getNode()) { 7955 processIntegerCallValue(I, Res.first, true); 7956 PendingLoads.push_back(Res.second); 7957 return true; 7958 } 7959 7960 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7961 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7962 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7963 return false; 7964 7965 // If the target has a fast compare for the given size, it will return a 7966 // preferred load type for that size. Require that the load VT is legal and 7967 // that the target supports unaligned loads of that type. Otherwise, return 7968 // INVALID. 7969 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7971 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7972 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7973 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7974 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7975 // TODO: Check alignment of src and dest ptrs. 7976 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7977 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7978 if (!TLI.isTypeLegal(LVT) || 7979 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7980 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7981 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7982 } 7983 7984 return LVT; 7985 }; 7986 7987 // This turns into unaligned loads. We only do this if the target natively 7988 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7989 // we'll only produce a small number of byte loads. 7990 MVT LoadVT; 7991 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7992 switch (NumBitsToCompare) { 7993 default: 7994 return false; 7995 case 16: 7996 LoadVT = MVT::i16; 7997 break; 7998 case 32: 7999 LoadVT = MVT::i32; 8000 break; 8001 case 64: 8002 case 128: 8003 case 256: 8004 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8005 break; 8006 } 8007 8008 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8009 return false; 8010 8011 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8012 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8013 8014 // Bitcast to a wide integer type if the loads are vectors. 8015 if (LoadVT.isVector()) { 8016 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8017 LoadL = DAG.getBitcast(CmpVT, LoadL); 8018 LoadR = DAG.getBitcast(CmpVT, LoadR); 8019 } 8020 8021 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8022 processIntegerCallValue(I, Cmp, false); 8023 return true; 8024 } 8025 8026 /// See if we can lower a memchr call into an optimized form. If so, return 8027 /// true and lower it. Otherwise return false, and it will be lowered like a 8028 /// normal call. 8029 /// The caller already checked that \p I calls the appropriate LibFunc with a 8030 /// correct prototype. 8031 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8032 const Value *Src = I.getArgOperand(0); 8033 const Value *Char = I.getArgOperand(1); 8034 const Value *Length = I.getArgOperand(2); 8035 8036 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8037 std::pair<SDValue, SDValue> Res = 8038 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8039 getValue(Src), getValue(Char), getValue(Length), 8040 MachinePointerInfo(Src)); 8041 if (Res.first.getNode()) { 8042 setValue(&I, Res.first); 8043 PendingLoads.push_back(Res.second); 8044 return true; 8045 } 8046 8047 return false; 8048 } 8049 8050 /// See if we can lower a mempcpy call into an optimized form. If so, return 8051 /// true and lower it. Otherwise return false, and it will be lowered like a 8052 /// normal call. 8053 /// The caller already checked that \p I calls the appropriate LibFunc with a 8054 /// correct prototype. 8055 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8056 SDValue Dst = getValue(I.getArgOperand(0)); 8057 SDValue Src = getValue(I.getArgOperand(1)); 8058 SDValue Size = getValue(I.getArgOperand(2)); 8059 8060 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8061 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8062 // DAG::getMemcpy needs Alignment to be defined. 8063 Align Alignment = std::min(DstAlign, SrcAlign); 8064 8065 bool isVol = false; 8066 SDLoc sdl = getCurSDLoc(); 8067 8068 // In the mempcpy context we need to pass in a false value for isTailCall 8069 // because the return pointer needs to be adjusted by the size of 8070 // the copied memory. 8071 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8072 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8073 /*isTailCall=*/false, 8074 MachinePointerInfo(I.getArgOperand(0)), 8075 MachinePointerInfo(I.getArgOperand(1)), 8076 I.getAAMetadata()); 8077 assert(MC.getNode() != nullptr && 8078 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8079 DAG.setRoot(MC); 8080 8081 // Check if Size needs to be truncated or extended. 8082 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8083 8084 // Adjust return pointer to point just past the last dst byte. 8085 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8086 Dst, Size); 8087 setValue(&I, DstPlusSize); 8088 return true; 8089 } 8090 8091 /// See if we can lower a strcpy call into an optimized form. If so, return 8092 /// true and lower it, otherwise return false and it will be lowered like a 8093 /// normal call. 8094 /// The caller already checked that \p I calls the appropriate LibFunc with a 8095 /// correct prototype. 8096 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8097 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8098 8099 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8100 std::pair<SDValue, SDValue> Res = 8101 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8102 getValue(Arg0), getValue(Arg1), 8103 MachinePointerInfo(Arg0), 8104 MachinePointerInfo(Arg1), isStpcpy); 8105 if (Res.first.getNode()) { 8106 setValue(&I, Res.first); 8107 DAG.setRoot(Res.second); 8108 return true; 8109 } 8110 8111 return false; 8112 } 8113 8114 /// See if we can lower a strcmp call into an optimized form. If so, return 8115 /// true and lower it, otherwise return false and it will be lowered like a 8116 /// normal call. 8117 /// The caller already checked that \p I calls the appropriate LibFunc with a 8118 /// correct prototype. 8119 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8120 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8121 8122 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8123 std::pair<SDValue, SDValue> Res = 8124 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8125 getValue(Arg0), getValue(Arg1), 8126 MachinePointerInfo(Arg0), 8127 MachinePointerInfo(Arg1)); 8128 if (Res.first.getNode()) { 8129 processIntegerCallValue(I, Res.first, true); 8130 PendingLoads.push_back(Res.second); 8131 return true; 8132 } 8133 8134 return false; 8135 } 8136 8137 /// See if we can lower a strlen call into an optimized form. If so, return 8138 /// true and lower it, otherwise return false and it will be lowered like a 8139 /// normal call. 8140 /// The caller already checked that \p I calls the appropriate LibFunc with a 8141 /// correct prototype. 8142 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8143 const Value *Arg0 = I.getArgOperand(0); 8144 8145 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8146 std::pair<SDValue, SDValue> Res = 8147 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8148 getValue(Arg0), MachinePointerInfo(Arg0)); 8149 if (Res.first.getNode()) { 8150 processIntegerCallValue(I, Res.first, false); 8151 PendingLoads.push_back(Res.second); 8152 return true; 8153 } 8154 8155 return false; 8156 } 8157 8158 /// See if we can lower a strnlen call into an optimized form. If so, return 8159 /// true and lower it, otherwise return false and it will be lowered like a 8160 /// normal call. 8161 /// The caller already checked that \p I calls the appropriate LibFunc with a 8162 /// correct prototype. 8163 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8164 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8165 8166 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8167 std::pair<SDValue, SDValue> Res = 8168 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8169 getValue(Arg0), getValue(Arg1), 8170 MachinePointerInfo(Arg0)); 8171 if (Res.first.getNode()) { 8172 processIntegerCallValue(I, Res.first, false); 8173 PendingLoads.push_back(Res.second); 8174 return true; 8175 } 8176 8177 return false; 8178 } 8179 8180 /// See if we can lower a unary floating-point operation into an SDNode with 8181 /// the specified Opcode. If so, return true and lower it, otherwise return 8182 /// false and it will be lowered like a normal call. 8183 /// The caller already checked that \p I calls the appropriate LibFunc with a 8184 /// correct prototype. 8185 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8186 unsigned Opcode) { 8187 // We already checked this call's prototype; verify it doesn't modify errno. 8188 if (!I.onlyReadsMemory()) 8189 return false; 8190 8191 SDNodeFlags Flags; 8192 Flags.copyFMF(cast<FPMathOperator>(I)); 8193 8194 SDValue Tmp = getValue(I.getArgOperand(0)); 8195 setValue(&I, 8196 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8197 return true; 8198 } 8199 8200 /// See if we can lower a binary floating-point operation into an SDNode with 8201 /// the specified Opcode. If so, return true and lower it. Otherwise return 8202 /// false, and it will be lowered like a normal call. 8203 /// The caller already checked that \p I calls the appropriate LibFunc with a 8204 /// correct prototype. 8205 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8206 unsigned Opcode) { 8207 // We already checked this call's prototype; verify it doesn't modify errno. 8208 if (!I.onlyReadsMemory()) 8209 return false; 8210 8211 SDNodeFlags Flags; 8212 Flags.copyFMF(cast<FPMathOperator>(I)); 8213 8214 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8215 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8216 EVT VT = Tmp0.getValueType(); 8217 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8218 return true; 8219 } 8220 8221 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8222 // Handle inline assembly differently. 8223 if (I.isInlineAsm()) { 8224 visitInlineAsm(I); 8225 return; 8226 } 8227 8228 if (Function *F = I.getCalledFunction()) { 8229 diagnoseDontCall(I); 8230 8231 if (F->isDeclaration()) { 8232 // Is this an LLVM intrinsic or a target-specific intrinsic? 8233 unsigned IID = F->getIntrinsicID(); 8234 if (!IID) 8235 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8236 IID = II->getIntrinsicID(F); 8237 8238 if (IID) { 8239 visitIntrinsicCall(I, IID); 8240 return; 8241 } 8242 } 8243 8244 // Check for well-known libc/libm calls. If the function is internal, it 8245 // can't be a library call. Don't do the check if marked as nobuiltin for 8246 // some reason or the call site requires strict floating point semantics. 8247 LibFunc Func; 8248 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8249 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8250 LibInfo->hasOptimizedCodeGen(Func)) { 8251 switch (Func) { 8252 default: break; 8253 case LibFunc_bcmp: 8254 if (visitMemCmpBCmpCall(I)) 8255 return; 8256 break; 8257 case LibFunc_copysign: 8258 case LibFunc_copysignf: 8259 case LibFunc_copysignl: 8260 // We already checked this call's prototype; verify it doesn't modify 8261 // errno. 8262 if (I.onlyReadsMemory()) { 8263 SDValue LHS = getValue(I.getArgOperand(0)); 8264 SDValue RHS = getValue(I.getArgOperand(1)); 8265 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8266 LHS.getValueType(), LHS, RHS)); 8267 return; 8268 } 8269 break; 8270 case LibFunc_fabs: 8271 case LibFunc_fabsf: 8272 case LibFunc_fabsl: 8273 if (visitUnaryFloatCall(I, ISD::FABS)) 8274 return; 8275 break; 8276 case LibFunc_fmin: 8277 case LibFunc_fminf: 8278 case LibFunc_fminl: 8279 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8280 return; 8281 break; 8282 case LibFunc_fmax: 8283 case LibFunc_fmaxf: 8284 case LibFunc_fmaxl: 8285 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8286 return; 8287 break; 8288 case LibFunc_sin: 8289 case LibFunc_sinf: 8290 case LibFunc_sinl: 8291 if (visitUnaryFloatCall(I, ISD::FSIN)) 8292 return; 8293 break; 8294 case LibFunc_cos: 8295 case LibFunc_cosf: 8296 case LibFunc_cosl: 8297 if (visitUnaryFloatCall(I, ISD::FCOS)) 8298 return; 8299 break; 8300 case LibFunc_sqrt: 8301 case LibFunc_sqrtf: 8302 case LibFunc_sqrtl: 8303 case LibFunc_sqrt_finite: 8304 case LibFunc_sqrtf_finite: 8305 case LibFunc_sqrtl_finite: 8306 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8307 return; 8308 break; 8309 case LibFunc_floor: 8310 case LibFunc_floorf: 8311 case LibFunc_floorl: 8312 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8313 return; 8314 break; 8315 case LibFunc_nearbyint: 8316 case LibFunc_nearbyintf: 8317 case LibFunc_nearbyintl: 8318 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8319 return; 8320 break; 8321 case LibFunc_ceil: 8322 case LibFunc_ceilf: 8323 case LibFunc_ceill: 8324 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8325 return; 8326 break; 8327 case LibFunc_rint: 8328 case LibFunc_rintf: 8329 case LibFunc_rintl: 8330 if (visitUnaryFloatCall(I, ISD::FRINT)) 8331 return; 8332 break; 8333 case LibFunc_round: 8334 case LibFunc_roundf: 8335 case LibFunc_roundl: 8336 if (visitUnaryFloatCall(I, ISD::FROUND)) 8337 return; 8338 break; 8339 case LibFunc_trunc: 8340 case LibFunc_truncf: 8341 case LibFunc_truncl: 8342 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8343 return; 8344 break; 8345 case LibFunc_log2: 8346 case LibFunc_log2f: 8347 case LibFunc_log2l: 8348 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8349 return; 8350 break; 8351 case LibFunc_exp2: 8352 case LibFunc_exp2f: 8353 case LibFunc_exp2l: 8354 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8355 return; 8356 break; 8357 case LibFunc_memcmp: 8358 if (visitMemCmpBCmpCall(I)) 8359 return; 8360 break; 8361 case LibFunc_mempcpy: 8362 if (visitMemPCpyCall(I)) 8363 return; 8364 break; 8365 case LibFunc_memchr: 8366 if (visitMemChrCall(I)) 8367 return; 8368 break; 8369 case LibFunc_strcpy: 8370 if (visitStrCpyCall(I, false)) 8371 return; 8372 break; 8373 case LibFunc_stpcpy: 8374 if (visitStrCpyCall(I, true)) 8375 return; 8376 break; 8377 case LibFunc_strcmp: 8378 if (visitStrCmpCall(I)) 8379 return; 8380 break; 8381 case LibFunc_strlen: 8382 if (visitStrLenCall(I)) 8383 return; 8384 break; 8385 case LibFunc_strnlen: 8386 if (visitStrNLenCall(I)) 8387 return; 8388 break; 8389 } 8390 } 8391 } 8392 8393 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8394 // have to do anything here to lower funclet bundles. 8395 // CFGuardTarget bundles are lowered in LowerCallTo. 8396 assert(!I.hasOperandBundlesOtherThan( 8397 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8398 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8399 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8400 "Cannot lower calls with arbitrary operand bundles!"); 8401 8402 SDValue Callee = getValue(I.getCalledOperand()); 8403 8404 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8405 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8406 else 8407 // Check if we can potentially perform a tail call. More detailed checking 8408 // is be done within LowerCallTo, after more information about the call is 8409 // known. 8410 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8411 } 8412 8413 namespace { 8414 8415 /// AsmOperandInfo - This contains information for each constraint that we are 8416 /// lowering. 8417 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8418 public: 8419 /// CallOperand - If this is the result output operand or a clobber 8420 /// this is null, otherwise it is the incoming operand to the CallInst. 8421 /// This gets modified as the asm is processed. 8422 SDValue CallOperand; 8423 8424 /// AssignedRegs - If this is a register or register class operand, this 8425 /// contains the set of register corresponding to the operand. 8426 RegsForValue AssignedRegs; 8427 8428 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8429 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8430 } 8431 8432 /// Whether or not this operand accesses memory 8433 bool hasMemory(const TargetLowering &TLI) const { 8434 // Indirect operand accesses access memory. 8435 if (isIndirect) 8436 return true; 8437 8438 for (const auto &Code : Codes) 8439 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8440 return true; 8441 8442 return false; 8443 } 8444 }; 8445 8446 8447 } // end anonymous namespace 8448 8449 /// Make sure that the output operand \p OpInfo and its corresponding input 8450 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8451 /// out). 8452 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8453 SDISelAsmOperandInfo &MatchingOpInfo, 8454 SelectionDAG &DAG) { 8455 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8456 return; 8457 8458 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8459 const auto &TLI = DAG.getTargetLoweringInfo(); 8460 8461 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8462 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8463 OpInfo.ConstraintVT); 8464 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8465 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8466 MatchingOpInfo.ConstraintVT); 8467 if ((OpInfo.ConstraintVT.isInteger() != 8468 MatchingOpInfo.ConstraintVT.isInteger()) || 8469 (MatchRC.second != InputRC.second)) { 8470 // FIXME: error out in a more elegant fashion 8471 report_fatal_error("Unsupported asm: input constraint" 8472 " with a matching output constraint of" 8473 " incompatible type!"); 8474 } 8475 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8476 } 8477 8478 /// Get a direct memory input to behave well as an indirect operand. 8479 /// This may introduce stores, hence the need for a \p Chain. 8480 /// \return The (possibly updated) chain. 8481 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8482 SDISelAsmOperandInfo &OpInfo, 8483 SelectionDAG &DAG) { 8484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8485 8486 // If we don't have an indirect input, put it in the constpool if we can, 8487 // otherwise spill it to a stack slot. 8488 // TODO: This isn't quite right. We need to handle these according to 8489 // the addressing mode that the constraint wants. Also, this may take 8490 // an additional register for the computation and we don't want that 8491 // either. 8492 8493 // If the operand is a float, integer, or vector constant, spill to a 8494 // constant pool entry to get its address. 8495 const Value *OpVal = OpInfo.CallOperandVal; 8496 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8497 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8498 OpInfo.CallOperand = DAG.getConstantPool( 8499 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8500 return Chain; 8501 } 8502 8503 // Otherwise, create a stack slot and emit a store to it before the asm. 8504 Type *Ty = OpVal->getType(); 8505 auto &DL = DAG.getDataLayout(); 8506 uint64_t TySize = DL.getTypeAllocSize(Ty); 8507 MachineFunction &MF = DAG.getMachineFunction(); 8508 int SSFI = MF.getFrameInfo().CreateStackObject( 8509 TySize, DL.getPrefTypeAlign(Ty), false); 8510 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8511 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8512 MachinePointerInfo::getFixedStack(MF, SSFI), 8513 TLI.getMemValueType(DL, Ty)); 8514 OpInfo.CallOperand = StackSlot; 8515 8516 return Chain; 8517 } 8518 8519 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8520 /// specified operand. We prefer to assign virtual registers, to allow the 8521 /// register allocator to handle the assignment process. However, if the asm 8522 /// uses features that we can't model on machineinstrs, we have SDISel do the 8523 /// allocation. This produces generally horrible, but correct, code. 8524 /// 8525 /// OpInfo describes the operand 8526 /// RefOpInfo describes the matching operand if any, the operand otherwise 8527 static llvm::Optional<unsigned> 8528 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8529 SDISelAsmOperandInfo &OpInfo, 8530 SDISelAsmOperandInfo &RefOpInfo) { 8531 LLVMContext &Context = *DAG.getContext(); 8532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8533 8534 MachineFunction &MF = DAG.getMachineFunction(); 8535 SmallVector<unsigned, 4> Regs; 8536 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8537 8538 // No work to do for memory/address operands. 8539 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8540 OpInfo.ConstraintType == TargetLowering::C_Address) 8541 return None; 8542 8543 // If this is a constraint for a single physreg, or a constraint for a 8544 // register class, find it. 8545 unsigned AssignedReg; 8546 const TargetRegisterClass *RC; 8547 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8548 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8549 // RC is unset only on failure. Return immediately. 8550 if (!RC) 8551 return None; 8552 8553 // Get the actual register value type. This is important, because the user 8554 // may have asked for (e.g.) the AX register in i32 type. We need to 8555 // remember that AX is actually i16 to get the right extension. 8556 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8557 8558 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8559 // If this is an FP operand in an integer register (or visa versa), or more 8560 // generally if the operand value disagrees with the register class we plan 8561 // to stick it in, fix the operand type. 8562 // 8563 // If this is an input value, the bitcast to the new type is done now. 8564 // Bitcast for output value is done at the end of visitInlineAsm(). 8565 if ((OpInfo.Type == InlineAsm::isOutput || 8566 OpInfo.Type == InlineAsm::isInput) && 8567 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8568 // Try to convert to the first EVT that the reg class contains. If the 8569 // types are identical size, use a bitcast to convert (e.g. two differing 8570 // vector types). Note: output bitcast is done at the end of 8571 // visitInlineAsm(). 8572 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8573 // Exclude indirect inputs while they are unsupported because the code 8574 // to perform the load is missing and thus OpInfo.CallOperand still 8575 // refers to the input address rather than the pointed-to value. 8576 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8577 OpInfo.CallOperand = 8578 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8579 OpInfo.ConstraintVT = RegVT; 8580 // If the operand is an FP value and we want it in integer registers, 8581 // use the corresponding integer type. This turns an f64 value into 8582 // i64, which can be passed with two i32 values on a 32-bit machine. 8583 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8584 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8585 if (OpInfo.Type == InlineAsm::isInput) 8586 OpInfo.CallOperand = 8587 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8588 OpInfo.ConstraintVT = VT; 8589 } 8590 } 8591 } 8592 8593 // No need to allocate a matching input constraint since the constraint it's 8594 // matching to has already been allocated. 8595 if (OpInfo.isMatchingInputConstraint()) 8596 return None; 8597 8598 EVT ValueVT = OpInfo.ConstraintVT; 8599 if (OpInfo.ConstraintVT == MVT::Other) 8600 ValueVT = RegVT; 8601 8602 // Initialize NumRegs. 8603 unsigned NumRegs = 1; 8604 if (OpInfo.ConstraintVT != MVT::Other) 8605 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8606 8607 // If this is a constraint for a specific physical register, like {r17}, 8608 // assign it now. 8609 8610 // If this associated to a specific register, initialize iterator to correct 8611 // place. If virtual, make sure we have enough registers 8612 8613 // Initialize iterator if necessary 8614 TargetRegisterClass::iterator I = RC->begin(); 8615 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8616 8617 // Do not check for single registers. 8618 if (AssignedReg) { 8619 I = std::find(I, RC->end(), AssignedReg); 8620 if (I == RC->end()) { 8621 // RC does not contain the selected register, which indicates a 8622 // mismatch between the register and the required type/bitwidth. 8623 return {AssignedReg}; 8624 } 8625 } 8626 8627 for (; NumRegs; --NumRegs, ++I) { 8628 assert(I != RC->end() && "Ran out of registers to allocate!"); 8629 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8630 Regs.push_back(R); 8631 } 8632 8633 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8634 return None; 8635 } 8636 8637 static unsigned 8638 findMatchingInlineAsmOperand(unsigned OperandNo, 8639 const std::vector<SDValue> &AsmNodeOperands) { 8640 // Scan until we find the definition we already emitted of this operand. 8641 unsigned CurOp = InlineAsm::Op_FirstOperand; 8642 for (; OperandNo; --OperandNo) { 8643 // Advance to the next operand. 8644 unsigned OpFlag = 8645 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8646 assert((InlineAsm::isRegDefKind(OpFlag) || 8647 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8648 InlineAsm::isMemKind(OpFlag)) && 8649 "Skipped past definitions?"); 8650 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8651 } 8652 return CurOp; 8653 } 8654 8655 namespace { 8656 8657 class ExtraFlags { 8658 unsigned Flags = 0; 8659 8660 public: 8661 explicit ExtraFlags(const CallBase &Call) { 8662 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8663 if (IA->hasSideEffects()) 8664 Flags |= InlineAsm::Extra_HasSideEffects; 8665 if (IA->isAlignStack()) 8666 Flags |= InlineAsm::Extra_IsAlignStack; 8667 if (Call.isConvergent()) 8668 Flags |= InlineAsm::Extra_IsConvergent; 8669 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8670 } 8671 8672 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8673 // Ideally, we would only check against memory constraints. However, the 8674 // meaning of an Other constraint can be target-specific and we can't easily 8675 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8676 // for Other constraints as well. 8677 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8678 OpInfo.ConstraintType == TargetLowering::C_Other) { 8679 if (OpInfo.Type == InlineAsm::isInput) 8680 Flags |= InlineAsm::Extra_MayLoad; 8681 else if (OpInfo.Type == InlineAsm::isOutput) 8682 Flags |= InlineAsm::Extra_MayStore; 8683 else if (OpInfo.Type == InlineAsm::isClobber) 8684 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8685 } 8686 } 8687 8688 unsigned get() const { return Flags; } 8689 }; 8690 8691 } // end anonymous namespace 8692 8693 /// visitInlineAsm - Handle a call to an InlineAsm object. 8694 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8695 const BasicBlock *EHPadBB) { 8696 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8697 8698 /// ConstraintOperands - Information about all of the constraints. 8699 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8700 8701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8702 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8703 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8704 8705 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8706 // AsmDialect, MayLoad, MayStore). 8707 bool HasSideEffect = IA->hasSideEffects(); 8708 ExtraFlags ExtraInfo(Call); 8709 8710 for (auto &T : TargetConstraints) { 8711 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8712 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8713 8714 if (OpInfo.CallOperandVal) 8715 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8716 8717 if (!HasSideEffect) 8718 HasSideEffect = OpInfo.hasMemory(TLI); 8719 8720 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8721 // FIXME: Could we compute this on OpInfo rather than T? 8722 8723 // Compute the constraint code and ConstraintType to use. 8724 TLI.ComputeConstraintToUse(T, SDValue()); 8725 8726 if (T.ConstraintType == TargetLowering::C_Immediate && 8727 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8728 // We've delayed emitting a diagnostic like the "n" constraint because 8729 // inlining could cause an integer showing up. 8730 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8731 "' expects an integer constant " 8732 "expression"); 8733 8734 ExtraInfo.update(T); 8735 } 8736 8737 // We won't need to flush pending loads if this asm doesn't touch 8738 // memory and is nonvolatile. 8739 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8740 8741 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8742 if (EmitEHLabels) { 8743 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8744 } 8745 bool IsCallBr = isa<CallBrInst>(Call); 8746 8747 if (IsCallBr || EmitEHLabels) { 8748 // If this is a callbr or invoke we need to flush pending exports since 8749 // inlineasm_br and invoke are terminators. 8750 // We need to do this before nodes are glued to the inlineasm_br node. 8751 Chain = getControlRoot(); 8752 } 8753 8754 MCSymbol *BeginLabel = nullptr; 8755 if (EmitEHLabels) { 8756 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8757 } 8758 8759 // Second pass over the constraints: compute which constraint option to use. 8760 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8761 // If this is an output operand with a matching input operand, look up the 8762 // matching input. If their types mismatch, e.g. one is an integer, the 8763 // other is floating point, or their sizes are different, flag it as an 8764 // error. 8765 if (OpInfo.hasMatchingInput()) { 8766 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8767 patchMatchingInput(OpInfo, Input, DAG); 8768 } 8769 8770 // Compute the constraint code and ConstraintType to use. 8771 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8772 8773 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8774 OpInfo.Type == InlineAsm::isClobber) || 8775 OpInfo.ConstraintType == TargetLowering::C_Address) 8776 continue; 8777 8778 // If this is a memory input, and if the operand is not indirect, do what we 8779 // need to provide an address for the memory input. 8780 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8781 !OpInfo.isIndirect) { 8782 assert((OpInfo.isMultipleAlternative || 8783 (OpInfo.Type == InlineAsm::isInput)) && 8784 "Can only indirectify direct input operands!"); 8785 8786 // Memory operands really want the address of the value. 8787 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8788 8789 // There is no longer a Value* corresponding to this operand. 8790 OpInfo.CallOperandVal = nullptr; 8791 8792 // It is now an indirect operand. 8793 OpInfo.isIndirect = true; 8794 } 8795 8796 } 8797 8798 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8799 std::vector<SDValue> AsmNodeOperands; 8800 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8801 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8802 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8803 8804 // If we have a !srcloc metadata node associated with it, we want to attach 8805 // this to the ultimately generated inline asm machineinstr. To do this, we 8806 // pass in the third operand as this (potentially null) inline asm MDNode. 8807 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8808 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8809 8810 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8811 // bits as operand 3. 8812 AsmNodeOperands.push_back(DAG.getTargetConstant( 8813 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8814 8815 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8816 // this, assign virtual and physical registers for inputs and otput. 8817 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8818 // Assign Registers. 8819 SDISelAsmOperandInfo &RefOpInfo = 8820 OpInfo.isMatchingInputConstraint() 8821 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8822 : OpInfo; 8823 const auto RegError = 8824 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8825 if (RegError) { 8826 const MachineFunction &MF = DAG.getMachineFunction(); 8827 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8828 const char *RegName = TRI.getName(RegError.value()); 8829 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8830 "' allocated for constraint '" + 8831 Twine(OpInfo.ConstraintCode) + 8832 "' does not match required type"); 8833 return; 8834 } 8835 8836 auto DetectWriteToReservedRegister = [&]() { 8837 const MachineFunction &MF = DAG.getMachineFunction(); 8838 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8839 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8840 if (Register::isPhysicalRegister(Reg) && 8841 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8842 const char *RegName = TRI.getName(Reg); 8843 emitInlineAsmError(Call, "write to reserved register '" + 8844 Twine(RegName) + "'"); 8845 return true; 8846 } 8847 } 8848 return false; 8849 }; 8850 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8851 (OpInfo.Type == InlineAsm::isInput && 8852 !OpInfo.isMatchingInputConstraint())) && 8853 "Only address as input operand is allowed."); 8854 8855 switch (OpInfo.Type) { 8856 case InlineAsm::isOutput: 8857 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8858 unsigned ConstraintID = 8859 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8860 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8861 "Failed to convert memory constraint code to constraint id."); 8862 8863 // Add information to the INLINEASM node to know about this output. 8864 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8865 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8866 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8867 MVT::i32)); 8868 AsmNodeOperands.push_back(OpInfo.CallOperand); 8869 } else { 8870 // Otherwise, this outputs to a register (directly for C_Register / 8871 // C_RegisterClass, and a target-defined fashion for 8872 // C_Immediate/C_Other). Find a register that we can use. 8873 if (OpInfo.AssignedRegs.Regs.empty()) { 8874 emitInlineAsmError( 8875 Call, "couldn't allocate output register for constraint '" + 8876 Twine(OpInfo.ConstraintCode) + "'"); 8877 return; 8878 } 8879 8880 if (DetectWriteToReservedRegister()) 8881 return; 8882 8883 // Add information to the INLINEASM node to know that this register is 8884 // set. 8885 OpInfo.AssignedRegs.AddInlineAsmOperands( 8886 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8887 : InlineAsm::Kind_RegDef, 8888 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8889 } 8890 break; 8891 8892 case InlineAsm::isInput: 8893 case InlineAsm::isLabel: { 8894 SDValue InOperandVal = OpInfo.CallOperand; 8895 8896 if (OpInfo.isMatchingInputConstraint()) { 8897 // If this is required to match an output register we have already set, 8898 // just use its register. 8899 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8900 AsmNodeOperands); 8901 unsigned OpFlag = 8902 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8903 if (InlineAsm::isRegDefKind(OpFlag) || 8904 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8905 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8906 if (OpInfo.isIndirect) { 8907 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8908 emitInlineAsmError(Call, "inline asm not supported yet: " 8909 "don't know how to handle tied " 8910 "indirect register inputs"); 8911 return; 8912 } 8913 8914 SmallVector<unsigned, 4> Regs; 8915 MachineFunction &MF = DAG.getMachineFunction(); 8916 MachineRegisterInfo &MRI = MF.getRegInfo(); 8917 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8918 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8919 Register TiedReg = R->getReg(); 8920 MVT RegVT = R->getSimpleValueType(0); 8921 const TargetRegisterClass *RC = 8922 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8923 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8924 : TRI.getMinimalPhysRegClass(TiedReg); 8925 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8926 for (unsigned i = 0; i != NumRegs; ++i) 8927 Regs.push_back(MRI.createVirtualRegister(RC)); 8928 8929 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8930 8931 SDLoc dl = getCurSDLoc(); 8932 // Use the produced MatchedRegs object to 8933 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8934 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8935 true, OpInfo.getMatchedOperand(), dl, 8936 DAG, AsmNodeOperands); 8937 break; 8938 } 8939 8940 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8941 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8942 "Unexpected number of operands"); 8943 // Add information to the INLINEASM node to know about this input. 8944 // See InlineAsm.h isUseOperandTiedToDef. 8945 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8946 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8947 OpInfo.getMatchedOperand()); 8948 AsmNodeOperands.push_back(DAG.getTargetConstant( 8949 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8950 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8951 break; 8952 } 8953 8954 // Treat indirect 'X' constraint as memory. 8955 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8956 OpInfo.isIndirect) 8957 OpInfo.ConstraintType = TargetLowering::C_Memory; 8958 8959 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8960 OpInfo.ConstraintType == TargetLowering::C_Other) { 8961 std::vector<SDValue> Ops; 8962 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8963 Ops, DAG); 8964 if (Ops.empty()) { 8965 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8966 if (isa<ConstantSDNode>(InOperandVal)) { 8967 emitInlineAsmError(Call, "value out of range for constraint '" + 8968 Twine(OpInfo.ConstraintCode) + "'"); 8969 return; 8970 } 8971 8972 emitInlineAsmError(Call, 8973 "invalid operand for inline asm constraint '" + 8974 Twine(OpInfo.ConstraintCode) + "'"); 8975 return; 8976 } 8977 8978 // Add information to the INLINEASM node to know about this input. 8979 unsigned ResOpType = 8980 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8981 AsmNodeOperands.push_back(DAG.getTargetConstant( 8982 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8983 llvm::append_range(AsmNodeOperands, Ops); 8984 break; 8985 } 8986 8987 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8988 OpInfo.ConstraintType == TargetLowering::C_Address) { 8989 assert((OpInfo.isIndirect || 8990 OpInfo.ConstraintType != TargetLowering::C_Memory) && 8991 "Operand must be indirect to be a mem!"); 8992 assert(InOperandVal.getValueType() == 8993 TLI.getPointerTy(DAG.getDataLayout()) && 8994 "Memory operands expect pointer values"); 8995 8996 unsigned ConstraintID = 8997 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8998 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8999 "Failed to convert memory constraint code to constraint id."); 9000 9001 // Add information to the INLINEASM node to know about this input. 9002 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 9003 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 9004 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9005 getCurSDLoc(), 9006 MVT::i32)); 9007 AsmNodeOperands.push_back(InOperandVal); 9008 break; 9009 } 9010 9011 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9012 OpInfo.ConstraintType == TargetLowering::C_Register) && 9013 "Unknown constraint type!"); 9014 9015 // TODO: Support this. 9016 if (OpInfo.isIndirect) { 9017 emitInlineAsmError( 9018 Call, "Don't know how to handle indirect register inputs yet " 9019 "for constraint '" + 9020 Twine(OpInfo.ConstraintCode) + "'"); 9021 return; 9022 } 9023 9024 // Copy the input into the appropriate registers. 9025 if (OpInfo.AssignedRegs.Regs.empty()) { 9026 emitInlineAsmError(Call, 9027 "couldn't allocate input reg for constraint '" + 9028 Twine(OpInfo.ConstraintCode) + "'"); 9029 return; 9030 } 9031 9032 if (DetectWriteToReservedRegister()) 9033 return; 9034 9035 SDLoc dl = getCurSDLoc(); 9036 9037 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9038 &Call); 9039 9040 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9041 dl, DAG, AsmNodeOperands); 9042 break; 9043 } 9044 case InlineAsm::isClobber: 9045 // Add the clobbered value to the operand list, so that the register 9046 // allocator is aware that the physreg got clobbered. 9047 if (!OpInfo.AssignedRegs.Regs.empty()) 9048 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9049 false, 0, getCurSDLoc(), DAG, 9050 AsmNodeOperands); 9051 break; 9052 } 9053 } 9054 9055 // Finish up input operands. Set the input chain and add the flag last. 9056 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9057 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9058 9059 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9060 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9061 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9062 Flag = Chain.getValue(1); 9063 9064 // Do additional work to generate outputs. 9065 9066 SmallVector<EVT, 1> ResultVTs; 9067 SmallVector<SDValue, 1> ResultValues; 9068 SmallVector<SDValue, 8> OutChains; 9069 9070 llvm::Type *CallResultType = Call.getType(); 9071 ArrayRef<Type *> ResultTypes; 9072 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9073 ResultTypes = StructResult->elements(); 9074 else if (!CallResultType->isVoidTy()) 9075 ResultTypes = makeArrayRef(CallResultType); 9076 9077 auto CurResultType = ResultTypes.begin(); 9078 auto handleRegAssign = [&](SDValue V) { 9079 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9080 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9081 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9082 ++CurResultType; 9083 // If the type of the inline asm call site return value is different but has 9084 // same size as the type of the asm output bitcast it. One example of this 9085 // is for vectors with different width / number of elements. This can 9086 // happen for register classes that can contain multiple different value 9087 // types. The preg or vreg allocated may not have the same VT as was 9088 // expected. 9089 // 9090 // This can also happen for a return value that disagrees with the register 9091 // class it is put in, eg. a double in a general-purpose register on a 9092 // 32-bit machine. 9093 if (ResultVT != V.getValueType() && 9094 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9095 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9096 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9097 V.getValueType().isInteger()) { 9098 // If a result value was tied to an input value, the computed result 9099 // may have a wider width than the expected result. Extract the 9100 // relevant portion. 9101 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9102 } 9103 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9104 ResultVTs.push_back(ResultVT); 9105 ResultValues.push_back(V); 9106 }; 9107 9108 // Deal with output operands. 9109 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9110 if (OpInfo.Type == InlineAsm::isOutput) { 9111 SDValue Val; 9112 // Skip trivial output operands. 9113 if (OpInfo.AssignedRegs.Regs.empty()) 9114 continue; 9115 9116 switch (OpInfo.ConstraintType) { 9117 case TargetLowering::C_Register: 9118 case TargetLowering::C_RegisterClass: 9119 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9120 Chain, &Flag, &Call); 9121 break; 9122 case TargetLowering::C_Immediate: 9123 case TargetLowering::C_Other: 9124 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9125 OpInfo, DAG); 9126 break; 9127 case TargetLowering::C_Memory: 9128 break; // Already handled. 9129 case TargetLowering::C_Address: 9130 break; // Silence warning. 9131 case TargetLowering::C_Unknown: 9132 assert(false && "Unexpected unknown constraint"); 9133 } 9134 9135 // Indirect output manifest as stores. Record output chains. 9136 if (OpInfo.isIndirect) { 9137 const Value *Ptr = OpInfo.CallOperandVal; 9138 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9139 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9140 MachinePointerInfo(Ptr)); 9141 OutChains.push_back(Store); 9142 } else { 9143 // generate CopyFromRegs to associated registers. 9144 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9145 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9146 for (const SDValue &V : Val->op_values()) 9147 handleRegAssign(V); 9148 } else 9149 handleRegAssign(Val); 9150 } 9151 } 9152 } 9153 9154 // Set results. 9155 if (!ResultValues.empty()) { 9156 assert(CurResultType == ResultTypes.end() && 9157 "Mismatch in number of ResultTypes"); 9158 assert(ResultValues.size() == ResultTypes.size() && 9159 "Mismatch in number of output operands in asm result"); 9160 9161 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9162 DAG.getVTList(ResultVTs), ResultValues); 9163 setValue(&Call, V); 9164 } 9165 9166 // Collect store chains. 9167 if (!OutChains.empty()) 9168 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9169 9170 if (EmitEHLabels) { 9171 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9172 } 9173 9174 // Only Update Root if inline assembly has a memory effect. 9175 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9176 EmitEHLabels) 9177 DAG.setRoot(Chain); 9178 } 9179 9180 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9181 const Twine &Message) { 9182 LLVMContext &Ctx = *DAG.getContext(); 9183 Ctx.emitError(&Call, Message); 9184 9185 // Make sure we leave the DAG in a valid state 9186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9187 SmallVector<EVT, 1> ValueVTs; 9188 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9189 9190 if (ValueVTs.empty()) 9191 return; 9192 9193 SmallVector<SDValue, 1> Ops; 9194 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9195 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9196 9197 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9198 } 9199 9200 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9201 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9202 MVT::Other, getRoot(), 9203 getValue(I.getArgOperand(0)), 9204 DAG.getSrcValue(I.getArgOperand(0)))); 9205 } 9206 9207 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9209 const DataLayout &DL = DAG.getDataLayout(); 9210 SDValue V = DAG.getVAArg( 9211 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9212 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9213 DL.getABITypeAlign(I.getType()).value()); 9214 DAG.setRoot(V.getValue(1)); 9215 9216 if (I.getType()->isPointerTy()) 9217 V = DAG.getPtrExtOrTrunc( 9218 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9219 setValue(&I, V); 9220 } 9221 9222 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9223 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9224 MVT::Other, getRoot(), 9225 getValue(I.getArgOperand(0)), 9226 DAG.getSrcValue(I.getArgOperand(0)))); 9227 } 9228 9229 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9230 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9231 MVT::Other, getRoot(), 9232 getValue(I.getArgOperand(0)), 9233 getValue(I.getArgOperand(1)), 9234 DAG.getSrcValue(I.getArgOperand(0)), 9235 DAG.getSrcValue(I.getArgOperand(1)))); 9236 } 9237 9238 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9239 const Instruction &I, 9240 SDValue Op) { 9241 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9242 if (!Range) 9243 return Op; 9244 9245 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9246 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9247 return Op; 9248 9249 APInt Lo = CR.getUnsignedMin(); 9250 if (!Lo.isMinValue()) 9251 return Op; 9252 9253 APInt Hi = CR.getUnsignedMax(); 9254 unsigned Bits = std::max(Hi.getActiveBits(), 9255 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9256 9257 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9258 9259 SDLoc SL = getCurSDLoc(); 9260 9261 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9262 DAG.getValueType(SmallVT)); 9263 unsigned NumVals = Op.getNode()->getNumValues(); 9264 if (NumVals == 1) 9265 return ZExt; 9266 9267 SmallVector<SDValue, 4> Ops; 9268 9269 Ops.push_back(ZExt); 9270 for (unsigned I = 1; I != NumVals; ++I) 9271 Ops.push_back(Op.getValue(I)); 9272 9273 return DAG.getMergeValues(Ops, SL); 9274 } 9275 9276 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9277 /// the call being lowered. 9278 /// 9279 /// This is a helper for lowering intrinsics that follow a target calling 9280 /// convention or require stack pointer adjustment. Only a subset of the 9281 /// intrinsic's operands need to participate in the calling convention. 9282 void SelectionDAGBuilder::populateCallLoweringInfo( 9283 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9284 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9285 bool IsPatchPoint) { 9286 TargetLowering::ArgListTy Args; 9287 Args.reserve(NumArgs); 9288 9289 // Populate the argument list. 9290 // Attributes for args start at offset 1, after the return attribute. 9291 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9292 ArgI != ArgE; ++ArgI) { 9293 const Value *V = Call->getOperand(ArgI); 9294 9295 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9296 9297 TargetLowering::ArgListEntry Entry; 9298 Entry.Node = getValue(V); 9299 Entry.Ty = V->getType(); 9300 Entry.setAttributes(Call, ArgI); 9301 Args.push_back(Entry); 9302 } 9303 9304 CLI.setDebugLoc(getCurSDLoc()) 9305 .setChain(getRoot()) 9306 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9307 .setDiscardResult(Call->use_empty()) 9308 .setIsPatchPoint(IsPatchPoint) 9309 .setIsPreallocated( 9310 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9311 } 9312 9313 /// Add a stack map intrinsic call's live variable operands to a stackmap 9314 /// or patchpoint target node's operand list. 9315 /// 9316 /// Constants are converted to TargetConstants purely as an optimization to 9317 /// avoid constant materialization and register allocation. 9318 /// 9319 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9320 /// generate addess computation nodes, and so FinalizeISel can convert the 9321 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9322 /// address materialization and register allocation, but may also be required 9323 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9324 /// alloca in the entry block, then the runtime may assume that the alloca's 9325 /// StackMap location can be read immediately after compilation and that the 9326 /// location is valid at any point during execution (this is similar to the 9327 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9328 /// only available in a register, then the runtime would need to trap when 9329 /// execution reaches the StackMap in order to read the alloca's location. 9330 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9331 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9332 SelectionDAGBuilder &Builder) { 9333 SelectionDAG &DAG = Builder.DAG; 9334 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9335 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9336 9337 // Things on the stack are pointer-typed, meaning that they are already 9338 // legal and can be emitted directly to target nodes. 9339 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9340 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9341 } else { 9342 // Otherwise emit a target independent node to be legalised. 9343 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9344 } 9345 } 9346 } 9347 9348 /// Lower llvm.experimental.stackmap. 9349 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9350 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9351 // [live variables...]) 9352 9353 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9354 9355 SDValue Chain, InFlag, Callee, NullPtr; 9356 SmallVector<SDValue, 32> Ops; 9357 9358 SDLoc DL = getCurSDLoc(); 9359 Callee = getValue(CI.getCalledOperand()); 9360 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9361 9362 // The stackmap intrinsic only records the live variables (the arguments 9363 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9364 // intrinsic, this won't be lowered to a function call. This means we don't 9365 // have to worry about calling conventions and target specific lowering code. 9366 // Instead we perform the call lowering right here. 9367 // 9368 // chain, flag = CALLSEQ_START(chain, 0, 0) 9369 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9370 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9371 // 9372 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9373 InFlag = Chain.getValue(1); 9374 9375 // Add the STACKMAP operands, starting with DAG house-keeping. 9376 Ops.push_back(Chain); 9377 Ops.push_back(InFlag); 9378 9379 // Add the <id>, <numShadowBytes> operands. 9380 // 9381 // These do not require legalisation, and can be emitted directly to target 9382 // constant nodes. 9383 SDValue ID = getValue(CI.getArgOperand(0)); 9384 assert(ID.getValueType() == MVT::i64); 9385 SDValue IDConst = DAG.getTargetConstant( 9386 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9387 Ops.push_back(IDConst); 9388 9389 SDValue Shad = getValue(CI.getArgOperand(1)); 9390 assert(Shad.getValueType() == MVT::i32); 9391 SDValue ShadConst = DAG.getTargetConstant( 9392 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9393 Ops.push_back(ShadConst); 9394 9395 // Add the live variables. 9396 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9397 9398 // Create the STACKMAP node. 9399 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9400 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9401 InFlag = Chain.getValue(1); 9402 9403 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9404 9405 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9406 9407 // Set the root to the target-lowered call chain. 9408 DAG.setRoot(Chain); 9409 9410 // Inform the Frame Information that we have a stackmap in this function. 9411 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9412 } 9413 9414 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9415 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9416 const BasicBlock *EHPadBB) { 9417 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9418 // i32 <numBytes>, 9419 // i8* <target>, 9420 // i32 <numArgs>, 9421 // [Args...], 9422 // [live variables...]) 9423 9424 CallingConv::ID CC = CB.getCallingConv(); 9425 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9426 bool HasDef = !CB.getType()->isVoidTy(); 9427 SDLoc dl = getCurSDLoc(); 9428 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9429 9430 // Handle immediate and symbolic callees. 9431 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9432 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9433 /*isTarget=*/true); 9434 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9435 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9436 SDLoc(SymbolicCallee), 9437 SymbolicCallee->getValueType(0)); 9438 9439 // Get the real number of arguments participating in the call <numArgs> 9440 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9441 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9442 9443 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9444 // Intrinsics include all meta-operands up to but not including CC. 9445 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9446 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9447 "Not enough arguments provided to the patchpoint intrinsic"); 9448 9449 // For AnyRegCC the arguments are lowered later on manually. 9450 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9451 Type *ReturnTy = 9452 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9453 9454 TargetLowering::CallLoweringInfo CLI(DAG); 9455 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9456 ReturnTy, true); 9457 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9458 9459 SDNode *CallEnd = Result.second.getNode(); 9460 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9461 CallEnd = CallEnd->getOperand(0).getNode(); 9462 9463 /// Get a call instruction from the call sequence chain. 9464 /// Tail calls are not allowed. 9465 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9466 "Expected a callseq node."); 9467 SDNode *Call = CallEnd->getOperand(0).getNode(); 9468 bool HasGlue = Call->getGluedNode(); 9469 9470 // Replace the target specific call node with the patchable intrinsic. 9471 SmallVector<SDValue, 8> Ops; 9472 9473 // Push the chain. 9474 Ops.push_back(*(Call->op_begin())); 9475 9476 // Optionally, push the glue (if any). 9477 if (HasGlue) 9478 Ops.push_back(*(Call->op_end() - 1)); 9479 9480 // Push the register mask info. 9481 if (HasGlue) 9482 Ops.push_back(*(Call->op_end() - 2)); 9483 else 9484 Ops.push_back(*(Call->op_end() - 1)); 9485 9486 // Add the <id> and <numBytes> constants. 9487 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9488 Ops.push_back(DAG.getTargetConstant( 9489 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9490 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9491 Ops.push_back(DAG.getTargetConstant( 9492 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9493 MVT::i32)); 9494 9495 // Add the callee. 9496 Ops.push_back(Callee); 9497 9498 // Adjust <numArgs> to account for any arguments that have been passed on the 9499 // stack instead. 9500 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9501 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9502 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9503 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9504 9505 // Add the calling convention 9506 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9507 9508 // Add the arguments we omitted previously. The register allocator should 9509 // place these in any free register. 9510 if (IsAnyRegCC) 9511 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9512 Ops.push_back(getValue(CB.getArgOperand(i))); 9513 9514 // Push the arguments from the call instruction. 9515 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9516 Ops.append(Call->op_begin() + 2, e); 9517 9518 // Push live variables for the stack map. 9519 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9520 9521 SDVTList NodeTys; 9522 if (IsAnyRegCC && HasDef) { 9523 // Create the return types based on the intrinsic definition 9524 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9525 SmallVector<EVT, 3> ValueVTs; 9526 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9527 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9528 9529 // There is always a chain and a glue type at the end 9530 ValueVTs.push_back(MVT::Other); 9531 ValueVTs.push_back(MVT::Glue); 9532 NodeTys = DAG.getVTList(ValueVTs); 9533 } else 9534 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9535 9536 // Replace the target specific call node with a PATCHPOINT node. 9537 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9538 9539 // Update the NodeMap. 9540 if (HasDef) { 9541 if (IsAnyRegCC) 9542 setValue(&CB, SDValue(PPV.getNode(), 0)); 9543 else 9544 setValue(&CB, Result.first); 9545 } 9546 9547 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9548 // call sequence. Furthermore the location of the chain and glue can change 9549 // when the AnyReg calling convention is used and the intrinsic returns a 9550 // value. 9551 if (IsAnyRegCC && HasDef) { 9552 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9553 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9554 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9555 } else 9556 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9557 DAG.DeleteNode(Call); 9558 9559 // Inform the Frame Information that we have a patchpoint in this function. 9560 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9561 } 9562 9563 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9564 unsigned Intrinsic) { 9565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9566 SDValue Op1 = getValue(I.getArgOperand(0)); 9567 SDValue Op2; 9568 if (I.arg_size() > 1) 9569 Op2 = getValue(I.getArgOperand(1)); 9570 SDLoc dl = getCurSDLoc(); 9571 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9572 SDValue Res; 9573 SDNodeFlags SDFlags; 9574 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9575 SDFlags.copyFMF(*FPMO); 9576 9577 switch (Intrinsic) { 9578 case Intrinsic::vector_reduce_fadd: 9579 if (SDFlags.hasAllowReassociation()) 9580 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9581 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9582 SDFlags); 9583 else 9584 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9585 break; 9586 case Intrinsic::vector_reduce_fmul: 9587 if (SDFlags.hasAllowReassociation()) 9588 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9589 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9590 SDFlags); 9591 else 9592 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9593 break; 9594 case Intrinsic::vector_reduce_add: 9595 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9596 break; 9597 case Intrinsic::vector_reduce_mul: 9598 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9599 break; 9600 case Intrinsic::vector_reduce_and: 9601 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9602 break; 9603 case Intrinsic::vector_reduce_or: 9604 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9605 break; 9606 case Intrinsic::vector_reduce_xor: 9607 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9608 break; 9609 case Intrinsic::vector_reduce_smax: 9610 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9611 break; 9612 case Intrinsic::vector_reduce_smin: 9613 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9614 break; 9615 case Intrinsic::vector_reduce_umax: 9616 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9617 break; 9618 case Intrinsic::vector_reduce_umin: 9619 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9620 break; 9621 case Intrinsic::vector_reduce_fmax: 9622 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9623 break; 9624 case Intrinsic::vector_reduce_fmin: 9625 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9626 break; 9627 default: 9628 llvm_unreachable("Unhandled vector reduce intrinsic"); 9629 } 9630 setValue(&I, Res); 9631 } 9632 9633 /// Returns an AttributeList representing the attributes applied to the return 9634 /// value of the given call. 9635 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9636 SmallVector<Attribute::AttrKind, 2> Attrs; 9637 if (CLI.RetSExt) 9638 Attrs.push_back(Attribute::SExt); 9639 if (CLI.RetZExt) 9640 Attrs.push_back(Attribute::ZExt); 9641 if (CLI.IsInReg) 9642 Attrs.push_back(Attribute::InReg); 9643 9644 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9645 Attrs); 9646 } 9647 9648 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9649 /// implementation, which just calls LowerCall. 9650 /// FIXME: When all targets are 9651 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9652 std::pair<SDValue, SDValue> 9653 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9654 // Handle the incoming return values from the call. 9655 CLI.Ins.clear(); 9656 Type *OrigRetTy = CLI.RetTy; 9657 SmallVector<EVT, 4> RetTys; 9658 SmallVector<uint64_t, 4> Offsets; 9659 auto &DL = CLI.DAG.getDataLayout(); 9660 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9661 9662 if (CLI.IsPostTypeLegalization) { 9663 // If we are lowering a libcall after legalization, split the return type. 9664 SmallVector<EVT, 4> OldRetTys; 9665 SmallVector<uint64_t, 4> OldOffsets; 9666 RetTys.swap(OldRetTys); 9667 Offsets.swap(OldOffsets); 9668 9669 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9670 EVT RetVT = OldRetTys[i]; 9671 uint64_t Offset = OldOffsets[i]; 9672 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9673 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9674 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9675 RetTys.append(NumRegs, RegisterVT); 9676 for (unsigned j = 0; j != NumRegs; ++j) 9677 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9678 } 9679 } 9680 9681 SmallVector<ISD::OutputArg, 4> Outs; 9682 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9683 9684 bool CanLowerReturn = 9685 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9686 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9687 9688 SDValue DemoteStackSlot; 9689 int DemoteStackIdx = -100; 9690 if (!CanLowerReturn) { 9691 // FIXME: equivalent assert? 9692 // assert(!CS.hasInAllocaArgument() && 9693 // "sret demotion is incompatible with inalloca"); 9694 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9695 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9696 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9697 DemoteStackIdx = 9698 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9699 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9700 DL.getAllocaAddrSpace()); 9701 9702 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9703 ArgListEntry Entry; 9704 Entry.Node = DemoteStackSlot; 9705 Entry.Ty = StackSlotPtrType; 9706 Entry.IsSExt = false; 9707 Entry.IsZExt = false; 9708 Entry.IsInReg = false; 9709 Entry.IsSRet = true; 9710 Entry.IsNest = false; 9711 Entry.IsByVal = false; 9712 Entry.IsByRef = false; 9713 Entry.IsReturned = false; 9714 Entry.IsSwiftSelf = false; 9715 Entry.IsSwiftAsync = false; 9716 Entry.IsSwiftError = false; 9717 Entry.IsCFGuardTarget = false; 9718 Entry.Alignment = Alignment; 9719 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9720 CLI.NumFixedArgs += 1; 9721 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9722 9723 // sret demotion isn't compatible with tail-calls, since the sret argument 9724 // points into the callers stack frame. 9725 CLI.IsTailCall = false; 9726 } else { 9727 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9728 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9729 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9730 ISD::ArgFlagsTy Flags; 9731 if (NeedsRegBlock) { 9732 Flags.setInConsecutiveRegs(); 9733 if (I == RetTys.size() - 1) 9734 Flags.setInConsecutiveRegsLast(); 9735 } 9736 EVT VT = RetTys[I]; 9737 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9738 CLI.CallConv, VT); 9739 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9740 CLI.CallConv, VT); 9741 for (unsigned i = 0; i != NumRegs; ++i) { 9742 ISD::InputArg MyFlags; 9743 MyFlags.Flags = Flags; 9744 MyFlags.VT = RegisterVT; 9745 MyFlags.ArgVT = VT; 9746 MyFlags.Used = CLI.IsReturnValueUsed; 9747 if (CLI.RetTy->isPointerTy()) { 9748 MyFlags.Flags.setPointer(); 9749 MyFlags.Flags.setPointerAddrSpace( 9750 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9751 } 9752 if (CLI.RetSExt) 9753 MyFlags.Flags.setSExt(); 9754 if (CLI.RetZExt) 9755 MyFlags.Flags.setZExt(); 9756 if (CLI.IsInReg) 9757 MyFlags.Flags.setInReg(); 9758 CLI.Ins.push_back(MyFlags); 9759 } 9760 } 9761 } 9762 9763 // We push in swifterror return as the last element of CLI.Ins. 9764 ArgListTy &Args = CLI.getArgs(); 9765 if (supportSwiftError()) { 9766 for (const ArgListEntry &Arg : Args) { 9767 if (Arg.IsSwiftError) { 9768 ISD::InputArg MyFlags; 9769 MyFlags.VT = getPointerTy(DL); 9770 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9771 MyFlags.Flags.setSwiftError(); 9772 CLI.Ins.push_back(MyFlags); 9773 } 9774 } 9775 } 9776 9777 // Handle all of the outgoing arguments. 9778 CLI.Outs.clear(); 9779 CLI.OutVals.clear(); 9780 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9781 SmallVector<EVT, 4> ValueVTs; 9782 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9783 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9784 Type *FinalType = Args[i].Ty; 9785 if (Args[i].IsByVal) 9786 FinalType = Args[i].IndirectType; 9787 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9788 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9789 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9790 ++Value) { 9791 EVT VT = ValueVTs[Value]; 9792 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9793 SDValue Op = SDValue(Args[i].Node.getNode(), 9794 Args[i].Node.getResNo() + Value); 9795 ISD::ArgFlagsTy Flags; 9796 9797 // Certain targets (such as MIPS), may have a different ABI alignment 9798 // for a type depending on the context. Give the target a chance to 9799 // specify the alignment it wants. 9800 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9801 Flags.setOrigAlign(OriginalAlignment); 9802 9803 if (Args[i].Ty->isPointerTy()) { 9804 Flags.setPointer(); 9805 Flags.setPointerAddrSpace( 9806 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9807 } 9808 if (Args[i].IsZExt) 9809 Flags.setZExt(); 9810 if (Args[i].IsSExt) 9811 Flags.setSExt(); 9812 if (Args[i].IsInReg) { 9813 // If we are using vectorcall calling convention, a structure that is 9814 // passed InReg - is surely an HVA 9815 if (CLI.CallConv == CallingConv::X86_VectorCall && 9816 isa<StructType>(FinalType)) { 9817 // The first value of a structure is marked 9818 if (0 == Value) 9819 Flags.setHvaStart(); 9820 Flags.setHva(); 9821 } 9822 // Set InReg Flag 9823 Flags.setInReg(); 9824 } 9825 if (Args[i].IsSRet) 9826 Flags.setSRet(); 9827 if (Args[i].IsSwiftSelf) 9828 Flags.setSwiftSelf(); 9829 if (Args[i].IsSwiftAsync) 9830 Flags.setSwiftAsync(); 9831 if (Args[i].IsSwiftError) 9832 Flags.setSwiftError(); 9833 if (Args[i].IsCFGuardTarget) 9834 Flags.setCFGuardTarget(); 9835 if (Args[i].IsByVal) 9836 Flags.setByVal(); 9837 if (Args[i].IsByRef) 9838 Flags.setByRef(); 9839 if (Args[i].IsPreallocated) { 9840 Flags.setPreallocated(); 9841 // Set the byval flag for CCAssignFn callbacks that don't know about 9842 // preallocated. This way we can know how many bytes we should've 9843 // allocated and how many bytes a callee cleanup function will pop. If 9844 // we port preallocated to more targets, we'll have to add custom 9845 // preallocated handling in the various CC lowering callbacks. 9846 Flags.setByVal(); 9847 } 9848 if (Args[i].IsInAlloca) { 9849 Flags.setInAlloca(); 9850 // Set the byval flag for CCAssignFn callbacks that don't know about 9851 // inalloca. This way we can know how many bytes we should've allocated 9852 // and how many bytes a callee cleanup function will pop. If we port 9853 // inalloca to more targets, we'll have to add custom inalloca handling 9854 // in the various CC lowering callbacks. 9855 Flags.setByVal(); 9856 } 9857 Align MemAlign; 9858 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9859 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9860 Flags.setByValSize(FrameSize); 9861 9862 // info is not there but there are cases it cannot get right. 9863 if (auto MA = Args[i].Alignment) 9864 MemAlign = *MA; 9865 else 9866 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9867 } else if (auto MA = Args[i].Alignment) { 9868 MemAlign = *MA; 9869 } else { 9870 MemAlign = OriginalAlignment; 9871 } 9872 Flags.setMemAlign(MemAlign); 9873 if (Args[i].IsNest) 9874 Flags.setNest(); 9875 if (NeedsRegBlock) 9876 Flags.setInConsecutiveRegs(); 9877 9878 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9879 CLI.CallConv, VT); 9880 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9881 CLI.CallConv, VT); 9882 SmallVector<SDValue, 4> Parts(NumParts); 9883 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9884 9885 if (Args[i].IsSExt) 9886 ExtendKind = ISD::SIGN_EXTEND; 9887 else if (Args[i].IsZExt) 9888 ExtendKind = ISD::ZERO_EXTEND; 9889 9890 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9891 // for now. 9892 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9893 CanLowerReturn) { 9894 assert((CLI.RetTy == Args[i].Ty || 9895 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9896 CLI.RetTy->getPointerAddressSpace() == 9897 Args[i].Ty->getPointerAddressSpace())) && 9898 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9899 // Before passing 'returned' to the target lowering code, ensure that 9900 // either the register MVT and the actual EVT are the same size or that 9901 // the return value and argument are extended in the same way; in these 9902 // cases it's safe to pass the argument register value unchanged as the 9903 // return register value (although it's at the target's option whether 9904 // to do so) 9905 // TODO: allow code generation to take advantage of partially preserved 9906 // registers rather than clobbering the entire register when the 9907 // parameter extension method is not compatible with the return 9908 // extension method 9909 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9910 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9911 CLI.RetZExt == Args[i].IsZExt)) 9912 Flags.setReturned(); 9913 } 9914 9915 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9916 CLI.CallConv, ExtendKind); 9917 9918 for (unsigned j = 0; j != NumParts; ++j) { 9919 // if it isn't first piece, alignment must be 1 9920 // For scalable vectors the scalable part is currently handled 9921 // by individual targets, so we just use the known minimum size here. 9922 ISD::OutputArg MyFlags( 9923 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9924 i < CLI.NumFixedArgs, i, 9925 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9926 if (NumParts > 1 && j == 0) 9927 MyFlags.Flags.setSplit(); 9928 else if (j != 0) { 9929 MyFlags.Flags.setOrigAlign(Align(1)); 9930 if (j == NumParts - 1) 9931 MyFlags.Flags.setSplitEnd(); 9932 } 9933 9934 CLI.Outs.push_back(MyFlags); 9935 CLI.OutVals.push_back(Parts[j]); 9936 } 9937 9938 if (NeedsRegBlock && Value == NumValues - 1) 9939 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9940 } 9941 } 9942 9943 SmallVector<SDValue, 4> InVals; 9944 CLI.Chain = LowerCall(CLI, InVals); 9945 9946 // Update CLI.InVals to use outside of this function. 9947 CLI.InVals = InVals; 9948 9949 // Verify that the target's LowerCall behaved as expected. 9950 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9951 "LowerCall didn't return a valid chain!"); 9952 assert((!CLI.IsTailCall || InVals.empty()) && 9953 "LowerCall emitted a return value for a tail call!"); 9954 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9955 "LowerCall didn't emit the correct number of values!"); 9956 9957 // For a tail call, the return value is merely live-out and there aren't 9958 // any nodes in the DAG representing it. Return a special value to 9959 // indicate that a tail call has been emitted and no more Instructions 9960 // should be processed in the current block. 9961 if (CLI.IsTailCall) { 9962 CLI.DAG.setRoot(CLI.Chain); 9963 return std::make_pair(SDValue(), SDValue()); 9964 } 9965 9966 #ifndef NDEBUG 9967 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9968 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9969 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9970 "LowerCall emitted a value with the wrong type!"); 9971 } 9972 #endif 9973 9974 SmallVector<SDValue, 4> ReturnValues; 9975 if (!CanLowerReturn) { 9976 // The instruction result is the result of loading from the 9977 // hidden sret parameter. 9978 SmallVector<EVT, 1> PVTs; 9979 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9980 9981 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9982 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9983 EVT PtrVT = PVTs[0]; 9984 9985 unsigned NumValues = RetTys.size(); 9986 ReturnValues.resize(NumValues); 9987 SmallVector<SDValue, 4> Chains(NumValues); 9988 9989 // An aggregate return value cannot wrap around the address space, so 9990 // offsets to its parts don't wrap either. 9991 SDNodeFlags Flags; 9992 Flags.setNoUnsignedWrap(true); 9993 9994 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9995 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9996 for (unsigned i = 0; i < NumValues; ++i) { 9997 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9998 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9999 PtrVT), Flags); 10000 SDValue L = CLI.DAG.getLoad( 10001 RetTys[i], CLI.DL, CLI.Chain, Add, 10002 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10003 DemoteStackIdx, Offsets[i]), 10004 HiddenSRetAlign); 10005 ReturnValues[i] = L; 10006 Chains[i] = L.getValue(1); 10007 } 10008 10009 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10010 } else { 10011 // Collect the legal value parts into potentially illegal values 10012 // that correspond to the original function's return values. 10013 Optional<ISD::NodeType> AssertOp; 10014 if (CLI.RetSExt) 10015 AssertOp = ISD::AssertSext; 10016 else if (CLI.RetZExt) 10017 AssertOp = ISD::AssertZext; 10018 unsigned CurReg = 0; 10019 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10020 EVT VT = RetTys[I]; 10021 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10022 CLI.CallConv, VT); 10023 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10024 CLI.CallConv, VT); 10025 10026 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10027 NumRegs, RegisterVT, VT, nullptr, 10028 CLI.CallConv, AssertOp)); 10029 CurReg += NumRegs; 10030 } 10031 10032 // For a function returning void, there is no return value. We can't create 10033 // such a node, so we just return a null return value in that case. In 10034 // that case, nothing will actually look at the value. 10035 if (ReturnValues.empty()) 10036 return std::make_pair(SDValue(), CLI.Chain); 10037 } 10038 10039 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10040 CLI.DAG.getVTList(RetTys), ReturnValues); 10041 return std::make_pair(Res, CLI.Chain); 10042 } 10043 10044 /// Places new result values for the node in Results (their number 10045 /// and types must exactly match those of the original return values of 10046 /// the node), or leaves Results empty, which indicates that the node is not 10047 /// to be custom lowered after all. 10048 void TargetLowering::LowerOperationWrapper(SDNode *N, 10049 SmallVectorImpl<SDValue> &Results, 10050 SelectionDAG &DAG) const { 10051 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10052 10053 if (!Res.getNode()) 10054 return; 10055 10056 // If the original node has one result, take the return value from 10057 // LowerOperation as is. It might not be result number 0. 10058 if (N->getNumValues() == 1) { 10059 Results.push_back(Res); 10060 return; 10061 } 10062 10063 // If the original node has multiple results, then the return node should 10064 // have the same number of results. 10065 assert((N->getNumValues() == Res->getNumValues()) && 10066 "Lowering returned the wrong number of results!"); 10067 10068 // Places new result values base on N result number. 10069 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10070 Results.push_back(Res.getValue(I)); 10071 } 10072 10073 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10074 llvm_unreachable("LowerOperation not implemented for this target!"); 10075 } 10076 10077 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10078 unsigned Reg, 10079 ISD::NodeType ExtendType) { 10080 SDValue Op = getNonRegisterValue(V); 10081 assert((Op.getOpcode() != ISD::CopyFromReg || 10082 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10083 "Copy from a reg to the same reg!"); 10084 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10085 10086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10087 // If this is an InlineAsm we have to match the registers required, not the 10088 // notional registers required by the type. 10089 10090 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10091 None); // This is not an ABI copy. 10092 SDValue Chain = DAG.getEntryNode(); 10093 10094 if (ExtendType == ISD::ANY_EXTEND) { 10095 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10096 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10097 ExtendType = PreferredExtendIt->second; 10098 } 10099 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10100 PendingExports.push_back(Chain); 10101 } 10102 10103 #include "llvm/CodeGen/SelectionDAGISel.h" 10104 10105 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10106 /// entry block, return true. This includes arguments used by switches, since 10107 /// the switch may expand into multiple basic blocks. 10108 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10109 // With FastISel active, we may be splitting blocks, so force creation 10110 // of virtual registers for all non-dead arguments. 10111 if (FastISel) 10112 return A->use_empty(); 10113 10114 const BasicBlock &Entry = A->getParent()->front(); 10115 for (const User *U : A->users()) 10116 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10117 return false; // Use not in entry block. 10118 10119 return true; 10120 } 10121 10122 using ArgCopyElisionMapTy = 10123 DenseMap<const Argument *, 10124 std::pair<const AllocaInst *, const StoreInst *>>; 10125 10126 /// Scan the entry block of the function in FuncInfo for arguments that look 10127 /// like copies into a local alloca. Record any copied arguments in 10128 /// ArgCopyElisionCandidates. 10129 static void 10130 findArgumentCopyElisionCandidates(const DataLayout &DL, 10131 FunctionLoweringInfo *FuncInfo, 10132 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10133 // Record the state of every static alloca used in the entry block. Argument 10134 // allocas are all used in the entry block, so we need approximately as many 10135 // entries as we have arguments. 10136 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10137 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10138 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10139 StaticAllocas.reserve(NumArgs * 2); 10140 10141 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10142 if (!V) 10143 return nullptr; 10144 V = V->stripPointerCasts(); 10145 const auto *AI = dyn_cast<AllocaInst>(V); 10146 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10147 return nullptr; 10148 auto Iter = StaticAllocas.insert({AI, Unknown}); 10149 return &Iter.first->second; 10150 }; 10151 10152 // Look for stores of arguments to static allocas. Look through bitcasts and 10153 // GEPs to handle type coercions, as long as the alloca is fully initialized 10154 // by the store. Any non-store use of an alloca escapes it and any subsequent 10155 // unanalyzed store might write it. 10156 // FIXME: Handle structs initialized with multiple stores. 10157 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10158 // Look for stores, and handle non-store uses conservatively. 10159 const auto *SI = dyn_cast<StoreInst>(&I); 10160 if (!SI) { 10161 // We will look through cast uses, so ignore them completely. 10162 if (I.isCast()) 10163 continue; 10164 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10165 // to allocas. 10166 if (I.isDebugOrPseudoInst()) 10167 continue; 10168 // This is an unknown instruction. Assume it escapes or writes to all 10169 // static alloca operands. 10170 for (const Use &U : I.operands()) { 10171 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10172 *Info = StaticAllocaInfo::Clobbered; 10173 } 10174 continue; 10175 } 10176 10177 // If the stored value is a static alloca, mark it as escaped. 10178 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10179 *Info = StaticAllocaInfo::Clobbered; 10180 10181 // Check if the destination is a static alloca. 10182 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10183 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10184 if (!Info) 10185 continue; 10186 const AllocaInst *AI = cast<AllocaInst>(Dst); 10187 10188 // Skip allocas that have been initialized or clobbered. 10189 if (*Info != StaticAllocaInfo::Unknown) 10190 continue; 10191 10192 // Check if the stored value is an argument, and that this store fully 10193 // initializes the alloca. 10194 // If the argument type has padding bits we can't directly forward a pointer 10195 // as the upper bits may contain garbage. 10196 // Don't elide copies from the same argument twice. 10197 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10198 const auto *Arg = dyn_cast<Argument>(Val); 10199 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10200 Arg->getType()->isEmptyTy() || 10201 DL.getTypeStoreSize(Arg->getType()) != 10202 DL.getTypeAllocSize(AI->getAllocatedType()) || 10203 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10204 ArgCopyElisionCandidates.count(Arg)) { 10205 *Info = StaticAllocaInfo::Clobbered; 10206 continue; 10207 } 10208 10209 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10210 << '\n'); 10211 10212 // Mark this alloca and store for argument copy elision. 10213 *Info = StaticAllocaInfo::Elidable; 10214 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10215 10216 // Stop scanning if we've seen all arguments. This will happen early in -O0 10217 // builds, which is useful, because -O0 builds have large entry blocks and 10218 // many allocas. 10219 if (ArgCopyElisionCandidates.size() == NumArgs) 10220 break; 10221 } 10222 } 10223 10224 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10225 /// ArgVal is a load from a suitable fixed stack object. 10226 static void tryToElideArgumentCopy( 10227 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10228 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10229 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10230 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10231 SDValue ArgVal, bool &ArgHasUses) { 10232 // Check if this is a load from a fixed stack object. 10233 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10234 if (!LNode) 10235 return; 10236 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10237 if (!FINode) 10238 return; 10239 10240 // Check that the fixed stack object is the right size and alignment. 10241 // Look at the alignment that the user wrote on the alloca instead of looking 10242 // at the stack object. 10243 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10244 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10245 const AllocaInst *AI = ArgCopyIter->second.first; 10246 int FixedIndex = FINode->getIndex(); 10247 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10248 int OldIndex = AllocaIndex; 10249 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10250 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10251 LLVM_DEBUG( 10252 dbgs() << " argument copy elision failed due to bad fixed stack " 10253 "object size\n"); 10254 return; 10255 } 10256 Align RequiredAlignment = AI->getAlign(); 10257 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10258 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10259 "greater than stack argument alignment (" 10260 << DebugStr(RequiredAlignment) << " vs " 10261 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10262 return; 10263 } 10264 10265 // Perform the elision. Delete the old stack object and replace its only use 10266 // in the variable info map. Mark the stack object as mutable. 10267 LLVM_DEBUG({ 10268 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10269 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10270 << '\n'; 10271 }); 10272 MFI.RemoveStackObject(OldIndex); 10273 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10274 AllocaIndex = FixedIndex; 10275 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10276 Chains.push_back(ArgVal.getValue(1)); 10277 10278 // Avoid emitting code for the store implementing the copy. 10279 const StoreInst *SI = ArgCopyIter->second.second; 10280 ElidedArgCopyInstrs.insert(SI); 10281 10282 // Check for uses of the argument again so that we can avoid exporting ArgVal 10283 // if it is't used by anything other than the store. 10284 for (const Value *U : Arg.users()) { 10285 if (U != SI) { 10286 ArgHasUses = true; 10287 break; 10288 } 10289 } 10290 } 10291 10292 void SelectionDAGISel::LowerArguments(const Function &F) { 10293 SelectionDAG &DAG = SDB->DAG; 10294 SDLoc dl = SDB->getCurSDLoc(); 10295 const DataLayout &DL = DAG.getDataLayout(); 10296 SmallVector<ISD::InputArg, 16> Ins; 10297 10298 // In Naked functions we aren't going to save any registers. 10299 if (F.hasFnAttribute(Attribute::Naked)) 10300 return; 10301 10302 if (!FuncInfo->CanLowerReturn) { 10303 // Put in an sret pointer parameter before all the other parameters. 10304 SmallVector<EVT, 1> ValueVTs; 10305 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10306 F.getReturnType()->getPointerTo( 10307 DAG.getDataLayout().getAllocaAddrSpace()), 10308 ValueVTs); 10309 10310 // NOTE: Assuming that a pointer will never break down to more than one VT 10311 // or one register. 10312 ISD::ArgFlagsTy Flags; 10313 Flags.setSRet(); 10314 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10315 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10316 ISD::InputArg::NoArgIndex, 0); 10317 Ins.push_back(RetArg); 10318 } 10319 10320 // Look for stores of arguments to static allocas. Mark such arguments with a 10321 // flag to ask the target to give us the memory location of that argument if 10322 // available. 10323 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10324 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10325 ArgCopyElisionCandidates); 10326 10327 // Set up the incoming argument description vector. 10328 for (const Argument &Arg : F.args()) { 10329 unsigned ArgNo = Arg.getArgNo(); 10330 SmallVector<EVT, 4> ValueVTs; 10331 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10332 bool isArgValueUsed = !Arg.use_empty(); 10333 unsigned PartBase = 0; 10334 Type *FinalType = Arg.getType(); 10335 if (Arg.hasAttribute(Attribute::ByVal)) 10336 FinalType = Arg.getParamByValType(); 10337 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10338 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10339 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10340 Value != NumValues; ++Value) { 10341 EVT VT = ValueVTs[Value]; 10342 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10343 ISD::ArgFlagsTy Flags; 10344 10345 10346 if (Arg.getType()->isPointerTy()) { 10347 Flags.setPointer(); 10348 Flags.setPointerAddrSpace( 10349 cast<PointerType>(Arg.getType())->getAddressSpace()); 10350 } 10351 if (Arg.hasAttribute(Attribute::ZExt)) 10352 Flags.setZExt(); 10353 if (Arg.hasAttribute(Attribute::SExt)) 10354 Flags.setSExt(); 10355 if (Arg.hasAttribute(Attribute::InReg)) { 10356 // If we are using vectorcall calling convention, a structure that is 10357 // passed InReg - is surely an HVA 10358 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10359 isa<StructType>(Arg.getType())) { 10360 // The first value of a structure is marked 10361 if (0 == Value) 10362 Flags.setHvaStart(); 10363 Flags.setHva(); 10364 } 10365 // Set InReg Flag 10366 Flags.setInReg(); 10367 } 10368 if (Arg.hasAttribute(Attribute::StructRet)) 10369 Flags.setSRet(); 10370 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10371 Flags.setSwiftSelf(); 10372 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10373 Flags.setSwiftAsync(); 10374 if (Arg.hasAttribute(Attribute::SwiftError)) 10375 Flags.setSwiftError(); 10376 if (Arg.hasAttribute(Attribute::ByVal)) 10377 Flags.setByVal(); 10378 if (Arg.hasAttribute(Attribute::ByRef)) 10379 Flags.setByRef(); 10380 if (Arg.hasAttribute(Attribute::InAlloca)) { 10381 Flags.setInAlloca(); 10382 // Set the byval flag for CCAssignFn callbacks that don't know about 10383 // inalloca. This way we can know how many bytes we should've allocated 10384 // and how many bytes a callee cleanup function will pop. If we port 10385 // inalloca to more targets, we'll have to add custom inalloca handling 10386 // in the various CC lowering callbacks. 10387 Flags.setByVal(); 10388 } 10389 if (Arg.hasAttribute(Attribute::Preallocated)) { 10390 Flags.setPreallocated(); 10391 // Set the byval flag for CCAssignFn callbacks that don't know about 10392 // preallocated. This way we can know how many bytes we should've 10393 // allocated and how many bytes a callee cleanup function will pop. If 10394 // we port preallocated to more targets, we'll have to add custom 10395 // preallocated handling in the various CC lowering callbacks. 10396 Flags.setByVal(); 10397 } 10398 10399 // Certain targets (such as MIPS), may have a different ABI alignment 10400 // for a type depending on the context. Give the target a chance to 10401 // specify the alignment it wants. 10402 const Align OriginalAlignment( 10403 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10404 Flags.setOrigAlign(OriginalAlignment); 10405 10406 Align MemAlign; 10407 Type *ArgMemTy = nullptr; 10408 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10409 Flags.isByRef()) { 10410 if (!ArgMemTy) 10411 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10412 10413 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10414 10415 // For in-memory arguments, size and alignment should be passed from FE. 10416 // BE will guess if this info is not there but there are cases it cannot 10417 // get right. 10418 if (auto ParamAlign = Arg.getParamStackAlign()) 10419 MemAlign = *ParamAlign; 10420 else if ((ParamAlign = Arg.getParamAlign())) 10421 MemAlign = *ParamAlign; 10422 else 10423 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10424 if (Flags.isByRef()) 10425 Flags.setByRefSize(MemSize); 10426 else 10427 Flags.setByValSize(MemSize); 10428 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10429 MemAlign = *ParamAlign; 10430 } else { 10431 MemAlign = OriginalAlignment; 10432 } 10433 Flags.setMemAlign(MemAlign); 10434 10435 if (Arg.hasAttribute(Attribute::Nest)) 10436 Flags.setNest(); 10437 if (NeedsRegBlock) 10438 Flags.setInConsecutiveRegs(); 10439 if (ArgCopyElisionCandidates.count(&Arg)) 10440 Flags.setCopyElisionCandidate(); 10441 if (Arg.hasAttribute(Attribute::Returned)) 10442 Flags.setReturned(); 10443 10444 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10445 *CurDAG->getContext(), F.getCallingConv(), VT); 10446 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10447 *CurDAG->getContext(), F.getCallingConv(), VT); 10448 for (unsigned i = 0; i != NumRegs; ++i) { 10449 // For scalable vectors, use the minimum size; individual targets 10450 // are responsible for handling scalable vector arguments and 10451 // return values. 10452 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10453 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10454 if (NumRegs > 1 && i == 0) 10455 MyFlags.Flags.setSplit(); 10456 // if it isn't first piece, alignment must be 1 10457 else if (i > 0) { 10458 MyFlags.Flags.setOrigAlign(Align(1)); 10459 if (i == NumRegs - 1) 10460 MyFlags.Flags.setSplitEnd(); 10461 } 10462 Ins.push_back(MyFlags); 10463 } 10464 if (NeedsRegBlock && Value == NumValues - 1) 10465 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10466 PartBase += VT.getStoreSize().getKnownMinSize(); 10467 } 10468 } 10469 10470 // Call the target to set up the argument values. 10471 SmallVector<SDValue, 8> InVals; 10472 SDValue NewRoot = TLI->LowerFormalArguments( 10473 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10474 10475 // Verify that the target's LowerFormalArguments behaved as expected. 10476 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10477 "LowerFormalArguments didn't return a valid chain!"); 10478 assert(InVals.size() == Ins.size() && 10479 "LowerFormalArguments didn't emit the correct number of values!"); 10480 LLVM_DEBUG({ 10481 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10482 assert(InVals[i].getNode() && 10483 "LowerFormalArguments emitted a null value!"); 10484 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10485 "LowerFormalArguments emitted a value with the wrong type!"); 10486 } 10487 }); 10488 10489 // Update the DAG with the new chain value resulting from argument lowering. 10490 DAG.setRoot(NewRoot); 10491 10492 // Set up the argument values. 10493 unsigned i = 0; 10494 if (!FuncInfo->CanLowerReturn) { 10495 // Create a virtual register for the sret pointer, and put in a copy 10496 // from the sret argument into it. 10497 SmallVector<EVT, 1> ValueVTs; 10498 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10499 F.getReturnType()->getPointerTo( 10500 DAG.getDataLayout().getAllocaAddrSpace()), 10501 ValueVTs); 10502 MVT VT = ValueVTs[0].getSimpleVT(); 10503 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10504 Optional<ISD::NodeType> AssertOp; 10505 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10506 nullptr, F.getCallingConv(), AssertOp); 10507 10508 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10509 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10510 Register SRetReg = 10511 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10512 FuncInfo->DemoteRegister = SRetReg; 10513 NewRoot = 10514 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10515 DAG.setRoot(NewRoot); 10516 10517 // i indexes lowered arguments. Bump it past the hidden sret argument. 10518 ++i; 10519 } 10520 10521 SmallVector<SDValue, 4> Chains; 10522 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10523 for (const Argument &Arg : F.args()) { 10524 SmallVector<SDValue, 4> ArgValues; 10525 SmallVector<EVT, 4> ValueVTs; 10526 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10527 unsigned NumValues = ValueVTs.size(); 10528 if (NumValues == 0) 10529 continue; 10530 10531 bool ArgHasUses = !Arg.use_empty(); 10532 10533 // Elide the copying store if the target loaded this argument from a 10534 // suitable fixed stack object. 10535 if (Ins[i].Flags.isCopyElisionCandidate()) { 10536 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10537 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10538 InVals[i], ArgHasUses); 10539 } 10540 10541 // If this argument is unused then remember its value. It is used to generate 10542 // debugging information. 10543 bool isSwiftErrorArg = 10544 TLI->supportSwiftError() && 10545 Arg.hasAttribute(Attribute::SwiftError); 10546 if (!ArgHasUses && !isSwiftErrorArg) { 10547 SDB->setUnusedArgValue(&Arg, InVals[i]); 10548 10549 // Also remember any frame index for use in FastISel. 10550 if (FrameIndexSDNode *FI = 10551 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10552 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10553 } 10554 10555 for (unsigned Val = 0; Val != NumValues; ++Val) { 10556 EVT VT = ValueVTs[Val]; 10557 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10558 F.getCallingConv(), VT); 10559 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10560 *CurDAG->getContext(), F.getCallingConv(), VT); 10561 10562 // Even an apparent 'unused' swifterror argument needs to be returned. So 10563 // we do generate a copy for it that can be used on return from the 10564 // function. 10565 if (ArgHasUses || isSwiftErrorArg) { 10566 Optional<ISD::NodeType> AssertOp; 10567 if (Arg.hasAttribute(Attribute::SExt)) 10568 AssertOp = ISD::AssertSext; 10569 else if (Arg.hasAttribute(Attribute::ZExt)) 10570 AssertOp = ISD::AssertZext; 10571 10572 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10573 PartVT, VT, nullptr, 10574 F.getCallingConv(), AssertOp)); 10575 } 10576 10577 i += NumParts; 10578 } 10579 10580 // We don't need to do anything else for unused arguments. 10581 if (ArgValues.empty()) 10582 continue; 10583 10584 // Note down frame index. 10585 if (FrameIndexSDNode *FI = 10586 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10587 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10588 10589 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10590 SDB->getCurSDLoc()); 10591 10592 SDB->setValue(&Arg, Res); 10593 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10594 // We want to associate the argument with the frame index, among 10595 // involved operands, that correspond to the lowest address. The 10596 // getCopyFromParts function, called earlier, is swapping the order of 10597 // the operands to BUILD_PAIR depending on endianness. The result of 10598 // that swapping is that the least significant bits of the argument will 10599 // be in the first operand of the BUILD_PAIR node, and the most 10600 // significant bits will be in the second operand. 10601 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10602 if (LoadSDNode *LNode = 10603 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10604 if (FrameIndexSDNode *FI = 10605 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10606 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10607 } 10608 10609 // Analyses past this point are naive and don't expect an assertion. 10610 if (Res.getOpcode() == ISD::AssertZext) 10611 Res = Res.getOperand(0); 10612 10613 // Update the SwiftErrorVRegDefMap. 10614 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10615 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10616 if (Register::isVirtualRegister(Reg)) 10617 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10618 Reg); 10619 } 10620 10621 // If this argument is live outside of the entry block, insert a copy from 10622 // wherever we got it to the vreg that other BB's will reference it as. 10623 if (Res.getOpcode() == ISD::CopyFromReg) { 10624 // If we can, though, try to skip creating an unnecessary vreg. 10625 // FIXME: This isn't very clean... it would be nice to make this more 10626 // general. 10627 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10628 if (Register::isVirtualRegister(Reg)) { 10629 FuncInfo->ValueMap[&Arg] = Reg; 10630 continue; 10631 } 10632 } 10633 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10634 FuncInfo->InitializeRegForValue(&Arg); 10635 SDB->CopyToExportRegsIfNeeded(&Arg); 10636 } 10637 } 10638 10639 if (!Chains.empty()) { 10640 Chains.push_back(NewRoot); 10641 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10642 } 10643 10644 DAG.setRoot(NewRoot); 10645 10646 assert(i == InVals.size() && "Argument register count mismatch!"); 10647 10648 // If any argument copy elisions occurred and we have debug info, update the 10649 // stale frame indices used in the dbg.declare variable info table. 10650 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10651 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10652 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10653 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10654 if (I != ArgCopyElisionFrameIndexMap.end()) 10655 VI.Slot = I->second; 10656 } 10657 } 10658 10659 // Finally, if the target has anything special to do, allow it to do so. 10660 emitFunctionEntryCode(); 10661 } 10662 10663 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10664 /// ensure constants are generated when needed. Remember the virtual registers 10665 /// that need to be added to the Machine PHI nodes as input. We cannot just 10666 /// directly add them, because expansion might result in multiple MBB's for one 10667 /// BB. As such, the start of the BB might correspond to a different MBB than 10668 /// the end. 10669 void 10670 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10672 const Instruction *TI = LLVMBB->getTerminator(); 10673 10674 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10675 10676 // Check PHI nodes in successors that expect a value to be available from this 10677 // block. 10678 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10679 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10680 if (!isa<PHINode>(SuccBB->begin())) continue; 10681 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10682 10683 // If this terminator has multiple identical successors (common for 10684 // switches), only handle each succ once. 10685 if (!SuccsHandled.insert(SuccMBB).second) 10686 continue; 10687 10688 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10689 10690 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10691 // nodes and Machine PHI nodes, but the incoming operands have not been 10692 // emitted yet. 10693 for (const PHINode &PN : SuccBB->phis()) { 10694 // Ignore dead phi's. 10695 if (PN.use_empty()) 10696 continue; 10697 10698 // Skip empty types 10699 if (PN.getType()->isEmptyTy()) 10700 continue; 10701 10702 unsigned Reg; 10703 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10704 10705 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10706 unsigned &RegOut = ConstantsOut[C]; 10707 if (RegOut == 0) { 10708 RegOut = FuncInfo.CreateRegs(C); 10709 // We need to zero/sign extend ConstantInt phi operands to match 10710 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10711 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10712 if (auto *CI = dyn_cast<ConstantInt>(C)) 10713 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10714 : ISD::ZERO_EXTEND; 10715 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10716 } 10717 Reg = RegOut; 10718 } else { 10719 DenseMap<const Value *, Register>::iterator I = 10720 FuncInfo.ValueMap.find(PHIOp); 10721 if (I != FuncInfo.ValueMap.end()) 10722 Reg = I->second; 10723 else { 10724 assert(isa<AllocaInst>(PHIOp) && 10725 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10726 "Didn't codegen value into a register!??"); 10727 Reg = FuncInfo.CreateRegs(PHIOp); 10728 CopyValueToVirtualRegister(PHIOp, Reg); 10729 } 10730 } 10731 10732 // Remember that this register needs to added to the machine PHI node as 10733 // the input for this MBB. 10734 SmallVector<EVT, 4> ValueVTs; 10735 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10736 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10737 EVT VT = ValueVTs[vti]; 10738 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10739 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10740 FuncInfo.PHINodesToUpdate.push_back( 10741 std::make_pair(&*MBBI++, Reg + i)); 10742 Reg += NumRegisters; 10743 } 10744 } 10745 } 10746 10747 ConstantsOut.clear(); 10748 } 10749 10750 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10751 MachineFunction::iterator I(MBB); 10752 if (++I == FuncInfo.MF->end()) 10753 return nullptr; 10754 return &*I; 10755 } 10756 10757 /// During lowering new call nodes can be created (such as memset, etc.). 10758 /// Those will become new roots of the current DAG, but complications arise 10759 /// when they are tail calls. In such cases, the call lowering will update 10760 /// the root, but the builder still needs to know that a tail call has been 10761 /// lowered in order to avoid generating an additional return. 10762 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10763 // If the node is null, we do have a tail call. 10764 if (MaybeTC.getNode() != nullptr) 10765 DAG.setRoot(MaybeTC); 10766 else 10767 HasTailCall = true; 10768 } 10769 10770 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10771 MachineBasicBlock *SwitchMBB, 10772 MachineBasicBlock *DefaultMBB) { 10773 MachineFunction *CurMF = FuncInfo.MF; 10774 MachineBasicBlock *NextMBB = nullptr; 10775 MachineFunction::iterator BBI(W.MBB); 10776 if (++BBI != FuncInfo.MF->end()) 10777 NextMBB = &*BBI; 10778 10779 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10780 10781 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10782 10783 if (Size == 2 && W.MBB == SwitchMBB) { 10784 // If any two of the cases has the same destination, and if one value 10785 // is the same as the other, but has one bit unset that the other has set, 10786 // use bit manipulation to do two compares at once. For example: 10787 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10788 // TODO: This could be extended to merge any 2 cases in switches with 3 10789 // cases. 10790 // TODO: Handle cases where W.CaseBB != SwitchBB. 10791 CaseCluster &Small = *W.FirstCluster; 10792 CaseCluster &Big = *W.LastCluster; 10793 10794 if (Small.Low == Small.High && Big.Low == Big.High && 10795 Small.MBB == Big.MBB) { 10796 const APInt &SmallValue = Small.Low->getValue(); 10797 const APInt &BigValue = Big.Low->getValue(); 10798 10799 // Check that there is only one bit different. 10800 APInt CommonBit = BigValue ^ SmallValue; 10801 if (CommonBit.isPowerOf2()) { 10802 SDValue CondLHS = getValue(Cond); 10803 EVT VT = CondLHS.getValueType(); 10804 SDLoc DL = getCurSDLoc(); 10805 10806 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10807 DAG.getConstant(CommonBit, DL, VT)); 10808 SDValue Cond = DAG.getSetCC( 10809 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10810 ISD::SETEQ); 10811 10812 // Update successor info. 10813 // Both Small and Big will jump to Small.BB, so we sum up the 10814 // probabilities. 10815 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10816 if (BPI) 10817 addSuccessorWithProb( 10818 SwitchMBB, DefaultMBB, 10819 // The default destination is the first successor in IR. 10820 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10821 else 10822 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10823 10824 // Insert the true branch. 10825 SDValue BrCond = 10826 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10827 DAG.getBasicBlock(Small.MBB)); 10828 // Insert the false branch. 10829 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10830 DAG.getBasicBlock(DefaultMBB)); 10831 10832 DAG.setRoot(BrCond); 10833 return; 10834 } 10835 } 10836 } 10837 10838 if (TM.getOptLevel() != CodeGenOpt::None) { 10839 // Here, we order cases by probability so the most likely case will be 10840 // checked first. However, two clusters can have the same probability in 10841 // which case their relative ordering is non-deterministic. So we use Low 10842 // as a tie-breaker as clusters are guaranteed to never overlap. 10843 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10844 [](const CaseCluster &a, const CaseCluster &b) { 10845 return a.Prob != b.Prob ? 10846 a.Prob > b.Prob : 10847 a.Low->getValue().slt(b.Low->getValue()); 10848 }); 10849 10850 // Rearrange the case blocks so that the last one falls through if possible 10851 // without changing the order of probabilities. 10852 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10853 --I; 10854 if (I->Prob > W.LastCluster->Prob) 10855 break; 10856 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10857 std::swap(*I, *W.LastCluster); 10858 break; 10859 } 10860 } 10861 } 10862 10863 // Compute total probability. 10864 BranchProbability DefaultProb = W.DefaultProb; 10865 BranchProbability UnhandledProbs = DefaultProb; 10866 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10867 UnhandledProbs += I->Prob; 10868 10869 MachineBasicBlock *CurMBB = W.MBB; 10870 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10871 bool FallthroughUnreachable = false; 10872 MachineBasicBlock *Fallthrough; 10873 if (I == W.LastCluster) { 10874 // For the last cluster, fall through to the default destination. 10875 Fallthrough = DefaultMBB; 10876 FallthroughUnreachable = isa<UnreachableInst>( 10877 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10878 } else { 10879 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10880 CurMF->insert(BBI, Fallthrough); 10881 // Put Cond in a virtual register to make it available from the new blocks. 10882 ExportFromCurrentBlock(Cond); 10883 } 10884 UnhandledProbs -= I->Prob; 10885 10886 switch (I->Kind) { 10887 case CC_JumpTable: { 10888 // FIXME: Optimize away range check based on pivot comparisons. 10889 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10890 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10891 10892 // The jump block hasn't been inserted yet; insert it here. 10893 MachineBasicBlock *JumpMBB = JT->MBB; 10894 CurMF->insert(BBI, JumpMBB); 10895 10896 auto JumpProb = I->Prob; 10897 auto FallthroughProb = UnhandledProbs; 10898 10899 // If the default statement is a target of the jump table, we evenly 10900 // distribute the default probability to successors of CurMBB. Also 10901 // update the probability on the edge from JumpMBB to Fallthrough. 10902 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10903 SE = JumpMBB->succ_end(); 10904 SI != SE; ++SI) { 10905 if (*SI == DefaultMBB) { 10906 JumpProb += DefaultProb / 2; 10907 FallthroughProb -= DefaultProb / 2; 10908 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10909 JumpMBB->normalizeSuccProbs(); 10910 break; 10911 } 10912 } 10913 10914 if (FallthroughUnreachable) 10915 JTH->FallthroughUnreachable = true; 10916 10917 if (!JTH->FallthroughUnreachable) 10918 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10919 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10920 CurMBB->normalizeSuccProbs(); 10921 10922 // The jump table header will be inserted in our current block, do the 10923 // range check, and fall through to our fallthrough block. 10924 JTH->HeaderBB = CurMBB; 10925 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10926 10927 // If we're in the right place, emit the jump table header right now. 10928 if (CurMBB == SwitchMBB) { 10929 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10930 JTH->Emitted = true; 10931 } 10932 break; 10933 } 10934 case CC_BitTests: { 10935 // FIXME: Optimize away range check based on pivot comparisons. 10936 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10937 10938 // The bit test blocks haven't been inserted yet; insert them here. 10939 for (BitTestCase &BTC : BTB->Cases) 10940 CurMF->insert(BBI, BTC.ThisBB); 10941 10942 // Fill in fields of the BitTestBlock. 10943 BTB->Parent = CurMBB; 10944 BTB->Default = Fallthrough; 10945 10946 BTB->DefaultProb = UnhandledProbs; 10947 // If the cases in bit test don't form a contiguous range, we evenly 10948 // distribute the probability on the edge to Fallthrough to two 10949 // successors of CurMBB. 10950 if (!BTB->ContiguousRange) { 10951 BTB->Prob += DefaultProb / 2; 10952 BTB->DefaultProb -= DefaultProb / 2; 10953 } 10954 10955 if (FallthroughUnreachable) 10956 BTB->FallthroughUnreachable = true; 10957 10958 // If we're in the right place, emit the bit test header right now. 10959 if (CurMBB == SwitchMBB) { 10960 visitBitTestHeader(*BTB, SwitchMBB); 10961 BTB->Emitted = true; 10962 } 10963 break; 10964 } 10965 case CC_Range: { 10966 const Value *RHS, *LHS, *MHS; 10967 ISD::CondCode CC; 10968 if (I->Low == I->High) { 10969 // Check Cond == I->Low. 10970 CC = ISD::SETEQ; 10971 LHS = Cond; 10972 RHS=I->Low; 10973 MHS = nullptr; 10974 } else { 10975 // Check I->Low <= Cond <= I->High. 10976 CC = ISD::SETLE; 10977 LHS = I->Low; 10978 MHS = Cond; 10979 RHS = I->High; 10980 } 10981 10982 // If Fallthrough is unreachable, fold away the comparison. 10983 if (FallthroughUnreachable) 10984 CC = ISD::SETTRUE; 10985 10986 // The false probability is the sum of all unhandled cases. 10987 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10988 getCurSDLoc(), I->Prob, UnhandledProbs); 10989 10990 if (CurMBB == SwitchMBB) 10991 visitSwitchCase(CB, SwitchMBB); 10992 else 10993 SL->SwitchCases.push_back(CB); 10994 10995 break; 10996 } 10997 } 10998 CurMBB = Fallthrough; 10999 } 11000 } 11001 11002 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11003 CaseClusterIt First, 11004 CaseClusterIt Last) { 11005 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11006 if (X.Prob != CC.Prob) 11007 return X.Prob > CC.Prob; 11008 11009 // Ties are broken by comparing the case value. 11010 return X.Low->getValue().slt(CC.Low->getValue()); 11011 }); 11012 } 11013 11014 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11015 const SwitchWorkListItem &W, 11016 Value *Cond, 11017 MachineBasicBlock *SwitchMBB) { 11018 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11019 "Clusters not sorted?"); 11020 11021 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11022 11023 // Balance the tree based on branch probabilities to create a near-optimal (in 11024 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11025 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11026 CaseClusterIt LastLeft = W.FirstCluster; 11027 CaseClusterIt FirstRight = W.LastCluster; 11028 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11029 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11030 11031 // Move LastLeft and FirstRight towards each other from opposite directions to 11032 // find a partitioning of the clusters which balances the probability on both 11033 // sides. If LeftProb and RightProb are equal, alternate which side is 11034 // taken to ensure 0-probability nodes are distributed evenly. 11035 unsigned I = 0; 11036 while (LastLeft + 1 < FirstRight) { 11037 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11038 LeftProb += (++LastLeft)->Prob; 11039 else 11040 RightProb += (--FirstRight)->Prob; 11041 I++; 11042 } 11043 11044 while (true) { 11045 // Our binary search tree differs from a typical BST in that ours can have up 11046 // to three values in each leaf. The pivot selection above doesn't take that 11047 // into account, which means the tree might require more nodes and be less 11048 // efficient. We compensate for this here. 11049 11050 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11051 unsigned NumRight = W.LastCluster - FirstRight + 1; 11052 11053 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11054 // If one side has less than 3 clusters, and the other has more than 3, 11055 // consider taking a cluster from the other side. 11056 11057 if (NumLeft < NumRight) { 11058 // Consider moving the first cluster on the right to the left side. 11059 CaseCluster &CC = *FirstRight; 11060 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11061 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11062 if (LeftSideRank <= RightSideRank) { 11063 // Moving the cluster to the left does not demote it. 11064 ++LastLeft; 11065 ++FirstRight; 11066 continue; 11067 } 11068 } else { 11069 assert(NumRight < NumLeft); 11070 // Consider moving the last element on the left to the right side. 11071 CaseCluster &CC = *LastLeft; 11072 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11073 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11074 if (RightSideRank <= LeftSideRank) { 11075 // Moving the cluster to the right does not demot it. 11076 --LastLeft; 11077 --FirstRight; 11078 continue; 11079 } 11080 } 11081 } 11082 break; 11083 } 11084 11085 assert(LastLeft + 1 == FirstRight); 11086 assert(LastLeft >= W.FirstCluster); 11087 assert(FirstRight <= W.LastCluster); 11088 11089 // Use the first element on the right as pivot since we will make less-than 11090 // comparisons against it. 11091 CaseClusterIt PivotCluster = FirstRight; 11092 assert(PivotCluster > W.FirstCluster); 11093 assert(PivotCluster <= W.LastCluster); 11094 11095 CaseClusterIt FirstLeft = W.FirstCluster; 11096 CaseClusterIt LastRight = W.LastCluster; 11097 11098 const ConstantInt *Pivot = PivotCluster->Low; 11099 11100 // New blocks will be inserted immediately after the current one. 11101 MachineFunction::iterator BBI(W.MBB); 11102 ++BBI; 11103 11104 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11105 // we can branch to its destination directly if it's squeezed exactly in 11106 // between the known lower bound and Pivot - 1. 11107 MachineBasicBlock *LeftMBB; 11108 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11109 FirstLeft->Low == W.GE && 11110 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11111 LeftMBB = FirstLeft->MBB; 11112 } else { 11113 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11114 FuncInfo.MF->insert(BBI, LeftMBB); 11115 WorkList.push_back( 11116 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11117 // Put Cond in a virtual register to make it available from the new blocks. 11118 ExportFromCurrentBlock(Cond); 11119 } 11120 11121 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11122 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11123 // directly if RHS.High equals the current upper bound. 11124 MachineBasicBlock *RightMBB; 11125 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11126 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11127 RightMBB = FirstRight->MBB; 11128 } else { 11129 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11130 FuncInfo.MF->insert(BBI, RightMBB); 11131 WorkList.push_back( 11132 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11133 // Put Cond in a virtual register to make it available from the new blocks. 11134 ExportFromCurrentBlock(Cond); 11135 } 11136 11137 // Create the CaseBlock record that will be used to lower the branch. 11138 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11139 getCurSDLoc(), LeftProb, RightProb); 11140 11141 if (W.MBB == SwitchMBB) 11142 visitSwitchCase(CB, SwitchMBB); 11143 else 11144 SL->SwitchCases.push_back(CB); 11145 } 11146 11147 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11148 // from the swith statement. 11149 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11150 BranchProbability PeeledCaseProb) { 11151 if (PeeledCaseProb == BranchProbability::getOne()) 11152 return BranchProbability::getZero(); 11153 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11154 11155 uint32_t Numerator = CaseProb.getNumerator(); 11156 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11157 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11158 } 11159 11160 // Try to peel the top probability case if it exceeds the threshold. 11161 // Return current MachineBasicBlock for the switch statement if the peeling 11162 // does not occur. 11163 // If the peeling is performed, return the newly created MachineBasicBlock 11164 // for the peeled switch statement. Also update Clusters to remove the peeled 11165 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11166 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11167 const SwitchInst &SI, CaseClusterVector &Clusters, 11168 BranchProbability &PeeledCaseProb) { 11169 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11170 // Don't perform if there is only one cluster or optimizing for size. 11171 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11172 TM.getOptLevel() == CodeGenOpt::None || 11173 SwitchMBB->getParent()->getFunction().hasMinSize()) 11174 return SwitchMBB; 11175 11176 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11177 unsigned PeeledCaseIndex = 0; 11178 bool SwitchPeeled = false; 11179 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11180 CaseCluster &CC = Clusters[Index]; 11181 if (CC.Prob < TopCaseProb) 11182 continue; 11183 TopCaseProb = CC.Prob; 11184 PeeledCaseIndex = Index; 11185 SwitchPeeled = true; 11186 } 11187 if (!SwitchPeeled) 11188 return SwitchMBB; 11189 11190 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11191 << TopCaseProb << "\n"); 11192 11193 // Record the MBB for the peeled switch statement. 11194 MachineFunction::iterator BBI(SwitchMBB); 11195 ++BBI; 11196 MachineBasicBlock *PeeledSwitchMBB = 11197 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11198 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11199 11200 ExportFromCurrentBlock(SI.getCondition()); 11201 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11202 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11203 nullptr, nullptr, TopCaseProb.getCompl()}; 11204 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11205 11206 Clusters.erase(PeeledCaseIt); 11207 for (CaseCluster &CC : Clusters) { 11208 LLVM_DEBUG( 11209 dbgs() << "Scale the probablity for one cluster, before scaling: " 11210 << CC.Prob << "\n"); 11211 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11212 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11213 } 11214 PeeledCaseProb = TopCaseProb; 11215 return PeeledSwitchMBB; 11216 } 11217 11218 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11219 // Extract cases from the switch. 11220 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11221 CaseClusterVector Clusters; 11222 Clusters.reserve(SI.getNumCases()); 11223 for (auto I : SI.cases()) { 11224 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11225 const ConstantInt *CaseVal = I.getCaseValue(); 11226 BranchProbability Prob = 11227 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11228 : BranchProbability(1, SI.getNumCases() + 1); 11229 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11230 } 11231 11232 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11233 11234 // Cluster adjacent cases with the same destination. We do this at all 11235 // optimization levels because it's cheap to do and will make codegen faster 11236 // if there are many clusters. 11237 sortAndRangeify(Clusters); 11238 11239 // The branch probablity of the peeled case. 11240 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11241 MachineBasicBlock *PeeledSwitchMBB = 11242 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11243 11244 // If there is only the default destination, jump there directly. 11245 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11246 if (Clusters.empty()) { 11247 assert(PeeledSwitchMBB == SwitchMBB); 11248 SwitchMBB->addSuccessor(DefaultMBB); 11249 if (DefaultMBB != NextBlock(SwitchMBB)) { 11250 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11251 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11252 } 11253 return; 11254 } 11255 11256 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11257 SL->findBitTestClusters(Clusters, &SI); 11258 11259 LLVM_DEBUG({ 11260 dbgs() << "Case clusters: "; 11261 for (const CaseCluster &C : Clusters) { 11262 if (C.Kind == CC_JumpTable) 11263 dbgs() << "JT:"; 11264 if (C.Kind == CC_BitTests) 11265 dbgs() << "BT:"; 11266 11267 C.Low->getValue().print(dbgs(), true); 11268 if (C.Low != C.High) { 11269 dbgs() << '-'; 11270 C.High->getValue().print(dbgs(), true); 11271 } 11272 dbgs() << ' '; 11273 } 11274 dbgs() << '\n'; 11275 }); 11276 11277 assert(!Clusters.empty()); 11278 SwitchWorkList WorkList; 11279 CaseClusterIt First = Clusters.begin(); 11280 CaseClusterIt Last = Clusters.end() - 1; 11281 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11282 // Scale the branchprobability for DefaultMBB if the peel occurs and 11283 // DefaultMBB is not replaced. 11284 if (PeeledCaseProb != BranchProbability::getZero() && 11285 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11286 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11287 WorkList.push_back( 11288 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11289 11290 while (!WorkList.empty()) { 11291 SwitchWorkListItem W = WorkList.pop_back_val(); 11292 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11293 11294 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11295 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11296 // For optimized builds, lower large range as a balanced binary tree. 11297 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11298 continue; 11299 } 11300 11301 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11302 } 11303 } 11304 11305 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11307 auto DL = getCurSDLoc(); 11308 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11309 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11310 } 11311 11312 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11314 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11315 11316 SDLoc DL = getCurSDLoc(); 11317 SDValue V = getValue(I.getOperand(0)); 11318 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11319 11320 if (VT.isScalableVector()) { 11321 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11322 return; 11323 } 11324 11325 // Use VECTOR_SHUFFLE for the fixed-length vector 11326 // to maintain existing behavior. 11327 SmallVector<int, 8> Mask; 11328 unsigned NumElts = VT.getVectorMinNumElements(); 11329 for (unsigned i = 0; i != NumElts; ++i) 11330 Mask.push_back(NumElts - 1 - i); 11331 11332 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11333 } 11334 11335 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11336 SmallVector<EVT, 4> ValueVTs; 11337 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11338 ValueVTs); 11339 unsigned NumValues = ValueVTs.size(); 11340 if (NumValues == 0) return; 11341 11342 SmallVector<SDValue, 4> Values(NumValues); 11343 SDValue Op = getValue(I.getOperand(0)); 11344 11345 for (unsigned i = 0; i != NumValues; ++i) 11346 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11347 SDValue(Op.getNode(), Op.getResNo() + i)); 11348 11349 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11350 DAG.getVTList(ValueVTs), Values)); 11351 } 11352 11353 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11355 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11356 11357 SDLoc DL = getCurSDLoc(); 11358 SDValue V1 = getValue(I.getOperand(0)); 11359 SDValue V2 = getValue(I.getOperand(1)); 11360 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11361 11362 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11363 if (VT.isScalableVector()) { 11364 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11365 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11366 DAG.getConstant(Imm, DL, IdxVT))); 11367 return; 11368 } 11369 11370 unsigned NumElts = VT.getVectorNumElements(); 11371 11372 uint64_t Idx = (NumElts + Imm) % NumElts; 11373 11374 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11375 SmallVector<int, 8> Mask; 11376 for (unsigned i = 0; i < NumElts; ++i) 11377 Mask.push_back(Idx + i); 11378 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11379 } 11380